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ABSTRACT 

 

In the design of mechanical components, numerical simulations and experimental 

methods are commonly used for design creation (or modification) and design optimization. 

However, a major challenge of using simulation and experimental methods is that they are time-

consuming and often cost-prohibitive for the designer. In addition, the simultaneous interactions 

between aerodynamic, thermodynamic and mechanical integrity objectives for a particular 

component or set of components are difficult to accurately characterize, even with the existing 

simulation tools and experimental methods. The current research and practice of using numerical 

simulations and experimental methods do little to address the simultaneous “satisficing” of 

multiple and often conflicting design objectives that influence the performance and geometry of 

a component. This is particularly the case for gas turbine systems that involve a large number of 

complex components with complicated geometries. 

Numerous experimental and numerical studies have demonstrated success in generating 

effective designs for mechanical components; however, their focus has been primarily on 

optimizing a single design objective based on a limited set of design variables and associated 

values. In this research, a multiobjective design optimization framework to solve a set of user-

specified design objective functions for mechanical components is proposed. The framework 

integrates a numerical simulation and a nature-inspired optimization procedure that iteratively 

perturbs a set of design variables eventually converging to a set of tradeoff design solutions. In 

this research, a gas turbine engine system is used as the test application for the proposed 

framework. More specifically, the optimization of the gas turbine blade internal cooling channel 

configuration is performed. This test application is quite relevant as gas turbine engines serve a 
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critical role in the design of the next-generation power generation facilities around the world. 

Furthermore, turbine blades require better cooling techniques to increase their cooling 

effectiveness to cope with the increase in engine operating temperatures extending the useful life 

of the blades. 

The performance of the proposed framework is evaluated via a computational study, 

where a set of common, real-world design objectives and a set of design variables that directly 

influence the set of objectives are considered. Specifically, three objectives are considered in this 

study: (1) cooling channel heat transfer coefficient, which measures the rate of heat transfer and 

the goal is to maximize this value; (2) cooling channel air pressure drop, where the goal is to 

minimize this value; and (3) cooling channel geometry, specifically the cooling channel cavity 

area, where the goal is to maximize this value. These objectives, which are conflicting, directly 

influence the cooling effectiveness of a gas turbine blade and the material usage in its design. 

The computational results show the proposed optimization framework is able to generate, 

evaluate and identify thousands of competitive tradeoff designs in a fraction of the time that it 

would take designers using the traditional simulation tools and experimental methods commonly 

used for mechanical component design generation. This is a significant step beyond the current 

research and applications of design optimization to gas turbine blades, specifically, and to 

mechanical components, in general. 
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CHAPTER 1: 

INTRODUCTION 

1.1 Background 

The increase in demand for energy and its resources have pushed the design of the 

turbine engine to its physical limits in order to achieve the highest possible efficiency. In 2008, 

the electric power generation industry generated revenue of about US$112 billion in the U.S. 

alone, which is a 12% increase in energy consumption compared to 2005, which generated 

revenue of US$100 billion (IBISWorld, 2008). It has been forecasted that over the next 25 years, 

the world’s energy consumption will grow by 50%. This growth will, in turn, increase the 

world’s dependence on electric power to meet its energy needs. 

Electric power is expected to remain the fastest growing form of worldwide end-use 

energy through 2035, as it has been for several decades. At least one-half of the forecasted 

increase in worldwide energy consumption through 2035 will be attributed to electric power 

generation. Figure 1-1 shows that it has also been estimated that the worldwide net electricity 

generation will nearly double over next 25 years, from 19 trillion kilowatt-hours in 2008 to 35 

trillion kilowatt-hours in 2035 (DOE, 2011). Figure 1-1 shows that the significant part of the 

growth in electricity generation is attributed to the countries that are not members of the 

Organization for Economic Cooperation and Development (OECD). The increase in demand for 

energy over the next three decades ultimately increases the use of all energy sources, as shown in 

Figure 1-2 except for liquid fuels, assuming that world oil prices remain relatively high 

throughout this period. 
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Figure 1-1: World net electricity generation during the period 2008-2035 (obtained from DOE-

EIA, 2011) 

 

 
Figure 1-2: World electricity generation by fuel type during the 2008-2035 (obtained from DOE-

EIA, 2011) 

 

Trillion Kilowatt-hours 

Trillion Kilowatt-hours 
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From Figure 1-2 it can be noticed that coal has continued to be a major source of fuel for 

electricity generation, although nuclear power generation increased at a rapid pace from the 

1970s through the 1980s, and natural gas fired generation grew rapidly in the 1980s and 1990s. 

The U.S. true measure of energy strength is coal. It is estimated by the Department of Energy 

(DOE) that one-fourth of the global coal reserves are found in the United States. The energy 

capability of the U.S. coal resources exceeds that of the entire world’s known recoverable oil. 

The Clean Coal Technology & the Clean Coal Power Initiative across America describes a new 

generation of energy processes that sharply reduce atmospheric emissions and other pollutants 

from coal-burning power plants (DOE, 2002). The new energy process is the adaptation of 

advanced gas turbine technologies to use with coal-burning power plants. This has been 

successfully used at Tampa Electric’s Polk Station and the Wabash River Repowering projects 

under the Clean Coal Technology Initiative (DOE, 2003). 

 

1.2 The Role of Turbines in Power Generation 

Turbines have been considered energy workhorses for generations. Regardless of the type 

of fuel used, turbines are at the heart of almost all of the world’s electricity generating systems. 

The increasing trend in world energy consumption (see Figure 1-1) has caused a considerable 

increase in large-scale electric power generation, which largely depends on the use of turbines. 

Gas turbines are key complex engines of advanced systems designed for new electric power 

plants in the United States and around the world. It is estimated that turbines are involved in the 

generation of more than 95% of all electricity added to the U.S. power grid. Furthermore, almost 

all of the world’s electricity that is sent to the major power grids is generated by turbines (EIA-
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DOE, 2009). From gas turbines and steam turbines used at coal-burning power plants to water 

turbines used at hydro-electric power plants, turbines are used in a number of applications. 

Figure 1-3 shows the general categories of turbines based on the working fluid (i.e., steam, gas, 

water or wind) used to power them. Among the different types of turbines, gas turbines are more 

commonly used due to their high thermal efficiency, relatively low-cost energy, versatility (i.e., 

multi-fuel capability), and size. Furthermore, gas turbine engines are being used in an increasing 

number of industrial settings. For instance, gas turbines are used in aircraft propulsion, marine 

propulsion, and land-based power generation. The increased need for energy around the world 

has also increased the need for the construction of additional land-based power generation 

facilities. In 2008, 1054 units of gas turbines are ordered by power plants, a 15% increase over 

the previous year’s 916 units (D&GTW, 2008). In 2008, the turbine product segment account for 

US$12 billion, which is 20.7% of industry revenue in the U.S. alone. It is also estimated that the 

turbine product segment’s share of industry revenue will increase by 5% through the year 2014 

due to increased demand for electricity and the refurbishment of outdated power stations in 

developing economies with cleaner burning gas turbines (IBISWorld, 2009). 
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Figure 1-3: Classes of turbines by working fluid 

 

Gas turbines do, however, possess major, albeit common, limitations. The conditions of 

the operating environment of the gas turbine greatly affect the engine reliability. Typically, gas 

turbines operate at high temperatures that often range from 2500º F to 3500º F. In addition, 

unpredictable pressure variation occurs due to the internal combustion within the engine, and this 

pressure can vary (depending on load) from as low as 40.5 psi to as high as 45 psi (Boyce, 2006). 

Finally, the centrifugal force on a single turbine blade could be up to several tons (Moustapha et 

al., 2003). 

The failure of critical internal components in one or more engines in a gas turbine power 

plant can cause severe economic loss for both the producer as well as the consumer of electricity 

due to the power outage caused by gas turbine failure. The diversity in electric power usage by 

the commercial, industrial and residential sectors makes it difficult to estimate the actual 

economic impact caused by power outages. One attempt to quantify the economic impact is 

reported by LaCommare and Eto (2004). In their study at the University of California Berkley, 

the initial base case estimate of the annual economic loss due to power interruptions to U.S. 
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electricity consumers is US$79 billion. Their analysis of uncertainty suggests that the economic 

loss could range anywhere between US$22 billion to as high as US$135 billion (LaCommare and 

Eto, 2004). Even though the major contributor of power outage is attributed to transmission grid 

failure, power outage due to gas turbine failure cannot be neglected. Thus, a modest increase in 

the reliability of gas turbines can reduce significant economic loss. 

The growing demand for electricity has motivated personnel at the world’s power 

generation facilities to look for more reliable, efficient and higher power advanced gas turbine 

systems than ever before. Achieving high reliability and thermal efficiency of gas turbines is of 

continuing engineering concern due to the harshness of the turbine operating conditions. In fact, 

it is these operating conditions of gas turbines that motivate engineers and researchers to study 

gas turbines to increase their core power output and improve their efficiency and reliability. In 

this research investigation, the area of focus is gas turbines and gas turbine engine reliability. 

 

1.3 The Working Principle of Gas Turbine Engines 

The simplest and most common gas turbine is an in-line axial flow turbine, as shown in 

Figure 1-4, where the mechanical arrangement of all its components are linear and aligned with 

the air and combusted gas fluid flow through the engine. The engine operates by guiding 

incoming air flow into the compressor, which in turn, compresses and delivers highly-

pressurized air into the combustor section of the engine. This is the mainstream flow. The 

combustor burns the injected fuel using the compressed air delivered from the compressor. The 

mainstream flow (or, hot gas) is a combustion mix of air, fuel and unburned hydrocarbons, and it 

can reach temperatures as high as 3000º
 
F and can produce high pressure variations (Boyce, 2006; 

http://www.answers.com/topic/axial-flow
http://www.answers.com/topic/combustor
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Moustapha et al., 2003; Han et al., 2000). The hot gas enters a series of turbine stages, where a 

stage is composed of a set of vanes and a set of turbine blades. The hot gas expands towards 

atmospheric (or, ambient) pressure in each stage, and this gas expansion runs the turbine to 

generate output shaft power. This shaft power is used to drive the compressor, and it is also used 

to power the generator. The hot gas path components are cooled by a percentage of the 

compressed air (i.e., a secondary air flow) that is extracted by a cooling supply system from the 

compressor (indicated by the dotted arrows in Figure 1-4). This secondary air flow is often 

referred to as the coolant, and this term is used throughout the remainder of this document when 

referring to this cooling air flow. 

 
Figure 1-4: In-line axial gas turbine mechanical component arrangement 

 

Figure 1-5, an artistic cutaway view, provides a more detailed perspective of the in-line 

axial gas turbine. The figure shows the compressor housing, which has eight stages, where each 

stage contains a set of stator blades and a set of compressor blades (or rotor blades). It is 

important to note that the number of stages in the compressor greatly depends on the pressure 

ratio required for the power generation application. The stator blades guide incoming air at a 
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particular angle, and then the compressor blades compress and deliver the air to the next stage 

for further compression. Next, in Figure 1-5, the turbine housing has three stages, and each stage 

consists of a set of vanes and a set of blades. Again, the number of stages in the turbine greatly 

depends on the desired pressure ratio for the power generation application. The hot gas from the 

combustor exits is directed to the turbine housing, as shown in Figure 1-5. The temperature at 

which the hot gas enters the first stage of the turbine is called the turbine rotor inlet temperature, 

or turbine inlet temperature (TIT). The row of vanes guides the incoming hot gas at a particular 

angle onto the row of rotor blades, and the blades rotate as the hot gas expands. This expansion 

continues in Stages 2 and 3 of the turbine before the hot gas is expelled as exhaust. 

 
Figure 1-5: Cutaway view of typical gas turbine engine (obtained from Britannica Encyclopedia, 

1999) 

 

1.3.1 The Turbine Inlet Temperature 

The turbine engine parameter of greatest influence on core power and thermal efficiency 

is the TIT. To meet the demand requirements of power plants, such as increased thermal 

efficiency and increased power output, the owners of the gas turbines operate them at high inlet 

temperatures. At present, the more advanced gas turbine engine systems operate at temperatures 

Compressor Blades Air Inlet 

   Stator Blades Turbine Blades 

Fuel In 
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of 2200º F to 2700º F, which is above the permissible metal temperatures (Han (2004). The 

historic increase in TIT, as shown in Figure 1-6, is a result of an attempt by gas turbine 

manufacturers to simultaneously increase the thermal efficiency and the specific core power per 

unit mass of air flow. The ideal Brayton Cycle curve, which is the performance theoretically 

obtainable with ideal components throughout the gas turbine engine, indicates a steady increase 

in specific core power until the Hydrocarbon Stoichiometric Limit is reached, which is the 

maximum temperature limit attained by burning fuel 100%. All existing gas turbine engine 

systems fall below this ideal curve. However, they follow the same general trend as this curve, 

from the very first gas turbine engines designed by Von Ohain (1939) and Whittle (1937) to 

more recent developments. Over this time span, there has been a several-fold increase in 

efficiency. However, there have also been very large increases in turbine inlet temperature. 

 
Figure 1-6: Historical trend of improving the core performance by increasing turbine rotor inlet 

temperature (Koff, 1991; Reprinted with permission of the AIAA) 
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Increasing the TIT is the primary contributor to creating the harsh operating environment 

for these critical components, in particular the turbine blade. For instance, increasing the turbine 

inlet temperature increases the amount of heat transferred to the blades. In addition to increasing 

the pressure on the blades, extreme inlet temperatures can also destroy the ceramic thermal 

barrier coating that protects the blades, which invariably reduces their useful life. The three most 

common failure mechanisms that contribute to the useful life of blades due to high temperatures 

are creep, thermal fatigue and corrosion. These types of failure mechanisms not only depend on 

blade design and the type of fuel consumed by the engine, but it also depends on the duration of 

operation of the engine and the environment in which the engine operates. 

It is fundamentally necessary that gas turbines operate in high temperatures and uncertain 

combustion flow conditions in order to meet the increasing demand of energy. The turbine blade 

is one of the critical components, among many other components, that needs cooling. The 

advances in the turbine cooling and material technology have enabled the life of the blade to be 

increased in spite of higher turbine inlet temperatures. One of the most important parameters for 

measuring and assessing the cooling performance of a blade is the cooling effectiveness ϕ, 

  
     

     
   (1.1) 

where Tc, Tg and Tm refer to the coolant temperature, gas temperature and metal temperature, 

respectively. If ϕ = 0, then it represents no cooling effect, and ϕ = 1 is the case of perfect cooling, 

where the blade metal temperature and coolant temperature are equal. The cooling effectiveness 

is influenced by many variables such as the blade design, arrangement of cooling channels, 

design configuration of turbulators (e.g., ribs, pin-fins, etc.) inside the cooling channels and the 
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way in which the coolant is ejected from the blade. More importantly, it is influenced by the 

mass flow rate of cooling air used. 

 

1.4 Internal Cooling of a Gas Turbine Blade 

The design of a blade and its cooling supply system vary across gas turbine engine 

manufacturers. However, in general, the developments in gas turbine blade cooling are shown in 

Figure 1-7. In the figure, the inlet temperature is plotted against blade cooling effectiveness ϕ. 

Turbine blade materials typically melt at a temperature of about 2400º F (Moustapha et al., 2003; 

Han et al., 2000). A solid blade with no internal cooling has a cooling effectiveness ϕ = 0 and is 

limited to temperatures that are, by current standards, low (i.e., less than 1800º F). In order to 

achieve higher inlet temperatures, the turbine blades must be cooled. One type of blade design is 

convection (i.e., heat transfer from a solid material to a fluid media). In this kind of blade, the 

coolant passes through a series of holes in the blade, so that cooling is achieved by heat transfer 

from the blade material to the cooling air flow. The cooling effectiveness ϕ of a simple blade 

cooled by convection alone is approximately 0.40 for a moderate TIT of 2200º F (see Figure 1-7). 

Another type of blade design is film/convection cooled blades. In this type of blade design, the 

cooling air passes through the blade internal cooling channels. Then, the coolant passes through 

holes or slots to the outer surface of the blade forming cooling films. These films act as an 

insulating blanket of coolant that limits heat transfer from the mainstream flow (hot gas) to the 

blade surface (Moustapha et al., 2003; Han et al., 2000). Film cooled blades produce a cooling 

effectiveness ϕ of about 0.60, resulting in an inlet temperature of about 3000º F (see Figure 1-7). 

Therefore, an increase in cooling effectiveness allows gas turbine operators to increase TIT, 
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which, in turn, increases the thermal efficiency of the system without compromising the life of 

the blade. 

 
Figure 1-7: Improving performance with improved turbine blade cooling Techniques and 

materials (Koff, 1991; Reprinted with permission of the AIAA). 

 

Figure 1-8 shows several cooling techniques that are commonly used in turbine blade 

design. There are three important cooling zones of a blade. Film cooling takes place in the 

leading edge (Zone 1), the pressure and suction surfaces on the blade (Zone 2) and the blade tip 

region (Zone 3). The leading edge is also cooled by impingement cooling at the inner wall. The 

center of the blade is cooled by the internal rib-roughened cooling channels. The rib-roughened 

cooling channels cause turbulence in the coolant flow as the air passes over and around the ribs. 

The turbulent air removes a fraction of the heat conducted by Zone 2 from the blade (see Figure 

1-8). The same cooling air exits through the cooling holes in Zones 1, 2 and 3 forming a thin, 

cool, insulating blanket along the external surface of the turbine blade. The trailing edge of the 

blade is cooled by pin fins with trailing edge injection of coolant. Film cooling effectiveness 
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depends on two parameters the mass flow rate and flow velocity of the coolant, which in turn 

depends on the rib configuration in the internal cooling channels. Therefore, it is important to 

study the internal cooling channel ribs configuration to cool all zones efficiently. 

 
Figure 1-8: The schematic of a modern gas turbine blade with common cooling techniques (Han, 

2004; Reprinted with permission of the Taylor & Francis Group). 

 

The most influencing factor on cooling effectiveness ϕ is the mass flow rate ( ) of the 

coolant, and this rate is usually measured as a percentage of the mainstream flow. Figure 1-9 

shows that ϕ increases rapidly with a small percentage of coolant, but then the growth of the ϕ 

slows. To increase further cooling, a large amount of cooling air and/or different cooling 

techniques must be used. For example, for an engine of modest turbine inlet temperature, where 

only the first stage (i.e., a single row of vanes and blades) of the turbine engine needs cooling, 

and the total turbine cooling air flow may be only 4% to 5% of the mainstream air flow. 

However, for a state-of-the-art engine where there are several stages and each stage has a row of 

turbine vanes and blades and these vanes and blades must be cooled, the percentage of total 

turbine cooling air flow can be as high as 25% to 30% of the mainstream air flow. Since the 

 

ZONE 1 

ZONE 3 

ZONE 2 

ZONE 1: Leading Edge 
ZONE 2: Suction and Pressure side 

ZONE 3: Blade Tip 
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cooling air is drawn from the compressor at different stages, it represents a direct loss of engine 

efficiency due to a reduced amount of mainstream flow. Approximately 1% of coolant is a loss 

of approximately 1% of specific core power output (Logan, 1995; Moustapha et al., 2003). 

Therefore, it is important to balance the cooling air flow and mainstream air flow. This research 

investigation focuses on optimizing the design configuration of the internal cooling channel of a 

turbine blade in order to enhance the cooling so that the desired cooling effectiveness is achieved. 

 
Figure 1-9: Effectiveness of different blade cooling techniques as a function of cooling air flow 

(obtained from Moustapha et al., 2003). 

 

Considering the examples of various cooling schemes shown in Figure 1-9, the lowest 

cooling effectiveness and TIT of about 2100º F is obtained by a simple radial hole cooling design 

configuration. The combination of more advanced design configurations such as multi-pass, 

film/crossflow impingement and transpiration cooling achieve higher cooling effectiveness and 

inlet temperatures up to 2500º F for power plant turbines and up to 2800º F for advanced aircraft 

engines with the same percentage of coolant (Moustapha et al., 2003; Logan, 1995). Despite the 
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recent developments in internal cooling technology, it is difficult to cool the blades significantly 

beyond an average cooling effectiveness ϕ = 0.50 (see Figure 1-9). Thus, there is a need to 

explore further internal cooling channel configurations, which directly impact a blade’s cooling 

effectiveness. 

 

1.5 Challenges of Gas Turbine Blade Cooling Channel Design 

In general, the relationship among most of the critical components and internal 

subsystems in gas turbines are complicated, and the performance objectives of the turbine engine 

sometimes conflict. For example, the efficiency of gas turbines increases as TIT increases. 

However, operating at high temperatures decreases the life of the gas turbine and increases the 

operating costs of power plants. These conflicting objectives necessitate decisions that must 

consider tradeoffs between the objectives. 

The optimization of the design configuration of the blade internal channel appropriately 

fits a multiobjective design optimization problem. It should satisfy two conflicting objectives: (1) 

maximize the cooling effectiveness to increase the blade life and reliability of the engine, and (2) 

minimize the pressure drop in the cooling channel. The minimization of the pressure drop is 

important in that, enough pressure must be retained in the cooling channel for satisfactory 

ejection of the coolant flow. If there is insufficient pressure in the cooling air flow, the exit 

velocity of the coolant will be lower than that of the mainstream air flow, and it will disturb the 

mainstream flow. This disturbance is called mixing loss and could contribute to the loss of 

efficiency. Thus, minimization of pressure drop inside the cooling channel is an important 

objective for designers to consider. 
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Due to the complex nature of the flow and heat transfer phenomena involved in cooling 

channel design, only few attempts have been made in applying multiobjective optimization 

techniques to the design of internal turbine blade cooling channels. The limited studies consider 

only two objective functions and convert the two objectives to a single composite objective 

function. However, no existing research simultaneously considers two or more objectives equally 

weighting the objectives.  

 

1.6 Research Objectives 

The aim of this research investigation is to apply multiobjective optimization techniques 

in engineering design. As explained in Section 1.3, this research specifically focuses on the 

feasibility study of multiobjective optimization of the gas turbine blade internal cooling channel 

to increase the useful life of the blade. The main goal of this investigation is to build a 

framework where multiobjective optimization is employed in order to accelerate and improve the 

design of blade internal cooling channels to enhance the heat transfer rate and the blade 

operating life. The specific objectives of this investigation are as follows: 

 

Objective 1: Design a multiobjective procedure for the heat transfer optimization problem. The 

procedure is designed to rapidly converge to the true Pareto optimal front. In addition, the 

procedure generates a diverse set of Pareto optima so that they are evenly distributed along the 

front. Only with a diverse set of solutions can it be assured of having a viable set of tradeoff 

solutions among objectives.  
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Objective 2: Integrate commercially available numerical simulation software used to build 

computational fluid dynamics (CFD) model for the analysis of the flow field and associated heat 

transfer of different design configurations of cooling channel to optimization algorithm such as 

multiobjective evolutionary algorithms (MOEAs). 

 

Objective 3: Automate the design optimization framework, i.e., the system should deliver a set of 

Pareto optimal solutions in one execution with minimal input data. 

 

1.7 Expected Contributions of This Research Investigation 

This investigation should contribute quite significantly to the body of knowledge of and 

advance the state-of-the-art in mechanical component design optimization. Gas turbines are the 

test application in which to implement and validate our research as gas turbines are complex in 

design and play a central role in global energy needs. This research potentially improves the 

design approach of gas turbine blades and the inherent cooling effectiveness and, in turn, 

improving the reliability, availability and maintainability of gas turbine engines. 

 

1.8 Organization of This Document 

The remainder of this document is organized as follows. CHAPTER 2 provides a brief 

summary of the related literature including the gas turbine blade cooling design and 

multiobjective optimization. CHAPTER 3 gives a brief overview of heat transfer concepts and 

fluid flow simulation. The chapter begins with definitions of different modes of heat transfer, 

fluid dynamics, and concludes presenting the governing equations that characterize heat transfer 
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and fluid flow. Readers familiar with heat transfer and fluid mechanics can proceed directly to 

CHAPTER 4 without the loss of continuity. CHAPTER 4 provides an overview of 

multiobjective optimization and multiobjective optimization methods and discusses evolutionary 

algorithms as a multiobjective optimization procedure. Those who are familiar with 

multiobjective optimization in general and evolutionary algorithms as multiobjective 

optimization procedures specifically can proceed to CHAPTER 5 

CHAPTER 5 describes the proposed optimization framework for solving multiobjective 

mechanical component design problems. The chapter provides a detailed description of the 

architecture of the proposed framework. The framework comprises two components – an 

Optimizer component and a Simulator component. The Optimizer component intelligently and 

iteratively perturbs the values of a set of design variables to create candidate design solutions. 

The Simulator component, which utilizes computational fluid dynamics, evaluates the candidate 

solutions to evaluate the quality of the designs. 

The proposed optimization framework is systematically tested within a structured 

experimental framework in a computational study. CHAPTER 6 discusses the test application for 

the optimization framework, the set of design objectives and the set of design variables. In 

addition, the parameter settings for both Simulator and Optimizer are determined via pilot study. 

The performance of the proposed optimization framework is assessed in CHAPTER 7 for 

one design objective and then for two design objectives, respectively. CHAPTER 8 then assesses 

the performance of framework under three design objectives. This document is concluded in 

CHAPTER 9 with a summary of the accomplishments and future steps in this research. 
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CHAPTER 2: 

REVIEW OF PREVIOUS RELATED LITERATURE 

2.1 Introduction 

Engineering design is an iterative and often tedious manual task. The design iterations are 

carried out manually until satisfactory results are obtained. In this context, one can say any 

engineering design problem is an optimization problem. Formal optimization schemes are being 

used as part of the modern design process to achieve optimal designs of engineered system as 

well as components. While formal optimization methods are not fully integrated into all 

engineering design processes, their inherent ability and adaptability of these methods have 

assisted in developing robust designs. In this chapter, a review of the existing work in 

engineering design optimization is given. 

 

2.2 Conventional Optimization Techniques in Engineering Design 

The traditional approaches to engineering design optimization are experimental methods 

and numerical optimization methods. Experimental methods usually require the investigation of 

numerous variations about some nominal design. On the other hand, one is forced to experiment 

either on the real-world engineered system or on a scaled down model of the system if the 

functional relation between the design variables and the objective function is unknown. For the 

purpose of experimental optimization, one must be as flexible as possible to vary the 

independent design variables and have access to measuring instruments with which the 

dependent variables can be evaluated. Systematic investigation of all possible states of the 

system is costly if there are many design variables, and random sampling of various 
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combinations is impractical for achieving the desired result (Schwefel, 1981). For example, in 

the design of an aircraft wing or wing-fuselage combination, numerous wind tunnel tests may be 

conducted, modifying the configuration only slightly between tests. The main purpose is to find 

the optimal geometric shape that maximizes important performance parameters. The 

modification of an aircraft wing or wing-fuselage for each experimental test is costly and fairly 

time-consuming. This suggests that use of less expensive numerical optimization methods for 

determining the best shape for the specified flight envelope (i.e., capabilities of an aircraft design 

in terms of speed and altitude) is more appropriate. Thus, the addition of a numerical approach in 

the design process reduces the amount of experimental effort and its associated cost to a great 

extent, and yet the all-important experimental verification of design is also retained 

(Vanderplaats, 1984). Scores of experimental approaches to gas turbine blade cooling have been 

studied. A review of these studies can be found in Han et al. (2000). 

Numerical simulation optimization methods use high speed computers and information 

technology to help design engineers in tasks such as design, analysis, simulation and 

optimization. There are several commercially-available computer-aided engineering (CAE) 

software tools to perform these activities, and these tools are used in various stages of design to 

simulate, validate and optimize design parameters. CAE application areas include: 

 Stress and strain analysis on mechanical components using finite element analysis (FEA); 

 Thermal and fluid flow analysis using computational fluid dynamics (CFD); 

 Mechanical event simulation (MES); and 

  Tools for process simulation for operations such as casting, molding, and die press forming. 

http://en.wikipedia.org/wiki/Casting
http://en.wikipedia.org/wiki/Molding_%28process%29
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Thermal and flow analysis using CFD is a computer simulation that is used in the 

optimization of gas turbine blade cooling design. Application of CFD techniques to optimize gas 

turbine blade internal cooling alone has attracted many researchers in recent years (e.g., Chen et 

al., 2000; Jang and Han, 2001; Al-Qahtani et al., 2002; Saha and Acharya, 2004; Kim and Lee, 

2007a; Xie et al., 2009; Iacovides and Launder, 2007). Apart from gas turbine design 

applications, many industrial design activities use CAE tools to obtain few design solutions by 

changing design variables manually. The optimization is achieved by comparing only a few 

design candidates and accepting the best design solution relative to some design objective. This 

approach is time-consuming and often never guarantees an optimal design solution. On the 

contrary, CAE tools are integrated with optimization algorithms so that they iteratively evaluate 

candidate designs in order to identify the best solution. 

The experimental and numerical optimization method using computer simulation ignores 

the stochastic nature of design variables. This is mainly because the traditional deterministic 

design calculations use nominal (average) values of random variables and apply safety factors to 

simulate worst-case scenarios in an attempt to account for uncertainties caused by stochastic 

input variables. If the design of a system is complex where safety factors are generously applied 

due to the high risk involved, then these safety factors compound to cause over-design often with 

unknown system reliability. In some important cases, where there is an upper and lower 

specification or a functional limit exists, the safety factor method cannot be used, and a 

probabilistic design method (PDM) is used. PDMs use probability distributions of the design 

variables, instead of nominal values, in the design calculations. By using the probability 

distributions of the design variables, an engineer can design for a specific reliability or 



22 

specification conformance by producing designs that are fairly robust to variations and, hence, 

can maximize safety, quality and economy. 

There are many probabilistic analysis methods in use, some of the commonly used 

methods are: i) the First-Order Reliability Method (FRM), ii) the Second-Order Reliability 

Method (SRM), iii) the Fast Probability Integration (FPI), iv) the Response Surface Method 

(RSM), and v) the Monte Carlo Simulation (MCS). The application of PDMs in design first 

received attention in space exploration industry more than two decades ago. The deterministic 

approach favors the use of a factor of safety in launch vehicles to account for uncertainties, 

which not only leads to unknown reliability, but also often results in a substantial weight 

increase. It is estimated that the cost of delivering one pound of payload to low-earth orbit is 

about US$8,500 (McCurdy, 2001). Considering the cost associated with the weight of payload 

and risk involved in exploring space, NASA uses probabilistic design techniques to decrease the 

liftoff weight of launch vehicles drastically without compromising system safety and reliability. 

(Chamis, 1987; Shiao et al., 1988; Shiao and Chamis, 1994; Chamis, 2007). 

Design engineers from other fields also apply PDMs in their designs concurrently. The 

catastrophic accidents of airlines, such as the incident in Sioux City, Iowa in 1989 due to an 

inherent material anomaly and the incident in Pensacola, Florida in 1996 due to an induced 

material anomaly, prompted a surge in the application of probabilistic design methods to 

commercial airlines gas turbine engine design (Enright et al., 2005). 
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2.3 Reliability-based and Probabilistic Design Methods for Gas Turbine Blade Design 

Although probabilistic design methods are well-known and have been studied for many 

years, the application of PDMs to gas turbine blade design started gaining momentum only 

within the last decade. For example, Mucke (2000) introduce probabilistic approaches to design 

of cooled gas turbine blades. He uses Monte Carlo Simulation to predict the life of turbine 

blades. He treats the design variables as stochastic in nature and assumes a Gaussian distribution 

to obtain probability distribution of failure criteria and sensitivity of stochastic variables. In 

another similar study, Voigt et al. (2004) study the stochastic nature of material data, thermal 

loading and manufacturing tolerances on low cycle fatigue (LCF) life of the blade. The study by 

Sidwell and Darmofal (2005) evaluates the impact of blade-to-blade variability in cooling flow 

on the oxidation life of blade. 

The probabilistic design methods discussed so far are linked primarily to reliability-based 

design tools. They are used to predict the useful life or reliability of a component based on the 

stochastic nature of its design variables. There are few drawbacks in integrating probabilistic 

design methods in design optimization. Firstly, it is often difficult to characterize the most 

appropriate probability distribution for each design variable due to the difficulty in obtaining 

data. Secondly, the objective of these methods is to predict the reliability of the component for a 

given level of variability in the design variables. However, probabilistic design methods fail to 

handle multiple objectives in design optimization. 
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2.4 Overview of Engineering Design Optimization Methods 

There is a wide array of procedures that have been used for combinatorial optimization. 

These optimization procedures are becoming more and more popular in engineering design 

activities mainly because of the increased availability of more affordable high-speed computers. 

They are extensively used in engineering design problems where the focus is minimizing or 

maximizing a particular objective or set of objectives. These procedures are capable of 

addressing design optimization problems in many different and diverse disciplines unlike 

empirical methods that have been used in the recent past. For example, the recent advances made 

in the area of aerospace systems design and turbomachinery design is attributed to the 

development of accurate flow solvers and efficient optimization algorithms (Logan, 1995). 

Several optimization procedures addressing various engineering design problems have been 

developed over the years, and these methods can be broadly classified as gradient-based and 

non-gradient-based methods, as shown in Figure 2-1. 

 
Figure 2-1: Overview of optimization procedures for engineering design problems 
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2.4.1 Gradient-Based Optimization Methods 

The gradient-based optimization methods can be subdivided into two main classes: direct 

and indirect. Direct gradient methods converge iteratively to the local optimum of an objective 

function by moving in the direction relative to the local gradient. Indirect methods compute the 

local maxima by solving the usually nonlinear equations resulting from equating the gradient of 

the objective function equal to zero. This method is comparatively efficient in searching for 

optima. However, both direct and indirect methods are local in scope; they seek the best solution 

in the surrounding search region of the current point. Gradient-based search techniques have 

been widely used in many engineering optimization problems including aerodynamic shape 

optimization (Obayashi and Tsukahara, 1997; Catalano et al., 2008), and gas turbine design 

(Burguburu and le Pape, 2003; Kämmerer et al., 2004). However, the objective function in shape 

optimization usually falls under multimodal, and thus the optimum reached may be in the 

neighborhood of the initial design point. To find the global optimum, one must start the 

optimization iteratively from initial design points and check for correctness of the computed 

optima at each iteration. Existing turbine blade cooling optimization research focuses more on 

non-gradient-based methods. 

 

2.4.2 Non-Gradient-Based Optimization Methods 

Non-gradient-based approaches to design optimization are relatively new compared to 

gradient methods. This is mainly due to previous limited availability of high-speed computing. 

Figure 2-1 shows further classification of non-gradient-based methods. 
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2.4.2.1 Local Search and Meta-Heuristics 

Design optimization problems can be characterized as a local search for the optimal 

solution over the space of all feasible design solutions. A special class of local search heuristics 

is called meta-heuristics. Meta-heuristics are a class of approximate methods that are capable of 

solving hard combinatorial optimization problems where classical heuristics have failed to be 

effective and efficient (Osman and Kelly, 1996). Meta-heuristic approaches have drawn 

significant attention from researchers and design engineers in the last decade. The main reason 

for their popularity in design optimization is that these approaches are likely to find global 

optimal solution without getting trapped at local optima as other approaches such as gradient 

methods. Another advantage of these methods is that they do not require any derivatives of the 

objective function in order to calculate the optimum (Shahpar, 2000). 

The most popular meta-heuristics that are used for design optimization are nature-

inspired procedures that include simulated annealing, evolutionary algorithms, tabu search, and 

ant colony optimization (see Figure 2-1). A number of researchers provide extensive reviews of 

these heuristics and discuss their applicability to general combinatorial optimization problems 

(e.g., Reeves, 1993; Rayward Smith, 1996; Glover and Laguna, 1997; Pham and Karaboga, 2000; 

Alidaee and Rego, 2005). These algorithms have all been successfully used in blade design 

optimization problems: simulated annealing (e.g., Ghaly and Mengistu, 2003; Tiow et al., 2002), 

tabu search (e.g., Kipouros et al., 2005), evolutionary algorithms (e.g., Muller and Walther, 2001; 

Foli et al., 2006; Li and Kim, 2008; Gosselin et al., 2009), ant colony optimization (e.g., 

Fainekos and Giannakoglou, 2003) and hybrid techniques (e.g., Burguburu and le Pape, 2003; 

Shahpar, 2000; Dumas et al., 2009). Specifically, evolutionary algorithms have been used 
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extensively in the blade design optimization. These algorithms are nature-inspired heuristics 

based on the Darwinian evolution theory on survival of the fittest, and are suitable for 

multimodal and multiobjective problems (Holland, 1975a; Goldberg, 1989). This class of 

optimization approaches is further reviewed in CHAPTER 4. 

 

2.4.2.2 Artificial Intelligence Approaches 

Artificial intelligence (AI) approaches have numerous applications in the field of controls, 

robotics, forecasting, pattern recognition, pharmaceutical, signal processing, power systems, 

manufacturing, optimization, and social/psychological sciences (e.g., Zhu et al., 1999; Hafner et 

al., 2000; Kalogirou, 2003; Mellit and Kalogirou, 2008). Little work has been done in the area of 

gas turbine blade design optimization using AI approaches. A few researchers propose hybrid 

techniques, where evolutionary algorithms are combined with artificial neural networks which 

are carefully trained to optimize the gas turbine blades and turbine stages (Mengistu and Ghaly, 

2007; Kosowski et al., 2009). 

 

2.5 Multiobjective Optimization 

Optimization is defined as the process of solving problems in which the main intention is 

to maximize or minimize an objective function by systematically selecting random values of real 

and/or integer decision variables within the range prescribed. During the optimization procedure, 

the process of obtaining the optimal solution for a problem with single objective is called single 

objective optimization. However, in reality problems more often involve the consideration of 

multiple and often conflicting objectives. Multiobjective optimization problems (MOOPs) 
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consider more than one objective function. If the objectives are in conflict, then there is no one 

best solution exists, but a set of the best compromise (tradeoff) solutions. A multiobjective 

optimization problem can be represented has the following general form: 

 

min (max) f(x), (2.1) 

 

where f(x) is vector of m number of objective functions needs to be optimized, i.e., f(x) = (f1(x), 

f2(x), …, fm(x)), and solution x is a n-dimensional vector of decision variables that are real  or 

integer  or both. Eq. 2.1, which can be converted to a minimization / maximization problem with 

no loss of generality, is typically subject to the constraints: 

 

gj(x) ≤ bj, j = 1, 2, …, k, and (2.2) 

ai ≤ xi ≤ bi, i = 1, 2, …, n, (2.3) 

 

where b is a k-dimensional vector of inequality constraints. Eq. 2.3 restricts the values of each 

decision variable xi between a lower (ai) and upper (bi) bound. Like the decision variable space, 

the objective functions are also constitute a multidimensional space corresponding to the 

decision variable space and is called the objective space Z (see Figure 2-2). 
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Figure 2-2: Illustration of the decision variable space and corresponding objective space (Deb 

(2001) 

 

2.5.1 Multiobjective Optimization in Gas Turbine Internal Cooling System Design 

In the last 50 years, a wide array of research has been conducted in the area of gas turbine 

blade cooling. Researchers use analytical, computational and experimental methods to improve 

cooling techniques for gas turbine. Recent monographs focusing entirely on the gas turbine heat 

transfer phenomena and associated cooling technology is provided by Goldstein (2001) and Han 

et al. (2000). Han (2004) also reviews turbine blade cooling techniques and addresses the state-

of-the-art reviews of gas turbine blade cooling techniques and heat transfer methods. 

The use of multiobjective optimization in heat transfer problems is a relatively new 

research area of focus and has been the point of interest only in the last few years. In particular, 

the last few years have seen a sharp increase of heat transfer related optimization using 

evolutionary algorithms (EAs). Gosselin et al. (2009) review the utilization of multiobjective 

optimization using genetic algorithms, the more popular representative of the family of EAs, in 

heat transfer problems. 
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One of the well-known methods to improve heat transfer (i.e., enhance material cooling) 

in a channel flow is to roughen the surfaces in the blade’s internal cooling channels so that the 

surface area increases and enhances cooling. Gas turbine researchers study different design 

configurations of blade internal cooling channels to enhance the cooling process. Pin-fins, ribs 

and dimples on solid surfaces (Figure 2-3 (a), Figure 2-3 (b) and Figure 2-3 (c), respectively) are 

usually used in cooling channels to facilitate heat transfer augmentation. These prevent the 

development of thermal boundary layer and velocity boundary layer between the blade surface 

and the coolant flow, and increase the creation of turbulent kinetic energy, thus enhancing 

turbulent heat transfer (Ligrani et al., 2003). 

 
Figure 2-3: Different design configurations for blade internal cooling channels 

 

The use of pin-fins or ribs (see Figure 2-3) to enhance the cooling inside the blade poses 

other risks such as a decrease in secondary air (coolant) pressure and a decrease in the velocity of 

coolant flow. Thus, a design optimization process capable of addressing multiple design 

objectives simultaneously can be a suitable tool in such conditions. The application of 

multiobjective design optimization to internal cooling channels not only helps enhance the blade 

cooling, but it can eventually be used in other areas such as heat exchanger/heat sink design, 
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where cooling channels need to be optimized. For example, micro heat exchangers in micro-

electromechanical systems (MEMSs) face limitations of space and power to drive cooling 

systems, which are used in avionics and electronic circuit board for heat dissipation. Foli et al. 

(2006) perform the shape optimization of micro heat exchangers and estimate the best geometric 

parameters by attempting to maximize the heat transfer and minimize the pressure drop as two 

objective functions. The optimized heat exchanger obtained in this method yields heat transfer 

greater than those obtained by the traditional approach. Husain and Kim (2008) demonstrate the 

optimization of a micro-channel heat sink using a hybrid multiobjective evolutionary approach. 

In this study, they consider two performance measures - thermal resistance and pumping power - 

where both are to be minimized. 

Chattopadhyay et al. (1999) develop a multiobjective optimization procedure to optimize 

the outer shape and cooling holes location on the gas turbine blades to achieve efficient film 

cooling. In their study, blade average temperature and maximum temperature are chosen as the 

two main objective functions. These objective functions are then converted into single composite 

function by summing each objective function multiplied by a weighting factor. The weighting 

factors are subjectively decided based on the designer’s experience or discretion. 

Muller et al. (2001) use an evolutionary algorithm to optimize the blade design to 

enhance film cooling on the blade outer surface. They consider the minimization of the mass 

flow rate of the coolant, ṁc. The researchers also consider blade temperature as an objective. 

However, they impose mean, upper and lower bounds on the blade surface temperature using 

constraints thereby transforming the multiobjective problem to a single objective problem with a 
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composite objective function. It is important to note that the impact on the pressure of the 

secondary cooling flow is not considered in their study. 

Li and Kim (2008) use a multiobjective optimization approach for the shape optimization 

of pin-fins in three-dimensional heat exchanger channels with elliptic-shaped pin-fin arrays. The 

aims here are to suggest the best geometric shape of the pin-fins and to assess the interactions 

between the two objectives – maximizing the heat transfer coefficient and minimizing the 

coolant pressure drop in the cooling channel. The authors use a multiobjective evolutionary 

algorithm (MOEA) to find the set of Pareto optima. In a similar study, Samad et al. (2008) 

propose a staggered array of dimples printed on opposite surfaces of a three-dimensional cooling 

channel and optimize the shape of the dimples with a hybrid multiobjective evolutionary 

algorithm to enhance the cooling effectiveness. Two objectives considered in this research 

investigation are also maximizing heat transfer coefficient and minimizing coolant pressure drop. 

Both Li and Kim (2008) and Samad et al. (2008) used ε-constraint strategy where one objective 

is optimized treating the other as equality constraint and the process is repeated for the other 

objective. This process gives two new sets of optimal solutions to choose from. It is also evident 

from this approach that, the two objective functions considered are not subjected to optimization 

simultaneously. 

There is limited work that addresses gas turbine blade internal cooling design 

optimization. Roy et al. (2002) attempt to optimize a turbine blade cooling system design, where 

their study mainly focuses on handling the presence of complex inseparable function interaction 

among its decision variables. They propose an evolutionary-based multiobjective optimization 

algorithm called Generalized Regression Genetic Algorithm (GRGA). Their study shows that 



33 

GRGA successfully handles complex inseparable function interaction and gives a range of 

feasible designs from which one can be chosen based on a designer’s preferences. The authors 

consider two objectives for optimization – minimization of coolant mass flow rate and 

minimization of the blade metal temperature. 

The optimization of cooling channel is studied by Kim and Kim (2002), who consider the 

optimization of internal cooling channels with straight rectangular ribs (Kim and Kim, 2004a), 

V-shaped ribs (Kim and Lee, 2007b) and the angle of the ribs (Kim and Kim, 2004b). They 

identify the values of geometric design variables with the objective function defined as a linear 

function of heat transfer coefficient and friction drag coefficient (a surrogate measure for 

pressure drop). They suggest that using a numerical approach presents a reliable way of 

designing optimized heat transfer surfaces. It is important to note that the two objectives 

considered in their study are heat transfer coefficient and secondary air flow pressure drop. 

However, these two objectives are combined to form a composite function using a vector of 

subjective weights. The selection of the weights is based on a designer’s experience, which could 

lead to errors in optimization if the weights are not carefully selected. 

 

2.6 Summary 

In summary, there is limited work that addresses the blade internal cooling design 

optimization. Further, it can be concluded that the gas turbine community has yet to take full 

advantage of multiobjective optimization techniques in the design process using evolutionary 

approach. No researcher has formally studied blade internal cooling channel optimization and 

computational fluid dynamics and heat transfer analysis for different internal cooling channel 
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design configurations of ribs in the presence of more than two objectives and also no researcher 

considered two or more independent objectives for simultaneous optimization. 
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CHAPTER 3: 

OVERVIEW OF HEAT TRANSFER AND FLUID FLOW SIMULATION  

3.1 Introduction 

Over the last two decades, simulation has become a standard industrial tool for the design, 

analysis, and performance evaluation of engineering systems involving fluid flow and heat 

transfer phenomena. The process of using computers to study fluids that are in motion, and how 

the fluid flow behavior influences heat transfer in the systems numerically is called 

computational fluid dynamics (CFD) analysis (Anderson, 1995; Tu et al., 2008). The use of CFD 

has been driven by the increased availability of state-of-the-art commercial CFD software and 

inventions and by advances in computational capability of digital computers at low cost. 

Particularly, simulation minimizes lead times and costs in design, development and 

manufacturing substantially compared to an experiment-based approach and offers the ability to 

solve a wider range of complicated problems where an analytical approach is lacking. The 

coupling of heat transfer and fluid flow simulation and analysis is common practice in CFD to 

study how flow behavior influences heat transfer, and design more efficient systems by 

optimizing design variables. The following sections of this chapter provide a brief introduction 

on the physics and mathematical governing equations involved in different methods of heat 

transfer and fluid flow analysis. Readers who are familiar with CFD, fluid flow behavior and 

numerical simulations may proceed directly to CHAPTER 4 without loss of continuity. 
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3.2 Heat Transfer 

Heat transfer is a discipline of thermal engineering that studies the exchange of heat from 

one physical system to another. For heat transfer to take place there must be a temperature 

difference between two regions. Thus, the heat flows from the high temperature region to the low 

temperature region. The numerical simulation of heat transfer determines the temperature field 

for varying geometric and fluid characteristics. There are three main modes of heat transfer - 

conduction, convention and radiation (Incropera et al.,1996). 

 

3.2.1 Conduction Heat Transfer 

Conduction heat transfer is the transfer of thermal energy from the more energetic 

particles of matter to the less energetic particles of matter through the interaction of the particles. 

Here, there are more energetic particles characterized with higher temperatures than neighboring 

particles with less energy. When the particles collide, a transfer of energy from the more 

energetic particles to the less energetic particles occurs. Conduction occurs in all forms of matter, 

e.g., solids, liquids, gases and plasmas, due to atomic and molecular activity. In solids, it is due 

to a combination of random translational, rotational and vibrational motion of the molecules in a 

lattice with the energy transported by the free electrons. 

 

3.2.2 Convection Heat Transfer 

In a broad sense, convection heat transfer is the transfer of thermal energy from one place 

to another via the movement of fluids (i.e., liquids and gases). However, convection heat transfer 

actually describes two mechanisms that are the combined effect of conduction (molecular 
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motion), and heat transfer by bulk fluid flow. The presence of bulk or macroscopic motion of the 

fluid enhances the heat transfer between fluid and solid surface. Convection phenomenon can be 

found in many applications. In this research investigation, the focus is convection heat transfer, 

which occurs between a fluid in motion and a solid surface when the two are at different 

temperatures (Incropera et al., 1996; Anderson, 1995). 

 

3.2.3 Radiation Heat Transfer 

Thermal radiation is electromagnetic energy emitted by matter that is at a higher 

temperature compared to its surrounding temperature. Although most research investigations 

focus on radiation from solid surfaces, emission may also occur from liquids and gases. 

Regardless of the form of matter, the emission may be attributed to changes in the electron 

configuration of the constituent atoms or molecules. While the transfer of energy by conduction 

or convection requires the presence of a material medium, radiation does not. In fact, radiation 

transfer occurs most efficiently in a vacuum. 

 

3.3 Fluid Dynamics 

Fluid dynamics is a sub-discipline of fluid mechanics that study fluids (i.e., liquids and 

gases) in motion. Further fluid dynamics study the effect of the forces on fluid motion, which can 

be classified as: (1) fluid statics, which is the study of fluids at rest, and (2) fluid kinetics, which 

is the study of fluids in motion. Fluid dynamics is an active field of research with complex 

unsolved or partially-solved problems. It is of significant importance to solve fluid dynamics 

problems in order to design systems that interact with fluids, such as aircrafts, ships, turbines, 
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heat exchangers, etc. The solution to fluid dynamics problems typically involves finding 

parameters of the fluid, such as temperature, velocity, density, and pressure, as a function of 

space and time. Due to its complexity, sometimes it is best solved by numerical methods, using 

computers and is thus called computational fluid dynamics.  

CFD begins with the definition of equations that govern fluid flow. These equations are 

partial differential equations that govern the conservation of mass flow, momentum flow and 

energy flow through a medium (i.e., solid, gas or liquid). These equations combine to form the 

Navier-Stokes Equations, which are not solvable analytically, except only in limited number of 

cases. However, an approximate solution can be obtained using a discretization process that 

converts and solves the partial differential equations by a set of algebraic equations (Tu et al., 

2008). The resulting algebraic equations relate to small sub-volumes within the flow at a finite 

number of discrete locations and compute the values of the flow-field variables. There are 

number of discretization techniques that can be used to solve partial differential equations. The 

most popular and often used are: (1) the finite volume method (FVM) and (2) the finite 

difference method (FDM), Figure 3-1 shows the overview of computational solution process. 

Commercially-available CFD simulation software use any one of these discretization methods to 

solve the governing equations. 
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Figure 3-1: Overview process of the computational solution procedure (Tu et al., 2008) 

 

3.4 Heat Transfer and Fluid Flow Governing Equations  

The governing equations used in fluid flow and heat transfer are mathematical 

expressions of the conservation laws of physics. The type and number of equations used in 

numerical analysis of a model depend on the type of flow and heat transfer conditions and the 

type of parameters evaluated. The three main governing equations used in CFD are: (1) 

continuity, (2) momentum and (3) energy equations (Anderson, 1995; Incropera et al., 1996). 

Their physical laws are defined as: 
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 Momentum: The rate of change of momentum equals the sum of the forces acting on the 

fluid; derived from Newton’s Second Law. 

 Energy: The rate of change of energy equals the sum of the rate of heat conduction and 

the rate of work done on the fluid; derived from the First Law of Thermodynamics. 

 

These equations are independently constructed by Navier (1827) and Stokes (1845) and 

are referred to as the Navier-Stokes Equations. In computational analysis of internal cooled gas 

turbine blades, the parameters such as velocity, pressure and temperature are evaluated along 

with turbulence models that influence fluid flow and heat transfer. Therefore, it is important that 

the governing equations considered must consist of fluid flow, energy and turbulence models to 

solve or predict physical phenomenon of fluid motion and heat transfer. The following sections 

provide brief description of these equations in the compact Cartesian notation without delving in-

to the derivation of these equations as the derivations of these equations are beyond the scope of 

this research investigation. 

 

3.4.1 Conservation of Mass 

Conservation of mass is based on the law that is pertinent to fluid flow. Conservation of 

mass states that, matter may neither be created nor be destroyed. Applying conservation of mass 

to an arbitrary three-dimensional (3D) control volume fixed in space and time, the conservation 

equation can be expressed as 

  

  
 

     

  
 

     

  
 

     

  
   

(3.1) 
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where the fluid velocity at any point in the flow-field is described by the local velocity 

components u, v, and w which are in general, functions of space (x, y, z) and time t. 

 

3.4.2 Momentum: Force Balance 

The momentum equations are derived from Newton’s Second Law of Motion, which 

states that the sum of the forces acting on the fluid element must be balanced. These forces equal 

the product between its mass and acceleration of the fluid element. By applying Newton’s 

Second Law on a 3D fluid element and balancing the forces in all three directions, the following 

equations can be derived 
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Eqs 3.2, 3.3 and 3.4 describe the conservation of momentum in fluid flow and are the Navier-

Stokes Equations. 

 

3.4.3 Conservation of Energy 

Derived from the First Law of Thermodynamics, the energy equation states that the rate 

of change of energy within a control volume with respect to time must equal the net rate of heat 

addition to the fluid within the control volume plus the net rate of work done by surface forces 
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on the fluid. Applying this law to a 3D control volume and using Fourier’s Law of Heat 

Conduction the 3D energy conservation equation is: 
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3.4.4 Turbulence Models 

Many fluid flows in significant engineering applications are turbulent in nature. It is 

generally understood that the Navier-Stokes Equations describe mass and momentum transport, 

(see Eqs. 3.1 through 3.4), and fully describe the flow physics of Newtonian fluids, including the 

unsteady and randomly fluctuating behavior that is observed in most fluid flow systems. The 

presence of 3D and unsteady variations in the flow-field indicates that the flow has lost its 

stability and has become chaotic and random state of motion, i.e., a turbulent condition. These 

disturbances may originate from the free stream of the fluid with high velocity, or induced by the 

surface roughness, where they may be amplified in the direction of the flow, in which case 

turbulence occurs. The presence of turbulence in the fluid flow is determined by the 

dimensionless parameter called the Reynolds number, which is ratio of inertia forces to viscous 

forces in the fluid flow 

    
   

 
 (3.6) 

where   is the density of the fluid (kg/m
3
), U is velocity of the fluid (m/s), L denotes 

characteristics length scale, and   is viscosity of the fluid (kg/s.m). At low Reynolds numbers, 

the inertia forces are much smaller than the viscous forces in the flow, which results in the 

laminar flow. The naturally occurring disturbances are dissipated away due to high viscous 
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forces and the flow remains laminar. At high Reynolds numbers, the inertia forces dominate the 

flow and are sufficient to amplify the disturbances, and, as a result, a transition to turbulence 

occurs. The existence of turbulence can be advantageous in the sense of providing mixing and, in 

turn, increased heat transfer rates. Thus, it is important to study the characteristics of turbulent 

flow in order to quantify and understand the effectiveness of heat transfer. However, during 

turbulence, the flow becomes intrinsically unstable with velocity and all other flow properties 

vary randomly making it difficult to describe theoretically. Engineers are able to build a number 

of turbulence models to predict turbulence flow with the help of computational processes. The 

selection of suitable turbulence models is very important in any computational analysis. 

Turbulence models can be classified into three main categories based on the underlying 

theoretical hypothesis: (1) Reynolds Stress Turbulence Models, (2) Eddy Viscosity Turbulence 

Models, and (3) Large Eddy Simulation models. These models have been well-researched, and 

the interested reader is referred to Anderson (1995) and Tu et al. (2008) for the theoretical 

underpinnings and research developments using turbulence and turbulence models. 

Of the three categories, Eddy Viscosity models are most commonly used in industry for 

CFD calculations and, this category further comprises two turbulence models - the k-epsilon 

model and the k-omega model. These models have become industry standards and appear to 

provide the best compromise between numerical effort and accuracy of the turbulence properties. 

The two-equation turbulence models mentioned above are still an active area of research and 

new refined two-equation models are still being developed (Tu et al., 2008; Anderson, 1995).  

  

http://www.cfd-online.com/Wiki/K-epsilon_models
http://www.cfd-online.com/Wiki/K-epsilon_models
http://www.cfd-online.com/Wiki/K-omega_models
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CHAPTER 4: 

OVERVIEW OF MULTIOBJECTIVE OPTIMIZATION 

4.1 Introduction 

Optimization is the study of problems in which the goal is to maximize or minimize a real 

objective function by systematically choosing the random values of real or integer variables from 

within a prescribed range of values. The need for the optimization of a system or process arises 

when the goal is to obtain a solution that minimizes/maximizes an objective function or set of 

objective functions. During the optimization procedure, the process of obtaining the optimal 

solution for a problem with single objective is called single objective optimization. An 

optimization problem that contains more than one objective function, then the process of finding 

one or more optimal solutions is known as multiobjective optimization. A fundamental 

difference between single objective and multiobjective optimization lies in the cardinality of the 

optimal solution set. Readers who are familiar with multiobjective optimization may proceed 

directly to CHAPTER 5 without loss of continuity. 

 

4.2 General Formulation of a Multiobjective Optimization Problem 

In general, many real-world optimization problems consist of multiple conflicting 

objectives which need to be considered for optimization simultaneously. In such scenarios, there 

is no single solution that is optimal with respect to all objectives. Instead, there exist a number of 

solutions called Pareto optimal solutions that are characterized by the fact that an improvement 

in any one objective can only be obtained at the expense of at least one other objective. 

A multiobjective optimization problem can be represented in the following general form: 
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min (max) f(x), (4.1) 

where f(x) is vector of m number of objective functions needs to be optimized, i.e., f(x) = (f1(x), 

f2(x),…, fm(x)), and solution x is a n-dimensional vector of decision variables that are continuous 

or discrete or both. Eq. 4.1, which can be converted to a minimization / maximization problem 

with no loss of generality, is typically subject to the constraints 

gj(x) ≤ bj, j = 1, 2, …, k, and (4.2) 

ai ≤ xi ≤ bi, i = 1, 2, …, n,, (4.3) 

where b is a k-dimensional vector of inequality constraints. Eq. 4.3 restricts the values of each 

decision variable xi between an upper and a lower bound. 

Conventional approaches for solving MOOPs usually scalarize the multiple objectives 

into a single composite objective function using a vector of user-specified weights. This converts 

the original multiple objective optimization problem formulation into a single objective 

optimization problem yielding a single optimal solution. There are many drawbacks of using 

such traditional process include (Eskandari, 2006): 

 The subjective vector of weights that is used for the objective functions greatly influences the 

final solution; 

 There a possibility that some solutions may never be found if the objective space is not 

convex for minimization problems, or concave, for maximization problems; and 

 Conventional approaches may not work effectively if objectives have a discontinuous 

variable space. 

However, these and other shortcomings to conventional approaches have motivated researchers 

and practitioners to seek alternative approaches that generate a set of Pareto optimal solutions 
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rather than just a single solution. Further, Pareto optimal solutions lead to a dilemma of 

decision–making, which is the eventual selection of a single solution. In order to obtain a single 

solution, at the end of the optimization process, a decision-maker (DM) has to make a choice in 

terms of the importance as well as preference of different objectives. Following a classification 

by Van Veldhuizen and Lamont (2000), the articulation of preferences may be done either before 

(a priori methods), during (progressive methods), or after (a posteriori methods) the optimization 

process. 

 

A priori methods: In these techniques, the user preferences are applied prior to the optimization 

process. The decision-maker has to enter preferences by creating a priority ranking of the 

different objectives considered. Preferences are expressed using a composite function which 

combines individual objective values into a single value. The actual optimization is then carried 

out on the single composite function, ultimately converting it a single objective function problem. 

While many a priori methods are available, the weighted-sum approach is the most common 

method. 

 

Progressive method: In this method, the user preferences are used concurrently with the 

optimization process. During the optimization, progressive preference information is applied by 

the decision-maker to guide the search process. This method is a continuous learning process 

where the decision-maker progressively gets a better understanding of the problem and 

interactively refines his/her preferences to quickly converge to the global optimum. However, 

this method requires high involvement from the decision-maker during the optimization process. 
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A posteriori method: The user preferences are applied after the completion of the optimization 

process when the Pareto frontier has been obtained. After the solutions have been found, the 

decision-maker then selects a tradeoff solution from the set of Pareto optima based on the 

decision-maker’s discretion. The main advantage of this method is that the results obtained are 

independent of any decision-making process and remains the same irrespective of changes in the 

decision-maker’s articulation of preferences. This method widely uses evolutionary algorithms to 

treat each objective functions independent while solving for Pareto frontier. Thus, the algorithms 

used are called multiobjective evolutionary algorithms (MOEAs) and is further discussed in the 

sections that follow. 

 

4.3 Solution Dominance Multiobjective Problem Environments 

A solution is a Pareto optimal solution if there exists no feasible solution for which an 

improvement in one objective does not lead to a simultaneous degradation in one (or more) of 

the other objectives. That solution is a nondominated solution and the corresponding solution set 

is called the Pareto (or efficiency) frontier. No solution in the Pareto frontier is better than any 

other solution in the front with respect to all objectives. 

For example, in deterministic problem environments, most multiobjective optimization 

applications are gravitating towards using the nondomination-based approaches due to the 

limitations of traditional multiobjective methods. Assume that fi(A) and fi(B) are the values of 

objective function i (i  {1, …, m}) for two Solution vectors A and B, where A and B are n-

dimensional vectors of the decision variables. The desire is to minimize each objective function. 
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In a deterministic problem domain, Solution A strictly dominates (is better than) Solution B if 

fi(A) is less than fi(B) for each objective function i. After a set of tradeoff solutions are found, 

additional problem-specific high level information about the priorities of various objectives can 

be used by the user to choose a preferred solution from the set of Pareto optima in which to make 

a decision. 

In stochastic problem environments, the objective function values and/or the decision 

variables are uncertain but they are described with the expected values and variances. This 

uncertainty typically results from either the randomness effect involved in the simulation 

modeling or incomplete knowledge about the underlying optimization problem. An issue that 

should be considered in the stochastic optimization context is the randomness effect of 

conflicting performance measures in the simulation models caused by the uncertain nature of 

different processes of the underlying system. The randomness effect of the performance 

measures plays an important role in the quality of the obtained results; thus, inefficient methods 

may lead to incorrect conclusions and improper decisions. 

 

4.4 Multiobjective Evolutionary Algorithms (MOEAs) 

Evolutionary algorithms (EAs) mimic natural evolutionary principles based on Darwinian 

evolution theory on survival of the fittest (Goldberg, 1989; Holland, 1975b). The fundamental 

difference between classical optimization process and evolutionary methods is that EAs use and 

evaluate sets (i.e., populations) of solutions iteratively to identify the best solutions. The main 

idea behind EAs is that populations of candidate solutions with certain attributes are applied to 

an environment and their fitness is assessed. Some of the individuals are better suited to satisfy 
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the requirement of the environment (i.e., survive) and thus have more chance to be selected for 

populating future generations of populations of individual solutions. As a consequence, over 

several generations, poor performing solutions are gradually eliminated while the superior 

solutions evolve and eventually dominate the population in the later generations. Evolution is 

accomplished through biological-based reproduction by using biological-like operators on the 

current solutions (called parents) to generate the new solutions (called children) for the next 

population. These genetic operators are described in detail in later sections. 

There are several advantages that make evolutionary algorithms an appropriate choice for 

solving multiobjective optimization problems over classical or traditional optimization 

approaches. One of the significant advantages is that it is a population-based approach and uses a 

parallel search approach. This implies that if an optimization problem is multiobjective and has 

multiple tradeoff solutions, an evolutionary algorithm is capable of finding those multiple 

solutions in its final population that optimizes each objective simultaneously, whereas a classical 

optimization approach may find only a single solution after solving composite function. Kor 

(2006) summarizes other major advantages of using MOEAs to solve multiple objective 

optimization problems, which are as follows: 

 Eliminates inconsistencies during problem formulation: MOEA results are independent 

of any a priori decision-making process. During problem formulation, the inconsistencies 

associated with weights selection, user preferences and lack of expertise are eliminated. 

 Flexibility in decision-making: MOEAs are capable of finding a set of solutions called 

Pareto optimal solutions. After generating Pareto front, user can then select a solution 

which fits his preferences. In real world problems, objectives and priorities often under 
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continuous change based on current conditions and MOEAs allows the user to select a 

suitable solution to reflect the changes in the preferences.  

 Tradeoff information: MOEAs provide a set of Pareto optimal solutions that are tradeoff 

solutions for the conflicting objectives. The nondominated solutions that comprise the 

Pareto frontier allow flexibility in decision-making and also give insight into the system 

characteristics. Based on the Pareto frontier, the user can have better understanding of the 

complexity of the problem and priorities among the conflicting objectives before making 

well-informed decisions or making further changes to the requirements. 

 Uniform spread of solutions: MOEAs deal with two spaces – decision variable space and 

objective space. A uniform spread of solutions along the Pareto frontier can be obtained 

by defining diversity in both the spaces. MOEAs preserve the diversity of the set of 

Pareto optima, distributing the solutions evenly across the efficiency frontier, thus 

avoiding the early dominance of a particularly fit solution that limits the scope of the 

search. 

 Dependency on starting solutions: MOEA-based approaches are less dependent on the 

selection of the starting solutions, and they do not require neighborhood definition. 

 

In MOEAs, fitness assignment is generally based on the concept of ranking based on 

dominance, whereas the diversity of solutions are usually maintained using crowding distance 

calculation along the Pareto frontier. In recent years, several multiobjective evolutionary 

algorithms have been developed to handle MOOPs. Among them, Vector Evaluated Genetic 

Algorithm (VEGA), Multiobjective Genetic Algorithm (MOGA), Non-dominated Shorting 

Genetic Algorithm (NSGA) and Niched Pareto Genetic Algorithm (NPGA) are some of the most 
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widely used MOEAs. Surveys and comparisons on the different MOEA methods can be found in 

references Kunkle (2003). The elitist Non-dominated Sorting Genetic Algorithm II (NSGA II), 

which is an improved version of NSGA, is currently one of the most popular MOEAs and plays a 

key role in this research investigation. 

 

4.5 Non-Dominated Sorting Genetic Algorithm II (NSGA II) 

The elitist Non-Dominated Sorting Genetic Algorithm II (NSGA II) proposed by Deb et 

al. (2002), is currently one of the most popular MOEA methods used to solve complex and real-

world multiobjective optimization problems. NSGA II is the second generation of the Non-

dominated Sorting Genetic Algorithm (NSGA) (Srinivas and Deb, 1994). Some of the salient 

features of NSGA II are its fast elitist sorting method that involves a combined pool of both the 

parent and child populations and provides diverse population using an autonomous crowding 

distance method. NSGA II introduces elitism by comparing the current population of candidate 

solutions with the previously found best nondominated solutions. In NSGA II, the selection 

procedure uses two processes: (1) Nondominated ranking and (2) crowding distance assignment. 

NSGA II is different from other optimization methods in the way it applies the ranking/fitness 

assignment for selection. In the beginning, all the nondominated individuals in the population are 

identified and assigned a discrete fitness value equal to its nondominance level, with 1 being the 

best level. These values also indicate the Pareto front, f, to which these solutions belongs. Figure 

4-1(a) illustrates this concept with the nondomination rank of each individual solution labeled 

beside it. All the individuals with same fitness value form a layer of dominated front. Before 

identifying the second set of nondominated individuals, sharing is done among the first front 
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individuals to ensure a better spread of the individuals. Here, sharing is obtained by crowding 

distance assignment. The crowding distance is defined as the largest cuboid enclosing the point i 

without including any other neighboring points in the population. Figure 4-1(b) shows the 

crowding distance of the i
th

 solution as the average side lengths of the cuboid enclosing it. The 

population is arranged in descending order of magnitude of the crowding distance values. This 

procedure is repeated for the remaining individuals until all individuals in the population are 

sorted into various fronts using their crowding distance. The population is reproduced using 

crowded tournament selection method. The crossover and mutation genetic operators are used to 

generate new solutions, and the process continues for a desired number of iterations (called 

generations). Figure 4-2 shows process flowchart for NSGA II for better understanding of the 

crowding distance and nondomination rank assignment process. 

 
Figure 4-1: (a) The nondomination rank assignment; (b) The crowding distance calculation of 
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Figure 4-2: A flowchart of the working logic of NSGA II (Deb, 1994) 
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 Discard poor performing solutions from the population so that the copies of the better 

performing solutions can be placed in the population. 

 

There are many methods which can be used to achieve the above tasks. Some common 

methods are tournament selection, ranking selection and fitness-proportionate selection 

(Goldberg and Deb, 1991). NSGA and NSGA II use the binary tournament selection operator, 

where comparison operator (<c) compares two solutions from the mating pool and returns the 

“winner” of the tournament to a separate pool. The tournament selection operator compares two 

attributes of each solution i before making the selection of the winner. These attributes are: 

1) the nondomination rank ri of a candidate solution i in the population, and 

2) the crowding distance di of a candidate solution i in the population 

 

4.5.2 The Crossover Operator 

A crossover operator, also referred to as the recombination operator, is applied next to the 

candidate solutions of the mating pool. The crossover operator exchanges information between 

selected solution pairs (called parent solutions) with a probability of occurrence c. The simulated 

binary crossover (referred to in the literature as SBX) operator introduced by Deb and Agarwal 

(1995) is performed in this algorithm. 

 

4.5.3 The Mutation Operator 

The crossover operator is primarily responsible for the intensification of the search and 

the mutation operator allows for diversification of the search to prevent the search process from 

becoming trapped at a local optimum. After crossover, the newly-generated solutions undergo a 
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mutation operation, where operator changes a 1 to 0, and vice versa, with a mutation probability 

of occurrence m. The polynomial mutation operator introduced by Deb and Goyal (1996) is 

employed by NSGA and NSGA II in which the probability distribution is polynomial. 
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CHAPTER 5: 

PROPOSED MULTIOBJECTIVE DESIGN OPTIMIZATION FRAMEWORK 

FOR GAS TURBINE BLADE DESIGN 

5.1 Introduction 

The overall goal of this research is to investigate and propose an approach that optimizes 

the gas turbine blade internal cooling channel design to enhance turbulent convective heat 

transfer while considering multiple design objectives simultaneously. Recall that the specific 

objectives of this research are to: (1) design a multiobjective procedure for the heat transfer 

optimization problem; (2) integrate a commercially-available simulation package used to build 

computational fluid dynamics (CFD) models for the analysis of the flow field and associated heat 

transfer of different design configurations of gas turbine blade cooling channels; and (3) 

automate the design optimization framework. In this chapter, the proposed framework for 

multiobjective design optimization for mechanical components, specifically gas turbine blades 

and their internal cooling channels is presented. 

 

5.2 Proposed Optimization Framework 

The proposed optimization framework for gas turbine blade internal cooling channel 

design optimization is illustrated in Figure 5-1. The general framework is comprised of: (1) an 

Optimizer component and (2) an evaluation (Simulator) component. The Optimizer component 

includes an embedded optimization algorithm that systematically generates candidate designs in 

terms of the design variable values, and the evaluator component evaluates the candidate designs 

numerically with respect to the set of performance measures of interest. The simulation can be 
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viewed as a black box with: (1) an input interface that accepts and builds a geometric model 

(also called a computational model) with new candidate design specifications, and (2) an output 

interface to communicate design performance measure (i.e., objective function) values to the 

Optimizer component. Based on the design evaluation results, the Optimizer generates the next 

set of candidate designs for evaluation. This cycle continues until the optimization termination 

criteria are met. The subsequent sections provide details of the proposed optimization procedure 

and components therein. 

  
Figure 5-1: Overview of the proposed framework for mechanical component multiobjective 

design optimization 
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5.2.1 Input Data Set 

It is common knowledge that the choice of the input data and parameters can influence 

the optimization process as well as the results. The input data are problem-specific and vary 

depending on type of problem considered. For example, the input data and variables considered 

for multiobjective process optimization are different compared to multiobjective mechanical 

component design optimization. Thus, careful identification of problem-specific input data is 

crucial.  

The major steps involved in input data and variable selection for mechanical component 

design optimization are as follows: 

1. Select a critical component that influences the performance and reliability of the 

entire system; 

2. Identify a segment within the component that needs to be optimized; 

3. Identify the objectives and constraints that are critical to performance and reliability 

of the component; 

4. Select the design variables and range of values and geometric constraints that 

influence the objective function values; and 

5.  Select appropriate physical boundary conditions for the component in order to 

simulate realistic operating conditions. 

 

The other necessary input parameters are related to optimizer component. These 

parameters include the sample size of candidate design solutions, the number of search iterations 

and the search intensification and diversification parameter values. It is important to note that the 

specific values and ranges of these parameters are problem-specific and are generally chosen by 
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conducting experimental pilot studies in which the values are varied based on the problem and 

the relative performance of the search intensification and diversification operators. 

 

5.2.2 Simulator Component: Objective Function Evaluation 

Objective function evaluation is accomplished via the simulator component. The 

Simulator component which builds and performs analysis of the computational model based on 

input data, boundary conditions and ultimately computes the set of objective function values. 

The steps involved in evaluating objective function values are as follows: 

1. The initial geometric model (also called computational model) of selected 

component/segment is constructed using numerical simulation code. 

2. The computational model is discretized (i.e., meshed) into elements that contain 

material and structural properties, which, in turn, define how the structure reacts to 

boundary and loading conditions. 

3. Boundary conditions are applied on computational model. 

4. The Simulator receives and converts a set of design variables values to be evaluated 

within the computational model. 

5. The computational model is solved for the performance measure (i.e., objective 

function) values iteratively until the solution converges. 

6. Objective function values are then exported to the optimizer component. 

The above steps are described further in Figure 5-2 with an example of a metallic elbow 

bracket component that is fixed at one end and subjected to force on the other end. In such 

problems, a designer’s objective is to apply realistic boundary conditions (fixed and force 
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applied) and find (1) the different types of stresses and (2) the location of maximum stresses in 

the component. 

 
Figure 5-2: The step-by-step procedure of Simulator component using an example. 
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5.2.3 Optimizer Component: Design Optimization 

The Optimizer is integrated with the Simulator in that the Optimizer receives objective 

function values. Optimizer uses search operators to select best design solutions and apply the 

search operators to generate a new set of design variable values. The newly-generated design 

variable values are passed to the Simulator to compute the corresponding objective function 

values. Figure 5-3 shows a flow chart of step by step process of optimizer process. 
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Figure 5-3: The step-by-step procedure of Optimizer process 
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multiobjective design optimization procedure, specifically for gas turbine blade cooling channel 

design. In the proposed methodology, relatively minimal input data are required. Neither input 

preferences (i.e., subjective weights) for the objective functions nor any interaction is required 

during the search to obtain the set of Pareto optimal design solutions. 
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CHAPTER 6: 

COMPUTATIONAL STUDY: TEST APPLICATION, EXPERIMENTAL 

DESIGN AND PARAMETER SETTING 

6.1 Introduction 

This chapter presents a description of the design variables, the objective functions, the 

operating parameters and the control parameters selection procedure for optimization process. 

This selection criterion is divided into two categories: (1) variables and operating parameters 

selection for the Simulator (Evaluator), and (2) operating parameters and control parameters 

selection for the Optimizer. The appropriate parameters and initial conditions for the Simulator 

are chosen from the existing literature, whereas the parameters and initial conditions for the 

Optimizer are determined via a pilot study. The pilot study and the final experimental 

optimization results are obtained by integrating numerical simulation and a multiobjective 

optimization procedure. For proof-of-concept, a multiobjective evolutionary algorithm (MOEA), 

i.e., NSGA II, is used to optimize the design variables. In addition, the multi-physics modeling 

and simulation software COMSOL is used as the Simulator component in the framework. 

However, the impetus and eventual success of this research investigation is not necessarily 

predicated upon using these specific approaches. 

 

6.2 Gas Turbine Blade Internal Cooling Channel Design Variables 

The optimization of a turbine blade design is complicated by the introduction of 

secondary cooling air system (refer Figure 6-1). The design of the external airfoil shape of the 

blade is focused on the section that carries hot gas loads with minimal possible aerodynamic 
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losses. The optimal shape of the blade for ideal aerodynamic performance is often to have a very 

thin blade, but internal cooling channels demand a certain amount of thickness to accommodate 

cooling air channels, turbulators (ribs), supporting features, and tip cooling air ejection holes, 

film cooling holes and slots as shown in Figure 6-1(a) and Figure 6-1 (b). 

The scope of this computational study is the design of turbulators whose main purpose is 

to increase the surface area of blade material in contact with the coolant, thereby promoting 

turbulence to increase the heat transfer rate. Various turbulators designs include ribs, pin-fins, etc. 

Figure 6-1(c) shows rib-roughened internal cooling channels, which is the particular focus of the 

computational study. In this study, ribs within the blade cooling channel solid surfaces are 

optimized to augment heat transfer and enhance blade cooling. As previously mentioned, ribs 

prevent the development of a thermal boundary layer and a velocity boundary layer between the 

blade surface and the coolant flow, and increase the creation of turbulent kinetic energy, thus 

enhancing turbulent heat transfer. However, the success of proposed mechanical component 

design optimization approach is not necessarily based upon optimizing ribs only and can be 

applied to other mechanical component design scenarios. 
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Figure 6-1: Typical coolant channels in turbine blade and internal rib arrangement (Han et al., 

2000; Reprinted with permission of the Taylor & Francis Group) 
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channel to minimize the computational effort. A periodic segment of the cooling channel, as 

shown in Figure 6-2, is considered. The radii (R1 and R2) of ribs 1 and 2 (in the periodic 

segment), and fillet radii (R3, R4, R5 and R6) between ribs and wall surface are considered as 

critical design variables that influence the values of objectives. Ribs induce separation and 

reattachment of flow to enhance the heat transfer by creating turbulent mixing. The heat transfer 

is greater at the reattachment locations, but it is low at the locations where flow separation takes 

place due to ribs. The flow separation and reattachment phenomenon is influenced by radii of the 

ribs. 

 
Figure 6-2: Periodic segment of blade cooling channel with design variables 
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The increase in radii R1 and R2 increases size of the ribs, surface area and turbulent 

mixing inside the cooling channel to enhance the heat transfer from blade to cooling air flow. 

However, an increase in rib size increases the drop in air flow pressure and also gives rise to 

more material usage. Fillet radii decreases pressure drop and at the same time increases heat 

transfer rate by creating smooth surface contact between ribs and blade wall (refer to Figure 6-2 

for an enlarged view of cooling channel ribs and fillets). Therefore, variations in these 

specifications can change the heat transfer coefficient h, the pressure drop Δp and the amount of 

consumption of blade material. 

Length (L), Height (H) and Width (W) of the periodic cooling channel segment are 

considered not critical and are treated as constant design parameters. These three parameters are 

fixed in order to maintain the structural integrity of the blade. For instance, an increase in H 

causes a decrease in the blade’s pressure side and suction side wall thickness and an increase in 

W may cause a decrease in wall thickness between cooling channels. The decrease in these wall 

thicknesses may compromise the blade strength against thermal as well as mechanical stresses. 

Hence, H and W are not considered as variables in this investigation, whereas L is length of the 

periodic segment and it is treated as a constant. 

For this research investigation, the initial ranges of the design variables values are 

identified from empirical results published in the existing research literature. The ranges of the 

design variables R1 through R6 are given in the Table 6-1. Specifically, these ranges are 

approximated based on experimental results by Han et al. (2000). 
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Table 6-1: Design variables and value ranges (in meters) 

Parameters Lower Bound  Upper Bound  

Radius of Rib 1 (R1) 0.0010 0.0055 

Radius of Rib 2 (R2) 0.0010 0.0055 

Radius of fillet 1 (R3) 0.0001 0.0004 

Radius of fillet 2 (R4) 0.0001 0.0004 

Radius of fillet 3 (R5) 0.0001 0.0004 

Radius of fillet 4 (R6) 0.0001 0.0004 

 

6.3 Description of the Design Objectives 

The gas turbine blade internal cooling channel designs currently in use represent decades 

of research and practice. New internal cooling channel designs have been found that enhance the 

cooling effectiveness beyond previous known values, and, in turn, these techniques have led to 

improvements in blade life in some cases and increased turbine inlet temperature (TIT) to 

increase the efficiencies in other cases (Moustapha et al., 2003). 

Review of the open literature suggests that the traditional process of design optimization 

for gas turbine blades has matured. Further efforts expended in this direction have not provided 

significant improvements. As a result, more non-traditional methods such as multiobjective 

design optimization techniques are new to this field and have become more attractive. These 

techniques and their introduction offer numerous benefits over the traditional design techniques. 

The main such benefits are improved efficiency, a shortening of the design time and a significant 

reduction in human efforts due to fully automated process of design optimization. 
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Multiobjective design optimization process starts with selection of objective functions 

that are critical to the performance of the component/system and are directly associated with 

design variables. In this research investigation, three common, real-world objective functions are 

considered. The three objective functions considered for this investigation are treated equally 

important during the optimization process, and they are: 

 

1) Maximize blade cooling effectiveness (Φ) by maximizing heat transfer coefficient (h) inside 

cooling channel [W/m
2
 K]. Theoretically, it is defined as – 

  
   

  
   (6.1) 

where Nu is the Nusselt number a dimensionless parameter and a measure of the heat transfer rate, 

k is thermal conductivity [W/m K] and Dh is hydraulic diameter of the channel [m] (channel 

height is Dh in case of a two-dimensional problem). 

 

2) Minimize air pressure drop (Δp) inside the internal cooling channel of the blade. 

Theoretically, it is defined as 

   
     

   

  
   (6.2) 

where f is a dimensionless friction factor, ρ is the density of air [kg/m
3
], ub is the axial velocity 

[m/s] and P is rib pitch [m] inside the cooing channel. 

 

3) Minimize rib material usage by maximizing the internal cooling channel cavity area (A). 

Figure 6-3 shows the cavity area and its influence on the amount of material used to form 
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each rib. In other words, assuming the channel wall thickness remains constant, the larger the 

cavity area, the smaller the ribs, and the smaller the cavity area, the larger the ribs. This 

objective can also serve as a surrogate for material cost minimization. 

 
Figure 6-3: Pictorial representation of blade cooling channel segment with wall thickness 

 

Optimized ribs enhance the turbulent convective heat transfer, minimize coolant pressure 

drop and also minimize material used in blade manufacturing. It is important to note that the 
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the undesired effect of reducing h, but a reducing material usage A, which is desired effect. 

The increase in blade cooling effectiveness allows gas turbine power plants to operate the 

turbine engines at a higher turbine inlet temperature (TIT), which in turn increases the efficiency 
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of the turbine engine without compromising the life of the blade. Likewise, minimization of Δp 

inside the blade cooling channel is important to retain enough pressure in the cooling channel for 

satisfactory ejection of the secondary air flow. If there is insufficient pressure in the cooling air 

flow, the exit velocity of the coolant is lower than the mainstream air flow, contributing to the 

loss of efficiency (Park et al., 1984; Moustapha et al., 2003). Lastly, maximization of the cavity 

area A inside the cooling channel leads to the reduction of the total surface which is directly 

connected to the material usage inside cooling channel thus minimizing material usage cost 

(Figure 6-3). 

 

6.4 Parameter Selection for the CFD Simulation 

The physical parameters and fluid properties are essential in CFD numerical simulation to 

predict fluid flow behavior and to know how it influences processes that may include heat 

transfer, fluid structure interaction and possibly chemical reactions in combusting flows. It is, 

therefore, important that a designer carefully identifies the underlying flow physics, boundary 

conditions, and fluid properties that are unique to the particular fluid flow problem. 

In this research investigation, COMSOL, a commercially-available CFD tool, serves as 

the role of the Simulator component in the optimization framework. This section summarizes the 

physical parameters and fluid properties selected to simulate coolant flow and heat transfer in 

periodic segment of gas turbine blade internal cooling channel. As previously mentioned in 

Section 6.2, the physical model considered in this research investigation is simplified to a two-

dimensional (2D) cooling channel segment, as shown in Figure 6-4. In numerical simulation, this 

2D geometric model is called the computational domain. 
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Figure 6-4: Two-dimensional periodic segment of cooling channel with ribs 
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are imposed through the graphical user interface of COMSOL. 
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and bottom wall (Conditions 2 and 3) are no-slip wall boundary conditions, where fluid velocity 

is zero. Both top and bottom walls are subjected to thermal load due to their direct contact with 

hot gas (Figure 6-1a); therefore, they are subjected to a constant temperature boundary condition. 

At the outlet flow (Condition 4) indicating fluid departure, typically a relative pressure and 

convective heat flux is imposed. The coolant properties, temperature (T) and velocity (u) are 

used to mimic the physical representation fluid flow in the cooling channel. 

 

Table 6-3: Initial boundary conditions used for the CFD simulation. 

Boundary Initial / Boundary Condition 

Inlet Flow (Condition 1) 

Temperature (T) = 293 Kelvin 

Velocity (u) = 10 m/s; Reynolds Number (Re) ≈ 20,000 

Wall (Conditions 2 and 3) 
Temperature = 393 Kelvin 

Thermal wall function 

Outlet Flow (Condition 4) 
Convective heat flux 

Pressure (p) = 0 

 

The boundary conditions are used as initial conditions to solve the governing Navier-

Stokes equations (Eqs. 3.1 through 3.5) iteratively to predict approximate fluid flow and heat 

transfer properties inside the cooling channel. 

 

6.4.1 Computational Fluid Dynamics Simulation 

This section presents brief description of steps used in CFD analysis of two-dimensional 

cooling channels considered in this study. Also presented are contour plots of the simulation 

results. In general, complete CFD analysis consists of three main steps: 
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 Pre-processing 

 Solver 

 Post-processing 

Figure 6-5 presents a framework that describes the interconnectivity of the three 

aforementioned elements within the CFD simulation analysis. The functions of these three 

elements for the computational model are examined in more detail in the following subsections. 

 
Figure 6-5: The inter-connectivity of the three main functions in CFD simulation framework 
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geometric definitions and creation of surface meshes and setup of boundary conditions for fluid 

and heat transfer analysis. 

6.4.1.1.1 Creation of Geometric Model 

To simulate and evaluate the heat transfer coefficient h and pressure drop p in the blade 

cooling channel segment, detailed initial geometric design specifications of the segment is 

needed in advance. The computational model of the periodic segment is built based on these 

initial geometric features. For a pictorial view of a blade cooling channel, refer to Figure 6-1, 

which shows a schematic view of typical turbine blade and its cooling channels. A periodic 

segment selected of a cooling channel for this research investigation is shown in Figure 6-6. 

 
Figure 6-6: Simplified two-dimensional rectangular cooling channel from three-dimensional 

cooling channel 
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solved numerically to obtain the discrete values of the flow properties such as temperature, 

velocity, pressure and other parameters of interest. The accuracy of a CFD solution is governed 

by the number of elements in the mesh within the computational domain. The boundary and 

intricate geometry is meshed with high density mesh to capture flow and heat transfer parameters 

that vary with space significantly at these locations. Figure 6-7 shows a meshing of cooling 

channel using unstructured triangular elements. These elements (triangular) are selected because 

of their flexibility of mesh generation for geometries having complicated shape boundaries. The 

ribs and blade walls are meshed with one layer of quadrilateral elements and high density of 

triangular elements to accurately capture fluid flow parameter which vary drastically at these 

locations. The Table 6-4 shows mesh statistics used in cooling channel. 

 

Table 6-4: Mesh statistics 

Number of Elements  Triangular: 5080 

Quadrilateral: 388 

Total:5468 

Number of Boundary Elements 460 

Minimum Element Quality 0.8 
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Figure 6-7: Two-dimensional meshed geometry of cooling channel 
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6.4.1.1.3 Physics and Boundary Conditions 

The identification of nature of the problem by its physical process is essential to 

determine right boundary conditions to mimic the problem environment. This step is last step in 

Pre-Process stage and deals with application of thermo-physical properties of the coolant from 

materials library of COMSOL and application of boundary conditions.  

Boundary conditions are formal way of applying the initial test conditions to the 

computational model. These conditions are set of values specified for the behavior of the 

solution to a set of governing equations at the boundary of the computational domain. Boundary 

conditions are important in determining the mathematical solutions to physical problems starting 

from initial values and converge to approximate solutions iteratively. For this research 

investigation, the boundary conditions are applied to create a turbulent flow and a temperature 

gradient between coolant and cooling channel walls. Table 6-5 lists boundary condition types, 

initial values and Figure 6-8 shows application of boundary conditions in the computational 

domain. 

Table 6-5: Boundary conditions 

Boundary Initial / Boundary Condition 

Inlet Flow (Air)  

Temperature (Ti) = 293 Kelvin 

Velocity (u) = 10 m/s; Reynolds Number (Re) ≈ 20,000 

Wall  
Temperature (Tw)= 393 Kelvin 

Thermal wall function 

Outlet Flow  
Convective heat flux 

Pressure (p) = 0 
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Figure 6-8: Boundary conditions for cooling channel 

 

6.4.1.2 Solver 
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solutions (objective functions values) in numerical form. To aid our optimization framework a 

script is developed for COMSOL to calculate objective function values from CFD solution. But 

for the purpose of understanding CFD graphical results, the remainder of this section presents 

graphical results of cooling channel along with brief interpretation of the graphs. 

Post-processed contour plots of heat transfer and fluid flow simulation are presented. A 

surface contour plot of the temperature, pressure and heat flux (W/m2) within a computational 

domain are shown in Figure 6-9, Figure 6-10 and Figure 6-11 respectively. These three plots are 

post-processed CFD results and are analyzed based on a color spectrum and the intensity of the 

colors. All the surface plots describe the intensity of a parameter within the computational 

domain typically varying in color from dark blue to dark red as shown in the legend bar at the 

right hand side of each plot. Here, the dark blue indicates the minimum value attained by 

parameter and dark red indicating the maximum value attained by the parameter in the 

computational domain. For example, Figure 6-9 shows the temperature distribution in the 

computational domain. At the entrance (the left side boundary), an inlet temperature of 293K 

(cool air) is applied. The top and bottom wall surfaces are maintained at constant temperature of 

393K. From the color plot, it can be concluded that the temperature of the incoming cool air 

(dark blue) increases in temperature because it picks up heat from the surfaces (i.e., top and 

bottom) while flowing through the geometric shape (i.e., the cooling channel). This phenomenon 

of heat transfer from hot surface to cooling air is visible in the figure and is shown by the color 

gradient present at the top and bottom surfaces. This analysis and interpretation is also true for 

the other two plots (pressure distribution and heat flux distribution) that follow. 
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Figure 6-9: Temperature distribution near rib (units are in K) 
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Figure 6-10: Pressure distribution (units are in Pascal) 

 

 

 
Figure 6-11: Heat flux distribution (units are in W/m

2
) 
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6.5 Parameter Selection for the Optimizer Component 

The efficiency of EAs and convergence rate is closely related to the search control 

parameters such as population size, crossover probability and mutation probability. Several 

research studies have been conducted to evaluate the effect of the control parameters on different 

problem scenarios. Some suggested values can be found in literature (e.g., Grefenstette, 1986; 

Schaffer et al., 1989); however, ultimately, the values of the control parameters are problem-

specific. 

Table 6-6 lists suggested MOEA control parameters; these parameters are varied in a 

pilot study to study the effect on convergence rate with respect to the design decision problem 

considered in this research investigation. 

 

Table 6-6: MOEA (NSGA-II) Control parameters 

MOEA Parameters Parameter Values 

Population Size Pop 

Maximum Generations Genmax 

Reproduction / Selection 
Tournament Selection 

(Rank & crowding distance) 

Crossover Probability c  

Mutation Probability m 

 

The remainder of this section discusses the settings of control parameters for NSGA II. 

The selection of control parameters is based on pilot experiments performed on maximum 

number of objectives and design variables (three objectives and six design variables). The main 

reason for conducting pilot study on maximum number of objective functions and design 

variables is the increase in objectives and design variables leads to rapid growth of the solution 

search space and makes it difficult to find non-dominated solutions close to the Pareto front 
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(Reed et al., 2000; Praditwong and Xin Yao, 2007). Thus, the selection of control parameters 

based on worst case scenario is necessary. 

The population size, Pop, is the number of candidate design solutions evaluated at each 

generation (i.e., iteration). Population size used in an EA depends on a number of factors related 

to the number of decision variables, the complexity of the problem, etc. An MOEA population 

cannot be sized according to the desired number of nondominated solutions in a problem. A 

small population size can limit the capability of exploration of the search space and inhibits the 

purpose of crossover operations. Conversely, use of large population size can be 

computationally-expensive. Thus, the selection of population size is an important step and 

greatly depends on the problem type and structure. The maximum number of generations, Genmax, 

denotes the number of generations (i.e., iterations) performed and indicates when to terminate the 

search and report the best set of design solutions so far. The main criterion is to recognize that 

the search has converged. 

The Reproduction/Selection operator cannot create new solution in the population; it only 

selects and makes copies of good solution to keep population size constant. In EAs, the creation 

of new solution is carried out by Crossover operator. The crossover probability, c, defines how 

often crossover is performed. The crossover probability rate varies based on problem type, but 

should be high enough to encourage mixing. A low crossover probability decreases the speed of 

convergence due to lower search intensification rate. On the other hand, a high crossover 

probability may contribute to premature convergence. In general, the recommended range of c is 

between 0.60 and 0.95 (Grefenstette, 1986). Likewise, the Mutation probability, m, denotes how 

often parts of a solution undergoes random perturbations. It introduces diversity into the 
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population and should be a small value to avoid the algorithm from becoming effectively a 

random search. In general, the recommended range of m is between 0 and 0.20 (Schaffer et al., 

1989). In the following section the results of pilot study along with brief description of selection 

of control parameters for Optimizer based on pilot study findings is presented. 

 

6.6 Parameter Setting for the Optimization Procedure 

In this section, the impact of optimization procedure control parameters on the 

convergence performance of the optimization procedure is empirically investigated. Hence, a 

pilot study is conducted to determine best control parameter values for the Optimizer component, 

utilizing a multiobjective optimization evolutionary algorithm (MOEA). Specifically, the 

Optimizer component uses NSGA II developed by Deb et al. (2002). The control parameters 

include: (1) the population size Pop, (2) the maximum number of generations Genmax, (3) the 

crossover probability c, and (4) the mutation probability m. 

The influence of parameters on the convergence behavior is studied by selecting range of 

parameters as shown in Table 6-7. The range of values of the control parameters given in Table 

6-7 results in 18 different combinations. The results of the parameter value combination with the 

best convergence performance are given (Figure 6-12 (a) through (d)); however, the complete 

results from the pilot study can be found in APPENDIX A. The set of control parameter values 

used for the computational study are identified from pilot study (Table 6-7) and the best control 

parameters found for this specific design problem are listed in Table 6-8. 
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Table 6-7: Range of parameters for pilot study 

Control Parameter Values 

Population (Pop) {10, 25,50} 

Generations (Genmax) {100} 

Crossover Probability (c) {80%, 90%, 95%} 

Mutation Probability (m) {5%, 10%} 

Total Number of Pilot Runs 18 

 

 

 

Table 6-8: Parameters identified from pilot study 

Population size (Pop) = 50 Generations (Genmax) =100 

Crossover (c) = 90% Mutation Probability (m) = 10% 
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Figure 6-12: Pilot study of three objective and six design variables (c=90% & m=10%) 

 

The next two chapters summarize the computational study of the performance of the 

proposed multiobjective design optimization framework. CHAPTER 7: begins with optimizing 

cooling channel design under a single objective followed by the optimization of the internal 

cooling channel design in the presence of two objectives.  In CHAPTER 8:, the optimization is 

expanded to three design objectives, which has not been attempted in the current research 

literature. 

(b) After 25 generations 

(d) After 100 Generations 

(a) Initial solutions 

(c) After 50 generations 
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CHAPTER 7: 

COMPUTATIONAL STUDY: COOLING CHANNEL OPTIMIZATION WITH 

ONE AND TWO DESIGN OBJECTIVES 

7.1 Introduction 

The current chapter and CHAPTER 8 summarize experimental results from the 

computational study. This chapter begins with a brief review of literature on traditional and non-

traditional approach in design optimization of gas turbine blade cooling channel. This literature 

review shows the merits of this multiobjective optimization framework compared to other 

methods. Then, it presents the first set of single objective and two objective optimization results. 

The last set of experimental results addressing three objective functions are presented in 

CHAPTER 8. All optimization experiments are performed using the best problem-specific 

control parameters (Pop = 50, Genmax =100, crossover probability c = 90% and mutation 

probability m=10%) identified through pilot study. The combination of 50 population and 100 

generations resulted in 5,000 design evaluations in one single optimization run. 

 

7.2 Conventional Design Optimization: Cooling Channel Design 

In the beginning, gas turbine manufacturers relied primarily on a “build and bust” 

approach in the design of hot gas path components. Initially the prototypes of parts are designed 

based on empirical correlations for aerodynamics and heat transfer, along with performance data 

from previous models of gas turbine engines. During that period and even now, the laboratory 

experiments are extremely complex and expensive to conduct for realistic engine conditions. 

Instead, the prototype engine is built and tested until failure, a process which is costly and time-
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consuming. It is also largely unknown or difficult to pinpoint a parameter or part that contributes to a 

failure of gas turbine. These difficulties gave rise to numerical and experimental methods to 

streamline the design process and are now known to be traditional methods in the design 

optimization process. 

At present, the design and optimization of most mechanical components starts with a 

traditional approach of using numerical simulation methods to identify the best set of design 

variable values. Only the selected set of these design variables are validated using experimental 

methods. The high cost, high labor and amount of time required to conduct experiments makes it 

almost impossible to use as a primary tool for design optimization process. Due to the above 

shortcomings, the experimental methods are only used in validating set of designs, which are 

proved to be the best designs either by numerical methods or empirical methods. 

 

7.2.1 Numerical Simulation Methods: Cooling Channel Design 

Heat transfer and fluid flow predictions in ribbed channels using numerical simulation 

methods has been an active research area for several decades and a vast amount of research has 

been published in this area. Typically, numerical methods such as CFD in conjunction with heat 

transfer simulation capabilities are used in the optimization of rib configuration in gas turbine 

blade cooling channels. The process of simulation of heat transfer between solid and fluid phase 

is also referred as conjugate heat transfer (CHT). One of the first CHT numerical simulations of 

a cooled turbine airfoil is the work of Bohn et al. (1995). The authors create a computational 

model of a two-dimensional cooling channel of a guide vane and predict the external surface 

temperature within 2% of an experimental value using some in-house code. The conjugate 
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numerical model of the guide vane is extended to three-dimensions by Bohn and Schonenborn 

(1996). A significant advance in the computational capability during the 1990’s is the 

development of robust commercial numerical simulation codes. Application of numerical 

techniques to optimize gas turbine blade internal cooling design has attracted many researchers 

in recent years. They use commercial numerical simulation codes such as FLUENT, STAR-CD, 

ANSYS and COMSOL for internal cooling channel simulation (e.g., Liou et al., 1991; Prakash 

and Zerkle, 1995; Bredberg and Davidson, 1999; Chen et al., 2001; Acharya and Saha, 2005; 

Keshmiri, 2012). 

The main drawback of optimization by numerical simulation is amount of human 

interactivity required, in that, for each new design a new set of design variables are manually 

entered and then evaluated via simulation. To overcome this drawback, one can automate the 

process to run simulations for range of design variables. However, the designs simulated are 

targeted to satisfy only one objective function and are unidirectional. The designs in this case are 

not evolved to discover a set of optimized designs. Instead, one has to spend considerable time 

evaluating a pool of candidate designs. 

 

7.2.2 Experimental Methods: Cooling Channel Design 

Under the traditional design optimization methods, the study of numerous candidate 

designs of gas turbine internal cooling channels by experimental methods is cost prohibitive. 

Figure 7-1 shows a simple typical wind tunnel test facility to measure the performance (heat 

transfer rate and pressure drop) for rib arrangements in the test section. Wind tunnels are 

equipped to circulate atmospheric air and measure its flow and heat transfer parameters in 
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closed- or open-loop tunnel. The experimental setup in Figure 7-1 is an open-loop wind tunnel 

where the air is exhausted into the atmosphere. 

 
Figure 7-1: A typical wind tunnel experimental set up for cooling channel design 

 

The test section in the experimental setup is a critical part of the traditional design 

optimization process of gas turbine blades. This section is designed and built in such a way that it 

can be easily removed and replaced with different design specifications. In cooling channel 

design experimentation, the test section is constructed with electrical resistive type foil-heated 

channel and ribs are made from copper or brass and are attached to the heated foils (Han et al., 

2000). The test section mimics the scaled-down environment of blade cooling channel (i.e., 

temperature, pressure and velocities of flow are scaled down). The cooling air from atmosphere 

is passed through test section (cooling channel) to facilitate heat transfer from heated ribs and 
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surface of cooling channel. The flow and heat transfer parameters such as velocity, pressure, 

temperature at the test section are measured using instruments such as pitot-tubes, pressure taps, 

and thermocouples. The measured parameters are used to calculate the heat transfer rate and 

pressure drop to determine the efficacy of the design. To test the performance of next design the 

entire test section is removed and replaced with new set of ribs incorporating new design 

specifications. Sometimes this process may take days before the next design is tested. And it is 

also common that experiments provide ideal conditions, and measured data may need some 

extrapolation before they can be applied to real design. Therefore experimental method is best 

suited for validation purpose once the designer has a handful of optimal design in hand.  

Many researchers used wind tunnel experiments for gas turbine blade cooling channel 

designs. More comprehensive details on process and procedures are described in number of 

books (e.g., Han et al., 2000; Boyce, 2006) and research papers (e.g., Wagner et al., 1991; Zhang 

et al., 1995; Parsons et al., 1995; Tse and Steuber, 1996; Azad et al., 2002; Han et al., 2011). 

Readers are advised to refer to them for more information on experimental methods. 

 

7.3 Non-Conventional Design Optimization: Cooling Channel Design 

This section revisits literature review and presents again a brief review of a non-

conventional approach applied to blade cooling channel design optimization. Due to the complex 

nature of the design problem, only few researchers so far have attempted to optimize blade 

cooling channel. 

The optimization of cooling channel is studied extensively by Kim and Kim (2002), who 

consider the optimization of internal cooling channels with straight rectangular ribs (Kim and 



94 

Kim, 2004a), angled ribs (Kim and Kim, 2004b) and the V-shaped ribs (Kim and Lee, 2007b). 

They identify the values of geometric design variables with the objective function defined as a 

linear function of heat transfer coefficient and friction drag coefficient (a surrogate measure for 

pressure drop). The two objectives considered in their study are heat transfer coefficient and 

coolant flow pressure drop. However, these two objectives are combined to form a single 

composite function using a vector of subjective weights and solved using a response surface-

based optimization method. The best values of design variables are obtained with variation of the 

weighting factor. The selection of the weights is based on the designer’s experience, which could 

lead to errors in optimization if the weights are not carefully selected. Kim and Kim (2002) 

group also study one other approach to solve multiobjective optimization problem, where they 

solve each objective functions as a single objective optimization problem, and later, the best 

solutions of all objectives are mapped to find non-dominated solutions. This approach does not 

consider the objective functions simultaneously and independently in the problem. In addition, it 

is proved that their proposed method is laborious and can be time-consuming. 

To overcome the limitations of weighted sum approach, Roy et al. (2002) attempt to 

optimize a turbine blade cooling system design, where their study mainly focuses on handling 

the presence of complex inseparable function interaction among its decision variables. They 

propose an evolutionary-based multiobjective optimization algorithm called Generalized 

Regression Genetic Algorithm (GRGA). Their study shows that GRGA successfully handles 

complex inseparable function interaction and gives a range of feasible designs. The authors 

consider only two objectives for optimization – minimization of coolant mass flow rate and 

minimization of the blade metal temperature. Also, it is not clear that the study simultaneously 
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considers both the objectives for optimization. No researchers have performed multiobjective 

optimization using more than two objectives simultaneously. 

One can notice that the problems are converted to minimization problems, even though 

there are two objectives (h) and (A) which are to be maximized. In general, many optimization 

algorithms are developed to solve only one type of optimization problem, i.e., either 

minimization or maximization. The second generation of NSGA is used in this research to solve 

the minimization problems. To solve the maximization problem, the duality principle (Rao, 

1984) is applied, i.e., problem is converted to minimization by multiplying objective function by 

-1. The duality principle enables the use of conflicting objectives where some need to be 

maximized and some are to be minimized. Hence, the objective functions heat transfer 

coefficient (h) and Area (A) are multiplied by -1 to convert this problem to minimization. 

 

7.4 Single-Objective Function Optimization 

The goal in single objective optimization is to converge to the (global) optimum. Single-

objective problems either minimize or maximize the objective function value depending upon the 

problem type attempting to reach single optimum value. In cooling channel design optimization, 

the heat transfer coefficient (h) is selected as an objective function because of its importance in 

blade cooling. The objective here is to maximize the value of h varying design variable values. 

The next three sections present results of optimization of h for 2, 4 and 6 design variables. The 

optimization process is performed using the control parameters (Pop = 50, Genmax = 100, c = 90% 

and m = 10%) identified via a pilot study. 
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7.4.1 Case 1: Two Design Variables 

For Case 1, radii R1 and R2 (i.e., radii of Ribs 1 and 2, respectively) are considered as 

design variables (Figure 7-2). The radii values of the ribs are varied between 1mm to 5.5mm to 

find optimal objective function (h) value. 

 
Figure 7-2: Cooling channel with design variables R1 and R2 

 

Figure 7-3 shows graphical representation of single-objective optimization results. The y-axis 

represents objective function, heat transfer coefficient (h), which needs to be maximized, 

whereas the x-axis represents number of generations (Genmax). The objective function (h) value 

at each generation is average of 50 objective function values (Pop) in that generation and it is 

compared with highest value of h in the same generation (Figure 7-3). It is observed that the 

convergence of objective function h to global optimal value is linear and rapidly converge within 

the first few generations (5 generations). In other words, the convergence rate slows and remains 

almost constant after 5
th

 generation. To save computational time, one could stop the optimization 

process just after the 5
th

 generation and report results. The best value of h found in this case is 

15.4253 W/m
2
.K (over an average of 50 design specifications in the population). Similarly, the 

initial h value is 13.3949 W/m
2 

K (over an average of 50 design specifications in the population). 
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As a result, a 15.15% increase in heat transfer coefficient or cooling effectiveness (directly 

proportional to HTC) is achieved. 

 
Figure 7-3: Convergence behavior for single objective and two design variables 

  

 

7.4.2 Case 2: Four Design Variables 

For Case 2, radii R1, R2 (i.e., radii of Ribs 1 and 2, respectively) and fillets radii R3, and 

R4 are considered as design variables (Figure 7-4). The radii of the ribs are varied between 1mm 

to 5.5mm and fillets radii are varied between 0.1mm to 0.4mm. The fillets created at the 

intersection of ribs with top and bottom walls facilitate the smooth flow of coolant without 

creating a stagnation point. A stagnation point leads to pressure build-up and a lower heat 

transfer coefficient. Hence, the effect of the Rib 1 fillets radii R3, R4 (Figure 7-4) and the Rib 2 

Initial value = -13.3949 

 
Initial value =-13.39 W/m

2

 K 
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fillet radii R5 and R6 (Figure 7-6) are important and should be optimized and included in the 

design specification. 

 
Figure 7-4: Cooling channel with design variables R1, R2, R3 and R4 

 

 
Figure 7-5: Convergence behavior for single objective and four design variables 

 

Initial value =-13.72 W/m2 K 



99 

From Figure 7-5, it is evident that the convergence rate in the case of four design 

variables is slow and appears to take more generations than the two design variable problem 

discussed in Section 7.4.1. The average global optimal value of h found in this case is 16.2793 

W/m
2
.K (over an average of 50 design specifications in the population). Similarly, the average 

initial h value is 13.7239 W/m
2
K (over an average of 50 design specifications in the population). 

A 18.62% increase in the heat transfer coefficient is achieved. By introducing the fillet radii as 

design variables, the four design variable problem resulted in 5.53% more cooling effectiveness 

than two design variable problem. 

 

7.4.3 Case 3: Six Design Variables 

For Case 3, radii R1, R2 (i.e., radii of Ribs 1 and 2, respectively) and fillets radii R3, R4, R5, 

and R6, are the complete set of design variables (Figure 7-6). Again the radii of ribs are varied 

between 1mm to 5.5mm and fillets radii are varied between 0.1mm to 0.4mm. 

 
Figure 7-6: Cooling channel with design variables R1, R2, R3, R4, R5, and R6 
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Figure 7-7: Convergence behavior for single objective and six design variable optimization 

 

From Figure 7-7, again it is evident that the convergence rate in case of six design 

variables further slows down compared to both the four and two design variable problem. The 

average global optimal value of h found in this case is 17.8476 W/m
2
.K (over an average of 50 

design specifications in the population). Similarly, the average initial h value is 13.9687 W/m
2
K 

(over an average of 50 design specifications in the population). An average a 27.75% increase in 

heat transfer coefficient is achieved. By introducing the additional fillet radii as design variables, 

the six design variable problem results in 15.70% more cooling effectiveness than the two design 

variable problem and 9.63% more cooling effectiveness than the four design variable problem. 

 

Initial value = -13.96 W/m2K 
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7.5 Two-Objective Functions Optimization 

In the single-objective optimization problem, it is seen that the solution converges to one 

solution. Therefore, one can easily chose the final design specifications to use without ambiguity. 

But, when more than one objective functions are considered simultaneously for optimization and 

a Pareto-based optimization approach as proposed in this research, there exists a number of 

trade-off, or compromise, solutions. Without any further information, no solution from the set of 

compromise solutions can be said to be better than any other in the set. Thus, in multiobjective 

optimization, an effort must be made in finding the set of trade-off optimal solutions by 

considering all objectives to be equally important. Thus, it can be conjectured that there are two 

goals in a multiobjective optimization. First, set of solutions that is as close to the Pareto-optimal 

front as possible must be identified. Second, the set of solutions must be as diverse as possible. 

After a set of such trade-off solutions are found, a user can then use higher-level preference 

information to make a choice. The above such trade-off solutions are obtained a multiobjective 

optimization involves two search spaces instead of one. In single-objective optimization, there is 

only one search space – the decision variable space. However, in multiobjective optimization, 

there exists an associated space called objective, or criteria, space. 

This section presents results of cooling channel design considering two objectives – heat 

transfer coefficient (h) and coolant pressure drop (Δp). The experiments are performed with 

same set of evolutionary algorithm control parameters used in the single-objective optimization 

discussed in Section 7.4 (i.e., Pop = 50, Genmax = 100, c = 90% and m = 10%). The next three 

sub sections present results of optimization of h and Δp, for 2, 4 and 6 design variables. The 
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objective here is to maximize the value of h and minimize the value of Δp varying design 

variable values. 

 

7.5.1 Case 1: Two Design Variables 

For Case 1, radii R1 and R2 (i.e., radii of Ribs 1 and 2, respectively) are considered as 

design variables (see Figure 7-2). The radii of these variables are varied between 1mm to 5.5mm. 

Figure 7-8 shows the graphical representation of multiobjective optimization results. The y-axis 

represents the objective function heat transfer coefficient (h), which is to be maximized. The x-

axis represents the objective function coolant pressure drop (Δp), which is to be minimized. 

Figure 7-8 (a) shows initial set of objective function values before being optimized. Figure 7-8 

(b), (c) and (d), show solutions progressing towards Pareto optimal (efficiency) front after 25, 50 

and 100 generations, respectively. For illustration purposes, in Figure 7-9 three solution values 

and corresponding design specifications and are used to build three designs of cooling channel as 

shown in Figure 7-9. Design 1 has smaller rib radii resulting in a low pressure drop Δp = 0.1485 

N/m
2
 and a low heat transfer coefficient h = 11.09 W/m

2
K. Similarly, Design 3 with larger ribs 

results in high pressure drop (0.578 N/m
2
) and high heat transfer coefficient (15.42 W/m

2
K). 

Design 2 is selected from the mid-section of the Pareto front and it results in a moderate h (13.82 

W/m
2
K) and pressure drop (0.2955N/m

2
). 
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Figure 7-8: Pareto optimal front considering two objective and two design variables 

 

 

(b) After 25 generations 

(d) After 100 generations 

(a) Initial solutions 

(c) After 50 generations 
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 Design 1  Design 2  Design 3 

R1 0.001 0.001218 0.005493 

R2 0.001 0.00437 0.0055 

Δp 0.1485 0.2955 0.5783 

h -11.09 -13.82 -15.42 

 

 

 

 
 

 
Figure 7-9: Design specifications of cooling channel for three selected optimal solutions 
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7.5.2 Case 2: Four Design Variables 

For Case 2, radii R1, R2 (i.e., radii of Ribs 1 and 2, respectively) and fillets radii R3, and 

R4 are considered as design variables (Figure 7-4). The radii of ribs are varied between 1mm to 

5.5mm and fillets radii are varied between 0.1mm to 0.4mm. 

 
Figure 7-10: Pareto optimal front considering two objectives and four design variables 

 

(b) After 25 generations 

(d) After 100 generations 

(a) Initial solutions 

(c) After 50 generations 
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The Pareto optimal solution set each for the two objectives and the four design variables (Figure 

7-10) suggest that the solutions are not converging to a smooth and uniform Pareto front as 

shown in the two variable case. This is because the solution space of the problem increases 

exponentially with the increase in the number of decision variables. Therefore, more search 

iterations (i.e., generations) with efficient search strategy (i.e., fine-tuning the search control 

parameters such as crossover c and mutation m) is required to explore more promising regions. 

 

7.5.3 Case 3: Six Design Variables  

For Case 3, radii R1, R2 (i.e., radii of Ribs 1 and 2, respectively) and fillets radii R3, R4, R5, 

and R6, complete set of design variables (Figure 7-6). The radii of ribs are varied between 1mm 

to 5.5mm and fillets radii are varied between 0.1mm to 0.4mm. 
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Figure 7-11: Pareto optimal front considering two objectives and six design variables 

 

The Pareto front for 2 objectives and 6 design variables (Figure 7-11) further suggests that the 

increase in design variables decreases the progression of solution towards Pareto optimal front. 

As mentioned in previous section, an increase in the number of design variables causes the 

solution space of the problem to increase exponentially and requires more search iterations with 

right control parameters values. 

(b) After 25 generations 

(d) After 100 generations 

(a) Initial solutions 

(c) After 50 generations 



 108 

 

7.6 Reducing the Size of the Non-Dominated Set: Clustering  

One of the uses of generating the Pareto optimal frontier is faster decision-making in the 

selection of a solution in the presence of more than one objective. This selection process is 

further enhanced by applying clustering technique (Zitzler, 1999) to the set of Pareto optima. In 

this technique, each of N solutions is assumed to belong to a separate cluster. The distances 

between all pairs of clusters are found by calculating Euclidean distance formed by imaginary 

cuboid formed around centroid of each cluster. Two clusters having a minimum distance 

between them are merged together into a bigger cluster. This procedure is continued until the 

desired numbers of clusters are identified. In this research investigation it is appropriate to divide 

Pareto optimal front solution to only three subgroups (clusters) to accommodate three design 

types from which a designer can select the most preferred. For illustration of this technique, 

suppose that three types of designs are proposed (Figure 7-12). Subgroup 1 (cluster) contains the 

Pareto optimal solutions that satisfy objective function minimization of pressure drop (Δp) better 

than any other solutions in Subgroup 2 and 3. Similarly, Subgroup 3 better satisfies the 

maximization of objective function h better than any other Pareto optimal solutions in the 

Subgroups 1 and 2. The Pareto optimal solutions in Subgroup 2 fall in between Subgroups 1 and 

3 with moderate optimization of both objective functions. Thus, clustering provides visual 

insight of solutions and aids the decision- maker in selecting a solution. Although it is not within 

the scope of this research investigation, further research is necessary to explore the best approach 

to select the most preferred solution from a set Pareto optima. 
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Figure 7-12: Pareto optimal front divided into three clusters of solutions. 
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CHAPTER 8: 

COMPUTATIONAL STUDY: COOLING CHANNEL OPTIMIZATION WITH 

THREE DESIGN OBJECTIVES 

8.1 Introduction  

The main objective of this research is to build a multiobjective design optimization for 

mechanical component design, specifically gas turbine blade internal cooling channels. The 

proposed optimization framework is successfully built by integrating multiobjective evolutionary 

algorithms and computational fluid dynamics numerical simulation. In CHAPTER 7, Section 4 

and Section 5 introduced first set of single objective and two objective optimization results. In 

this current chapter the results with the introduction of third objective function Area (A) to 

minimize the material consumption by maximizing the cavity area inside the cooling channel is 

presented. Experimental runs are performed as usual for two, four and six design variables with 

optimal parameters identified in CHAPTER 6. 

 

8.2 Three Objective Functions Optimization 

One of the main objectives of this research investigation is introduction of third objective 

function that is maximization of cooling channel cavity Area (A). Introduction of third objective 

function further reduces the objective function space where Pareto-optimal solutions are found. 

The third objective maximization of cooling channel cavity area indirectly helps in minimizing 

the material consumption for blade manufacturing. This is also a very important objective 

considering blade material is comparatively most expensive material of all gas turbine parts. 
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This section presents results of cooling channel design considering three objectives- heat 

transfer coefficient (h), coolant pressure drop (Δp) and newly added objective cooling channel 

cavity Area (A). The experiments are performed with same set of evolutionary algorithm control 

parameters used in the single and two objective optimization discussed in Section 7.4 and 

Section 7.5 (i.e., Pop = 50, Genmax = 100, c = 90% and m = 10%). The next three sub sections 

present results of optimization of h, Δp and A, for 2, 4 and 6 design variables. The objective here 

is to maximize the value of h, minimize the value of Δp, and maximize the value of A by varying 

design variable values. 
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8.2.1 Case 1: Two Design Variables 

For Case 1, radii R1 and R2 (i.e., radii of Ribs 1 and 2, respectively) are considered as 

design variables (see Figure 7-2). The radii of these variables are varied between 1mm to 5.5mm.  

 
Figure 8-1: Pareto optimal front considering three objectives and two design variables 

 

(b) After 25 generations 

(d) After 100 generations 

(a) Initial solutions 

(c) After 50 generations 
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Figure 8-1 shows graphical representation of multiobjective optimization results. The y-

axis represents objective function, heat transfer coefficient (h), which is to be maximized. The x-

axis represents the objective function coolant pressure drop (Δp), which is to be minimized. The 

z-axis represents objective function the Area (A), which is to be maximized. Figure 8-1 (a) shows 

initial set of objective function values before being optimized. Figure 8-1 (b), (c) and (d), show 

solutions progressing towards Pareto optimal (efficiency) front after 25, 50 and 100 generations, 

respectively. For illustration purposes, in Figure 8-2 three solution values and corresponding 

design specifications and are used to build three designs of cooling channel as shown in Figure 

8-2. Design 1 has smaller rib radii (R1 = 1mm & R2=1mm) resulting in a low pressure drop Δp 

(0.1485 N/m
2
), low a heat transfer coefficient h (11.09 W/m

2
K) and high cavity area A 

(0.002022m
2
). Similarly, Design 3 with larger ribs (R1 = 5.49mm & R2=5.49mm) results in high 

pressure drop Δp (0.5789 N/m
2
) and high heat transfer coefficient h (15.43 W/m

2
K) and reduced 

cavity area A (0.00193m
2
). Design 2 is selected from the mid-section of the Pareto front (R1 = 

1.025mm & R2=4.936mm) and it results in moderate pressure drop (0.2955N/m
2
), heat transfer 

coefficient h (14.15 W/m
2
K) and cavity area A (0.001985m

2
).  
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 Design 1  Design 2  Design 3 

R1 0.001 0.0010254 0.00549 

R2 0.001 0.0049368 0.00549 

Δp 0.1485 0.3268 0.5789 

h -11.0935 -14.15 -15.43 

A -0.002022 -0.001985 -0.00193 

 

 

 
 

 
Figure 8-2: Design specifications of cooling channel for three selected optimal solutions 

 

Design 1 

Design 2 

Design 3 

Design 1 

Design 2 

Design 3 
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8.2.2 Case 2: Four Design Variables 

For Case 2, radii R1, R2 (i.e., radii of Ribs 1 and 2, respectively) and fillets radii R3, and 

R4 are considered as design variables (Figure 7-4). The radii of ribs are varied between 1mm to 

5.5mm and fillets radii are varied between 0.1mm to 0.4mm. 

 
Figure 8-3: Pareto optimal front considering three objectives and four design variables 

  

(b) After 25 generations 

(d) After 100 generations 

(a) Initial solutions 

(c) After 50 generations 
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The Pareto optimal solution set each for the three objectives and the four design variables 

(Figure 8-3) suggest that the solutions are not converging to a smooth and uniform Pareto front 

in the beginning as shown in the two design variable case. Similar to two objectives and four 

design variables case- the solution space of the problem increases exponentially with the increase 

in the number of decision variables. Therefore, more search iterations (i.e., generations) with 

efficient search strategy (i.e., fine-tuning the search control parameters such as crossover c and 

mutation m) is required to explore more promising regions. 

 

8.2.3 Case 3: Six Design Variables 

For Case 3, radii R1, R2 (i.e., radii of Ribs 1 and 2, respectively) and fillets radii R3, R4, R5, 

and R6, complete set of design variables are considered (Figure 7-6). The radii of ribs are varied 

between 1mm to 5.5mm and fillets radii are varied between 0.1mm to 0.4mm. The Pareto front 

for three objectives and six design variables (Figure 8-4) further suggests that the increase in 

design variables decreases the progression of solution towards Pareto optimal front. As 

mentioned in previous sections, an increase in the number of design variables causes the solution 

space of the problem to increase exponentially and requires more search iterations with right 

control parameters values. 
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Figure 8-4: Pareto optimal front considering three objectives and six design variables 

 

 

8.3 Reducing the Size of the Non-Dominated Set: Clustering  

Similar to two objective Pareto optimal front clustering (Figure 7-12), three objective 

Pareto optimal front solutions are divided to form three subgroups (clusters) to accommodate 

three design types from which a designer can select the most preferred. Similar to two objective 

case for illustration of this technique, suppose that three types of designs are proposed (Figure 

(b) After 25 generations 

(d) After 100 generations 

(a) Initial solutions 

(c) After 50 generations 
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8-5). Subgroup 1 (cluster) contains the Pareto optimal solutions that satisfy objective functions 

minimization of pressure drop (Δp) and maximization of cavity Area (A) better than any other 

optimal solutions in Subgroup 2 and 3. Similarly Subgroup 3 better satisfies the maximization of 

heat transfer coefficient (h) objective function better than any other optimal solutions in the 

Subgroups 1 and 2. The Pareto optimal solutions in Subgroup 2 fall in between Subgroups 1 and 

3 with moderate optimization of all three objective functions. Thus, clustering provides visual 

insight of solutions and aids the decision- maker in selecting solution based on objective function 

preferences. Although it is not within the scope of this research investigation, further research is 

necessary to explore the best approach to select the most preferred solution from a set Pareto 

optima. 

 

 
Figure 8-5: Pareto optimal front divided into three clusters of solutions 

 

Subgroup 1 

Subgroup 2 

Subgroup 3 

Subgroup 1: 

Designs in this group satisfy in 

minimizing objective function (Δp) 

and maximizing (A) at the expense of 

other objective function (h) 

Subgroup 2: 
Designs in this group moderately 

satisfy all three Objective functions 

(Δp), (h) and (A) 

Subgroup 3: 
Designs in this group satisfy 

maximizing Objective function (h) at 

the expense of other objective 

functions (Δp) and (A) 
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8.4 Summary 

The Evolutionary algorithm NSGA-II and CFD tool COMSOL is successfully applied to 

an automated optimization of a gas turbine blade cooling channel configuration. The 

optimization is performed in an automated fashion to an optimal solution during maximization of 

heat transfer coefficient (h) in single objective optimization. Next an experimental results of 

nondominated Pareto optimal front in maximization of heat transfer coefficient (h) and 

minimization of pressure drop (Δp) for two objective optimization. Finally results of 

nondominated Pareto optimal front for maximization of heat (h), minimization of (Δp) and 

maximization cooling channel cavity Area (A). 

The experimental results showed more insight in understanding of the physical problem 

by showing the correlation between design variables and objective functions. This automated 

optimization framework can be considered a supporting tool in the design process, 

complementing physical understanding as well as experimental design and computational design 

process. 
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CHAPTER 9: 

SUMMARY AND FUTURE RESEARCH DIRECTIONS 

9.1 Research Summary 

Multiobjective optimization of engineering design problems in an automated setup 

requires blending of domain knowledge with expertise in optimization techniques. Evaluation 

and identification of the problem specific requirements is always the fore runner in setting up an 

automated optimization process. Then, an optimization algorithm (Optimizer) is chosen with 

respect to the problem requirements. Motivated by the need for reliable and highly efficient 

power plant gas turbines to meet the exponentially growing energy demand, this research 

investigation has successfully created and demonstrated a framework to optimize design 

specification of a complex gas turbine blade cooling channel by satisfying three conflicting 

objectives simultaneously. The gas turbine blade cooling design optimization known to increase 

the life of gas turbine and also increase efficiency and power output. The broader impact of the 

proposed research to revolutionize the mechanical component design process lies in the 

understanding and advancement of efficient integration of evolutionary algorithms and numerical 

simulation. 

It has been shown that evolutionary algorithms are powerful, intelligent optimization 

algorithms that are able to balance exploration and exploitation of the solution search space. The 

drawbacks of traditional approaches, which typically try to scalarize the multiple objectives into 

a single composite objective, have motivated researchers and practitioners to seek alternative 

techniques to find a set of Pareto optimal solutions rather than just a single optimal solution. 
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Likewise, numerical simulation in mechanical component design plays a significant role 

in complementing analytical and experimental design process. They are excellent in simulating 

physical environment and subjecting test components to various types of loads they undergo in 

reality. This computational simulation environment enables designer to test and observe the 

behavior of the designs before they are subjected to more expensive experimental methods. The 

application of numerical simulation to mechanical component design was hindered till recent due 

to computational capabilities. The advent of high speed computers and affordability of such 

computers practically made numerical simulation a must in most of the design process today.  

Numerical simulation allows flexibility in exploring different designs of mechanical 

component while evolutionary algorithms have ability to evolve and optimize them. Based on the 

proposed optimization framework, an optimal blade cooling channel configuration design could 

be successfully obtained even with the absence of auxiliary knowledge or analytical information 

in the problem formulation. Similarly, an initial population (solution) made up of all bad designs 

did not impede the ability of the optimization algorithm in finding better feasible Pareto optimal 

solutions. Thus it can be said that evolutionary optimization techniques are robust even in the 

complex search space of cooling channel design problem. 

The research investigation undertaken is a modest attempt to bridge the gap between 

multiobjective optimization evolutionary algorithms (MOEAs) and numerical simulation to 

automate evolution of mechanical design process. In CHAPTER 2, we review the literature of 

optimization techniques both direct and non-direct methods used in mechanical component 

design. We also reviewed more relevant literature related to blade cooling channel designs where 

researchers have investigated multiobjective optimization with two objective functions. They 
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solve these problems both constructing one composite objective function and giving weightage 

to objective functions incorporated to composite function or by solving objective functions 

separately and mapping solutions to find set of optimal solutions. It is shown that there has been 

no other work that considered multiple objectives simultaneously for optimization. This research 

investigation considers three conflicting objective functions for optimizations by varying range 

up to six design variables. 

CHAPTER 3 briefly describes physics of heat transfer and fluid flow phenomenon along 

with governing equations to help understand the cooling channel problem. To evaluate designs, 

these governing equations need to be solved using numerical simulation code to simulate the heat 

transfer and fluid flow behavior inside cooling channel. CHAPTER 4 introduces second 

generation multiobjective optimization algorithm called Non-dominated Sorting Genetic 

Algorithm (NSGA-II) and its working principle. 

CHAPTER 5 presents the framework of the proposed multiobjective optimization 

system, which is comprised of an Optimizer and Simulator. The Optimizer uses NSGA-II to 

perturb the design variables to evolve the optimal solution from generation to generation. The 

Simulator a commercially-available CFD tool (COMSOL) evaluates the objective functions for 

corresponding perturbed design variables it receives from Optimizer. Both Optimizer and 

Simulator are integrated and automated to perform the optimization of multiple objectives with 

only a few inputs in the beginning. CHAPTER 6 introduces the optimization of real-world 

objective functions, the process of selection of design variables and presents the graphical results 

of computational simulation of blade cooling channel. Also presented is a pilot study that is for 

the selection of the experimental search of control parameters for the Optimizer component. A 
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population size (Pop) of 50, number of generations (Genmax) of 100, crossover (c) and mutation 

(m) probability of 90% and 10% respectively are found to be appropriate parameters for this 

research investigation. 

In CHAPTER 7, a brief literature on conventional and non-conventional cooling channel 

design optimization specific to this research investigation is presented. Existing literature for the 

conventional method using experimental and numerical techniques are presented, whereas 

literature for non-conventional methods which use response surface methodology and other 

optimization algorithms are presented. Also presented in this chapter are the results of one and 

two objective optimization problem. CHAPTER 8 is dedicated to the optimization of three 

objective functions. The three objective functions identified to optimize in this investigation are 

heat transfer coefficient (h), cooling channel pressure drop (Δp) and cooling channel cavity area 

(A). 

The multiobjective optimization process performed for one, two and three objectives by 

varying two, four and six design variables within prescribed range of values. The population size 

of 50 and 100 generations performed 5000 design evaluations in an average of 5 to 6 days before 

the Pareto optimal frontier comprising 50 optimal solutions are obtained. These optimal fronts 

are further clustered to form subgroup of optimal solutions which dominate in one objective over 

the other. These clustering techniques increase designer’s decision making capability by 

providing flexibility in choosing designs with visual representation of trade-off information 

between the conflicting multiple objectives. With a clearer understanding of the system, the 

designer can have a better awareness of the priorities among the objectives before making well 

informed decisions. 
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From this research investigation, the MOEA and Numerical Simulation integration 

proved to be more reliable and efficient than the Response Surface Method (RSM). It is also 

easier to use and more generalized in this investigation for the gas turbine blade cooling channel 

design application. Since the cooling channel design is multiobjective in nature, solving it as a 

multiobjective optimization problem proved to be the better approach. 

 

9.2 Future Research Directions  

We are confident that the research investigation presented and the conclusion drawn has 

laid sufficient foundation for the following possible extension of this investigation for future 

research. In cooling channel design optimization, the main areas for improvements are enhancing 

the speed and robustness of the process. Application of the proposed framework to other design 

optimization areas such as Mechanical systems, Civil engineering, Nanotechnology may pose 

excellent opportunity for optimization. Some of the potential future works are as follows: 

 

9.2.1 Reduce the Computational Effort 

The main drawback of using evolutionary techniques with numerical simulation to 

optimize the design of mechanical component is that it can be computationally expensive as it 

requires many designs/function evaluations. However, the ever improving computer technology 

and the option of parallel processing can lead to faster performance. The parallel processing 

techniques can be applied to distribute the computational workload among different processors 

or computers. Due to the nature of genetic algorithm that deals with a population of solution in 

parallel, this technique is also very suitable and straightforward. With proper allocation of job 
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and communication of results between processing cores, the reduction of total optimization time 

can be multi-fold. 

 

9.2.2 Expand the Design Optimization Applications 

The proposed optimization framework was tested on cooling channel design 

optimization; the next immediate step is to apply the frame work for further enhancement of 

cooling channel with following potential future works as follows: 

1. Introduce other design variables which influence the objective functions values. 

Example: The Pitch (distance between ribs), the angle of ribs (orientation of ribs): 

2. Enhance the framework with introduction of three dimensional (3D) models. 

3. Vary simulation parameters, such as velocity of flow (Reynolds number), pressure 

and temperature. 

4. The other interesting problem to test in future study is introduction of mix of 

turbulator shapes with different sizes as shown in Figure 9-1.  

5. Finally introducing this framework to other fields of engineering design with multiple 

conflicting objectives is an attractive opportunity.  
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Figure 9-1: Cooling channel turbulators with different shapes 
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APPENDIX A: PILOT STUDY RESULTS 
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Pilot Study 1 

 

Population size (Pop) = 10 Generations (Genmax) =100 

Crossover (c) = 0.80 (80%) Mutation Probability (m) = 0.05 (5%) 

 

 

 

 

 

(b) After 25 generations 

(d) After 100 generations 

(a) Initial solutions 

(c) After 50 generations 
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Pilot Study 2 

 

Population size (Pop) = 10 Generations (Genmax) =100 

Crossover (c) = 0.80 (80%) Mutation Probability (m) = 0.10 (10%) 

 

 

 

 

  

(b) After 25 generations 

(d) After 100 generations 

(a) Initial solutions 

(c) After 50 generations 
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Pilot Study 3 

 

Population size (Pop) = 10 Generations (Genmax) =100 

Crossover (c) = 0.90 (90%) Mutation Probability (m) = 0.05 (5%) 

 

 

 
 

  

(b) After 25 generations 

(d) After 100 generations 

(a) Initial solutions 

(c) After 50 generations 
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Pilot Study 4 

 

Population size (Pop) = 10 Generations (Genmax) =100 

Crossover (c) = 0.90 (90%) Mutation Probability (m) = 0.10 (10%) 

 

 

 
 

  

(b) After 25 generations 

(d) After 100 generations 

(a) Initial solutions 

(c) After 50 generations 
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Pilot Study 5 

 

Population size (Pop) = 10 Generations (Genmax) =100 

Crossover (c) = 0.95 (95%) Mutation Probability (m) = 0.05 (5%) 

 

 

 
  

(b) After 25 generations 

(d) After 100 generations 

(a) Initial solutions 

(c) After 50 generations 
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Pilot Study 6 

 

Population size (Pop) = 10 Generations (Genmax) =100 

Crossover (c) = 0.95 (95%) Mutation Probability (m) = 0.10 (10%) 

 

 

 

 
 

  

(b) After 25 generations 

(d) After 100 generations 

(a) Initial solutions 

(c) After 50 generations 
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Pilot Study 7 

 

Population size (Pop) = 25 Generations (Genmax) =100 

Crossover (c) = 0.80 (80%) Mutation Probability (m) = 0.05 (5%) 

 

 

 
  

(b) After 25 generations 

(d) After 100 generations 

(a) Initial solutions 

(c) After 50 generations 



135 

Pilot Study 8 

 

Population size (Pop) = 25 Generations (Genmax) =100 

Crossover (c) = 0.80 (80%) Mutation Probability (m) = 0.10 (10%) 

 

 

 
 

   

  

(b) After 25 generations 

(d) After 100 generations 

(a) Initial solutions 

(c) After 50 generations 
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Pilot Study 9 

 

Population size (Pop) = 10 Generations (Genmax) =100 

Crossover (c) = 0.90 (90%) Mutation Probability (m) = 0.05 (5%) 

 

 

 
 

  

(b) After 25 generations 

(d) After 100 generations 

(a) Initial solutions 

(c) After 50 generations 



137 

Pilot Study 10 

 

Population size (Pop) = 25 Generations (Genmax) =100 

Crossover (c) = 0.90 (90%) Mutation Probability (m) = 0.10 (10%) 

 

 

 
 

 

  

(b) After 25 generations 

(d) After 100 generations 

(a) Initial solutions 

(c) After 50 generations 
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Pilot Study 11 

 

Population size (Pop) = 25 Generations (Genmax) =100 

Crossover (c) = 0.95 (95%) Mutation Probability (m) = 0.05 (5%) 

 

 

 
 

  

(b) After 25 generations 

(d) After 100 generations 

(a) Initial solutions 

(c) After 50 generations 
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Pilot Study 12 

 

Population size (Pop) = 25 Generations (Genmax) =100 

Crossover (c) = 0.95 (95%) Mutation Probability (m) = 0.10 (10%) 

 

 

 

  

(b) After 25 generations 

(d) After 100 generations 

(a) Initial solutions 

(c) After 50 generations 
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Pilot Study 13 

 

Population size (Pop) = 50 Generations (Genmax) =100 

Crossover (c) = 0.80 (80%) Mutation Probability (m) = 0.05 (5%) 

 

 

 
 

 

  

(b) After 25 generations 

(d) After 100 generations 

(a) Initial solutions 

(c) After 50 generations 
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Pilot Study 14 

 

Population size (Pop) = 50 Generations (Genmax) =100 

Crossover (c) = 0.80 (80%) Mutation Probability (m) = 0.10 (10%) 

 

 

 
 

 

  

(b) After 25 generations 

(d) After 100 generations 

(a) Initial solutions 

(c) After 50 generations 
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Pilot Study 15 

 

Population size (Pop) = 50 Generations (Genmax) =100 

Crossover (c) = 0.90 (90%) Mutation Probability (m) = 0.05 (5%) 

 

 

 
 

 

  

(b) After 25 generations 

(d) After 100 generations 

(a) Initial solutions 

(c) After 50 generations 
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Pilot Study 16 

 

Population size (Pop) = 50 Generations (Genmax) =100 

Crossover (c) = 0.90 (90%) Mutation Probability (m) = 0.10 (10%) 

 

 

 
 

 

  

(b) After 25 generations 

(d) After 100 generations 

(a) Initial solutions 

(c) After 50 generations 
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Pilot Study 17 

 

Population size (Pop) = 50 Generations (Genmax) =100 

Crossover (c) = 0.95 (95%) Mutation Probability (m) = 0.05 (5%) 

 

 

 
 

   

  

(b) After 25 generations 

(d) After 100 generations 

(a) Initial solutions 

(c) After 50 generations 
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Pilot Study 18 

 

Population size (Pop) = 0 Generations (Genmax) =100 

Crossover (c) = 0.80 (80%) Mutation Probability (m) = 0.10 (10%) 

 

 

 
 

 

  

(b) After 25 generations 

(d) After 100 generations 

(a) Initial solutions 

(c) After 50 generations 
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