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ABSTRACT 
 

 As a class, amides are of great interest in biological studies and pharmaceutical 

applications. In this work, podocarpic acid, a natural tricyclic diterpene, derived from 

Podocarpus species, has been employed to form a novel family of amide derivatives which will 

later be studied for their potential as new drug leads. 

 Novel amide derivatives of podocarpic acid were synthesized from podocarpic acid in 

three steps.  The first step involved methylation with dimethylsulfate to form methyl-O-

methylpodocarpate.  This step was followed by iodination with iodine to give iodomethyl-O-

methylpodocarpate.  Finally amidation with various aliphatic amides using a copper catalyst 

yielded four amide derivatives of podocarpic acid.  However, iodo-methyl-O-methylpodocapate 

did not react with aromatic amides.  This is perhaps because of the reduction in electrophilicity 

of an aromatic amide versus an aliphatic amides. 

 Thus this research had led to the discovery of a method that is selective for the synthesis 

of aliphatic amide derivatives of podocarpic acid.  Furthermore, five novel derivatives of 

podocarpic acid have been synthesized.  Therefore a small library of novel compounds has been 

synthesized by utilizing selective methodology, that are now available for future examination of 

their anticancer and anti-tuberculosis properties. 
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1.  INTRODUCTION 
 

1.1.  The Goal of This Research 
 
 The ultimate goal of this research is to use podocarpic acid as a template to prepare a 

library of novel amide derivatives of podocarpic acid.  Podocarpic acid derivatives are known to  

possess biological activity as well as many compounds with amide functionalities.  Therefore, 

the premise of this work is that the synthesis of amide derivatives of podocarpic acid will provide 

a library of compounds that will be evaluated by the NCI against 60 human cancer cell lines.  

Also these novel compounds will be evaluated by NIAID for their activity against tuberculois. 

1.2.  Natural Products and Bioactive Agents 
 

Natural products, such as herbs and plants, have been used for thousands of years as 

traditional medicine in the treatment of diseases and cancers(1). Natural products from plants, 

fungi, and bacteria contain valuable agents for study as new drug leads that could lead to new 

pharmaceutical agents for HIV, malaria, fungal, viral, infections, and inflammation(2).  In the 

analysis of data on prescription drugs dispensed in United States from 1959 to 1980, twenty five 

percent were active principles from higher plants(3).  According to the annual report on medicinal 

chemistry in the period from 1983 to 1994, 60% to 75% of the prescription drugs are derived 

either from a natural origin or a synthetic derivative of a compound of natural origin(4).  Also 



approximately 60% of all drugs now in clinical trials for the multiplicity of cancers are either 

natural products or derived from natural products.  Thus compounds produced by "Mother 

Nature" are still in the forefront of cancer chemotherapeutics as sources of active compounds. 

Natural products have the advantage that much larger doses of the prescription drugs can be 

administered since they are less toxic and have less advert effects when applied to the human 

body.  

      There is a huge of supply of unexploited natural products with demonstrated biological 

activity.  Many of these compounds are known for their anticancer activity(5).  As an example, 

Taxol (1) or Paclitaxel is a complex diterpene amide derived from the Pacific yew tree Taxus 

brevifolia(6)  which was collected in  Washington State as a part  of a random collection program 

by the U.S. Department of  Agriculture for the National Cancer Institute.  The structure is 

showed in Figure 1 and a photograph of the yew tree from which it was extracted is shown in 

Figure 2. 

NH
O

  O
OO

O

CH 3

OH

OO

O

O
CH 3

OH

HO

CH 3

O

CH 3

O

CH 3
CH 3

 

Figure 1:  Structure of Taxol (1) 
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It is interesting to note that Taxol has a large variety of functional groups including one amide 

moiety. 

  

Figure 2:  Taxus Brevifolia 

 

1.3.  The Role of Anticancer Drug 
 

    Cancer has been a major cause of death in the 21st century.  Anticancer drugs or 

antineoplastic drugs have been used to treat malignancies or the growths of cancerous cells in the 

body.  Cancer forms when cells multiply uncontrollably and abnormally.  By definition, cancer is 

the uncontrolled growth of cells with loss of differentiation which upon metastasis spreads to 

other tissues and organs.  As the result, cancer can be life threatening to the body and must be 

treated.  Cancer chemotherapy is a method which applies a drug or combination of drugs to the 

body to treat cancerous cells.  Anticancer drugs act by interfering with the cycle of cancerous 

cell growth or the process of their reproduction.  There are many classes of anticancer drugs used 

in cancer treatment.  The treatment selected by medical personnel depends upon the type of 

cancer.  

 3



 4

John Boik, the author of the book Natural Compounds in Cancer Therapy(7), stated that in 

general there are seven strategies for cancer inhibition as follows: 

    1. Reduce genetic instability 

    2. Inhibit abnormal expression of genes 

    3. Inhibit abnormal signal transduction 

    4. Encourage normal cell-to-cell communication 

    5. Inhibit tumor angiogenesis 

    6. Inhibit invasion and metastasis 

    7. Increase the immune response 

    Some  anticancer drugs will directly inhibit cancer cells which  causes cell death or to  just 

stop proliferating because of molecular target interactions.  In the contrast, other drugs inhibit 

cancer cell progression indirectly by inducing changes in the local environments which are 

unfavorable to angiogenesis, invasion, or metastasis. 

    Since breast cancer is commonly stimulated by sex hormones or estrogens, this kind of 

cancer is treated with anticancer drugs that inactivate estrogens or limit the amount of estrogens 

in the body. The drugs block steroid hormone action and this anti-hormonal effect stops cancer 

cell replication by alteration of the local hormonal supplies.  For example, tamoxifen is 

antiestrogen drug because it is inhibits of estrogen action that is required to reduce the level of 

bio-available of estradiol which is necessary for breast cancer cell to growth.  For the same 

reason the newest approach to angiogenesis therapy is to inhibit the formation of blood vessels 

which feed the tumor and contribute to the tumor growth. 

 



1.4.  Amines and Amides as Biological Active Agents 
 
           Many nitrogen containing compounds that occur in nature are amines.  Because of the 

natural occurrence and the basicity of amines these compounds are called alkaloids.  Many 

alkaloids such as morphine 2, the structure of which is shown in Figure 3, from Papaver 

somniferum (Figure 4) have demonstrated important biological activity(8).  Morphine is well 

known and widely used as an analgesics drug.  

O

N

OH

HO

CH3 

Figure 3:  Structure of Morphine (2) 

 

 

 

Figure 4:  Papaver Somniferum 
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Amines possess enhanced biological activity because of the lone pair of electrons on nitrogen 

which make these compounds basic and nucleophilic.  Since a wide variety of amides are known 

to have high biological activity and are useful as pharmaceuticals, one can also conclude that it is 

possible that the amide functionality is important.  Simple aromatic amides such as acetanilide 

(3), acetaminophen or Tylenol (4), phenacetin (5), benzamide (6), and salicylamide (7) are 

analgesics and antipyretic drugs.  Their structures are shown in Figure 5 below: 

 

HNCOCH3 HNCOCH3

OH

HNCOCH3

OCH2-CH3

(3) (4)

Acetanilide Acetaminophen Phenacetin

O

NH2

O

NH2

OH
(6) (7)

(5)

Benzamide Salicylamide  

Figure 5:  Structure of Some Important Pharmaceuticals That Are Aromatic Amides  
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There are many reports of amides being utilized such as antifungal and antiinflammatory 

agents(9), or for the treatment of blood diseases(10) .  For example  Nazumamide A (9), a 

thrombin-inhibiting linear tetrapeptide, isolated from a marine sponge Theonella species (Figure 

6) 

N
H

HN

H2N NH

HO

OH

O

O

N N
H

O

O

H3C
CH3

N
H

H3C

CO2H

 

Figure 6:  Structure of Nazumamide (9) 

 

Compounds containing the amide functionality have also been used to prevent and treat 

thrombo-embolic illness(11); obesity, anorexia, mental disorders, and diseases associated with the 

melanocortin receptors.(12) They also have used to reduce or prevent the formation of UV-

induced skin cancer(13) and to kill cancer cells in human patients(14). 

1.5.  Podocarpic Acid  
 
 Podocarpic acid (10) as shown in Figure 7(15), (16), (17) is a natural conifer resin acid that 

was first isolated by Oudemans in 1873(18)from Podocarpus cupressinu (Figure 8).  It also 

 7



extracted from the ”kahikatea” tree Podocarpus dacrydioides (Figure 9), and from the “rimu” 

tree Dacrydium cupressinum as shown (Figure 10). 

OH

CH3

CH3 HO2C

1
2

3 4
5

6
7

8
9

10

11
12

13

14

15 16

17

 
Figure 7:  Structure of Podocarpic Acid (10) 

 
 
 
 

 

Figure 8:  Podocarpus Cupressinus 
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Figure 9:  Podocarpus Dacrydioides 

 

 

Figure 10:  Dacrydium Cupressinum 

 

These forest trees are endemic to New Zealand and Java which are geographically shown in 

Figure 11: 
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Figure 11:  Global Map Distribution of Podocarpus Species (■) 

 

Podocarpic acid was extracted by methanol from the heartwood of the podocarpus 

species.  Podocarpic acid has been used in pharmaceutical(19) and other industries for variety of 

products such as soaps, adhesives, and paints(20).  Podocarpic acid is a very stable white solid 

material with a melting point of 1950C.  It contains two functionalities which are a carboxylic 

acid and a phenol. It is also a natural diterpenoid with tricyclic framework structure of 

phenanthrene.  The carboxylic acid moiety (11) is relative unreactive(21), (22) because of the steric 

hindrance due to the diaxial interaction with the C-10 methyl group as shown below in Figure 

12. 

OH

CH3
HO2C

CH3
H

2

3 4
5

6 7
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9
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12
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16
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1
15

 

Figure 12:  Conformation of Podocarpic Acid (11) 
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1.6.  Previous Studies of Biological Active Agents from Podocarpic Acid Derivatives 
 
 Podocarpic acid and its derivatives date back to 1948 as source of oestrogenic activity(23).  

Podocarpinol (12) as show in Figure 13 below is an example of one derivative that demonstrates  

this type of activity.  

CH3

O-R (R=H, CH3)

CH3  HO-CH2  

Figure 13:  Structure of Podocarpinol (12) 

 

Podocarpic acid has also been utilized since 1950 in the synthesis of antiinflammatory 

and antiviral agents as well as other derivatives(24), (25), (26) .  Also, a variety of novel compounds 

(27) containing the lactones and lactams (cyclic amides) have been synthesized from podocarpic 

acid.  Two examples of compounds synthesized from podocarpic acid are nimbiol(28) (13) and 

(+)-winterin(29)  (14), respectively (Figure 14 and 15). 
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CH3

OH

CH3

O

CH3H3C
 

Figure 14:  Structure of Nimbiol (13) 

 

O

CH3 H3C

O

O

 

Figure 15:  Structure of Winterin (14) 

 

In 1982, Hayashi et. al, synthesized of biologically active  dilactone (15) from podocarpic 

acid(30).  The structure of hydroxynagilactone is shown in Figure 16 below: 
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O

O

O

OH
CH3

H3C

O

CH3

CH3

 

Figure 16:  Structure of Hydroxynagilactone (15) 

 

In 1984, Parish and Miles investigated the antitumor activity of podocarpic acid 

derivatives(31) The compound  methyl-6α-bromo-7-oxo-O-methylpodocarpate (16) which  is  

shown in Figure 17 demonstrated the highest level of activity. 

OCH3

CH3

H3CO2C CH3 Br

O

 

Figure 17:  Structure of Compound (16)
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This compound demonstrated activity against human epidermoid carcinoma of the nasopharynx  

in vitro. Furthermore, in 1987, Parish et al synthesized several podocarpic acid derivatives(32) 

with fungistatic activity. The most potent of these derivatives is 11,13-dinitropodocarpic acid 

(17) whose structure is shown in Figure 18 below: 

 

OH

NO2O2N
CH3

CH3HO2C  

Figure 18:  Structure of Compound (17) 

 

Recently, as the result of these works on podocarpic acid derivatives above, in 1997, Eli 

Lily and Company was launched serious studies on many other new derivatives from podocarpic 

acid for treatment of viral infections with many patents(33), (34), (35).  The active compounds 

include isopropyl-O-methylpodocarpate (18) and methyl-O-6-en-7-oxo-methylpodocarpate (19), 

respectively (Figure 19 and 20). 
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OCH(CH3)2

CH3

H3CO2C CH3  

Figure 19:  Structure of Compound (18) 

 
 

OCH3

CH3

O

CH3H3CO2C
 

Figure 20:  Structure of Compound (19) 

 
 

In 1998, methyl-O-methylpodocarpate (20) (Figure 21) was reported to have antiviral 

properties. This compound inhibited multicycle replication in protein synthesis of influenza 

A/Kawasaki virus(36). 
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OCH3

CH3

CH3H3CO2C
 

Figure 21:  Structure of Compound (20) 

  

 In 2003, Adams et. al., prepared podocarpic derivative (21) (Figure 22) which were use 

as LXR agonists for treating dyslipidemic conditions such as depressed levels of HDL 

cholesterol(37). 

CN
H

O

OH

CH 3

CH 3

 

Figure 22:  Structure of Compound (21) 
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2.  RESULTS AND DISCUSSION 
 

The goal of this work was to synthesize a series of amide derivatives of podocarpic acid 

at C-13 of the aromatic ring (as outlined in Scheme 1) with R being hydrogen, an alkyl group, a 

vinyl group, or  an aryl group. 

OH

CH3

CH3
CH3H3CO2CHO2C

CH3

OCH3

(10) (22)

N-C-R
H

O

3 steps

 

Scheme 1:  Synthesis of Amide Derivatives from Podocarpic Acid 

 

As mention previously, amides are of interest in organic synthesis because of the 

potential for application in pharmaceutical industry.  It is known that aromatic amides can be 

prepared from aryl halides (38). The literature contains a reference to the reaction of aryl halides 

by using copper catalyst.  Some a hundred year ago Ullmann discovered the coupling of aryl 

bromide to form biaryl in 1903(39).  At the same time in 1906, Goldberg studied the reaction  

 17
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N-arylation of acetanilide on aryl bromide utilizing a copper catalyst(40).  However, these 

reactions required high temperature such as at 2000C, an aprotic solvent, and a large amounts of 

catalyst.  Also the yields were modest and the separations were difficult. 

 Recently, palladium catalyst were used in many applications(41), (42) for yield optimization.   

However the high cost of palladium catalysts and phosphine ligands made the industrial 

application uneconomical (43).  As the result, the search for an inexpensive copper catalysts for 

the reaction of coupling of aryl halide and amide was conducted(44), (45).  One advantage in 

comparison with palladium catalysts in that copper can be used under many different conditions 

such as high moisture and oxygen content such as we find it under normal atmosphere 

conditions.  The postulate for this work was if the reaction of 13-iodomethyl-O-

methylpodocarpate with an amide was successful that a general method for preparing amides 

derivatives of the aromatic system (phenolic) of podocarpic acid could be developed and could 

be applied to other iodides or halides as well.  Since copper catalyst is more versatile than 

palladium catalyst, the decision was made to utilize copper in an attempt to synthesize the novel 

amide derivative of podocarpic acid. 

The first step in this process was to methylate podocarpic acid utilizing dimethylsulfate 

by known methods(46) to form methyl-O-methylpodocarpate (23) as shown in Scheme 2: 



OH

CH3

CH3
CH3H3CO2CHO2C

CH3

OCH 3

(10) (23)

(CH 3)2SO4

 

Scheme 2:  Formation of Methyl-O-Methylpodocarpate 

 
Compound (23) formed (m.p. 1270C) in 82 % yield and was identical to methyl-O-

methylpodocarpate by comparison of the m.p. , IR, NMR, and MS spectrum with an authentic 

sample. 

Methyl-O-methylpodocarpate (23) was then reacted with iodine to form novel compound 

24 in 95 % yield as shown in Scheme 3. 

H3CO2C

CH3

CH3

OCH3

H3CO2C CH3

CH3

OCH3

I

(23) (24)

I2

Hg(AcO)2

 

Scheme 3:  Formation of 13-Iodomethyl-O-Methylpodocarpate 24
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In this reaction, mercury (II) acetate was used to form a precipitate of mercury (II) iodide and 

shift the balance of equation (1) to right: 

         2C19H26O3 + 2I2 + Hg(AcO)2  ↔  2C19H25IO3 + HgI2(s) + 2AcOH                               (1) 

 

Equation 1:  Reaction of Methyl-O-Methylpodocarpate with Iodine 

 

Compound 24 had a m.p. of 1490C.  The IR, 1H-NMR, 13C-NMR, and HRMS spectra of 

compound 24 are shown in Figure 23, 24, 25, and 26, respectively. 

 

           Transmittance, %. 

 

Wavenumbers, cm-1

Figure 23:  Infrared Spectrum of Compound 24 
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The IR spectrum of compound 24 displayed strong absorptions at 600 and 750 cm-1 for a C-I 

bond and an absorption for a carbonyl was present at 1720 cm-1.   Absorptions were present for 

an aromatic ring at 1600, 1500, and 1450 cm-1.  There was also a strong absorption at 1200 cm-1 

for a C-O bond which is present in the ether and ester moieties. 

 

 

(23) 

 

Figure 24:  1H-NMR Spectrum of Compound 24 
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Examination of the 1H-NMR spectrum of compound 24 (Figure 24) in CDCl3 showed the 

absenced of a aromatic ring proton in comparison with methyl-O-methylpodocarpate (23).  

Compound 24 showed two singlets at δ 6.65 (1H) and δ 7.45 ppm (1H).  (the peak at δ 7.25 ppm 

is due to the solvent CDCl3 in relative to chemical shift δ of TMS at 0 ppm).  The signals at δ 

3.85 (s, 3H) and 3.95 ppm (s, 3H) could be assigned to the two methoxy groups while the 

remaining protons had chemical shift values that were identical with those in the spectrum of 

compound (23). 

 

(23) 

 

Figure 25:  13C-NMR Spectrum of Compound 24
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The 13C-NMR spectrum (Figure 25) showed a significant downfield shift for the aromatic C-13 

carbon from 131 to 140 ppm.  This downfield shift is consistent with the presence of iodine at 

the C-13 position in the aromatic ring. 

 

Relative Abundance, %                                                                                             M+

 

Figure 26:  HRMS Spectrum of Compound 24

  

The HRMS spectrum from University of Nebraska shows the molecular ion M+ at m/z 

428.0844 as the base peak for formula C19H25IO3.  Figure 27 showed the fragmentation of 

compound 24.  The peak at m/z 381.0361 is represented as [M-47]+ and consistent with the lost 

of a methoxy group and a methyl group.  The peak at m/z 353.0405 is represented as [M-75]+ 

and is due to the lost of a carboxyl group and a methyl group.  Further fragmentation gave a peak 

at m/z 226.1359 and peaks at m/z 172.0886 and 115.0553.  The peak at m/z 286.9927 is 

represented by [M-141]+ which is the lost of an iodine atom and a methyl group. 
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Figure 27:  Possible Fragmentations of Compound 24



The IR, MS, and NMR evidence are consistent with the structure of compound 24 (13-

iodomethyl-O-methylpodocarpate) as shown in Figure 28. 

H3CO2C CH3

OCH 3

I
CH3

 

Figure 28:  Structure of Compound 24 

 

Compound 24 was then reacted with a variety of aliphatic and aromatic amides (as given 

in Table 1) in attempt to form an amide at the C-13 aromatic position according to the reaction 

illustrated in Scheme 4. 

Table 1:  Amides Utilized for Attempts Reactions with Compound 24 

 

Amide Formula 

Formamide H-CO-NH2

Acetamide CH3-CO-NH2

Propionamide CH3-CH2-CO-NH2

Butyramide CH3-CH2-CH2-CO-NH2

Acrylamide H2C=CH-CO-NH2

Benzamide C6H5-CO-NH2

Salicylamide o-HO-C6H4-CO-NH2
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Scheme 4:  General Reaction for Formation of Amide Derivatives of Podocarpic Acid 

 

Table 2:  Attempts to Synthesis of Amides P with Various R Groups 

 
R -H -CH3 -C2H5 n-C3H7 -CH=CH2 -C6H5 o-HO-C6H4-

Compound P 25 26 27 28 29 30 31

 

 
The general reaction involved mixing 1 molar equivalent of compound 24 with 1.5 molar 

equivalent of the corresponding amide, 0.1 molar equivalent of copper catalyst, 0.2 molar 

equivalent of N,N’-dimethylethylenediamine, and 2.5 molar equivalent of potassium carbonate 

in dioxane at 1000C in 24 hours.  When the reaction mixture was allowed to cool, a precipitate 

was obtained by vacuum filtration.  Open column chromatography was then performed with 100 

mesh silicagel in order to purify the reaction product.  The structure of each product was 

elucidated by IR, 1H-NMR, 13C-NMR, and HRMS spectroscopy as described in the following 

text. 
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 The reaction with formamide formed the new compound 25 (80 % yield) with a m.p. of 

1450C.  The IR, 1H-NMR, 13C-NMR, and MS spectra of compound 25 are shown in Figures 29, 

30, 32 and 33, respectively. 

 

Transmittance, % 

 

Wavenumbers, cm-1

Figure 29:  Infrared Spectrum of Compound 25

 

The IR spectrum of compound 25 showed one absorption at 3400 cm-1 which is consistent with a 

secondary amide.  The strong absorption at 1720-1700 cm-1 can be assigned to carbonyl groups 

of the ester and the amide.  Absorptions for the aromatic ring were present at 1600, 1500, and 

1450 cm-1.  A strong absorption was also present at 1200 cm-1 for a C-O bond of  the ether and 

the ester. 
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Figure 30:  1H-NMR Spectrum of Compound 25
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The 1H-NMR spectrum of compound 25 (Figure 30) shows two additional protons in comparison 

with the 1H-NMR spectrum of compound 24.  They were assigned as shown in Figure 31 and 

Table 3. 

N
HA

OCH3
HB

HC

CH3

CH3H3CO2C

C

O

HD

(25)  

Figure 31:  Proton Assignments of Compound 25

 

 

Table 3:  Proton Assignments of Compound 25 

 
Proton Chemical Shift δ, ppm 

HA 6.80 

HB 7.85 

HC 8.02 

HD 8.42 
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Figure 32:  13C-NMR Spectrum of Compound 25

 

The 13C-NMR spectrum of compound 25 displayed a new peak at 160 ppm which is consistent 

with the carbonyl carbon of an amide. The chemical shift of the aromatic carbons of compound 

25 were more downfield in comparison with compound 24. There were a total of 8 carbons with 

a chemical shift lower than 100 ppm for carbons of the aromatic ring and carbonyl groups.  The 
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spectrum gives a total of 20 signals that is consistent with the 20 non equivalent carbons found in 

compound 25. 

 

Relative Abundance, %        M+

 

Figure 33:  HRMS Spectrum of Compound 25

 

The HRMS spectrum of compound 25 shows a molecular ion m/z 345.1927 for a molecular 

formula of C20H27NO4. 
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  Relative Abundance, %         [M+1]+

m/z 

Figure 34:  Mass Spectrum of Compound 25 

 
 
The mass spectrum of compound 25 displayed a [M+1]+ peak at m/z 346.2.  The peak at m/z 

302.1 is represented as the methyl-O-methylpodocarpate ion as the result of the cleavage of N-C 

bond.  Further fragmentation gave the base peak at m/z 154.1 represented as [M-191]+ (Figure 

35). 
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Figure 35:  Possible Fragmentations of Compound 25

 

Therefore compound 25 is consistent with the structural assignment of 13-formamidomethyl-O-

methylpodocarpate (Figure 36). 
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Figure 36:  Structure of Compound 25

 

Compound 26 was formed in 90% yield and gave a m.p. of 1470C.  The IR, 1H-NMR, 

13C-NMR, and HRMS spectra of compound 26 are shown in Figures 37, 38, 40, and 41, 

respectively. 

 

Transmittance, % 

 

Wavenumbers, cm-1

Figure 37:  Infrared Spectrum of Compound 26 

 
The IR spectrum of 26 displayed a strong absorption at 3400 cm-1 which is consistent with a 

secondary amide.  The absorption 1680 cm-1 could be assigned to the amide. 
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Figure 38:  1H-NMR Spectrum of Compound 26
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The 1H-NMR spectrum of compound 26 shows one additional proton in comparison with 

compound 24.  Three singlets at δ 6.70 (1H), 7.60 (1H), and 8.00 (1H) were assigned to the three 

protons HA, HB, and HC respectively (Figure 36).  The signals for the methoxy groups at δ 3.85 

(3H) and 3.95 (3H) were relatively unchanged, but there was an additional a singlet at δ 2.20 

ppm which could be assigned to the protons of the acetyl group. 

OCH3

N C

O

CH3H3CO2C

CH3
CH3

HA

HC

HB

HA = 6.70 ppm

HB = 7.60 ppm

HC = 8.00 ppm  

Figure 39:  Proton Assignments of Compound 26 

 
 

The 13C-NMR spectrum of compound 26 in comparison with compound 24 is shown in Fig. 40. 
 

 
13C-NMR Spectrum of Compound 24
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Figure 40:  13C-NMR Spectrum of Compound 26

 

The 13C-NMR spectrum of compound 26 showed a new signal for the amide carbon at 168 ppm.  

Among the of 21 signals, there were 8 at a lower field than 100 ppm.  These can be assigned to 

the aromatic carbons, the ester carbon, and the amide carbon. 

 

Relative Abundance, % 

 

Figure 41:  HRMS Spectrum of Compound 26
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The HRMS spectrum of compound 26 showed a molecular ion at m/z 359.2096 which was 

consistent with a molecular formula of C21H29NO4.  The mass spectrum of compound 26 (Figure 

42) was displayed as [M+1]+ peak at m/z 360.2.  The peak at m/z 302.1 is represented as methyl-

O-methylpodocarpate ion as the result of the cleavage of N-C bond.  Further fragmentation gave 

the base peak at m/z 154.1 or [M-205]+ as shown in Figure 43, respectively. 

 

         [M+1]+

 Relative Abundance, % 

m/z 

Figure 42:  Mass Spectrum of Compound 26
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Figure 43:  Possible Fragmentations of Compound 26

 

Therefore, the compound 26 can be assigned as 13-acetamidomethyl-O-methylpodocarpate 

(Figure 44). 
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Figure 44:  Structure of Compound 26

 

Compound 27 was formed in 82% yield and gave a m.p. of 1490C.  The IR, 1H-NMR, 

13C-NMR, and MS spectra are shown in Figures 45, 46, 48, and 49, respectively. 

 

Transmittance, % 

   

Wavenumbers, cm-1

Figure 45:  Infrared Spectrum of Compound 27
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The infrared spectrum of compound 27 showed a significant absorption at 3400 cm-1 for the 

presence of a secondary amide.  There was an absorption at 1680 cm-1 for the amide carbonyl 

and one at 1720 cm-1 for the ester carbonyl.   Absorptions for the aromatic ring were presented at 

1600, 1540, and 1400 cm-1. Absorption for the C-O bond in the ether and ester were present at 

1220 cm-1. 
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Figure 46:  1H-NMR Spectrum of Compound 27
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The 1H-NMR of compound 27 shows 3 singlets at δ 6.70 (1H), 7.62 (1H), and 8.02 (1H) for 

three proton HA, HB, and HC respectively as shown in Figure 47.  The protons for the methoxy 

groups appeared at δ 3.85 (s, 3H) and 3.95 (s, 3H) .  The protons for the ethyl group appeared at 

δ 2.4 ppm for the methylene group and gave a signal at δ 1.1 (3H) for the methyl group. 
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N C
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CH3H3CO2C

CH3

HA

HC

HB

HA = 6.70 ppm

HB = 7.62 ppm
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Figure 47:  Proton Assignments of Compound 27

 

The 13C-NMR spectrum of compound 27 in comparison with compound 24 is shown in Fig. 48. 

 

24 

13C-NMR Spectrum of Compound 24
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Figure 48:  13C-NMR Spectrum of Compound 27 

 
Investigation the 13C-NMR spectrum of compound 27displayed a new signal at 172 ppm that 

could be assigned as an amide.  For structure of compound 27 there were eight carbons with the 

chemical shift downfield from δ 100 ppm with a total of 22 carbons. 

Examination HRMS of compound 27 (Figure 49) shows the molecular ion at m/z 373.2264 

which was consistent with a molecular formula of C22 H31NO4. 

 

Relative Abundance, 

%

 

Figure 49:  HRMS Spectrum of Compound 27
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The mass spectrum of compound 27 was displayed a [M+1]+ peak at m/z 374.2 (Figure 50).  The 

peak at m/z 302.1 represented the methyl-O-methylpodocarpate ion and is a result of the 

cleavage of N-C bond.  Further fragmentation gave the base peak at m/z 154 or [M-219]+ as 

shown in figure 51 below: 

 

 Relative Abundance, % 

            154    [M+1]+

m/z 

Figure 50:  Mass Spectrum of Compound 27
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Figure 51:  Possible Fragmentations of Compound 27

 

Therefore, the compound 27 can be assigned as 13-propionamidomethyl-O-methylpodocarpate 

(Figure 52). 
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Figure 52:  Structure of Compound 27 

 
 Compound 28 was synthesized in 85 % yield and gave a m.p. of 1500C.  The IR, 1H-

NMR, 13C-NMR, and MS spectra are shown in figures 53, 54, 56, and 57, respectively. 

 

 Transmittance, % 

 

Wavenumbers, cm-1

Figure 53:  Infrared Spectrum of Compound 28
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The spectrum of compound 28 displayed a strong absorption at 3400 cm-1 for a secondary amide. 

The absorption for an amide carbonyl was presentat 1680 cm-1 while an absorption for the 

carbonyl of ester was present at 1720 cm-1.  Absorptions for an aromatic ring were present at 

1600, 1500, and 1470 cm-1 while there was an absorption for the C-O bond at 1220 cm-1. 
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Figure 54:  1H-NMR Spectrum of Compound 28
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The 1H-NMR spectrum of compound 28 showed three singlets at δ 6.62 (1H), 7.82 (1H), and 

8.00 (1H) for the protons HA, HB, and HC (figure 53).  The protons of methoxy groups were 

present at δ 3.85 (3H) and 3.95 ppm (3H).  The  protons for the propyl group appeared at δ 2.20, 

1.90, and 1.60 ppm. 
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Figure 55:  Proton Assignments of Compound 28 

 
 
The 13C-NMR spectrum of compound 28 in comparison with compound 24 is shown in Fig. 56. 
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13C-NMR Spectrum of Compound 24
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Figure 56:  13C-NMR Spectrum of Compound 28 

 
The 13C-NMR of compound 28 gave a signal at 171.5 ppm for the amide carbon.  For the 

structure of compound 28, there were 8 carbons with the chemical shift downfield from δ 100 

ppm with a total of 23 signals.  New signals at δ 14 and 19.5 ppm which can be assigned to 

methyl and methylene groups of the propyl group. 

The HRMS spectrum of compound 28 (figure 56) showed a molecular ion at m/z 387.2411 

which was consistent with a molecular formula of C23H33NO4. 

 

Relative Abundance, % 

 

Figure 57:  HRMS Spectrum of Compound 28
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 Relative Abundance, %         [M+1]+

m/z 

Figure 58:  Mass Spectrum of Compound 28 

 
 
The mass spectrum of compound 28 was displayed as [M+1]+ peak at m/z 388.3.  The peak at 

m/z 302.1 can be assigned to the methyl-O-methylpodocarpate ion as the result of the cleavage 

of N-C bond.  Further fragmentation gave the base peak at m/z 154.1 as represented by [M-233]+ 

as shown in figure 59. 
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Figure 59:  Possible Fragmentations of Compound 28 

 
 
Therefore, the structure of compound 28 can be assigned as 13-butyramidomethyl-O-

methylpodocarpate (Figure 60). 
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Figure 60:  Structure of Compound 28

  

Attempts to synthesize aromatic (using benzamide and salicylamide) and vinyl (using 

acrylamide) derivatives of compound 24 gave no significant yields. 

In the summary the reaction of 13-iodomethyl-O-methylpodocarpate with aliphatic 

amides to form amide derivatives of podocarpic acid were in yields between 80 and 90 % has 

been developed.  In the contrast, reaction of 13-iodomethyl-O-methylpodocarpate with vinyl 

amide or aromatic amides were not successful because little or no product could be isolated.  

Perhaps this is due the reduction of the electrophilicity of the reactant amide because of the 

conjugation of the carbonyl of amide with double bond or aromatic ring as the results illustrated 

in table 4. Thus, this reaction seems to be selective for aliphatic amides.  

In short, five new compounds have been synthesized.  These compounds have been 

submitted to the NCI and NIAID for testing against 60 human cell lines.  Thus the potential 

exists that this work might result in a new drug lead for cancer treatment. 
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Table 4:  Yields of the Amidation Reaction of Compound 24 and Various Amides 

 

Amide H2N-CO-R R Yield, % 

Formamide -H 80 

Acetamide -CH3 90 

Propionamide -CH2-CH3 82 

Butyramide -CH2-CH2-CH3 85 

Acrylamide -CH=CH2 No significant yield 

Benzamide -C6H5 No significant yield 

Salicylamide o-HO-C6H4- No significant yield 

 

 
Thus, one novel iodo-derivative and four amide derivatives of methyl-O-methylpodocarpate 

have been synthesized.  Also a general methodology has been developed for the formation of 

aliphatic amide derivatives of aromatic systems such those found in podocarpic acid.  This 

method involves amidation reaction at 1000C in 24 hours with a molar equivalent of 1 to 1.5 

mole of aryl iodide to amide in basic medium in the present of copper iodide catalyst.  A small 

library of novel compound included one new iodo-derivative and four novel amides derived from 

podocarpic acid which will be tested for the biological active against cancer and tuberculosis
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3.  EXPERIMENTAL 
 

General Experimental Procedures 

 The following instruments were used to obtain physical data:  melting points were read 

on a MEL-TEMP apparatus, IR spectra were recorded on a Perkin Elmer Spectrum One 

spectrometer in CHCl3, 1H and 13C NMR spectra were obtained on a Varian Mercury 300 MHz 

spectrometer, and HRMS spectra were performed on Finnigan spectrometer from University of 

Nebraska Mass Spectrometry Center.  Silicagel (Selecto Scientific, 63-200 mesh) was used for 

open column chromatography. 

3.1.  Preparation of Methyl-O-Methylpodocarpate (23) 
 

50 g of crude podocarpic acid was weighed in a 300 mL beaker and 50 g of ice was 

added into it.  Then 50 mL of methanol was added to the beaker.  This mixture was stirred then 

added 24 g pellets of sodium hydroxide.  The solution was continually stirred to dissolve 

completely the podocarpic acid and sodium hydroxide, then it was cooled to 150C in an ice bath.  

42.5 mL of dimethyl sulfate was added into this solution in a period of 1 hour(47). At the end this 

period, this solution solidified.  This mixture was stirred for an addition of 30 minutes then added 

100 mL water then it was filtered.  The solid was dissolved in 100 mL water then filtered and 

dried to obtain 45g a white solid.  This solid was recrystallized to obtain 20 g of methyl-O-



 55

methylpodocarpate with m.p. of 1250C.  Yield 82%.  IR (Perkin Elmer Spectrometer, 

CHCl3):3000, 2950, 2900, 2860, 1720, 1600, 1540, 1490, 1460, 1400, 1360, 1300, 1240, 1200, 

1190,  

1150, 1060, 1020950, 760, 740 cm-1.  1H-NMR (Mercury 300 MHz):  6.95 (d), 6.8 (s), 6.65 (d), 

3.85 (s), 3.65 (s), 2.8 (m), 2.25 (m), 1.95 (m), 1.6 (m), 1.5 (m), 1.4 (m), 1.22 (m), 1,2 (s), 1.15 

(m), 1.05 (m), 1.00 (s) ppm.  13C-NMR (Mercury 300 MHz):  178, 158, 150, 130, 128, 114, 112, 

56, 52, 51,44, 39.5, 38, 31, 28, 25, 22.5, 20.5, 20 ppm.  MS:  302(44), 287(6), 228(16), 227(100), 

173(6), 170(23), 147(10), 121(6), 91(4). 

3.2.  Preparation of 13-Iodomethyl-O-Methylpodocarpate 24 
 

3.025 g of methyl-O-methylpodocarpate was weighed and transferred into a 500 mL 

volumetric flask, then it dissolved in 60 mL of acetic acid.  In a separated beaker, 2 g of mercury 

(II) acetate was weighed and dissolved in 60 mL of acetic acid, then this content was added into 

the flask above.  This solution was heated to 700C and stirred for 15 minutes.  A solution of 

iodine was prepared by dissolving of 7.614 g of iodine in 240 mL of warm acetic acid. This 

iodine solution was then added dropwise in a period of 45 minutes into the flask while the 

temperature maintained at 700C during this period.  At the end of this period, the solution was 

stirred for an addition 1 hour then cooled the flask to 150C in an ice bath, the solution was 

filtrated and the filtrate was added into 500 mL of cold water in a 1L beaker.  The resulting 

precipitate was filtered to yield 3 g of product.  The product was recrystallized from acetone to 

obtain 2 g of pure product with m.p.1490C, yield 95%.  IR (Perkin Elmer Spectrometer, CHCl3):  

3000, 2940, 2850, 2400, 1720, 1600, 1495, 1470, 1440, 1390, 1350, 1300, 1250, 1200, 1150, 

1050, 950, 900, 800, 750, 650 cm-1.  1H-NMR (Mercury 300 MHz):  7.45 (s), 6.65 (s), 3.95 (s), 
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3.85 (s), 2.70 (m), 2.20 (m), 1.95(m), 1.6 (m), 1.5 (m), 1.25 (s), 1.15 (m), 1.02 (s), 0.95 (m) ppm.  

13C-NMR (Mercury 300 MHz):  178, 156, 150, 140, 131, 108, 83, 56.5, 52.5, 52, 44,39, 38.5, 

32,31.5, 29.5, 23,21, 20 ppm.  HRMS (Finnigan Spectrometer):  428(100), 413(8), 381(3), 

368(3), 353(77), 313(4), 287(6), 272(6), 227(15), 211(4), 172(6), 140(5), 129(8), 115(6), 101(3), 

91(2). 

3.3.  Preparation of Acetamide
 
 50g of ammonium acetate was weighed and transferred into a 300 mL volumetric flask to 

which 60 mL of acetic acid was added.  The flask was heated and refluxed for 4 hours(49).  At the 

end of this period, the liquid inside the flask was distilled and collected the boiling fractions at 

2200C and above to obtain 25g of crude acetamide, yield 66%.  The product was recrystallized in 

acetone to yield 15g acetamide with m.p.750C (literature m.p. 790C(50).  IR (Perkin Elmer 

Spectrometer, CHCl3):  3680, 3510, 3480, 3410, 3350, 3190, 3000, 2940, 2900, 2860, 2390, 

1675, 1615, 1470, 1405, 1380, 1280, 1240, 1210, 1095, 1050, 1030, 980, 895, 780, 760,680, 580 

cm-1.  1H-NMR (Mercury 300 MHz): 2.3 (s), 5.8(s), 6.2(s) ppm.  13C-NMR (Mercury 300 MHz): 

20, 172 ppm.  

3.4.  Preparation of 13-Formamidomethyl-O-Methylpodocarpate 25
 
 0.1 g of copper (I) iodide was weighed into a 100 mL volumetric flask to which, then 

3.46 g of potassium carbonate was added.  This was followed by the addition of 0.34 g of 

formamide and 0.1 g of N,N”-dimethylethylenediamine.  In a separate beaker, 2.15 g of 13-

iodomethyl-O-methylpodocarpate was weighed and dissolved in 10 mL of dioxane. The content 

inside the beaker was poured into the flask and a magnetic stirring bar was added into this 

solution.  The mixture was stirred and a condenser was connected.  The mixture was heated at 



 57

1000C for 24 hrs.  The reaction mixture was allowed to cool.  The precipitate formed and filtered. 

The precipitate was washed with 100 mL of ethylacetate.  The filtrate was evaporated under 

vacuum to obtain a 2 g of a solid.  This product was purified on 63-200 mesh silicagel column to 

obtain 0.2 g of 13-formamidomethyl-O-methylpodocarpate with m.p.1450C.  Yield 80%.  IR 

(Perkin Elmer Spectrometer, CHCl3):  3680, 3620, 3410, 3010, 2960, 2920, 2400, 1700, 1640, 

1620, 1520, 1480, 1460, 1420, 1260, 1220, 1150, 1080, 1050, 990, 950, 790, 750, 680, 650, 480 

cm-1.  1H-NMR (Mercury 300 MHz):  8.42 (s), 8.02(s), 7.80 (s), 6.80 (m), 3.95 (s), 3.85 (s), 

2.80(m), 2.30 (m), 1.95 (m), 1.65 (m), 1.60 (m), 1.40 (m), 1.30 (s), 1.20 (s) ppm.  13C-NMR 

(Mercury 300 MHz):  178, 160, 147, 145, 128, 124.5, 120.5, 117.5, 56, 53, 53, 44.5, 40, 39, 38, 

32, 29, 23, 21.5, 20 ppm.  HRMS (Finnigan Spectrometer):  346(48), 345(12), 302(82), 300(43), 

219(24), 154(100). 

3.5.  Preparation of 13-Acetamidomethyl-O-Methylpodocarpate 26 
 
 0.1 g of copper (I) iodide was weighed in a 100 mL volumetric flask to which 3.46 g of 

potassium carbonate was added.  0.45 g of acetamide and 0.1 g of N,N'-dimethylethylenediamine 

were added into the flask.  These components were dissolved in 5 mL of dioxane.  In a separate 

beaker, 2.15 g of 13-iodomethyl-O-methylpodocarpate was weighed and dissolved in 5 mL 

dioxane.  The solution inside the beaker was then added into the flask and connected with a 

condenser.  The flask was stirred and heated at 1000C during a period of 24 hours.  The mixture 

was cooled to room temperature and 20 mL of ethylacetate was added.  The resulting precipitate 

was filtered and washed several times with 100 mL of ethylacetate.  The filtrate was evaporated 

under vacuum to obtain 1.8 g of a solid powder (90% yield).  This solid was purified by 

chromatography on 63-200 mesh silicagel column to obtain 0.3 g of 13-acetamidomethyl-O-
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methylpodocarpate with m.p.1470C.  IR (Perkin Elmer Spectrometer, CHCl3):  3660, 3400, 2990, 

2940, 2820, 1710, 1680, 1600, 1580, 1520, 1470, 1450, 1400, 1340, 1300, 1260, 1240, 1220, 

1180, 1140, 1070, 1020, 980, 890, 840, 780, 760, 680, 580 cm-1.  lH-NMR (Mercury 300 MHz):  

8.00 (s), 7.65 (s), 6.70(s), 3.95 (s), 3.85 (s), 2.80 (m), 2.20 (m), 1.95 (m), 1.65 (m), 1.50 (m), 1.35 

(m), 1.22 (s), 1.05 (m), 1.00 (s) ppm.  13C-NMR (Mercury 300 MHz):  178, 168, 146.5, 144, 128, 

125.5, 120, 107, 56, 53, 53, 44, 40, 39.5, 39, 32, 29, 25, 24, 22, 20.5 ppm.  HRMS(Finnigan 

Spectrometer):  360(22), 302(24), 284(90), 219(10), 242(100), 154(100). 

3.6.  Preparation of 13-Propionamidomethyl-O-Methylpodocarpate 27
 
 0.1 g of copper (I) iodide was weighed in a 100 mL volumetric flask to which 3.46 g of 

potassium carbonate was added.  0.55 g of propionamide and 0.1 g of N,N'-

dimethylethylenediamine were added into the flask.  These components were dissolved in 5 mL 

of dioxane.  In a separate beaker, 2.15 g of 13-iodomethyl-O-methylpodocarpate was weighed 

and dissolved in 5 mL dioxane.  The solution inside the beaker was then added into the flask and 

connected with a condenser.  The flask was stirred and heated at 1000C during a period of 24 

hours.  The mixture was cooled to room temperature and 20 mL of ethylacetate was added.  The 

resulting precipitate was filtered and washed several times with 100 mL of ethylacetate.  The 

filtrate was evaporated under vacuum to obtain 2 g of a solid powder in 82 % yield.  This solid 

was purified by chromatography on 63-200 mesh silicagel column to obtain 0.2 g of 13-

propionamidomethyl-O-methylpodocarpate with m.p.1490C.  IR (Perkin Elmer Spectrometer, 

CHCl3):  3660, 3400, 3010, 2960, 2890, 2850, 2380, 1720, 1680, 1610, 1595, 1520, 1490, 1470, 

1350, 1290, 1260, 1220, 1130, 1070, 1020, 980, 895, 850, 780, 760, 680, 590, 500 cm-1.  1H-

NMR (Mercury 300 MHz):  8.02 (s), 7.65 (s), 6.65 (s), 3.95 (s), 3.85 (s), 2.80 (s), 2.35 (s), 2.20 
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(m), 1.95 (m), 1.75 (m), 1.60 (m), 1.50 (m), 1.30 (s), 1.20 (s), 1,05 (s) ppm  13C-NMR (Mercury 

300 MHz):  178.2, 172, 146, 143.6, 128, 125.8, 120, 107.8, 56, 54, 52,44,40, 38.6, 38, 32, 31.6,  

28.8, 23.6, 21.8, 20, 10 ppm.  HRMS(Finnigan Spectrometer):  374(42), 358(5), 350(8), 302(56),  

300(30), 219(18), 154(100). 

3.7.  Preparation of 13-Butyramidomethyl-O-Methylpodocarpate 28 
 
 0.1 g of copper (I) iodide was weighed in a 100 mL volumetric flask to which 3.46 g of 

potassium carbonate was added.  0.66 g of butyramide and 0.1 g of N,N'-

dimethylethylenediamine were added into the flask.  These components were dissolved in 5 mL 

of dioxane.  In a separate beaker, 2.15 g of 13-iodomethyl-O-methylpodocarpate was weighed 

and dissolved in 5 mL dioxane.  The solution inside the beaker was then added into the flask and 

connected with a condenser.  The flask was stirred and heated at 1000C during a period of 24 

hours.  The mixture was cooled to room temperature and 20 mL of ethylacetate was added.  The 

resulting precipitate was filtered and washed several times with 100 mL of ethylacetate.  The 

filtrate was evaporated under vacuum to obtain 2.15 g of a solid powder in 85% yield.  This solid 

was purified by chromatography on 63-200 mesh silicagel column to obtain 0.3 g of 13-

butyramidomethyl-O-methylpodocarpate with m.p.1500C.  IR (Perkin Elmer Spectrometer, 

CHCl3):  3640, 3395, 3010, 2960, 2870, 2820, 2380, 1710, 1680, 1600, 1590, 1510, 1480, 1460, 

1410, 1380, 1300, 1260, 1210, 1140, 1080, 1040, 940, 880, 820, 790, 740, 685 cm-1.  1H-NMR 

(Mercury 300MHz):  8.00 (s), 7.62 (s), 6.65 (s), 3.92 (s), 3.82 (s), 2.80 (m), 2.22 (m), 2.15 (m), 

1.95 (m), 1.60 (m), 1.50 (m), 1.30 (m), 1.20 (s), 1.00 (m) ppm.  13C-NMR (Mercury 300 MHz):  

178, 171.5, 146.5, 143.2, 128, 126, 120, 107, 56, 53, 52,44, 40.5, 40, 38.8. 38, 32, 29, 23, 22, 

20.5. 19.5, 14 ppm.  HRMS(Finnigan Spectrometer):  388(30), 302(35), 219(10), 154(100). 
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3.8. Attempted Preparation of 13-Acrylamidomethyl-O-Methylpodocarpate 29
 
 0.1 g of copper (I) iodide was weighed in a 100 mL volumetric flask to which 3.46 g of 

potassium carbonate was added.  0.54 g of acryltamide and 0.1 g of N,N'-

dimethylethylenediamine were added into the flask.  These components were dissolved in 5 mL 

of dioxane.  In a separate beaker, 2.15 g of 13-iodomethyl-O-methylpodocarpate was weighed 

and dissolved in 5 mL dioxane.  The solution inside the beaker was then added into the flask and 

connected with a condenser.  The flask was stirred and heated at 1000C during a period of 24 

hours.  The mixture was cooled to room temperature and 20 mL of ethylacetate was added.  A 

solid precipitate was formed at the bottle of the flask.  The resulting precipitate was filtered and 

washed several times with 100 mL of ethylacetate.  The filtrate was evaporated under vacuum. 

However, no significant yield of the desired product could be isolated. 

3.9.  Attempted Preparation of 13-Benzamidomethyl-O-Methylpodocarpate 30
 
 0.1 g of copper (I) iodide was weighed in a 100 mL volumetric flask to which 3.46 g of 

potassium carbonate was added.  0.91 g of benzamide and 0.1 g of N,N'-

dimethylethylenediamine were added into the flask.  These components were dissolved in 5 mL 

of dioxane.  In a separate beaker, 2.15 g of 13-iodomethyl-O-methylpodocarpate was weighed 

and dissolved in 5 mL dioxane.  The solution inside the beaker was then added into the flask and 

connected with a condenser.  The flask was stirred and heated at 1000C during a period of 24 

hours.  The mixture was cooled to room temperature and 20 mL of ethylacetate was added.  The 

resulting precipitate was filtered and washed several times with 100 mL of ethylacetate.  

However, no significant amount of the desired product could be isolated. 
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3.10.  Attempted Preparation of 13-Salicylamidomethyl-O-Methylpodocarpate 31
 
 0.1 g of copper (I) iodide was weighed in a 100 mL volumetric flask to which 3.46 g of 

potassium carbonate was added.  1.03 g of acetamide and 0.1 g of N,N'-dimethylethylenediamine 

were added into the flask.  These components were dissolved in 5 mL of dioxane.  In a separate 

beaker, 2.15 g of 13-iodomethyl-O-methylpodocarpate was weighed and dissolved in 5 mL 

dioxane.  The solution inside the beaker was then added into the flask and connected with a 

condenser.  The flask was stirred and heated at 1000C during a period of 24 hours.  The mixture 

was cooled to room temperature and 20 mL of ethylacetate was added.  The resulting precipitate 

was filtered and washed several times with 100 mL of ethylacetate.  The filtrate was evaporated 

under vacuum to obtain a solid powder.  However, no significant amount of the desired product 

could be isolated from this powder. 
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