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ABSTRACT

In this dissertation we discuss decoherence in charge qubits formed by multiple lateral quan-

tum dots in the framework of the spin-boson model and the Born-Markov approximation.

We consider the intrinsic decoherence caused by the coupling to bulk phonon modes and

electromagnetic environmental fluctuations. In the case of decoherence caused by phonon

coupling, two distinct quantum dot configurations are studied and proposed as setups that

mitigate its nocive effects : (i) Three quantum dots in a ring geometry with one excess

electron in total and (ii) arrays of quantum dots where the computational basis states form

multipole charge configurations. For the three-dot qubit, we demonstrate the possibility of

performing one- and two-qubit operations by solely tuning gate voltages. Compared to a

previous proposal involving a linear three-dot spin qubit, the three-dot charge qubit allows

for less overhead on two-qubit operations. For small interdot tunnel amplitudes, the three-

dot qubits have Q factors much higher than those obtained for double-dot systems. The

high-multipole dot configurations also show a substantial decrease in decoherence at low

operation frequencies when compared to the double-dot qubit. We also discuss decoherence

due to electromagnetic fluctuations in charge qubits formed by two lateral quantum dots.

We use effective circuit models to evaluate correlations of voltage fluctuations in the qubit

setup. These correlations allows us to estimate energy (T1) and phase (T2) relaxation times

of the the qubit system. We also discuss the dependence the quality factor Q shows with

respect to parameters of the setup, such as temperature and capacitive coupling between the

electrodes.
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CHAPTER ONE: INTRODUCTION

We begin this chapter by giving a brief historic description of the main developments in

quantum computation and quantum information. We subsequently present some of the keys

ideas underlying quantum computers, and follow with a discussion of current limitations to

the implementation of these devices. We also give motivation to our study of decoherence

sources in solid-state qubit systems. Finally, we present an outline of the chapters in this

dissertation.

1.1 A brief history of quantum computation and quantum information

In the 1960s, Ralph Landauer was the first to make a connection between information and

physical processes [1]. He argued that when information is lost in an irreversible circuit, that

information becomes entropy and an associated amount of energy is dissipated as heat. His

findings ultimately established a new paradigm, that information was physical in nature, and

that computation is a physical process. About a decade later, Charles Bennett showed that

all computation could be in principle done in a reversible fashion [2]. Edward Fredkin and

Tommaso Toffoli also came to the same result independently around the same time [3, 4].

In 1982, Richard Feynman argued that it would take a quantum system to efficiently

simulate other quantum systems [5, 6], and introduced the idea of an universal quantum

simulator [7]. He also claimed that these quantum machines would be able to perform

other tasks more efficiently than their classical counterparts. In 1985, he further considered

the possibility of reducing the size of computers until the bits were the size of atoms [8].
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In that picture, quantum mechanics and its unique properties would clearly dictate the

behavior of such machines. These ideas were later shown to be viable by several authors

[9, 10, 11, 12, 13, 14, 15, 16], and the increasing miniaturization of transistors and other

semiconductor based electronic devices led to the belief that the technology might be soon

approaching a limit where quantum effects become dominant. Also in 1985, David Deutsch

developed the very first quantum computational algorithm [17].

A few years later, in the 1990s, Peter Shor developed a quantum algorithm that could

efficiently factor large integer numbers [18], showing exponential speed up over any classical

factorization algorithms. This sparked renewed interest in the field as it proved to be the

first major application of a quantum computer. Around the same time, Lov Grover showed

that the problem of conducting a search through an unstructured search space could also

be sped up, albeit just quadratically, by use of a quantum algorithm [19]. This increase in

computation speed, though not as powerful as in the factorization algorithm, still proved

to be significant. At around the same time, Charles Bennett and Gilles Brassard proposed

quantum cryptography [20], and Yakir Aharonov and others utilized quantum random walks

to design exponentially faster quantum algorithms [21, 22].

1.2 Quantum computers

The basic units of information in a quantum computer are called quantum bits (qubits).

While their classical counterparts (bits) can take only one of two possible values, 0 or 1, qubits

possess the unique capability of being 0, 1, or any linear superposition of both values. In

fact, the superposition of states in a quantum computer, along with entanglement, represent

2



two of the underlying properties that make quantum computers so unique and so powerful

in their capability of processing information in speeds unthinkable to the classical versions

of these machines.

A true quantum computer obeys the laws and possesses the properties unique to quantum

mechanical systems. As such, their evolution is governed by the Schrödinger equation. A

quantum two-level system, utilized to define qubits, can be in a superposition of states

 ⟩ = �∣0⟩ + �∣1⟩, as mentioned before. Because any measurement on this system forces it

into one of the possible measurement eigenstates, it is known from quantum mechanics [23]

that even though the evolution of the system is deterministic, the measurement outcomes

are not. In the state  ⟩, the probability of measuring ∣0⟩ is ∣�∣2, while the probability of

attaining ∣1⟩ is ∣�∣2. Due to the probabilistic interpretation of � and �, they are constrained

to the equation ∣�∣2 + ∣�∣2 = 1 for normalization purposes.

Another important feature distinguishing qubits from classical bits is that multiple qubits

can exhibit quantum entanglement. Entanglement is a non-local quantum property that

allows a set of qubits to express higher correlation than is possible in classical systems. In a

simplistic way, this means that when two quantum two-level systems become entangled, one

system cannot be fully described independently of the other. An example of an entangled

state is (∣01⟩ + ∣10⟩)/
√

2. It gives a complete description of the system, and there is an

equal probability 1/2 of measuring either state -∣01⟩ or ∣10⟩-. The two subsystems do not

possess a definite state, though. Because of the entangled state, if one measures one state,

this immediately forces the state of the other subsytem to a definite value, even if they are

not close to each other! It has been long speculated whether entanglement really exists, or
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whether there exists some kind of hidden variables that due to our lack of knowledge of them

make us uncapable of predicting a measurement outcome with certainty. However, it has

been shown that entanglement is real by means of measurements of non-local correlations in

EPR pairs of photons, whose name was inherited after a gedanken experiment proposed by

Einstein, Podolsky, and Rosen [24]. This has essentially ruled out any local hidden variable

theory and established entanglement as one of the cornerstones of quantum computation.

There are several different technologies that present themselves as candidates for phys-

ical implementations of a quantum computer. Technologies as diverse as superconducting

devices, trapped ions, cold atoms, nuclear magnetic resonance (NMR), and quantum dots

have been intensively studied in recent years, with considerable progress being made in the

development of these quantum computing systems. In this dissertation we will restrict our

attention to semiconductor quantum dot systems that use the charge degree of freedom of

electrons to define the qubits.

1.3 Obstacles and limitations

It is known that quantum systems have a somewhat fragile existence. In order to retrieve

any kind of information about a quantum system, it is necessary to be able to make some

kind of measurement on the system. One of the consequences of the action of measuring on a

quantum system is that it imparts an irreversible change to the quantum state of the system.

The superposition states collapse, since the measurements project any initial state to just one

of the basis states. This irreversibility is only avoided in the special case where the state is

actually one of the eigenstates before measurement. This information though is not available
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a priori to whoever is performing the measurement in the system, and the fact that one can

only retrieve one result at a time through measurement makes the exponential computing

power thus appear inaccessible. The measurement problem has been a long standing issue

in quantum mechanics, and still today there seems to be no absolute understanding on what

defines a measurement [25].

The fragility in quantum superposition states is not always undesirable, though. In

applications of quantum cryptography, it is exactly this fragility that makes these systems

reliable. Upon coding of any piece of information, any eavesdropper that tries to read

that information will necessarily leave evidence of their interaction with the information,

corrupting some of the data.

Any kind of interaction of the pure quantum system - be it with someone performing

a measurement or with the uncontrolled environment - will create an irreversible process.

This interaction with external degrees of freedom adds extra terms to the system Hamilto-

nian and what was originally a closed quantum system now becomes open. The additional

entanglement of the system with environmental degrees of freedom introduces noise in the

computation, as the delicate phase relations between quantum states in a superposition are

irreversibly altered and the desired quantum evolution is disturbed. This process is what is

known as decoherence, and its direct consequences are errors in the computations. As more

errors occur due to flaws in the quantum operations, these errors propagate, significantly

altering the computed states from what they should originally be. In principle this presents

an unsurmountable challenge to any long computations. However, methods to control the

propagation of errors have been shown, relying on efficient detection and correction of these
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errors [26, 27]. This comes with a caveat though. These methods only work properly if

error rates in computations are small enough that they are below an accuracy threshold

[28, 29, 30, 31, 32, 33, 34, 35]. This ensures that errors are properly detected and handled,

enabling arbitrarily long computations. The downside is that if these conditions are not

met, the correction operations may actually create more errors than they correct. Current

threshold estimates range from 10−2− 10−6, and are strongly dependent on the actual qubit

geometry and environment.

For the physical implementation of large scale quantum computations however, the issues

mentioned present the biggest obstacles and motivate the work done in this dissertation. The

development of quantum algorithms and error correction, combined with the ideas of fault-

tolerant quantum computations, makes an actual quantum computer theoretically feasible.

On the other hand, it is speculated that for most useful computations, more than a hundred

qubits would be required, though a few dozen qubits may already be sufficient for simpler

simulations. The challenge to building a large scale quantum computer and coping with

the issue of decoherence is still open, though progress has been systematically made by

research teams all over the world. Here we will not dwell on methods to detect and correct

errors in quantum computations, but we will rather attempt to understand two important

physical sources of decoherence in a particular realization of qubit systems, namely quantum

dot charge-based qubit systems: interactions between electrons in the quantum dots and

(i) phonon modes in the bath and (ii) electromagnetic fluctuations in the circuit leads and

electrodes.
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1.4 Outline of this dissertation

This dissertation describes a theoretical modeling of decoherence sources for semiconductor

charge-based quantum dot setups utilized as candidates for quantum computing systems.

We start with the description in Chapter 2 of some of the latest experimental results in

measuring relaxation and decoherence times in this class of systems.

In Chapter 3, we calculate the effect of the quantum dots coupling to piezoelectric acous-

tic phonon modes in the bath, and propose the use of different geometrical quantum dot

arrangements to mitigate the nocive effects of the coupling to phonons.

In Chapter 4, we estimate the effect that electromagnetic fluctuations in the circuit

gates introduce into the qubit operation. We utilize the Fluctuation-Dissipation Theorem

in calculating these effects, and evaluate the quality factor for several different parameter

values.

Conclusions of this study are drawn out in Chapter 5, where we also discuss the limitations

of the models used. We conclude the dissertation by discussing questions that still remain

open regarding decoherence in these systems.
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CHAPTER TWO: RECENT EXPERIMENTAL ADVANCES

2.1 Introduction

The realization of a solid-state qubit based on familiar and highly developed semiconductor

technology would facilitate scaling to a many-qubit computer and make quantum compu-

tation more accessible [36]. Solid-state semiconductor lateral quantum dots are thus strong

candidates for the physical realization of qubits. These artificial systems can be designed to

allow for the observation of coherent oscillations between their quantum states. Since its first

proposals [37, 38], a wide variety of experiments have demonstrated control over the spin

degree of freedom of confined electrons in quantum dots [39, 40, 41], as well as charge states

[42, 43, 44, 45, 46, 47]. Solid-state quantum computer architectures with qubits encoded in

dopant atoms in semiconductor crystals have also been proposed [48, 49].

Quantum dots present the ubiquitous advantages of being manufactured from highly

developed semiconductor technology and may offer easier scalability, the latter being key in

enabling the manufacturing of large-scale quantum computers in the future. A drawback to

their use in quantum computers is that they also couple rather effectively to external degrees

of freedom which lead to decoherence.

The earliest proposal of a quantum dot qubit relied on the manipulation of the spin degree

of freedom of a single confined electron [37]. An attractive point of that proposal is the large

spin decoherence time characteristic of semiconductors; a drawback is that it requires local

control of intense magnetic fields. As an alternative, a spin-based logical qubit involving a
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multi-quantum dot setup and voltage-controlled exchange interactions was devised [39], but

at the price of considerable overhead in additional operations.

While spin qubits remain promising in the long term – note in particular several re-

cent experimental advances [40, 41] as well as further theoretical development of multi-

quantum dot spin qubits [50, 51, 52] – charge-based qubits in quantum dots, in analogy

to superconducting Cooper-pair box devices, [53, 54, 55, 56] are also worthy of investiga-

tion. Employing the charge degree of freedom of electrons rather than their spin brings a

few important practical advantages: No local control of magnetic fields is required and all

operations can be carried out by manipulating gate voltages. The simplest realization of

a charge qubit is a double quantum dot (DQD) system with an odd number of electrons

[38, 42, 43, 57, 58, 59, 60, 61, 62], as shown schematically in Fig. 2.1.

Vg1

gategate

RL

dots

leadlead

1 2

Vg2

Figure 2.1: Schematic representation of a double quantum dot setup.

One can view this system as a double well potential: The unpaired electron moves between

the two wells (i.e., quantum dots) by tunneling through the potential barrier. The logical

states ∣0⟩, ∣1⟩ correspond to the electron being on the left or right. The barrier height
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determines the tunneling rate between the dots and can be adjusted by a gate voltage.

The resulting bonding and antibonding states can also be used as the computational basis.

Recently, three groups have implemented the double-dot charge qubit experimentally [44,

45, 46, 47].

Semiconductor qubits are susceptible to various decoherence mechanisms. The effects

of hyperfine coupling to lattice nuclear spins can compromise the long phase coherence of

electron spins [63, 64]. Charge-based qubits, on the other hand are susceptible to various

decoherence mechanisms related to charge motion. A change in the state of the qubit in-

volves electron motion between quantum dots, which can in general couple very effectively to

external degrees of freedom such as phonons, charges trapped in the substrate, and electro-

magnetic environmental fluctuations. These noise sources lead to decoherence times much

shorter than those observed in spin qubit systems. Thus, one is tempted to try to find new

setups where oscillations between qubit states involve a minimum amount of charge motion.

For instance, in qubits based on multiple quantum dots one can pick logical states where

charge is homogeneously distributed in space. Another approach is to create a multi-dot

structure with symmetries that forbid coupling to certain environmental modes within the

logical subspace [65], as will be shown in Chapter 3.

So far measurements of quality (Q) factors of coherent oscillations in these systems have

yielded rather low values in the range of 3-10 [44, 45, 46, 47], representing strong damping.

In an effort to identify the main sources of decoherence, theoretical estimates of the Q factor

have been carried out assuming mainly the coupling to acoustic phonons [57, 58, 59, 60, 61,

62, 65, 66, 67, 68, 69]. However, a discrepancy of at least one order of magnitude remains

10



between the experimental value and the theoretical estimates, with the latter indicating

larger Q factors. This discrepancy leads to the belief that the phonons may not be the

dominant noise source. Thus, an investigation of other possible environmetal decoherence

mechanisms is in order. In Chapter 4 we consider the coupling of the DQD charge-based

qubit systems to voltage fluctuations in the gates.
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CHAPTER THREE: PHONON DECOHERENCE IN
MULTIPLE-QUANTUM-DOT CHARGE QUBITS

3.1 Introduction

In this chapter we discuss decoherence in charge qubits formed by multiple lateral quantum

dots in the framework of the spin-boson model and the Born-Markov approximation. We

consider the intrinsic decoherence caused by the coupling to bulk phonon modes. Two

distinct quantum dot configurations are studied: (i) Three quantum dots in a ring geometry

with one excess electron in total and (ii) arrays of quantum dots where the computational

basis states form multipole charge configurations. For the three-dot qubit, we demonstrate

the possibility of performing one- and two-qubit operations by solely tuning gate voltages.

Compared to a previous proposal involving a linear three-dot spin qubit, the three-dot charge

qubit allows for less overhead on two-qubit operations. For small interdot tunnel amplitudes,

the three-dot qubits have Q factors much higher than those obtained for double dot systems.

The high-multipole dot configurations also show a substantial decrease in decoherence at low

operation frequencies when compared to the double-dot qubit.

We also argue that it is not generally possible to avoid decoherence in multi-quantum-

dot charge qubits by simple geometrical constructions. The spreading of charge uniformly

over a multi-quantum-dot logical qubit does not avoid decoherence. However, the coupling

to bosonic environmental modes, such as phonons and photons, can be very substantially

attenuated in some circumstances.
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In order to demonstrate these assertions, we analyze in detail two prototypical exten-

sions of the double-quantum dot charge qubit. We first consider a qubit consisting of three

quantum dots forming a ring-like structure and only one extra electron, as shown in Fig. 3.1.

Multi-quantum-dot qubits with a ring-like structure resemble a proposal by Kulik and co-

authors [70] to use persistent current states in metallic rings for quantum computation.

Unlike the double-dot qubit case, the ground state in a three-dot qubit can be truly de-

generate with corresponding wave functions having a uniform charge distribution. At first,

this raises the hope that decoherence mechanisms involving charge inhomogeneities (such as

phonons or charge traps) would be inhibited due to mutual cancellations. However, we shall

see below that the computational basis states can be distinguished by phonon and electro-

magnetic baths through the electron phase variations along the ring. That, in turn, leads

to dephasing and decoherence. This problem is intrinsic to all quantum-dot-based charge

qubits. Nevertheless, the Q factor in these three dot qubits can be one to two orders of

magnitude larger than in the corresponding double-dot qubits, a substantial improvement

in coherence.

Second, we show that planar quantum dot arrays in the form of high-order multipoles can

be more efficient in reducing the coupling to acoustic phonons in multi-quantum dot qubits.

This dissertation extends and analyzes in detail a recent proposal to create a decoherence-free

subspace with charge qubits [66].

While it is well known that condensed-matter environments tend to produce time and

spatial correlations in their interaction with qubits [67], here we assume that the Markov

approximation provides reasonable estimates of decoherence rates. In particular, we employ
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the Redfield equations in the weak-coupling, Born-Markov approximation to describe the

time evolution of the reduced density matrix of the qubit system [71].

3.2 The three-dot charge qubit

A simple example of a multi-dot qubit with charge delocalization consists of three quantum

dots in a ring-like geometry, as shown in Fig. 3.1. In practice, this system is created by

laterally confining electrons in a two-dimensional plane; the confinement is electrostatic,

controlled through electrodes sittingabove the plane. Consider gate voltages on the electrodes

such that the three dots share one excess, unpaired electron, while all configurations with

a different number of excess electrons become energetically inaccessible due to the large

charging energy of the dots. The detailed electronic structure of model quantum dots in a

triangular configuration has been studied in, for instance, Refs. [72] and [73].
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Figure 3.1: Schematic illustration of a three-quantum-dot qubit with only one extra, unpaired

electron. The external tuning parameters are the strength of the tunneling couplings (v1, v2,

and v3) and the magnetic flux Φ = �1 + �2 + �3 through the qubit. The latter is used solely

to define the working point of the qubit.

The spin degree of freedom is not relevant for our discussion and electrons will be assumed

spinless unless otherwise specified. Thus, the system lives in a three-dimensional Hilbert

space. The electron can hop between dots through tunneling. The tunneling matrix elements

and the on-site energies are controlled by the gate voltages. As will be clear shortly, it is

convenient to apply a weak magnetic field perpendicular to the plane containing the dots.

The three natural basis states place the electron on dot A, B, or C:

∣A⟩ = c†A ∣vac.⟩, ∣B⟩ = c†B ∣vac.⟩, ∣C⟩ = c†C ∣vac.⟩, (3.1)

where c†� are creation operators and ∣vac.⟩ is a reference state where all dots have an even
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number of electrons. In this basis, the Hamiltonian takes the matrix form

H =

⎛⎜⎜⎜⎜⎜⎜⎝
EA −v1 ei�1 −v3 e−i�3

−v1 e−i�1 EB −v2 ei�2

−v3 ei�3 −v2 e−i�2 EC

⎞⎟⎟⎟⎟⎟⎟⎠ , (3.2)

where EA, EB, and EC are the on-site energies, vi are the tunneling strengths between pairs of

quantum dots, and �1+�2+�3 = Φ is the total magnetic flux through the ring. Let us specify

the qubit by setting v1 = v2 = v3≡ v > 0, EA =EB =EC ≡ 0, and �1 =�2 =�3 = Φ/3≡�. In

this configuration, two degenerate eigenstates ∣+⟩ and ∣−⟩ have the lowest energy, E± = −v

(Fig. 3.2). They carry clockwise and counterclockwise persistent currents and form the

computational basis. By working with 1 hole per three-dot qubit (i.e. 5 electrons in 3 levels)

instead of 1 electron, the degeneracy between eigenstates ∣+⟩ and ∣−⟩ occurs at B=0, which

may have some advantages. The third, excited, eigenstate ∣T ⟩ has energy Ee = 2v and is

current-free. The eigenvectors are

∣T ⟩ =
1√
3

(∣A⟩+ ∣B⟩+ ∣C⟩) , (3.3)

∣+⟩ =
1√
3

(
∣A⟩+ ei�∣B⟩+ e−i�∣C⟩

)
, (3.4)

∣−⟩ =
1√
3

(
∣A⟩+ e−i�∣B⟩+ ei�∣C⟩

)
, (3.5)

with � = 2�/3. Clearly, the charge distribution is spatially uniform for all three states.
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Figure 3.2: Eigenenergies of the three-dot qubit as function of the magnetic flux. The

working point at Φ/3 = � = � per bond is indicated by the arrow. At this point, clockwise

and counterclockwise persistent current states are degenerate, and the charge distribution is

homogeneous throughout the space spanned by the computational basis.

It is worth noting that the topology of the three-dot qubit and its use of persistent currents

of opposite direction as logical states closely resemble the Josephson persistent current qubit

studied in Ref [74]. or the proposed atomic Josephson junction arrays [75]. However, the

similarities stop here as the underlying physics is very different. We will focus our discussion

on the quantum dot charge qubit case only.

3.2.1 Single-qubit operations

In order to be able to perform quantum gate operations, we have to allow for deviations

from the degeneracy point. This is done by varying the tunneling coupling and/or the
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magnetic flux. It is convenient to introduce the (small) parameters �1, �2, �3, and ' such

that v1 = v + �1, v2 = v + �2, v3 = v + �3, and ' ≪ 1 with '= Φ − 3�. To linear order and

using a {∣T ⟩, ∣+⟩, ∣−⟩} basis, we find that the Hamiltonian expanded around the degeneracy

point can be written as

H =

⎛⎜⎜⎜⎜⎜⎜⎝
2v + 2

3
(�1 + �2 + �3) −1

3

(
�1e
−i� + �2 + �3e

i�
)

−1
3

(
�1e

i� + �2 + �3e
−i�)

−1
3

(
�1e

i� + �2 + �3e
−i�) −v − v'√

3
− 1

3
(�1 + �2 + �3)

2
3

(
�1e
−i� + �2 + �3e

i�
)

−1
3

(
�1e
−i� + �2 + �3e

i�
)

2
3

(
�1e

i� + �2 + �3e
−i�) −v + v'√

3
− 1

3
(�1 + �2 + �3)

⎞⎟⎟⎟⎟⎟⎟⎠
.(3.6)

The computational subspace corresponds to the lower-right 2×2 block. Evidently, we stay

within the computational subspace as long as �1 = �2 = �3. However, this also implies that

there is no coupling between the computational basis states ∣+⟩ and ∣−⟩. For �1e
i� + �2 +

�3e
−i� ∕= 0, coupling within the computational subspace is possible, but there is a finite

probability of leaking out into the state ∣T ⟩. The leakage can be kept small as long as v ≫

∣�1,2,3∣. Alternatively, one can incorporate the third level into the single-qubit operations, as

in Ref. [70]. For the following case study, we assume that the leakage from the computational

subspace is negligible.

Using the Pauli matrices �1, �2, and �3, as well as the identity matrix �0, we can express

the Hamiltonian in the computational basis in terms of a pseudospin in a pseudomagnetic

field ℎ⃗ plus a constant,

HS = E0 �0 + ℎx �1 + ℎy �2 + ℎz �3, (3.7)
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where E0 = −v − (�1 + �2 + �3)/3 and

ℎx =
2

3

(
�2 −

�1 + �3
2

)
, (3.8)

ℎy =
�1 − �3√

3
, (3.9)

ℎz = −v'/
√

3. (3.10)

We only need to vary two out of the three pseudomagnetic field components in order to

perform single-qubit operations. Thus, we can operate the qubit at constant magnetic flux

(and set ' = 0, ℎz = 0) and vary only the �i via gate voltages. If we furthermore fix the

coupling v2≡v, �2 =0, we find that the qubit is controlled by the sum and difference of the

variation of two intra-qubit couplings, ℎx ∝ (�1+�3) and ℎy ∝ (�1−�3), that can be adjusted

by tuning the respective gate voltages around the symmetry point.

3.2.2 Two-qubit operations

In order to perform two-qubit operations, such as the SWAP or CNOT gate, we have to

couple two three-dot qubits (called I and II hereafter). In principle, this can be done in

either a tip-to-tip or base-to-base coupling scheme, as shown in Fig. 3.3.
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Figure 3.3: Possible implementations of two-qubit gates using three-dot qubits. (a) Coupling

via a single dot (tip-tip geometry); (b) coupling via two dots (base-base geometry). (c) A

possible implementation of a qubit chain in the base-base configuration.

Since the number of excess electrons in the composite system is equal to two, states where

two electrons occupy the same qubit have to be included in the basis of the two-qubit Hilbert

space. The basis of the two-qubit Hilbert space reads thus

∣1⟩ = ∣+⟩I ∣+⟩II, (3.11)

∣2⟩ = ∣+⟩I ∣−⟩II, (3.12)

∣3⟩ = ∣−⟩I ∣+⟩II, (3.13)

∣4⟩ = ∣−⟩I ∣−⟩II, (3.14)
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∣5⟩ = c†AI c
†
BI ∣vac.⟩, (3.15)

∣6⟩ = c†AI c
†
CI ∣vac.⟩, (3.16)

∣7⟩ = c†BI c
†
CI ∣vac.⟩, (3.17)

∣8⟩ = c†AII c
†
BII ∣vac.⟩, (3.18)

∣9⟩ = c†AII c
†
CII ∣vac.⟩, (3.19)

∣10⟩ = c†BII c
†
CII ∣vac.⟩. (3.20)

Here, two types of states have been neglected: First, states with double occupancy of a

single dot since the charging energy is assumed to be very large. Second, although the ∣T ⟩I

and ∣T ⟩II states couple to the double-occupied states ∣5⟩ to ∣10⟩ through the inter-qubit

hopping terms, they are gapped by an energy of order v, which is assumed much larger than

the effective two-qubit interaction amplitude t′ 2/Ui (see below). Therefore, they were not

included in the two-qubit Hilbert subspace. A more technical argument for neglecting the

states ∣T ⟩I and ∣T ⟩II can be constructed as follows. First, keep all such states while performing

a first Schrieffer-Wolff transformation to find the effect of virtual excitation to the doubly-

occupied states. This yields an effective Hamiltonian in the space of singly-occupied states

with magnitude of order t′ 2/Ui. It includes off-diagonal terms between the computational

basis and the ∣T ⟩ states. Now, perform a second Schrieffer-Wolff transformation relying on

the fact that t′ 2/Ui ≪ v to integrate out the ∣T ⟩ states. The contribution of this second

transformation to the effective Hamiltonian in the computational basis is of order (t′ 2/Ui)
2/v.

As this is much smaller than t′ 2/Ui, the effect of the ∣T ⟩ states may be safely neglected.

The Hamiltonian for the inter-qubit interaction in the tip-tip setting shown in Fig. 3.3(a)
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reads

Htip
I−II = −t′(c†BI cCII + c†CII cBI). (3.21)

Similarly, the base-base coupling presented in Fig. 3.3(b) is governed by the Hamiltonian

(see also Appendix A)

Hbase
I−II = −t′(c†BI cCII + c†CII cBI)− t′′(c

†
CI cBII + c†BII cCI), (3.22)

where we have chosen the gauge for the vector potential associate to the perperdincular

magnetic field to be parallel to the inter-qubit tunneling paths. We assume that the inter-

qubit tunneling amplitudes t′ and t′′ satisfy 0 < t′, t′′ ≪ v ≪ Ui, where Ui is the inter-dot

charging or capacitive coupling energy (i.e., the change in the energy of one dot when an

electron is added to one of the neighboring dots). In other words, the capacitive coupling

between dots must be sufficiently strong so that states with two or zero excess electrons in

a qubit are forbidden. Due to the proximity between dots of neighboring qubits, some small

inter-qubit capacitive coupling will also exist. Although we will neglect such coupling in the

discussion below, these additional charging energies can be included without substantially

modifying our results. In particular, we note that the inter-qubit capacitive coupling does

not interfere with single-qubit operations. Note also that the presence of a magnetic flux

requires the dots A, B, and C to be always arranged in a clockwise order.

Next, the large charging energy separation between the single-occupancy states ∣1⟩ to ∣4⟩

and the double-occupancy states ∣5⟩ to ∣10⟩ allows us to separate the two-qubit computational

subspace from the rest of the Hilbert space. In order to do so, we use a Schrieffer-Wolff

transformation [76], which amounts to a second-order perturbative expansion of the effective
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Hamiltonian in the ratio of the inter-qubit tunneling magnitude to the charging energy. To

this end we insert the expressions for ∣+⟩ and ∣−⟩ from Eqs. (3.4)-(3.5) into Eqs. (3.11)-(3.14)

and express the computational basis states ∣1⟩ to ∣4⟩ in terms of creation operators acting

on the vacuum state. Further, using the basis vectors in Eqs. (3.11) to (3.20), one can easily

compute the full six-dot Hamiltonian in the basis of states ∣1⟩ to ∣10⟩. Noting that one can

obtain the tip-tip Hamiltonian from the expression for the base-base case by setting t′′ = 0,

we evaluate the more general case of the base-base coupling, see Fig. 3.3b and Eq. (3.22).

The details of the computation, i.e. the full matrix representation of this Hamiltonian, as

well as its reduction to the two-qubit computational basis by performing the Schrieffer-Wolff

transformation, are shown in Appendix A. The result for the reduced Hamiltonian takes a

rather compact form which, for the tip-tip case, reads

H̃tip
I−II = − t′ 2

9Ui

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 e−i� ei� −2

ei� 4 −2e−i� ei�

e−i� −2ei� 4 e−i�

−2 e−i� ei� 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.23)

Note that this reduced Hamiltonian acts on the subspace formed by the states {∣1⟩, . . . ∣4⟩}

defined in Eqs. (3.11) to (3.14). Up to the common prefactor −t′ 2/(9Ui), the eigenvalues of
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H̃tip
I−II are E1 = 0, E2 = 4, E3 = 6, and E4 = 6, with the respective eigenvectors equal to

∣E1⟩ =
1

2

(
∣1⟩ − ei�∣2⟩ − e−i�∣3⟩+ ∣4⟩

)
, (3.24)

∣E2⟩ =
1

2

(
∣1⟩+ ei�∣2⟩+ e−i�∣3⟩+ ∣4⟩

)
, (3.25)

∣E3⟩ =
1√
2

(
∣1⟩ − ∣4⟩

)
, (3.26)

∣E4⟩ =
1√
2

(
ei�∣2⟩ − e−i�∣3⟩

)
. (3.27)

The critical question now is whether this setup permits a convenient two-qubit operation,

such as a full SWAP. It is straightforward to show that the answer is positive, even in the

simple tip-tip coupling scheme. To see that, suppose we initialize the qubits in state ∣2⟩

and now search for the time � after which the qubits have evolved onto the (swapped) state

∣3⟩ under the action of H̃tip
I−II. The square of the resulting condition,

∣∣∣⟨3∣e−iH̃tip
I−II� ∣2⟩

∣∣∣2 ≡ 1,

is readily evaluated and yields �S = �/2 [t′ 2/(9Ui)]
−1 as the (shortest) time for which the

tip-tip coupling t′ has to be turned on in order to implement the SWAP gate.

For a comparison with the (linear) three-dot spin qubit scheme proposed by DiVincenzo et

al. [39], let us briefly discuss the implementation of the CNOT quantum gate. A CNOT can

be done straightforwardly using two
√

SWAP operations (SWAP gates of duration �S/2) and

seven one-qubit gates [37, 77], e.g., by utilizing the scheme in Ref. [77]. Consequently, we find

that the realization of one- and two-qubit operations for the present three-dot charge qubit is

considerably simpler than for the proposal by DiVincenzo et al. where many more steps were

necessary to implement a CNOT. One reason is the complexity of the one-qubit rotations –

for the logical spin-qubit, one-qubit operations alone require three spin exchange interaction

pulses. For the CNOT gate, this implies at least 19 pulses with 11 different operation times.
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Compared to the 9 pulses needed for the three-dot charge qubit, the practical advantages of

the qubit and computation scheme proposed here are evident.

3.2.3 Coupling to a bosonic bath

The charge qubit couples to a variety of environmental degrees of freedom. We study in

particular the decoherence caused by gapless bosonic modes that sense charge fluctuations

in the dots, such as phonons. We assume that all quantum dots couple to the same bath.

The Hamiltonian describing the non-interacting bosonic modes in this case is

HB =
∑
q

!q b
†
qbq, (3.28)

with q denoting the boson linear momentum and !q its dispersion relation. The coupling

between the dots and the bosons is assumed to be governed by the bilinear Hamiltonian

Hdot−boson =
∑
q

(�ANA + �BNB + �CNC)(b†q + b−q), (3.29)

which can be easily derived for the case of phonons, as seen for example in Ref [78]. Nk is

the number operator of the kth dot, and

�k = �q P
(k)
q eiRk⋅q . (3.30)

Here, �q represents the electron-boson coupling constant and P
(k)
q and Rk are form factor

and position vector of the kth dot, respectively. Note that all geometrical information is

contained in the coefficients �k. Since we have exactly one excess electron on the three-dot

system, the constraint NA + NB + NC = 1 must be satisfied. Therefore, the system-bath
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Hamiltonian in the basis {∣A⟩, ∣B⟩, ∣C⟩} reads

HSB =
∑
q

⎛⎜⎜⎜⎜⎜⎜⎝
�A 0 0

0 �B 0

0 0 �C

⎞⎟⎟⎟⎟⎟⎟⎠ (b†q + b−q) . (3.31)

Projection of this Hamiltonian onto the subspace spanned by ∣+⟩ and ∣−⟩ defined in Eqs. (3.4)

and (3.5) constrains the coupling to that subspace, yielding

H̃SB =
1

3

∑
q

[(
�A −

�B + �C
2

)
�1 −

√
3

2
(�B − �C)�2

] (
b†q + b−q

)
, (3.32)

where a term proportional to �0 has been dropped. The presence of two terms with different

functional dependence on q indicates the coupling to two bath modes, which will be denoted

by the indices 1 and 2 in the following. There would be a third bath mode, proportional to

�3, if the charge distribution were not the same for the two logical states. The advantage of

having a homogeneous charge distribution for both states in the computational basis, leading

directly to the cancellation of this third mode of decoherence, is evident here. It is important

to remark that charge homogeneity can be achieved without the assumptions of homogeneous

tunneling or equal capacitances: as long as one can tune the gate voltages in the quantum

dots independently, one can arrange to have one extra electron equally shared among the

three dots.

It is convenient to rewrite the system-bath Hamiltonian in the standard spin-boson form

[79]

H̃SB ≡ K1Φ1 +K2Φ2 , (3.33)
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where

K1 ≡ �1/6 and K2 ≡ −�2/2
√

3 (3.34)

describe the system part and the corresponding bath part is given by

Φ1,2 =
∑
q

g(1,2)q

(
b†q + b−q

)
, (3.35)

with

g(1)q = 2�A − �B − �C , (3.36)

g(2)q = �B − �C . (3.37)

Assuming all P
(k)
q to be the same, the following relations among the �k can be obtained:

�A = �qPq, (3.38)

�B = �Ae
i(RB−RA)⋅q ≡ �Ae

i�B , (3.39)

�C = �Ae
i(RC−RA)⋅q ≡ �Ae

i�C (3.40)

where the last two equations define the phases �B and �C . This completes the specification

of the qubit-bath coupling.

3.2.4 The Redfield equation

We now investigate the qubit decoherence due to the bosonic bath by determining the time

relaxation of the system’s reduced density matrix. We use the Born and Markov approx-

imations and the Redfield equation [71]. In this formalism the reduced density matrix of

the system (qubit) is obtained by integrating out the bath degrees of freedom and assuming

that:
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(i) The Electron-phonon interaction i.e., the coupling to the bath is weak, so leading

order perturbation theory is applicable (the Born approximation).

(ii) The relaxation time of the bath is small compared to the evolution of the system.

This ultimately means that the bath has very short memory, resulting in a correlation time

much shorter than the typical time scale of operation of the qubit, so that system-bath

interaction events are uncorrelated in time (the Markov approximation).

When these conditions are satisfied, the bath can be assumed to remain in thermal

equilibrium, and the system-bath interaction may be treated perturbatively up to second-

order. We can then describe the time evolution of the reduced density matrix is by means

of the Redfield equation [71, 80],

�̇(t) = −i [H̃S(t), �(t)] (3.41)

+
∑
�=1,2

{
[Λ�(t)�(t), K�] +

[
K�,Λ

†
�(t)�(t)

] }
,

which is a dissipative form of the Liouville-von-Neumann equation

˙�Total(t) = −i [H̃, �Total(t)], (3.42)

where �Total is the total density matrix, as opposed to � in Eq. 3.41. There the time-

dependent auxiliary matrices Λ�(t) which encode the bath correlation properties are defined

by

Λ�(t) =
∑
�=1,2

∫ ∞
0

dt′B��(t′) e−it
′H̃S(t)K� e

it′H̃S(t). (3.43)

The thermal-average bath correlation functions,

B��(t) = ⟨Φ�(t) Φ�(0)⟩, (3.44)
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can be written in terms of spectral functions,

���(!) =
∑
q

g(�)q g(�)-q �(! − !q), (3.45)

and the boson occupation number nB(!) = (e!/T − 1)−1:

B��(t) =

∫ ∞
0

d! ���(!)
{
ei!tnB(!) + e−i!t [1 + nB(!)])

}
. (3.46)

Performing the sum over fq in Eq. (3.45), we find

�11 = 2
∑
q

∣�qPq∣2 �(! − !q) [3− 2(cos �B − cos �C) + cos(�B − �C)] , (3.47)

�22 = 2
∑
q

∣�qPq∣2 �(! − !q) [1− cos(�B − �C)], (3.48)

�12 = 2
∑
q

∣�qPq∣2 �(! − !q)
[
e−i�B − e−i�C + i sin(�B − �C)

]
, (3.49)

with �21 = �∗12. When the bath is sufficiently large, the sums over the vector q in Eqs. (3.47)-

(3.49) can be converted into three-dimensional integrals.

A few simplifying but realistic assumptions can be made at this point. Let us first assume

that the coupling constant �q and the dispersion relation !q are both isotropic. Second, let

us assume that the electronic density in the dots has a Gaussian profile,

�(r) = �(z) e−r
2/(2 a2)/(2�a2), (3.50)

resulting in

Pq =

∫
d3r �(r) e−iq⋅r = e−(aq sin �)

2/2, (3.51)

where (q, �, ') are the spherical coordinates of the boson wave vector. Then, the three-fold

symmetry in the plane causes �12(!) to vanish and

�11(!) = 3 �(!) , �22(!) = �(!), (3.52)
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with

�(!) =
Ω q2

2�2
∣�q∣2

∣∣∣∣d!qdq
∣∣∣∣−1 ∫ �/2

0

d� sin � e−(qa sin �)
2

[1− J0 (qD sin �)] , (3.53)

where ! = !q, Ω is the crystal unit cell volume, and D is the distance between dots.

For III-V semiconductor materials at low temperatures, the most relevant bosonic modes

are piezoelectric acoustic phonons [81], for which we have �q = �s
√
gph/qΩ and !q = sq.

Here, gph is the dimensionless electron-phonon coupling constant and s is the phonon velocity

(for GaAs, gph ≈ 0.05 and s ≈ 5× 103 m/s) [60].

3.2.5 Decoherence rates

We now solve the equation-of-motion for the reduced density matrix explicitly for a case in

which the decoherence rate can be obtained directly. Consider a constant pulse applied to

the qubit at t = 0 such that ℎy = ℎz = 0 and ℎx = Δ > 0. For t > 0, the Λ� matrices are

constant and given by

Λ1 = 0 �1/2 , (3.54)

Λ2 = −(1/2
√

3) (c �2 + s �3) . (3.55)

The (complex) relaxation rates are given by

0 ≡
∫ ∞
0

dtB22(t), (3.56)

c ≡
∫ ∞
0

dtB22(t) cos(2Δt), (3.57)

s ≡
∫ ∞
0

dtB22(t) sin(2Δt). (3.58)
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The relaxation part of Eq. (3.41) then reads

∑
�=1,2

{
[Λ� �,K�] + h.c.

}
=

 ′0
6

⎛⎜⎜⎝ �22 − �11 �∗12 − �12

�12 − �∗12 �11 − �22

⎞⎟⎟⎠+
 ′c
6

⎛⎜⎜⎝ �22 − �11 −�∗12 − �12

−�12 − �∗12 �11 − �22

⎞⎟⎟⎠

+ i
 ′s
6

⎛⎜⎜⎝ �12 − �∗12 0

0 �∗12 − �12

⎞⎟⎟⎠+
′′s
6

⎛⎜⎜⎝ 0 1

1 0

⎞⎟⎟⎠ , (3.59)

where the single and double primes denote real and imaginary parts, respectively. They can

be easily evaluated, yielding

′0 = 0, (3.60)

′c = ′′s =
�

2
�(2Δ) coth

(
Δ

T

)
, (3.61)

′s = −−
∫ ∞
0

dy

y2 − 1
�(2Δy) coth

(
Δy

T

)
, (3.62)

where the −
∫

in the expression for ′s denotes the Cauchy principal value of the improper

integral. A change of variable is needed to deal with the infinity at the upper limit of the

integral. The integral may then be solved numerically by means of the trapezoidal method

and a modified Simpson’s method, and both results are interpolated to yield the final estimate

to ′s. The Liouville term in Eq. (3.41) is obtained straightforwardly:

− i [H̃S, �] = −iΔ [�1, �] = −iΔ

⎛⎜⎜⎝ �∗12 − �12 �22 − �11

�11 − �22 �12 − �∗12

⎞⎟⎟⎠ . (3.63)

Introducing Eqs. (3.59) and (3.63) into (3.41), we obtain

�̇11 = −2

(
Δ +

 ′s
6

)
�′′12 +

 ′c
6

(1− 2�11), (3.64)

�̇ ′12 = −
′
c

3
� ′12 +

′c
6
, (3.65)

�̇′′12 = −Δ (1− 2�11), (3.66)
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where we have split the off-diagonal term �12 into real and imaginary parts, � ′12 + i�′′12.

In order to identify energy and phase relaxation rates, we rewrite the elements of the

reduced matrix in the eigenbasis of the system Hamiltonian,

∣E = ±Δ⟩ =
1√
2

(∣+⟩ ± ∣−⟩) , (3.67)

resulting in

˙̃�11 = −
′
c

3
�̃11 +

′c
3
, (3.68)

˙̃� ′12 = −
(

2Δ +
′s
3

)
�̃ ′′12 −

′c
3
�̃ ′12, (3.69)

˙̃� ′′12 = 2b �̃ ′12. (3.70)

The solution of the diagonal term is straightforward,

�̃ ′11(t) = 1 + [�̃ ′11(0)− 1] e−
′
ct/3, (3.71)

which allows us to read directly the energy relaxation time,

T1 =
3

 ′c
. (3.72)

For the off-diagonal term, one finds that the real part is given by

�̃ ′12(t) = �̃ ′12(0) e−t/T2 cos(!ct), (3.73)

where the phase relaxation time is equal to

T2 =
6

′c
(3.74)

and the frequency of quantum oscillations is given by

!c =

√
2Δ

(
2Δ +

′s
3

)
− ′ 2c

36
. (3.75)
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Note that T2 = 2T1, as well-known for the super-ohmic spin-boson model in the weak-

coupling regime [82, 83].

Except for a factor of three in the relaxation rates, Eqs. (3.72)-(3.75) are identical to

those found in Ref. [60] for a double-dot charge qubit. However, one has to recall that

while in the double-dot qubit Δ is the interdot hopping matrix element v, for the three-

dot qubit it takes a much smaller value, of the order of �1,2,3. The decoherence times will

be longer for the three-dot qubit, but so will be the quantum oscillation period and the

single-qubit gate pulses. Therefore, it is meaningful to compare the quality factor of the

the three-dot qubit to that obtained for the double-dot qubit for a fixed magnitude of v,

which is a common experimental parameter to both setups. The comparison for the case

of piezoelectric acoustic phonons and realistic GaAs quantum dot geometries (data for the

double-dot qubit was obtained from Ref. [60]) is shown in Fig. 3.4. The Q factor is defined

as

Q =
!c T2
2�

. (3.76)

We assume !c ≈ 2Δ since Δ≫ ′c, 
′
s in the weak-coupling regime.
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Figure 3.4: Comparison between the Q factors of a three-dot and a double-dot charge qubit

coupled to piezoelectric acoustic phonons. The parameters used are: a = 60 nm, D = 180

nm, s = 5 × 103 m/s, T = 15 mK, and gph = 0.05, which correspond to realistic lateral

quantum dot systems in GaAs. Here the variable v denotes the interdot tunnel amplitude.

Note that for double dot qubits, Δ = v, while for three-dot qubits we assumed Δ = 0.1 v.

The inset shows the same Q factors when the oscillation frequency (rather than v) is fixed.

In this case the curves only differ by a factor of 3.

The improvement in the Q factor is substantial for small tunnel amplitudes. A similar

result was previously found by Storcz et al. in Ref. [68] when considering the phonon-induced
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decoherence in a system of two double-dot charge qubits with a small tunnel splitting (“slow

tunneling”). There, the dominant quadrupolar contribution to the two-qubit decoherence

yields a !5
c dependence for the Q factor. In our case, the extra protection in the three-dot

qubit compared to the slow tunneling double-dot system arises mainly because the oscillation

frequency !c (i.e., the amplitude of the transverse pseudomagnetic field) is smaller in the

three-dot qubit by the ratio Δ/v [see Eq. (3.2)]. This ratio must be kept small in order to

avoid leakage from the computational basis. In Fig. 3.4 it was set to 0.1. However, for a

fixed oscillation frequency (see inset in Fig. 3.4), the Q factors for these two qubits differ by

only an overall factor of three.

To summarize up to this point, our study indicates that using a computational basis with

a homogeneous charge distribution improves the quality of the qubit but does not rid it from

decoherence completely. The reason lies in the fact that bosonic modes propagating in the xy

plane can pick up distinct phase shifts when interacting with different dots [see Eqs. (3.38)

to (3.40)]. However, there is no complete destructive interference along any direction of

propagation in the plane, as can be seen from Eqs. (3.36) and (3.37). In fact, one can show

that the same is true for any ringlike array of dots that share a single excess electron.

3.3 Charge qubits in multipole configurations

As recently proposed by Oi et al. [66], there is another way in which the geometry of the

quantum dot qubit array and its charge distribution can be chosen to minimize the coupling

to environmental degrees of freedom. Here we demonstrate how their idea can be extended to

multiple-dot charge qubits coupled to gapless bosonic modes. It turns out that by reducing
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the computational space to particular multipole charge configurations one can substantially

reduce the coupling to bath modes at low frequencies. We consider qubits and basis states

as shown in Fig. 3.5. The qubit consists of a planar array of dots with alternating excess

charge. Note that the operation of such a qubit is straightforward: The excess charge is only

allowed to hop between every other pair of neighboring dots, namely, between dots numbered

2n − 1 and 2n, with n = 1, . . . , 2p−1, where p is the multipole order, l = 2p (see Fig. 3.5).

Tunnel barriers between alternating pairs of dots must be maintained small and fixed (to

avoid leakage), while the remaining barriers have to be modulated in time to implement an X

gate. The Z gate is implemented by inducing a small bias between even- and odd-numbered

dots. Two-qubit operations can be implemented in analogy to the procedure discussed in

Ref. [10]
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Figure 3.5: The three lowest multipole charge qubit configurations (dipole, quadrupole,

and octopole). The two computational basis states, ∣0⟩ and ∣1⟩, are indicated for for each

configuration. Empty (filled) circles correspond to empty (occupied) quantum dots. The

arrows indicate the pairs of quantum dots where excess charge can hop.

The basis states for each multipole configuration have complementary charge distributions

that tend to cancel out the coupling to phonon modes propagating along certain directions

in the xy plane. The number of such directions increases with the multipole order, resulting

in an attenuation of the overall coupling to phonons at low frequencies (large wavelengths).

The crossover frequency where this attenuation occurs is !
(l)
cross ∼ s/dl, where dl is the radius

of the dot array. At high frequencies, however, when the phonon wavelength is much smaller

than the radius dl, decoherence becomes stronger because phonons can resolve the internal

structure of the qubit and disturb charge motion between individual pairs of dots.
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In order to demonstrate these effects, let us derive an expression for the spectral function

of the qubit-bath system. For simplicity, we assume that all dots in the qubit are identical. In

this case, the bath modes couple to charge variations in the dots according to the Hamiltonian

HSB =
∑
q

l∑
k=1

�kNk (b†q + b-q), (3.77)

where l = 2p and Nk is the excess charge in the kth dot. For the case of acoustic phonons,

the coefficients �k were defined in Eq. (3.30). Projecting this Hamiltonian onto the compu-

tational basis (as shown in Fig. 3.5), we find that, up to a constant term,

HSB = K Φl, (3.78)

where K = −�z/2 acts on the qubit space and

Φl =
∑
q

g(l)q (b†q + b-q), (3.79)

acts on the phonon bath, with

g(l)q =
l∑

k=1

(−1)k�k = �q Pq

l∑
k=1

(−1)keiRk⋅q. (3.80)

It is convenient to choose the position vectors of the dots as Rk = dl(x̂ cos'k + ŷ sin'k),

where 'k = (2�/l)(k − 1) and dl is the array radius: dl = D/2 sin(�/l), where D is the

distance between neighboring dots. This yields

∣∣g(l)q

∣∣2 = ∣�q Pq∣2
l∑

k,j=1

(−1)k+j exp
[
2idlq sin � sin

(
'− 'k + 'j

2

)
sin
('k − 'j

2

)]
, (3.81)

where (q, �, ') are the spherical coordinates of the wave vector fq. It is not difficult to see

that gfq = 0 for � = �/2 and ' = (2m− 1)�/l, with m = 1, . . . , l.

38



The spectral function can now be obtained in analogy to the calculation shown in

Sec. 3.2.4. For a thermal bath of acoustic piezoelectric phonons, we find

�l(!) =
∑
q

∣∣g(l)q

∣∣2 �(! − !fq)

=
gph ! l

2

∫ �/2

0

d� sin � exp

(
−a

2!2 sin2 �

s2

){
1 + (−1)l/2J0

(
2dl!

s
sin �

)

+2

l/2−1∑
m=1

(−1)mJ0

[
2dl!

s
sin � sin

(m�
l

)]}
. (3.82)

Implicit in Eq. (3.82) are the assumptions of in-plane isotropy of �q, Pq, and !q. Note that

for l = 2 one recovers the spectral function for a double dot qubit obtained in Ref. [60]. The

low-frequency behavior of the spectral density becomes apparent when we expand the Bessel

functions in a power series, resulting in

�l(!) =
gph ! l

2

∫ �/2

0

d� sin � exp

(
−!

2a2

s2
sin2 �

) ∞∑
k=1

(−1)k

(k!)2

(
dl!

s
sin �

)2k

a
(l)
k , (3.83)

where

a
(l)
k = (−1)l/2 + 2

l/2−1∑
m=1

(−1)m sin2k
(m�
l

)
. (3.84)

It is possible to show that a
(l)
k = 0 for k < l/2 when l is an integer power of 2. Therefore,

�l(! → 0) ∼ !l+1. For large l, this amounts to the appearance of a pseudo gap in the

spectral function at low frequencies. The asymptotic behavior of the spectral function at

high frequencies is also straightforward to obtain: One finds �l(! → ∞) ∼ l/!. Thus, the

tail of the spectral function raises with increasing multipole order.

The structure of the computational basis is simple enough to allow for the qubit to couple

to just one bath mode (in contrast to the three-dot qubit, where two modes couple to the
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qubit). Thus, the standard expressions for the relaxation times in the spin-boson model can

be used [83]. The result is

(l) =
�

2
�l(2v) coth

( v
T

)
, (3.85)

where v is the inter-dot tunnel amplitude. Note that Eq. (3.85) reduces to the result found

in Ref. [60] when l = 2, as expected. Provided that v is sufficiently smaller than the tem-

perature, (l) ∼ vl. Thus, by increasing the order of the multipole and maintaining a low

frequency of operation, one can decrease the qubit relaxation rate by orders of magnitude

without affecting the frequency of quantum oscillations. In Fig. 3.6 we show the Q factor

of several multipole charge qubits as a function of the inter-dot coupling v. Note that at

low frequencies high quantum oscillations are much less damped for high multipole config-

urations. This translates into single-qubit gates of much higher fidelity. Clearly, this gain

in the Q factor has to be contrasted with the high complexity of operating a logical qubit

comprised by a large number of quantum dots, as well with the slowness in operation. As

the gating becomes slower, other sources of decoherence may become more relevant.
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Figure 3.6: Q factors for multipole charge qubits (l = 2, 4, 8, 16) coupled to piezoelectric

acoustic phonons: Ql = !c/�
(l), where !c ≈ 2v [for (l), see Eq. (3.85)]. Physical and

geometrical parameters are the same as those used in Fig. 3.4. In particular, note that the

inter-dot distance is fixed, D = 120 nm, for all configurations.

It is also important to remark that, in practice, the pseudogap width, !
(l)
cross, will shrink

with increasing multipole order. This is because the dot array radius scales as dl ≈ l D/2�

for l ≫ 1. Therefore, for a fixed value of D, one has !
(l)
cross ∼ 2� s/(l D) for l ≫ 1. Finally,

we note that the results discussed above are valid for any gapless bosonic bath. Different

dependences on q for the coupling constant �q and dispersion relation !q will only change

the power of the frequency-dependent prefactor in Eq. (3.83).
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In the following chapter we will analyze the influence of electromagnetic fluctuations in

generating decoherence in a double-quantum-dot charge-based qubit.
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CHAPTER FOUR: DECOHERENCE BY
ELECTROMAGNETIC FLUCTUATIONS IN

DOUBLE-QUANTUM-DOT CHARGE QUBITS

4.1 Introduction

In this chapter we discuss decoherence due to electromagnetic fluctuations in charge qubits

formed by two lateral quantum dots. We use effective circuit models and the spin-boson

model to evaluate correlations of voltage fluctuations in the qubit setup. These correlations

allows us to estimate energy (T1) and phase (T2) relaxation times of the the qubit system.

4.2 Hamiltonian of the double quantum dot system

The Hamiltonian of a DQD can be separated into a quantum part related to the occupation

of energy levels on each dot and a classical part that quantifies the charging energy:

H =
∑
n

"1n c
†
1nc1n +

∑
n

"2n c
†
2nc2n + E(N1, N2), (4.1)

where c†in, cin are creation and annihilation operators of the state with energy "in in the left

(i = 1) or right dot (i = 2). The dot occupation numbers are defined as Ni =
∑

n c
†
incin

while the total charging energy is given by [84]

E(N1, N2) =
EC1

2
N2

1 +
EC2

2
N2

2 +N1N2ECm −
1

∣e∣
[Cg1Vg1(N1EC1 +N2ECm)]

− 1

∣e∣
[Cg2Vg2(N1ECm +N2EC2)] +

1

2e2
[C2

g1V
2
g1EC1 + C2

g2V
2
g2EC2]

+
1

e2
[Cg1Vg1Cg2Vg2ECm], (4.2)
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with the individual charging energies defined as

EC1 =
e2

C1

(
1− C2

m

C1C2

)−1
, (4.3)

EC2 =
e2

C2

(
1− C2

m

C1C2

)−1
, (4.4)

ECm =
e2

Cm

(
C1C2

C2
m

− 1

)−1
. (4.5)

The capacitances and voltages shown in Eqs. (4.2) to (4.5) are defined in Fig. 4.1. C1,2 is

the sum of all capacitances attached to dot 1 or 2: C1,2 = CT1,2 + Cg1,2 + Cm.

For the purpose of our analysis, the Hamiltonian can be greatly simplified. Notice that the

DQD qubit can be viewed as a double-well potential where an unpaired electron oscillates

between both quantum dots by tunneling through the potential barrier. Spin degrees of

freedom can be neglected. By adjusting the gate voltages, one can set the system near the

degeneracy point E(1, 0) = E(0, 1), in which case the logical states of the qubit correspond

to the electron being on the left or right, ∣L⟩ (N1 = 1 and N2 = 0) and ∣R⟩ (N1 = 0 and

N2 = 1), respectively. The typical single-particle level spacing within each quantum dot

is assumed sufficiently large so that only one level on each dot needs to be considered at

low enough temperatures. The barrier height Δ determines the tunneling rate between the

dots and can be adjusted by a gate voltage while a bias " between the two dots can also be

applied through two independent plunger gate voltages. The dynamics in the DQD qubit is

then governed by the reduced two-level Hamiltonian

HS =
"

2
(∣L⟩⟨L∣ − ∣R⟩⟨R∣) +

Δ

2
(∣L⟩⟨R∣+ ∣R⟩⟨L∣) , (4.6)
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with the constraint that ∣L⟩⟨L∣+ ∣R⟩⟨R∣ = 1. On the other hand, if we define

∣L⟩ =

⎛⎜⎜⎝ 1

0

⎞⎟⎟⎠ ∣R⟩ =

⎛⎜⎜⎝ 0

1

⎞⎟⎟⎠ , (4.7)

(4.8)

it is easy to see that

∣L⟩⟨L∣ − ∣R⟩⟨R∣ = �z =

⎛⎜⎜⎝ 1 0

0 −1

⎞⎟⎟⎠ . (4.9)

Electromagnetic noise is introduced into the DQD qubit system by means of gate voltage

fluctuations. These fluctuations may originate from the voltage sources and the thermal

noise in the transmission lines, and introduce decoherence into the qubit system through

interactions with the electrons in the quantum dots. While the former can be substantially

reduced by careful filtering, the latter is less controlled. Here we will focus on the noise

coming from the plunger gates. In general, the effect of voltage fluctuations in the gate

electrodes is to introduce an additional term in the qubit Hamiltonian,

HSB = e (�Vg1 − �Vg2) (∣L⟩⟨L∣ − ∣R⟩⟨R∣) . (4.10)

Depending on the particular qubit setup, other sources of electromagnetic noise may also

exist, such as bias and current voltage fluctuations. They can affect not only the qubit

coherent dynamics but also the state measurement. For the sake of maintaining some gener-

ality in our study, we will only treat electromagnetic fluctuations which can be expressed as

Eq. (4.10). In addition, we will model the voltage fluctuations through frequency-dependent

impedances along the gate transmission lines.
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4.3 Hamiltonian for the electromagnetic environment

The effective circuit of a double quantum dot setup is shown in Fig. 4.1. The effect of the

electromagnetic environment is modeled by the frequency-dependent impedances Z1,2(!). In

the experimental setups, the voltage lines typically run parallel to each other over several

microns or more. In order to take into account any capacitive coupling between the lines,

we introduced capacitance C12 into the circuit.

1 2

12
C

C

CC

CC
mT1

g2g1

g1 g2

VV

R R
T2

QD QD
T2T1

Z Z(ω) (ω)
1 2

Figure 4.1: Circuit representation of a double quantum dot system coupled to an electro-

magnetic environment through metallic gate electrodes.

The impedances Z1,2(!) can be modeled by means of a transmission line with distributed

elements, which stems from the fact that the source of noise in our circuit is spatially dis-

tributed along a finite length. Let us consider first each transmission line independently, as
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shown in Fig. 4.2, whose impedance Zi(!) can be represented by an infinite ladder network

of identical inductors Lti and capacitors Cti [87]:

Zi(!) =
1

2

(
i!Lti +

√
−!2L2

ti + 4
Lti
Cti

)
. (4.11)

A detailed solution to the infinite ladder network is presented in Appendix B. Typically it

would be necessary to estimate the values of the spatially distributed resistance, capacitance

and inductance in the circuit, but the choice to model the impedance as a LC transmission

line can be made because it is known that through a (not necessarily trivial) normal mode

transformation, any RLC or RC transmission line can be written as an infinite LC ladder

network. The elements Cti and Lti of the transmission line can be determined from two real

parameters of the real: the cutoff frequency !c and the low frequency asymptotic limit to

the characteristic impedance Z(! = 0). The high cutoff frequency is the frequency for which

Re{Z(!)} = 0 when ! ≥ !c,

!c =
2√
LtiCti

. (4.12)

Zi(! = 0), on the other hand, can be calculated by taking the low frequency asymptotic

limit of Eq. (4.11). It is straightforward to see that this limit yields

Zi(! = 0) =

√
Lti
Cti

= R, (4.13)

where R is an ohmic resistance.
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Q

Figure 4.2: Circuit representation of the electromagnetic environment as a transmission line.

We now wish to represent the transmission line in terms of its normal modes. In quantized

form, the charge at the lth node, Ql,i, and the flux �l,i are conjugated variables obeying the

commutation relation [�l,i, Ql′,i′ ] = ie�i,i′�l,l′ . Following the standard procedure, we define

the Hamiltonian governing the flux and charge fluctuations along such transmission as

HT,i =
Q2

0,i

2Cgi
+

+∞∑
l=1

[
Q2
l,i

2Cti
+

ℏ2

e2
(�l,i − �l−1,i)2

2Lti

]
. (4.14)

Notice that Cgi represent the capacitive coupling between the quantum dots and their re-

spective gates, while Cti and Lti represent the capacitive and inductive term, respectively,

at each rung in the transmission line. The diagonalization of the semi-infinite transmission

line when Cgi ∕= Cti is nontrivial since this asymmetry breaks translation invariance. The

solution is presented in Appendix C.

Adding the capacitive coupling between the voltage transmission lines, we obtain the

following environmental noise Hamiltonian:

HB = HT,1 +HT,2 +
Q0,1Q0,2

C12

. (4.15)

The cross term complicates the task of finding the normal models of the environment.
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4.4 Single dot-junction case

This problem was treated in detail by Ingold and Nazarov [86], and we reproduce it here

for the sake of clarity and completeness, as the double junction solution will be based on

their original solution. The main difference here from Ref. [86] is that we include the gate

capacitance in the description of the junction (see Fig. 4.3). Notice that

V = i Z + Vg and Vg =
Q

C̃
, (4.16)

with the effective junction capacitance C̃−1 = C−1 +C−1g (since the capacitors are in series,

the charge in the junction is the same as in the gate). Since i = Q̇, we arrive at

V = Z Q̇+
Q

C̃
. (4.17)

Z

i i

CC

V

Vg

U
Cg

~

Vg

V

Z

Figure 4.3: Circuit of a single-dot junction coupled to a voltage source through a noisy line.

The environment Hamiltonian can be written as

Henv = Hcharge +
∞∑
n=1

[
1

2Cn
q2n +

(
ℏ
e

)2
1

2Ln
('̃g − 'n)2

]
, (4.18)
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where '̃g(t) = 'g(t)− e
ℏV t. This variable is conjugated to the charge fluctuation:

[
'g, Q̃

]
=

ie, where Q̃ = Q − C̃ V . The first term in Eq. (4.18) describes the charging energy in the

circuit. Let us derive the equation of motion for the charge fluctuation Q̃(t) in detail since

we will use it later for the coupled dot case. We begin with Hamilton’s equations:

∂Henv

∂qn
=

ℏ
e
'̇n → qn =

ℏCn
e

'̇n (4.19)

∂Henv

∂'n
= −ℏ

e
q̇n → ℏ

eLn
('̃g − 'n) = q̇n. (4.20)

From these equations it follows that

'̈n + !2
n 'n = !2

n '̃g, (4.21)

with !n = 1/
√
LnCn. We will solve this equation by utilizing the Laplace transform method.

The Laplace transform of a function can be defined as

F̂ (s) = ℒ{f(t)} =

∫ ∞
0

e−stf(t)dt, (4.22)

where the complex parameter s = � + i! and both � and ! are real numbers. In order to

solve Eq. (4.21), we will need the general expression for the Laplace transform of the nth

derivative of a function

ℒ{f (n)(t)} = snF̂ (s)− s(n−1)f(0)− . . .− f (n−1)(0). (4.23)

Using this expression in Eq. (4.21) yields

s2'̂n(s)− s 'n(0)− '̇n(0) + !2
n'̂n(s) = !2

n
ˆ̃'g(s). (4.24)

Solving for '̂n(s) and inverse Laplace transforming, we get

'n(t) = Fn(t) + !n

∫ t

0

dt′ sin [!n(t− t′)] '̃g(t′), (4.25)
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where the inhomogeneous part contains the initial conditions,

Fn(t) =
1

!n
sin(!nt) '̇n(0) + cos(!nt)'n(0). (4.26)

Using Eq. (4.19), we then obtain

qn(t) =
ℏCn
e
Ḟn(t) +

ℏ
eLn

∫ t

0

dt′ cos [!n(t− t′)] '̃g(t′) (4.27)

and

q̇n(t) = Gn(t) +
ℏ
eLn

∫ t

0

dt′ cos [!n(t− t′)] ˙̃'g(t
′), (4.28)

where

Gn(t) =
ℏCn
e
F̈n(t). (4.29)

Now, using the following Hamilton’s equation,

∂Henv

∂'̃g
= −ℏ

e
˙̃Q →

(
ℏ
e

) ∞∑
n=1

('n − '̃g)
Ln

= − ˙̃Q (4.30)

and combining it with Eq. (4.20), we obtain

˙̃Q = −
∞∑
n=1

q̇n. (4.31)

Therefore,

˙̃Q(t) +
1

C̃

∫ t

0

dt′ y(t− t′) Q̃(t′) = IN(t), (4.32)

where the parameters {Cn, Ln} must be chosen such that

y(t) =
∞∑
n=1

1

Ln
cos(!nt) (4.33)
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and

IN(t) = −
∞∑
n=1

ℏCn
e
F̈n(t). (4.34)

The Fourier transform of y(t), as defined by

Y (!) = ℱ{y(t)} =

∫ ∞
−∞

e−i!ty(t)dt, (4.35)

is

Y (!) =
1

Z(!)
, (4.36)

which is the admittance of the transmission line as seen in Fig. 4.2. Notice that in Eq.

(4.32) we have used that

∂Henv

∂Q̃
=

ℏ
e

˙̃
g' → ˙̃'g =

e

ℏ
Q̃

C̃
, (4.37)

since

Hcharge =
Q̃2

2C̃
. (4.38)

In fact, one can also arrive at Eq. (4.37) through these steps:

˙̃'g =
e

ℏ
(Vg − V ) (4.39)

and

Vg =
Q

C̃
=
Q̃

C̃
+ V. (4.40)

Substituting Eq. (4.40) into (4.39), we arrive at

˙̃'g =
e

ℏ
Q̃

C̃
. (4.41)
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4.4.1 Fluctuation-dissipation theorem and voltage fluctuations

Starting from Eq. (4.32) and using Eq. (4.41), we can also obtain an equation-of-motion for

the phase fluctuations:

C̃ ¨̃'g(t) +

∫ t

0

dt′ Y (t− t′) ˙̃'g(t
′) =

e

ℏ
IN(t). (4.42)

Following Ingold and Nazarov [86], let us Fourier transform this expression. Also, instead of

the random internal noise to the transmission line represented by the inhomogeneous term

IN(t), let us include an external driving current Ipert(t) in order to evaluate the system’s

linear response. We then get

e

ℏ
Ipert(!) =

[
−!2 C̃ +

i!

Z(!)

]
'̃(!)

=
i!

Zt(!)
'̃g(!), (4.43)

where

1

Zt(!)
=

1

Z(!)
+ i! C̃. (4.44)

The generalized force associated to the phase fluctuation '̃g(t) has dimensions of angular

momentum. Let us write its Fourier transform as Fg(!) = (ℏ/e) Ipert(!). Therefore, we

arrive at the linear response relation

'̃g(!) = �'g(!)Fg(!), (4.45)

where the dynamical susceptibility is given by

�'g(!) = �'g(!)′ + i�′′'g(!) (4.46)

=
( e
ℏ

)2 Zt(!)

i!
, (4.47)
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with its imaginary part given by

�′′'g(!) = −
( e
ℏ

)2 Re {Zt(!)}
!

. (4.48)

We can now invoke the fluctuation-dissipation theorem [88], which says that

〈
∣'̃g(!)∣2

〉
=

∫ ∞
−∞

dt e−i!t ⟨'̃g(t) '̃g(0)⟩ =
−2ℏ�′′'g(!)

1− e−�ℏ!
. (4.49)

Therefore,

〈
∣'̃g(!)∣2

〉
=
( e
ℏ

)2 2ℏ
!

Re {Zt(!)}
1− e−�ℏ!

. (4.50)

The fluctuations in the phase are related to the fluctuations in the voltage at the dot

location, �U : Since '̇g = (e/ℏ)Vg and Vg = (C/C̃)U , we can write

i! '̃g(!) =
e

ℏ
C

C̃
�U(!). (4.51)

As a result, we obtain the power spectrum of the voltage fluctuations at the dot location,

〈
∣�U(!)∣2

〉
=

2ℏ!
1− e−�ℏ!

(
C̃

C

)2

Re {Zt(!)} , (4.52)

which resembles the usual Johnson-Nyquist noise formula.

4.5 Double dot-junction case

We start with the setup shown in Fig. 4.4. Then, following a straightforward application of

Kirchhoff’s laws, we find the relations

V1 = (i1 + i12 + im) Z1 + Vg1, (4.53)

V2 = (i1 − i12 − im) Z2 + Vg2, (4.54)
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with

Vg1 − Vg2 = i12 Z12 (4.55)

and

U1 − U2 = im Zm, (4.56)

where Z12 = (i!C12)
−1 and Zm = (i!Cm)−1.

12
i

U
C

Cg1

V

V

Z

V

U

i

1 2
1

1 2

1

1 2

C12

Vg2

Cg2

Cm 2C

Z2

g1

im

i

Figure 4.4: Circuit of a double-dot junction system coupled to two voltage sources through

noisy lines.

We begin by eliminating i12 and im in Eqs. (4.53) and (4.54) with the help of Eqs. (4.55)

and (4.56):

V1 = i1 Z1 + U1
Z1

Zm
− U2

Z1

Zm
+ Vg1

(
1 +

Z1

Z12

)
− Vg2

Z1

Z12

, (4.57)

V2 = i2 Z2 + U2
Z2

Zm
− U1

Z2

Zm
+ Vg2

(
1 +

Z2

Z12

)
− Vg1

Z2

Z12

. (4.58)
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The next step is to write Vg1 and Vg2 in terms of U1 and U2. For this purpose, we notice

that

Vg1 = U1 + (i1 + im) Zg1, (4.59)

Vg2 = U2 + (i2 − im) Zg2. (4.60)

Therefore, eliminating im, we get

Vg1 = U1

(
1 +

Zg1
Zm

)
− U2

Zg1
Zm

+ i1 Zg1, (4.61)

Vg2 = U2

(
1 +

Zg2
Zm

)
− U1

Zg2
Zm

+ i2 Zg2. (4.62)

In order to eliminate i1 and i2, we relate them to the charge in the junction capacitors:

C1 U1 = Q1, i1 = Q̇1, (4.63)

C2 U2 = Q2, i2 = Q̇2. (4.64)

Rewriting Vg1 and Vg2, and afterwards V1 and V2 results in

Vg1 = U1

(
1 +

Cm
Cg1

)
− U2

Cm
Cg1

+
Q1

Cg1
, (4.65)

Vg2 = U2

(
1 +

Cm
Cg2

)
− U1

Cm
Cg2

+
Q2

Cg2
(4.66)

and

V1 = Vg1 + (Vg1 − Vg2)
Z1

Z12

+ U1
Z1

Zm
− U2

Z1

Zm
+ i1Z1, (4.67)

V2 = Vg2 + (Vg2 − Vg1)
Z2

Z12

+ U2
Z2

Zm
− U1

Z2

Zm
+ i2Z2. (4.68)

Eliminating Vg1, Vg2 and rewriting V1, V2 in terms of i1, i2, Q1 and Q2, we obtain
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V1 =

(
Z1

[
1 +

Cm
C1

]
+ Z1C12

[
1

C1

(
1 +

Cm
Cg1

)
+

1

Cg1
+

Cm
Cg2C1

])
i1

+

(
−Z1

Cm
C2

− Z1C12

[
Cm
Cg1C2

+

(
1 +

Cm
Cg2

)
1

C2

+
1

Cg2

])
i2

+

([
1 +

Cm
Cg1

]
1

C1

+
1

Cg1

)
Q1

+

(
−Cm
Cg1C2

)
Q2 (4.69)

and

V2 =

(
−Z2

Cm
C1

− Z2C12

[
Cm
Cg2C1

+

(
1 +

Cm
Cg1

)
1

C1

+
1

Cg1

])
i1

+

(
Z2

[
1 +

Cm
C2

]
+ Z2C12

[
1

C2

(
1 +

Cm
Cg2

)
+

1

Cg2
+

Cm
Cg1C2

])
i2

+

(
−Cm
Cg2C1

)
Q1

+

([
1 +

Cm
Cg2

]
1

C2

+
1

Cg2

)
Q2 (4.70)

Finally, using Eqs. (4.63) and (4.64) and rewriting the result in matrix notation, we

arrive at ⎛⎜⎜⎝ V1

V2

⎞⎟⎟⎠ = Z ⋅

⎛⎜⎜⎝ Q̇1

Q̇2

⎞⎟⎟⎠+ C̃−1 ⋅

⎛⎜⎜⎝ Q1

Q2

⎞⎟⎟⎠ , (4.71)

where

Z =

⎛⎜⎜⎝ Z11 Z12

Z21 Z22

⎞⎟⎟⎠ , (4.72)
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with

Z11 = Z1

[
1 +

Cm
C1

]
+ Z1C12

[
1

C1

(
1 +

Cm
Cg1

)
+

1

Cg1
+

Cm
Cg2C1

]
, (4.73)

Z12 = −Z1
Cm
C2

− Z1C12

[
Cm
Cg1C2

+

(
1 +

Cm
Cg2

)
1

C2

+
1

Cg2

]
, (4.74)

Z21 = −Z2
Cm
C1

− Z2C12

[
Cm
Cg2C1

+

(
1 +

Cm
Cg1

)
1

C1

+
1

Cg1

]
, (4.75)

Z22 = Z2

[
1 +

Cm
C2

]
+ Z2C12

[
1

C2

(
1 +

Cm
Cg2

)
+

1

Cg2
+

Cm
Cg1C2

]
. (4.76)

C̃, on the other hand, can be defined as

C̃ =
1

det(C̃−1)

⎛⎜⎜⎝
[
1 + Cm

Cg2

]
1
C2

+ 1
Cg2

Cm
Cg1C2

Cm
Cg2C1

[
1 + Cm

Cg1

]
1
C1

+ 1
Cg1

⎞⎟⎟⎠ , (4.77)

where

det(C̃−1) =

([
1 +

Cm
Cg1

]
1

C1

+
1

Cg1

)([
1 +

Cm
Cg2

]
1

C2

+
1

Cg2

)
− C2

m

Cg1Cg2C1C2

. (4.78)

Notice that when we decouple the two halves of the circuit by setting Cm = 0 and C12 = 0

in Eq. (4.71), we obtain two equations similar to Eq. (4.17) for each half of the circuit.

In analogy to the single dot-junction circuit, the Hamiltonian for the environment in this

case can be written as

Henv = Hcharge +
∞∑
n=1

[
q2n1

2Cn1
+

(
ℏ
e

)2
('̃g1 − 'n1)2

2Ln1
+

q2n2
2Cn2

+

(
ℏ
e

)2
('̃g2 − 'n2)2

2Ln2

]
. (4.79)

Following exactly the same steps used in deriving Eq. (4.28), we find that

q̇n1(t) = Gn1(t) +
ℏ

eLn1

∫ t

0

dt′ cos [!n1(t− t′)] ˙̃'g1(t
′), (4.80)

q̇n2(t) = Gn2(t) +
ℏ

eLn2

∫ t

0

dt′ cos [!n2(t− t′)] ˙̃'g2(t
′), (4.81)
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where !n1 = 1/
√
Ln1Cn1, !n2 = 1/

√
Ln2Cn2, and

Gn1(t) = − ℏ
eLn1

[
1

!n1
sin(!n1t) '̇n1(0) + cos(!n1t)'n1(0)

]
, (4.82)

Gn2(t) = − ℏ
eLn2

[
1

!n2
sin(!n2t) '̇n2(0) + cos(!n2t)'n2(0)

]
. (4.83)

In addition, it is easy to show that the analogous relations to Eq. (4.31), namely,

˙̃Q1 = −
∞∑
n=1

q̇n1, (4.84)

˙̃Q2 = −
∞∑
n=2

q̇n2, (4.85)

also hold. Thus, we can write

˙̃Q1(t) +
ℏ
e

∫ t

0

dt′ Y1(t− t′) ˙̃'g1(t
′) = IN1(t), (4.86)

˙̃Q2(t) +
ℏ
e

∫ t

0

dt′ Y2(t− t′) ˙̃'g2(t
′) = IN2(t), (4.87)

where the parameters {Cn1, Ln1} and {Cn2, Ln2} must be chosen such that

Y1(t) =
∞∑
n=1

cos(!n1t)

Ln1
→ Y1(!) =

1

Z1(!)
, (4.88)

Y2(t) =
∞∑
n=1

cos(!n2t)

Ln2
→ Y2(!) =

1

Z2(!)
, (4.89)

and

IN1(t) = −
∞∑
n=1

Gn1(t), (4.90)

IN2(t) = −
∞∑
n=1

Gn2(t). (4.91)

(4.92)
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4.5.1 Voltage correlation functions

Here we follow steps in analogy to Sec. 4.4.1. First we turn the equation-of-motion of charge

into one for phase fluctuations:

C̃ ⋅

⎡⎢⎢⎣ ¨̃'g1(t)

¨̃'g2(t)

⎤⎥⎥⎦+

∫ t

0

dt′ Y(t− t′)

⎡⎢⎢⎣ ˙̃'g1(t
′)

˙̃'g2(t
′)

⎤⎥⎥⎦ =
e

ℏ

⎡⎢⎢⎣ IN1(t)

IN2(t)

⎤⎥⎥⎦ . (4.93)

Fourier transforming it and substituting the random internal currents by external ones, we

get

[
−!2 C̃ + i!Z−1(!)

]
⋅

⎡⎢⎢⎣ '̃g1(!)

'̃g2(!)

⎤⎥⎥⎦ =
e

ℏ

⎡⎢⎢⎣ Ipert 1(!)

Ipert 2(!)

⎤⎥⎥⎦

i!Z−1t (!) ⋅

⎡⎢⎢⎣ '̃g1(!)

'̃g2(!)

⎤⎥⎥⎦ =
e

ℏ

⎡⎢⎢⎣ Ipert 1(!)

Ipert 2(!)

⎤⎥⎥⎦ , (4.94)

where

Z−1t (!) = Z−1(!) + i! C̃. (4.95)

Now, substituting the external currents by appropriate generalized forces,⎡⎢⎢⎣ Fg1(!)

Fg2(!)

⎤⎥⎥⎦ =
ℏ
e

⎡⎢⎢⎣ Ipert 1(!)

Ipert 2(!)

⎤⎥⎥⎦ , (4.96)

we obtain ⎡⎢⎢⎣ '̃g1(!)

'̃g2(!)

⎤⎥⎥⎦ = X'g(!) ⋅

⎡⎢⎢⎣ Fg1(!)

Fg2(!)

⎤⎥⎥⎦ , (4.97)

where the dynamical susceptibility matrix is given by

X'g(!) =
( e
ℏ

)2 1

i!
Zt(!), (4.98)
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whose imaginary part is given by

X ′′'g(!) = −
( e
ℏ

)2 1

!
Re {Zt(!)} . (4.99)

Assuming that both transmission lines are at the same temperature, the generalized form

of the fluctuation-dissipation theorem reads⎡⎢⎢⎣
〈
∣'̃g1(!)∣2

〉 〈
'̃∗g1(!) '̃g2(!)

〉
〈
'̃∗g2(!) '̃g1(!)

〉 〈
∣'̃g2(!)∣2

〉
⎤⎥⎥⎦ =

∫ ∞
−∞

dt e−i!t

⎡⎢⎢⎣ ⟨'̃g1(t) '̃g1(0)⟩ ⟨'̃g1(t) '̃g2(0)⟩

⟨'̃g2(t) '̃g1(0)⟩ ⟨'̃g2(t) '̃g2(0)⟩

⎤⎥⎥⎦
=

−2ℏ
1− e−�ℏ!

X ′′'g(!). (4.100)

Hence, ⎡⎢⎢⎣
〈
∣'̃g1(!)∣2

〉 〈
'̃∗g1(!) '̃g2(!)

〉
〈
'̃∗g2(!) '̃g1(!)

〉 〈
∣'̃g2(!)∣2

〉
⎤⎥⎥⎦ =

( e
ℏ

)2 2ℏ
!

1

1− e−�ℏ!
Re {Zt(!)} . (4.101)

We now turn to the fluctuations of the voltage at the dots. Since⎛⎜⎜⎝ �U1

�U2

⎞⎟⎟⎠ = C−1 ⋅

⎛⎜⎜⎝ �Q̃1

�Q̃2

⎞⎟⎟⎠ =
ℏ
e
C−1 ⋅ C̃ ⋅

⎛⎜⎜⎝ ˙̃'g1

˙̃'g2

⎞⎟⎟⎠ , (4.102)

where

C =

⎛⎜⎜⎝ C1 0

0 C2

⎞⎟⎟⎠ (4.103)

we find⎡⎢⎢⎣
〈
∣�U1(!)∣2

〉
⟨�U∗1 (!) �U2(!)⟩

⟨�U∗2 (!) �U1(!)⟩
〈
∣�U2(!)∣2

〉
⎤⎥⎥⎦ =

2ℏ!
1− e−�ℏ!

C−1 ⋅ C̃ ⋅ Re {Zt(!)} ⋅ C̃† ⋅
(
C−1
)†
.

(4.104)
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4.6 Estimate of circuit parameters

We now proceed to make realistic estimates of the effective circuit parameters. The double

dot system is maintained at very low temperatures, in the tens of mK [85]. Typically,

kBT ≪ ΔE, EC1, EC2, where ΔE is the mean level spacing in the dots. The wires leading

to the double quantum dot are thermally anchored to a fridge at several temperature stages

(4 K, 1 K, 100 mK, and 10 mK). The transmission line resistance RL is estimated to be

50 Ω for low temperatures (at or below 4 K) inside the dilution refrigerator, or 250 Ω in the

copper leads residing at room temperature [89].

The resistance of the two-dimensional electron gas (2DEG) can be calculated using

Drude’s theory [90]. The typical electron density in a high-moblity GaAs 2DEG is approx-

imately n = 1011 cm−2, which leads to an average Fermi velocity of about vF = 105 m/s.

At subKelvin temperatures, mean free paths in the 2DEG range from a few to up to one

hundred microns [91]. Choosing l = 10 �m, we arrive at a relaxation time � = l/vF ≈ 100

ps, leading to an estimate of the low-temperature conductivity of

� =
ne2�

m★

≃ 4.2× 10−2 S, (4.105)

with m★ = 0.067me = 0.61×10−31 kg being the electron effective mass in GaAs. To calculate

the resistance, we considered a length l = 10 �m and a width w = 2.5 �m, yielding a sheet

resistance for the 2DEG underneath the gate electrodes

R = �
l

w

≃ 95 Ω/□, (4.106)
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where � = 1/� is the resistivity of the 2DEG. This resistance is responsible for a dissipative

drag effect [92], that for the sake of simplicity will not be considered in our model.

There is still one resistance left to be determined, which is the resistance of the metallic

electrodes. This resistance can be determined by

R = �
l

bc
, (4.107)

where � is the resistivity of the electrodes, approximately 0.022×10−8 Ωm for a Au electrode

at low temperature (< 4 K). If we consider the electrodes to have a 10 �m length and a

30 nm × 60 nm cross section, we can estimate the electrode resistance to be around 1 Ω, a

small value that will also not be considered in our model.

The capacitance C between the transmission line and the 2DEG was estimated by solving

the electromagnetic problem of a cylindrical conducting wire of radius r = 20 nm placed at

a distance of d = 100 nm from an infinite grounded conducting plate. Using the method of

images, we can estimate the total electric potential of this system by integrating the electric

field along the line connecting the centers of the real and the image wires. This results in

a capacitance per unit length of 25 aF/�m, and a total capacitance of 250 aF for a wire of

10 �m in length.

Any inductive couplings along our voltage lines can be estimated as follows. For a metal

electrode with rectangular cross section, the self inductance is approximated as [93]

Lrod ∼ 2l

[
ln

(
2l

b+ c

)
− ln �+

1

2

]
× 10−7 H/m, (4.108)

where � is the aspect ratio of the electrode. For an electrode with an aspect ratio of 2, this

equation yields L ≈ 1 pH/�m. Thus, a 10 �m long electrode gives us an inductance of
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10 pH. The parameters C = 250 aF and L = 10 pH, though useful as rough estimates to

characterize circuits, will not be used in our model since they are very specific to the given

circuit. In fact, in order to estimate these circuit elements more precisely, more physical

parameters of the circuit in question would be necessary. To determine the transmission

line parameters in our model, we will make use of Eqs. (4.12) and (4.13) from Sec. 4.3

to give us a more general approach where we can model any transmission line given these

two operating parameters. To give us a large enough window to operate our qubits, we set

our cutoff frequency to !c = 200 × 109 rad/s. Table 4.6 summarizes the transmission line

parameters that fully describe Zi(!).

Table 4.1: Estimates for the transmission line parameters.

Transmission Line Parameters
Length l 10 �m
Transmission Line Capacitance Ct 10 pF
Transmission Line Inductance Lt 10 pH
Cutoff Frequency !c 200 ×109 rad/s
Z(! = 0) = R 1 Ω

The gate capacitance Cgi (i = 1, 2) for each quantum dot is given by

Cgi =
∣e∣

ΔVgi
. (4.109)

If we consider ΔVgi ≈ 4.5 mV [84, 85], we find Cgi ≈ 40 aF.

Finally, we now estimate the tunneling parameters between the quantum dots and the

2DEG. These are given by a tunneling junction with an impedance ZT = RT + jXCT . We

can obtain a lower bound for the tunneling resistance RT by estimating the inverse of the
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Coulomb blockade peak conductance. In the regime Γ≪ kBT , Gmax is given by [94]

Gmax =
e2

4kBT

ΓlΓr

Γl + Γr
, (4.110)

where tunneling rates of an electron through the potential barrier into (or out of) each dot

are assumed equal for the sake of simplicity (Γl = Γr) For an electron temperature in the

dot T ≈ 150 mK and a peak conductance height of 2× 10−3e2/ℎ [46], we find the tunneling

resistance to be larger than or of the order of 10 MΩ. We can estimate the tunneling

capacitance indirectly. We know the expression for the total capacitance of a flat disc to be

Ci = 8�r�0R. (4.111)

Assuming R ≃ 80 nm as the radius of the quantum dot and �r ≈ 11 for GaAs at high

frequencies, yielding a total capacitance Ci ≈ 60 aF for each quantum dot.

From the total capacitance we can estimate the interdot capacitance between dots 1 and

2, since

Cm =
ΔV m

gi

ΔVgi
Cj, (4.112)

where i ∕= j. For ΔV m
gi ≈ 0.4 mV [84, 85], we find Cm ≈ 5 aF.

The total capacitance for each quantum dot, as seen previously, is the sum of all capaci-

tances attached to the dot. As such, by knowing Cm = 5 aF and CT i = 40 aF, we find Cgi

≈ 15 aF.

Using these estimates for the circuit elements, we are able to determine the distributed

parameters of our noisy transmission lines. According to Eq. (4.13), if we assume a cutoff

frequency of !c ∼ 1011 Hz, we find Lti ∼ 1 pH/�m and Cti ∼ 1 pF/�m.
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In principle, one can also consider the ground (2DEG) to be a source of noise, and as such

it can also be modeled by means of a frequency-dependent impedance. This would require

however an appropriate estimate of the inductance along the 2DEG. In this dissertation, we

did not attempt such estimate.

We can also take into account the coupling between the quantum dot leads. This coupling

is given by the lumped capacitance C12, as shown in Fig. 4.1. This capacitance was estimated

to be approximately 20 aF by means of numerical multipole expansion calculations performed

by a field solver software [95]. We present more details of these numerical calculations in

Appendix D.

We summarize below in Table 4.6 the relevant circuit parameters necessary to fully char-

acterize the DQD setup.

Table 4.2: Estimates for the DQD circuit parameters.

Circuit Parameters
Transmission Line Capacitance Cti 1 pF/�m
Transmission Line Inductance Lti 1 pH/�m
Interdot Capacitance Cm 5 aF
Tunneling Capacitance CT i 40 aF
Tunneling Resistance RT i ⪆ 10 MΩ
Gate Capacitance Cgi 15 aF
Total quantum dot capacitance Ci 60 aF
Capacitive coupling between transmission lines C12 ≃ 20 aF
Electrode Resistance Ri 1 Ω

i = 1, 2, corresponding to each of the quantum dots.
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4.7 Bounds on decoherence rates and Q factors

Through the fluctuation-dissipation theorem we can relate to the impedance Z1,2(!) a source

of electromagnetic gate fluctuations �Vg1,2. These gate fluctuations �Vgi = Q0,i/Cgi(i = 1, 2)

can be determined through the diagonalization of the Hamiltonian in Eq. (4.14). Using the

method described in Appendix C, we are able to rewrite Eq. (4.14) in the second quantization

formalism

HB =
∑
i=1,2

∫ 1

0

dxℏ!xi
(
â†xiâxi +

1

2

)
(4.113)

as well as the dispersion relation !xi = !ci sin(�x/2) with a high-frequency cutoff of !ci =

2/
√
LtiCti.

We consider in this paper the case of Johnson-Nyquist noise [83]. The Fourier transform

of the time correlator of the gate voltage fluctuations contain the information necessary to

quantify the decoherence originating from these gate voltages, as seen in Eq. (4.104). The

energy relaxation rate 1 is found to be

1 =
!

RK

coth(ℏ!/2kBT )
{〈
∣�U1(!)∣2

〉
+
〈
∣�U2(!)∣2

〉
−⟨�U∗1 (!) �U2(!)⟩ − ⟨�U∗2 (!) �U1(!)⟩

}
, (4.114)

where RK is the resistance quantum (= ℎ/e2 ≃ 25.8kΩ). From this expression we can easily

calculate the energy relaxation and dephasing times:

T1 = 1/1 (4.115)

=
RK

!

tanh(ℏ!/2kBT )〈
∣�U1(!)∣2

〉
+
〈
∣�U2(!)∣2

〉
− ⟨�U∗1 (!) �U2(!)⟩ − ⟨�U∗2 (!) �U1(!)⟩

, (4.116)
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and

T2 = 2T1, (4.117)

for bosonic baths in the Born-Markov approximation. Finally, the quality factor is defined

as

Q =
!osc

�1
(4.118)

=
RK

�

tanh(ℏ!/2kBT )〈
∣�U1(!)∣2

〉
+
〈
∣�U2(!)∣2

〉
− ⟨�U∗1 (!) �U2(!)⟩ − ⟨�U∗2 (!) �U1(!)⟩

, (4.119)

where !osc is the frequency of quantum oscillations observed in the DQD system, as defined

by [83]

!osc =

√
2Δ
(

2Δ +
2
2

)
− 21

4
, (4.120)

with Δ being the potential barrier height between quantum dots, as shown in Eq. (4.6), and

2 being defined as

2 = −−
∫ ∞
0

dy

y2 − 1
�(2Δy) coth

(
Δy

T

)
, (4.121)

where � is the bath spectral function, defined as

�(!) =
2

�

!

RK

{〈
∣�U1(!)∣2

〉
+
〈
∣�U2(!)∣2

〉
−⟨�U∗1 (!) �U2(!)⟩ − ⟨�U∗2 (!) �U1(!)⟩

}
. (4.122)

The operating frequency ! = 2Δ/ℏ is fed to the circuit by the voltage generators and

carried through the gates. The other terms in Eq. (4.120), as it turns out, are small enough

corrections to the operating frequency so that they may be ignored. Thus, from now on we

will assume !osc = !.
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We will now analyze in detail two different scenarios: one where the transmission lines

are decoupled, while the other includes the capacitive coupling C12 between transmission

lines, as seen in Fig. 4.1.

4.7.1 Case (i): Decoupled transmission lines

It is useful to look at the case where there is no coupling between the electrodes. The

decoherence introduced by the electromagnetic voltage fluctuations can still be analyzed

using Eqs. (4.114) through (4.119), but some simplifications to the impedance matrix are

now possible. This case corresponds to having C12 = 0, so the matrix Z from Eq.4.72 is

reduced to

Z =

⎛⎜⎜⎝ Z1

[
1 + Cm

C1

]
−Z1

Cm
C2

−Z2
Cm
C1

Z2

[
1 + Cm

C2

]
⎞⎟⎟⎠ . (4.123)

In this case we observe the highest possible quality factors for our double-quantum-dot setup,

as seen in Figs. 4.5, and 4.6.
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Figure 4.5: Qubit quality factor as a function of frequency for two decoupled semi-infinite

transmission lines, with temperature T = 150 mK and the circuit parameters presented in

Table 4.6.
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Figure 4.6: Qubit quality factor as a function of frequency for � < 20 GHz and two decoupled

semi-infinite transmission lines with the same parameter values as in Fig. 4.5.

If we look back at Eq. (4.119) and take its asymptotic limit for low frequencies, it is

important to first notice that

tanh(ℏ!/2kBT ) ≈ ℏ!/2kBT. (4.124)

Equation (4.123) is then reduced to

Z =

⎛⎜⎜⎝ R1

[
1 + Cm

C1

]
−R1

Cm
C2

−R2
Cm
C1

R2

[
1 + Cm

C2

]
⎞⎟⎟⎠ , (4.125)

where Ri = Z(! = 0) =
√
Lti/Cti, as reported earlier, and with the assumption that C1 =

C2, Cg1 = Cg2, and R1 = R2. This, combined with the fact that Re {Zt(!)} → Re {Z(!)}
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for ! → 0, yields

lim
!→0

Q(!) = (8.9× 10−7[s])�, (4.126)

where we notice a linear dependence of Q with respect to �, as can also be evidenced in

the log-log graph shown in Fig. 4.7. While Ri is an important modeling parameter for the

transmission lines, it is also clear that Cti and Lti ultimately influence how quickly this linear

regime establishes itself once we move to lower frequencies.
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Figure 4.7: Quality factor as a function of frequency for two decoupled transmission lines

represented in a logarithmic scale with the same parameter values as in Fig. 4.5.

Turning our attention now to higher frequencies, we notice an important characteristic

of the transmission lines. The real part of the transmission line impedance Re {Z(!)} has
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a cutoff frequency given by �c = !c/2�. In Fig. 4.8, it can be seen that as ! → !c,

Re {Z(!)} → 0, making Re {Zt(!)} → 0 as well, causing the quality factor Q to diverge at

! = !c.
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Figure 4.8: Real part of the impedance Z(!) as a function of the frequency !. Transmission

line parameters are defined in Table 4.6.
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4.7.2 Case (ii): Capacitively coupled transmission lines

Inserting now the inter-capacitive coupling C12 estimated in Section 4.6, we obtain the

quality factor Q as a function of frequency � shown in Figs. 4.9, 4.10, and 4.11. In

Fig. 4.9, we can clearly observe the quality factor diverge at the frequency �c ≃ 320 GHz,

corresponding to the cutoff frequency.
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Figure 4.9: Qubit quality factor as a function of frequency, with temperature T = 150 mK.

The circuit parameters utilized are presented in Table 4.6.
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Figure 4.10: Qubit quality factor as a function of frequency represented in a logarithmic

scale. The circuit parameters utilized are the same as in Fig. 4.9.

From now on we shall restrict our discussion to operating frequencies under 20 GHz

(Fig. 4.11), which are more realistic for practical implementations of qubit operations.
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Figure 4.11: Quality factor as a function of frequency for � < 20 GHz and two decoupled

semi-infinite transmission lines with the same parameter values as in Fig. 4.9.

It is interesting to observe the influence of temperature on the decoherence introduced

into the system by voltage fluctuations. We show below, in Figs. 4.12 and 4.13, a family of

Q factor curves as a function of operating frequency � for temperatures ranging from 50 mK

all the way to room temperature. As temperature increases, more environmental modes are

available for the system to couple with, effectively increasing dissipative effects.
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Figure 4.12: Qubit quality factor as a function of operating frequency for temperatures

T = 50, 150, 250, 500 mK, and 1 K. The circuit parameters utilized are presented in Table

4.6.
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Figure 4.13: Logarithmic representation of the qubit quality factor as a function of operating

frequency for temperatures T = 50, 150, 250, 500 mK, and 1 K. The circuit parameters

utilized are presented in Table 4.6.

We can also observe the influence of the inter-capacitive coupling C12 on the quality

factor, as seen in Figs. 4.14 and 4.15. For weaker coupling, i.e., smaller C12, the quality

factors are higher, as C12 approaches the limiting case of decoupled lines. Note that Q(!) will

still not reach the same levels of the decoupled case due to the presence of the capacitance

Cm.
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Figure 4.14: Quality factor as a function of operating frequency for temperature T = 150

mK and inter-capacitive couplings C12 = 0, 1.3 , 10, 20, and 50 aF. The circuit parameters

utilized are presented in Table 4.6.
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Figure 4.15: Logarithmic representation of the qubit factor as a function of operating fre-

quency for temperature T = 150 mK and inter-capacitive couplings C12 = 0, 1.3, 10, 20, and

50 aF. The circuit parameters utilized are the same as in Fig. 4.14.

We present below in Tables 4.7.2 and 4.7.2 the results of calculations for the decoherence

time T2 and the Q factor for several different values of temperature T and inter-capacitive

coupling C12. It is easy to understand why higher temperatures degrade decoherence times

in qubit operations. We can consider two extreme cases, namely, one where the electrical

leads are inside a dilution refrigerator and another where they are at room temperature.

We will also consider an operating frequency � = !/2� of 10 GHz. First, let us assume

that leads connected to the gate electrode are inside the dilution refrigerator. In this case,
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a temperature T = 150 mK results in a relaxation time T1 = 88 ns and a decoherence time

of T2 = 176 ns. This scenario yields a quality factor of Q ≈ 1, 760. If we consider now

the case where the leads are at room temperature, we estimate the relaxation time and the

dephasing time to be approximately 76 ps and 152 ps, respectively, resulting in a quality

factor of Q ≃ 1.5, more than 1000 times lower.

A much more interesting analysis stems from varying the inter-capacitive coupling be-

tween the transmission lines. For higher values of C12, it would be intuitive to expect both

transmission lines to be more strongly coupled, meaning that decoherence in the system

would be weaker since voltage fluctuations in the two lines would be correlated. As it turns

out, however, the stronger coupling between transmission lines results in larger off-diagonal

terms in the matrix of voltage correlations defined in Eq. (4.104). If we look at Eq. (4.119)

once more, it is easy to see that larger off-diagonal terms subtracted from the main diagonal

correlation terms results in smaller Q factors, as evidenced by the behavior of the family of Q

factor curves in Fig. 4.14 for different values of inter-capacitive coupling and the calculated

values presented in Table 4.7.2.
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Table 4.3: Estimates for the dephasing times T2 for different values of temperature T and
interline capacitive coupling C12.

Dephasing time T2 [ns]

T [K]
C12 [aF]

0 ∼1 10 20 50
50× 10−3 688 588 300 191 92
150× 10−3 633 542 275 176 84
250× 10−3 511 437 222 142 68
500× 10−3 306 262 133 85 41

1 161 138 70 45 22
300 0.55 0.47 0.24 0.15 0.07

Table 4.4: Estimates of Q factors for different values of temperature T and inter-capacitive
coupling C12.

Q factor

T [K]
C12 [aF]

0 ∼1 10 20 50
50× 10−3 6878 5884 2990 1910 917
150× 10−3 6333 5418 2753 1760 844
250× 10−3 5108 4369 2220 1418 681
500× 10−3 3059 2617 1329 850 408

1 1614 1380 702 448 215
300 5.5 4.7 2.4 1.5 0.7
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CHAPTER FIVE: CONCLUSION

In this chapter we present conclusions provenient from our study of decoherence originating

from coupling to phonon modes and electromagnetic fluctuations, as seen in Chapters 3

and 4, respectively. We also discuss ideas for future research building upon our conclusions.

Finally, we briefly discuss another leading candidate for dominant decoherence source in solid

state charge based qubit systems, namely interactions between electrons in the quantum dots

and fluctuating charges trapped in the substrate.

5.1 Phonon coupling

In this dissertation I have shown that, whereas there are no simple ways to completely

protect charge qubits based on quantum dots from decoherence by gapless bosonic modes

propagating in the substrate, a homogeneous charge distribution throughout the qubit is

the most advantageous setup and provides the best possible protection against decoherence.

This result applies not only to the charge qubits in semiconductor-heterostructures that we

focused on here, but, in principle, to charge qubits in general. Whereas certain aspects of

the discussion need to be changed for, say, self-assembled quantum dots, single-donor charge

qubits [48], or Si-based quantum dot structures [47], this does not affect the universal mecha-

nism underlying our central result, namely that a specific (homogeneous) charge distribution

within the qubit enables the cancellation of (certain) decoherence modes.

Contrary to spin-based quantum dot qubits, where decoherence-free subspaces can be

created by combining quantum dots into logical units, charge-based qubits are much more
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difficult to isolate from the environment. In order to have decoherence-free subspaces for

charge qubits one would need to restrict the operation to a subspace where charge is ho-

mogeneously distributed in space, no matter which basis states are chosen. However, this

contradicts the very nature of a charge qubit (where readout depends on charge imbalance)

and thus cannot be achieved. In our example of the three-dot qubit these facts become evi-

dent in the existence of two phonon modes that cannot cancel due to geometric constraints

inherent to the qubit.

Decoherence can be mitigated in a number of other ways. For instance, for the three-

dot qubit case we have studied, a substantial improvement with respect to the double-dot

qubit can be achieved due to the lower frequency of operation and to an enhancement of the

relaxation time by a factor of three.

Another effective way to reduce the coupling to gapless bosonic modes is to choose a

computational basis with a multipole charge configuration. As we have shown, the mul-

tipole geometry attenuates the coupling to long wavelength acoustic phonons by a factor

proportional to a power law of the operation frequency. This power law grows rapidly with

the multipole order. Thus, multipole configurations of charge can lead to quality factors

enhanced by orders of magnitude in comparison to those obtained for double-dot qubits.

However, the effect is reversed at high frequencies of operation. The crossover frequency

separating the two regimes is given by the inverse traversal time for a phonon to propagate

across the qubit. For typical GaAs setups, this time is of the order of 30 ps (for dots 120 nm

apart), indicating a crossover frequency in the range of 30 GHz. Since tunnel amplitudes

usually vary from tens to a few hundreds of �eV, yielding quantum oscillations of about
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2-20 GHz, there is a real advantage in moving toward multiple-dot qubits for current setups.

However, since phonons are not the only leading mechanism for decoherence in charge qubits

[60], as operation frequencies go down other sources of decoherence, not necessarily modeled

by bosonic environments, may become dominant. In that case multiple-dot qubits might

become less appealing.

Finally, it is worth mentioning that a recent work has shown that gate optimization is

also a very effective way of minimizing the coupling to bosonic environments in solid-state

quantum dot charge qubits subject to decoherence [69]. Optimal control theory may be

employed to design such gates that will in turn control the qubit system. Since the system

takes some time to become entangled with the environment, it is possible during this time to

channel back quantum coherence from the environment to the system by using appropriately

designed control.

5.2 Electromagnetic fluctuations

In this dissertation I have also modeled noise introduced by gate voltage fluctuations in

double quantum dot systems. I attempted to model the circuits leading to the DQD in a

way that put us as close to real experimental values as possible, while still being able to

estimate all the relevant parameters and calculate decoherence rates and quality factors.

I chose to place our noise sources in our gates because we believe they give the largest

contribution to decoherence during qubit operations. For additional considerations, noise

sources could also be placed, for example, in the drain and source electrodes.

I have estimated the effect of fluctuations in the electrodes feeding the quantum dots
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and shown the influence that parameters such as temperature and inter-capacitive coupling

between electrodes have on decoherence in qubit operation. I have also shown that, similarly

to decoherence by phonon coupling, temperature degrades coherence in the state superposi-

tions, reinforcing the need for efficient refrigeration of the leads. This effect can be explained

analogously to the radiation of a black body, which increases with temperature.

Contrary to what was initially expected, it was found that a stronger inter-capacitive

coupling between electrodes actually introduces stronger decoherence in the qubit system.

Thus, in order to mitigate this effect, it is important to keep the leads gating each quantum

dot in the system as isolated as possible from each other.

I have ultimately found that electromagnetic fluctuations in DQD systems do not intro-

duce a dominating decoherence effect. The quality factors calculated for our system at low

temperature (∼ 5000) are still well above the Q factors found in systems under the effect of

phonon coupling (∼ 50) [60, 61, 62, 100]. If we compare these results with the experimental

results (∼ 3− 9) for Q factors, the discrepancy is even larger [44, 46, 47].

There are a few possible refinements to the model presented in this dissertation. One

such improvement includes adding the electrical resistance in the leads, which in practice

requires the use of a lossy transmission line model for the effective circuit. It may also be

important to take into account the drag effect on the leads due to the proximity to the 2DEG.

This effect will change the effective circuit parameters, thus influencing the calculation of

relaxation and dephasing times.

The disagreement between theoretical estimates and measured decoherence times in

charge based DQD system leads us to believe that there must be another noise source that
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accounts for the short decoherence times observed in these systems. However, in order to

identify the leading decoherence mechanism in charge-based qubits, it would be very helpful

if the dependence of the Q-factor on the operating frequency � were measured, as this would

yield the spectral function of the (possibly) bosonic environmental modes, so we could de-

termine whether the the dissipative process occuring in these systems is mainly subohmic,

ohmic or superohmic. With this information in hand, one could perhaps trace back the

physical process underlying the decoherence mechanism. A candidate for such source is the

presence of fluctuating background charges trapped in the insulating substrate or at the

GaAS/GaAlAs interface.

Finally, there is also a need to estimate the effects of environmental electromagnetic

fluctuations in the case of spin-based qubit systems.

5.3 Concluding remarks

The question of what are the dominating mechanisms of decoherence in semiconducting

quantum dot qubit systems remains open. This remains an obstacle for building large scale

quantum computers with this technology. It is thus important to turn our attention to other

possible candidates as dominating decoherence processes besides the ones considered in this

dissertation. One such candidate is the presence of fluctuating background charges (FBCs)

embedded in an insulating layer close to the electronic bath. The fluctuating charges create a

dynamical electric field that affect qubit states. This effect can be seen in both semiconductor

and superconductor charge-based qubits alike.

It has been argued that electrostatic coupling to fluctuating background charges hy-
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bridized with the conduction electrons in the reservoir may contribute significantly to the

decoherence of a double quantum dot charge qubit. Models for FBCs have been developed

[101, 102, 103, 104, 105, 106, 107, 108, 109] in analogy with the spin-fluctuator model of

the spectral diffusion in glasses. These models, however, underestimated the efficiency of

this noise source since they do not account for a large enough number of effective fluctua-

tors so that decoherence originating from them could be experimentally observed. On the

other hand, decoherence and dephasing with origin in these fluctuators has been already

experimentally observed in the context of superconducting qubits [110], which has led to

the conclustion that these models were still incomplete. Further research of this decoher-

ence mechanism has recently [111] yielded new results. It has been found that by including

short-range Coulomb interactions in those previous models enhances the number of effective

fluctuators and their contributions to decoherence.

Further work remains to be done in estimating numerical values for the relaxation and

dephasing rates originated in qubit systems affected by FBCs. It will be valuable to know

whether these estimates will reconcile with the experimental measurements performed in

these systems, establishing fluctuating background charges as the dominant decoherence

mechanism in charge qubit systems. If this is not the case, further study will be necessary

in identifying other possible candidates that may help circumvent this important obstacle in

designing a full scale quantum computer.
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APPENDIX A: THE TWO-QUBIT REDUCED HAMILTONIAN

89



The Hamiltonian of two three-dot qubits coupled by their bases [see Fig. 3.3(b)] with

inter-qubit couplings t′ and t′′ has the following matrix form in the basis of Eqs. (3.11)-

(3.20) (the lower off-diagonal block is omitted):

Hbase
I−II =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 − t′ei�

3
− t′′e−i�

3
t′e−i�

3
− t′′ei�

3
t′′ei�

3
t′e−i�

3
t′ei�

3
− t′′e−i�

3

0 0 0 0 − t′e−i�

3
t′′ei�

3
t′

3
− t′′

3
t′′ei�

3
t′e−i�

3
t′

3
− t′′

3

0 0 0 0 − t′ei�

3
− t′′e−i�

3
t′

3
− t′′

3
t′′e−i�

3
t′ei�

3
t′

3
− t′′

3

0 0 0 0 − t′e−i�

3
− t′′ei�

3
t′ei�

3
− t′′e−i�

3
t′′e−i�

3
t′ei�

3
t′e−i�

3
− t′′ei�

3

Ui v −v 0 0 0

v Ui v 0 0 0

−v v Ui 0 0 0

0 0 0 Ui v −v

0 0 0 v Ui v

0 0 0 −v v Ui

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(A.1)

[Note that the Hamiltonian for the tip-tip configuration is recovered by setting t′′ = 0 in

Eq. (A.1).] This Hamiltonian can be projected onto the two-qubit computational subspace

by means of a Schrieffer-Wolff transformation. From Eq. (A.1), we see that the Hamiltonian

has the form Hbase
I−II = H0 +H1, where

H0 =

⎛⎜⎜⎝ 0 0

0 M

⎞⎟⎟⎠ , H1 =

⎛⎜⎜⎝ 0 T

T † 0

⎞⎟⎟⎠ , (A.2)

and M and T are 6 × 6 and 4 × 6 matrices, respectively. Performing the Schrieffer-Wolff

transformation and expanding to second order in H1[76], we get H̃base
I−II ≈ H0 + (1/2)[S,H1],
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where

S =

⎛⎜⎜⎝ 0 −T M−1

−M−1 T † 0

⎞⎟⎟⎠ . (A.3)

Thus the Hamiltonian has the block diagonal structure

H̃base
I−II ≈

⎛⎜⎜⎝ Hred
I−II 0

0 M

⎞⎟⎟⎠ , (A.4)

where Hred
I−II = −T M−1 T †. The matrix M can be broken into two identical 3 × 3 diagonal

blocks,

M =

⎛⎜⎜⎝ B 0

0 B

⎞⎟⎟⎠ , (A.5)

and T can be broken into two distinct 4× 3 blocks,

T =

(
TI TII

)
. (A.6)

As a result, Hred
I−II = −TIB−1 T †I − TIIB−1 T

†
II. After some algebra, one finds that

B−1 =
1

3

⎛⎜⎜⎜⎜⎜⎜⎝
2u1 + u2 u1 − u2 −u1 + u2

u1 − u2 2u1 + u2 u1 − u2

−u1 + u2 u1 − u2 2u1 + u2

⎞⎟⎟⎟⎟⎟⎟⎠ , (A.7)

where u1 = (Ui + v)−1 and u2 = (Ui− 2v)−1. The structure of B−1 can be substantially sim-

plified by assuming v≪Ui and neglecting v. This yields Hred
I−II = (−1/Ui)

(
TI T

†
I + TII T

†
II

)
.

Carrying out the matrix multiplications and setting t′′ = 0, we obtain Eq. (3.23).
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APPENDIX B: SOLUTION TO THE INFINITE LADDER
NETWORK
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To find the solution for an infinite transmission line, we start with a more general model

of an infinite ladder network, as seen in Ref. [87].

Z

Za

b

c

d

1

2

Z

Z2

1

Figure B.1: Infinite ladder network.

Consider the infinite ladder network depicted in Fig. B.1. The key idea is that when

we connect an extra section to the first two terminals of the infinite network, the resultant

circuit is still the same infinite network. If we define the impedance between terminals a

and b to be Z0(!), we can easily verify that the impedance between terminals c and d is also

Z0(!), as seen in Fig. B.2.

= ZZZ

Za

b

c

d

1

2 00

a

b

Figure B.2: Effective impedance of an infinite ladder network.
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By combining the impedances Z1(!) Z2(!), and Z0(!), we find that

Z(!) = Z1(!) +
1

1/Z2(!) + 1/Z0(!)

= Z1(!) +
Z2(!) + Z0(!)

Z2(!)Z0(!)
, (B.1)

but since this is also equal to Z0(!), we can solve

Z0(!) = Z1(!) +
Z2(!) + Z0(!)

Z2(!)Z0(!)
(B.2)

for the characteristic impedance Z0(!) of the infinite network, resulting in

Z0(!) =
Z1(!)

2
+

1

2

√
Z2

1(!) + 4Z1(!)Z2(!). (B.3)

If we consider now the special case where Z1(!) = i!L and Z2(!) = (i!C)−1, we obtain

Z0(!) =
1

2

(
i!L+

√
−!2L2 + 4

L

C

)
. (B.4)
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APPENDIX C: SOLUTION TO THE DECOUPLED
TRANSMISSION LINE PROBLEM
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In order to solve the decoupled transmission line problem, we utilize a method developed

by Lieb, Schultz, and Mattis [96] to solve models of semi-infinite antiferromagnetic linear

chains with nearest neighbor interactions.

Consider the Hamiltonian in second quantization form (up to a constant term) of a

decoupled transmission line connected to a gate capacitance Cg

H =
ℏ!
2

{
−
∞∑
i=0

(â†i âi+1 + â†i+1âi)−
∞∑
i=0

(â†i â
†
i+1 + âiâi+1 +

1

2

∞∑
i=1

(â†i â
†
i + âiâi)

+
1

2
(1− �)(â†0â

†
0 + â0â0) + 3

∞∑
i=1

â†i âi + (1 + �)â†0â0

}
, (C.1)

where � = Cti/Cgi. We would like to rewrite it as a Hamiltonian of the form

H =
∑
ij

Aij(â
†
i âj + â†j âi) +

∑
ij

1

2
Bij(â

†
i â
†
j + âiâj), (C.2)

in units such that !̄/2 = 1. If âi and âj are bosonic operators. A and B must be real

symmetric matrices

Aij =

⎧⎨⎩
1 + �, j = i = 0

3, j = i > 0

−1, j > i ≥ 0

, (C.3)

Bij =

⎧⎨⎩
1− �, j = i = 0

1, j = i > 0

−1, j > i ≥ 0

, (C.4)

and [âi, âj] = �ij. We define now the matrix M as

M =

⎛⎜⎜⎝ A B

B A

⎞⎟⎟⎠ . (C.5)
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Let

�M =

⎛⎜⎜⎝ A B

−B −A

⎞⎟⎟⎠ . (C.6)

We wish to find the matrix T such that T�T †� = I, or equivalently, T�MT−1 = Ω where Ω

is diagonal. If

vn =

⎛⎜⎜⎝ gn

ℎn

⎞⎟⎟⎠ (C.7)

and

wn =

⎛⎜⎜⎝ ℎ∗n

g∗n

⎞⎟⎟⎠ , (C.8)

we can have

�M ⋅ vn = !nvn (C.9)

�M ⋅ wn = −!nwn, (C.10)

for !n > 0. Let then ⎛⎜⎜⎝ A B

−B −A

⎞⎟⎟⎠
⎛⎜⎜⎝ gn

ℎn

⎞⎟⎟⎠ = !n

⎛⎜⎜⎝ gn

ℎn

⎞⎟⎟⎠ . (C.11)

Rewriting Eq. (C.11) as a system of two equations, we obtain

Agn +Bℎn = !ngn (C.12)

−Bgn − Aℎn = !nℎn, (C.13)
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which can be rearranged into

A(gn − ℎn)−B(gn − ℎn) = !n(gn + ℎn) (C.14)

A(gn + ℎn) +B(gn + ℎn) = !n(gn − ℎn). (C.15)

We can then define

 n ≡ gn − ℎn (C.16)

�n ≡ gn + ℎn, (C.17)

and insert them in Eq. (C.11), resulting in

(A−B)�n = !2
n�n

(A+B) n = !2
n n, (C.18)

After some algebra, we find

(A−B)(A+B)�n = !2
n�n

(A+B)(A−B) n = !2
n n, (C.19)

where

(A+B)ij =

⎧⎨⎩
2, j = i = 0

4, j = i > 0

−2, j > i ≥ 0

, (C.20)

(A−B)ij =

⎧⎨⎩
2�− �, j = i = 0

2, j = i > 0

0, j > i ≥ 0

, (C.21)
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Omitting the index n for the sake of simplicity, we shall now attempt to find a phase shift

solution of the type

∑
j

[(A+B)(A−B)]ij'(j) = !2'(i), (C.22)

where

[(A+B)(A−B)]ij =
∑
k

[(A+B)ik(A−B)]kj

= [(A+B)ij(A−B)]jj (C.23)

and only the j = i± 1 (nearest neighbor) terms and j = i contribute in the sum. If we use

the Ansatz

'(j) =

⎧⎨⎩
a cos (kj + �), if j > 0

b, if j = 0

, (C.24)

in Eq. (C.22), we have for i = 0

!2'(0) =
N∑
i=0

(A+B)0i(A−B)ii'(i) (C.25)

= (A+B)00(A−B)00'(0) +
N∑
i=1

(A+B)0i(A−B)ii'(i) (C.26)

!2b = 4�'(0)− 4'(1). (C.27)

Similarly, we obtain

!2'(1) = −4�'(0) + 8'(1)− 4'(2)

!2a cos (kj + �) = −4�b+ 8a cos (kj + �)− 4a cos (2kj + �) (C.28)

and

!2'(2) = −4'(1) + 8'(2)− 4'(3), (C.29)
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for i = 1 and i = 2, respectively. The equations for i > 2 present the same form of Eq. C.29.

From the same equation, we obtain

!2a cos (kj + �) = −4a cos (kj − k + �) + 8a cos (kj + �)− 4a cos (kj + k + �), (C.30)

which after some algebra and trigonometric identities can be solved for !

!2 cos (kj + �) = 8 cos (kj + �)[1− cos (k)], (C.31)

!2 = 16

[
1− cos (k)

2

]
, (C.32)

resulting in the dispersion relation

! = 4 sin

(
k

2

)
. (C.33)

Using this result in Eq. (C.28), we obtain after some algebraic manipulation

�

(
b

a

)
= cos �, (C.34)

which can be plugged into Eq. (C.29) to give the transcendental equation

2 cos �

�
− cos � − 2 cos k cos �

�
= sin k sin � − cos k cos �. (C.35)

It is easy to see that for the trivial case � = 1

cos � = cos (k − �), (C.36)

which has the solution � = k/2.
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APPENDIX D: NUMERICAL CALCULATIONS OF THE
INTERCAPACITIVE COUPLING C12
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We present here the numerical calculations to estimate the capacitive coupling C12 ex-

isting between the quantum dot plunger leads, as shown in Fig. 4.1. For these calculations,

we made use of numerical multipole expansion calculations performed by FastCap fast field

solver software [95]. We used as input a set of 5 long electrodes and two shorter plunger

gates alternated in between them, representing the gate setup for the DQD. The electrodes

were assumed to have a 30 nm ×60 nm cross section, and several simulations were run for

different electrode lengths, ranging from ∼ 1 through 10 �m. We show below in Fig. D.1 a

schematic representation of the electrodes that gate the double quantum dot setup.

Figure D.1: Design of the electrodes in the double quantum dot system.

We present below in Fig. D.2 a snapshot of the output of the FastCap capacitance
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calculations. We made use of a multipole expansion up to fourth order to obtain these

results. The output is a capacitance matrix that depicts the capacitance of each electrode

in the main diagonal, and the capacitive couplings between each pair of electrodes as off-

diagonal elements. We are mainly interested in the calculation of the capacitive coupling

between electrodes 2 and 4, as shown in Fig. D.1, and for an electrode length of ≃ 10 �m.

This is C12 in our model, and its value corresponds to ≃ 20 aF as seen in the capacitance

matrix in Fig. D.2.
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Figure D.2: Simulation results for the mutual capacitances among the electrodes in the

double quantum dot system.
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