
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2013 

Sustainability Analysis Of Intelligent Transportation Systems Sustainability Analysis Of Intelligent Transportation Systems 

Tolga Ercan 
University of Central Florida 

 Part of the Civil Engineering Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for 

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Ercan, Tolga, "Sustainability Analysis Of Intelligent Transportation Systems" (2013). Electronic Theses and 
Dissertations, 2004-2019. 2746. 
https://stars.library.ucf.edu/etd/2746 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/252?utm_source=stars.library.ucf.edu%2Fetd%2F2746&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/2746?utm_source=stars.library.ucf.edu%2Fetd%2F2746&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


SUSTAINABILITY ANALYSIS OF INTELLIGENT TRANSPORTATION SYSTEMS 

 

 

by 

 

 

 

TOLGA ERCAN 

B.Sc. Department of Civil Engineering, Cukurova University, 2009 

 

 

 

A thesis submitted in partial fulfillment of the requirements 

for the degree of Master of Science 

in the Department of Civil and Environmental Engineering 

in the College of Engineering and Computer Science 

at the University of Central Florida 

Orlando, Florida 

 

 

 

 

 

Fall Term 

2013 

 

Major Professor: Omer Tatari 



ABSTRACT 

 Commuters in urban areas suffer from traffic congestion on a daily basis. The increasing 

number of vehicles and vehicle miles traveled (VMT) are exacerbating this congested roadway 

problem for society. Although literature contains numerous studies that strive to propose solutions 

to this congestion problem, the problem is still prevalent today. Traffic congestion problem affects 

society’s quality of life socially, economically, and environmentally. In order to alleviate the 

unsustainable impacts of the congested roadway problem, Intelligent Transportation Systems (ITS) 

has been utilized to improve sustainable transportation systems in the world. The purpose of this 

thesis is to analyze the sustainable impacts and performance of the utilization of ITS in the United 

States.  

 This thesis advances the body of knowledge of sustainability impacts of ITS related 

congestion relief through a triple bottom line (TBL) evaluation in the United States. TBL impacts 

analyze from a holistic perspective, rather than considering only the direct economic benefits. A 

critical approach to this research was to include both the direct and the indirect environmental and 

socio-economic impacts associated with the chain of supply paths of traffic congestion relief. To 

accomplish this aim, net benefits of ITS implementations are analyzed in 101 cities in the United 

States. In addition to the state level results, seven metropolitan cities in Florida are investigated in 

detail among these 101 cities. For instance, the results of this study indicated that Florida saved 

1.38 E+05 tons of greenhouse gas emissions (tons of carbon dioxide equivalent), $420 million of 

annual delay reduction costs, and $17.2 million of net fuel-based costs. Furthermore, to quantify 

the relative impact and sustainability performance of different ITS technologies, several ITS 

solutions are analyzed in terms of total costs (initial and operation & maintenance costs) and 

benefits (value of time, emissions, and safety). To account for the uncertainty in benefit and cost 
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analyses, a fuzzy-data envelopment analysis (DEA) methodology is utilized instead of the 

traditional DEA approach for sustainability performance analysis. The results using the fuzzy-DEA 

approach indicate that some of the ITS investments are not efficient compared to other investments 

where as all of them are highly effective investments in terms of the cost/benefit ratios approach. 

The TBL results of this study provide more comprehensive picture of socio-economic benefits 

which include the negative and indirect indicators and environmental benefits for ITS related 

congestion relief. In addition, sustainability performance comparisons and TBL analysis of ITS 

investments contained encouraging results to support decision makers to pursue ITS projects in the 

future. 
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CHAPTER ONE: INTRODUCTION 

1.1.     Background Information 

 1.1.1. Traffic Congestion Problem in the U.S. 

 Increase in population, number of vehicles, and vehicle miles traveled (VMT) are 

the leading causes of the roadway congestion problem in the United States. The vast 

amounts of studies that are published in literature in the last decade prove the importance 

of the congested roadway problem. For instance, annual VMT increased 8% after the 2008 

financial crisis and reached 2.97 trillion miles in the U.S. in 2011 (Federal Highway 

Administration, 2013). Therefore, it clearly can be stated that traffic congestion has 

negative impacts on economy, environment, safety, and society. According to the Texas 

Transportation Institute’s (TTI) Urban Mobility Report (UMR), in 2011 people in the U.S. 

traveled 5.5 billion more hours and purchased an extra 2.9 billion gallons for a congestion 

cost of $121 billion. In other words, each commuter in the U.S. wasted 43 hours of time, 

$922, and 20 gallons of fuel annually (Lomax, Schrank, & Eisele, 2011). 

 1.1.2. Sustainable Transportation 

Numerous researchers, institutes, and government organizations are working on 

reducing traffic congestion and building sustainable transportation system all around the 

world. The common conclusion for this problem is that it is not feasible to continue to 

consume resources at current rates and the time is limited to take action. These conclusions 

lead to the idea of sustainable development implementations on transportation systems.  
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 “Sustainable development” was defined by United Nations’ Report in 1987 as; 

“generating a development which meets the needs of the present without compromising the 

ability of future generations to meet their own needs.” This definition can be paraphrased 

for transportation systems as ensuring that future generations need for mobility and 

transport will not be compromised. Researchers, governors, decision makers etc. are still 

working on building a sustainable world, and sustainable transportation systems, however, 

the results of these efforts do not indicate significant improvements (Black, 2010).  

 The concept of sustainable development is not straightforward, since it has various 

indicators. For instance, transportation affects fossil fuel (petroleum) reserves, global 

atmosphere, local air quality, noise pollution, level of mobility, congestion rate, and 

mortality rates (fatalities and crashes).   

  The world has used approximately 1 trillion barrels of petroleum (Black, 2010). 

This fact could highlight the severity of this problem by itself. Due to the increasing rate 

of population growth and number of vehicles on the roads, the question arises as to whether 

or not the petroleum reserves will be able to meet the needs of future generations.  

 Congestion and level of mobility are directly affected by the increase of VMT and 

number of vehicles. Today in most urban areas, traffic congestion is one of the main 

concerns of residents. Even the local government agencies invest enormous amounts of 

money to expand roads and reduce congestion; however, the results of these investments 

do not indicate significant benefits since the existing roads cannot be expanded to the 
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infinity. In addition, congestion is the main reason for low air quality in urban areas, due 

to vehicle emissions.  

 Transportation is one of the main factors that affects air quality and greatly impacts 

the global atmosphere. Urban area air quality data is an example of the severity of 

transportation’s impact on the environment. According to the U.S. Bureau of 

Transportation Statistics, transportation modes caused 3.7% of sulfur dioxide, 57% of 

nitrogen oxide, 68.4% of carbon monoxide, 2.9% of PM10 particulates of and 11.8% of 

PM2.5 particulates, and 33.9% of volatile organic compounds emissions to the air in 2009 

(U.S. Bureau of Transportation Statistics, 2009). Poor air quality does not only threaten 

human life, it also afflicts the life of all species on the planet. In addition, emissions and 

the global average temperature are increasing because vehicles are burning fossil fuels.  

  Finally, traffic crashes is another issue that should be included as a part of 

sustainable development. According to World Health Organization (WHO), crashes are 

responsible for almost 1 million fatalities each year and nearly 70 million of injuries (2001) 

(World Health Organization, 2004). Fortunately, per 100 million VMT mileage death rates 

are decreased from 2 to 1.25 in the last 10 years in the U.S. This decrease in crash rates can 

be explained by an increase in enforcement of traffic laws and new traffic regulations by 

the U.S. Government in last decade. Also, every crash costs a significant amount of money 

to society. For instance, moderate injury crash costs $392,000 and where fatality crash 

costs $4.2M in 2009 dollars [(Blincoe et al., 2002) (costs converted from year 2000 to year 

2009 by consumer price index)].   
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 As a result of these unsustainable aspects of transportation, there is a crucial need 

to develop new strategies to decelerate the current trend. Using the word “deceleration” is 

more accurate for current issue, because stopping or become sustainable cannot go beyond 

the point of utopia.  The studies in this era include widespread point of view changes such 

as technological improvements, commuter behavior, alternative fuels etc. These changes 

may make interesting impacts on society in addition to the common concerns: economic 

and environmental. For instance, Frank et al.’s study (2004) states that the chance of 

becoming obese increases by 6% with every extra hour wasted in traffic (Frank, Andresen, 

& Schmid, 2004). 

 1.1.3. Quality of Life 

According to World Health Organization’s (WHO) definition, quality of life (QoL) 

is an “individual’s perception of their position in life in the context of the culture and value 

systems in which they live and in relation to their goals, expectations standards and 

concerns”(World Health Organization, 1997). The twenty two indicators of QoL that are 

defined by Steg & Gifford's (2005) study considers similar aspects as sustainable 

transportation does such as; energy and land use, waste, traffic safety, traffic noise, health 

consequences, accident costs, accessibility, and economic wealth indicators.  

In Steg & Gifford’s study, the results of a study are evaluated to present how the 

unsustainable impacts of transportation systems affect QoL. The study ranks the QoL 

indicators in terms of the responders’ answers. Moreover, the researchers extend the study 

with investigating transportation policies’ impact on responders’ QoL. The study clearly 
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concludes that transportation policies and systems have influence on society’s QoL 

indicators.  

 In conclusion, sustainable transportation ideas should be implemented in roadway 

design for metropolitan regions to improve the QoL of commuters. However, significant 

outcomes of sustainable transportation system designs can only be realized if travel 

behavior is also changed. Therefore, decision makers in government agencies should 

consider the indicators of QoL for future investments. 

 1.1.4. Part of the Solution: Intelligent Transportation Systems 

 As is mentioned above, the sustainable transportation approach proposes some 

strategies to solve current problems, and Intelligent Transportation Systems (ITS) can 

assist with these strategies. ITS combine the implementation of technological 

improvements to a road system with improvements that increase the road system’s 

efficiency. ITS are a solution which aims to enhance mobility, increase fuel efficiency, 

accessibility, operating efficiency, pollution, and safety. In other words, ITS aim to 

improve quality of life of society.    

 ITS helps mitigate problems such as traffic congestion, air quality, and safety 

without constructing additional roads (Bekiaris & Nakanishi, 2004).  ITS are very broad 

and include several areas of technology and system improvements such as advanced traffic 

management system (e.g., freeway and incident management systems, electronic toll 

collection), advanced traveler information systems (e.g., dynamic message signs and in car 
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real time traffic information and navigations systems), advanced public transportation 

systems, and commercial vehicle operations among others (Bekiaris & Nakanishi, 2004).  

 Some researchers discovered the benefits of using communication technology on 

transportation systems in 1980s (Weiland R.J., Purser, 2000). University of California 

Berkeley led the U.S. with their unique experiments on ITS applications from the beginning 

such as Advanced Traveler Information Systems (ATIS). Finally, the Intermodal Surface 

Transportation Efficiency Act (ISTEA) launched the nationwide ITS program in the U.S. 

in 1991 (Bekiaris & Nakanishi, 2004). In that same year, the Intelligent Transportation 

Society of America (ITS America) was also established as a non-profit organization. These 

organizations enabled the growth of ITS in the U.S. since they established.    

 The European Union (EU), along with the American organizations, played a critical 

role in the development of Road Transport Telematics and ITS since 1988. The Directorate 

General for Information Society of the European Commission funded some successful 

research projects between 1994 and 1998 such as the Telematics Application Programme 

(Bekiaris & Nakanishi, 2004)..  

 In 2006, approximately $1 billion was spent on ITS in the U.S. In detail, federal 

funding budgeted $110 M and over $850 M from local and state funding. Moreover, federal 

transportation agencies in the U.S. aim to increase   the annual funding to $2 billion for 

ITS projects by 2020 (Florida Department of Transportation Work Program Development 

Office, 2013).   
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1.2.     Thesis Objectives 

As is stated in previous sections, traffic congestion has economic, environmental, 

and safety impacts on society. Operational treatments on roads, such as ITS, provide 

benefits to these societal impacts. The direct time or emissions savings are not the only 

impacts that should be studied, the benefits need to be studied in a holistic way by 

researchers in order to draw a comprehensive picture for decision makers and government 

agencies about widespread impacts, Therefore, the benefits can be plotted with their supply 

chain and life cycle results instead of conventional cost/benefit analysis. Furthermore, in 

order to consider socio-economic impacts, Economic Input Output-Life Cycle Assessment 

(EIO-LCA) or Hybrid-LCA approaches are not sufficient enough for this analysis. Thus, 

the Triple Bottom Line (TBL) approach was used because it allows researchers to 

investigate the impacts/benefits of systems while taking into consideration the indirect 

effects for socio-economic and environmental point of views.   

ITS applications are generally effective investments in terms of their cost-benefit 

analysis; however these ratios do not provide adequate information for decision makers.  

Using a multi-criteria decision making tool is crucial to propose efficiency analysis of ITS 

applications. Data Envelopment Analysis (DEA) methodology is also not accurate enough 

to plot these results due to benefit and operation & maintenance analyses’ unpredictable 

and assumption based structure. Hereby, fuzzy DEA methodology could be the best fit with 

its uncertainty levels to provide realistic decision making information for future ITS 

investments.   
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Consequently, as a part of sustainable transportation, this thesis investigates how 

ITS improve the QoL for society. Therefore, congestion relief related ITS effects are 

studied for sustainability impacts and performances. 

 

1.3.     Aim of the Thesis 

 This thesis aims to present sustainability impacts and performance of Intelligent 

Transportation System investments on the roads of the U.S. which consists of socio-

economic, environmental and efficiency indicators. Therefore, this thesis will focus to 

propose following objectives: 

• Quantify socio-economic and environmental impacts of ITS savings for a 

state, 

• Quantify total socio-economic and environmental impacts of ITS savings in 

the U.S. for 4 years, 

• Develop a common methodology to quantify costs and benefits of different 

ITS applications with the consideration of engineering economics, and 

• Quantify efficiency scores of different ITS applications in terms of their 

costs and benefits in the U.S. 
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1.4.     Organization of the Study 

 This thesis is organized into seven chapters. Following the detailed introductory 

chapter is a literature review of Intelligent Transportation Systems (ITS) analysis studies 

in different methodologies which is presented in chapter two. Traffic congestion savings, 

triple bottom line, and fuzzy-DEA methodologies are explained in detail with their 

formulations in chapter three. 

  Chapter four investigates in detail the socio-economic and environmental 

sustainability impacts of seven Florida metropolitans. Chapter five extends this analysis to 

the U.S. level which includes 101 cities. The results of sustainability indicators are 

presented on the U.S. map figures below, each result is 4 year total for the state. It is 

followed by the sustainability performance analysis which ranks the ITS investments in 

terms of their efficiency scores.  

 The final chapter (chapter seven) consists of overall findings of this thesis in terms 

of their socio-economic, environmental, and efficiency results. The conclusion section also 

aims to provide summaries of the implications of these studies for decision makers or 

researchers. Finally, it concluded with study limitations and recommendations for future 

studies in this field.    
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CHAPTER TWO: LITERATURE REVIEW 

2.1.     Overview 

 This chapter summarizes the researches that present the impacts of ITS in different 

aspects. Cost/benefit studies of ITS provide results for efficiency performances. It followed 

by LCA studies which investigates the direct and indirect impacts of ITS in addition to the 

costs & benefits. Finally, as a decision making tool, DEA studies evaluate ITS investments 

for their efficiency performances.  

   

2.2.     Cost-Benefit Studies of Intelligent Transportation Systems 

Avineri, et al.,'s (2000) study defines four different impact evaluation methods of 

transportation systems which are profile and checklist, scoring, cost-benefit analysis, and 

mathematical programming. This study follows the methodology of cost-benefit studies in 

order to provide data for multi-objective efficiency analysis. There are numerous cost-

benefit evaluation studies about ITS, and Nas's (1996) book could be counted as the 

benchmark methodology of these studies.  

In 2002, Cambridge Systematics, as part of a National Cooperative Highway 

Research Program (NCHRP) project, investigated the benefits of reducing congestion in 

terms of economic, environmental, social and safety point of views without considering 

indirect industry impacts (Cambridge Systematics, 2002). Another cost-benefit and 

economic impact focused study implemented on ITS projects was conducted by Texas 
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Transportation Institute (TTI) in 2003 (Stockton & Walton, 2003). This study neglected to 

consider the indirect economic and environmental impacts as well.  

Bekiaris & Nakanishi’s (2004) book lists the different methodologies that can be 

used in economic assessment of ITS. This book also includes cost/benefit case studies that 

are applied on different ITS applications such as; Brand, et al. (2004) on Commercial 

Vehicle Operation (CVO), Naniopoulos, et al. (2004) on information technology systems, 

Gillen, et al. (2001) on public transit. In addition, Thill, et al. (2004)’s study evaluated 

benefits and costs of ITS on a  macro level. 

U.S. Federal Highway Administration (FHWA) developed a decision making tool 

named Surface Transportation Efficiency Analysis Model (STEAM) that is used by federal 

and regional transportation agencies’ to quantify infrastructure cost and benefits (U.S. 

Federal Highway Administration, 2013). In addition, U.S. Department of Transportation 

(DOT) prepared reports about ITS applications in the U.S. in terms of their cost, benefit, 

and lessons learned with numerous case studies (U.S. DOT Research and Innovative 

Technology Administration, 2008; U.S. DOT Research and Innovative Technology 

Administration, 2011) This cost-benefit database is also publicly available through U.S. 

DOT’s website, which allows users to filter case studies in terms of their ITS type, state, 

cost, benefit etc. [http://www.itsbenefits.its.dot.gov/ ].   
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2.3.    Life Cycle Assessment Studies of Intelligent Transportation Systems 

 Life Cycle Assessment (LCA) is a tool that was developed in early 1990s in order 

to investigate potential environmental impacts in system base. In other words, it is a 

powerful method which has been used widely in literature for providing the results of 

production or process’s impacts from cradle to grave. This cradle to grave approach starts 

from raw material extraction and continues with production, transportation, use phases and 

finally concludes with end-of-life phase (Finnveden et al., 2009). The LCA methodology 

basically consists of goal and scope definition, life-cycle inventory analysis, life-cycle 

impact assessment, and interpretation sections (Graedel & Allenby, 2009).    

 Economic Input-Output (EIO) analysis proposed to build more powerful 

methodology with LCA approach to analyze the supply chain impacts including systems 

or products’ economic and environmental impacts (Hendrickson, Lave, & Matthews, 

2006). EIO-LCA tool was developed by Green Design Institute at Carnegie Mellon 

University (CMU 2013) and this publicly available tool has been widely used in literature 

(Carnegie Mellon University (CMU), 2002). The wide use of this tool in literature, which 

ranges from construction, transportation, health agricultural etc., indicates the power of it. 

In addition to EIO-LCA, the Center of Resilience at the Ohio State University built 

Ecologically-based LCA (Eco-LCA) to examine the role of the ecological goods and 

services which are used the industrial sectors (OSU 2013).   

 The Eco-LCA methodology was implemented on the construction industry by 

Kucukvar & Tatari, (2013). The researchers studied the resource consumption and 
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atmospheric emissions of the U.S construction sectors in terms of mass, energy and 

ecological exergy. Neither EIO-LCA nor Eco-LCA are able to identify the large economic, 

environmental and social impacts in one holistic picture, Triple Bottom Line (TBL) based 

LCA model could be proposed as an adequate methodology, since TBL merges economic 

and social indicators into EIO methodology with drawing environmental burdens at the 

same time.   

 The need to develop more holistic analysis about sustainability impacts brought the 

trend of integrating economic and social sustainability indicators into LCA framework. 

Moreover, this trend inspired the birth of Life Cycle Sustainable Assessment (LCSA) 

which is suggested by Kloepffer, 2008. The three main dimensions of sustainability such 

as environment, economy, and society (T. O. Wiedmann, Lenzen, & Barrett, 2009; T. 

Wiedmann & Lenzen, 2006) also generates the TBL concept and it achieved with 

implementing Life Cycle Cost (LCC) and Social Life Cycle Assessment (SLCA) methods 

(Zamagni, Guinée, Heijungs, Masoni, & Raggi, 2012). 

Initial EIO based TBL model created by Foran et al. (2005) includes the industrial 

sectors of Australia’s entire economy (Foran, Lenzen, & Dey, 2005). In this approach, the 

EIO tables of 135 sectors of Australia’s economy integrated with three main sustainability 

metrics (environmental, economic, and social). Furthermore, this baseline TBL 

methodology led to the development of the Balancing Act software by researchers at the 

University of Sydney for the Australia, United Kingdom, and Japan economies. Foran et 

al. (2005) and Wiedmann et al. (2009)’s studies are some of the examples in the literature 
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that are accomplished with this TBL methodology (Foran, Lenzen, Dey, & Bilek, 2005; T. 

O. Wiedmann et al., 2009). The initial implementation of TBL methodology for the U.S. 

economy model is developed by Kucukvar & Tatari, (2013) with the study of presenting 

seven U.S. construction sectors’ impacts. Moreover, this approach initially applied on ITS 

study is published by Ercan et al., in 2013 which indicates the direct and indirect socio-

economic and environmental impacts in Florida.  

 

2.4.     Data Envelopment Analysis (DEA) Studies of Intelligent Transportation 

Systems 

 Data Envelopment Analysis (DEA) was established by Farrell in 1957 and then 

conceived by Charnes, Cooper, & Rhodes (CCR) in 1978. It is a methodology to evaluate 

the relative efficiencies of a set of comparable entities, which are called Decision Making 

Units (DMU) by some specific mathematical programming models (Zhou, Poh, & Ang, 

2007). As it is widely used for decision making in many disciplines such as operations 

research, management control systems, organization theory, strategic management, 

economics, accounting and finance, human resource management etc. (Rouse, 1997), it is 

also used widely in transportation systems’ efficiency. DEA application examples vary in 

transportation problems (Ozbek, de la Garza, & Triantis, 2009; Cooper, Seiford, & Zhu, 

2011) such as sustainability (Lee & Farzipoor Saen, 2012), safety (Egilmez & McAvoy, 

2013),  environment (Fried, Lovell, Schmidt, & Yaisawarng, 2002) etc. Nakanishi & 
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Falcocchio (2004) examined the performance assessment of ITS and it also provide detail 

methodology information of using DEA on transportation problems.  

 Due to the difficulty of defining real world’s problems’ imprecision and vagueness, 

the fuzzy set theory developed by Zadeh, (1965). His study identified the importance of 

having linguistic variables in uncertain environments. DEA methodology uses some 

specific numerical data that may consist of imprecise or vague information. In 1992, 

Sengupta (1992) initially introduced fuzzy set theory in DEA model with uncertainty 

levels. Fuzzy set theory in DEA defined in four different categories such as the tolerance 

approach, the α-level based approach, the fuzzy ranking approach, and the possibility 

approach. The α-level approach is one of the most popular model owing to the number of 

studies that are published which use the model (Hatami-Marbini, Emrouznejad, & Tavana, 

2011). Kao and Liu (2000) developed the key algorithm in α-level based fuzzy DEA 

approach. Their approach converts fuzzy data to crisp model in BCC-DEA (BCC is due to 

Banker, Charnes, & Cooper (1984)) in order to measure efficiency of Decision Making 

Unit (DMU)’s. In other words, it determines the fuzzy efficiency score of a specific α-level 

for lower and upper boundaries. Some of the examples of this approach are; Hatami-

Marbini, et al., (2009), Saneifard, et al., (2007) and Triantis, (2003) etc. Recently, Angiz 

L, et al., (2012) developed a local α-cut level based fuzzy DEA model which is also 

followed by this study to propose efficiency scores of DMU’s.        
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CHAPTER THREE: METHODOLOGY 

3.1.     Overview 

 This thesis consists of multi disciplinary methodologies to determine impacts of 

ITS investments and their efficiency scores. First, the ITS related traffic congestion relief 

savings need to be determined for further Triple Bottom Line (TBL) calculations. The 

Florida based and U.S. based ITS related traffic impacts are determined with TTI’s 2011 

UMR methodology. In order to compare different ITS in same fraction unit in terms of 

their cost and benefit (Value of time, emissions, and safety) values, the methodology of 

TTI’s 2011 UMR were modified based on the calculations of reference studies. The general 

summary of methodologies can be seen on Figure-1, below. Thesis utilizes the ITS related 

benefits and costs to run TBL or fuzzy-DEA engines for sustainability impact and 

performance analyses.    
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Figure 1: The summary of methodologies in use to determine sustainability and efficiency 
impacts of ITS 

 

3.2.     ITS Related Traffic Congestion Relief Saving Calculations 

3.2.1. Traffic congestion relief saving calculations for TBL methodology  

 This thesis gathers the traffic information from TTI’s 2011 Urban Mobility Report 

(UMR) (Lomax et al., 2011). UMR consist of congestion related wasted time, fuel values 

and operational treatment (ITS) related time and fuel savings for 101 metropolitan areas in 
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the U.S. The report creates a “what if” scenario of how the traffic will be affected if there 

is not ITS on the roads in congested areas of metropolitan cities compared to the congestion 

that is relieved with the use of ITS on the road system. The difference in congestion for the 

road with ITS versus the road without ITS is the congestions savings. Total congestion cost 

is a summation of annual delay hour and fuel wasted costs (see Eq. #1). This equation leads 

to the basics of calculating the fuel based consumption savings and time savings.  

 

Annual Congestion Cost = Annual Passenger Vehicle Delay Cost + Annual Passenger 

Vehicle Fuel Cost + Annual Commercial Vehicle Delay Cost + Annual Commercial 

Vehicle Fuel Cost                                  (1) 

 

 Each component of the equation #1 has its own basic formula inside. For the fuel 

related components the content is generated by; average passenger and commercial vehicle 

percentages on the roads, the cost of the average fuel or diesel, the annual amount of fuel 

saved or wasted. Moreover, the time related calculations are based on following parameters 

such as average passenger and commercial vehicle percentages on the roads, annual 

congestion related time wasted or saved, vehicle occupancy of passenger or commercial 

vehicles, the value of time for passenger or commercial vehicles. As it can be seen from 

the parameters, the cost of the congestion or the cost savings of ITS can be calculated from 

the same method.   
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 The next step for these calculations is followed by the TBL methodology which is 

explained later in this chapter to gather the environmental indirect benefits of ITS 

deployment.  

3.2.2. Traffic congestion relief saving and cost calculations for Fuzzy-DEA 

methodology 

 The case study of efficiency analysis of ITS includes different case studies of ITS 

which aim to present benefits and costs of those systems. In order to provide adequate 

efficiency analysis results from this study, each case study was converted to the same 

fraction units in terms of their cost and benefit calculations. Because, each case study used 

its own coefficient values for cost and benefit calculations. Hereby, this thesis used same 

inflation rate for converting cost data to year 2013 dollars and same value of time, emission 

cost, and accident cost for benefit calculations. It can be seen from the reference case 

studies that each uses different vehicle occupancy rates, vehicle percentage or value of time 

data for their calculations. These baseline cost and coefficient values can be seen on data 

description section of this efficiency analysis study.  

 Since all of the reference case studies prepared in different years it is crucial to 

adjust these cost data to same year values. Engineering economics methods were used to 

adjust the cost values to year 2013 based on consumer price index’ inflation rate (Bureau 

of Labor Statistics, 2013). In addition to the initial cost of ITS projects, there is operational 

& maintenance (O&M) cost which will generate the life cycle cost of the project together.  
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 The sustainability performance analysis of ITS consider the three components of 

traffic related congestion relief benefits, which are value of time, emissions, and safety. 

Value of time represents the dollar value of the time that is saved with ITS investments for 

people on the roads. In regards to consumer price index, every hour that is spend in traffic 

worth $17.46 (2013 dollars) to the commuter. This value dramatically increases for 

commercial vehicles. Every extra hour that is spent for a commercial vehicle in traffic 

congestion costs $94.40 to society (Lomax et al., Appendix B, 2011). Since these dollar 

values are in person hour (person-hr) fraction, they have to be multiplied with vehicle 

occupancy. Based on the assumption from UMR (2011) average vehicle occupancy is 1.25 

person for passenger vehicles and 1.05 for commercial vehicles. Finally, these components 

need to be multiplied actual time saving that is made in a year. Traffic analysis studies 

consider only the working days of the year for annual results. However, some studies 

considers 260 working days in a year where some of them consider 250. As it mentioned 

before, in order to have all of the benefits in same fraction, the annual time saving data 

from reference studies are converted to daily savings to multiply with 250 working days. 

In conclusion, following formula sums all of the components of value of time 

calculation. The following formula is based on the methodology that is used in TTI UMR 

studies for total congestion cost calculations (Lomax et al., 2011).  
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Value of Time Benefits ($) = [Congestion relief related time savings (person hr) * Value 

of each person hour for commuters * Vehicle occupancy of passenger vehicles] + 

[Congestion relief related time savings (person hr) * Value of each person hour for 

commercial vehicles * Vehicle occupancy of commercial vehicles]          (2) 

 

 Emission savings are also related to the time savings on traffic congestion but not 

limited to them because emission rates are also related with the number of 

acceleration/deceleration. Reducing congestion not only means less time consumed on 

traffic but also means fewer stop-goes for vehicles. Same as with the time savings 

methodology, the reference studies used simulation models to capture emission savings 

related to congestion relief. This study only considers three major components of vehicle 

related emissions such as HC, CO, and VOC. However, there are 30 more different minor 

toxic emissions that are released  into the air continuously from vehicles on the roads, 

according to Environmental Protection Agency (EPA)’s Motor Vehicle Emission 

Simulator (MOVES) (U.S. Environmental Protection Agency, 2010). Key studies have 

quantified the value of emissions from vehicles. These studies have determined that there 

is an economic benefit to emission savings.  In other words, each kilogram of emission 

from vehicles cost money to the society. These coefficient values for emission calculations 

are presented in data collection section of efficiency analysis study of ITS. The total 

emissions saving calculations are summarized with following formula (See Eq. #3). 
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Value of Emission Savings = [Amount of HC savings * Cost of HC emission (per kg)] + 

[Amount of CO savings * Cost of CO emission (per kg)] + [Amount of NOx savings * Cost 

of NOx emission (per kg)]                          (3) 

  

 Safety benefits are based on the number of accidents on the corridor where ITS 

were implemented by agencies. Any reduction or increase on number of the accidents on 

certain corridors presents the impacts of ITS treatments. The case studies in this research 

use before-after study or simulation models to estimate the safety impacts. As a result of 

safety researches are unpredictable and dependable on many parameters content, ITS may 

not be beneficial for all cases. In other words, a captured benefit from before/after study of 

safety impacts of ITS on a corridor might result in the opposite way following years. After 

the number of accident portion is calculated, it is multiplied with the average accident cost 

for 2013. Blincoe et al., (2002) states the accidents costs for fatality, serious injury, and 

property damage for 2000. The reference studies does not provide any information for the 

number of accidents’ type, so in this thesis the researchers use an average accident cost to 

determine value of safety benefits in 2013 dollars. Total safety impact calculations are 

summarized with following formula (See Eq. #4). 

 

Value of Safety Savings =Amount of crash reduction*the average cost of an accident (4) 
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3.3.     Triple Bottom Line (TBL) Methodology 

The methodology TBL-LCA approach of this thesis is developed by Kucukvar & 

Tatari (2013). Same as the EIO-LCA, TBL approach considers all relations of economic 

activities between 428 sectors of the U.S. which are associated with the direct activity (U.S. 

Bureau of Economic Analysis, 2002). TBL approach improves this methodology with 

implementing socio-economic indicators. In the following formula, A presents the matrix 

of sector level direct requirements. This matrix includes the dollar value of inputs required 

from other sectors to produce one dollar of output. A sector’s total output could be 

represented in this economic model with f (final demand) (Miller & Blair, 2009). 

x = (I-A)-1f                  (5) 

where x is the total outputs of sectors, I represent the diagonal identity matrix, and f refers 

to the final demand vector representing the change in a final demand of desired sector. 

After providing per dollar of output economic values on matrix, the total environmental 

impacts can be determined by multiplying it with its environmental parameter. A vector of 

environmental outputs can be expressed as (Miller & Blair, 2009): 

ri = Ei x = Ei (I-A)-1f                 (6) 

where ri is the total environmental outputs vector for the environmental impact category of 

i, and Ei represents a diagonal matrix, which consists primarily of the environmental 

impacts per dollar of output for each industrial sector.  
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3.3.1. Socio-Economic Indicators 

The following socio-economic indicators were utilized:  

• Business Profit:  

As a positive indicator, business profit is represented by Gross Operating Surplus 

(GOS). Since the GOS represents the capital available to corporations, which grant them 

to pay taxes and to fund their investments. The data source for GOS values by each 

industrial sector is the U.S. input-output tables (U.S. Bureau of Economic Analysis, 2002).  

• Import:  

Imports are the purchased goods and services from foreign countries to sell or 

produce domestic commodities. Each industrial sector’s import values are determined from 

the U.S. input-output tables. The unit function of these values is presented in million dollars 

(U.S. Bureau of Economic Analysis, 2002). 

• Tax:  

This is the collected taxes by the government on production and imports. 

Government funds national civil infrastructures with taxes. So, tax is considered as a 

sustainability indicator. On the other hand, congestion relief means less fuel consumption 

and less tax. The values for taxes generated by each sector are obtained from the U.S. input-

output tables (U.S. Bureau of Economic Analysis, 2002).  
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• Income:  

Income is another important indicator which is the recompense of employees, 

containing wages and salaries. The data source for income generated by each industrial 

sector is the U.S. input output tables (U.S. Bureau of Economic Analysis, 2002). Total 

employment hours stands for the full time-equivalent employment for each U.S. sector in 

the units of hours per year.  

3.3.2. Environmental and Ecologic Indicators 

The diagonal environmental impact matrixes, including the value of these 

environmental impacts categories per dollar output of each industrial sector is obtained 

from the EIO-LCA model. Thus, the following environmental and ecologic indicators were 

utilized:  

• GHG Emissions:  

Fossil fuel combustion (coal, natural gas, petroleum etc.) causes carbon dioxide 

(CO2), nitrogen oxides (NOx) and methane gas emissions. Moreover, the general name for 

these gases is GHG emissions. The total GHG emission savings are expressed in terms of 

CO2-eqv in this study. This environmental indicator accounts for the direct and indirect 

contribution of one sector to GHG emissions.  

• Energy Consumption:  

The total energy consumption savings for each sector is the summation of the 

amount of energy capacity of various fossil fuels and electricity from non-fossil sources. 

The values of major fuel consumption by industrial sectors are estimated by the U.S. input-
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output tables. Numbers of fuel consumptions (in terms of TJ) are based on the average 

producer price of each fuel types (Carnegie Mellon University (CMU), 2002).   

• Toxic Releases to Air:  

EIO-LCA tool is used to determine the amount of toxic release to the atmosphere 

[10, 28]. The toxic chemical emission coefficients for each sector used in this model is 

based on U.S. EPA’s toxic releases inventory database (Environmental Protection Agency, 

2013).  

• Water Withdrawals:  

There are various categories in the United States Geological Survey data that are 

used by the EIO-LCA model in order to estimate direct water withdrawals. These 

categories are power generation, irrigation, industrial, livestock and aquaculture, mining, 

public supply, and domestic water use. Based on their water consumption rates some of 

these categories are then allocated to different U.S. sectors. Blackhurst et al. (2010) used 

the same method where the total amounts of water withdrawals were categorized and 

allocated for each industrial sector (Blackhurst, Hendrickson, & Vidal, 2010). 

• Ecological Footprint:  

In this indicator, the CO2 uptake land is calculated and the amount of forestland 

saved to absorb the carbon emissions is estimated. The U.S Energy Information 

Administration is the data source for the total CO2 emissions due to fuel consumptions 

(Energy Information Administration; U.S. Department of Energy, 2013). 
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3.4.     Fuzzy DEA Methodology 

 Fuzzy-DEA methodology that is used in this thesis is developed by Egilmez et. al. 

(2013) in University of Central Florida. Fuzzy-DEA model, presented by Kao and Liu, 

(2000) is used to evaluate and rank different ITS deployments in different states of the U.S. 

based on cost and benefit results. Some notations that are employed in Kao&Liu’s (2000) 

fuzzy-DEA model are presented below. Here, Xij and Yik show ith DMU’s jth input and ith 

DMU’s kth output, respectively (j=1,2,…,s ; i=1,2,…,n, k=1,2,…,t). ε is designated to a 

small non-Archimedian number. The weight of jth input that is assigned by algorithm is vj 

and the weight of kth output that is assigned by algorithm is vj. Er is rth DMU’s relative 

efficiency which has lower and upper efficiency score based on α-cut sets.  Especially, Xij 

and Yik, input and output values, have uncertainty or incomplete information. Therefore, Xij 

and Yik are addressed by convex fuzzy numbers. Also, their fuzzy membership functions is 

showed ijXµ and ikYµ , respectively. 

 α-cuts of Xij and Yik are described as an interval and defined as follows;

( ) ( ) ( )[ ]U
ij

L
ijij XXX

ααα
,= and ( ) ( ) ( )[ ]U

ik
L

ikik YYY ααα ,= , respectively. DEA models can be 

thought as a transformation of input and output variables. Therefore,  )(~ z
rEµ  can be 

described in Eq.7 which is come from Zadeh’s extension principle (L A Zadeh, 1978); 
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,
~ =∀= µµµ            (7) 
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 To establish the membership functions of )(~ z
rEµ , the lower and upper bounds of 

rE~  at different α level should be derived. According to the Eq.7, minimum values of 

)( ijX x
ij

µ  and )( ikY y
ik

µ  determine the value of )(~ z
rEµ  , .,, kji∀  We need at least one 
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have same maximum and 

minimum elements, respectively. The lower bound L
rE  and upper bound U

rE  of the fuzzy 

efficiency score for a specific α-level are calculated with two-level mathematical models 

which are presented by Kao & Liu (2000) as follows; 
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 Proposition 1. At the specific α level, smallest efficiency score for rth DMU is 

calculated by adjusting its fuzzy inputs as the upper bounds and the fuzzy outputs at the 

lower bounds; meanwhile; the fuzzy inputs of all other DMUs at their corresponding lowest 

level and the fuzzy outputs at their highest level (Liu, 2008) 

 In fuzzy-DEA model, basically, different efficiency scores are found based upon 

various α-level. Therefore, we need to find composite efficiency score for ranking and 

comparing them. Researchers have introduced valuable ranking methods in the literature 

(Chen & Klein, 1997; Guo & Tanaka, 2008; Guo, 2009; Hatami-Marbini, Saati, & Makui, 

2010; Jahanshahloo et al., 2009; Juan, 2009; Lertworasirikul, 2002; Lotfi, Firozja, & 

Erfani, 2009). Some of these methods need the membership functions of fuzzy numbers; 

some of these do not need that. However, the results of efficiency scores are found to be as 

an interval valued in our problem. Thus, Chen and Klein’s ranking method, which does not 

need the exact membership functions of the fuzzy numbers, is employed in this thesis; 
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where 
( ){ }L

rji i
Ec α,

min=
, 

( ){ }U
rji i

Ed α,
max=

and n is the number of α-cuts. )~( rEI is the 

ranking index of rth  DMU. Descending order of )~( rEI  determines the place of DMUs in 

the list. Theoretically, infinite α-cut partitions can be generated. However, Chen and Klein 

(1997) suggest that 3 to 4 α-cut intervals are enough to determine the differences. 

Therefore, based on the cost and benefit results of 7 different ITS deployments in different 

states of the U.S., three α-cut sets are determined and calculated their fuzzy efficiency 

scores.  
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CHAPTER FOUR: SUSTAINABILITY IMPACTS OF 

INTELLIGENT TRANSPORTATION SYSTEMS IN FLORIDA 

4.1.     Background Information 

This chapter summarizes the sustainability impacts of seven metropolitans of 

Florida with comprehensive TBL methodology. The results of this chapter is published in 

Transportation Research Board (TRB) journal as “Congestion Relief Based on Intelligent 

Transportation Systems in Florida; Analysis of Triple Bottom Line Sustainability Impact” 

in 2013  (Ercan, Kucukvar, et al., 2013)  

It is important to present the impacts of ITS investments in states of U.S. in order 

to encourage policy makers for new projects.  This chapter focuses on the state of Florida, 

which has the fourth largest population in the U.S. with 18.8 million citizens and 84% of 

this population living in urbanized areas in 2010 (U.S. Department of Commerce Bureau 

of Census, 2011).  In addition, 82.6 million tourists visited Florida in 2010, which 

exacerbated congestion. Florida also has the third highest rate of VMT with 195,755 (in 

millions) in the U.S. (Federal Highway Administration, 2013).  According to Texas 

Transportation Institute’s 2011 Urban Mobility report, the economic and environmental 

impacts of congestion are enormous: people in Florida wasted 274 million person-hours, 

216 million gallons of excess fuel, and 6.4 billion dollars on roads (Lomax et al., 2011).  

Existing ITS in Florida include freeway ramp metering, freeway incident 

management, arterial signal coordination, arterial access management, and High 

Occupancy Toll (HOT) lanes.  Based on Florida DOT’s 2010 annual report, VMT 
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increased by 30% since 2000 while registered vehicles in Florida increased 24%.  

Fortunately, the death rate decreased from 2 to 1.25 in 10 years per 100 million VMT 

(Florida Department of Transportation; Transportation Statistics Office, 2011). 

The aforementioned facts about Florida clearly indicate the need for transportation 

investments.  Florida Department of Transportation (FDOT) budgeted 975 million dollars 

to be used for ITS in 2011 (Florida Department of Transportation Work Program 

Development Office, 2013; Florida Department of Transportation, State Traffic 

Engineering and Operations Office, 2011).  There are numerous studies about cost-benefit 

analysis of new investments in transportation. The decision is a contentious whether to 

build new roads, expand existing ones (or both), or instead to develop and enhance existing 

roads through innovative ITS technology projects.  

 

4.2.     Data Description 

TTI’s 2011 Urban Mobility Report was utilized to collect traffic information data.  

In the UMR, data were collected related to the following seven urbanized areas: Orlando, 

Miami, Cape Coral, Jacksonville, Pensacola, Tampa-St. Petersburg, and Sarasota-

Bradenton (Lomax et al., 2011).  The report consists of annual delay hours and fuel wasted 

in traffic congestions, and the savings achieved that were related to ITS investments in 

these seven cities (Table 1).  The total congestion cost and annual saving data are based on 

the formula that is proposed in methodology section (Section 3.1.1). 
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 In order to calculate the delay hour cost, consumer price index values for 2010 were 

used; $16.30 per person hour and $88.12 per commercial vehicle hour.  According to the 

U.S. DOT’s Highway Performance Monitoring System dataset for Florida’s urbanized 

areas, passenger cars constituted 90% of the traffic while commercial vehicles made up 

6.5% (Department of Transportation Federal Highway Administration; Office of Highway 

Policy Information (HPPI), 2013). These percentages were also used to multiply fuel cost 

with the average prices of gasoline and diesel in 2010.  As can be seen on Table 1, total 

congestion cost for Florida’s urbanized areas was 5.6 billion dollars.  

 The saving values are based on the scenario of disconnecting all of the existing ITS 

deployments in Florida. Hence, owing to Urban Mobility Report, delay reduction hours 

and fuel savings on roads values are used for TBL impact analysis.  Right columns of Table 

1 present the time, fuel, and money savings due to ITS in Florida in 2010.  After estimating 

delay reduction and fuel reduction related ITS, annual congestion cost savings were 

calculated.  Table 1 indicates that ITS obtained $M 420.3 savings in 2010 in urbanized 

areas of Florida. 

 These values are only the savings that Florida accrued through operations. It is 

necessary to calculate the whole impact to the economy and society at large scale as a result 

of these savings. There is a need to calculate the whole impact to the economy and society 

at large due to these savings. Although ITS lead to savings in fuel imports, it also drops the 

profit, employment and taxable incomes for petroleum refineries and government.  

Economic input-output model was used for this purpose. 
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Table 1: Texas Transportation Institute 2011 Urban Mobility Report Summary for Florida 

ADH: Annual Delay Hours, AEFW: Annual Excess Fuel Wasted, TCC: Total Congestion 

Cost, ADR: Annual Delay Reduction, FS: Fuel Savings, ACCS: Annual Congestion Cost 

Savings, DRCS: Delay Reduction Cost Savings, FRCS: Fuel Reduction Cost Savings 

[Source: (Lomax et al., 2011)] 

 

4.3.     Results 

4.3.1. Direct and Indirect Environmental Savings  

 The figures presented below indicates the direct savings (i.e. operational related 

savings) and indirect savings (i.e. total impacts of TBL`s direct and indirect savings). In 

other words, TBL methodology provides the data for the fuel consumption sector related 

direct and its related sector`s indirect savings under the figure headings for indirect savings. 

Regions 

Congestion Data ITS Savings 
ADH 
(103 

person-
hrs) 

AEFW 
(103 
gal) 

TCC         
( $M) 

ADR 
(103 
hrs) 

FS 
(103 
gal) 

ACC
S   

($M) 
DRCS 
($M) 

FRCS 
($M) 

Orlando 38,260 11,883 811 2,254 692 47.8 45.98 1.84 

Miami 139,764 66,104 2,906 12,065 5,386 250.9 
235.4

7 
14.16 

Cape Coral 7,600 1,366 158 382 77 8 7.79 0.20 
Jacksonvill
e 18,005 5,461 371 1,055 324 21.8 21.52 0.86 

Pensacola 4,699 888 93 74 21 1.5 1.51 0.06 
Tampa-St. 
Petersburg 

53,047 28,488 1,097 3,873 1,899 80.1 75.59 4.99 

Sarasota 8,015 2,240 161 509 130 10.2 10.38 0.35 
Total 
for Florida 269,390 116,430 5,597 20,212 8,529 420.3 398.2

4 22.46 
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Some environmental concerns, such as water consumption, do not include any operational 

(i.e. direct) savings.  

Figure 2 presents the total GHG emissions for seven urbanized areas in Florida.  In 

addition to the TBL’s direct and indirect emission values for per million dollars fuel 

consumption savings, direct impacts (i.e. tailpipe emissions) are calculated with 

Environmental Protection Agency’s (EPA) per gallon fuel use emissions rate (EPA 

(Environmental Protection Agency), 2013).  As a result of the total tailpipe emission 

savings and indirect emission savings, Florida saved 1.38 E+05 tone carbon dioxide 

equivalent (CO2-eqv) in 2010.  In addition, tailpipe GHG emissions dominate the total 

saving values with almost doubled the indirect savings values.  

 

Figure 2: Greenhouse gases (GHG) emission savings in Florida's metropolitans (metric t 
CO2 eqv.) 
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 Energy savings are depicted in Figure 3. Fuel cost savings generated the direct and 

indirect energy savings for petroleum refineries and also generated the fossil fuel savings.  

Miami provided 709.6 TJ direct fuel savings related energy consumption savings to the 

environment and 446.8 TJ total indirect savings with the highest population ratio. These 

indirect savings consist of petroleum refinery industries direct and its related sectors 

impacts. Therefore, the total energy consumption savings for Miami were 1.16 E+03 TJ in 

2010. Pensacola, the least populated area, provided the least savings with total 4.5 TJ.   

 Florida amassed 1.83 E+03 TJ energy consumption savings in 2010.  It is also 

important to highlight that indirect energy consumption savings generates the 708.7 TJ of 

those total savings. Moreover, the half of those indirect savings stemmed from drops in 

petroleum refineries activity and the other half is generated by drops in related supply chain 

industries.  

36 
 



 

Figure 3: Energy Consumption savings in Florida's metropolitans (TJ) 

  

 Process related toxin can be released to air, water or land.  This study focused on 

savings in toxic releases to the air.  Figure 4 presents the values of toxic release savings 

accrued in Florida.  ITS investments provided 6.75 E+03 t total toxic release savings to the 

air in 2010. It is important to highlight that, indirect toxic release savings are significantly 

higher than tailpipe emissions. For instance, in Miami, indirect toxic release savings were 

2.64 E+03, whereas tailpipe emission savings were 1.61 E+03. Tailpipe (direct) toxic 

emissions rates are determined with Bureau of Transportation Statistics’ National 

Transportation Statistics vehicle emissions data. 
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Figure 4: Toxic releases to the air savings in Florida's metropolitans (t) 

 

 ITS related water consumption savings are presented in Figure 5. The production 

of less fuel at petroleum refineries consumes less water, which results in environmental 

and fuel savings, but does not have direct impacts on water consumption savings. As a 

result, 1.92 E+05 (kgal) water consumption savings were realized in Florida. In Orlando, 

for instance, indirect water consumption savings were 1.58 E+04 (kgal) in 2010.  
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Figure 5: Water Consumption Savings in Florida’s metropolitans [kGal] 

  

 Finally, the ecologic footprint was calculated.  Tailpipe emissions also dominated 

the total savings similar to GHG emission savings.  Figure 6 presents CO2 uptake land 

savings related to the fuel savings on roads of Florida’s urbanized areas.  The total savings 

generated in 2010 were 3.00 E+04 global hectares (gha).  

 It is obvious that the environmental savings rely on savings in fuel consumption, in 

turn rely on the population rate of a given area. Therefore, the figure shapes are most likely 

to be for the same for environmental concerns. As can be seen on Table 1, Miami has 

almost 2.8 times the fuel savings accrues in Tampa-St. Petersburg region. This difference 

is what distinguished the two regions the most.  
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Figure 6: Ecologic footprint savings in Florida's metropolitans [gha] 

 

4.3.2. Direct and Indirect Socio-Economic Savings 

 The most significant impact of congestion relief through ITS stemmed from a 

reduction in annual, since, these hours were underemployment hours for industries in the 

past. Although cost savings accrued as a result of reduced person and commercial vehicle 

hours, fuel savings reduced the profit and employment of some industries, especially 

petroleum refineries. Taxes that are paid with per gallon fuel purchases and its production 

related (i.e. indirect) impacts reduced the government revenue. On the other hand, 

consuming less fuel means fewer fuel imports to the U.S. which is an important positive 

outcome for the national economy.  Hence, there is a need to analyze these indicators in 
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the TBL model. It is also crucial to highlight that TBL results presented as indirect impacts, 

however, they include direct impacts related to the primary sector and supply chain sectors 

activities.  

 Figure 7 indicates indirect revenue decrement in negative values and positive values 

present in the fuel cost savings (direct). Fuel savings in Florida caused $M 12.1 drop, where 

total fuel cost savings were $M 22.4. Indirect profit revenue drop includes the petroleum 

refineries profit cut as direct impact of TBL. As a result, the net revenue for Florida was a 

positive $M 10.3 in 2010.  

 

Figure 7: Profit drop in industries with fuel cost savings in Florida's metropolitans ($M) 
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 In addition, the decrease of fuel consumption caused employment to drop in some 

industries.  Figure 8 presents the employment values on a negative scale and the annual 

delay reduction cost savings on positive scale.  It explicitly indicates that employment 

decreases are negligible values as compared with annual delay reduction and cost savings 

associated with this delay reduction.  Fuel savings caused $M 7.6 drop for employment in 

2010, when the cost savings in annual delay reduction are $M 398.  These drops reflect the 

strong dependence of the U.S. economy on the oil industry.  In turn, a shift in the economic 

structure may result in a stronger economy and more employment opportunities in other 

sectors. 

 

Figure 8: Employment drop in industries with fuel savings and annual delay reduction cost 
in Florida's metropolitans ($M) 
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 Tax revenue that government could make without fuel savings is presented in 

Figure 9.  Per gallon fuel consumption savings caused government tax revenue to drop to 

only $M 2 for Florida in 2010. The direct tax drop calculated by the rates in 2010 in Florida 

including state and county (area) taxes. The per gallon tax rate was $0.30 in 2010. It is 

important to state that majority of that tax revenue consisted of indirect tax values. Since, 

drop on the business profit for fuel production related industries generates the indirect tax 

drop. 

 

Figure 9: Government tax drop in Florida's metropolitans ($M) 
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Petroleum refineries imported less oil from other countries, which represents the direct 

import savings. Gasoline and diesel production related supply chain industry’s imports also 

decreased, which is shown as indirect imports savings on the Figure 10. Furthermore, 

Florida saved $M 19.1 total import savings in 2010. Indirect import savings dominates the 

total import savings value.  

 

Figure 10: Import savings with fuel cost savings in Florida's metropolitans ($M) 

 

4.3.3. Summary of Results 

 In conclusion, this study fills an important gap through analyzing of widespread 
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positive and negative values of total economic impact per traffic delay hours.  The net 

finding of that figure is 0.85 dollar/person-hrs savings per delay hour reduction. Figure 11b 

presents the fuel-based net economic savings.  Net fuel profits and import savings worth 

$M 41.55, whereas negative values such as government tax revenue and employment total 

is only $M 24.34.  Therefore, the net fuel-based economic savings are $M 17.2 in Florida 

in 2010.   

 

Figure 11: (a) Fuel savings related drops and savings for per-delay reduction hour [$/hrs] 
(b) Fuel savings related drops and savings in profit [$M] 
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CHAPTER FIVE: SUSTAINABILITY IMPACTS OF INTELLIGENT 

TRANSPORATION SYSTEMS IN THE U.S. 

5.1.     Background Information 

 This chapter expands the results of previous chapter’s Florida cities impacts to 

states for total 4 years. Similar to the Chapter 4, this chapter also utilizes TTI UMR (2011) 

for ITS related congestion relief sustainability impacts. Besides, the results of this chapter 

are also a working paper of Ercan, et al. (2013) at University of Central Florida.   

The infrastructure expansion and extension could not be indefinite due to limited 

economic and natural resources. Thus, in order to guarantee the future generations’ needs, 

efficiency of the existing transportation system should be improved. Intelligent 

transportation systems (ITS) are one approach that could assist to reach that efficiency 

point. Today, ITS have widespread applications on the U.S. transportation system. 

Moreover, regarding the technological improvements of today, ITS deployment and 

developments also grow every day.  

 Due to the aforementioned significant traffic congestion results on society and the 

operational treatments that are proposed as a solution for this problem should be analyzed 

in holistic point of view. In the literature, the impact analyses of ITS present mostly focus 

on direct cost related benefits. The uniqueness of this study is that it uses Triple Bottom 

Line (TBL) point of view in order to analyze the direct and indirect impacts of three 

sustainability indicators. These sustainability indicators are; socio-economic and 

environmental. Herewith, in order to fill the gap of this era about presenting whole impact 
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analysis for decision makers could be done with TBL instead of considering only direct 

economic benefits of treatments. This point is also important to exhibit the future 

generations’ needs in a complete picture.  

 

5.2.     Data Description 

 Utilizing ITS related congestion relief savings for 101 cities of the U.S. in a 

comprehensive methodology and its data collection were the challenge of this study. 

Metropolitan cities of the U.S. related ITS’ traffic congestion relief data determined with 

the methodology that is proposed in the Section 3.1.1. The indirect impacts of savings are 

calculated with the methodology of TBL approach (Section 3.2.). 

 In addition to the indirect analysis (TBL), some environmental indicators also 

require direct (tailpipe) savings analysis. GHG emission savings are calculated based in 

EPA’s per gasoline-diesel consumption emission rates (EPA (Environmental Protection 

Agency), 2013). Ecologic footprint calculation is also based on the same parameters. Toxic 

releases to the air rates for tailpipe savings analysis are gathered from National 

Transportation Statistics (U.S. Department of Transportation Research and Innovative 

Technology Administration Bureau of Transportation Statistics, 2011). 

 In order to calculate the delay hourly cost, consumer price index values for 2010 

were used; $16.30 per person hour and $88.12 per commercial vehicle hour.  According to 

DOT’s highway performance monitoring system dataset for the U.S.’s urbanized areas, 

passenger cars are 91% of the traffic while commercial vehicles are 7% (Department of 
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Transportation Federal Highway Administration; Office of Highway Policy Information 

(HPPI), 2013).  These percentages are also used to multiply fuel cost with the average 

prices of gasoline and diesel for each state in 2007 thorough 2010. According to each 

indicator that is mentioned above, the annual congestion cost can be calculated with the 

following equation (See Eq. #1 in Section 3.1.1.). Similarly to this formula, the cost savings 

of congestion relief related annual fuel savings can be determined.   

 Table 2 presents the average values for 101 U.S. cities congestion and ITS savings 

which also constitute the database of this thesis. The following information provides better 

understanding about the average traffic congestion impacts in the U.S. for each year. 

Traffic congestion is linearly affects the congestion cost and ITS related savings which was 

dramatically decreased due to less vehicle usage in 2008 which was the consequences of 

2008’s economic crisis. However, in 2010, it started its usual increasing trend similar to 

years before 2008. Obviously, the results of the ITS savings are not significant enough to 

reduce congestion results. However, from an optimistic point of view, the proportion of 

annual congestion cost and ITS related cost savings provide approximately 8% savings. 

The methodology of this paper used the ITS saving values for analysis which is indicated 

on Table 2.    
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Table 2: Average congestion impacts and ITS investment savings of 101 cities in the U.S.  

   2007 2008 2009 2010 

C
on

ge
st

io
n 

Im
pa

ct
s 

Annual Delay Hours (103 hrs) 45,878 40,471 41,807 42,461 

Annual Excess Fuel Wasted (103 gallons) 20,259 17,334 17,678 18,172 

Total Congestion Cost ($M) 922 841 866 890 

IT
S 

Sa
vi

ng
s 

Annual Delay Reduction (103 hrs) 3,438 2,939 3,023 3,079 

Wasted Fuel Reduction (103 gallons) 1,540 1,330 1,268 1,313 

Congestion Cost Savings ($M) 79.7 71.7 71.5 64.5 

[Source: (Lomax et al., 2011)]  

 

5.3.     Results 

 The study aims to fill a gap on ITS impact analysis in a holistic point of view. 

Aforementioned socio-economic values are not positive for all cases of ITS. For instance, 

fuel industry’ employment, tax and profit indicators will be dropped due to the fuel savings. 

Therefore, providing net benefits of ITS is crucial for decision makers and governmental 

associations. On the other hand, regarding the benefits of operational treatments on roads, 

the net results are expected to be positive. In environmental point of view, the results will 

stand only for positive (beneficial) impacts.    
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 The net results for each indicator are shown on the U.S. map figures with various 

color ranges. The figures present the total – net values for 2007, 2008, 2009 and 2010 years 

for each state. Some states consist of one city data while some include 10 different cities 

total operational treatment savings. Besides, in the UMR study some states’ cities are not 

considered due to their low population and traffic congestion values. Therefore, these 

states’ ITS related saving data are neglected.  

5.3.1. Socio-Economic Impacts 

 The highest impact of congestion relief with ITS was due to annual delay reduction, 

since, these hours were underemployment hours for industries before.  However, while 

making cost savings due to reduced person and commercial vehicle hours, making fuel 

savings reduced the profit and employment of some industries, especially petroleum 

refineries. Government revenue is reduced by fuel tax that is paid for per gallon fuel 

purchase and tax of fuel production’s supply chain industries. On the other hand, 

consuming less fuel means less fuel import to U.S. which is an important positive outcome 

for the national economy.  Overall, it is crucial to highlight that TBL related primary sector 

impacts and supply chain sectors activities are presented as indirect impacts where the 

value of less fuel purchase is presented as direct impact.  

 The Figure 12 presents the import savings regarding to less fuel consumption. As 

it is explained in the methodology section, import value is crucial for national economic 

indicators. Moreover, fuel import is on the top list of national imports list with its 

significant value. Therefore, it is important to reduce import rates for better socio-economy. 
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Following values consist of direct import drop from fuel sales and indirect drop in terms 

of fuel production and its supply chain sectors. As can be seen from colored scale, the 

states, with the largest cities have the largest savings such as California (CA), New York 

(NY), Texas (TX), Florida (FL), Washington DC and Illinois (IL). 

 

Figure 12: Total Direct - Indirect Savings ($M) 

 

 Figure 13 presents the first example of negative impacts of ITS investments which 

affects government. Basically, less fuel sales mean less tax earned for the government. 

Direct tax drop is generated by fuel sale taxes reduction. On the other hand, indirect tax 

51 
 



drop consists of whole supply chain and fuel production tax reduction which dominates the 

total negative value.   

 

Figure 13: Total Direct - Indirect Tax Drop ($M) 

 

 Profit savings are important to highlight, because they represents the net value of 

savings. The term “net” indicates the summation of where direct profit is positive and 

indirect profit is negative. Indeed, direct profit generates the value of driver’s fuel expenses 

which is named savings. Moreover, indirect profit states the value of fuel producers’ and 

its supply chain’s profit drop due to less fuel sales. Therefore, the results present the net 
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value of profit for each state on Figure 14. Fortunately, the results are positive which 

indicates fuel sale savings are greater than producers’ loss.  

 

Figure 14: Net Direct - Indirect Profit Savings ($M) 

 

 The last socio-economic indicator is employment which represents the drop related 

to the profit drop of fuel producers on Figure 15. As it is highlighted in the definition of 

employment (income) above, fuel production and its supply chain industries are affected 

from less fuel sale. On the other hand, due to the delay reduction impacts of ITS, employees 

and employers save time which is also considered as an employment (income) indicator. 

As it is explained in data collection section, work time related hourly savings are 
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significantly higher than fuel based savings. Therefore, the net impacts of employment 

indicator are positive as it is shown on Figure 15.   

 

Figure 15: Net Indirect Employment Drop ($M) 

 

5.3.2. Environmental and Ecologic Impacts  

 TBL methodology provides the data for the fuel consumption sector related direct 

and its related sector`s indirect savings under the name of indirect savings on figures below. 

However, only one of the environmental indicators (water consumption) does not include 

direct savings.  

54 
 



 Comparing to socio-economic indicators, in this section the results present only 

savings. Figure 16 indicates first environmental savings from greenhouse gases (GHG). As 

it explained in the data collection section, the direct emission savings are calculated by 

multiplying EPA’s parameters with fuel savings. It also can be named as tailpipe emissions 

savings. Fuel production and its supply chain generate the indirect emission savings. The 

tailpipe emission savings (direct) are slightly higher than indirect savings. Similar to the 

economic results, the major states of the U.S. dominate the figure with their results.   

 

Figure 16: Total Direct - Indirect GHG Savings (t CO2 eqv.) 
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 Another environmental concern that is considered in this study is water 

consumption savings. Figure 17 presents the results for each state in kilo-gallon function 

unit. Since, direct environmental savings represent tailpipe savings from vehicle 

operations, there is no direct (tailpipe) savings in water consumption case. Although, there 

are significant water consumptions during the fuel production and its supply chain sectors. 

For instance, California (CA) provides the highest saving value all over the U.S. with 4.8M 

kGal water savings from ITS investments.    

 

Figure 17: Total Indirect Water Consumption Savings (kGal) 
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 Energy consumption savings are presented in Figure 18. In order to calculate direct 

energy savings, total fuel savings are converted to its energy equivalence. The indirect 

energy consumption savings are the complicated part of this calculation. Since, it considers 

the energy consumption of per million dollar fuel production with its whole supply chain. 

The direct savings are also slightly higher than indirect savings for this indicator.  

 

Figure 18: Total Direct – Indirect Energy Consumption Savings (TJ) 

 

 There are three types of different toxic releases that are defined in literature which 

are; to the air, water and land. This study considers only the toxic releases savings to the 

air that are made in the U.S. regarding to ITS investments. Figure 19 also consists of direct 
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and indirect indicators in itself in tone (t) unit. Direct toxic releases savings (tailpipe) 

includes tailpipe emissions drop from less vehicle operation and less fuel consumption. On 

the other hand, industries that are producing fuel or supplying them generated less toxic 

chemicals to the air due to less fuel consumption. The total saving values are dominated by 

direct savings for each state.  

 

Figure 19: Total Direct – Indirect Toxic Releases to the Air Savings (t) 

 

 The last indicator of this section indicates the results of ecologic footprint savings 

(See Figure 20). It also can be named as CO2 uptake land. The only ecologic indicator of 

this study provides parallel results to GHG emission savings. The direct and indirect 
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ecologic footprint savings are calculated with the same methodology of other indicators as 

explained above. Moreover, direct savings are higher than indirect savings in total.  

 The same demand can be followed for each indicator due to their same total fuel 

consumption. In other words, regarding the value of states’ fuel consumption, the results 

show similar trend for all states. For instance, California (CA) has significant values for 

each figure due to its high VMT and number of vehicles which generates more congestion 

and savings at the same time. 

 

Figure 20: Total Direct – Indirect Ecologic Footprint (CO2 Uptake Land) Savings (gha) 
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5.3.3. Summary of Results  

 In conclusion, the results prove the importance of analyzing supply chain (indirect) 

impacts on savings. The majority of the direct indicators are slightly higher than indirect 

impacts. Thus, indirect benefits make significant change on total benefit analysis for 4 

years. In 101 cities of the U.S., ITS made significant savings for society. However, it is not 

enough to reduce traffic congestion to acceptable levels by itself.  

 The following figure indicates ITS total saving trends yearly (Figure 21). Since the 

indicators are in different function units, it is shown in cumulative percentage diagram. As 

it mentioned in Data Collection section, 2007 savings dominates the total savings due to 

its high traffic volume data. 

 

Figure 21: U.S. Annual Total ITS Impacts 
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CHAPTER SIX: SUSTAINABILITY PERFORMANCE ANALYSIS 

OF INTELLIGENT TRANSPORATION SYSTEMS 

6.1.     Background Information 

 This chapter outlines how the fuzzy-DEA methodology was used in this study to 

evaluate the sustainable performance of ITS deployments in the U.S. The study in this 

chapter is also a working paper in University of Central Florida by Ercan et al. (2013).  

 A topic of high interests to many researchers is the significant problems associated 

with unsustainable traffic systems. The efficiency of transportation systems is determined 

by evaluating different aspects of the system such as fuel efficiency of vehicles, fuel type, 

and transportation systems (transit, freight etc.) etc. The reason for conducting these studies 

was to provide clear information about investments that will encourage, or discourage, 

decision makers to make progressive decisions. These studies are important because 

transportation systems have a significant impact on society. For instance, travel time affects 

commuters in terms of wasted time, safety, and environmental impacts (Pagoni, Schafer, 

& Psaraki, 2012). In order to present these impacts in same fraction unit, cost-benefit 

studies is still used in literature.  

 As mentioned above sections, Intelligent Transportation Systems (ITS) are 

proposed to be a part of the sustainable transportation systems. Moreover, the investments 

on ITS are increasing every day. Besides, due to ITS’ complexity frame compared to the 

traditional transportation systems, it is unpredictable and difficult to evaluate ITS in terms 

of economy, environment, and social impacts (He, Zeng, & Li, 2010). Therefore, it is 
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critical to present expected or gathered impacts of the systems and then compare these 

impacts to the costs.  

 The unsustainable impacts of transportation systems lead to environmental, 

economic, and safety concerns in society. Therefore, it is important to take action by 

government agencies and to implement treatments such as ITS. Most of the ITS 

applications are effective investments in terms of their cost-benefit ratios. However, these 

ratios do not provide adequate information to decision makers for future investments. This 

study aims to compare different ITS applications’ cost-benefit analysis components around 

the U.S. using DEA methodology in terms of their effectiveness. Due to operation & 

maintenance cost and benefit analysis’ unpredictable and assumption based structure, this 

study considers uncertainty levels for these components. Hereby, fuzzy DEA methodology 

is chosen by researchers to provide realistic decision making information for future ITS 

investments.   

 

6.2.     Data Description 

 This case study consists of 7 different ITS deployments in different states of the 

U.S. to compare their efficiency scores with the Fuzzy-DEA methodology. These reference 

ITS studies are, arterial management (adaptive signal control), freeway management (ramp 

metering), incident management (shoulder usage), Electronic Toll Collection (ETC), 

Commercial Vehicle Operation (CVO) (electronic credentialing), Advanced Traveler 

Information Systems (ATIS) (en-route information, dynamic message signs), and 
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Automated Highway Systems (AHS) (Automated Electronic Highway Systems (AEHS)). 

This section includes detailed information about these ITS implementations in terms of 

their cost and savings. The inputs and outputs of fuzzy-DEA methodology consist of costs 

and savings information. The challenge of the study was finding cases studies which 

investigated the cost and saving information for same fraction units and methodology for 

ITS. Since all of the case studies consist of its own unique application, the system 

(operational) treatment type and development will be explained individually.   

 The data set that is utilized in fuzzy DEA methodology includes two main 

components; benefits and cost. In this chapter, benefits comprises of travel time savings, 

accident prevention savings, and emission reduction where costs contains initial 

construction cost and 10 years Operating and Maintenance (O&M) cost.    

 There are many different studies in literature about ITS evaluations. However, in 

order to provide accurate efficiency scores, the evaluation information should consist of 

same reference methodology and parameters data set. The baseline factors that are used in 

this study in benefit calculations are presented in following Table 3a and 3b.   
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Table 3: (a) Baseline Table for Value of Time Benefit Calculations (b) Baseline Table for 
Emission and Safety Benefit Calculations  

  

Value of Time 

(2013 $)1 

Vehicle Percentages on 

the Roads2 
Vehicle Occupancy3 

Passenger 

Vehicle 
$17.46 95% 1.25 person 

Commercial 

Vehicle 
$94.40 5% 1.05 person 

[Source 1: (Bureau of Labor Statistics, 2013) adjusted values for 2013 from 2010 data. 
Source 2:(Department of Transportation Federal Highway Administration; Office of 
Highway Policy Information (HPPI), 2013) , Source 3: (Lomax et al., 2011)] 

 

(b)  

Emission Cost (per kg)4 (2013 Adjusted Values) 

HC $6.19 

CO $3.85 

NOx $8.15 

Accident Cost (Average)5 $23,736 

[Source 4: (Boston Transportation Department / Howard/Stein-Hudson Associates, 2010; 
Colorado Transportation Management System (CTMS), 2004) , Source 5: (Blincoe et al., 
2002)(converting 2000 $ values to 2013 $ values with inflation rate of Consumer Price 
Index and calculate the average of fatality, serious injury, and property damage costs)] 

  

 The first case study represents the results for adaptive signal control treatment in 

Boston in 2007 which is a part of arterial management (Boston Transportation Department 

/ Howard/Stein-Hudson Associates, 2010).  The cost and benefit evaluation is prepared by 
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Boston Transportation Department (BTD) and Howard/Stein-Hudson Associates (HSH). 

The traffic signal operation improvement includes 8 work orders which focus on 280 

signals in over 20 travel corridors. This amount of signal treatment consists of one third of 

Boston’s traffic signal system. The benefits are presented as Phase 1 and Phase 2 which 

includes signal retiming with current infrastructure and additional retiming physical 

improvements such as rephrasing, face chancing, respectively. This study considers the 

Phase 2 costs and benefits for the baseline calculations.    

 A freeway management example is studied on ramp metering application of ITS in 

Twin Cities, Minnesota (Cambridge Systematics, 2001). The system evaluation final report 

is prepared by Cambridge Systematics Inc. for Minnesota Department of Transportation in 

2001. The report considered shutting down the entire ramp meter system on freeways. 

However, the benefits are captured from I-494, I-94, I-35W, and I-35E corridors for five 

weeks which assumed to represent the whole corridors.  

 University Transportation Center for Alabama at the University of Alabama 

prepared a report to quantify the benefit measure of shoulder usage in peak periods and 

incident conditions in 2009 (Sisiopiku, Sullivan, & Fadel, 2009). The study considers I-65 

segment in Birmingham, AL. Since, the report quantifies 7 different scenarios’ benefits; 

this chapter uses only Scenario 7 which used the left shoulder in incident condition for two 

hours.   

 As a part of California PATH program, Institute of Transportation Studies in 

University of California, Berkeley prepared a research report to investigate the costs and 
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benefits of Electronic Toll Collection (ETC) in 1999 (Gillen, Li, Dahlgren, & Chang, 

1999). The existing manual toll collection system was compare to the new ETC system, 

which was used as the baseline to develop cost benefit framework. Out of total nine bridges 

of Bay Area, Carquinez Bridge is one of the bridges that is considered in this research 

report. With the estimation of annual 3% traffic volume growth, the report provides data 

from 1995/1996 to 2005/2006 fiscal years. In order to present benefit data for efficiency 

analysis, this chapter uses 2004/2005 fiscal year benefit estimations. 

 The I-25 truck safety improvement project from Colorado DOT is an application of 

Commercial Vehicle Operation as a part of ITS (Colorado Transportation Management 

System (CTMS), 2004). The systems cost and benefit quantification report was prepared 

by Colorado Transportation Management System (CTMS) in 2004. Since the project 

consists of 30 different tasks which include variety of ITS applications, the presented 

benefits is not only limited to commercial vehicle operation but also an entire system. This 

chapter considers the Port of Entry (POE) activity which includes three task orders and 

specifies the Electronic Credentialing (EC) part of ITS.  

  Advanced Traveler Information Systems (ATIS) represented by Dynamic Message 

Sign (DMS) application which is also named En-Route information. The reference report 

was prepared by researchers at University of Missouri-Columbia for Missouri DOT in 2011 

(Edara, Sun, Keller, & Hou, 2012). I-57 bridge closure information, which was shared with 

detour travelers earlier, generates the benefit analysis of this report. The scenario includes 
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one permanent and two portable DMS for 15 days. Since it is a temporary operation, the 

benefits are not calculated annually.   

 Last, Lavrenz (2011) investigates the costs and benefits of Automated Electric 

Highway Systems (AEHS) in his thesis at Iowa State University (Lavrenz, 2011). The 

evaluation examined on I-70 in Missouri from Kansas City to St. Louis corridor due to its 

significant role in east-west travelling connection. Similar to the CVO example, this thesis 

focused on freight movement impacts; however the benefits are not limited to the 

commercial vehicles operation. Since this study considers ten years cost and benefit results, 

the thesis’ thirty years calculations were converted to the same fraction.
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Table 4: Summary findings of reference ITS investments  

    Delay Hrs 
Reduction (hrs) 

Emission Reductions (kg) Accident 
Reduction Reference Study 

    HC CO NOX 

Arterial Management Adaptive Signal 
Control 341 884 3,822 754 6 BTD, HSH. The Benefits of Retiming/Rephrasing 

Traffic Signals in the Back Bay. (2010). Boston. 

Freeway Management Ramp Metering 101 N/A 1,161,000 N/A 1040 Systematics, C. (2001). final report. Twin Cities, MN 

Incident Management 
Shoulder Usage 
(Active Traffic 
Management) 

2,635 3,528 N/A N/A 528 
Sisiopiku, V. P., Sullivan, A., and Fadel, G. (2009). 

Implementing Acctive Traffic Management 
Strategies in the U.S. Birmingham, AL, 1–108.. 

Electronic Toll 
Collection (ETC) 

Electronic Toll 
Collection 383 1,122 23,753 2,458 -3 

Gillen, D., Li, J., Dahlgren, J., and Chang, E. (1999). 
Assessing the Benefits and Costs of ITS Projects : 

Volume 2 An Application to Electronic Toll 
Collection. SanFrancisco Bay Area, CA, 1–98. 

Commercial Vehicle 
Operations (CVO) 

Electronic 
Credential 370 3,648 38,412 N/A 5 

(CTMS), Colorado Transportation Management 
System (2004). I-25 Truck Safety Improvements 

Project. 1–37. 
Advanced Traveler 

Information Systems 
(ATIS) 

En-Route Info. – 
Dynamic Message 

Signs (DMS) 
353 50 1,059 119 -1 

Edara, P., Sun, C., Keller, C., and Hou, Y. (2012). 
Evaluating the Benefits of Dynamic Message Signs 

on Missouri ’ s Rural Corridors. Missouri. 

Automated Highway 
Systems (AHS) 

Automated 
Electronic 

Highway Systems 
(AEHS) 

3,208,000 7,333 100,000 436,667 1070 

Lavrenz, Steven Michael, "Economic analysis of 
automated electric highway systems for commercial 

freight vehicles" (2011). Graduate Theses and 
Dissertations. Paper 10392. 
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6.3.     Results 

6.3.1. Cost and Benefit Measurement Results of Intelligent Transportation Systems 

The benefits of ITS investments for the U.S. and their initial and O&M costs are 

calculated as it explained in methodology section. The summary results are presented in 

Table 3. The table also provides 10 years benefits/costs ratio on the last column. From a 

benefit/cost ratio point of view, all of the ITS applications are highly efficient investments. 

However, as an aim of this thesis, comparing these systems in terms of efficiency was 

found that some investments are not efficient compared to the others.  

As a result of case studies’ project features the initial cost amount varies from 

$16,461 to $311,240,714. For instance, Automated Highway System requires new 

technological infrastructures to build and qualified technicians to maintain and operate 

which costs more than $300 million. On the other hand, the least expensive example of 

these case studies (traveler information system) consists of only portable dynamic message 

signs which are easy and cheap to install and operate. These cost differences do not affect 

the efficiency score as it does not affect benefit/cost ratio, because this thesis uses the multi 

criteria decision making tool example (data envelopment analysis).   

Compared to the input data of ITS investments, the value of benefits are presented 

as output of the investments. Except the freeway management example, the value of time 

results dominates the benefits for output section. ITS deployment on freeway management 

contributed a significantly less number of stop-and-go for vehicles according to the 

simulation results. Moreover, these less number of stop-and-go provide more emission and 
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safety benefits than value of time benefits. Two of the safety results are presented as zero, 

because these are the systems that caused 1-3 more accidents in that corridor instead of 

benefits. These negative values of safety results are close enough to neglect in this analysis.  

 In addition to the input and output data of efficiency analysis, the total value of 10 

years benefits and benefit/cost ratio columns are presented to provide better understanding 

for the ITS investments’ significant benefits compare to inputs values (costs). The 

benefit/cost ratio varies in a wide range, such as from 3.01 to 112.89. Furthermore, it is 

clear that all of these ITS applications are beneficial to the society. However, the 

benefit/cost ratio does not mean system is efficient in comparison to others which are stated 

in following efficiency score section.  
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Table 5: Summary Results of Inputs & Outputs and B/C Ratio of ITS investments 

 
  Inputs Outputs    

DMU 
No 

DMU 
Cost of 
Project 
(2013$) 

Life Cycle 
Cost (10 
years) 

Value of 
Time 

(2013$) Safety Emissions 
Total Benefits 

(10 years) 
B/C 

Ratio 

1 
Arterial 

Management 
279,289 230,202 2,270,527 142,416 26,309 24,392,523 47.88 

2 
Freeway 

Management 
2,001,813 15,540,000 672,502 24,685,440 4,464,045 298,219,872 17.00 

3 
Incident 

Management 
1,202,140 1,247,709 17,544,983 12,538,928 21,824 301,057,350 122.89 

4 

Electronic 
Toll 

Collection 
4,612,664 3,775,513 2,550,182 -71,208 118,304 25,972,772 3.10 

5 

Commercial 
Vehicle 

Operation 
1,669,734 4,206,410 8,732,000 118,680 170,261 90,209,407 15.35 

6 

Traveler 
Information/ 

ATIS 
16,461 3,524 30,848 -23,736 5,351 124,626 6.24 

7 

Automated 
Highway 
System 

311,240,714 21,437,672 68,350,000 27,780,000 3,988,698 1,001,186,980 3.01 

 
Uncertainty 

Level 
Static 3%, 5%, 

10% 10%, 15%, 20%    

 

6.3.2. Efficiency Scores and Rankings 

 Fuzzy-DEA methodology’s rapid development of uncertainty level results for 

efficiency score enable researchers to provide performance metrics which are also named 

SPI. As was proposed in previous sections, total initial and O&M costs generate the input 

values where value of time, emissions, and safety generate the outputs. In other words, it 

can be stated that more benefits with less cost investments makes the ITS application more 

efficient compare to others.  

 This study consists of inputs and output data that contain different uncertainty 

levels according to their determination methods. Besides, the reference studies do not 
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contain uncertainty levels for initial cost of project. The operation & maintenance cost has 

3%, 5%, and 10% uncertainties due to the inflation rate that is used in the 10 year 

calculations. The output data consist of more uncertainty level, because they are mostly 

based on simulation studies. For instance, Edara et al.'s (2012) study states the uncertainty 

level for the benefit calculations. As a result, the uncertainty levels are assumed as 10%, 

15%, and 20% for output data.   

 Based on the uncertainties of inputs and outputs, efficiency rankings, overall 

efficiency score, and lower & upper bound SPI sets are resulted as shown on Table 6. Each 

SPI number represents the different uncertainty levels of inputs and outputs. SPI-1 stands 

for static initial cost, 3% uncertainty for O&M costs where it includes 10% uncertainty for 

outputs. Without making any changes to the initial cost, SPI-2 includes 5% uncertainty for 

O&M costs and 15% uncertainty for outputs. Finally, SPI-3 increases the uncertainties to 

10% for O&M costs and 20% for outputs. These different uncertainty levels provide us 

efficiency ranges instead of gathering one efficiency score from a traditional DEA model. 

It can be assumed that with a traditional DEA model all of the ITS applications will be 

efficient with their high benefit/cost ratios. 

 Since the fuzzy – DEA methodology provides efficiency range for systems, the 

overall efficiency scores for each system can be used to list ranks. In DEA methodology, 

1.00 efficiency score presents the efficient results for any output cases. Out of 7 systems 4 

ITS applications resulted efficient in this study which can be seen on Table 6. They all 

ranked as number 1 because these systems are resulted 1.00 efficiency score in any of the 
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uncertainty level scenarios. On the other hand, arterial management provides the closest 

score to the efficient ranking with 0.72 ranking score. Commercial vehicle operation and 

electronic toll collection applications result in the least efficiency scores with their 0.40 

and 0.14 ranking scores, respectively. In addition, the overall efficiency scores are 

presented on the Figure 22 to provide more visual understanding.   

Table 6: ITS Efficiency Rankings, Overall Efficiency Ranking Scores, and Lower & Upper 
Bounds of SPI sets 

Ranking ITS Applications SPI-1 
(LB) 

SPI-1 
(UB) 

SPI-2 
(LB) 

SPI-2 
(UB) 

SPI-3 
(LB) 

SPI-3 
(UB) 

Overal
l SPI 

1 
Freeway 

Management 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1 
Incident 

Management 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1 

Traveler 
Information/ATI

S 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1 
Automated 

Highway System 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2 
Arterial 

Management 0.75 1.00 0.65 1.00 0.52 1.00 0.72 

3 

Commercial 
Vehicle 

Operation 
0.33 0.49 0.30 0.54 0.27 0.60 0.40 

4 
Electronic Toll 

Collection 0.11 0.20 0.10 0.23 0.08 0.28 0.14 

  

 These results indicate that the benefit/cost ratio is not related with the efficiency 

scores. The least efficient examples (Commercial vehicle operation & Electronic toll 

collection) of this study result 15.35 and 3.18 benefit/cost ratios however the automated 

highway system provides 3.01 benefit/cost ratio which is one of the most efficient systems. 

Indeed, it can clearly be stated that there is no relation between the benefit/cost ratios with 

efficiency scores. 
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Figure 22: Overall (Difuzzified) Efficiency Scores 

 

 Parallel to the findings of Table-6, following figures (Figure-23,24, and 25) 

presents the efficiency range for ITS applications. The DMUs that ranked as first place in 

terms of efficiency provide total efficient results in any uncertainty scenarios. On the other 

hand, the other 3 ITS application which resulted less efficient results in comparison, 

indicate the efficiency range on graph clearly. In Figure-23 the upper bound of Commercial 

Vehicle Operation (CVO) efficiency is 49% where the lower bound is 23%. In other words, 

the efficiency range of CVO in SPI-1 is in between 23% and 49%. Electronic Toll 

0.1448

0.3994
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Collection (ETC) and Arterial Management’s efficiency scores can be seen in figures with 

same visual expression.   

 Figures-23, 24, and 25 compare the power of fuzzy-DEA methodology and provide 

interesting results that the efficiency score range becomes wider with higher uncertainty 

levels. For instance, Arterial Management resulted efficiency score range of 75% to 100% 

in first uncertainty scenario (SPI-1) which can be seen on Figure-23. Moreover, it followed 

by 65% to 100% efficiency score range and finally concluded with 52% to 100% range. 

Therefore, it can be stated that in the worst case scenario of inputs and outputs of Arterial 

Management the system can score up to 52% in terms of efficiency. The inputs and outputs 

of Freeway Management, Incident Management, Traveler Information, and Automated 

Highway Systems provide very efficient values that fuzzy-DEA methodology does not 

result in any range even in high uncertainty levels. 

 

Figure 23: Performance labels of ITS on 3% input and 10% output uncertainty levels  
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Figure 24: Performance labels of ITS on 5% input and 15% output uncertainty levels 

 

Figure 25: Performance labels of ITS on 10% input and 20% output uncertainty levels 
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6.3.3. Summary of Results 

 The costs and benefits of seven different ITS investments in the U.S. were 

examined in order to evaluate their sustainability performance. All of the ITS investments 

provided significant benefit/cost ratios with their value of time, emission and safety 

savings. However, as an aim of this study, the sustainability performance does not provide 

the same conclusion. With the consideration of uncertainty levels on O&M costs and 

benefits, a fuzzy-DEA approach ranked the ITS implementation in terms of efficiency.    
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CHAPTER SEVEN: CONCLUSION 

7.1.     Summary of Findings 

 Congested roadways are negatively affecting the quality of life for society on a 

daily basis. Intelligent Transportation Systems (ITS) are one of the approaches that aim to 

reduce traffic congestion and provide socio-economic, environmental, and safety benefits. 

In order to encourage decision makers to proceed with new ITS investments on 

transportation infrastructures, it is crucial to present their impacts in a holistic point of 

view.  

 This thesis summarized detailed sustainability impacts and performance of ITS 

investments with TBL-LCA and fuzzy-DEA methodologies in the United States. First, the 

results of the impacts of ITS on seven metropolitans in Florida were analyzed; this was 

performed by using TTI’s UMR (2011) congestion relief results for those metropolitans. 

The thesis then expanded to an U.S. level study which summarized sustainability impacts 

of the U.S. on a state level. Finally, the reference ITS investments were compared in terms 

of their sustainability performance. Therefore, this thesis fills a gap by presenting nine 

sustainability indicators results of ITS implementations from city to state level, or 

sustainability performances of these implementations.  

 An input-output based TBL approach was implemented for seven urbanized areas 

in Florida.  As a result, additionally to the cost savings related to delay reduction and fuel 

savings, their nationwide economic (profit, employment, tax revenue, import), and 

environmental (GHG emissions, energy and water consumption, toxic releases to air, 
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ecologic footprint) impacts were quantified.  This analysis expanded by considering 101 

metropolitans of the U.S. for 4 years. The studies’ results prove the importance of analyzing 

supply chain (indirect) impacts on savings. The majority of the indirect indicator results 

are slightly close to the value of direct indicators.    

 The key finding of this TBL approach analysis is that it presents widespread “net” 

socio-economic, environmental and ecologic saving results, since some of the socio-

economic indicators are not positive impacts. Although there are negative impacts 

associated with ITS, the net impacts are highly positive. Even though the total sustainability 

benefits of ITS in 4 years benefits are significant, it is not enough to reduce traffic 

congestion to acceptable levels by itself. In order to reduce congestion, ITS only can be a 

part of “sustainable transportation” approach. 

 In addition to a detailed sustainability impacts analysis, this thesis included the ITS 

investments in terms of their sustainability performances. In order to provide accurate 

efficiency analysis the cost and benefit components are converted to same fraction units 

while using same coefficient units. Value of time, emission and safety benefits provide 

significant savings on economy. Benefit / cost ratio of ITS investments are presented to 

compare with efficiency results which is the aim of this study. With the consideration of 

uncertainty scenarios for O&M costs and benefits resulted 3 of the ITS applications are not 

efficient compare to others.  
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7.2.     Thesis Limitations 

 Free-flow travel time and travel time index values are the main indicators of TTI 

Urban Mobility Report which were used to generate this study’s results (Lomax et al., 

2011). The TTI’s research only investigates freeway ramp metering, incident management, 

traffic signal coordination programs, arterial street access management program and High 

Occupancy Vehicle (HOV) lane applications of ITS’s congestion relief impacts in certain 

detector available areas. In addition, the data only covers the ITS implementations in urban 

areas. The complete picture of U.S. ITS benefit analysis could be extended to cover rural 

areas. Therefore, the net impacts of whole ITS applications in urban areas could be more 

than what is summarized in this study.    

 Sustainability performance analysis of ITS investments is based on seven different 

applications in the U.S. It was difficult to find additional reference studies which use same 

methodology for benefit calculations. Moreover, the lack of information about ITS 

investments’ detail cost and benefit analysis was the limitation of sustainability 

performance analysis.  

 

7.3.     Future Study Recommendations of the Thesis 

 Consequently, utilizing our methodology, direct and indirect sustainability impacts 

of ITS systems were quantified.  This study could be extended by including more 

sustainability indicators. Comparisons for the impacts regarding ITS vs. new road 

construction with respect to congestion can be investigated using this new in-depth and 
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holistic approach. Thus, the efficiency of different implementations to reduce congestion 

could assist decision makers. In addition, including more DMUs in the sustainability 

performance analysis could extend the study with more comprehensive results about ITS 

investments.  
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