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ABSTRACT 
 

Femtosecond laser filamentation is a highly nonlinear propagation mode. When a laser 

pulse propagates with a peak power exceeding a critical value Pcr (5 GW at 800 nm in air), the 

Kerr effect tends to collapse the beam until the intensity is high enough to ionize the medium, 

giving rise to plasma defocusing. A dynamic competition between these two effects takes place 

leaving a thin and weakly ionized plasma channel in the trail of the pulse.  

When an ultrafast laser pulse interacts with molecules, it will align them, spinning them 

about their axis of polarization. As the quantum rotational wave packet relaxes, the molecules 

will experience periodic field-free alignment. Recent work has demonstrated the effect of 

molecular alignment on laser filamentation of ultra-short pulses. Revival of the molecular 

alignment can modify filamentation parameters as it can locally modify the refractive index and 

the ionization rate. In this thesis, we demonstrate with simulations and experiments that these 

changes in the filament parameters (collapse distance and filament plasma length) can be used 

to probe molecular alignment in CO2. 
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1 INTRODUCTION 
 

The ability of lasers to generate high intensity pulses of light has led to many advances 

in non-linear optics and physics. The development of these high peak power lasers led to the 

discovery of femtosecond laser filamentation in air [A. Braun 1995]. Filamentation is a dynamic 

balance between non-linear Kerr self-focusing and plasma defocusing. Since the initial discovery 

of filamentation there have been extensive studies in several different applications. A few of 

the proposed studies include triggering and guiding of lightning, weather control (droplet and 

snowflake generation), high voltage spark gap discharge, generation of THz, UV to IR ultra 

broad continuum, generation of shorter pulses, waveguide writing, kilometer range LIDAR and 

LIBS as filamentation can propagate for more than a kilometer while maintaining high 

intensities [A. Couairon 2007]. 

 During the past century there has been a significant study in the rotation and alignment 

of molecules. By studying the rotational properties of a gas through spectroscopy one can gain 

a plethora of information about the molecules’ properties. For example, the alignment of these 

molecules can play a role in the dynamics of a chemical reaction. John Kerr (1875) showed how 

molecules can be used in the realm of optics. It was demonstrated that one could rotate the 

plane of polarization by passing the light through an optical medium subject to an applied 

electric field [R. Gray 1935]. Since his discovery there have been substantial advances in 

molecular alignment. By using short pulses of light one can induce static-field-like conditions of 

molecular alignment [B. Friedrich 1995]. Using ultrashort pulses, on the order of 100 
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femtosecond, one obtains complex highly temporal dependent alignment after the pulse has 

interacted with molecules [T. Seidman 1995]. 

The research detailed in this thesis expands on the topic of ultrashort pulse alignment 

and filament interaction with aligned molecules. Due to the properties required to generate a 

filament, it is affected by the spatial and temporal dynamics of aligned molecules. This has led 

to the proposition of using a filament as a probe of the temporal molecular alignment features.  

This work is divided into 6 chapters. Chapters 2 and 3 will cover the introductory 

material of both filamentation (Chapter 2) and molecular alignment (Chapter 3). Chapter 2 will 

detail the physical mechanism and background information required to understand the 

filamentation process. Chapter 2 will also present various significant and related works in 

filamentation. Chapter 3 will cover the evolution of molecular alignment, from basic static fields 

to quantum mechanically rigorous ultrafast pulse interaction with molecules resulting in unique 

alignment capabilities. The experimental set-up used in this work is described in chapter 4. Our 

work in filament interaction with aligned molecules of CO2 will be detailed in chapter 5. Chapter 

6 will be the conclusion of this thesis.  
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2 FILAMENTATION 
 

2.1 Introduction 
The rise of high intensity lasers has led to many advances in non-linear optics and 

physics. The technique of chirped pulse amplification (CPA) allows for table top laser systems to 

have the capability of producing terawatts of peak power. CPA was first demonstrated by 

Mourou et al. in 1985. With the appearance of high peak power lasers, novel phenomena have 

been discovered and studied, such as ultra-short femtosecond laser filamentation. 

Femtosecond laser filamentation can be described as a dynamic balance between Kerr self-

focusing and plasma defocusing to generate a nearly non-diffracting beam. Filamentation in air 

was first documented by Braun et al. in 1995. After its initial discovery, there was a boom of 

studies in several directions of interest simultaneously, as seen in the reference list. Large 

ranges of application have been proposed for laser filamentation. A few of such applications 

include guiding and triggering of lightning, weather control (droplet and snowflake generation), 

high voltage spark gap discharge, generation of THz, UV to IR ultra broad continuum, 

generation of shorter pulses, waveguide writing, kilometer range LIDAR and LIBS as filament 

can propagate for more than a kilometer while maintaining high intensities [A. Couairon 2007]. 

From this list of filamentation capabilities, this work will only detail the continuum generation, 

THz generation, microwave and electron guiding, high voltage gap discharge, and molecular 

alignment effects. 
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2.2 Ultrashort High Intensity Pulse Generation 

2.2.1 Mode-locking 
One method to produce an ultrashort pulse, on the order of a few femtoseconds, is 

through mode-locking. For mode-locking, one requires a gain medium with a broad spectral 

gain to allow short pulses and a cavity that permits many modes to exist. The interference of 

the different longitudinal modes, with a fixed phase relation, will generate an ultrashort pulse 

of light[A. E. Siegman 1986]. The duration of the pulse is directly related to the spectral 

bandwidth. For a Gaussian pulse, the pulse duration, Δτ, and frequency bandwidth, Δν, are 

related through the time bandwidth product,  Δτ Δν = 0.441 [J. Verdeyen 1995].These pulses of 

light will appear as a pulse train [A. E. Siegman 1986]. There are two primary methods of mode-

locking, active and passive mode-locking. 

 Active mode-locking requires a variable gain or loss element, such as an acousto- or 

electro-optical modulator [A. E. Siegman 1986]. Either device would modulate the resonator to 

allow for periodic amplitude modulation of a chosen frequency. When a mode in the cavity is 

amplified, it will generate frequency side bands at the mode frequency ± the modulation 

frequency. These new frequencies will be amplified and generate their own sidebands 

respectively. This will continue until the entire gain frequency envelope of the gain material is 

amplified and phase locked. Another active method is synchronous pumping [A. E. Siegman 

1986]. In this case, the laser is pumped with another ultrashort laser, typically another mode-

locked laser. This technique requires that both laser cavities be identical. 

 Passive mode-locking uses a loss or gain element or/and geometry that is dependent on 

intensity, e.g. a saturable absorber [A. E. Siegman 1986]. A saturable absorber is placed inside 

the cavity, allowing for transmission of random high intensity spikes. The low intensity pulses 
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are not allowed to propagate in the cavity. As the random intensity spike continues in the 

cavity, it will be further amplified, increasing the intensity and contrast of the cavity. After a 

number of round trips, the laser produces a train of mode-locked pulses. Passive mode-locking 

allows for shorter pulse durations since they do not depend on the switching time of a 

modulator.  

2.2.2 Chirped Pulse Amplification 
The basic principle of chirped pulse amplification, CPA, begins with an initial pulse that is 

generated with an oscillator able to produce short pulses with a broad spectrum [Mourou 

1995]. By using a dispersive element (prism, grating, or grism) the pulse is temporally stretched 

by 3 to 5 orders of magnitude. This long pulse has a lower peak intensity, thus enabling the 

pulse to be amplified without damaging any of the optical components. After the stretcher, the 

pulse is then amplified by a factor of 106 and greater, depending on the amplifier system. Once 

the pulse is amplified, it must be temporally recompressed. This compression is usually 

achieved by using a series of gratings that match the inverse of the dispersion introduced by the 

stretcher. All lasers used in this dissertation work on this principle to generate pulses of ~100 to 

50 fs with energy from 1 mJ up to a few hundred mJ.  

2.3 Physics of Filamentation 
The emergence of high peak power lasers led to the discovery of femtosecond laser 

filamentation.  Filamentation is a dynamic balance between non-linear Kerr self-focusing and 

plasma defocusing. The resulting filament is filled with rich physics and applications.  
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2.3.1 Kerr Self-Focusing 
When an intense electromagnetic field interacts with a medium, it experiences a spatial 

and temporal intensity-dependent refractive index contribution, where the pulse shape is 

imprinted on the medium. For a pulse that is Gaussian spatially and temporally, the refractive 

index profile would also be Gaussian. The refractive index is modified according to equation 1. 

𝑛(𝑟, 𝑡) = 𝑛0 + 𝑛2 ∗ 𝐼(𝑟, 𝑡)      ( 1 ) 

For most materials, the non-linear contribution to the refractive index n2, is a positive 

contribution. Since n2 for air is about 5.6 * 10-19 cm2/W, it is primarily only a concern for ultra-

short high intensity pulses [S. L. Chin 2005]. However, for high intensity laser pulse, this 

addition to the index profile can lead to a beam that is able to overcome the spatial divergence 

due to diffraction; as it causes the beam to experience Kerr self-focusing.  As the beam focuses, 

the on axis irradiance increases, leading to stronger self-focusing, further increasing the 

irradiance and so on. Once the ionization irradiance threshold is reached, it can lead to a 

breakdown of the material, leading to ionization, as shown in figure 1. To determine the 

propagation length of the beam for the initial collapse, one can use the well approximated the 

semi-empirical formula, equation 3 [J. H. Marburger 1975]. Lc and LDF are the collapse length 

and the Rayleigh length of the beam, respectively. 

𝐿𝑐 = 0.367𝐿𝐷𝐹

�[�
𝑃𝑖𝑛
𝑃𝑐𝑟

�
1
2−0.852]2−0.0219

       ( 2 ) 

2.3.2 Plasma Defocusing 
Plasma contributes a negative focusing effect, which will diverge the beam. The index 

modification due to plasma follows equation 4 based off the Drude model [A. Couairon 2007]. 
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𝑛 ≃ 𝑛0 −
𝜌(𝑟,𝑡)𝑒2

𝜔0
2𝑚𝜀0

       ( 3 ) 

n is the plasma index of refraction, ρ is the electron density, e is the charge and m is the mass of 

an electron,  0 is the permittivity in vacuum, and ω0 is the center angular frequency of the 

laser. The primary ionization processes in the filamentation regime are multiphoton and 

tunneling ionization.  

Multiphoton ionization can be described as the process of a material simultaneously 

absorbing multiple sub-ionization energy photons to free an electron. Oxygen, which is the 

easiest component of air to ionize, requires approximately 13.6 eV [C. Cornaggia 2000]. For a 

laser at 800 nm, this would require about 8 photons, 800 nm ≈ 1.55 eV. The self-focusing beam 

will ionize oxygen before nitrogen due to its lower ionization potential energy, 13.6 eV verses 

14.5 eV. The rate of ionization scales as IK, where K is the number of photons required to induce 

ionization. Tunneling ionization distorts the atomic energy levels of the material increasing the 

probability for an electron to tunnel through the material. Laser filamentation is on the edge of 

the intensity of the two regimes, multi-photon and tunnel ionization, and one or the other 

should be considered as the predominant phenomena as function of the experimental 

condition. 

The reported values of filamentation plasma density experimentally measured and 

theoretically calculated from different groups vary greatly from 1012 to 1018 cm-3 , depending on 

the filamentation conditions, such as the use of a lens to accelerate the apparition of 

filamentation [B. La Fontaine 1999, H. Schillinger 1999, S. Tzortzakis 2000, F. Théberge 2006, Y. 

H. Chen 2010]. There are several factors that contribute to this wide range of values including 

measurement techniques, single vs. multiple filaments, focusing conditions, gases used, and 



8 
 

pulse duration. The generation of plasma leads to the defocusing of the intense laser beam, 

then the dynamics competition between Kerr focusing and plasma defocusing clamps the 

maximum intensity a filament can contain, see figure 1 [S.L. Chin 2002]. If the power of the 

beam is above the critical power, Pcr, the nonlinear self-focusing is able to overcome the 

divergence [J. H. Marburger 1975]. 

𝑃𝑐𝑟 = 3.72𝜆02

8𝜋𝑛0𝑛2
        ( 4 ) 

λ0 is defined as the center wavelength of the spectrum of the pulse of light. This critical 

power is valid for a Townes beam profile. For a standard Gaussian beam, the constant of 3.72 

would be replaced by 3.77. A linearly polarized pulse with a duration of 100 fs centered at 800 

nm leads to a clamping intensity approximately equal to the critical power of about 1.8 * 1013 W 

cm-2.  

 

Figure 1 Filamentation propagation dynamics 

 

2.3.3 Multiple Filaments 
 As explained in the previous section, a high intensity pulse with the critical power for 

filamentation, Pcr, undergoes collapse due to Kerr effect and then starts the process of 
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filamentation by generating plasma that adds the defocusing effect to the propagation 

dynamics.  However, if the peak power of the laser beam is more than twice the critical power 

Pcr, the beam will split into multiple filaments rather than one filament due to intensity 

clamping limiting the amount of energy that can be injected into one plasma channel. The 

beam will, in this case, form multiple plasma channels that usually spring from the hot spots, 

regions of high intensity in the beam profile. As the appearance of those high intensity regions 

are usually not manufactured, the process emerges from the noise of the beam profile or 

turbulence during the linear propagation, rendering the position of the multi-filament inside 

the beam profile unstable from shot to shot. Solutions to control the position of those multi-

filaments inside the beam profile has been developed inside the LPL team and other 

researchers [D. Walter 2007, H. Takahashi 2007, T. Grow 2006, E. Matsubara 2007]; by adding a 

predetermined phase to the beam, multi-filaments structured were engineered [N. Barbieri 

2011]. 

Even for a perfect linearly polarized Gaussian beam profile, multiple filaments will still 

form if the beam has enough energy [G. Fibich 2003]. It has been shown that circular 

polarization with a perfectly circularly symmetric profile theoretically will suppress multiple 

filaments, allowing for a high energy filament [G. Fibich 2003, N. A. Panov 2011]. Perfect beam 

profiles do not exist realistically but it has been shown experimentally how circular polarization 

can reduce multiple filaments by lowering the effect of n2, and improve pointing stability [A. 

Trisorio 2007].   
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2.3.4 Continuum Generation with Filamentation 
 Filamentation is a complex highly nonlinear system that allows for several frequency 

generation processes to occur. Filamentation strongly spectrally broadens the pulse through 

self-phase modulation, ionization, and self-steepening [A. Couairon 2007]. Self-phase 

modulation stems from the temporal Kerr effect of self-focusing. In the section on the Kerr 

effect, only the spatially dependent focusing effect was highlighted, however, the index of 

refraction profile is dependent on both the spatial and temporal profile of a pulse. In a normal 

dispersion Kerr medium, the front of the pulse will generate red frequencies whereas the 

trailing edge will produce blue frequencies. For a transform limited pulse, the spectrum will 

become chirped, broadening the pulse. If the spectrum is down chirped, the spectral phase 

modulation can cause spectral compression depending on the dispersion regime the material is 

in (normal or anomalous).  

In addition to the process of self-phase modulation, the spectrum of the filamenting 

beam will also be influenced by the multiphoton ionization, which has been shown to spectrally 

blue shift the spectrum of a pulse [M. Kolesik 2003]. Another spectral change of the filamenting 

beam is due to self-steepening; which is the result of the effect from a Gaussian pulse peak 

slowing with respect to the group velocity, allowing the trailing portion to catch up. This causes 

a steep edge in the trail of the pulse, leading to the trailing edge to experience a stronger Kerr 

effect, and thus generating more blue frequencies than red [Rothenbeg 1992].  

 Filaments have been shown to generate ultra-broad spectra that can expand from 0.2 to 

8 μm in fluoride glass [Meisong Liao 2013]. There have been several efforts to extend the 

supercontinuum generation to higher frequencies, such as using a 40 fs pulse and third 

harmonic generation for 230 nm emission [N. Aközbek 2003]. Few cycle pulses, ~6 fs, are able 
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to extend the spectrum to 210 nm [N. Aközbek 2006]. Other novel techniques for 

supercontinuum manipulation include molecular alignment assistance [H. Zeng 2009, H. Zeng 

2010], anomalous dispersion for extreme blue shifted peaks [M. Durand 2013], using 100 TW 

pulses for 1 Joule of white-light continuum [J.P. Wolf 2011], and even using human saliva for 

continuum suppression [S. Chidangil 2007]. 

The supercontinuum generation, is emitted as a conical emission. This is one of the most 

recognized signatures of filamentation. It consists of a white center where the supercontinuum 

is located with an inverted rainbow-like distribution, the reds being more centralized and the 

blues located further on the outer rings, as seen in figure 2. There have been several different 

theories to explain conical emission including Cerenkov radiation [E. T. J. Nibbering 1996], X-

waves [P. Maioli 2009, P. Di Trapani 2007], and four wave mixing [G. G. Luther 1994, T. Fuji 

2012].  

 

Figure 2 Conical emission from filament propagation in the normal dispersion regime [M. Durand 2011] 
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2.3.5 THz Generation 
It has been observed that the plasma created from filaments can generate 

electromagnetic radiation in the THz frequencies. THz is a useful frequency range for 

spectroscopy, fundamental physics, and imaging. Many molecules have rotational and 

vibrational transitions in this frequency range. Since THz has low photon energy, it can 

penetrate many materials and not damage/alter biological tissues. Propagation of THz radiation 

over long distances in air is difficult due the water absorption in the atmosphere having strong 

absorption in the THz band. Filaments are a potential solution to this problem since they are 

able to project energy well past the diffraction limit [G. Méchain 2005]. The plasma from the 

filament can then be generated near a target, in turn producing the desired THz to probe the 

chosen target.  

S. Tzortzakis et al. (2000) were first to show that filaments generate THz in the 

transverse direction of the filament. Cheng et al. (2001) proposed that the charge separation 

due to the radiation pressure is what leads to radial THz generation. Then a more intense 

forward emission was discovered and was explained in terms of Cherenkov radiation [D’Amico 

2007]. The proposed Cherenkov radiation was generated by the ionization-front reaching 

superluminal velocities [Sprangle 2004]. If a plasma string was infinite in length, it would be 

unable to generate THz. Thus the inherent finite length of the filament plasma is required and 

determines the emission angle [D’Amico 2008]. A more detailed explanation of single color 

filament THz generation can be found in D’Amico et al. (2008).  

 In order to enhance the generation of THz from a filament, a local electric field to 

accelerate the electrons can be created by using a “two-color” filament. In order to create a 

two-color filament, one must pass the beam through a nonlinear frequency doubling crystal 
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such as beta barium borate (BBO). The beam will then contain both the fundamental frequency 

and the second harmonic frequency pulses with different polarizations. In order to compensate 

for the polarization difference and dispersion, one must place wedges and a dual wavelength 

wave plate in the beam path, as shown in figure 3. The two main models for two-color 

filaments are four-wave mixing and the photo-current model. The four-wave mixing is based on 

third order nonlinearity, a thorough explanation can be found in these references [D. J. Cook 

2000, M. Kress 2004, T. Bartel 2005, X. Xie 2006]. The photo-current model points to the free 

electron drift current between the fundamental and the second harmonic frequencies for THz 

generation [K. Y. Kim 2008, N. Karpowicz 2009]. T. J. Wang et al. (2010) showed that the THz 

generation was not changed by applying an external DC electric field across the filament. That 

experiment may indicate that the four-wave mixing is the dominate mechanism for THz 

generation, but more experiments are required to separate the contributions from each model 

[T. J. Wang 2010].  

 

  

Figure 3. Two-color filament for THz generation setup [J. Dai 2010] 
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2.3.6 Guiding with Filamentation 

 Filamentation has unique properties that gives it advantages for guiding; e.g. 

overcoming the Rayleigh diffraction limit and cylindrically symmetric plasma columns, such as 

electron guiding, microwave guiding, and controlled electrical discharge. One specific example 

of electron guiding involves laser wake-field plasma acceleration. LWFA, laser wake-field 

plasma acceleration, uses ultra-high intense electric fields and generates high energy electrons 

whose energy can be limited by electron dispersion and diffraction. An in depth review of laser 

induced electron acceleration can be found in [E. Esarey 2009]. C. G. R. Geddes et al. (2009) 

were able to use filamentation plasma channels to overcome the Rayleigh range by a factor of 

ten. They created a plasma column with a 60 fs, 15 mJ pulse of which was heated via inverse 

Bremsstrahlung with a 250 ps, 150 mJ pulse. A 55 fs, 500 mJ was then focused at the edge of 

the plasma with an intensity of 1.1 * 1019 W cm-2. They were able to produce electrons with 

MeV of energy that were only tightly confined with narrow energy deviation while the 

filamenting plasma column was present.  

 Microwave guiding with filaments can be achieved by several techniques and filament 

geometries. For single filaments, the microwave radiation propagates as a surface wave down 

the column of plasma [Y. Ren 2013]. Theoretically, the multiple filaments could be arranged in a 

guiding structure similar to a fiber. The microwaves would be confined to an effective medium 

structure that allows for reflection off the plasma wall permitting propagation over long 

distances [Z. Kudyshev 2013].  The microwave guiding efficiency is determined by the number 

of filaments and their geometric configuration. By using a hollow core fiber geometry, 

microwave radiation from millimeter to centimeter can be guided [M. Alshershby 2012]. In 

addition to the microwaves ability to be guided, the microwaves could be used as a diagnostic 

http://publish.aps.org/search/field/author/E.%20Esarey
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tool for the filaments themselves. The microwaves, for example, could be used to determine 

the effective plasma density.  

 Filamentation is a possible solution to man’s desire to control lightning. Experiments 

have shown that by propagating a filament with a high voltage electrical discharge, one can 

direct the electric discharge to a desired path, e.g. figure 4 [P. Rambo 2001, M. Rodriguez 2002, 

A. A. Ionin 2012, B. Forestier 2012, M. Henriksson 2012, S. B. Leonov 2012]. Triggering electrical 

discharges has been performed since the 1970’s using nanosecond pulses, but was limited due 

to the discontinuous plasma columns and plasma’s inherent absorption [S. Uchida 1999]. Soon 

after the discovery of filamentation, filaments were used for guiding high voltages to create 

short circuits [X. M. Zhao 1995]. The guiding capabilities have been shown to last for periods up 

to a few microseconds after a filament [B. La Fontaine 2000]. Through the ionization of the air, 

the filament decreases the distance of a gap for the high voltage discharge by 50% in 

comparison to spontaneous discharge [H. Pepin 2001]. Though both single filaments and 

multiple filaments will induce electrical discharges, it was shown that the minimum threshold 

for breakdown did not increase with the number of filaments, but the discharge path length 

was shown to increase [K. Guo 2012].  
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Figure 4. Raw image by S. B. Leonov et al. (2012) of filamentation induced high voltage electrical discharge 

 

In the following section, the role of molecular orientation will be detailed in the ways 

that the filamentation process can be affected. Controlling molecular orientation can have 

many beneficial effects, including, but not limited to: increasing plasma density and length [S. 

Varma 2012], affecting THz generation [M. Durand 2010], frequency shifting [J. Wu 2009], and 

pulse duration dependent non-linear index of refraction [J.-F. Ripoche 1997]. 
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3 MOLECULAR ALIGNMENT 
 

3. 1 Introduction 
Electromagnetic radiation can interact with the internal degrees of freedom of a 

molecule, such as the electronic, vibrational, and rotational states. As an example, figure 5 

shows the different energy levels of a diatomic molecule. The resonant rotational wavelengths 

are much longer than the vibrational or electronic resonances. Rotational wavelength 

resonances are between 300 μm to 30 cm (4.1 μeV – 4.1 meV, 1 GHz to 1 THz) in comparison to 

4 – 50 μm (310 meV – 24.8 meV, 2500 - 200 cm-1 ) for vibrational and < 1 μm for electronic 

resonances.   

 

Figure 5. Typical energy levels of a diatomic molecule. 

 

The classical energy of rotation is defined in equation 5. I is the moment of inertia [kg 

m2], ω is the angular frequency [s-1], and L is the angular momentum [J s]. 
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𝐸𝑟𝑜𝑡 = 1
2
𝐼𝜔2 = 𝐿2

2𝐼
       ( 5 ) 

This approach of rotation is only valid for classic macroscopic objects. Therefore, when 

considering molecules, one must switch to the quantum mechanical treatment.  From the 

Schrödinger equation, only quantized rotational energy states are allowed. These eigenmodes 

are what determine the possible energy configurations of a system, equation 6 [D. Griffith 

1995]. 

𝐸𝑟𝑜𝑡
𝐽 = 𝐽(𝐽+1)ℏ2

2𝐼
= 𝐽(𝐽 + 1)ℏ𝜔𝑟𝑜𝑡      ( 6 ) 

Here EJ
rot is the rotational energy with respect to J. J is the total angular momentum quantum 

number, ħ is the reduced Plank’s constant, and ωrot is equal to ħ/2I. Each eigenmode is 

associated to an eigenfuction, i.e. rotational wavepacket. Figure 6 shows the rotational 

spectrum of CO at 300 K [S. Mackenzie 2012]. The transmission lines are in the microwave 

region, between 1 cm and 100 μm. The lines are spaced by 3.86 cm-1
 corresponding to twice the 

rotational constant of CO, 1.93 cm-1 in the ground state.  

 

 

Figure 6. Rotational spectrum of CO at 300 K [S. Mackenzie 2012]  
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The rotational period of a molecule depends on its reduced mass and equilibrium 

nuclear distance. For a non-symmetric molecule there are three axes of rotation. Each of these 

axes has their own constant of rotation, A, B, C. The number of axes for linear molecules 

reduces to one degenerate axis of rotation, B.  One can calculate the rotational constant, B0, for 

a linear molecule using equation 7 in the approximation of the rigid rotor. Once the B0 is known 

one simply applies it to equation 8 to obtain the rotational period of the molecule. For example 

N2 or O2 rotational constants are 2.01 and 1.45 cm-1, and thus have rotational periods of 8.3 and 

11.6 ps respectively [N. Xu 2008].  

𝐵0 = ℏ
4𝑐𝑀𝑅𝑒2

       ( 7 ) 

𝜏𝑟𝑜𝑡 = 1
2𝑐𝐵0 

       ( 8 ) 

For the equations above, the constants B0 [cm-1], τrot [s], ħ [Js], c [cm/s], M [kg], and Re [cm] 

represent the rotational constant, rotational period, reduced Planck’s constant, speed of light, 

the molecule’s reduced mass, and the equilibrium nuclear distance, respectively.   

If one wants to align molecules, there are several techniques that have been used. The 

relevant time scales for molecular interactions are shown in figure 7. Molecules that have an 

intrinsic or induced dipole moment can align in an electric field. The dipole moment is 

proportional to the electric field and the polarizability. The polarizability, α, is a second rank 

tensor, as such it allows for anisotropy in the different axes. This polarizability permits a 

molecule to have different induced dipole moments in the molecule’s axes. In the case of a 

linear molecule the polarizability difference, Δα, is the difference between the parallel axis 

polarizability and the perpendicular axis polarizability with respect the molecules orientation 
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with the electric field. Molecules without an intrinsic dipole can still be aligned by inducing a 

dipole. The induced dipole results from the polarizability of the molecule interaction with the 

electric field. The electric field will rearrange the electron distribution to induce a dipole. One 

can use the torque exerted on a molecule’s dipole from the electric field to rotate the molecule. 

For example, by applying an electric field to liquid crystals the molecules rotate to align their 

dipoles with the direction of the electric field. This work will focus on the alignment of gases, 

which have more rotational freedom than liquids or solids.  

 

 

 Figure 7. Relevant time scales for molecules  

 

But there is a limit to the strength of static fields that can be used to align molecules. Air 

molecules will experience dielectric break down and ionize with fields greater than dielectric 
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strength of air, approximately 3 kV/mm [J. R. Dwyer 2003]. There is also a technical limit for 

producing the required field strengths. Another method of alignment that is capable of 

producing strong electric fields involves using an electromagnetic pulse. One can study the 

interaction of the molecules and an electric field in the Hamiltonian formalism. By using the 

rigid rotor eigenstates, the field-free and field interaction Hamiltonians, H0 and Hint, can be 

written as 

𝐻0 =  ∑ 𝜀𝐽|𝐽𝑀 >< 𝐽𝑀|𝐽𝑀       ( 9 ) 

 

𝐻𝑖𝑛𝑡 =  −1
4
𝐸(𝑡)2 ∑ �∆𝛼 < 𝐽𝑀|𝑐𝑜𝑠2(𝜃)|𝐽′𝑀 > |𝐽𝑀 >< 𝐽′𝑀|

+𝛼+|𝐽𝑀 >< 𝐽𝑀| �𝐽 𝐽′𝑀   ( 10 ) 

 

with J = B0J(J+1) the energy eigenvalues in the rigid rotor approximation, E(t) the electric field 

pulse envelope, Δα = α∥ – α+ the polarizability anisotropy (difference in polarizability of the 

different axes), J is the total angular momentum quantum number, M the quantum number of 

the projection of angular rotation states on J, and <cos2θ> represents the expectation value for 

the degree of alignment of the molecules. The angle θ used is defined as the angle between the 

molecular dipole axis and electric field polarization, figure 8. 
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 Figure 8. The angle θ is defined as the angle between the polarization axes of the electric field and the molecular 
dipole vector axis  

The orientation of molecules is dependent on the relationship of each molecule having 

the same atom in the same angular position with respect to the electric field and other atoms in 

the molecule. The alignment is simply the amount the molecule aligned with the electric field 

polarization. See figure 9 for a visual representation of orientation versus alignment. The 

<cosθ> value corresponds to the expectation value for the degree of orientation of the 

molecules. A <cosθ> value equal to zero represents the molecules lying perpendicular to the 

electric field. <cosθ> = {1, -1} is when the molecular dipole axis is in the same plane as the 

polarization of the E-field. The dot product of the dipole and electric field determines the sign 

of <cosθ>. An isotropic distribution of the molecular axes gives <cos2θ> a value of 1/3. <cos2θ> 

values of 0 and 1 correspond to perpendicular and parallel alignments of the molecular and 

polarization axes, respectively. 
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Figure 9. Example of alignment configurations for diatomic molecules placed in an external electric field. a) The left 
cartoon represents when the molecular axis is aligned perpendicular to the electric field. The middle and right 

cartoon are parallel with the electric field. The positive and negative signs denote if the molecular dipole is 
orientated with or opposite the electric field. b) The left, middle, and right cartoons signify perpendicular, 

isotropic, and parallel alignment. 

 

 Collisions and temperature play a significant role in the alignment of molecules. After 

the molecules have interacted with the electric field and are in a field free condition, the 

inelastic collisions lead the molecules to lose their alignment and return to equilibrium [S. 

Ramakrishna 2006]. By comparison, the molecules in liquids can too be rotated by electric 

fields. The alignment is limited by the many collisions and the coupling to the surrounding 

molecules. Therefore, the spectral features of the liquid will experience high dampening and 

broadening due to these collisions. This can be explained through the Debye model of liquids 
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[P. Debye 1929]. On the contrary, gases do not have many interactions and are weakly coupled, 

thus have longer periods of alignment before returning to equilibrium conditions.  

The other factor that plays a significant role in the alignment of molecules is the 

temperature. The temperature of the system will populate the rotational energy levels in a 

Boltzmann distribution [Nan Zu 2008, T. Seideman 1995], figure 10. Molecules with highly 

populated rotational energy levels will be more difficult to align as the electric field must be 

able to overcome their angular momentum. High temperature gases would then require 

stronger electric fields. In order to have more uniform alignment, the molecules must have low 

rotational temperatures (< 10 K).  One method to control the rotational temperature is through 

supersonic expansion [J. B. Anderson 1966, H. Haberland 1985]. As the molecules expand into a 

vacuum they experience collisions that limit the rotational angular momentum to only be 

aligned favorably orthogonally to the direction of flight [V. Aquilanti 1999].  

 

Figure 10. Normalized Boltzmann distribution of the rotational energy levels, J, of N2 at atmospheric pressure  
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3.2 Static Field Alignment 
Static electric fields allow for the manipulation of both the alignment and the 

orientation of molecules. The hexapole focusing technique aligns symmetric top molecules 

through the first order Stark effect [M. Härtelt 2008, D. Parker 1989]. Hexapole focusing is 

based upon the principle of rotational selection. A symmetric polar molecule placed in an 

electric field, E, and can be described by its |JKM> states. J is the quantum number of the total 

angular momentum without nuclear spin, K is the projection of the rotational momentum on J, 

and M is the projection on the space-fixed axis of J. The average molecular alignment about the 

polarization of E is shown in equation 11 [B. Friedrich 1991, D. Parker 1989]. 

< 𝑐𝑜𝑠𝜃𝜇,𝐸 > = 𝐾𝑀/𝐽(𝐽 + 1)      ( 11 ) 

θ is the angle between the electric field E and the dipole moment μ. If the field E has a radial 

component, the force on the molecule is 

𝑭𝒓 = −𝜕𝑊
𝜕𝑟

= 𝜇𝑒𝑓𝑓 �
𝜕𝑬
𝜕𝑟
� ≈ 𝜇 < 𝑐𝑜𝑠𝜃 > �𝜕𝑬

𝜕𝑟
�    ( 12 ) 

W is the work [J], μeff is the effective dipole = -(∂W/∂|E|) and for molecules that are symmetric 

and polar it is equal to μ<cosθ>. All of the molecules with the same J, K, and M states will have 

identically the same rotational energy and thus have the same degree of alignment. The 

molecules in an octahedral field were able to have the ground state density confined to the 

polarization axis even with the enhanced alignment from an intense laser pulse [T. Kiljunen 

2005]. This allows for preparing suitably aligned precursor states to efficiently control 

subsequent direction-dependent reaction mechanisms [T. Kiljunen 2005]. The “straight 

forward” technique uses a strong static field. This technique can only be applied to polar 

molecules. When the molecules are placed in a DC electric field, the field strength must be able 
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to overcome the rotational energy to align the molecules [B. Friedrich 1991, M. Wu 1994]. The 

molecules that are better suited for this method are supersonically cooled and possess a 

significant dipole moment. Both of the static field techniques allow not only alignment but also 

orientation of molecules with respect to each other [B. Friedrich 1991, D. Parker 1989]. An 

interesting application of the DC electric field alignment was their use to grow aligned multi-

wall carbon nanotube networks in epoxy composites [C.A. Martin 2005]. 

3.3 Adiabatic Alignment 
The success of DC alignment suggested that molecular alignment can be induced using 

an alternating electromagnetic field. One of the primary advantages of using a laser pulse stems 

from the fact that the field strength required to exert an adequate torque on a molecule, that is 

either polar or nonpolar, can be easily achieved. In the limit of adiabatic alignment, the ability 

to align molecules with lasers was first shown by B. Friedrich et al. (1995). Adiabatic alignment 

corresponds to the case, where the pulse duration of the laser is larger than the duration of the 

rotational period of the molecule. Due to the strong field associated with the laser pulses, the 

molecule can obtain an induced dipole moment. This allowed nonpolar molecules without a 

permanent dipole to be aligned. Figure 11 is an example of enhanced alignment only during the 

duration of the pulse. They can only be aligned and not orientated due to their lack of a 

permanent dipole [H. Sakai 1999].  
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Figure 11. Adiabatic alignment dependence on the pulse duration [T. Seideman 1995]  

 

The simplest method of alignment is the use of a CW electromagnetic signal from a 

laser. The eigenstates of Hamiltonian will evolve according to the Hamiltonian of a molecule in 

a field of constant irradiance. In this case one does not have to consider the dissipative dynamic 

effects. As a result of the pulse duration being larger than the rotational period the Hamiltonian 

will only evolve within the temporal duration of the pulse. After the pulse has passed, “turned 

off”, the Hamiltonian will return to the standard isotropic field-free state.  Due to the effects 

only being present when the pulse is directly interacting with the molecule, the problem can be 

reduced to the intensively studied problem of inducing pendular states from a continuous field 

[T. Seideman 1995]. For adiabatic alignment, the molecules’ eigenstates, the pendular states, 

consist of a superposition of the field-free rotational states [B. Friedrich 1995]. The eigenstates 
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are termed pendular states since the molecules move about the polarization axis rather than 

being able to rotate freely, similar to that of a pendulum.  

 In order to illustrate adiabatic alignment we will consider the alignment of I2 molecules. 

H. Stapelfeldt et al. (2003) used the exact solutions of the time-dependent Schrödinger 

equation for their calculations. The laser pulse used had a Gaussian temporal duration of 3.5 ns 

and a peak intensity of 1 TW cm2. Heavy molecules, such as I2, are able to obtain strong 

alignment, even if they are nonpolar, due to their capability of having a strong dipole moment 

interaction.  Lighter molecules can have an induced dipole by stronger fields, thus can also be 

aligned. When the molecules interact with the field they begin to rotate about the polarization 

axis. In figure 12 a, one can see how in the presence of the field the system obtains alignment 

up to cos2<θ> ≥ 0.8. After the molecules are no longer in the field of the pulse they return to 

their isotropic distribution of <cos2(θ)> = 1/3. 

As mentioned previously, the temperature plays a significant role for alignment of 

molecules. The higher the temperature, the higher rotational energy levels of the molecules will 

be additionally populated. The initial Boltzmann distribution of the rotational levels provides an 

equal amount of populated rotational levels up to the highest thermally populated rotational 

level [S. Ramakrishna 2006]. Figure 12 a shows the experimentally determined cos2<θ> value of 

the molecules with respect to time and temperature [H. Stapelfeldt 2003]. It is ideal to have all 

of the molecules in a low temperature, near 0 K, as this forces them to have nearly equivalent 

rotational energy states, see figure 12 b.  
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Figure 12. Adiabatic alignment of I2 molecules. a) The expectation value of the <cos2(θ)> of the I2 molecules 
convoluted with the laser pulse. b) The expectation value of the total angular momentum squared. [H. Stapelfeldt 

2003] 

 

The ability to directly control the molecules’ alignment exclusively during the field 

interaction is both the advantage and disadvantage of adiabatic alignment.  Studies of certain 

chemical reactions, that are sensitive to the alignment of the molecules, need to be free of an 

external field. Otherwise these strong fields would then change the chemistry of the 

interactions. The solution to having alignment without an external field, also known as field-

free alignment, comes from aligning molecules using an ultrashort pulse. The pulse duration of 

the field must be much shorter than the rotational period of the molecules. This technique is 

known as non-adiabatic, or delta kick, alignment. 

 

3.4 Non-adiabatic Alignment 

 When an ultrafast laser pulse, with respect to the rotational period of the molecule, 

with linear polarization interacts with molecules, it will “kick” them, spinning them about the 

a) 
b) 



30 
 

axis of the polarization. This will populate the higher J energy levels of the molecules. The 

exited J energy states will then decay. The resulting rotational wave packets will interfere. As 

the quantum rotational wave packets interfere, the molecules will experience periodic field-

free revival alignment events as shown in figure 13. In this delta kick method, the temporal 

pulse duration of the electromagnetic field must be much shorter than the rotational period of 

the molecules but still longer than the Rabi period. The Rabi period is the probability of 

population time for an atomic transition near the molecule’s electronic resonance. 

 

Figure 13. Field-free alignment event from non-adiabatic alignment in CO2 at 10 and 40 TW cm-2 with no collisional 
effects, calculated by T. Seideman and S. Ramakrishna 

  

 The theory behind non-adiabatic alignment is strictly based in quantum mechanics. 

Consider a linear diatomic molecule that is subjected to a moderate intensity laser pulse, tens 

of TW cm-2, which is linearly polarized. The pulse’s center frequency is far from an electronic 



31 
 

resonance of the molecule and atomic transitions. In order to simplify the time-dependent 

Schrödinger equation, the molecule can be modeled in the ridged rotor approximation. The 

following derivations and equations are based off the work done by T. Seideman et al. (1995, 

2003, 2006). Some details of the derivations are omitted due to being beyond the scope of this 

work. For the more rigorous derivation the reader is referred to the work by T. Seideman et al. 

By using the rigid rotor eigenstates, the field-free and field interaction Hamiltonians, H0 and Hint, 

can be written in the same form as equation 9 and 10. One can use the reduced operator 𝝆�(𝑡) 

to rewrite the expectation value in terms of a quantum mechanical trace. After the substitution 

one would use the quantum Liouville equation (equation 13) to solve for the time evolution. By 

using the following equations one can obtain a complex set of coupled differential equations. 

𝑑𝝆�(𝑡)
𝑑𝑡

= − 𝑖
ℏ

[𝐻0 + 𝐻𝑖𝑛𝑡] + �𝑑𝝆�(𝑡)
𝑑𝑡

�
𝑑𝑖𝑠

     ( 13 ) 

 

�𝑑𝝆�(𝑡)
𝑑𝑡

�
𝑑𝑖𝑠

= −∑

⎩
⎨

⎧
1
2

[𝐾𝐽𝑀𝐽′𝑀′|𝐽𝑀 >< 𝐽𝑀|𝜌�(𝑡)]
−𝐾𝐽𝑀𝐽′𝑀′|𝐽′𝑀′ >< 𝐽′𝑀′| < 𝐽𝑀|𝜌�(𝑡)|𝐽𝑀 >

+𝛾𝐽𝑀𝐽′𝑀′
(𝜌𝑑) |𝐽𝑀 >< 𝐽𝑀|𝜌�(𝑡)|𝐽′𝑀′ >< 𝐽′𝑀′| ⎭

⎬

⎫
𝐽 𝑀 𝐽′𝑀′   ( 14 ) 

 

𝝆�(𝑡) =  ∑ 𝝆𝐽𝑀𝐽′𝑀′(𝑡)𝐽 𝑀 𝐽′𝑀′ |𝐽𝑀 >< 𝐽′𝑀′|    ( 15 ) 

 

KJMJ’M’ and γJMJ’M’
(ρd)  are respectively the population transfer rate and the pure decoherence 

rate from |JM> to |J’M’>. The term �𝑑𝝆�(𝑡)
𝑑𝑡

�
𝑑𝑖𝑠

describes the evolution of the dissipative part of 

the density matrix.  
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Further examination of the resulting matrix presents two terms that constitute <cos2θ>. 

<cos2θ> is identically equal to <cos2θ>p + <cos2θ>c. <cos2θ>p represents the population decay of 

the molecules. In a dissipative medium this value will return to an equilibrium value of 1/3. This 

value can be thought of as the baseline value for the amount of alignment. <cos2θ>c measures 

the coherence between the revival events. This value will eventually decay to zero due to the 

decoherence of these events. Thus, once the system returns to equilibrium, the <cos2θ> total 

value will return to the isotropic value of 1/3. The decay of both of these effects is determined 

by inelastic collisions [S. Ramakrishna 2006]. For the non-adiabatic alignment, an increase of 

temperature will decrease the degree of coherence for the rotations and increase the inelastic 

collisions, leading to reduced alignment.  

3.5 Experimental Methods and Applications 
As the subject of molecular alignment has developed, there has been an array of 

exciting new experiments and applications. Molecular alignment can be applied to identify 

different isotopes of the same molecule in a gas in a non-destructive method [S. Fleischer 

2008]. The alignment of a molecule has been shown to affect the HHG from a molecule [T. 

Kanai 2005]. It has been shown that the molecular alignment induced lensing and steering 

effects can lead to modulation of THz intensities for air based bi-filamentation [M. Durand 

2010]. In order to determine the degree of molecular alignment one must measure it. Due to 

the radically short durations of the alignment actions, the ability of measuring them requires 

highly sensitive techniques.  W. Kim et al. (1996) used Raman spectroscopy on naphthalene 

trimmers to report the first verification of laser based alignment. Methods such as homodyne 

techniques [Th. Vieillard 2013, N. Xu 2008], four-wave mixing [S. Fleischer 2008], electron 
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density and phase measurements [S. Varma 2012] are only able to reconstruct a positive 

change in <cos2(θ)> from the molecular alignment. By using heterodyne detection techniques 

[N. Xu 2008], measuring the HHG produced [T. Kanai 2005], and spectral changes dependent on 

the revival events (figure 14) [F. Calegari 2008], one can probe the negative changes in 

<cos2(θ)>. 

 

Figure 14. Temporal evolution of the nonadiabatic revival events in N2. a) The experimental results from probe 
spectrum. b) Simulation of the nonadiabatic alignment in N2 [F. Calegari 2008]  

 

One popular technique is based off photo dissociation and Coulomb explosion [L. 

Holmegaard 2010, V. Kumarappan 2008, D. Pavičić 2007, K. F. Lee 2004, H. Sakai 1999, H. 

Stapelfeldt 1998]. A molecular gas is first supersonically expanded into a vacuum chamber. 

Then the molecules are aligned through static fields, adiabatic, non-adiabatic or any possible 

combination of the three. The molecules are dissociated by an ultrashort temporal duration 
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high intensity pulse with circular polarization. Circular polarization is used in order to not 

influence the alignment of the molecules and the distribution of the molecular fragments. The 

resulting molecular fragments are accelerated by a weak static electric field towards the 

detector. Figure 15 shows an example of the molecular fragment measurements. The angular 

distribution of these fragments is a direct measurement of the alignment and orientation. The 

molecular-frame photoelectron angular distributions detection has become a standard for 

investigation of molecular dynamics [L. Holmegaard 2010]. H. Stapelfeldt et al. (1995) reported 

the first work on femtosecond time resolved measurements of photo dissociation from 

Coulomb explosion. It was later shown how Coulomb explosion with a femtosecond pulse 

allowed measurement of both the structure and the dynamics of inter-nuclear wave packets on 

an angstrom spatial and femtosecond temporal scale [H. Stapelfeldt 1998].  
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Figure 15. a) Cartoon of the experimental set-up of an OCS molecule oriented with its permanent dipole moment 
(bold red arrow) pointing in the direction of the static electric field. The left circularly polarized, LCP, probe pulse 
ionizes the molecule and imparts an upward momentum to the freed electron resulting in recording on the upper 
part of the detector. b) Two-dimensional momentum image of the electrons from a randomly oriented sample of 

OCS molecules ionized by the LCP pulse. c) The same as in b) but with a right circularly polarized, RCP, probe pulse. 
d) and e) are probed the same as b) and c), respectively, but the OCS molecules are oriented perpendicular to the 

image plane. [L. Holmegaard 2010 ] 

 

The photo absorption/dissociation is dependent on the molecule’s axis with respect to 

the electric field polarization. By controlling the angle of the molecule the light will 

preferentially populate different energy states and configurations, allowing for state selection 
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[H. Stapelfeldt 2003]. Due to the importance of ionization for the generation of high harmonics, 

HHG, it is clear that angular dimension of the molecules is fundamentally important. HHG can 

be explained using the three step model [J. L. Krause 1992, Z. Chang 2011]. First, an electron 

tunnels through the potential barrier that is modified by an intense field. Next, the laser field 

reverses, which drives the freed electron and has a probability of recombining with the initial 

ion. Finally, if the electron combines with the ion a high energy photon is emitted. By using the 

pump-probe method T. Kanai et al. (2005) examined how the alignment of CO2 affected the 

generation of high order odd harmonics through quantum interference. The commonly used 

method of pump-probe consists of an initial beam that is split into two pulses. These pulses are 

delayed from each other temporally. Generally, one pulse modifies and interacts with the 

sample, and then the delayed second pulse interacts with the aligned medium. By varying the 

delay between the pulses one can obtain extremely well temporally resolved events.  

It has been shown that by illuminating molecules with a second pulse during the field 

free revival events, the alignment can be enhanced or diminished [K. F. Lee 2004, S. Fleischer 

2008]. This ability can be used in differentiating molecules in a mixed gas or even different 

isotopes of the same molecule, figure 16 [S. Fleischer 2008]. The advantage here is the ability to 

perform these experiments at room temperature with non-resonant laser sources for all linear 

symmetric molecule species.  
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Figure 16. 15N2 gas alignment signal. a) After the molecules were initially aligned, a second pulse illuminates them 
at the 3rd revival. The pulse coherently adds to the first one, enhancing the alignment. b) The second pulse arrives 

at an odd revival event, leading to an annihilation of the field-free alignment. [S. Fleischer 2008] 

 

 Filamentation is a highly non-linear process that depends on the linear and non-linear 

indexes of refraction in addition to the induced ionization and resulting plasma. From 

understanding this, it is clear to imagine how molecular alignment can affect filamentation. The 

non-linear Kerr index refraction has two components, the instantaneous electronic motion and 

the nuclear/molecular response [J.-F. Ripoche 1997]. This statement is only valid for molecules 

that have anisotropic polarizability, e.g. CO2 or N2. Therefore noble gases will only have an 

electronic Kerr response. J.-F. Ripoche et al. (1997) was able to use the shift of the centroid of a 

filament’s spectrum to examine the temporal evolution of molecular alignment with respect to 

filamentation. After a filament propagates, the air molecules will undergo periodic revival 

events due to the nonadiabatic alignment from the filament. A pulse following the filamenting 

beam will experience spectral broadening at maxima of the rotational revivals [F. Calegari 

2008]. Via simulation, the molecular alignment can not only provide an ultra-broad spectrum 
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but compression for few-cycle pulses as well [J. Wu 2008].  The frequency of a few-cycle pulse 

undergoing filamentation can be red or blue shifted dependent on the alignment of the revival 

event [J. Wu 2009]. The molecular rotational revival events can act to enhance or 

reduce/eliminate filamentation [F. Calegari 2008, S. Varma 2008, Y.Feng 2011]. When the 

molecules are aligned parallel to the polarization of the electric field, <cos2θ> > 1/3, a probe 

beam would see the effective index of refraction increase. In the set-up where the molecules 

and polarization are perpendicular the index of refraction will decrease. The molecular 

alignment will act analogously to a positive (negative) lens for parallel (perpendicular) 

alignments [S. Varma 2008, S. Varma 2009, Y.Feng 2011]. In addition to the focusing 

capabilities, the filament can be steered and enhanced [S. Varma 2008]. M. Durand et al. (2010) 

were able to show that the molecular lensing and steering effects can lead to modulation of 

THz intensities for air based bi-filamentation. Using two color filaments, fundamental and 

second harmonic frequencies, the χ(3) of the neutral molecules and laser intensities within the 

filament were modified, resulting in modulation of the THz emission [T.-J. Wang 2011]. The 

birefringence effects from filamentation field-free alignment have been shown to be 

advantageous for HHG due to the tailoring of strong-field phenomena by the polarization pulse 

shaping [M. Negro 2010].The plasma density and length have been shown to be affected by the 

alignment of the molecular axes [S. Varma 2012]. The electron density was shown to increase 

for alignments with <cos2θ> > 1/3 [S. Varma 2012]. Molecular alignment has been shown to 

affect many facets of filamentation; however through the filamentation process, one should 

also be able to examine the features of non-adiabatic molecular alignment dynamics.  



39 
 

4 EXPERIMENTAL SET-UP 
 

4.1 Equipment 

4.1.1 Laser 
 The laser used in this study was the SpectraPhysics Spitfire master oscillator power 

amplifier, MOPA. This is a CPA system that allows for the generation of ultrashort pulses with 

high peak powers. The KMLabs oscillator uses Kerr-lens passive mode locking to generate ~70 fs 

pulses with a few nanojoules of energy at tens of MHz. The spectral bandwidth is centered at 

810 nm. Before being amplified the pulses are temporally stretched using a Martinez 

configuration [O. Martinez 1987]. After being stretched to hundreds of picoseconds, the pulse 

enters the regenerative amplifier. Here the repetition rate is reduced to 1 kHz using a Pockels 

cell. The pulse is then able to pass through the gain medium many times using an additional 

Pockels cell. The Ti:Saph crystal is Brewster-cut to allow only the horizontal polarization. As 

seen in figure 17, the combination of a quarter wave plate, Pockels cell, and Brewster-cut 

prism, allow a pulse to be amplified from the nJ to the mJ energy level. By adjusting the 

triggering of the Pockels cells, one has control over the repetition rate and the amplification. 

After the pulse is amplified by ~106, the pulse enters the Treacy compressor [E. Treacy 1969]. 

The compressor is designed to have the inverse of the dispersion induced by the Martinez 

stretcher. This allows the pulse to be recompressed, achieving an output pulse that is ~100 fs 

with ~1 mJ of energy at 1 kHz repetition rate.  
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Figure 17. Schematic outline of the SpectraPhysics Spitfire laser 

 

4.1.2 Gas Chamber 
 The gas chamber used for this study, figure 18, was designed to allow 30 cm – 40 cm of 

beam propagation in the chamber before self-focusing induced collapse. Both the input and 

exit windows were made of fused silica with anti-reflection coatings at 800 nm. The windows 

were AR coated to prevent losing energy from reflections (~4-6% from air to glass incidence due 

to Fresnel reflections) and protect the optics from the high intensity beam. 
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Figure 18. Gas chamber 

 

In order to test the gas chamber’s ability to be “air tight”, it was pumped down to 3 x   

10-5 Torr. The chamber was able to hold vacuum several days after pumping. After the chamber 

was pumped down, it was filled with 99.8% purity CO2 (Air Liquid – “Bone Dry”). For the 

molecular alignment and filamentation processes it is imperative to confirm that there was no 

detectable amount of N2 in the gas chamber. The spectrum of a filament generated in the gas 

chamber was measured using an Ocean Optics spectrometer. The resulting spectrum showed 

that due to the lack CN signatures the chamber did not contain N2, figure 19.  
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Figure 19. Filament spectrum in 1 atm of CO2. The absence of CN dimers with the Violet band (0-0) transition 
bandhead at 388.5 nm, indicate that there is not N2 in the chamber  

 

4.2 Data Collection 

4.2.1 Pump-Probe Technique 
 The technique of pump-probe is used to be able to examine phenomena occurring in 

the ultrafast time regime. A Mach-Zehnder style interferometer was used for our experiment, 

figure 20. The beam propagates ~5 meters from laser to the interferometer. The beam passes 

through a half-wave plate to control the amount of energy in each polarization. The TE 

polarization is reflected off the first beam cube to a manual linear delay stage. The TM 

polarization transmits through the beam cube to an automated linear delay stage. The 

polarizations are recombined in the second beam cube. The combined beam is reflected off the 

final mirror to the lens before the gas chamber. The beams were both temporally and spatially 
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aligned to ensure optimum pulse overlap. The temporal overlap was determined by placing a 

half-wave plate at the output to rotate both polarizations 45° to allow for interference. After 

the half-wave plate the beam was reflected off a Brewster angle polarizer. The delay stage was 

tuned until fringes were observed. The fringes were optimized to obtain the required temporal 

overlap. The automated linear stage provided 160 ps of usable delay.  

 

 

Figure 20. Variable interferometer used for pump-probe method. Circles and dashes correspond to TE and TM 
polarizations, respectively 

 

In the set-up used (figure 21) the lower energy pump beam was used to align the 

molecule of CO2. Therefore, the probe beam used was the high energy filamenting beam. In the 

following chapter, there is a more detailed explanation of the filament probe interaction with 

the align molecules. By varying the position the automated linear stage the minimum temporal 
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resolution was 130 fs. The minimum temporal resolution was chosen to match the pulse 

temporal duration. See appendix for the pulse measurement techniques used.  

 

 

Figure 21. Experimental set-up for filamentation interaction with molecular alignment 

 

4.2.2 Observables Measured 
 The filament collapse and length were measured by imaging the plasma emission. A 

commercial SLR camera (Cannon 5D MK2) was used to image the resulting plasma emission 

from the side of the filament, figure 22.  For each delay time for the pump and probe beams 

five images were taken. By taking several images for each delay it allowed for proper deviation 

and averaging measurements. The images were taken sequentially rather than repeating a full 

scan of the delay times. By comparing the first molecular revival events with the data taken it 

was evident that repeating a full scan was not necessary. Through monitoring the filament 
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collapse position and plasma column length, non-adiabatic molecular revival events in CO2 gas 

were able to be experimentally measured using filamentation.  

 

 

Figure 22 Example image of the plasma emission from the filament interaction with CO2 
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5 FILAMENT INTERACTION WITH ALIGNED CO2 MOLECULES 
 

5.1 Introduction and Motivation 
The effects of molecular alignment on filamentation have been documented for several 

years [J.-F. Ripoche 1997, S. Varma 2008, 2009, 2012, F. Calegari 2008, Y.Feng 2011]. 

Filamentation is a nonlinear propagation regime, resulting from the dynamics competition 

between the Kerr effect, leading to the collapse of an intense laser pulse which ionizes the air, 

and the resulting plasma defocusing. The filament leaves a plasma column, which is 100 μm in 

diameter, which lasts over several nanoseconds. The plasma can be characterized by its 

emission spectrum. Using a pre-align gases, one can change the position where the filament 

starts [Y.Feng 2011], enhance the overall length of the filament [S. Varma 2009], control the 

distance between two co-propagating filaments [S. Varma 2008], and also control secondary 

filaments emission such as THz radiation and supercontinuum generation [M. Durand 2010]. 

The filament length is determined by several coupled complex non-linear mechanisms. 

These mechanisms are related to, but not limited to, alignment dependent ionization, plasma 

density, non-linear refractive index (both electronic and molecular contributions), pulse 

duration/intensity, electric field polarization, diffraction, and dispersion. The alignment of 

molecules has been shown to affect the plasma density of a gas [S. Varma 2012]. For parallel 

alignment of the molecular axis and electric field polarization, there was an increase in the 

plasma density of the filament in air. 

 The studies of filamentation and molecular alignment have considered how a filament 

induces molecular alignment and the resulting effects. We propose using a filament as a probe 
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to investigate the molecular alignment features of a non-ionized aligned medium. The filament 

interaction with pre-aligned molecules will alter the properties of the filament. In this work, we 

present proof that laser filamentation can be used as a mean to probe molecular alignment. In 

this case, we used CO2 as the medium for molecular alignment. CO2 is studied due to its long 

rotational period of 42.7 ps as compared to the period for N2, 8.46 ps. This long rotational 

period could allow one to investigate the effects of inelastic collisions on the temporal 

dynamics of the aligned molecules.  

5.2 Theoretical Studies 
The theoretical modeling results follow from the nonadiabatic alignment derivation in 

chapter 3. Figure 23 is a simulation of nonadiabatic alignment in CO2 by a 19 TW cm-2, 132 fs 

pulse, with a center wavelength at 810 nm, in 1 bar of pressure. The simulation includes all of 

the collision related dissipate effects. The B0 of CO2 is 0.39 cm-1 and this leads to a theoretical 

rotational period of 42.7 ps [G. Herzberg 1955]. The first peak in figure 20 is the initial 

alignment of CO2; 42.5 ps later the molecule has completed a full rotation. The revival events 

for nonadiabatic alignment are a direct consequence of the coherent superposition of the wave 

packets. As the wave packets temporally interfere the shape of the wave packet will change to 

a “cigar” shape (for positive changes in <cos2(θ)>) or a “disk” shape (for negative changes in 

<cos2(θ)>), figure 24 [S. Fleischer 2008]. This evolution between “cigar” and “disk” does not 

pertain to the geometry of molecules; it is the shape of wave packets that are changing. The 

dashed line in figure 23 is the value of <cos2(θ)>, 1/3,  for a random distribution of molecules. 

At 21.3 ps the CO2 molecule is at the half rotational period. This half rotational period revival 

features are inverted from the full rotational period event structure. 
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Figure 23. Simulation of nonadiabatic molecular alignment of CO2 by 19 TW cm-2 132 fs pulse, with a center 
wavelength at 810 nm, in 1 bar of pressure. Simulation by T. Seideman and S. Ramakrishna  
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Figure 24. The calculated alignment factor temporal dependence after excitation by a short strong laser pulse. The 
calculation is performed for 15N2 at room temperature and atmospheric pressure. At the integer and half-integer 

multiples of the revival period, the molecular wave packet evolves between alignment (“cigar”) and anti-alignment 
(“disc”). [S. Fleischer 2008] 

 

By simulating the alignment, we are able to determine the experimental tolerances 

allowed for the system. The CO2 nonadiabatic alignment modeling uses quantum mechanical 

density matrix formalism. From this, the rotational state-to-state rotation rates resulting from 

the collisional effects of the molecules were calculated. The simulations were performed using 

the M-independent, rigid rotor, and energy-corrected sudden (ECS) approximations. ECS law 

leads to an exact mathematical relationship for an increasing temperature from the decrease of 

the average duration of the collisions. The collisional dynamics were presumed to be 

independent of the quantum number, M. M is the projection along the polarization axis of the 

total angular momentum. Treating the molecules as rigid rotors allows one to neglect the 



50 
 

centrifugal distortion. The alignment revivals are minimally sensitive to centrifugal distortion [J. 

M. Hartmann 2012]. The molecules of CO2 are initially at room temperature (296 K), therefore 

primarily in the ground state. The vibrations of the molecules were disregarded as well. The 

vibration-translation and vibration-rotation collisional transfers are much slower and less 

efficient than rotation-rotation and rotation-translation. The vibrational transfer rates of CO2 

are on the order of a nanosecond, whereas the rotational transfer rates are less than ~200 

picoseconds [J. M. Hartmann 2012]. All of the simulations were performed by T. Seideman and 

S. Ramakrishna, from Northwestern University in Evanston, Illinois.  

5.2.1 Laser Intensity dependence 
We consider a linear molecule, CO2, in a dissipative medium, subjected to a linearly 

polarized moderately-intense laser pulse of short duration. The rotational period (42.7 ps) is 

much longer than pulse temporal duration (132 fs), and the center frequency of the pulse (810 

nm) is lower than the electronic transition frequencies (less than 400 nm). Figure 25 shows the 

theoretical periodic alignment revivals for CO2 without any collisional dynamics included and for 

two different laser irradiances.  For all of the simulations we examine the average alignment, 

<cos2(θ)>, of the molecules. The angle θ is the angle between the electric field polarization and 

molecular dipole. From figure 25, one can clearly see that the amount of alignment increases 

for higher intensity laser pulses, as expected. 
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Figure 25. The degree of alignment dependence on different intensities of laser pulses with the same pulse 
duration 

In order to match, the experimental conditions new calculations were made using pulses 

of 25 and 19 TW cm-2 and including the collisional dynamics of the CO2 gas. Figure 26 shows the 

results from those simulations. Looking at figure 26 b and c, the first and fourth revival events 

show that <cos2(θ)> is minimally sensitive (change of 0.1) to intensity variations of 6 TW cm-2 

(25 %).  
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Figure 26. a) Full rotational period free field nonadiabatic alignment dynamics. b) and c) First revival event and 
fourth revival event, respectively 

  

a) 

b) 
c) 
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5.2.2 Pressure Dependence 
Likewise, slight deviations in pressure did not affect the molecular alignment, as shown 

in figure 27. It was important to ensure that the alignment was not sensitive to small deviations 

in pressure due to the fact that the gas chamber did not have an ultra-sensitive pressure gauge. 

In order to analyze the pressure dependence once must recall that <cos2(θ)> of a gas consist of 

two terms that are dependent on the collisional dynamics of the system [S. Ramakrishna 2006]. 

<cos2θ>p is linked to the population decay of the molecules. In a medium at equilibrium the 

<cos2θ>p will be equal to 1/3. This value can be thought of as the baseline value for the amount 

of alignment. <cos2θ>c measures the coherence between the revival events. As the system 

returns to equilibrium the <cos2θ>c value will return to zero.  

The alignment period was not affected by different pressures, but the population decay 

rate was increased, resulting from the higher pressure. This effect can be seen by examining the 

baselines in between the third and fourth revival events. The relative difference of <cos2(θ)> for 

the 1.2 bar and 1.0 bar pressures between the third and fourth revivals is only 0.2 %.  The 

effects of pressure for non-adiabatic alignment will be further discussed in the following 

discussion section.  



54 
 

Figure 27. The nonadiabatic alignment pressure dependence for small deviations in pressure 

  

5.3 Experimental Results 

5.3.1 Filament interaction with an aligned medium 
Molecular alignment has been shown to alter many of the features that affect the 

process of filamentation. By using filamentation, one should thus be able to study the 

properties of the non-adiabatic molecular alignment dynamics. In the experiment performed 

the filament was used to probe the alignment features in CO2. The experimental set-up was 

described thoroughly in chapter 4.  The TE polarization had 0.33 mJ of energy and was used to 

align the CO2 molecules. The TM polarization generated the filament to probe the CO2 

alignment with 0.56 mJ of energy. Both pulses were focused into the gas chamber with a 40 cm 
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focal length lens. The resulting plasma emission from the filament was imaged using a 

commercial SLR camera figure 28. 

 

 

Figure 28. Experimental results of the collapse position and the corresponding images of the filament plasma 
emission for times about the 3rd revival event. a) The filament in between the second and third alignment events. 
b) The filament polarization  and molecular axis are orthogonal, thus the filament collapses later and the plasma 
length is decreased. c) The polarization and molecular axis are parallel, resulting in a closer collapse and longer 

plasma length. 
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By monitoring the plasma emission image intensity, the collapse position and filament 

length was recorded. Each of the images’ columns was binned to create a 1-D array of values 

representing the horizontal position and the corresponding pixel intensity. The metric used for 

the filament collapse position was the first base on the FWHM measurement. The filament 

length was determined by the entire FWHM of the plasma emission image intensity. The 

filament collapse position and filament length versus the time delay in respect with the 

molecular alignment pulse is shown in figure 29. The grey shaded region corresponds to the 

standard deviation over five images for each time delay measured. The solid black line is the 

mean value of all of the measurements for each time delay.  
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Figure 29. a) The filament collapse position from the lens and b) filament length dependence on the time 
dependent molecular alignment. The grey shaded region and solid black line correspond to the standard deviation 

of the measurements taken and the average of the measurements respectively.  

a) 

b) 
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 Shortly after time zero, the polarization of the filamenting beam and the axis of the 

molecules are orthogonal, thus the filament collapses furthest from the lens. Whereas at time 

~10.7 ps, the polarization of the filamenting beam and the molecular axis are parallel, resulting 

in a collapse closer to the lens. In the case where the molecules are aligned parallel 

(perpendicular) to the polarization of the probing electric field, the filament will encounter an 

increased (decreased) refractive index. This increase (decrease) is spatially dependent, thus the 

refractive index acts as a lens. This lensing effect causes the filament to collapse earlier (later). 

In the case where the molecules are parallel to the polarization, e.g. time 10.53 ps and 21.73 ps, 

the molecules act as a converging lens. Comparing the image of the plasma emission in figure 

28 and the numerical values of the collapse position in figure 29, one can see the time 

dependent shift of the collapse position. 

5.4 Discussion  
 The interaction of a filament with nonadiabatically aligned of CO2 molecules is rich with 

interesting features. The results of the simulation using the experimental alignment conditions 

can be seen in figure 30. The simulation models the nonadiabatic alignment of CO2 molecules 

interaction with a pulse 132 fs in temporal duration, intensity of 19 TW cm-2, in a gas at 296 K, 

and 1 bar of pressure.  The simulation does not include the effects of the filament interaction 

with the aligned molecules. In comparing the simulation and the experimental values the 

period of the events are within the precision of the pulse duration. The simulated <cos2(θ)> and 

experimental collapse minimum peak of the second revival event happen at times 10.69 ps and 

10.53 ps, only a 160 fs difference. The difference in the collapse peak and simulated <cos2(θ)> 

for the third event is 80 fs. An interesting feature of using a filament probe is that one is able to 
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obtain the structure of the field free revival events. This ability to reconstruct the features of 

the simulated nonadiabatic revival temporal dynamics can be seen in figure 30. 

 

Figure 30. Comparison of the simulated nonadiabatic alignment revival with decay effect included and the 
experimentally determined molecular alignment revival features 

 

 The ability to recover both the positive and negative changes in the revival features is 

one major advantage of the filamenting probe method. Other methods such as homodyne 

techniques [Th. Vieillard 2013, N. Xu 2008], four-wave mixing [S. Fleischer 2008], electron 
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density and phase measurements [S. Varma 2012] are only able to reconstruct a positive 

change in <cos2(θ)> from the molecular alignment.  

 As previously discussed, the alignment of the molecules with respect to the polarization 

of the filament probe allows them to act like a lens. This effect causes the probe pulse to 

experience an increased index of refraction (+∆n) focusing the beam, triggering an earlier 

collapse. For molecules that are orthogonal to the polarization, e.g. time 21.1 ps and 31.87 ps, 

the molecules have a decreased index of refraction (-∆n). The decreased index of refraction acts 

as a diverging lens, increasing the distance for the collapse position. Varma et. al. (2009) 

showed the ability to use quantum molecular lensing for femtosecond laser filaments.  

 Figure 31 compares the collapse position, which reconstructs the features of the revival 

events, and the filament plasma length. The relationship between filament plasma length and 

molecular alignment can be seen on the second, third, and fourth events. The longer filament 

plasma emissions correspond to the same temporal delays as the earlier collapse positions. This 

results from molecular lensing effect due to the locally increased index of refraction.  The 

parallel alignment of the molecular dipole axis and the filament polarization also changes the 

rate of multiphoton ionization, MPI, for the plasma generation [T. Kanai 2005]. The MPI is 

reduced in the configuration where the molecules and the filament polarization are orthogonal. 

Likewise, the shorter plasma emission lengths match the same time as the later collapse 

positions. These correlate to the locally decreased index of refraction and MPI rates. After the 

fourth revival event the filament plasma length is not able to clearly characterize the molecular 

alignment related features. Due to the ambiguity between the filament length and molecular 

alignment, it was not possible to examine the decay features of the alignment. 
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 The filament length was not able to be a reliable metric of the molecular alignment. The 

filament plasma length is dependent on several coupled nonlinear effects, e.g. alignment 

dependent ionization, the plasma density, and the non-linear refractive index (both electronic 

and molecular contributions). An interesting corollary of CO2 alignment has been the MPI rate 

dependence on alignment. The unintuitive maximum peak of MPI was theoretically [S.-K. Son 

2009] and experimentally [D. Pavicic 2007] determined to be at 40°. This presents even more 

complexity to the filament’s plasma dynamics.  

 

 

Figure 31. Comparison of the filament length and the collapse position molecular alignment dependence  
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5.4.1Population Decay and Coherence  

One of the advantages of studying CO2 molecules, over N2 or O2, is its long rotational 

period of ~42 ps versus their 8.3 and 11.6 ps rotational periods respectively. The long rotational 

period allows one to investigate both the population decay and the revival events coherence of 

the nonadiabatic alignment. The metric for the amount of alignment, <cos2θ>, consist of the 

two components <cos2θ>p and<cos2θ>c. <cos2θ>p is related to the population decay of the 

molecules. <cos2θ>p in a gas at equilibrium will have a value of 1/3. This value is the baseline 

value for the amount of alignment. <cos2θ>c measures the coherence between the revival 

events. <cos2θ>c is zero when a medium is in equilibrium. The decay rates for both of these 

factors are governed by the system’s inelastic collisions [S. Ramakrishna 2006].  

 Analyzing the simulations allows one to extract the decay rates for both population 

decay and the coherence decay rate between the revival events. By ignoring the revival events 

one is able to study the population decay. The theoretically determined population decay rate 

observed, τp, leads to a nearly exponential decay rate. The decay rate was determined by fitting 

the baseline with an exponential decay. From examining the simulation baseline, τp of the CO2 

molecules was found to be 64.2 ps. This result is in agreement with the published M-

independent theoretical work by Th. Vieillard (2013) and J.-M. Hartmann (2012). In order to 

compare the population decay, the revival events were removed from the experimental results. 

The remaining averaged baseline was fit with an exponential decay to compare it to the 

theoretical result, figure 32. From the experimental data, the population decay rate was 

determined to be 33.3 ± 8.4 ps. The experimental decay rate is nearly half of the theoretically 

determined decay rate. There are several factors that may have led to the factor ~2 mismatch.  
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Figure 32. Comparison of the theoretical population decay and experimental collapse position decay  

 

It was expected that the experimental results would decay faster due to the dissipative 

effects of the plasma. The collision rates used for CO2 were from empirical data. The collision 

rates used in the simulation come from experimental results in much less dissipative 

environments. Also, the simulation did not take into account the anisotropic ionization for CO2. 

For a better experimental determination of the population decay more revival events can be 

probed. It may be possible to investigate revivals up to ~150 ps [J.-M. Hartmann 2012]. The 

number of revival events that can be measured, regardless of the method, is dependent on the 

time scale of the system to return to equilibrium. Equilibrium conditions are obtained after 

about 1 ns for CO2 [J.-M. Hartmann 2012].  
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 The other component of the total <cos2θ> is linked to the coherence between the 

revival events. The dynamics from the laser induced nonadiabatic alignment result from the 

dephasing and rephasing of the rotational coherences. They were determined by the time 

evolution of the off-diagonal terms of the density matrix [S. Ramakrishna 2006]. This led to a 

coherence decay rate of 58 ps. Note that the population and decoherence rates are similar, 64 

and 58 ps, for the simulation. This similarity is expected from an M-independent calculation [Th. 

Vieillard 2013]. 

The decoherence rate was not able to be determined from the experimental results. It 

may have been possible to extract information about the coherence if later revival events were 

also measured. It has been recommended that high density/pressure studies could allow one to 

obtain information on the population decay and decoherence effects independently [S. 

Ramakrishna 2006, Th. Vieillard 2013].  The disadvantage of a high density study is that the M-

independent model is no longer valid. Comparing the M-independent and M-dependent 

theories of nonadiabatic alignment of CO2 at 20 bar the M-independent theory fails to 

reproduce experimental data, figure 33 [Th. Vieillard 2013]. Therefore, the computation of the 

simulations would have to include the M-dependence to be of use at high pressure. 

Experimentally, a high pressure environment would yield an increased index of refraction. This 

increase would support filamentation at much lower energies. The high density thus may 

impose a limit to the intensity used to align the molecules without ionization.   



65 
 

 

Figure 33. The gray dotted curves are the experimental homodyne signals of the pump-probe measurement in CO2 
at 295 K. The red curve is the M-dependent model and the blue dash-dotted curve is the M-independent model. a) 
2 bar with a peak intensity of 45 TW cm-2.. The insert shows the features of the first revival. b) 20 bar with a peak 

intensity of 35 TW cm-2. [Th. Vieillard 2013] 

 

5.5 Conclusion 
 In this work, we have showed that laser filamentation can be used to probe the 

molecular nonadiabatic alignment dynamics in CO2 gas at atmospheric pressure. Through 

theoretical analysis it has been determined that the alignment dynamics are not highly sensitive 

to small deviations in pressure (± 0.1 bar) and alignment pulse intensity (25% difference in 

intensity). The changes in pressure resulted only in a very minor change in the population decay 

rate of the alignment. 

 The experimental results confirm that our method can reproduce the molecular 

alignment dependent effects from existing works [S. Varma 2008, 2009, 2012, S. Ramakrishna 

2006, S. Fleischer 2008, J.-M. Hartmann 2012, Th. Vieillard 2013]. The index of refraction can be 

locally modified leading to molecular lensing. By having the molecular dipole axis and the 

electric field polarization parallel (perpendicular), the molecules will increase (decrease) the 

a) b) 
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index of refraction. This modification will cause the molecules to act as a converging (diverging 

lens). This effect leads to a measurement of a filament collapse position that is closer (further) 

from the lens than that of a filament in randomly aligned molecules. 

The correlation between the experiment and theoretical results show that both M-

independent theory can be used at atmospheric pressure to determine the alignment 

structures without collisional effects and that a filament is a reliable probe to reproduce the 

alignment structures. From the simulation the population decay and the coherence of the 

revival events decay rates were determined to be 64 and 58 ps, respectively. By analyzing the 

molecular alignment dependent filament collapse position, the population decay rate was 

calculated to be 33.3 ± 8.4 ps. This 2-fold mismatch between the theoretical and experiment 

value stems from the dissipative effects from plasma that were not included in the 

nonadiabatic alignment model. The MPI alignment dependent rates of CO2 may have also 

contributed to the disagreement in population decay rates.  

In order to have a better model of the nonadiabatic alignment with a filament probe, 

the simulation should include M-dependence and the dissipative effects from plasma. 

Incorporating a split-step Fourier method of modeling filament propagation with the M-

dependent molecular alignment theory one should be able to obtain the complete dynamics of 

a filament interaction with an aligned medium.  
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6 CONCLUSION 
 

The use of femtosecond filamentation as a probe for nonadiabatic molecular alignment 

has been demonstrated in this work to be an effective measurement technique. It has been 

shown to be a robust method, with a simple experimental set-up, to obtain information about 

the structure of field-free alignment revival events. The application of understanding the 

temporal dynamics of molecules extends beyond the interactions with ultrafast laser pulses. 

This information would be applicable to any mechanism that is dependent on the molecular 

alignment. 

Through the collaborative efforts with Tamar Seideman and Sai Ramakrishna at 

Northwestern University, we were able to correlate theoretical simulations of nonadiabatic 

alignment with experimental measurements of a filament collapse position. By determining the 

acceptable experimental tolerances for the alignment dynamics, it was found that small 

deviations in pressure (± 0.1 bar) and alignment pulse intensity (25% difference in intensity) did 

not contribute to a significant change in the outcomes. Both the simulation and experimental 

results were able to reproduce the theoretical rotational period of CO2, 42.76 ± 1 ps. The 

features of the revival events were able to be reconstructed by the alignment dependence of 

the filament collapse position. The timing of the revival events matched for the experimental 

and simulated values within the temporal error of the experimental conditions.  

The rates of decay of the population (baseline) alignment and coherence of the phase 

relationship between revival events were determined by modeling the temporal dissipative 

dynamics from inelastic collisions. From the simulation, the population decay (<cos2(θ)>p) and 
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coherence dephasing (<cos2(θ)>c)  rates were calculated to be 64 and 58 ps, respectively. The 

experimentally determined value of the alignment population decay rate was 33.3 ± 8.4 ps. The 

population decay rate was approximately half the theoretical value. The offset of the two 

values can be traced to the limit of the simulation, as it only modeled the nonadiabatic 

alignment, not the filament interaction with aligned molecules. The plasma is significantly more 

dissipative than non-ionized gases, because of the higher temperature and the large electronic 

density, leading to collisions. These plasma effects were not included in the nonadiabatic 

alignment model since the collision rates used come from empirical data in much less 

dissipative environments. In addition to the dissipative effects, the model does not account for 

the alignment dependent multiphoton ionization.   

6.1 Outlook and Future Work 
In order to have a better understanding of femtosecond filamentation interaction with 

aligned molecules, the model must be improved. The simulation should include the M-

dependent effects and the dissipative effects from plasma. By incorporating a split-step Fourier 

method of modeling filament propagation with the M-dependent molecular alignment theory, 

one should be able to better reconstruct the dynamics of the interaction of aligned molecules 

with a filament.  

The information about the population decay and coherence dephasing in CO2 could be 

improved by increasing the number of revival events measured, i.e. measuring 2-4 full 

rotational periods. Aiming at investigating the decoherence effects, this technique should be 

studied in high density environments. However, the increased pressure decreases the energy 

required to ionize the air. The high density thus may impose a limit to the intensity that can be 
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used to align the molecules without ionization. One method to avoid this potential problem 

would be to use a pulse with a lower frequency to align the molecules, e.g. a pulse with a 

center wavelength greater than 1 μm. This method could utilize a two color pump-probe 

technique, where the alignment pulse is of a lower frequency than the filamenting probe pulse.  

The technique of using a filament as a probe for molecular alignment should be 

expanded to other gases. For example, a filament should be used to measure the nonadiabatic 

molecular alignment of N2. The constants of N2, that are pertinent for filament propagation in 

air, are well known. The benefit of that study is that one could directly link filament 

propagation with the dynamics of nonadiabatic molecular alignment. Understanding the 

interaction of femtosecond filamentation with aligned molecules will allow for spatial and 

temporal tailoring of the filament propagation.  
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APPENDIX: PULSE MEASUREMENT TECHNIQUES 
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Pulse Temporal Duration Measurement 

Ultra-fast physics and optics requires one to know, with high precision, the pulse duration and 

energy of the laser used for the light matter interactions. For all of the experiments performed 

the laser’s pulse duration was measured with both a Swamp Optics GRENOUILLE and an in-

house built single shot autocorrelator.  

GRENOUILLE 

The GRENOUILLE, GRating-Eliminated No-nonsense Observation of Ultrafast Incident 

Laser Light E-fields, is a pulse measure technique based off the FROG, Frequency-Resolved 

Optical Gating. The major differences in the FROG and the GRENOUILLE include the FROG using 

a thin second harmonic generation, SHG, crystal and spectrometer, whereas the GRENOUILLE 

uses a thick SHG crystal and a camera [P. O’Shea 2001]. The GRENOUILLE is far less sensitive to 

alignment, but is still able to provide phase and intensity information about the pulse. 

The beam is aligned into the GRENOUILLE, which uses a beam splitter to split the beam 

into two pulses. Through the use of cylindrical lens, the pulses are passed through the SHG 

providing a single shot autocorrelator measurement in the horizontal plane. The vertical plane 

will contain the wavelength distribution due to the crystal’s angle sensitive phase matching 

conditions. This vertical spread of the components of the spectrum allows the camera to act as 

a spectrometer. By combining the data from the vertical and horizontal plane, the GRENOUILLE 

is able to extract the phase information [P. O’Shea 2001].  
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Autocorrelator 

The GRENOUILLE has been claimed to measure pulses as low as ~50 fs accurately, but 

for pulses with durations below ~50 fs another method is required [P. O’Shea 2001]. Our 

experience has led the need for another method of confirmation for the temporal pulse 

duration, even for pulses >50 fs. An in-house single shot autocorrelator, the Erikolater, was built 

to simultaneously solve these problems. In order to greatly reduce any additional dispersion 

and pulse broadening, it was designed to not require the use of lenses. The only transmission 

optics used was a 50/50 beam splitter and the SHG BBO, beta barium borate, crystal.  Following 

the path of the beam in figure 34, first the beam is divided via a 50/50 beam splitter. One pulse 

is reflected off the beam splitter, and then reflected off four turning mirrors directing it into the 

BBO. The transmitted pulse propagates to a linear translation stage then to a turning mirror 

that allows for tuning of the crossing angle of the two beams. The linear translation stage is 

used to ease the temporal alignment of the pulses. Using the angle tuning mirror and the 

following mirror the beams are crossed into the BBO crystal. As the beams propagate through 

each other temporally in the crystal, a spatial phase matched second harmonic frequency is 

produced. In order to remove the fundamental 800 nm signal, a filter is place in front of a CCD 

camera to reject the 800 nm light. The doubled frequency is then imaged on to the camera.  
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Figure 34. Erikolater. Pulse duration measurement experimental set-up 

 

From the resulting image from the camera (figure 35) one can determine the pulse 

duration. The temporal window of observation, τobs, is determined by the crossing angle, φ, and 

the diameter of the BBO crystal, equation 16.  The temporal resolution, rAC, will then be 

dependent on the observation window and the number of pixels of the camera. 

𝜏 𝑜𝑏𝑠 =
𝑛∗𝑑∗sin (𝜑2)

𝑐
         ( 16 ) 

𝑟𝐴𝐶 = 𝜏 𝑜𝑏𝑠
#𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠

      ( 17 ) 

𝜏𝑝𝑢𝑙𝑠𝑒 = 𝜏 𝐴𝐶∗𝑟𝐴𝐶
𝐾

       ( 18 ) 

 

𝜏 𝐴𝐶  is the full width half max of the autocorrelation trace in pixels.  From equation 18, one can 

calculate the pulse duration, assuming a deconvolution factor K ≈ 1.35 for a Gaussian pulse [D. 
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Herrmann 2010]. The FWHM used was computed by summing the pixels in each column and 

taking the value from that summation.  

 

Figure 35. Image from the Autocorrelation  

  

In order to compare both pulse measurement techniques, they were used to measure 

the pulse duration of the LPL MTFL system. First, the distance between the compressor gratings 

was optimized to generate the shortest pulse using the GRENOUILLE. This process was repeated 

using the autocorrelator. By comparing the two methods, figure 36, both methods provided 

similar traces of the pulse autocorrelation. The autocorrelator and GRENOUILLE measured 

pulse durations of 43.7 ± 1 fs and 43.4 ± 2 fs.  
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Figure 36. Comparison of the autocorrelator and GRENOUILLE on the MTFL system 
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