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ABSTRACT 

 The following presents a method for determining topographic elevation error for overland 

unstructured finite element meshes derived from bare earth LiDAR for use in a shallow water 

equations model. This thesis investigates the development of an optimal interpolation method to 

produce minimal error for a given element size. In hydrodynamic studies, it is vital to represent 

the floodplain as accurately as possible since terrain is a critical factor that influences water flow. 

An essential step in the development of a coastal inundation model is processing and resampling 

dense bare earth LiDAR to a DEM and ultimately to the mesh nodes; however, it is crucial that 

the correct DEM grid size and interpolation method be employed for an accurate representation 

of the terrain. The following research serves two purposes: 1) to assess the resolution and 

interpolation scheme of bare earth LiDAR data points in terms of its ability to describe the bare 

earth topography and its subsequent performance during relevant tide and storm surge 

simulations. 
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CHAPTER 1: INTRODUCTION 

 Much of the U.S.’s population (51-percent) reside in coastal areas (within 80 km of the 

ocean or Great Lakes), which includes 13-percent of the total land area and 57-percent of the 

civilian income (Rappaport, 2003).  In fact, the population in coastal regions is expected to 

increase by 27 million people between 1998 and 2015 (National Oceanic and Atmospheric 

Administration (NOAA), 1998).  With more people migrating to low-lying coastal cities, much is 

at stake when flooding due to hurricane storm surge occurs, as witnessed in 2005 by Hurricane 

Katrina, and more recently in 2011, by Hurricane Irene.  A better understanding of hurricanes 

and the accompanying surge can help mitigate human and economic loss.  With this in mind, 

advancements in sophisticated numerical modeling techniques have considerably advanced the 

planning and preparation process for these natural disasters. 

 Given that many models focus on the floodplain rather than exclusively on the aquatic 

environment, river reaches, barrier islands, and other large topographic gradients are typically 

described with high resolution (Bunya et al., 2010; Salisbury et al., 2011). The physical 

processes of areas becoming inundated and then dried (inundation process) further complicate 

the model when it expands beyond the immediate shoreline.  Including proper shoreline and 

floodplain geometry is vital in simulating the inundation process.  Using high resolution in the 

areas that may become wet during the incoming tide (astronomic or storm) can aid in proper 

description of the inundation process (Medeiros & Hagen, 2011).  To this end, a balance of 
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accuracy (topographically and hydrodynamically) and computational efficiency must be 

achieved (Salisbury et al., 2011). 

 Advancements in automatic mesh generation, computing power, and high-resolution, 

high-accuracy topographic data have produced a new generation of large-domain unstructured 

meshes.  Currently, state-of-the-art storm surge models regularly contain millions of nodes and 

are computed using high-performance computer clusters on the order of hundreds to thousands 

of processors (Dietrich et al., 2012).  Also, the spatial scale of topographic data is no longer an 

issue; most data collection is now composed and produced at finer scales than the mesh elements 

themselves (Bates et al., 2003).  One such source, LiDAR (Light Detection And Ranging), is 

now common for assigning model node elevations. 

 LiDAR, if processed correctly, can produce an almost exact replica of the ground surface 

with errors on the order of +/- 15-cm (Zandbergen, 2011) (These ground surface LiDAR points 

are referred to as bare earth points).  Concurrently, the increase in computer power permits 

model domain size to increase along with finer discretizations in both space and time.  

Decreasing element size presents an opportunity to enhance the description of the topography.  

Combining a better image of the land surface with smaller spatial discretizations raises the need 

to understand how different element sizes can affect topographic and hydrodynamic accuracy.  

For the purpose of this thesis it is postulated that the size of the element affects the accuracy of 

the ground surface as represented by the model and the simulated water levels and currents, and 

that the method used to resample the bare earth LiDAR onto the model nodes can have an impact 

as well.  The interpolation of bare earth LiDAR to the finite element mesh (FEM) nodes can be 
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just as important as mesh size.  A non-sufficient interpolation scheme may increase the 

topographic error of the FEM, ultimately leading to inaccurate results. 

 Accurately representing the topography is crucial given that it’s a significant contributor 

to flood hydraulics and inundation extent (Horrit & Bates, 2001).  Improving the representation 

of the ground surface via bare earth LiDAR allows a better topographic representation permitting 

the natural inundation processes to occur.  Sub-element size features such as roadbeds, levees, 

berms, creeks and valleys are fully described, representing the natural physics of the system.  

Raised features (i.e. roadbed) would naturally inhibit water flow while valleys would tend to 

promote it. 

 The source elevation data must be transformed to the FEM without losing relevant 

information that may alter the natural physics of water flow.  Recent advancements in state-of-

the-art storm surge models coupled with improvements in remote sensing techniques and 

processing have enabled the progression of physically based numerical models.  Since LiDAR 

data are at higher resolution than the mesh elements, sophisticated techniques have been 

developed to improve topographic representation in the model.  However, much remains 

unanswered about the effect on topographic and hydrodynamic accuracy with respect to mesh 

element size and interpolation routines used to resample the source LiDAR, or LiDAR-derived 

DEM (Digital Elevation Model), to the individual mesh nodes.  This thesis uses the 

advancements in computer power and high-resolution LiDAR data to gain an understanding of 

how interpolation of elevation data to a FEM effects overall global topographic error and its 

affect on simulated storm tide. 
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 While airborne LiDAR presents the opportunity to capture an image of the ground 

surface, applying a proper mesh element size and interpolation scheme is vital to resample the 

elevation from its source data to the FEM without losing any significant information that could 

affect flow dynamics.  To investigate this further, six major research objectives are undertaken: 

1. Develop and test a method for determining topographic error  in coastal Mississippi.  The 

topographic error is tested for different DEM grid sizes as well as different FEM 

resolution coupled with changes in the source elevation (bare earth LiDAR, 5m DEM and 

10m DEM). 

2. Develop a water-only (in-bank) FEM of the Pascagoula River Mississippi and 

incorporate the Western North Atlantic Tidal (WNAT) model domain such that 

astronomic tides can be accurately modeled using a large-domain approach. 

3. Apply the methods from step 1 to three large-scale regions of coastal Pascagoula, 

Mississippi. 

4. Develop a high-resolution DEM of the coastal floodplain of Mississippi based on the 

findings from step 3. 

5. Generate a FEM with varying resolutions (160-m, 80-m, 40-m, and 20-m) of the coastal 

floodplain and merge it with the in-bank model. 

6. Simulate astronomic tides, winds and pressures from Hurricane Katrina for all three finite 

element meshes using the ADCIRC-2DDI (Advanced Circulation Model for Oceanic, 

Coastal, and Estuarine Waters, Two-Dimensional Depth-Integrated) numerical code. 

This research will result in an understanding of how interpolation methods, DEM grid size, and 

mesh element size influence topographic and hydrodynamic error resulting from astronomic 
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tides and hurricane storm surge for the Pascagoula River.  The methodology and analysis 

presented in the following thesis is not limited to southern Mississippi and can be applied to any 

coastal region in the world. 
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CHAPTER 2: LITERATURE REVIEW 

 This chapter presents a literature review on five main topics: 1) large domain storm surge 

modeling; 2) an introduction to DEMs; 3) interpolation and grid size error in digital elevation 

model development; 4) LiDAR in coastal hydrodynamic finite element models; and 5) an 

introduction to storm surge generation. 

2.1 Large Domain Storm Surge Modeling 

 Numerical models used for flood inundation studies solve a set of governing equations; 

typically a form of the Navier-Stokes equations, in many cases, the shallow water equations 

(SWE).  The SWE are a set of non-linear partial differential equations (PDE) that include 

continuity (conservation of mass) and momentum.  In order to solve the SWE, the PDE must be 

reformulated to algebraic expressions, resulting in discretization for space and time.  The 

discretized SWE are solved iteratively via a computer code to compute unknown values, water 

levels and velocities, for every time step at each computational point (node) in the model 

domain.  Improved algorithms and computer technology allow the size of the model area to span 

an entire meteorological event (i.e., hurricane or tropical cyclone), capturing the full extent of the 

dominant physics and water level responses therein. 

 Significant hurricane dynamics occur at great spatial scales along the hurricane track as it 

moves from the deep ocean onto the continental shelf and into the coastal floodplain (Roberts, 

2004).  Therefore it is important to understand the physical processes that occur across the area 

affected by the storm.  Research in two-dimensional (2D) storm surge numerical modeling has 
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demonstrated that domain size can drastically influence numerical results, with large domains 

yielding more accurate physics (Blain et al., 1994).  Model domains that strictly encompass the 

continental shelf or the size of the storm itself neglect the basin-to-shelf dynamics and severely 

under-predict the water levels’ response to storm surge (Blain et al., 1994; Westerink et al., 

2004).  With a large domain approach, boundary conditions reside in the deep ocean and are far 

removed from the more complex processes occurring on the continental shelf and floodplain.  

The storms natural propagation onto the continental shelf and other significant physics are thus 

captured without any boundary influence.  Further, small scale dynamics in the shallow regions 

are important and must be captured for accurate results (Blain et al., 1994; Westerink et al., 

2004; Dietrich et al., 2011; Kennedy et al., 2011).  Early 2D storm surge models employed 

coarse structured grids wherein the model was discretized at regularly spaced intervals.  This 

method tends to under-resolve the continental shelf and shallow waters leading to overprediction 

errors and overpredicted peak surge at the coast.  To this end, grid resolution near the coastline is 

the most significant feature in the accuracy of storm surge prediction.  In addition, predicted 

surge can be a function of the complexity of the shoreline itself (Blain et al., 1998).  With this in 

mind, another method is needed since structured grids are limited in the description of the 

intricate geometry of the coastline.  Enabling an unstructured mesh approach (i.e. element sizes 

are non-uniform and vary spatially) can resolve  this shortcoming (Westerink et al., 2004). 

 Understanding the benefits of a large domain approach with spatially varying 

discretization (i.e., unstructured mesh) has lead to a new generation of storm surge models.  The 

use of unstructured finite element meshes has proven superior to other techniques in capturing 

small scale dynamics across a large model domain, allowing mesh resolution to vary with respect 
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to the hydrodynamics on a spatial scale.  Due to the nature of unstructured grids, the location of 

mesh nodes can be precisely placed allowing for a computationally efficient and robust mesh.  

Larger elements are placed in the deep ocean where the effects of small scale dynamics are less 

important and smaller elements are placed in locations where small scale dynamics must be 

captured to ensure accurate results (Hagen et al., 2000; Hagen, 2001; Hagen et al., 2001; Hagen 

& Parrish, 2004; Hagen et al., 2006).  This large domain, unstructured mesh approach permits a 

description of the natural physics of storm surge as it circulates from the deep ocean to the 

continental shelf and onto the coastal floodplain (Figure 1) (Roberts, 2004; Westerink et al., 

2004; Dietrich et al., 2011). 

 Another advantage of the large domain, unstructured mesh approach is to apply finer 

mesh resolution in areas of interest, rather than just in the regions where high resolution is 

important to capture the essential physics.  Many features that exhibit high topographic gradients 

such as river reaches, barrier islands, roadways, and levees are typically described with high 

resolution.  These features, especially in the floodplain, can alter simulated water levels and 

inundation extent from hurricane storm surge.  Therefore they must be properly described in the 

model, as they are on the natural ground surface.  LiDAR and high DEMs present an opportunity 

to better include the natural ground surface in storm surge models. 
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Figure 1 Large model domain approach encompassing the deep ocean, continental 
shelf, shoreline, and coastal floodplain. 

2.2 Digital Elevation Models 

 Spanning the past decade, much advancement has been made in DEM development 

mainly due to the availability of high-resolution, high accuracy topographic data.  In hydraulic 

models, the topography is an essential factor that can influence simulated flood hydraulics and 

inundation extent (Horrit & Bates, 2001).  It is crucial the floodplain be accurately represented 

since the topographic elevation is the first feature that can promote or inhibit water flow (Coggin, 

2011).  Past modeling techniques have been limited by the spatial resolution of topographic data 

resulting in finer resolution for the mesh elements than the available topographic information 

(Bates et al., 2003).  Thanks to developments in remote sensing, high accurate, high density 

topographic data can be obtained using LiDAR (Samburg, 1997).  LiDAR provides an approach 
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to incorporate high-resolution 3D point cloud data into a high-quality DEM (Lohr, 1998; Wehr 

& Lohr, 1999; Lefsky et al., 2002; Lloyd & Atkinson, 2006; Liu et al., 2007a, 2007b; Coggin, 

2011; Medeiros et al., 2011).  For a detailed description of LiDAR acquisition systems, see 

Coggin (2008). 

Generally speaking, a DEM is a term for digital elevation data, either topographic or 

bathymetric.  Further, a DEM implies only the elevation of the terrain (bare earth), excluding 

elevation of vegetation and manmade features.  A DSM (digital surface model) is a DEM 

including vegetation and manmade features (Maune, 2007).  Several filtering techniques are well 

documented for removing non-bare earth points (Fritsch & Kilian, 1994; Eckstein & Munkelt, 

1995; Lohmann & Hug, 1998; Axelsson, 1999; Liu, 2008).  For the study presented herein, a 

DEM is defined as bare earth elevations (z-values) at regularly spaced intervals in x (Eastings) 

and y (Northings), referenced to a vertical and horizontal datum (Maune, 2007; Shi, 2010).  

DEMs are widely used for a variety of environmental applications including hydraulic, 

hydrologic and hydrodynamic modeling (Kenward et al., 2000; Darboux et al., 2002; Chaplot et 

al., 2006; Hagen et al., 2009; Bunya et al., 2010; Bilskie et al., 2011). 

Since a DEM is an approximation of the natural surface of the earth, a difference exists 

between the surface of the earth and the surface represented by a DEM.  This difference is DEM 

error (Shi, 2010).  Many factors can affect the quality and accuracy of DEMs including source 

data density, terrain, and land cover type.  Furthermore, the applied interpolation method and 

grid size ( x∆ and y∆ ), can strengthen or weaken the quality of a DEM from its original source 

data.  This is mainly due to the discontinuous representation of a continuous surface and 

smoothing of the original source data (Desmet, 1997; Gong et al., 2000; Schoorl et al., 2000; Ali, 



11 
 

2004; Li et al., 2005; Anderson et al., 2006; Fisher & Tate, 2006; Liu, 2008; Bater & Coops, 

2009). 

2.2.1 Interpolation Error 

 Interpolation of irregularly spaced points is needed to generate DEMs to provide better 

representation of the land surface (Lloyd & Atkinson, 2002; Anderson et al., 2005).  

Interpolation is the procedure to estimate values at unknown locations based on values at 

sampled locations (Ali, 2004).  In digital terrain modeling, interpolation is used to estimate 

terrain elevations at a point in space by using the known elevation and location of neighboring 

points.  This is fundamental to digital terrain modeling (Li et al., 2005; Maune, 2007).  Much has 

been published in regard to interpolation error on DEM accuracy; however, differing opinions 

exist in the literature for the best interpolation algorithm: spline (Kubik & Botman, 1976); 

kriging (Lloyd & Atkinson, 2002; Chaplot et al., 2006); natural neighbor (Bater & Coops, 2009); 

and inverse distance schemes (Ali, 2004; Anderson et al., 2005; Su & Borke, 2006).  

Furthermore, there is an absence in the literature on interpolation of point data to a FEM for use 

in shallow water hydrodynamic model. 

Kubik and Botman (1976) stated that accuracy of the interpolation is largely dependent 

on the properties of the surface, the density and spacing of control points, and on the 

interpolating function itself.  They constructed several DEMs based on a suite of interpolation 

methods from irregularly spaced sample points and evaluated their precision and shape 

reliability.  Generally, shape reliability issues are those in which artificial troughs or peaks are 

present after interpolation of points to a gridded dataset.  The spline interpolator produced the 

best results with respect to both precision and shape reliability. 
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Chaplot et al. (2006) evaluated the effect of landform types, density of observational data 

and interpolation techniques on DEM accuracy.  The source data were contour lines and field 

surveys obtained by a laser theodolite.  Five interpolation techniques, commonly used in 

geomorphological research, were studied producing a DEM in a mountainous region including 

inverse distance weighted (IDW), ordinary kriging (OK), universal kriging, multiquadratic radial 

basis function, and regularized spline with tension (RST) (Weber & Englund, 1994; Longley et 

al., 1999; Zimmerman et al., 1999; Aguilar et al., 2005). When the sampling density was high, 

minor differences were observed between the interpolation techniques; however, when the 

sampling density was low, the interpolation technique had a higher impact on the resulting DEM.  

The kriging method produced the best results if high elevations were dominant, but when the 

spatial structure was weak, IDW and RST performed best. 

Lloyd (2002) employed IDW, OK, and kriging with a trend model (KT) to an area of 

smoothly varying hillslope topography to create a digital surface model (DSM) from LiDAR 

data.  It was found that IDW produced the largest error, but resulted in a lower standard 

deviation than the other interpolators. When the point densities were low, OK and KT provided 

the most accurate predictions compared to the other methods, but no advantage existed when the 

point densities were high. 

 Ali (2004) studied the effect of IDW, kriging, and a triangular irregular network (TIN) 

from picking candidate points from the VIP (very important point) algorithm using LiDAR.  It 

was found that IDI results were comparable to the triangulation model; however, the TIN 

produced the most accurate results in terms of random error where only single locations were 

considered.  Also, IDI produced more realistic and accurate cross-section profiles compared to 
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the other interpolation functions.  Ali determined that this is due to the nature of the high-density 

LiDAR, which is a suboptimal input for a kriging interpolation scheme.  He concludes that 

triangulation produces the best results at single locations; however, it does not produce the best 

profiles.  Further, he concludes kriging should not be used to generate terrain models based on 

LiDAR. 

Anderson et al. (2005) found that IDW is the most sufficient interpolating function for 

creating a DEM from irregularly spaced LiDAR data by way of assessing mean error and root 

mean square error.  Not only was IDW found to produce minimal error, compared to OK, but 

IDW was computationally more efficient. 

Su et al. (2006) examined the performance of three interpolation techniques (spline, 

IDW, and kriging) on the generation of a DEM from high-density LiDAR (~0.75 points/m2) in a 

region of rolling hills.  They employed a root mean square error (RMSE) approach and found the 

IDW interpolation method was the simplest and most accurate for DEM creation.  However, Su 

et al. (2006) also stated the accuracy of the DEM varied across the landscape with greater errors 

in areas of forest and lowland meadows than that of shrublands or grasslands.  This was a result 

of LiDAR not fully penetrating the ground in areas of thick canopy and vegetation.  Also, the 

accuracy was weakened as the slope of the terrain increased.  The overall LiDAR-derived DEM 

had a mean error (ME) of 2 cm and RMSE of 59 cm, from that of reference points. 

Bater et al. (2009) examined seven interpolation routines (linear, quintic, natural 

neighbor (NN), spline with tension, regularized spline, IDW, and ANUDEM) to determine the 

most accurate combination of interpolator and spatial resolution for DEM generation as well as 

the effects of LiDAR ground point density, slope, canopy cover, and vegetation structure on 
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interpolation errors.  The linear, quintic, and NN techniques used a TIN as its base and the others 

were interpolated from the raw points themselves.  The techniques were assessed by creating a 

DEM for each interpolator at resolutions of 0.5-m, 1-m and 1.5-m.  The DEMs were produced by 

randomly selecting 97-percent of the LiDAR points.  The remaining 3-percent were used to 

compute the accuracy of each DEM.  Accuracies of IDW and spline were found to be sensitive to 

their parameterization, producing ±6-m outliers. IDW interpolated surfaces showed artifacts that 

would have serious impacts on geomorphic analysis.  Ultimately, the linear and NN methods 

were found to have the lowest overall error and were the most conservative.  Of these two, linear 

was too simplistic, whereas natural neighbor was preferred for its performance and 

characteristics, such as its ease of use, simple parameterization, and generally smooth and 

visually attractive surface.  Also, the results indicated that the spatial resolution is just as 

important as the interpolation scheme. 

At this point it is clear that no interpolation scheme is universally sufficient for producing 

a DEM from its source data, whether the source data is contour lines, field survey points, or 

high-density LiDAR (Fisher & Tate, 2006; Liu, 2008).  However, Liu et al. (2007b) showed the 

IDW method performs well for high sampling density LiDAR, even for complex terrain.  Still, 

this disagrees with both Lloyd et al. (2002) and Bater et al. (2009).  Also, all studies presented 

are not focused on the application of modeling shallow water flow, in particular with the use of a 

FEM. 

2.2.2 DEM Grid Size 

 “Determination of a DEM grid size is the central problem for DEM generation and spatial 

analysis” (p. 40) (Liu, 2008). 
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 When interpolating irregularly spaced points, it is common to produce a DEM at 

regularly spaced intervals.  These regularly spaced cells are called DEM grid cells, where the 

value of the cell represents the surface, a numeric value of elevation, across the entire cell area  

(Figure 2) (Maune, 2007).  The resolution of the DEM is that of the regular spacing interval 

between the grid cells center points, or the length of the grid cell itself, x∆ and y∆ ; typically,

x y∆ = ∆ .  In terrain modeling, it is important to synchronize three key concerns: 1) a DEM grid 

size that well represents the land surface; 2) large enough resolution to allow efficient data 

storage; and 3) maintain a particular level of accuracy (Gao, 1997).  It is intuitive that as the 

DEM grid size becomes coarser, i.e., decreases in resolution, the terrain representation becomes 

degraded, and vice versa (Kienzle, 2004).  Typically, DEM resolution should not be higher than 

that of the source data (Florinksy, 1998); however, using a dense terrain dataset to develop a 

coarse resolution DEM will reduce the integrity of the high-resolution source data (Liu, 2008).  

Liu (2008) states that an appropriate DEM resolution can be a function of many items including 

source data density, complexity of the surface, and the application.  Several attempts have been 

made in determining the best possible DEM size from the source data. 
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Figure 2 Raster DEM with regularly spaced grid cells in the x- and y-directions 

Kienzle (2004) generated DEMs from sparse elevation points and found that terrain 

variables differ appreciably with DEM grid size.  Depending on the parameter of interest, cell 

sizes varying from 5-m to 20-m should be used.  However, shallow water flow was not the 

particular application for this study.  Hengl (2006) linked terrain grid resolution with that of 

digital signal processing since construction of a DEM is equivalent to discretizing a 2D function 

of the terrain.  According to the Shannon-Nyquist sampling theorem (Shannon, 1949), a 

continuous function can be reconstructed from a discrete function (sampled data) if the sampling 

rate exceeds two times the maximum frequency.  In other words, if two samples per the shortest 

wavelength are collected, then the continuous function can be recomposed from the set of 

sampled data (Florinksy, 2002).  Using this rule, Hengl states the cell resolution, at a minimum, 

along a cross-section, should be half of the average spacing between inflection points:  
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Where p is the points spacing, l = length of cross-section transect, and ( )n zδ  = number of 

inflection points measured.  Hengl gives an example of 20 measured points with an average 

spacing of 0.8-m.  Equation 2.1 yields a grid size of at least 0.4-m; however, the smallest 

distance found between any two points, among all points, should be the smallest grid resolution 

used.  Figure 3 shows a plot of a continuous surface and measurements taken at random distance 

intervals along the same surface.  In this instance, the continuous surface represents the bare-

earth terrain, where an infinite amount of measurements can theoretically be taken.  Figure 4 

demonstrates a low resolution (20-m) DEM insufficiently describing the surface.  Producing a 

low resolution DEM from high density source data lessens the accuracy of the data (Liu et al., 

2008), whereas a decrease in DEM size (5-m, Figure 5) better represents the terrain.  Using the 

rule put forth by Hengl (Eq. 2.1) a transect with average horizontal spacing of measured points 

equaling 5-m (Figure 6), a DEM size of 2.5-m is recommended.  However, this rule does not 

take into account the relative size of the DEM datasets.  Others have stated that DEM resolution 

should be no less than that of the original source data density (McCullagh, 1988; Florinksy, 

1998, 2002; Liu et al., 2008): 

 
AGS
N

=  2.2 

where GS = grid size; A = total area containing the measured points; and N = total number of 

measured points.  Therefore, an optimal grid size for DEM development should be a function of 

both computational efficiency and accuracy (Hengl, 2006). 
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 Further exploration of this topic can lead into studies of LiDAR data density reduction 

and its result on DEM accuracy.  Essentially, when generating a DEM from a set of mass points 

(i.e. bare earth LiDAR), the mass point data is being reduced, or resampled, to fit a regular grid.  

This research area aims to determine how LiDAR data can be reduced while still providing 

sufficient accuracy for DEM generation, resulting in more efficient DEM generation due to the 

reduction of the mass point data (Anderson et al., 2005).  Liu (2007a) extracted 90-percent of the 

bare earth LiDAR points for training data and 10-percent for check points in the region of 

Corangamite Catchment Management Authority in southwestern Victoria, Australia.  They 

reduced the training data down from 100-percent to 1-percent at several intervals and generated 

5-m DEMs based on the reduced datasets.  It was found that reducing the training dataset from 

100-percent to 50-percent resulted in an RMSE increase of 1-cm, when compared to the check 

points.  The data density from the 50-percent reduced dataset was roughly equivalent to 5-m, the 

size of the DEM.  Liu proved that the accuracy of the DEM can be preserved while reducing the 

data density by half. 

It can be concluded that an optimal combination of the two main parameters in DEM 

generation, interpolation scheme and grid size, is not consistent in published literature or in 

practice. 
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Figure 3 Plot depicting a set of measured elevation points along a transect (Hengl, 
2006).  The red line indicates the continuous surface representation and the 
black circles represent the measured values (Hengl, 2006). 

 

Figure 4 Plot with the continuous surface in red, measurements in black, and a 20-m 
DEM grid representation of the continuous surface (Hengl, 2006). 
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Figure 5 Plot with the continuous surface in red, measurements in black, and a 5-m 
DEM grid representation of the continuous surface (Hengl, 2006). 

 

Figure 6 Plot with the continuous surface in red, measurements in black, and a 2.5-m 
DEM grid representation of the continuous surface (Hengl, 2006). 
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2.3 LiDAR in Coastal Hydrodynamic Finite Element Models 

 The following is a review of research that has used LiDAR in coastal finite element 

hydrodynamic models. 

 As presented, much research has been published in terms of LiDAR DEMs and the effect 

interpolation, DEM grid size, and LiDAR point density have on topographic accuracy.  

However, few studies focus on the transfer of bare earth LiDAR points or LiDAR DEMs to a 

FEM.  The general concept of interpolation can still be applied; however, the data structures are 

severely different.  The distinction being a DEM is at a regularly spaced interval (square cells) 

and an unstructured FEM is not (non-uniform triangulated network).  Efficient and accurate 

interpolation from points, either uniform (DEM) or non-uniform (raw bare earth), to a FEM is 

not a trivial task.  Geospatial programs such as ArcGIS (ESRI, 2011a) and Global Mapper (Blue 

Marble Geographics, 2011) are more suited to work with raster products.  Also, the density of 

nodal points (directly relates to element size) in the FEM plays a role in the method chosen for a 

node to obtain its elevation from bare earth LiDAR points or a LiDAR-derived DEM.  Recent 

studies have employed methods to incorporate bare earth LiDAR in a FEM for astronomic tides 

and storm surge simulations.  They primarily focused on incorporating significant raised features 

(i.e. raised roadway, levee, and channel banks) found from the bare earth LiDAR into the FEM. 

 Roberts (2004) enhanced a FEM for use in a tide and storm surge model of southeastern 

Louisiana.  His main focus was advancing an existing mesh of the area (S08 ADCIRC mesh) to 

accurately include channels, rivers, levees, and raised roadways by resolving the features in the 

mesh (i.e. higher resolution) and using precise elevation data from bare earth LiDAR to assign 

nodal elevations.  He developed a method to scan a 5-m DEM generated from the bare earth 
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points to filter out important raised features.  The points had to meet specific requirements in 

order to be classified as significant features that could alter the flow physics if not correctly 

incorporated into the model.  The requirements outlined were as follows: 

1. A given point must have a minimum height of 1.9-m above the elevation of the lowest 

point around a 60-m by 60-m area. 

2. The point must be 1-m above the average elevation of the surrounding points in the area. 

3. A minimum slope of 0.086-m/m between the center node and another node in the 60-m 

by 60 m-region. 

4. A minimum slope of 0.040-m/m in the opposite direction of the maximum slope. 

Requirements three and four were to limit channel banks because the topography in the channel 

would reduce the average topographic elevation for a region in which a data point would meet 

the first two requirements. In other words, elevation values in the channel would significantly 

alter the average elevation for an area for a given point near the channel, allowing requirements 

one and two to hold when the point is not a significant raised feature. 

 After performing labor intensive manual edits to the raised features, the floodplain was 

discretized (or “meshed”) using a triangular paving method with the significant features being 

polygon edges.  Nodal density varied throughout the domain with high resolution in the adjacent 

floodplain.  Element size was controlled to sufficiently represent high gradients in flow as surge 

inundates the floodplain.  Paving was done via sub-meshes and additional arcs were created in 

order to apply a smooth transition of element sizes (Figure 7). 

 After the FEM was constructed, mesh nodes received elevations from the 5-m DEM via 

interpolation.  Roberts decided against direct interpolation, seeing as it would use just over one 
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half of one percent of the available LiDAR available.  Also, direct interpolation would result in 

missing gradients over element edge lengths, especially for large elements that may space up to 1 

km in element edge length.  Therefore he developed a grid-scale averaging scheme to 

incorporate data points that surround an individual mesh node, rather than using the closest data 

point.  The total number of topographic data points for each element as well as the elevation of 

each point was found.  The average of all points was computed and assigned to each element.  

Nodal elevations were determined by averaging the elevations of the surrounding elements about 

each node (Roberts, 2004). 
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Figure 7 Arc placement for mesh generation.  Blue lines represent the sub mesh 
region and red lines represent the raised features.  Black lines represent arc 
within SMS.  Published with authors’ permission. (Roberts, 2004) 

 Coggin (2008) enhanced the work of Roberts (2004) by developing an automated method 

for extracting linear raised features from LiDAR data.  He implemented a methodology to extract 

watershed boundaries and then analyzed those boundaries to determine which were significant to 

alter flow dynamics.  The watershed boundaries were converted to lines and checked against the 
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following three criteria to determine which lines should be classified as significant topographic 

features (p. 72) (Coggin, 2008): 

1. “High enough relative to surrounding terrain to form a hydraulically significant 

impediment to storm surge” 

2. “Narrow enough that not purposely including the ridge as a finite element edge would 

risk significant mesh elevation error” 

3. “Long enough to space at least one element edge” 

The three requirements, performed for Manatee County, FL, resulted in a set of line segments 

(Figure 8). 

 Coggin then constructed two FEMs for use in the ADCIRC-2DDI model (Luettich et al., 

1992).  One mesh included the vertical features as element edges (Figure 9) and the other mesh 

had similar triangulation, but did not include vertical features as element edges.  To interpolate 

the source data, generally LiDAR, to a mesh node, a control area polygon was constructed.  This 

polygon was formed by connecting all centers of the surrounding elements.  All LiDAR points 

within this control area were averaged and assigned to the mesh node (Figure 10).  When forced 

with a synthetic hurricane, it was found that a considerable difference in total inundation area 

existed between the two meshes, especially around the roadways.  Coggin found it important to 

properly include the bare earth topography, especially significant raised features, in the model. 

 Coggins’ vertical feature method has since been enhanced by the addition of valley 

features and it’s currently used in FEM generation for coastal storm surge studies in support of 

development of digital flood insurance rate maps (DFIRM) for FEMA (Coggin, 2011; Salisbury 

et al., 2011). 
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Figure 8 Final product of vertical features (black lines).  Published with authors’ 
permission. (Coggin, 2008) 
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Figure 9 Aerial image with vertical features in red and finite element mesh 
triangulation in black. Published with authors' permission. (Coggin, 2008) 
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Figure 10 Interpolation of nodal point via polygon control area for LiDAR data.  
Published with authors’ permission. (Coggin, 2008) 

 Atkinson (2007) developed an interpolation method similar to that of Coggin (2008) in 

which the centroids of the surrounding elements of a given node were used to create a control 

volume.  As Coggin employed a control area bounded by and including all centroids of the 

surrounding elements (Figure 10), Atkinson used a rectangle as the control volume, with its 

minimum and maximum x- and y-directions found from the centroids (Figure 11).  However, 

Atkinsons’ method was not constructed for elevation value interpolation from a DEM raster to a 

FEM, but from a raster containing frictional characteristics (i.e. manning’s n) to a FEM. 
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Figure 11 Interpolation of nodal points via rectangle control volume (Atkinson, 2007). 

2.4 Introduction to Storm Surge 

 Among storm surge, wind, rain, and tornadoes, storm surge is the cause of over 90-

percent of deaths due to hurricanes (Pielke, 1990).  Storm surge is “an abnormal rise in sea level 

accompanying a hurricane or other intense storm, and whose height is the difference between the 

observed level of the sea surface and the level that would be occurred in the absence of the 

cyclone” (National Weather Service, 2009).  The combined effect of storm surge and the 

astronomic tide results in storm tide (Figure 12). 
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Figure 12 Image depicting the addition of the astronomical tide (2 ft) and storm surge 
(15 ft) to produce a storm tide of 17 ft (NOAA, 2010) above mean sea level. 

Harris (1963) discussed the five main processes that accompany a storm.  These include: 

1) the pressure effect; 2) the direct wind effect; 3) the effect of the earth’s rotation (Coriolis 

force); 4) the effect of the waves; and 5) the rainfall effect.  More specific to coastal flooding, 

Westerink et al. (2008) considers coastal flooding being “driven by wind, atmospheric pressure 

gradients, tides, river flow, short-crested wind waves, and rainfall” (p. 834). In general, storm 

surge is made up of the following components at or along the shoreline: 1) wind-driven surge 

caused by a strong onshore wind; 2) inverted barometric effect; 3) geostrophic tilt, a result of 

alongshore current; and 4) setup from a short (wind induced) wave (Reid, 1990). 

Wind, the main force behind storm surge, blowing over the ocean creates a frictional drag 

on the water.  The relationship between wind speed and its drag on the water surface creates a 

wind stress represented by the empirical formula:  

 2
10s DC Vτ ρ=  2.3 
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where sτ  is the wind stress, ρ  is the density of water, DC  is a dimensionless friction coefficient 

and 10V  is the wind speed measured in meters per second at ten meters above the water surface 

(Dean & Dalrymple, 2002; Powell et al., 2003).  Again, following continuity principles, as the 

depth of water decreases (e.g. continental shelf) the surge increases due to the mass of water 

being pushed from the deep water into the shallow regions.  This can be observed in the 

following 1D equation in which the wind stress relates to the surface slope:  

 ( )
( )
s bw

w

d
dx g h

τ τη
ρ η

−
=

+
 2.4 

where bτ  and wη are the bottom shear stress is the water level increase, respectively (Dean & 

Dalrymple, 2002).  Not only does the equation show that the greater the wind stress the greater 

the surface slope, but as the water column becomes shallower, the water surface slope becomes 

larger for the same surface stress.  The ocean creates frictional drag for the wind, due to the 

shallow waters along the coastline, and results in the ocean piling up against the coastline. When 

a strong onshore wind is present, the wind attempts to push the ocean onto the land, thereby 

massing water landward for stretches of coastline.  The forward motion of the hurricane also 

tends to increase the amount of water that accumulates (Dean & Dalrymple, 2002).  

The effect of the changing coastal geometry, coastline shape and bathymetry, plays an 

important role in the generation of storm surge.  Surge in the open ocean generally does not 

surpass 0.5-m, however in shallow waters, relative to the deep ocean, or in semi-enclosed seas, 

such as the Gulf of Mexico, storm surge can reach heights over several meters (Pore, 1965; 

Carter, 1988; Pielke, 1990).  During a neap tide, storm surge is likely to increase due to 
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shallower depths, however the storm surge (storm tide minus astronomic tide) is higher when 

occurring along with a spring tide (Lennon, 1963; Carter, 1988). 

When a hurricane gains intensity, its central pressure reduces causing the underlying 

water surface to rise.  The pressure is lowest near the eye wall, resulting in a bulge of water at 

that location.  On the other hand, the wind velocity is greatest near the eye wall producing an 

increase of wind shear (Figure 13).  The relationship between water surface variation and 

pressure is a water surface rise of one centimeter for every one millibar drop in pressure; a 

pressure drop of 100 millibars will result in a water surface rise of one meter (Harris, 1963; 

Pielke, 1990). 

The rotation of the earth affects the storm surge when the storm forces intense currents to 

flow in the alongshore direction (Dietsche et al., 2007; Kennedy et al., 2011).  If a storm forces a 

current moving south along the east coast of the U.S., the Coriolis force must be balanced by a 

change in the water level surface to the east of the current.  The opposite occurs if the current is 

moving in a northerly direction.  The following formula governs the water surface elevation 

change due to the Coriolis force: 

 c fV
x g
η∂

=
∂

 2.5 

where cη  is the Coriolis tide; f is the Coriolis parameter; and V is the depth averaged current 

magnitude (Harris, 1963; Dean & Dalrymple, 2002). 

Short-waves (wind-waves) can affect water levels during a storm surge.  The generation 

and propagation of wind-waves can alter peak storm surge elevations, time of peak surge, and 

water recession after the storm.  Wind induced waves are influenced by several factors including 
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bathymetry, tide-, wind- and wave-induced currents; tide- and surge-induced water level 

fluctuation; and coastal structures.  (Smith et al., 2002; Bunya et al., 2010). 

 

Figure 13 Figure of the hurricane eye wall and a cross-section view of the winds and 
pressure distributed throughout the storm (Department of Atmospheric 
Sciences at University of Illinoise at Urbana-Champaign, 2010). 

 Much research has been done to ensure the essential physics are included to successfully 

simulate astronomic tides and hurricane storm surge across large domains.  As remote sensing 

data collection and processing techniques continue to improve and become more abundant, new 

methods should be presented and fully tested to further the progression of state-of-the-art 

hydrodynamic models.  However, as presented in the previous literature review, there is a lack of 

knowledge in shallow water hydrodynamic modeling with respect to resampling bare earth 

LiDAR points to a FEM, at varying element sizes.  As a result, the research presented focuses on 

this issue. 
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CHAPTER 3: INTERPOLATION METHODS 

 Based on published literature, three interpolation methods were selected for this study: 

linear, inverse distance weighted, and natural neighbor.  These methods are easily employed by 

the software program SMS 10.1 (Aquaveo LLC, 2010).  In addition to linear, IDW, and NN 

interpolations a direct lookup and a basic area averaging schemes are tested.  The following 

sections present a brief description to each interpolation method and its mathematical 

representations. 

3.1 Linear Interpolation 

 Linear interpolation is the most widely used mathematical representation of a DEM 

surface due to its simplicity and practicability (Zhu et al., 2005).  When using a TIN model, 

rather than a regular grid DEM, the surface of the TIN triangles is a 3D surface in which a linear 

plane connects the three vertices, or nodes of the triangles (Figure 14).  However, with a regular 

grid DEM, a linear model represents the surface in the X and Y directions with a constant Z 

value, representing a flat plane.  To compute an unknown elevation value at a point surrounded 

by points with known elevation values, a linear interpolation first triangulates the known points 

to form a temporary TIN using a Delaunay triangulation scheme.  A Delaunay triangulation 

guarantees that no vertex of the triangle resides within the interior of any of the cirumcircles of 

the triangular network (Aquaveo LLC, 2011).  See Chapter 3 of Hjelle & Dæhlen (2006) for an 

in depth definition of Delaunay triangulation.  Because the TIN surface is assumed to vary 
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linearly across the triangle, the TIN describes a piecewise linear surface.  For a triangle, the 

equation of the plane is defined by three nodes of known elevations: 

 0Ax By Cz D+ + + =  3.1 

where A,B,C, and D are computed by the nodal locations ( ) ( ) ( )1 1 1 2 2 2 3 3 3, , , , , , , ,x y z x y z x y z . 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 2 3 2 3 1 3 1 2

1 2 3 2 3 1 3 1 2

1 2 3 2 3 1 3 1 2

1 1 1

A y z z y z z y z z

B z x x z x x z x x

C x y y x y y x y y
D Ax By Cz

= − + − + −

= − + − + −

= − + − + −

= − − −

 3.2 

Rearranging 3.1 and substituting in 3.2, the plane equation can be represented as: 

 ( ), A B Dz x y x y
C C C

= − − −  3.3 

where z(x,y) is the elevation function at coordinates x and y. 

Solving 3.3 for a point located inside triangle ABC yields an elevation value linearly interpolated 

from nodes ABC (Aquaveo, 2007b). 
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Figure 14 3D representation of a triangle using a linear interpolation. 

3.2 Inverse Distance Weighed Interpolation 

 Another common interpolation technique is inverse distance weighed (IDW).  IDW 

interpolation is based on the assumption that the target point being interpolated should be 

influenced more by its closest points rather than points farther away (ESRI, 2008).  Inverse 

distance interpolation methods merge the ideas by Voronoi polygons, but with a steady change 

of the surface (Burrough & McDonnell, 1998).  Voroni (or Thiessen) polygons are constructed 

for each point using the circumcircles of the triangles resulting from the Delaunay triangulation 

(Hjelle & Dæhlen, 2006).  The simplest expression (Shepard’s Method) for IDW interpolation is 

as follows (Shepard, 1968; Aquaveo, 2007a): 

 ( )
1

,
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=

=∑  3.4 
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where N is the number of known input points, iw  is the weighting function and iz  is the value of 

point i.  For this project, i = 3, the four closest points.  The weighting function is based on 

proportionate areas and computed by: 
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i N
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i
i

dw
d

−

−

=

=

∑
 3.5 

where p is a real positive number equaling 2 (power parameter), giving an appropriate result for 

the purposes of general surface mapping and description (Shepard, 1968).  Also, id  is the 

horizontal distance of the target point to the input point i: 

 ( ) ( )2 2
i i id x x y y= − + −  3.6 

where ( ),x y  is the coordinate of the target point and ( ),i ix y is the coordinates of input point i. 

 

The following weighting function is used in SMS 10.1 for the IDW interpolation scheme. 
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where R is the distance from the most distant scatter point.  According to Franke & Nielson 

(1980), this weighting function gives improved results compared to Shepard’s equation. 

3.3 Natural Neighbor Interpolation 

 Natural neighbor (NN) interpolation looks for the closest points to an unknown point and 

applies weights based on proportionate areas.  Similar to the linear interpolation method, the 

known points are triangulated using the Delaunay triangulation method.  Next, a Voronoi 
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diagram is constructed.  The Voronoi polygon represents the region of influence around the 

unknown point.  Therefore, each point has an associated area that is a polygon defining the 

boundaries of strength of the point as shown in Figure 15. 

 

Figure 15 Thiessen polygon resulting from a Delaunay Triangulation. The bold lines 
are the Thiessen polygons and the thin lines represent the Delaunay 
triangulation. From (Burrough & McDonnell, 1998) page 114. 

To estimate a value at point P, P is inserted as a new point resulting in a new 

triangulation.  Therefore, a new network of Voronoi polygons are created, in which P has its own 

area of influence that overlaps with the Voronoi region of its neighbors.  This determines how P 

fits into the existing points.  The value of P is calculated based on the portion of the area that it 

borrows from each neighboring polygon in the previous network.  For example, if the areas of 

the contributing polygons are 𝐴𝑖, 𝑖 = 1,2 … ,𝑁, then the relative portion borrowed from each of 

the original areas are (Sibson, 1981): 
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Therefore, the value at P ( pz ) is the summation of the relative portion of each contributing 

polygon ( iλ ) multiplied by the value of its point iz : 
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3.4 Area Averaging 

 For interpolation of a DEM to a finite element mesh, a basic area averaging scheme is 

employed.  Several difference techniques are used.  First, a single cell average (direct lookup) 

assigns the value of the DEM cell that overlays on a given mesh node (Figure 16).  Further, the 

nine cell area (CA) averaging technique uses the nine DEM cells surrounding a given mesh node 

and averages those nine elevation values for an elevation assignment to the given node (Figure 

17).  An area averaging of 25, 49, 81, 121, and 169 surrounding cells are also used in the same 

fashion as the 9 cell area average. 
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Figure 16 Example of interpolation using a 1 cell average (direct lookup) 

 

Figure 17 Example of interpolation using a nine cell area averaging scheme  
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CHAPTER 4: DESCRIPTION OF STUDY DOMAIN 

 The 130-km Pascagoula River, located in southeastern Mississippi, is contained in the 

Pascagoula River Basin, which drains approximately 25,000-km2 (Figure 18).  It is the last 

unregulated river system in the lower 48 states, facing far less human alteration than other 

watershed basins of similar scale (Mossa et al., 2003; Perrott, 2007).  The Leaf and 

Chickasawhay River join to form the Pascagoula River, each draining approximately 9,000-km2 

and 7,700-km2, respectively, of the basin. 

The Pascagoula River meanders through low-lying flatlands and broad flat plains 

upstream; however, heavy marshlands are present as it drains into the Gulf of Mexico through 

Mississippi Sound.  The river empties into the Gulf of Mexico via two inlet systems, the East and 

West Pascagoula.  In fact, the east inlet includes its own tributary in the Escatawpa River.  The 

land cover/land use of the basin (Figure 19 and Figure 20) includes largely forested regions, with 

some agricultural, residential, and mining areas.  Marshlands and developed land predominate 

along the coastline, but dense forest occupies much of the floodplain.  The basin topography is 

generally rolling with low to moderate relief and elevations exceeding 180-m in the north 

(Oldham & Rushing, 1970; Slack, 1991; Strom, 1998).  Much of the Pascagoula River is slow 

moving with shallow waters and can be heavily influenced by tides propagated from the Gulf of 

Mexico as far as 55-km upstream, south of Graham Ferry (Takahashi, 2008).  The main focus of 

this study is on the lower Pascagoula River and surrounding marsh areas and floodplain.   
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Figure 18 Pascagoula River Basin and its rivers 
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Figure 19 Land cover distribution in the Pascagoula River Basin (Mississippi 
Department of Environmental Quality, 2001). 
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Figure 20 2001 National LandCover Data and classification for the Pascagoula River 
Basin (Homer et al., 2004). 
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 Few publications exist on hydrodynamic numerical modeling of astronomic tides and 

hurricane storm surge for the Pascagoula River region.  Wang (2008) developed a general finite 

element model of the Pascagoula River, capable of accurately describing astronomic tides fully 

within the banks of the river.  Tides were found to propagate as far upstream as Graham Ferry, 

MS (55 km upstream).  Building on this, Takahashi (2008) added the adjoining floodplain to the 

Pascagoula River, up to the 1.5-m contour.  The inclusion of the floodplain, specifically the 

marsh regions, drastically improved model results.  Including the immediate overland region 

enabled the tide (astronomic or storm) to inundate and recede, as it would in the natural system.  

However, there are two shortcomings to the model.  First, the floodplain is limited to the 1.5 m 

contour.  As this may be sufficient to accurately simulate astronomic tides, hurricane storm surge 

has a high likelihood of surpassing this boundary.  To fully capture the physics of hurricane 

storm surge, the model boundary should extend past the 1.5-m contour, at a minimum, the 5 m 

contour (Takahashi, 2008).  Second, the source elevations for the mesh elements in the 

floodplain were interpolated from an existing storm surge model for southeastern Louisiana 

(SL15 mesh) (Bunya et al., 2010).  Although many portions of the SL15 mesh have elevations 

derived from bare-earth LiDAR, information is lost when interpolating one finite element mesh 

to another, especially if they have severely different resolutions. 

 With previous research in modeling of tides and storm surge in the Pascagoula River and 

a lack of a state-of-the-art storm surge model, it becomes an excellent region to further 

investigate the development of a fully developed high-resolution numerical model. 
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CHAPTER 5: LiDAR DATA ACQUISITION 

5.1 LiDAR Requirements for Flood Modeling 

 Several requirements must be met when acquiring LiDAR for flood modeling studies.  In 

the U.S., these requirements are set forth by FEMA for Flood Hazard Maps as they are the most 

demanding for LiDAR data.  The requirements are published in Guidelines and Specifications 

for Flood Hazard Mapping Partners (FEMA, 2003). 

 In particular, section A.8 outlines the methods that must be followed when using LiDAR 

for flood modeling.  The post spacing, or ground sampling distance, should never exceed 5-m.  

DEM point spacing of 5-m or less (data dependent) must have a vertical accuracy of 1.2-ft (36.5-

cm) at a confidence level of 95-percent.  If data voids (areas within two times the DEM spacing) 

are present, several adjustments must be made pending the source of the void.  If the void is due 

to a system malfunction during LiDAR collection then a new flight must be completed.  Data 

voids resulting from thick vegetation require additional processing.  If the vegetation is thick 

mangrove or sawgrass, the void may be interpolated from surrounding areas that include 

mangrove or sawgrass.  In addition, if a void in dense vegetation is less than 1-acre similar 

interpolation methods may be undertaken.  If the void is larger than 1-acre, ground surveys may 

be required to fill in the missing data, unless otherwise decided by a FEMA Lead representative.  

Data voids caused by the removal of manmade structures in the creation of the bare earth dataset 

are acceptable. 
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 If artificial peaks or troughs (regions of anomalous elevations) are present in the DEM 

resulting from systematic errors, environmental conditions, or incomplete post-processing, the 

Mapping Partner should provide an analysis of the effects of the anomalies on DEM accuracy. 

 Outliers may be removed if they exceed three standard deviations of the localized region.  

Up to 10-percent of the worst performing outliers may be removed, however the FEMA Lead is 

capable of adjusting the percentage of outliers removed. 

 When used for flood modeling, the data should be delivered as high-resolution, high-

accuracy, bare earth ground elevation data.  When validating the vertical accuracy, a TIN linear 

interpolation should be used, not the DEM.  The TIN should be constructed using the bare earth 

points and breaklines. 

 The data must have a maximum RMSE of 18.5-cm (37-cm accuracy at the 95-percent 

confidence level) in flat terrain.  The vertical accuracy is defined as 1.96 times the RMSE of 

linearly interpolated elevation, compared to known elevations from high-accuracy test points, 

assuming a normal distribution: 

 1.96Z ZAccuracy RMSE= ×  5.1 

Vertical accuracy is defined as “the linear uncertainty value, such that the true or theoretical 

location of the points fall within ±  of that linear uncertainty value 95-percent of the time” 

(Appendix A, Section A.3) (FEMA, 2003).  The factor of 1.96 to convert RMSE to a 95-percent 

confidence level is found in Greenwalt and Shultz (1962).  The factor is based on observations of 

the normal distribution.  It is recommended that if the data does not follow a normal distribution 

that the 95th percentile be used and should be computed from the error dataset and not from the 

RMSE. 
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 Because accuracy of LiDAR may vary with changes in landcover type, the American 

Society for Photogrammetry and Remote Sensing (ASPRS) (ASPRS, 2004) and the National 

Digital Elevation Program (NDEP) (NDEP, 2004) guidelines advise different vertical accuracies 

for different landcover types: 

• Consolidated vertical accuracy (CVA): vertical accuracy for all land cover types 

combined 

• Fundamental vertical accuracy (FVA): vertical accuracy from checkpoints in the open 

terrain.  The accuracy in the open terrain is assumed to be optimal due to a lack of 

influence from vegetation and buildings.  Also, the errors are assumed to follow a normal 

distribution and all checkpoints should be used in the calculation of RMSEz and the 95th 

percentile is determined by multiplying the RMSEz by 1.96. 

• Supplemental vertical accuracy (SVA): vertical accuracy from landcover types other than 

open terrain, one or more landcover types may be combined.  The 95th percentile should 

be derived from the error distribution, since the error dataset does not always follow a 

normal distribution. 

5.2 LiDAR Source Data 

 The study domain is located in portions of Jackson, Hancock and Harrison Counties, 

Mississippi and western Mobile County, Alabama.  The domain is bounded by the 10-m 

elevation contour in the north, the Gulf of Mexico to the south, and the east and west boundaries 

taper from the 10-m contour to the shoreline (Figure 21).  The size and extent of the domain was 

established to study storm tide in the Pascagoula River and adjacent floodplain while allowing a 
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large enough inundation area for surge to fully propagate and not artificially build up along the 

boundary. 

 

Figure 21 Map of the floodplain boundary (blue + red).  The extent of the LiDAR 
coverage is represented by the red line.  Elevation data within the blue 
boundary was obtained from a previous FEM.  The counties are bounded by 
the black lines.  The background is NED (Gesch et al., 2002; Gesch, 2007) 
elevation data over Landsat satellite imagery (Goslee, 2011). 

 Three sources of LiDAR data were obtained for the study region by way of counties:  1) 

Hancock and Jackson Counties, Mississippi; 2) Harrison County, Mississippi; and 3) Mobile 

County, Alabama. 

 The LiDAR dataset for Mississippi was obtained through the Mississippi GIS 

Department.  Data acquisition and processing was performed by EarthData International.  This 
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data source covers approximately 477-mi2 in Hancock County and 727-mi2 in Jackson County, 

Mississippi, a full coverage of 1,204-mi2.  The data collected was obtained using the Lecia ALS-

50 LiDAR system along with an inertial measuring unit (IMU) and a frequency GPS receiver.  It 

is equipped with a 50-kHz thermal infrared laser that can measure ground point spacing of 1-m 

to 8-m.  Nominal 5-m post spacing was required for the LiDAR data per FEMA guidelines.  The 

data was acquired between February 25 and March 12, 2005.  The specifications of the ALS-50 

LiDAR system are listed in Table 1. 

 CheckDEM, a proprietary software program by EarthData International, was used to 

check a set of control points to the DEM to assess the accuracy of the LiDAR dataset.  The data 

acquisition process resulted in point cloud data, bare-earth data, and 3D hydro-breaklines.  Both 

LAS and ASCII files were delivered for the point cloud and bare earth data sets.  Using bare 

earth points a statistical assessment of Jackson and Hancock Counties resulted in an RMSE of 

7.5-and 4.4-cm, respectively (EarthData International, 2005a).  Based on Equation 5.1, the 

accuracy for Jackson and Hancock Counties is 14.7-cm and 8.6-cm, respectively.  Only the bare 

earth dataset was used in this research. 

 Data acquisition for Harrison County, Mississippi was also performed by EarthData 

International.  The data were collected using a Cessna 210 aircraft equipped with an LH System 

ALS40 LiDAR system and an IMU and dual frequency GPS receiver.  The specifications of the 

ALS-40 LiDAR system are listed in Table 2.  Collection of the data took place on March 8 and 

9, 2004 in three flights.  The raw data were filtered and above ground features were removed by 

EarthData International.  The data were delivered as LAS and ASCII files for both the point 
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cloud and bare earth LiDAR points along with 3D hydro-breaklines (EarthData International, 

2005c, 2005b). 

 Data acquisition for Mobile County, Alabama was performed by the U.S. Army Corps of 

Engineers through Southeast Digital Mapping, LLC.  The data collected between February 2 and 

February 8, 2002 (Southeast Digital Mapping, 2003).  Raw bare earth XYZ files were delivered. 

Table 1 Hancock & Jackson Counties LiDAR sensor parameters 

Sensor Collection Parameters 

Flying Height 3,657 m AMT 

Target Airspeed 150 knots 

Laser Pulse 29,900 Hz 

Field of View 45 Degrees 

Scan Rate 17 Hz 

Average Swath Width 3,100 m 

Post Spacing 5 m 
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Table 2 Harrision County LiDAR sensor parameters 

Sensor Collection Parameters 

Flying Height 3,383 m AMT 

Target Groundspeed 120 knots 

Laser Pulse 20,000 Hz 

Field of View 45 Degrees 

Scan Rate 11 Hz 

Average Swath Width 2,777 m 

Post Spacing 5 m 
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CHAPTER 6: TOPOGRAPHIC ERROR ASSESSMENT METHODOLOGY 

6.1 Selection of Test Sites 

 To assess the error of the bare earth topography in two typical coastal settings, urban and 

marsh, three test sites were selected in coastal Jackson County, Mississippi (Figure 22).  The 

methods presented are consistent, unless otherwise noted, for each of the three test sites.  The 

first test site covers a forested region and small urban development (Figure 23).  The second site 

is located in a marsh area found between the East and West Pascagoula inlet (Figure 24).  The 

third site is a developed, urban, area (Figure 25). 

 

 

Figure 22 Pascagoula River, MS with box insets representing accuracy testing sites 1, 2, 
and 3. 

1 
2 

3 
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Figure 23 Test Site 1 

 

Figure 24 Test Site 2 
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Figure 25 Test Site 3 

 For each test site, inner and outer boundaries were constructed.  The outer boundary is 

1120-m by 1120-m and the inner boundary is offset by 160-m, yielding an inner 800-m by 800-

m region.  The bare earth points were clipped to both the outer boundary and the inner boundary 

as well to the transition zone, the area in between the outer and inner boundary.  For the interior 

domain (i.e. area bounded by the inner boundary), the LiDAR points were randomly sub-divided 

into two datasets.  The first dataset, termed the training dataset, includes 90-percent of the points; 

the second, termed the test dataset, includes the remaining 10-percent.  Figure 26 presents an 

example of the training, test, and transition zone datasets.  The ratio of training to test points 

yields enough points to test the quality of the processed data without degrading the LiDAR data 

itself and provides enough samples for statistical calculations (Liu et al., 2007a; Bater & Coops, 

2009).  The training dataset was used to generate DEMs as well as the source elevations for 
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interpolation onto FEM nodes, whereas the test dataset was used to assess vertical errors in 

elevation.  Table 3 shows the number of LiDAR points for each test site and the average point 

spacing of training points within the interior domain (inner boundary). 

 

Figure 26 The boundary of the LiDAR coverage for the test sites.  The blue and red 
points indicate the training and test datasets, respectively.  The yellow points 
represent the transition area dataset. 

 It is important to note that this method was not intended to examine the geodetic accuracy 

of the collected bare earth LiDAR dataset.  The focus is on examining how interpolation 

functions as well as linear triangular elements and raster DEMs predict and/or represent the 
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vertical component of the source data.  This method is similar to that employed by Bater and 

Coops (2009). 

Table 3 LiDAR point statistics for test sites 

Test Site 
No. Name 

Outer 
Area 
(km2) 

Inner 
Area 
(km2) 

# Training 
Points 

# Test 
Points 

Average Point 
Spacing (m) 

1 Mixed 1.25 0.64 36,015 4,002 3.39 
2 Marsh 1.25 0.64 37,751 4,560 4.11 
3 Urban 1.25 0.64 34,465 3,829 4.61 

 

6.2 DEM and Finite Element Mesh Generation 

 Eight DEMs were produced for each test site.  All sites included DEMs at resolutions of 

160-m, 80-m, 40-m, 20-m, 10-m, 5-m, 2.5-m, and 1.25-m.  The source dataset for all DEMs was 

the training datasets, merged with the transition dataset.  ESRI ArcGIS 10 (ESRI, 2011a) was 

used to generate all DEMs.  The DEM generation method for each test site is similar to that of 

Medeiros et al. (2011) where the terrain dataset (TDS) within ArcGIS was utilized.  The TDS is 

further explained in Chapter 6.  Once the Terrain was generated, the Terrain to Raster tool in the 

3D Analyst Toolbox was used with a linear interpolation to convert the Terrain to a raster DEM. 

 Similar to that of the DEMs, eight structured FEMs were developed for each test site, at 

the same resolutions as the DEMs.  The mesh elements were chosen to be equilateral to best 

depict a regular interval and perfect triangulation for description of topography.  Equilateral 

elements are also the most numerically stable when used in finite element models (Hagen, 2001).  

The first mesh, 160-m in edge length, was refined, by successively splitting the edge length in 
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half, to 1.25-m in edge length.  Refinement splits the edge length in half, resulting in four sub-

elements as depicted in Figure 27. 

 

Figure 27 Refinement splits the element into four sub-elements and divides the edge 
length in half. 

 The source elevation data used to interpolate elevations onto the FEM nodes was the 

training dataset merged with the transition dataset, the 5-m DEM, and 10-m DEM.  All three 

were interpolated onto each FEM at each site test using the three interpolation methods in the 

software package SMS 10.1 (Aquaveo LLC, 2010).  The 5-m and 10-m raster DEM was 

interpolated onto the FEMs using cell area averaging schemes. 

6.3 Accuracy Analysis Statistics (RMSE) 

 Using all DEMs and FEMs for each test site, with elevations obtained via the training 

dataset, the test dataset points allowed for comparison of the accuracy between all representative 

surfaces.  For each DEM and FEM, vertical errors were computed for each point in the test 

dataset using the root mean square error (RMSE): 
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where Mz(x,y) is the measured (LiDAR) elevation, Iz(x,y) is the predicted (interpolated) elevation 

value at coordinate x,y, and N is the number of points in the test dataset.  RMSE is commonly 

used to measure the precision of DEMs derived from points using interpolation functions 

(Desmet, 1997; Shi, 2010).  In this instance, RMSE is a measure of the global accuracy in the 

disagreement between the interpolated value and the measured value.  Further, if the dataset is 

normally distributed, Accuracyz can be measured by Equation 5.1.  As stated previously, it is 

important to note that the elevation value, when compared to the DEMs, is that of the center of 

the DEM grid cell, while the test points are unlikely to occur at or near the center.  This results in 

some additional error when comparing the test points to the DEM surface (Bater & Coops, 

2009). 

6.4 Test for Normality 

 To report results in terms of Accuracyz, as previously discussed in section 4.1 (accuracy = 

1.96 times the RMSE for a 95-percent confidence interval), the errors are assumed to be 

normally distributed.  Measures of normality (skewness and kurtosis) and tests for normality 

(Kolmogorov-Smirnov test using Lilliefors significance correlation and Shapiro-Wilk test) 

(Shapiro & Wilk, 1965; Lilliefors, 1967) were used to determine if the elevation error follows a 

normal distribution.  Skewness is a measure of symmetry about the mean.  A skewness of 0 

represents a normal distribution (i.e. symmetrical distribution).  Kurtosis is a measure of the 

height and sharpness of the peak of the distribution in relation to the remaining data.  Higher 

values indicate a sharp, high peak; alternatively, lower values signify a smaller peak.  

Histograms and normal probability plots offer a visual test of normality.  Histograms visually 

illustrate a dataset’s distribution.  Normal probability plots, or normal Q-Q plots, are a visual 
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method to determine if the distribution of a dataset diverges from a theoretical normal 

distribution.  If the datasets distribution follows the theoretical normal distribution, then the 

dataset follows a normal distribution; however, if it deviates from the theoretical line, the 

distribution is a sign of non-normality. 

 Many works have shown that error distribution resulting from LiDAR-derived DEM 

error is a non-normal distribution, invalidating the typical accuracy equation used in digital 

terrain modeling (Oksanen & Sarjakoski, 2006; Aguilar & Mills, 2008; Zandbergen, 2008; 

Hasan et al., 2011; Zandbergen, 2011).  ASPRS (2004) Guidelines state (p. 3) that “for error that 

is not normally distributed, ASPRS recommends Accuracyz be determined by 95th percentile 

testing, not by use of Accuracyz=1.96*RMSE.”  This is only a recommendation; however, 

LiDAR is typically reported in terms of both RMSE and Accuracyz.  Further, RMSE does not 

differentiate between positive and negative elevation errors (i.e. RMSE is equal for the error and 

absolute value of the error). 

 Supplementary normality tests were conducted.  Several outliers in the two example 

datasets were removed to determine if outliers cause non-normality.  Zandbergen (2011) found 

that outliers significantly altered RMSE when ground truth elevations were compared to a bare 

earth LiDAR-derived TIN model, but the distributions still did not confirm normality.  He 

recommended employing an outlier removal method to trim the data by 1- to 5-percent prior to 

computing RMSEz.  For this study, outliers were defined as any value which had an absolute Z-

score of three or greater (p.42) (Mendenhall & Sincich, 2007).  The Z-score was computed by 

the following equation: 
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where zx∆  is the elevation error at the given point, zx∆ is the mean of all elevation errors in the 

test dataset, and zσ∆ is the standard deviation of all elevation errors in the test dataset. 

 Outliers accounted for 1.14-percent and 1.38-percent of the data points for Test Sites 2 

and 3, respectively.  The RMSEz (equal to the standard deviation of the errors) decreased 6.93-

cm and 0.46-cm for Test Sites 2 and 3, respectively.  The RMSEz decrease is significant for the 

larger element size, particularly when less than 2-percent of the data was removed. 

 Table 4 shows the results of the measures and tests for normality for two FEMs for Test 

Sites 2 and 3 with the full datasets and with outliers removed.  Both datasets yield a negative 

skewness value, indicating the majority of the distribution is concentrated to the right of the 

mean.  The kurtosis value for Test Site 2 is smaller because the peak is not as sharp as the peak 

for Test Site 3; however, both peaks are well beyond the crest of the normal distribution curve.  

Both the Lilliefors correlation and Shapiro-Wilk tests can be used to determine normality.  If the 

p-value (probability) is greater than 0.05, the dataset is normally distributed. 

 Both tests for both Test Site datasets yield a p-value of approximately 0.0, indicating a 

non-normal distribution.  The tests on the datasets with outliers removed show a closer match to 

a normal distribution, yet the datasets still do not qualify as normally distributed (p-values are 

still less than 0.05). 

 Figure 28 presents the error distribution in the 40-m FEM for Test Site 3 and in the 5-m 

FEM for Test Site 2 as a histogram and a normal probability plot.  Figure 29 shows the 

histogram and normal probability plot for the same datasets, except with outliers removed. The 
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histograms tend to follow a bell-shaped curve; however, many of the values are clustered about 

the mean providing a sharp peak in the data.  The data about the mean are too narrow and occur 

at too high of frequency to follow a normal distribution, with several data points near the tails.  

The normal probability plots further shows strong departure from a normal distribution.  Also, 

the Q-Q plots expose a sigmoid shape, further proving non-normality in the distribution, 

especially for the datasets with outliers included). 

 The results obtained complement those of Zandbergen (2011), which demonstrate the 

propagation of non-normality of elevation error from bare earth LiDAR to a FEM.  Since the 

data shown does not follow a normal distribution, the statistical measures used for vertical errors 

in elevation were RMSE and the 95th percentile. 

Table 4 Normality test results of error distribution 

FEM 
(Interpolation) 

   Lilliefors*  Shapiro-Wilk 
n points Skewness Kurtosis Statistic p-value  Statistic p-value 

40 m Test Site 3 
(49CA) 3,829 -3.48 33.55 0.1182 < 0.05  0.759 < 0.05 
5 m Test Site 2 
(BEL_NN) 4,560 -0.29 5.51 0.0489 < 0.05  0.9751 < 0.05 

Outliers Removed (Z-score > 3) 
40 m Test Site 3 
(49CA) 3,776 -0.18 4.42 0.0498 < 0.05  0.9826 < 0.05 
5 m Test Site 2 
(BEL_NN) 4,508 0.01 3.56 0.0373 < 0.05  0.9924 < 0.05 

* Kolmogorov-Smirnov test using Lilliefors significance correlation 
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Figure 28 Error distribution in the 40-m FEM (49 cell averaging) for Test Site 3 and in 
the 5-m FEM (training NN) for Test Site 2. 
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Figure 29 Error distribution in the 40-m FEM (49 cell averaging) for Test Site 3 and in 
the 5-m FEM (training NN) for Test Site 2 with outliers removed. 
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6.5 Accuracy Assessment Results 

 Elevation error was computed in terms of RMSE for vertical differences in interpolated 

values across the test dataset for the three test sites.  RMSE for each FEM and DEM at the 

locations of each test point in the test dataset are presented.  Table 5 presents the RMSE across 

all FEMs and DEMs that obtained elevations from the training dataset using a linear 

interpolation.  From this table, the DEMs generally contained larger error (up to 10-cm) when 

compared to the FEMs.  This is a consequence of the assumption that the elevation is constant 

across the raster DEM grid cell.  Higher resolution DEMs may perform better as a result of the 

test points occurring at decreased distances from the grid cell centers (Bater & Coops, 2009).  

Thus, linear elements have an advantage over raster grid cells, particularly due to the 3D nature 

of the polygonal faces that make up the surface. 

 Generally, both the FEMs and DEMs perform similarly at larger scales, 20-m and above, 

where larger differences occur at smaller element and raster grid cell sizes.  The greatest range in 

error occurs in Test Site 1, both in the FEM and DEM representations.  The wide range in error 

for this site is attributed to the wide range in groundcover, resulting in pockets of dense and 

sparse bare earth returns.  Test Site 1 is characterized by heavily forested regions, roadways, and 

urban areas.  LiDAR returns on the canopy in forested regions and on manmade structures are 

removed from the raw point cloud in the generation of the bare earth points, leaving artificial 

fissures in the bare earth dataset.  In a similar fashion, Test Site 3 includes more error than Test 

Site 2.  As expected, Test Site 2 has lower error in all sizes as it contains more bare earth LiDAR 

returns than the other two sites.  A significant difference in RMSE is found in Test Site 2 when 

comparing the FEMs to DEMs across the smaller scale.  A 5.7-cm difference occurs for the 1.25-
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m size.  The large error for the low raster grid cell sizes is likely a result of a lack of LiDAR 

returns on the water across the marsh.  Elevation error on the marsh is sensitive to the constant 

elevation across the DEM grid cells.  Further, the RMSE of Test Site 1 is between Test Site 2 

and 3 for element sizes of 10-m and below (Test Site 1 includes landcover types found in Test 

Sites 2 and 3).  However, this is not the case above 10-m in element size because the effect of 

small-scale variations in slope smoothes out the elevation. 

 The RMSE results for Test Sites 1, 2, and 3 signify that grid and element mesh resolution 

is a factor that can affect overall global error in elevation.  At Site Number 1, training-to-FEM 

RMSE is 9.4-cm for an element size of 5-m, relative to RMSE of 53.7-cm for element size of 

160-m.  In fact, elements sized at 160-m can result in as much as greater than five times the error 

of that associated with elements sized at or less than 5-m.  Note it is not uncommon to use 

elements sized at or greater than 160-m in shallow water modeling.  Generally, as the resolution 

increases, error decreases showing better fit to the source data. 

 A comparison of interpolating the 5 m DEM and 10 m DEM onto the FEMs is presented 

in Table 6 through Table 8, using a linear, IDW, and NN interpolation, for all test sites.  The 

meshes with elevations derived from the 5 meter DEM perform better than the meshes obtained 

from the 10 m DEM at element edge lengths of 20 m and less.  For scales larger than 20 m, both 

sets of meshes are generally comparable, resulting in similar RMSE.  This finding relates to the 

Shannon-Nyquist theorem presented earlier (Shannon, 1949).  Resampling the 10 m DEM to 

lower than half of its source data density, i.e. 5 m, does not yield increased accuracy.  This is 

shown by comparing all test sites and all FEM sizes at the 5 m resolution and lower when 

interpolating using the 10 m DEM, for all interpolation schemes. 
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Table 5 RMSE for all test sites with a linear interpolation of the training dataset onto 
the FEMs and DEMs 

  Training to FEM - 
RMSE (cm) 

Training to DEM –  
RMSE (cm) 

Size (m) Site 1 Site 2 Site 3 Site 1 Site 2 Site 3 

1.25 9.1 3.1 11.4 9.5 8.8 11.7 
2.5 9.1 3.9 11.5 9.9 8.9 11.8 
5 9.4 5.9 11.6 11.8 9.4 13.0 
10 12.3 8.7 13.8 16.7 10.7 16.2 
20 19.1 11.4 20.0 26.9 13.2 21.6 
40 29.9 14.1 27.1 39.9 16.1 31.4 
80 38.9 16.9 31.4 47.7 17.9 36.4 
160 53.7 18.7 50.7 62.3 20.9 41.5 

 

Table 6 RMSE for Test Site 1 using linear, IDW, and NN interpolation from the 5-m 
and 10-m DEM 

  5m DEM to Finite Element 
Mesh - RMSE (cm) 

10m DEM to Finite Element 
Mesh - RMSE (cm) 

Size (m) Linear IDW* NN Linear IDW* NN 
1.25 9.8 10.4 9.8 13.2 19.5 13.2 
2.5 9.8 10.1 9.8 13.2 14.1 13.1 
5 10.2 10.5 10.2 13.3 13.4 13.1 
10 12.4 12.5 12.4 14.4 14.6 14.2 
20 18.8 19.1 18.9 18.8 19.3 19.0 
40 29.6 29.8 29.7 29.4 29.6 29.4 
80 38.6 38.7 38.6 38.0 38.3 38.1 
160 53.5 53.3 53.4 53.0 53.2 53.0 

*Using three closest points 
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Table 7 RMSE for Test Site 2 using linear, IDW, and NN interpolation from the 5-m 
and 10-m DEM 

  5m DEM to Finite Element 
Mesh - RMSE (cm) 

10m DEM to Finite Element 
Mesh - RMSE (cm) 

Size (m) Linear IDW* NN Linear IDW* NN 
1.25 6.4 7.9 6.1 9.0 10.9 8.9 
2.5 6.5 7.8 6.2 9.0 10.7 9.0 
5 67.0 8.6 6.9 9.0 10.6 6.9 
10 8.5 9.3 8.6 9.4 11.2 9.3 
20 11.1 11.5 11.2 11.1 11.9 11.1 
40 13.8 14.0 13.9 13.6 13.9 13.7 
80 16.7 16.6 16.8 16.5 16.4 16.6 
160 18.7 19.0 19.0 18.5 18.7 18.7 

*Using three closest points 

Table 8 RMSE for Test Site 3 using linear, IDW, and NN interpolation from the 5-m 
and 10-m DEM 

  
5m DEM to Finite 

Element Mesh - RMSE 
(cm) 

10m DEM to Finite Element 
Mesh - RMSE (cm) 

Size (m) Linear IDW* NN Linear IDW* NN 
1.25 11.8 13.7 11.8 14.5   
2.5 11.8 14.1 11.8 14.5 17.0 14.1 
5 12.0 14.4 12.1 14.6 17.3 14.1 
10 14.0 15.3 14.1 15.2 18.6 15.1 
20 19.7 20.8 20.0 19.7 21.5 20.1 
40 26.7 27.3 26.9 26.5 25.7 26.8 
80 30.9 32.4 30.9 30.6 29.6 31.1 
160 49.0 52.7 50.1 48.4 42.2 50.1 

*Using three closest points 
 

 Figure 30 shows the 5-m FEM for Test Site 2 with cross-section A.  Figure 31 

graphically dictates the absolute error along cross-section A (difference between the FEM and 

test point elevation).  The blue boxes correspond to regions along the cross-section with the 
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largest absolute error, relating to the topographic slope in the FEM.  It is shown that a large 

variance in topographic slope increases the absolute vertical error.  Also, a larger element size 

increases the topographic slope, therefore increasing the error.  Figure 32 shows the elevation 

and absolution error for the 80-m FEM. 

  

Figure 30 5 m FEM for Test Site 2.  The black line represents cross-section A. 

A 
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Figure 31 Plot of (top) elevation (m) and (bottom) absolute elevation error (cm) at Test 
Site 2 for the 5-m FEM along cross-section A.  The blue boxes indicate the 
highest errors along the cross-section correlating with high topographic 
slopes. 
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Figure 32 Plot of (top) elevation (m) and (bottom) absolute elevation error (cm) at Test 
Site 2 for the 80-m FEM along cross-section A. 
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 Figure 33 through Figure 35 present the RMSE for all test sites using the 5-m DEM with 

cell area averaging techniques to obtain nodal elevations onto the FEM nodes.  For mesh sizes of 

10-m and below, the direct lookup performed best with the exception of Test Site 2, where the 9 

cell average performed better at the 10-m scale.  When the FEM size is larger than 10-m, more 

cells were required to contribute to the averaging scheme to obtain a lower RMSE.  However, if 

too many cells were used, the error increased.  The error increased because variations in 

topographic elevations averaged out (elevation smoothing). 

 It is interesting to note how the different interpolation methods and number of cells 

contributing to the average affect the topographic error of the FEMs.  An increase of up to 20-cm 

RMSE was found if a 169 cell average was used versus a linear interpolation for a mesh size of 

1.25-m.  However, as mesh size increased, the overall RMSE difference between the 

interpolation techniques decreased, resulting in a few centimeters in increased error. 

 Since the data does not follow a normal distribution, the 95th and 5th percentile was 

computed in order to assess the accuracy of each FEM interpolated from the training-derived 5-

m DEM (Table 9 through Table 11). The 95th percentile follows a similar trend as RMSE with 

respect to element size.  Smaller elements produced higher accuracy with smaller cell averages.  

As the element size increased, more neighboring cells were needed to produce higher accuracy.  

However, if too many cells were used, accuracy decreased (Figure 36 through Figure 38).  

Additionally, the Shannon-Nyquist theorem (Shannon, 1949) is verified when using the 95th 

percentile as a means for assessing topographic accuracy.  The accuracy in the 1.25-m mesh does 

not offer any significant decrease in error.  In fact, the accuracy decreases as the mesh size 

decreases in some instances. 
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Figure 33 RMSE (cm) for Test Site 1 using area averaging from the 5-m DEM 

 

Figure 34 RMSE (cm) for Test Site 2 using area averaging from the 5-m DEM 
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Figure 35 RMSE (cm) for Test Site 3 using area averaging from the 5-m DEM 
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Table 9 95th and 5th percentiles of elevation errors for Test Site 1 using the 5-m DEM 

Size 
(m) 

Direct 
Lookup 

9 Cell 
Average (cm) 

25 Cell 
Average (cm) 

49 Cell 
Average (cm) 

81 Cell 
Average (cm) 

121 Cell 
Average (cm) 

169 Cell 
Average (cm) 

95th 5th 95th 5th 95th 5th 95th 5th 95th 5th 95th 5th 95th 5th 
1.25 23.44 0.54 29.49 0.56 38.41 0.64 47.20 0.79 54.09 0.90 60.65 0.99 65.59 1.02 
2.5 23.34 0.56 29.25 0.62 38.33 0.58 47.31 0.80 53.58 0.90 59.26 0.99 65.38 1.05 
5 28.51 0.57 32.76 0.63 40.30 0.73 48.77 0.82 55.47 0.91 61.76 1.02 66.37 1.05 
10 38.19 0.68 38.95 0.74 43.88 0.80 51.05 0.82 56.68 0.89 61.62 0.92 65.90 7.07 
20 45.09 0.78 45.37 0.83 47.76 0.88 52.46 0.93 56.96 0.90 62.01 0.92 65.64 1.06 
40 64.70 0.97 62.41 0.84 60.21 0.91 60.53 0.95 61.31 1.01 66.80 0.96 69.18 1.01 
80 89.72 1.05 84.68 1.12 83.88 1.02 83.48 1.22 84.28 1.21 80.72 1.13 80.27 1.21 

160 102.45 1.43 99.21 1.06 96.85 1.21 95.63 1.11 94.24 1.07 93.22 1.13 92.17 1.22 
 

Table 10 95th and 5th percentiles of elevation errors for Test Site 2 using the 5-m DEM 

Size 
(m) 

Direct 
Lookup 

9 Cell 
Average (cm) 

25 Cell 
Average (cm) 

49 Cell 
Average (cm) 

81 Cell 
Average (cm) 

121 Cell 
Average (cm) 

169 Cell 
Average (cm) 

95th 5th 95th 5th 95th 5th 95th  95th 5th 95th 5th 95th 5th 
1.25 14.47 0.36 18.43 0.50 21.20 0.57 22.78 0.61 23.99 0.71 25.30 0.78 26.17 0.78 
2.5 15.45 0.37 18.65 0.50 21.05 0.55 22.73 0.58 24.15 0.64 25.36 0.73 26.27 0.77 
5 18.50 0.46 19.19 0.49 21.35 0.52 22.71 0.54 24.04 0.64 25.06 0.69 26.08 0.76 
10 21.90 0.48 21.21 0.50 22.11 0.57 23.41 0.61 24.74 0.68 25.54 0.73 26.50 0.78 
20 24.26 0.63 22.58 0.60 22.89 0.65 23.86 0.61 24.87 0.76 25.71 0.73 26.41 0.75 
40 29.51 0.74 27.04 0.71 25.90 0.70 25.78 0.75 25.76 0.81 26.01 0.81 26.49 0.87 
80 33.90 0.89 31.45 0.92 29.81 0.91 29.55 0.92 28.89 0.92 28.47 0.84 28.23 0.84 

160 39.43 0.97 34.51 1.06 32.66 0.97 32.09 1.06 31.90 1.01 31.51 1.01 31.31 1.01 
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Table 11 95th and 5th percentiles of elevation errors for Test Site 3 using the 5-m DEM 

Size 
(m) 

Direct 
Lookup 

9 Cell 
Average (cm) 

25 Cell 
Average (cm) 

49 Cell 
Average (cm) 

81 Cell 
Average (cm) 

121 Cell 
Average (cm) 

169 Cell 
Average (cm) 

95th 5th 95th 5th 95th 5th 95th 5th 95th 5th 95th 5th 95th 5th 
1.25 20.39 0.46 23.48 0.54 28.69 0.57 33.49 0.68 36.09 0.79 38.39 0.90 39.24 0.93 
2.5 19.69 0.43 22.91 0.55 28.76 0.57 33.08 0.69 35.99 0.76 37.91 0.86 39.27 0.92 
5 20.73 0.47 23.36 0.58 29.15 0.56 32.87 0.67 36.14 0.79 37.88 0.81 39.20 0.94 
10 22.81 0.47 24.34 0.51 29.04 0.59 33.41 0.69 35.89 0.80 38.25 0.87 39.53 0.93 
20 30.40 0.59 28.58 0.55 30.48 0.67 33.90 0.78 35.36 0.86 38.29 0.88 39.33 0.93 
40 45.54 0.86 42.95 0.76 39.56 0.71 38.15 0.90 37.45 0.89 38.28 0.89 39.29 0.90 
80 54.30 1.14 50.64 1.11 48.45 1.12 47.17 1.12 45.55 1.04 44.68 0.97 44.59 0.97 

160 123.77 1.72 96.52 1.78 78.91 1.66 72.08 1.37 68.67 1.28 65.57 1.51 64.51 1.33 
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Figure 36 95th percentile for Test Site 1 using area averaging from the 5-m DEM 

 

Figure 37 95th percentile for Test Site 2 using area averaging from the 5-m DEM 
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Figure 38 95th percentile for Test Site 3 using area averaging from the 5-m DEM 

6.6 Louisiana Test Sites 

 In order to appreciate the methods presented and results obtained from the error analysis, 

two additional test sites were chosen in a similar coastal setting; southeastern Louisiana near the 

Lower 9th Ward and the Mississippi River (Figure 39).  Figure 40 and Figure 41 show the urban 

and marsh area test sites, respectively. 

 Processed bare earth LiDAR was obtained from the Louisiana State Atlas LiDAR project 

(Louisiana State University, 2009).  The LiDAR report stated an RMSE of 11.064-cm when 

referenced to 120 survey locations for the entire LiDAR coverage area (Watershed Concepts, 

2004). 

 The Louisiana Urban Test Site has an 1120-m by 1120-m outer boundary and an inner 

offset of 160-m.  The second test site, the marsh area, has an outer boundary of 500-m by 500-m 



79 
 

with an interior boundary offset by 50-m.  This site is smaller because three sides are bounded by 

water features where LiDAR points have been removed to solely represent the bare earth terrain.  

The methods and computations are similar to that of the previous test sites in southern 

Mississippi. 

 

 

Figure 39 Southern Louisiana test site locations outlined in red. 
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Figure 40 Louisiana Urban Test Site with the outer and inner boundary in black 

 

Figure 41 Louisiana Marsh Test Site with the outer and inner boundary in black 
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 Elevation error was computed in terms of RMSE equivalent to the Pascagoula test sites.  

Table 12 presents the RMSE across all FEMs and DEMs that obtained elevations from the 

training dataset using a linear interpolation.  The Marsh Test Site is limited to a maximum of 20-

m due to its boundary size and that it’s bordered by water; elements larger than 20-m would 

yield erroneous results.  Similar to the results shown in Table 5 for the Pascagoula test sites, the 

DEMs contain more topographic error compared to the FEMs at the same scale.  The higher 

resolution DEMs tend to perform better than the lower resolution DEMs.  Also, the training 

dataset to DEM error reaches a minimum at a grid size of 2.5-m and the error slightly increases 

with a grid size of 1.25-m, for the Marsh Test Site, hence decreasing the grid size does not 

always decrease the error.   Similarly, for the Urban Test Site, the error is not significantly 

decreased when the mesh or DEM size is less than 2.5-m.  This finding follows the Shannon-

Nyquist theorem (Shannon, 1949).  Since the bare earth LiDARs point spacing is about 5-m, 

decreasing the sampling size to less than half the 5-m source data density (2.5-m) tends to no 

longer decrease the error.  Results obtained in Table 12 show that DEM grid and element size 

can significantly alter the topographic accuracy.  Errors range from 6.3-cm to 19.5-cm for the 

Urban Test Site, a difference of almost 0.5-ft. 
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Table 12 RMSE for all both test sites with a linear interpolation of the training dataset 
onto the finite element meshes and DEMs 

 
Training to FEM - 

RMSE (cm) 
Training to DEM - 

RMSE (cm) 
Size 
(m) Urban Marsh Urban Marsh 

1.25 6.3 10.7 6.5 10.9 
2.5 6.3 10.7 6.8 10.6 
5 6.7 10.8 7.7 11.6 
10 8.3 11.4 10.1 12.2 
20 11.4 14.2 13.0 16.9 
40 14.6 - 16.6 - 
80 16.8 - 20.6 - 
160 19.5 - 23.0 - 

 

 Comparing interpolation of the 5-m DEM and 10-m DEM to each of the FEMs is shown 

in Table 13 and Table 14 for a linear, IDW, and NN interpolation.  For each mesh size and test 

site, errors were less for the 5-m DEM as the source elevation rather than the 10-m DEM.  Error 

differences are larger for the smaller mesh sizes (around 2-cm) and less at element sizes of 20-m 

and larger.  It was expected that meshes with element sizes of 20-m and larger would perform 

similarly, as found for the Pascagoula test sites, and it follows the Shannon-Nyquist theorem 

(Shannon, 1949). 
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Table 13 RMSE for the Urban Test Site using linear, IDW, and NN interpolation from 
the 5-m and 10-m DEM 

  5m DEM to FEM- 
RMSE (cm) 

10m DEM to FEM - 
RMSE (cm) 

Size 
(m) Linear IDW* NN Linear IDW* NN 

1.25 6.9 8.2 6.8 8.8 9.1 8.6 
2.5 6.9 8.2 6.9 8.9 8.9 8.6 
5 7.1 8.6 7.1 8.9 8.8 8.6 
10 8.3 9.1 8.3 9.1 9.2 9.0 
20 11.2 11.6 11.3 11.2 11.4 11.3 
40 14.4 14.7 14.4 14.1 14.3 14.2 
80 16.7 16.9 16.7 16.5 16.7 16.5 
160 19.6 19.7 19.6 19.5 19.9 19.6 

*Using three closest points 
 

Table 14 RMSE for the Marsh Test Site using linear, IDW, and NN interpolation from 
the 5-m and 10-m DEM 

  5m DEM to FEM- 
RMSE (cm) 

10m DEM to FEM - 
RMSE (cm) 

Size 
(m) Linear IDW* NN Linear IDW* NN 

1.25 10.9 11.1 10.8 11.7 12.1 11.6 
2.5 10.9 11.4 10.8 11.7 11.9 11.6 
5 11.0 12.0 10.9 11.7 11.8 11.6 
10 11.3 11.9 11.2 11.9 11.9 11.9 
20 13.9 14.2 13.9 13.4 13.8 13.6 

*Using three closest points 
 

 Figure 42 and Figure 43 present RMSE for the Urban and Marsh Test Sites using the 5-m 

DEM with direct lookup and area averaging methods to interpolate nodal elevation for the FEM.  

For mesh sizes of 1.25-m and 2.5-m, direct lookup performed best for the urban area and 1.25-m 
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to 5-m for the marsh area.  For both Test Sites, as the mesh elements became large, topographic 

error was reduced when more DEM grid cells were included in the averaging scheme; however, 

if too many grid cells were used, the error began to increase.  As expected, accuracy in the marsh 

area tends to improve when using less DEM grid cells than the urban area.  The marsh 

topography is relatively uniform with minimal gaps in data since it does not contain manmade 

features like the urban test site. 

 

Figure 42 RMSE (cm) for the Urban Test Site using area averaging from the 5-m DEM 
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Figure 43 RMSE (cm) for the Mash Test Site using area averaging from the 5-m DEM 

6.7 Preliminary Conclusions 

 The first finding is that vertical errors in elevation do not follow a normal distribution.  

Careful consideration should be excercised when reporting vertical accuracy as related 

specifically to RMSEz.  The results obtained during this preliminary error assessment confirm 

the validity of using a DEM as an elevation source for a FEM, as current practice dictates.  

Software tools popular in geospatial analysis such as ESRI ArcGIS (ESRI, 2011a) and Global 

Mapper (Blue Marble Geographics, 2011) are fine tuned for working with raster DEM products 

rather than irregular spaced points.  Secondly, the results demonstrate that the Shannon-Nyquist 

theorem (Shannon, 1949) holds true for terrain grid resolution.  It is shown that having a DEM or 

FEM size less than half that of the data density yields no significant decrease in RMSE.  Also, 

DEM size can be related to element size.  Results show that if an element size is 20 -m, a 10-m 
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DEM should suffice, rather than using the bare earth or a higher resolution DEM as the elevation 

source, in terms of topographic error.  Careful consideration should be exercised when choosing 

a DEM grid size or FEM size with respect to the data capacity and computational resources 

available. 

 Between three interpolating routines (linear, IDW, and NN) as well as DEM direct 

lookup and cell averaging, cell averaging generally performed better than the other methods, for 

element sizes larger than 20-m.  With respect to only the interpolation methods, linear and NN 

performed best, with IDW resulting in increased error when non bare earth features are removed.  

Linear is preferred over NN due to its simple parameterization and efficient algorithm.  Linear 

interpolation also performs faster than IDW.  In all, cell averaging is the method of choice when 

element edge lengths are larger than 20-m.  As well, cell averaging performs faster than linear, 

IDW, and NN. 

 Chapter 9 will use the methodology presented on three large regions of coastal 

Mississippi to compare topographic and hydrodynamic error. 
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CHAPTER 7: DEM DEVELOPMENT 

7.1 Terrain Dataset 

 ESRI ArcGIS 10.0 (ESRI, 2011a) was the software program utilized to develop all 

DEMs.  The methods outlined are similar to those employed by Medeiros et al. (2011) wherein a 

terrain dataset (TDS) within ArcGIS was utilized.  A TDS is a multiresolution, TIN-based 

surface constructed from surface measurements that are stored in a geodatabase.  The 

measurements are usually LiDAR, sonar and other photogrammetric sources.  TDS are stored in 

a feature dataset within a personal or file geodatabse, or Spatial Database Engine (SDE).  Not 

only can surface point measurements be stored and used, but other feature classes can be 

incorporated into the TDS such as polyline and polygon shapefiles (i.e. breaklines).  The rules of 

the TDS dictate how features within the feature dataset are used in the terrain.  The advantage of 

the TDS is how it stores data.  It does not actually store surfaces as a raster or TIN, it references 

feature classes stored in a geodatabase for faster data retrieval and TIN surface derivation on the 

fly (ESRI, 2011b).  Another advantage of the TDS over other methods is the storage capability of 

geodatabases.  Since a typical 465-m2 (5000-ft2) of LiDAR point cloud data can contain roughly 

1.1 million points (Coggin, 2008), data management and size limitation become an issue when 

working with large areas.  Feature datasets have the ability to store multipoint shapefiles for use 

in a TDS.  An ESRI multipoint shapefile is a geometry type that can represent thousands of 

points that are grouped into one individual shape.  Therefore a few thousands records can store 

millions of points using the multipoint feature class.  Since a file geodatabse (fGDB) can store a 
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TDS of up to one terabyte (TB), it is convenient to employ a TDS when working with high-

density LiDAR data (Medeiros et al., 2011).  One other capability of a TDS is the “TDS to 

Raster” function.  A TDS can be converted to a raster, in which a grid cell size and interpolation 

method (linear or natural neighbor) is specified (ESRI, 2011b). 

The procedure for creating a topographic DEM is similar to that of Medeiros et al. (2011), 

except that it is updated for ArcGIS 10.0 and slightly modified for this study: 

1. Create a fGDB and a feature dataset. 

2. Use the Point File Information tool in the 3D Analyst Toolbox to create a point file 

feature class for the LiDAR dataset.  This provides information on the dataset such as 

point spacing and total number of points.  The point spacing is needed in the next step. 

3. Convert bare earth text (*.txt) (LiDAR) data to a multipoint feature class using the ASCII 

3D to Feature class tool in the 3D Analyst Toolbox.  During this process, a Z Factor of 

0.3048 was specified to convert elevations units of feet to meters. 

4. Convert all multipoint features classes to a common horizontal datum.  For this study 

UTM Zone 16N was used. 

5. Remove (clip) all LiDAR points and other feature class data that do not fall within the 

project boundary.  This includes LiDAR points that fall inside the bathymetric dataset 

(i.e. rivers, lakes and bays) and points that lie outside the area of interest. 

6. Import the clipped multipoint feature class into the feature dataset. 

7. Import any additional feature classes such as breaklines and the project boundary polygon 

into the feature dataset.  Note:  All feature classes imported into the feature dataset must 

be projected to the same coordinate system. 
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8. Build the TDS within the feature dataset.  The parameters used are in Table 15.  A 

window size with a point selection method of Z Minimum was used for pyramid 

generation and the default pyramid values computed by ArcGIS 10.0 were employed. 

9. The Terrain to Raster tool in the 3D Analyst Toolbox was used to convert the terrain to a 

raster.  A required input parameter is the size of the raster grid cells and interpolation 

scheme.  A linear interpolation was used. 

Table 15 Parameters used during generation of the Terrain (ESRI, 2011a; Medeiros et 
al., 2011) 

Feature Class Height Source Surface Feature Type (SFType) 

LiDAR Points Shape Mass points 
(data source containing elevations of points) 

Hydro 3D Breaklines Shape 

Hard Line 
(place a TIN triangle edge along the line and 
defines an interruptions in slope or surface 

smoothness) 

Model Boundary Polygon Shape 

Hard Clip 
(Similar to hard line, except triangulation 

stops and does not continue on the other side 
of the line) 

 

7.2 Test and Training Data 

 In order to fully evaluate the accuracy of the DEMs, two sub-datasets were derived from 

the each equilateral test regions’ bare earth LiDAR dataset, training and test dataset (Desmet, 

1997; Chaplot et al., 2006; Bater & Coops, 2009).  This was done using the ‘Subset Features’ 

tool in the ArcGIS Geostatistical Analyst Toolbox wherein the training dataset was produced by 

randomly selecting 90-percent of the LiDAR points with the test dataset consisting of the 
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remaining 10-percent.  This was done for the purpose of assessing the quality of the DEM 

without destroying the reliability of the LiDAR data itself.  In general, the TDS was built from 

the training dataset, completely withholding the test points.  This process is not intended to 

examine the actual precision of the terrain represented by the LiDAR and DEM surface, but 

rather to validate the tools and parameters (interpolation scheme and grid size) used to predict 

elevations at unknown locations (Bater & Coops, 2009). 

7.3 Raster DEM Generation 

 Seven grid sizes of 1.25-m, 2.5-m, 5-m, 10-m, 20-m, 40-m and 80-m were generated for 

each region.  Two of the grid sizes were determined based on the point density of the raw, bare 

earth LiDAR, 5-m and 2.5-m.  The minimum point spacing for all LiDAR tiles is 3.5-m (~11.5-

ft).  The average post spacing for all LiDAR tiles is ~5.2-m (~17-ft).  General rules of thumb 

deem a DEM with grid size less than that of the original source data density is insufficient 

(McCullagh, 1988; Florinksy, 1998, 2002; Liu et al., 2008); however, a DEM raster cell size of 

2.5-m and 1.25-m is used to test this rule based on the Shannon-Nyquist theorem (Shannon, 

1949; Hengl, 2006).  Other cell sizes were tested alongside 1.25-m, 2.5-m, and 5-m to evaluate 

how the larger DEM grid cell sizes compared to the lower magnitude cell sizes. 

7.4 Results of LiDAR DEM Generation 

 Using the methodology described in the previous section, a total of 21 land-only DEMS 

were produced, seven for each equilateral region, from the training dataset.  The boundary of the 

training equilateral region is described in the following chapter.  Figure 44 through Figure 47 

present each DEM from a grid cell size of 1.25-m to 80-m resolution.  It is clear that as the grid 
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size is increased, the quality of the DEM, in terms of visual appearance, degrades.  Elevations 

become smoothed and pixilation starts to appear, especially with the 40-m and 80-m DEMs. 

 

Figure 44 A) 1.25-m training dataset-derived DEM                                                               
B) 2.5-m training dataset-derived DEM 

A 

B 
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Figure 45 A) 5-m training dataset-derived DEM B) 10 m training dataset-derived DEM 

A 

B 



93 
 

 

Figure 46 A) 20-m training dataset-derived DEM                                                               
B) 40-m training dataset-derived DEM 

A 

B 
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Figure 47 80-m training dataset-derived DEM 

 Vertical error between the training-derived DEMs and the test dataset was assessed in 

terms of RMSE (see Equation 6.1).  Table 16 presents the RMSE for each equilateral region 

training-derived DEM when compared to the test point dataset.  As expected, RMSE increases 

with DEM size.  Also, the Shannon-Nyquist theorem (Shannon, 1949) is further validated for use 

with  terrain datasets.  When the grid size is decreased from 5-m to 2.5-m, RMSE is reduced by 

1.5-cm, 0.6-cm, and 1.9-cm, for the left, center, and right zones, respectively.  Further reducing 

from 2.5-m to 1.25-m in cell size yields RMSE of 0.4-cm, 0.2-cm, and 0.6-cm, for the left, 

center, and right zones, respectively.  RMSE does not significantly reduce when decreasing the 

DEM size to lower than of half the source data density, ~5-m.  Further, the scale of RMSE 

compares well to the results obtained in Chapter 5 with respect to the RMSE in the DEMS for 

Pascagoula Test Sites One, Two, and Three (Table 5).  The left and right equilateral zones 
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contain a mix of urban, marsh, and forested regions whereas the center region is exclusively 

marsh area.  For example, Pascagoula Test Site One was characterized by urban and forested 

regions and yielded an RMSE of 9.9-cm for a grid size of 2.5-m.  The left and right Zones with a 

grid size of 2.5-m contain an RMSE of 10.6-cm and 11.1-cm, respectively.  These values 

complement the RMSE yielded in the Pascagoula Test Sites.  Pascagoula Test Site Two, the 

marsh area, had an RMSE of 8.9-cm with a grid size of 2.5-cm.  The center zone is exclusively 

marsh and contains an RMSE of 8.9-cm for a grid size of 2.5-m.  Again, this matches well with 

the preliminary Pascagoula Test Sites.  This trend continues for all grid sizes. 

Table 16 RMSE of each training-derived DEM when compared to the test points 

Size (m) Left Zone DEM 
RMSE (cm) 

Center Zone 
DEM RMSE (cm) 

Right Zone DEM 
RMSE (cm) 

1.25 10.2 8.7 10.5 
2.5 10.6 8.9 11.1 
5 12.1 9.5 13.0 
10 16.3 11.3 18.4 
20 24.4 14.0 29.2 
40 38.6 17.3 44.4 
80 59.7 20.5 66.4 

 

7.5 Seamless Pascagoula Floodplain DEM Generation 

 With an average minimum element size in the in-bank Pascagoula model of ~10-m 

(presented in Chapter 8) and with the DEM RMSE results presented in Table 16, a 5-m DEM 

was created using 100-percent of the bare earth LiDAR points for the entire study area (refer 

Figure 21) using the methods presented in section 7.1.  Breakline data was also incorporated.  

The topographic DEM was then merged with the bathymetric dataset.  Figure 49 through Figure 

53 present the seamless bathymetric/topographic 5-m DEM of the Pascagoula study region. 
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Figure 48 Seamless 5-m DEM of study including offshore bathymetry.  The blue line is the mesh boundary.  
Elevations beyond the mesh boundary are obtained from the NED 1-arc-second DEM (Gesch et al., 2002; 
Gesch, 2007). 
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Figure 49 Inset boxes for zooms of the 5-m DEM found in Figure 50 through Figure 53. 

 

 

 

Figure 50 

Figure 51 

Figure 52 Figure 53 
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Figure 50 5-m DEM near the upper Escatawpa River 
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Figure 51 5-m DEM near the East Pascagoula Inlet and Port of Pascagoula with floodplain boundary (blue line). 
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Figure 52 5-m DEM near the West Pascagoula Inlet and Graveline Bay with the floodplain mesh boundary (blue 
line). 
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Figure 53 5-m DEM near Gulfport Mississippi.  The blue line is the floodplain mesh boundary.  Elevation beyond 
the blue line is from the NED 1-arc-second DEM (Gesch et al., 2002; Gesch, 2007).
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CHAPTER 8: FINITE ELEMENT MESH DEVELOPMENT 

 To accurately simulate water levels and currents due to astronomic tides and hurricane 

winds a hydrodynamic numerical model must include proper geometric description and be large 

enough in geographic extent to incorporate the associated boundary conditions and circumvent 

unrealistic boundary effects. A large domain approach allows boundary conditions to reside in 

the deep ocean and for the storm’s natural propagation from the deep ocean onto the continental 

shelf and floodplain to occur entirely within the model domain (Blain et al., 1994; Dietrich et al., 

2011; Kennedy et al., 2011).  The domain herein is discretized using triangular finite elements.  

Large elements are placed in the deep ocean where small scale dynamics are minor and small 

elements are placed near the continental shelf and coastline, in bays and rivers as well as in the 

adjacent floodplain where small scale dynamics are essential toward obtaining accurate results 

(Hagen et al., 2000; Hagen, 2001; Hagen et al., 2001; Hagen & Parrish, 2004; Roberts, 2004; 

Westerink et al., 2004; Hagen et al., 2006; Coggin, 2011; Salisbury et al., 2011). 

 The development of each FEM used in this study is presented here.  The chapter is 

broken into two main sections.  The first section describes the development of the in-bank (water 

only) mesh.  The second section describes the development of the floodplain mesh and the 

modifications of the mesh that were made to test hydrodynamic accuracy. 

This study is not intended to validate a numerical model for tides and storm surge; rather the 

following chapter describes a physical application to test the affect topography has on maximum 

water levels from tides and hurricane winds and pressures. 
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8.1 In-Bank Mesh Development 

 The interconnectedness of the coastal system including the open ocean, bays, rivers, 

intertidal zones, marshes, and overland areas play a major role in the behavior of hydrodynamics 

in the Pascagoula region (Takahashi, 2008; Wang, 2008).  This interconnectedness presents 

many complexities to the modeler desiring to simulate hydrodynamics within the Pascagoula 

region.  Therefore, it is essential to initially simplify the problem. 

 First, two-water only meshes were developed to simulate astronomical tides for the lower 

Pascagoula River, as described in the following section.  Constructing an in-bank mesh 

simplifies the mesh generation process in several ways.  Discretizing (i.e. meshing) the water 

bodies allows proper mesh transitioning techniques to be applied from the deep ocean to the 

shoreline, which is important for tides and storm surge (Hagen et al., 2006).  Since a majority of 

the high-resolution is near or at the coastline, accurate placement and dimensioning is essential.  

Additionally, the coastline is typically represented as the zero-elevation contour, allowing 

element edges to align with an accurate contour elevation.  It has been proven ,within the 

ADCIRC model (Luettich et al., 1992), that more accurate results are found when element edges 

are aligned with elevation contours (Roberts, 2004; Coggin, 2008). 

 Second and most importantly, resolution in the adjacent floodplain is largely dependent 

on the resolution in the water areas.  Channels and inlets must be properly discretized since they 

convey the majority of the flow and have steep bathymetric gradients.  Therefore water areas 

tend to have the most resolution (Roberts, 2004). 
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8.1.1 Digitization of Model Boundary 

 The first step was digitization of the shoreline boundary.  The shoreline boundary 

includes the open ocean shoreline, islands, river banks and other waterways.  The digitization 

was done with the aid of aerial photography, 5-m LiDAR-derived DEM, and LiDAR-derived 

breaklines.  When river boundaries were found along heavy forestation it became difficult to 

locate the shoreline because of the tree canopies.  In this case, the DEM was used to delineate the 

boundary between water and land.  At this point, only river banks were digitized and many of the 

marsh areas within the East and West inlet were avoided since they are not constantly wetted.  

These areas are reserved for inclusion in the floodplain mesh. 

 The next step, after the boundary was digitized, was to determine the extent at which to 

cut the existing Western North Atlantic Tidal (WNAT) model domain (Hagen et al., 2006) 

(Figure 54 and Figure 55).  Note that the WNAT mesh was used as the base mesh, to which the 

high-detailed Pascagoula region is appended, to provide proper boundary forcing at the open 

ocean boundary as well as include a large enough domain to capture the full extent of 

meteorological forcings (Blain et al., 1994; Kennedy et al., 2011).  The WNAT mesh, or 53K 

mesh (Hagen et al., 2006), contains approximately 53,000 nodes, and spans the western North 

Atlantic Ocean, Caribbean Sea and Gulf of Mexico. The open ocean boundary extends the 60⁰ 

west meridian from Glace Bay, Nova Scotia, to the vicinity of Corocora Island in eastern 

Venezuela.  The location of the incision in the 53K mesh is important to provide suitable element 

transition from the large deep ocean elements (order of 100-km) to the smaller elements located 

in the Pascagoula Bay and riverine network (order of 10-m) (Figure 56).  The final digitized 
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boundary containing the river banks, islands, and off-shore boundary is represented by a series of 

polylines and polygons in Figure 57. 

 

Figure 54 53K mesh (Hagen et al., 2006) 
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Figure 55 53K mesh bathymetry (Hagen et al., 2006) 
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Figure 56 Location of the incision on the 53K mesh 
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Figure 57 Final digitized boundary excluding islands 

8.1.2 Triangulation 

 The next step was to triangulate within the digitized boundary.  For this, the paving 

algorithm in the Surface-water Modeling System (SMS) computer program (Aquaveo LLC, 

2010) was used.  Two different versions of in-bank meshes (differing in mesh resolution) were 

constructed to determine if mesh element size in the river was sensitive to astronomic tides. In-

bank mesh number 1 is at relatively lower resolution and the other, in-bank mesh number 2, is at 

a relatively higher resolution.  For the first in-bank mesh (in-bank mesh number 1), one central 

rule was followed throughout the meshing procedure; that a minimum of three elements had to 
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span across a channel.  This enables a description of the channel’s geometry, for the worst cases, 

depicting a trapezoidal cross-section (Figure 58).  The second in-bank mesh includes higher 

resolution that the aforementioned mesh.  Throughout much of the river, elements were about 

10-m in edge length. 

 For both in-bank meshes high-resolution was acceptable not only in the Pascagoula River 

and Bay, but also around dredged shipping channels, near the Mississippi River, and along the 

numerous barrier islands surrounding the area.  Once paving was complete, manual adjustments 

were made to remove nodes that contained four (kites) or eight (pinwheels) or more elements.  

These areas are known to potentially cause numerical instabilities.  Additionally, alterations were 

made to present a visually appealing triangulation to provide proper element transition in terms 

of elemental area as well as removing elements that contain small interior angles.  Numerical 

instabilities may also arise if the elements’ surface areas change too rapidly in space. 

 

Figure 58 Three elements across the channel representing a trapezoidal cross-section 
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   Figure 59 shows the difference between the relatively low- and high-resolution in-bank 

FEM for a portion of the West Pascagoula inlet.  The first in-bank mesh consists of 346,269 

nodes and 661,515 elements (Figure 60). With the utilization of the unstructured FEM, the 

largest elements are 143-km and the smallest elements are 8-m in edge length.  In the Pascagoula 

River, element sizes range between 75-m to 8-m in side length.  A detailed image of the mesh 

can be found in Figure 61. 

 The second in-bank mesh (in-bank mesh number 2) consists of 695,588 nodes and 

1,342,642 elements.  In-bank mesh number 2 includes much higher resolution in the river than 

the previous mesh.  Within the Pascagoula River, mesh elements, on average, are 10-m in 

element edge length.  This was done in order to test proper transitioning of the river bank to 

high-resolution (order of tens of meters) elements located within the floodplain. 
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Figure 59 A) Localized frame of the in-bank Pascagoula River mesh with blue inset box 
B) relatively low-resolution in-bank FEM                                                             
C) relatively high-resolution in-bank  FEM 

8.1.3 Bathymetry 

 The final step was to interpolate the bathymetry onto the FEM nodes.  Several sources of 

bathymetric data were used, as obtained from previously developed FEMs (Figure 62).  These 

include the SL15 (Bunya et al., 2010), FLPH_AL, and a previous in-bank model for the 
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Pascagoula River (Wang, 2008).  The SL15 (Southeastern Louisiana) mesh was used in a storm 

surge model developed at the University of Notre Dame by Dr. Joannes Westerink for the 

Federal Emergency Management Agency (FEMA) (Bunya et al., 2010).  It contains 

approximately 2.2 million nodes and highly resolves the coast and overland regions of 

southeastern Louisiana.  It is a product of the earlier EC2001 U.S. East Coast and Gulf of 

Mexico astronomic tide model and the S08 southern Louisiana storm surge model (Blain et al., 

1994; Mukai et al., 2002; Westerink et al., 2008).  The SL15 bathymetry was used for areas east 

of Pascagoula Bay, and in the deep waters of the Gulf of Mexico. 

 The FLPH_AL mesh was a mesh developed at the University of Central Florida by Dr. 

Scott Hagen and his team for FEMA to produce new digital flood insurance rate maps (DFIRMs) 

for parts of the Florida Panhandle and coastal Alabama (Northwest Florida Water Management 

District, 2011).  It provides high resolution along the Florida Panhandle’s shoreline as well as in 

the bays and Gulf Intracoastal Waterway (GIWW) system.  This bathymetry was used east of 

Pascagoula Bay along the shoreline and continental shelf up to Saint Joseph Bay, Florida. 

  The bathymetry for the Pascagoula River was obtained from an existing Pascagoula 

River mesh developed by Wang (2008).  Wang used river cross-sections from a USGS study 

(Turnipseed & Storm, 1995) and developed a toolbox to interpolate known bathymetric points 

between each of the river cross-sections to unknown locations. 

 All bathymetry data were merged into a single dataset which was then linearly 

interpolated onto each in-bank FEM.  Figure 63 through Figure 65 show bathymetry at different 

scales for the areas around the Pascagoula River.  Many features are highly resolved within the 

in-bank mesh: the Mississippi delta region where the Mississippi River empties into the Gulf of 
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Mexico; the shipping channel south of Chandeleur Sound; Lake Pontchartrain and Lake Borgne; 

Pascagoula Bay, Mobile Bay and its shipping channels; and of course, the Pascagoula River 

system. 
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Figure 60 Pascagoula River in-bank finite element mesh. The mesh consists of 334,589 
nodes and 634,210 elements.  It extends from the deep Atlantic Ocean and 
Gulf of Mexico into Pascagoula Bay and into the Pascagoula River. 
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Figure 61 Triangulation of the Pascagoula Bay and River.  The mesh elements are 
outlined in red.  The background imagery is LANDSAT satellite imagery and 
aerial photography. 



116 
 

 

Figure 62 Sections which utilized different bathymetry sources.  The red indicates 
elevations taken from SL15 (Bunya et al., 2010), blue from FLPH_AL 
(Northwest Florida Water Management District, 2011), and purple from 
Wang (2008). 



117 
 

 

Figure 63 In-bank model bathymetry around Louisiana, Mississippi, and Alabama.  
Key features include the Mississippi-Alabama Shelf, Mississippi Delta, 
Chandeleur Sound and the shipping channels around southeastern 
Louisiana, Pascagoula Bay, and Mobile Bay. 
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Figure 64 In-bank model bathymetry for the Pascagoula River. 
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Figure 65 In-bank model bathymetry around the east and west Pascagoula inlets. 

8.2 Floodplain Mesh Development 

 Building on the in-bank model, the model domain must encompass the floodplain to fully 

study overland flooding due to hurricane storm surge and astronomic tides.  In the following 

sections two major items are discussed: 1) development of the three equilateral test regions and 

2) development of the remaining floodplain. 

8.2.1 Equilateral Regions 

 The methods presented in Chapter 6 to evaluate topographic accuracy are applied to three 

regions around the Pascagoula River and immediate coastal shoreline.  These regions cover a 
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larger area than those presented prior in order to test overall global topographic and 

hydrodynamic accuracy via astronomic tides and hurricane storm surge from Hurricane Katrina.  

Figure 66 and Figure 67 and present the three zones, left, center, and right with the in-bank mesh 

elements and Landsat satellite imagery background, respectively.  They are bounded by a semi-

circular arc and the shoreline of the Pascagoula Bay and River.  The left and right regions 

contains a mixture of common coastal features such as marshlands, urban, and dense forest with 

the center region exclusively marsh. 
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Figure 66 Equilateral regions in red and the triangular finite elements in black 
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.  

Figure 67 Left, center, and right zones outlined in yellow.  The model floodplain 
boundary is in red.  The background image is Landsat (Goslee, 2011). 

LEFT 
ZONE 

CENTER 
ZONE 

RIGHT 
ZONE 
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 Within each zone, equilateral elements were applied at four resolutions: 160-m, 80-m, 

40-m, and 20-m.  A transition zone was constructed to incorporate true equilateral elements 

within each zone.  The transition zone ensures proper element transitioning from the elements 

along the shoreline, which are varying in element size and non-equilateral, to the equilateral 

elements of sizes 160-m, 80-m, 4-m, and 20-m.  It is also used in the topographic accuracy 

assessment to ensure interpolation is not affected by a lack of source data along the interior 

boundary.  To establish the size of the transition zone (distance from shoreline to pure 

equilaterals), one major geometric criterion was followed, Æ-ARC (Adjacent Element Area 

Ratio Criteria).  Æ-ARC is a measure of mesh irregularity in which a ratio is computed based on 

the areas of adjacent elements.  Some finite element models may experience numerical noise 

and/or instabilities when the mesh contains irregularities.  The default Æ-ARC ratio set within 

SMS (Aquaveo LLC, 2010) is 0.5 (small:big).  Therefore, the ratio of A1:A2 should be a 

maximum of 0.5, as shown in Figure 68.  It has been proven through truncation error analysis 

(Hagen, 2001) that elements changing in area too rapidly will decrease accuracy (Parrish, 2007). 

 

Figure 68 Æ-ARC criteria for the area of one and two, A1 and A2, respectively.  The 
ratio shown is A1:A2 = 0.5:1. 
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Æ-ARC was reformulated for element edge lengths to compute a proper transition distance 

between the in-bank elements and target equilateral element size: 

 
( )

3
4 1

2
2 3

3
a A=  8.1 

where a is the element edge length (for an equilateral element all edge lengths are equal and the 

height is 3
2a= ) and A is the elements area.  To determine the length of the transition (i.e. 

buffer) zone, Equation 8.1 was applied to find the smallest element edge length along the 

shoreline and increase elemen t area with an Æ-ARC ratio of 0.5 (small:big) until an element 

edge length of 160-m (the largest equilateral element size being the worst case with respect to 

element size transition within the buffer zone) was reached.  This yielded a transition length of 

about 360-m.  Based on this method, an interior buffer of 360-m was applied to each of the 

transition zones.  Figure 69 presents the three zones and the applied 360-m interior buffer.  The 

360-m buffer is wide enough to provide a proper transition of elements and small enough where 

inundation due to astronomic tides and hurricane storm surge will inundate a large amount of 

area within the interior of the equilateral zones. 

 Figure 70 presents the 160-m equilateral mesh (black triangles), transition zone (blue 

triangles), and in-bank mesh (red triangles) merged together.  The equilateral zone and buffer 

zone (transition zone) boundaries were converted to arcs in SMS (Aquaveo LLC, 2010).  

Equilateral elements were generated in the interior of each zone and the paving tool within SMS 

was used to triangulate from the shoreline to the equilateral elements.  Some manual editing was 

performed to keep consistent with the Æ-ARC ratio.  This process was repeated for the 80-m, 40-

m, and 20-m equilateral elements (Figure 70 through Figure 72). 
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Figure 69 Left, center, and right zones outlined in yellow.  The interior buffer regions 
are bounded by the blue boundary.  The red line is the floodplain boundary. 
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Figure 70 Zoom in on the Pascagoula Port located in the Right Equilateral Zone.  The 
red triangles represent the in-bank triangular elements, the blue is the 
transitional elements following the geometric criteria, and the black elements 
are the 16-m equilateral elements. 
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Figure 71 Zoom in on the Pascagoula Port located in the Right Equilateral Zone.  The 
red triangles represent the in-bank triangular elements, the blue is the 
transitional elements following the geometric criteria, and the black elements 
are the 80-m equilateral elements. 
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Figure 72 Zoom in on the Pascagoula Port located in the Right Equilateral Zone.  The 
red triangles represent the in-bank triangular elements, the blue is the 
transitional elements following the geometric criteria, and the black elements 
are the 40-m equilateral elements. 
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Figure 73 Zoom in on the Pascagoula Port located in the Right Equilateral Zone.  The 
red triangles represent the in-bank triangular elements, the blue is the 
transitional elements following the geometric criteria, and the black elements 
are the 20-m equilateral elements.  
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8.2.2 Remaining Floodplain Mesh 

 The remaining area of the floodplain is discretized around the equilateral transition zone 

and bounded by the 10-m contour and adjoining shoreline.  Figure 74 shows the floodplain 

boundary (red line), existing mesh coverage area (blue line), and the equilateral regions (orange 

boundary).  Vertical features were hand digitized by creating arcs along significant topographic 

gradients.  The arcs were forced as element edges at specific resolutions during paving.  It has 

been proven for the ADCIRC model, that forcing element edges along topographic features 

improves model results (Roberts, 2004; Coggin, 2008).  The 1-arc-second (30-m) National 

Elevation Dataset (NED) (Gesch et al., 2002; Gesch, 2007), Landsat satellite imagery (Gesch et 

al., 2002; Gesch, 2007), bare earth LiDAR-derived 5-m DEM (discussed in the next chapter), 

and aerial photography were used to digitize the vertical features.  Figure 75 and Figure 76 show 

the digitized boundaries as black arcs with both the NED and Landsat data as the background 

image, respectively.  Along the interior, mesh resolution of vertical feature arcs ranged from 50-

m to 150-m and was 200-m along the mesh boundary.  Varying the mesh resolution was 

achieved by adjustments to the nodal density along the boundary and vertical feature arcs using 

the “Redistribute vertices” tool in SMS.  The tool redistributes vertices along an arc by three 

methods: 1) specified spacing, 2) number of segments with a bias function, and by 3) minimum 

and maximum spacing.  When transitioning element sizes, all three methods were utilized, with 

the first method providing a brute force transition and the other two adjusting the vertex 

distribution by automated methods in SMS.  After the boundary and interior arcs had proper 

vertex spacing, the region between the floodplain boundary and equilateral area was paved using 

a triangular paving method using SMS 10.1 (Aquaveo LLC, 2010).  The floodplain was split into 
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four sections to speed up mesh generation time.  The sections were split by raised features or 

raised features were connected to form a boundary.  All four segments were then appended 

together as one grid file.  Figure 77 presents a section of the mesh with the digitized vertical 

features (purple) and the mesh elements (black) over the 5 m DEM. 

 A transitional area was meshed to merge the LiDAR coverage area and the FLPH_AL 

mesh.  The FLPH_AL mesh was used for the area around the shoreline of Mobile Bay to the 10-

m contour (Figure 74).  Figure 78 shows the breakdown of each mesh.  The red area is the 

floodplain mesh developed for this study, the light blue is the mesh to transition from the 

Pascagoula floodplain to the FLPH_AL mesh, and the dark blue is the FLPH_AL mesh. 
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Figure 74 The extent of the LiDAR coverage is represented by the red line.  The equilateral region is the orange 
boundary.  Nodal placement and elevation data within the blue boundary was obtained from a previous 
FEM.  The counties are bounded by the black lines.  The background is NED (Gesch et al., 2002; Gesch, 
2007) elevation data over Landsat satellite imagery (Goslee, 2011). 
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Figure 75 Digitized boundaries for use in floodplain mesh development (black).  The background image is Landsat 
satellite imagery (Goslee, 2011). 
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Figure 76 Digitized boundaries for use in floodplain mesh development (black).  The background is 1-arc-second 
(30 m) NED DEM (Gesch et al., 2002; Gesch, 2007). 
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Figure 77 Digitized vertical feature arcs (purple) used as element (black triangles) edges.  The background is the 
bare earth LiDAR-derived 5-m DEM. 
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Figure 78 Floodplain mesh in red, transition to FLPH_AL mesh (light blue), and FLPH_AL mesh (blue).  The 
equilateral zones are bounded by the orange boundary.  The background is Landsat (Goslee, 2011).
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8.2.3 Mesh Node Interpolation 

 Before merging the floodplain mesh to in-bank mesh number 1, topographic values above 

NAVD88 must be assigned to the mesh nodes.  The bare earth LiDAR-derived 5-m DEM 

discussed in Chapter 7 (Figure 48) was the source elevation dataset used for the floodplain 

regions outside the equilateral areas and the equilateral transition zones.  The interpolation 

scheme used is that defined by Coggin (2008) and explained in Chapter 2 Section 2.2.  The 

method applies a control area polygon using the connected elements’ centroids as vertices and 

averages the DEM cells within each control polygon (Figure 10).  Figure 79 presents the FEM 

with elevations, without the equilateral regions, merged to the in-bank model.  Chapter 9 

presents the interpolation of the topography to the equilateral mesh nodes. 
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Figure 79 Floodplain mesh (withholding the equilateral zones) merged to in-bank mesh number 1.  The contours 
are elevations with respect to NAVD88.
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CHAPTER 9: LARGE DOMAIN TOPOGRAPHIC ERROR ASSESSMENT 

 Assessment of topographic error for the three large regions discussed in Chapter 8 

surrounding the Pascagoula River in southern Mississippi is presented (Figure 67).  First, a 

comparison of the training dataset and training-derived 5-m DEM interpolated to four equilateral 

FEMs (160-m, 80-m, 40-m, and 20-m) in each region is discussed.  Second, an assessment of 

neighboring DEM grid cell averaging techniques is shown.  The general methods are consistent 

with those presented in Chapter 6 on the equilateral zones developed in Chapter 8. 

9.1 Equilateral Mesh Node Interpolation 

 Equilateral element mesh nodes for all four element edge lengths (160-m, 80-m, 40-m, 

and 20-m) obtained elevations from two sources with varying interpolation schemes.  

Development of the equilateral meshes for each zone was discussed in Chapter 7.  The two 

elevation sources are the training dataset and the training dataset-derived 5-m raster DEM 

generated in Chapter 6 Section 2 and Chapter 7, respectively.  Linear, NN, and IDW 

interpolation schemes were employed using SMS 10.1 (Aquaveo LLC, 2010).  Direct lookup (1 

cell average) and multiple cell area averaging (9, 25, 49, 81, 121, 169, 225, 289, 361, and 441 

neighboring cell area averages) with the 5-m DEM was interpolated with a FORTRAN code 

specifically developed for this research.  Details for each interpolation method were discussed in 

Chapter 3. 
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9.2 Accuracy Assessment Results and Discussion 

 Elevation error was computed in terms of RMSE (Equation 5.1) and the 95th percentile 

for vertical differences in interpolated values across the test dataset for the three equilateral 

regions.  RMSE and 95th percentile for each FEM from differences at the locations of each test 

point in the test dataset are presented.  Table 17 and Table 18 show RMSE for each FEM with 

elevation interpolated from the training dataset and training-derived 5-m raster DEM using 

linear, IDW, and NN.  For each test region, linear and NN interpolation outperformed IDW, 

regardless of the source elevation dataset.  Linear interpolation performed computationally faster 

than the IDW and NN methods. 

 RMSE was generally equivalent for the Left and Right Zones; however, the Center Zone 

achieved significantly less RMSE.  Note how the Center Zone is primarily marsh with no areas 

of thick vegetative canopy and manmade structures are non-existent.  As shown previously, 

increased error typically arises in regions of gradients in elevation.  Since the marsh area is 

characterized by smoothly varying topography, RMSE was expected to be minimal, regardless of 

the element size employed, which was the case here with these results.  Put simply, large 

elements are able to capture small topographic gradients approximately as well as smaller 

elements. 

 For the Left and Right Zones, RMSE varies drastically with a range of about 45-cm 

(~1.5-ft) between element edge lengths of 20-m to 160-m.  RMSE for the 160-m equilateral 

meshes in the Left and Right Zones average about 65-cm (~2-ft), which is a considerable error 

for global elevations, especially for a low-lying coastal region where large gradients in slope are 

minimal.  A large increase in error with increasing element size was expected due to the 
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variability in landcover types and topographic roughness of the Left and Right Zones.  

Interpolation using the training-derived 5-m DEM yield lower RMSE than the training dataset 

for all interpolation methods and mesh sizes tested.  Therefore the 5-m DEM was selected as the 

source elevation dataset. 

Table 17 RMSE of the training data interpolated to each FEM using a linear, IDW, 
and NN method compared to the test dataset 

Training BEL to FEM – RMSE (cm) 

 Left Center Right 

Size (m) Linear IDW NN Linear IDW NN Linear IDW NN 

20 16.7 18.3 16.9 11.9 12.7 12.0 20.2 21.7 20.4 
40 26.3 27.3 26.5 14.9 15.5 15.0 30.4 31.3 30.7 
80 42.2 42.8 42.4 17.6 18.2 17.8 42.4 43.1 42.6 

160 68.4 68.9 68.6 20.2 20.80 20.4 62.9 63.5 63.0 
*Using three closest points 

 

Table 18 RMSE of the training-derived 5-m DEM interpolated to each FEM using a 
linear, IDW, and NN method compared to the test dataset 

Training-derived 5m DEM to FEM – RMSE (cm) 

 Left Center Right 

Size (m) Linear IDW NN Linear IDW NN Linear IDW NN 

20 16.3 18.0 16.3 11.5 11.9 11.6 19.7 20.9 19.8 
40 25.9 26.9 25.9 14.4 14.7 14.5 29.6 30.2 29.7 
80 41.8 42.3 41.8 17.1 17.3 17.1 41.7 42.2 41.8 

160 68.1 68.4 68.2 19.8 20.2 19.9 62.3 62.6 62.4 
*Using three closest points 

 

 Figure 80 through Figure 82 illustrate RMSE using cell area averaging methods from the 

training-derived 5-m DEM for each FEM.  The figures contain a large amount of information on 
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the effects of mesh element size and interpolation method on topographic error.  For example, in 

Figure 80, the lowest RMSE was obtained via coupling the 20-m equilateral element with the 9 

CA interpolation method.  Conversely, if a 441 CA interpolation was used for the same 20-m 

equilateral mesh, the error increases from 17.2-cm to 38.9-cm, an amount of 21.7-cm (0.7-ft).  

An 80-m equilateral mesh produced the same error as the 20-m mesh with the 441 CA method.  

Additionally, RMSE increased if too many neighboring cells were averaged because the total 

area from the DEM in relation to the element size was too large and overlapped adjacent 

elements.  The range of RMSE between all interpolation methods was higher in the lower mesh 

size; however, it decreased as the mesh element size increased beyond 100-m, especially for the 

Left and Right Zones which contain larger error than the Center Zone.  As a result, the number of 

cells used in computing the average was more influential for smaller elements than larger 

elements. 

 In terms of RMSE, a general trend was observed with the cell averaging method (Table 

19).  Regardless of the topographic characteristics and landcover for each region, the best 

performing interpolation (lowest RMSE) was consistent for each equilateral element size.  For 

the 160-m equilateral elements, many of the large neighboring averages produced equivalent 

RMSE or differences within 1 cm of one another. 

 The 95th percentile for each mesh interpolated from the training-derived 5 m DEM was 

computed to assess vertical accuracy since topographic elevation errors were found to be non-

normal (Figure 83 through Figure 85).  As expected, the 95th percentile, with respect to mesh 

resolution, was similar to RMSE with smaller elements yielding an increase in accuracy and 

larger elements containing less accuracy. 
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 In terms of topographic accuracy using the 95th percentile, the cell averaging method with 

the highest accuracy for a given mesh resolution generally matched the cell average method with 

the smallest RMSE (Table 20).  Minor variations occurred in relation to the best performing cell 

averaging technique, though differences were within 1-cm.  Results were used to develop a cell 

averaging relationship of minimal topographic error and accuracy for a given element size  

 The following equation computes the number of neighboring cell averages based on the 

results in Table 19: 

 
( ) 2

1 1

2 1 1

for
CA

for

<= 
+ ≥  



 

 9.1 

where ( )0.25 M DEM= ∆ ∆ and is the number of DEM grid cells to move around the current cell 

in all directions, M∆ is the mesh element size, and DEM∆  is the DEM grid cell size. 

 Table 21 shows Equation 9.1 applied to a 5-m DEM with element sizes form 1.25-m to 

160-m.  The results are identical to those in Table 19 for element sizes of 20-m, 40-m, 80-m, and 

160-m.  To test Equation 9.1 on element sizes less than 20-m, it was applied to the Test Sites 

presented in Chapter 6 (Table 22).  Results show the validity of Equation 9.1 for each element 

size for a 5-m DEM cell size. 

 From the data and equations presented, an interpolation algorithm was developed for 

interpolating a 5-m DEM to a FEM using average element size to determine the number of 

neighboring DEM grid cells to be used in the averaging scheme. 

 Further, the RMSE and 95th percentile for all sites (both Pascagoula and New Orleans) 

provide a basis for determining topographic uncertainty for a coastal area in the Northern Gulf of 

Mexico given a particular mesh size and interpolation scheme. 
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Figure 80 RMSE of the training-derived 5-m DEM interpolated to each FEM for the Left Zone using a direct 
lookup and area averaging method from 9 to 441 neighboring cells. 
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Figure 81 RMSE of the training-derived 5-m DEM interpolated to each FEM for the Center Zone using a direct 
lookup and area averaging method from 9 to 441 neighboring cells. 
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Figure 82 RMSE of the training-derived 5-m DEM interpolated to each FEM for the Right Zone using a direct 
lookup and area averaging method from 9 to 441 neighboring cells. 
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Figure 83 95th percentile of the training-derived 5-m DEM interpolated to each FEM for the Left Zone using a 
direct lookup and area averaging method from 9 to 441 neighboring cells. 
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Figure 84 95th percentile of the training-derived 5-m DEM interpolated to each FEM for the Center Zone using a 
direct lookup and area averaging method from 9 to 441 neighboring cells. 
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Figure 85 95th percentile of the training-derived 5-m DEM interpolated to each FEM for the Right Zone using a 
direct lookup and area averaging method from 9 to 441 neighboring cells.
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Table 19 Best performing cell averaging method for each equilateral FEM zone at 
each equilateral element size in terms of RMSE 

ΔM Left Center Right 
20 9 CA 9 CA 9 CA 
40 25 CA 25 CA 25 CA 
80 81 CA 81 CA 81 CA 
160 289, 361, 441 CA 289, 361, 441 CA 225,289 CA 

*Multiple entries suggest RMSE was within 1 cm of the lowest 
value 

 

Table 20 Best performing cell averaging method for each equilateral FEM zone at 
each equilateral element size in terms of the 95th percentile 

ΔM Left Center Right 
20 DL 9 CA 9 CA 
40 9, 25CA 25, 49 CA 25 CA 
80 49, 81 CA 81 CA 81 CA 
160 225, 289, 361 CA 169, 225,289,361 CA 225,289,361 CA 

*Multiple entries suggest accuracy was within 1 cm of the lowest value 

 

Table 21 Equation 9.1 applied for each element size in Table 19 with a 5-m DEM 

ΔM ΔDEM   CA 
1.25 5 0.0625 1 
2.5 5 0.125 1 
5 5 0.25 1 
10 5 0.5 1 
20 5 1 9 
40 5 2 25 
80 5 4 81 
160 5 8 289 
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Table 22 Best performing cell averaging method for each equilateral FEM for each 
Test Site near Pascagoula and New Orleans presented in Chapter 6 

ΔM Test Site 1 Test Site 2 Test Site 3 NLA_Urban NLA_Marsh 
1.25 DL DL DL DL DL 
2.5 DL DL DL DL DL 
5 DL DL DL 9 CA Dl 
10 Dl 9 CA DL 9 CA 9 CA 
20 9 CA 9 CA 9 CA 9 CA 9, 25 CA 
40 25 CA 25 CA 25 CA 25, 49 CA - 
80 81, 121 CA 81, 121 CA 81, 121 CA 81, 121 CA - 
160 169 + CA 169 CA + 169 CA + 169 CA + - 
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CHAPTER 10: NUMERICAL CODE DOCUMENTATION 

 The following chapter presents a description of the numerical code used in this study. 

10.1 Numerical Model Description 

 In modeling long-wave processes of tidal flow and hurricane storm surge in oceanic and 

coastal environments, the shallow water equations may be used to approximate currents and the 

variation of water levels.  The shallow-water formulation is valid since the horizontal extent of 

long-wave hydrodynamics is much larger than that of the water depth (Kolar et al., 1994). 

10.2 Governing Equations 

 In this study, the depth integrated equations of mass and momentum are solved by the 

ADCIRC-2DDI (Advanced Circulation Two-dimensional depth integrated) code to compute 

water level deviation,ζ , and currents in x and y directions, U and V, respectively.  The equations 

are subject to incompressibility, Boussinesq and hydrostatic pressure approximations.  The 

governing equations are the continuity (Eq. 10.1) and momentum equations (Eq. 10.2) and (Eq. 

10.3). They are expressed in a Cartesian coordinate system in primitive form as (Westerink et al., 

1994a): 

 0UH UH
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ζ∂ ∂ ∂
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where ζ  = free surface elevation relative to the geoid; ,U V  = depth-averaged horizontal 

velocities; H hζ= +  = total water column; h  = bathymetric depth relative to the geoid; 

2 sinf φ= Ω  = Coriolis parameter; Ω  = angular speed of the Earth; φ  = degrees latitude; sp  = 

atmospheric pressure at the free surface; g  = acceleration due to gravity; η  = Newtonian 

equilibrium tide potential; α  effective Earth elasticity factor; 0ρ  = reference density of water; 

sxτ , syτ  = applied free surface stress; ( )1/22 2

* f

U V
C

H
τ

+
= = bottom stress; fC  = bottom friction 

coefficient; 
2

2 2

2 2x h
UH UHM E
x y

 ∂ ∂
= + ∂ ∂ 

 = depth integrated horizontal diffusion/dispersion, x 

direction; 
2

2 2

2 2y h
VH VHM E
x y

 ∂ ∂
= + ∂ ∂ 

 = depth integrated horizontal diffusion/dispersion, y 

direction; 
2hE  = horizontal eddy diffusion/dispersion coefficient.  Reid (1990) gives a practical 

expression for the Newtonian equilibrium tide potential expressed as: 
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π

η λ φ φ ν
 −

= + 
  

∑  10.4 

where jnC  = constant characterizing the amplitude of tidal constituent n of species j; TP
jnf  = time-

dependent nodal factor; TP
jnν  = time-dependent astronomical argument; j = 0, 1, 2 = tidal species 

(j = 0, declinational; j = 1, diurnal, j = 2, semidiurnal); 2
0 3sin 1L φ= − ; ( )1 sin 2L φ= ; 

( )2
2 cosL φ= ; ,λ φ  = degree longitude and latitude, respectively; 0t  = reference time; TP

jnT  = 

period of constituent n of species j. 
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 In addition to Cartesian form, the equations can be expressed in spherical form.  

ADCIRC-2DDI maps these spherical coordinate equations onto a rectilinear coordinate system 

using the Carte Parallelogrammatique Projection (CPP) (Pearson, 1990).  The primitive shallow 

water equations in spherical coordinates are (Westerink et al., 1994a): 

 ( )cos1 0
cos

VHUH
t R

φζ
φ λ φ

∂ ∂ ∂
+ + = ∂ ∂ ∂ 

 10.5 

 
( ) ( ) *

0 0

1 1 tan
cos

1 1
cos

s s

U U UU V U f V
t R R R

p g M U
R H H

λ
λ

φ
φ λ φ

τζ αη τ
φ γ ρ ρ

∂ ∂ ∂  + + − + = ∂ ∂ ∂  
 ∂

− + − + + − ∂  

 10.6 

 
( ) *

0 0

1 1 tan
cos

1 1 ss

V V VU V U f U
t R R R

p g M V
R H H

φ
φ

φ
φ λ φ

τ
ζ αη τ

φ ρ ρ

∂ ∂ ∂  + + − + = ∂ ∂ ∂  
 ∂

− + − + + − ∂  

 10.7 

where R = radius of the Earth. 

 The equations presented are discretized in space by linear finite elements and in time by a 

finite difference scheme (Luettich et al., 1992).  The use of a finite element scheme in the 

primitive form gives rise to spurious mode problems and numerical instabilities.  To resolve this 

without artificial damping, the equations were reformulated to use the generalized wave 

continuity equation (GWCE) coupled with the momentum conservation equations (Kinnmark, 

1985).  Thus, ADCIRC-2DDI employs the GWCE rather than the primitive continuity equation 

(Westerink et al., 1994a).  The reformulated continuity equation using the GWCE in spherical 

coordinates is expressed as (Kolar et al., 1994): 
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 10.8 

where 0τ is a weighting factor constant in both space and time. 

10.3 ADCIRC Bottom Friction Formulation 

 Recall, the bottom stress term, , represented in the shallow water equations (10.2) and 

10.3.  The bottom stress can be computed via a quadratic formulation as a function of the depth 

integrated velocity (Luettich et al., 1992): 

  10.9 

where = the bottom friction factor.  Either a constant bottom friction factor or spatially 

varying friction factor can be assigned.  In order to vary bottom friction with bathymetric depth, 

like Manning’s formula, Luettich and Westerink (2006) implemented a hybrid bottom friction 

formulation: 

  10.10 
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where  = minimum bottom friction coefficient;  = break depth;  = depth of the 

water column;  = dimensionless parameter which that determines how rapid the hybrid bottom 

friction relationship approaches its deep and shallow water limits (10-m is recommended);  = 

dimensionless parameter which that determines how the friction factor increases as the water 

depth decreases (a value of 1/3 is recommended for a Manning type friction law).  When the 

water depth is above  (i.e. ), the bottom frictions approaches a quadratic 

function of depth averaged velocity where: 

 
minf fC C=  10.11 

If the water depth is below  (i.e. ), equation (10.10) is employed. 

 Alternative implementation incorporates Manning’s n into the bottom friction 

formulation.  The bottom friction coefficient as a function of Manning’s n is (Atkinson et al., 

2011): 

  10.12 

where  = acceleration due to gravity;  = depth of the entire water column; h = 

bathymetric depth; n = Manning’s n coefficient.  Incorporating (Eq. 10.12) into (Eq. 10.9) yields 

a bottom friction formulation that is a function of Manning’s n and depth integrated velocity: 

  10.13 

minfC breakH H
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For nodes with a bathymetric depth greater than the break depth (10-m), the minimum bottom 

friction is set to
minfC .  A typical value of 

minfC  is 0.003 is employed (Mukai et al., 2002; Blanton 

et al., 2004; Bacopoulos, 2009; Bunya et al., 2010). 
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CHAPTER 11: MODEL SETUP 

11.1 Astronomic Tide Model Setup 

 For all tidal simulations, the boundary conditions applied and model parameters remain 

unchanged, unless noted otherwise.  The model is setup in a geographic coordinate system with 

advective terms disabled.  Seven tidal constituents (K1, O1, M2, S2, N2, K2, and Q1) (Table 23) 

force the model as water levels along the open ocean boundary (60⁰ west Meridian) as well as 

tidal potential forcings within the interior of the domain (Equation 10.4).  The harmonic data is 

obtained from the global ocean model of Le Provost et al. (1998) except in shallow areas along 

the open ocean boundary where the tidal elevation data are inaccurate.  In these locations, long 

term tidal records are used to adjust the harmonic data accordingly (Westerink et al., 1994b).  

The model forcings are ramped over a 10-day period with a hyperbolic ramp function (Luettich 

et al., 1992) and continued for a total simulation length of 45 days with a time step of 1-second 

and 0.25-seconds, for the in-bank mesh numbers 1 and 2, respectively.  The time steps are 

computed based on the Courant number criteria for model stability.  For the last 30-days (day 15 

to 45) of the simulation, water levels are harmonically analyzed at selected locations using the 

built in harmonic analysis tool in ADCIRC-2DDI. 

The hybrid bottom friction formulation (Eq. 10.10) is applied with the incorporation of 

Manning’s n parameterization (Eq. 10.13).  A constant Manning’s n of 0.02 is used with

min
0.0025fC = ; 10breakH m= − ; 10θ = ; and 1/ 3λ = .  The horizontal eddy viscosity coefficient 

is set to 5 m2/sec and a depth-dependent GWCE weighting factor, 0τ , is enabled.  The wetting 
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and drying option is turned on with the minimum bathymetric depth equal to 0.1-m (Luettich & 

Westerink, 2006). 

Table 23 Tidal constituents used to force the ADCIRC model. 

Tidal Constituent Name Period (hr) Frequency (rad/s) 

M2 Principal lunar semidiurnal 12.42 0.000140518902509 

K1 Luni-solar diurnal 23.93 0.000072921158358 

O1 Principal lunar diurnal 25.82 0.000067597744151 

N2 Larger lunar elliptic 12.66 0.000137879699487 

K2 Luni-solar semidiurnal 11.97 0.000145842317201 

Q1 Larger lunar elliptic diurnal 26.87 0.000064958541129 

S2 Principal solar semidiurnal 12.00 0.000145444104333 

 

11.2 Coupled Tide and Storm Surge Model Setup 

 The following methods and parameters were used to setup the ADCIRC model for a 

coupled tide and storm surge simulation.  Hurricane Katrina is the storm of record for costal 

Mississippi therefore it is the meteorological event used in this thesis (Figure 86).  A 21.5-day 

simulation is performed, divided into two separate simulations (Table 24).  First, a 15.5-day 

astronomic tide only simulation is performed from a cold start.  The model is setup in a 

geographic coordinate system with advective terms disabled and seven tidal constituents (Table 

23) force the model along the open ocean boundary, as well as tidal potential.  The nodal factor 

and equilibrium arguments are adjusted to start on 08/10/2005 at 00:00 UTC.  The forcings are 

ramped over a 10-day period with the last 5.5-days in steady-state.  Next, a 6-day simulation of 
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astronomic tides and wind and pressures from Hurricane Katrina is performed from a hot start of 

the prior 15.5-day tide only model, yielding a total simulation length of 21.5-days.  A 1-day is 

hyperbolic tangent ramping period (Luettich et al., 1992) is included to initialize the added 

aerodynamic forcing. 

Table 24 Breakdown of the 21.5-day astronomic tide and storm surge simulation 

Simulation Total Run 
Time (days) 

Ramp Time 
(days) 

Steady-State 
Time (days) 

Run Start 
UTC 

Run End 
UTC 

Tides 15.5 10.0 5.5 08/10/2005 
00:00 

08/25/2005 
12:00 

Tides + Katrina 6 1.0 5 08/25/2005 
12:00 

08/31/2005 
12:00 

 

 The coupled tide and storm surge simulations include a time-step of 1-second for the 160-

m, 80-m and 40-m equilateral mesh and a 0.5-second time-step for the 20-m mesh to provide 

numerical stability concerning the Courant number criterion. 

 The winds and pressures for Hurricane Katrina are included over the computational 

domain at 15-minute intervals and are interpolated onto the mesh nodes.  Figure 87 illustrates the 

nested boundaries of the wind and pressure fields. 
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Figure 86 Hurricane Katrina storm track – courtesy of NASA 
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Figure 87 Extents of the wind and pressure fields 

 The hybrid bottom friction formulation (Eq. 10.10) is applied with the incorporation of 

Manning’s n (Eq. 10.13).  Manning’s n is specified by use of the 1992 NLCD LULC database 

with 
min

0.0025fC = ; 10breakH = m; and 10θ = .  Horizontal eddy viscosity coefficients of 2.0 and 

20.0, generally, are used for initially wet and dry nodes, respectively.  A depth-dependent 

GWCE weighting factor, 0τ , is employed:  If the average element edge length is less than 500-m, 

0 0.03τ =  , otherwise 0.005 is used for depths greater than 10-m, and 0.02 for depths less than 

Legend 
          Wind and Pressure Boundary 
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10-m, with respect to NAVD88.  The wetting and drying option is turned on with the minimum 

bathymetric depth equal to 0.01-m (Luettich & Westerink, 2006). 

 ADCIRC-2DDI allows the incorporation of several spatially varying friction parameters: 

Manning’s n, directional effective roughness length (z0), and surface canopy.  Manning’s n is an 

isotropic parameter to estimate flow resistance, in this case the bare-earth surface (Figure 88). 

 z0 and surface canopy relate to the aerodynamic forcing.  ADCIRC represents 

aerodynamic forcing by wind and pressure fields.  Wind is included in the model as a surface 

stress on the water column.  Wind speed is converted to a wind surface stress and is computed by 

a standard quadratic drag law: 

 10 10
0

s
DC W Wλ

λ
τ
ρ −=  11.1 

and 

 10 10
0

s
DC W Wφ

φ

τ
ρ −=  11.2 

CD is defined by Garrett’s drag formula (Garratt, 1977): 

 ( )100.75 0.67
1000D

W
C

+
=  11.3 

10W  is the 10-minute “sustained” wind speed acting at 10-m above the water.  To convert 30-

minute “sustained” winds to 10-minute “sustained” winds CD is multiplied by a wind multiplier, 

1.09µ = : 

 ( )100.75 0.67
1000D

W
C

µ +
=  11.4 
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The value of 1.09 is based on an assumption of an approximate 9-percent increase in wind speed 

( ) (Bunya et al., 2010; Hagen et al., 2011). 

 For atmospheric pressures, the inverted barometer effect is used.  This adjusts the water-

column height based on the difference in ambient atmospheric pressure and the lower pressure 

introduced within a tropical storm: 

 ( )p

w

p p
g

ζ
ρ
−

=  11.5 

where is the equivalent water-column height; is the ambient atmospheric pressure (1013 

mb); p is the local atmospheric pressure and g is the gravitational constant (9.81-m/s2). 

 z0 is an anisotropic parameter (in 12-directions) that approximates upwind roughness 

effects.  The values change based on the wind direction.  z0 is important in decreasing the speed 

of marine based winds over the land surface as well as masking the wind when it is blowing from 

off-shore to on-shore.  See Westerink et al. (2008) for a detailed description for adjusting 10W  

based on wind reduction factors.  Figure 89 shows wind reduction for wind blowing from west to 

east and Figure 90 shows wind reduction for a wind blowing from south to north.  Surface 

canopy is a parameter used to “turn off” the wind stress in areas where the wind is unable to fully 

penetrate the tree canopy (Figure 91) and little momentum is transferred from the wind field to 

the water column (Westerink et al., 2008; Atkinson et al., 2011). 

 All three attributes are assigned to ADCIRC mesh nodes through the use of the 1992 

USGS National Land Cover Data (NLCD) (Vogelmann et al., 2001).  Table 25 illustrates the 

frictional values for each NLCD land class (Bunya et al., 2010).  Assignment of a frictional 

value is based on a direct lookup table. 

3 1.3 1.09=

pζ p
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Figure 88 Manning's n for the Pascagoula River and surrounding floodplain.  Values 
were obtained via direct lookup from Table 25 based on the 1992 NLCD 
landcover classification.  Hotter colors represent higher resistance to flow. 
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Figure 89 Wind reduction factors (Z0) for the Pascagoula River and surrounding 
floodplain with a wind blowing from west to east.  Values were obtained via 
direct lookup from Table 17 based on the 1992 NLCD landcover 
classification.  Hotter colors represent higher wind reduction than the cooler 
colors. 
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Figure 90 Wind reduction factors (Z0) for the Pascagoula River and surrounding 
floodplain with a wind blowing from south to north.  Values were obtained 
via direct lookup from Table 17 based on the 1992 NLCD landcover 
classification.  Hotter colors represent higher wind reduction than the cooler 
colors. 
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Figure 91 Surface canopy coefficients for the Pascagoula River and surrounding 
floodplain.  Values were obtained via direct lookup from Table 17 based on 
the 1992 NLCD landcover classification.  Wind is turned off for nodes with a 
value of 0 and wind is enabled for nodes with a value of 1. 
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Table 25 Manning's n, surface roughness, and canopy values obtained by using the 
1992 LULC database (Bunya et al., 2010). 

NLCD 
Class Description Manning n Z0 Canopy 

11 Open water 0.020 0.001 1 
12 Ice/Snow 0.022 0.012 1 
21 Low residential 0.120 0.330 1 
22 High residential 0.121 0.500 1 
23 Commercial 0.050 0.390 1 
31 Bare rock/sand 0.040 0.090 1 
32 Gravel pit 0.060 0.180 1 
33 Transitional 0.100 0.180 1 
41 Deciduous forest 0.160 0.650 0 
42 Evergreen forest 0.180 0.720 0 
43 Mixed forest 0.170 0.710 0 
51 Shrub land 0.070 0.120 1 
61 Orchard/vineyard 0.100 0.270 1 
71 Grassland 0.035 0.040 1 
81 Pasture 0.033 0.060 1 
82 Row crops 0.040 0.060 1 
83 Small grains 0.035 0.050 1 
84 Fallow 0.032 0.040 1 
85 Recreational grass 0.030 0.050 1 
91 Woody wetland 0.140 0.550 0 
92 Herbaceous wetland 0.035 0.110 1 
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CHAPTER 12: MODEL RESULTS 

12.1 Astronomic Tide Results 

 The following section presents results from an astronomic tide simulation using both in-

bank models (high- and low-resolution).  This is to verify that the in-bank models accurately 

describe the physical interaction of the daily tides before moving forward with more intense 

storm surge forcing.  The results will be analyzed both qualitatively and quantitatively.  Plots of 

resynthesized water levels will be presented as well as statistical measures.  Five NOS stations 

(Figure 92) and four USGS stations (Figure 93) are used to compute historical versus computed 

water levels and verify both models performance with respect to tides.  As previously mentioned, 

this study is not intended to validate a tide model of the Pascagoula River; however, the 

historical water levels are compared to simulated water levels to simply show the model 

generally captures the physical processes of the system. 

 Eight water level stations are selected to compare historical (measured) and simulated 

tidal harmonics. The eight stations cover a broad extent of the study area, encompassing the 

coastal shoreline of Alabama (Mobile Bay), and into Mississippi including upstream reaches of 

the Pascagoula and Escatawpa River. 

Each of the two in-bank models are forced with tides using ADCIRC-2DDI, described in 

Chapter 10, with the parameters presented in Chapter 11.  The 23 harmonically analyzed 

constituents attained from the model are presented in Table 26.  These constituents are compared 

to those from the NOS and USGS stations.  The NOS tidal stations include 37 historical tidal 
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constituents (The solar annual [SA] and solar semi-annual [SSA] are removed) (Table 27).  It 

should be noted that the historical tidal constituents from the NOS stations contain only 

astronomic tides, as the tidal simulation only simulates astronomical tides.  Other factors such as 

river inflow and meteorological forcings (i.e. wind and pressures) are not included in the 

historical tidal constituents.  At the USGS water level stations, historical tidal constituent data is 

not available.  In order to obtain historic tidal constituent data at these locations, USGS water 

levels were acquired for a total length of 31 days.  The water level data for the four USGS water 

level stations were analyzed by Wang (2008) and 35 tidal constituents were extracted from the 

water levels using the T_TIDE MATLAB code (Pawlowicz et al., 2002). 

A tidal resynthensis is performed by recomposing all individual tidal constituents into a 

single tidal signal function, ( )T t : 

 ( ) ( )0 cosn n n n n n
N

T t Z H f t g V uω= + − + +  ∑  12.1 

The only unknown parameters are 0Z  and the amplitudes and phases, nH and ng  .  Commonly, 

0Z  represents a local mean sea level (MSL), therefore it is a known parameter.  The nodal 

adjustment parameters, nf and nu , along with the terms ntω  and nV  combined represent the phase 

angle of the Equilibrium tidal constituent where nV  is the equilibrium phase angle for constituent 

n (Pugh, 2004).  In order to begin the resynthesis at the start of a tidal epoch the nodal 

adjustment parameters are removed (i.e. 1nf = and 0ng = ). 

 



 

172 
 

 

Figure 92 Location of NOS stations located within the in-bank Pascagoula model 
domain. 

 

Figure 93 Location of USGS stations located within the in-bank Pascagoula model 
domain. 
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Table 26 23 tidal constituents applied in harmonic resynthesis - constituent names 
gathered from (Kojima, 2005)  

Tidal 
Constituent Constituent Name Period 

(hr) 
Frequency 

(rad/s) 

M2 Principal lunar semidiurnal constituent 12.42 0.000140519 

S2 Principal solar semidiurnal constituent 12.00 0.000145444 

N2 Larger lunar elliptic semidiurnal constituent 12.66 0.000137880 

K1 Luni-solar diurnal constituent 23.93 0.000072921 

M4 
Shallow water overtides of principal lunar 

constituent 6.21 0.000281038 

O1 Principal lunar diurnal constituent 25.82 0.000067598 

M6 Shallow water terdiurnal constituent 4.14 0.000421557 

MN4 Shallow water quarter diurnal constituent 6.27 0.000278399 

MU2=2MS2 Variational constituent  12.87 0.000135594 

MM=MN Lunar monthly constituent 661.31 0.000002639 

MSF=SM Lunisolar synodic fortnightly constituent 354.37 0.000004925 

Q1 Larger lunar elliptic diurnal constituent 26.87 0.000064959 

P1 Solar diurnal constituent 24.07 0.000072523 

2SM2 Shallow water semidiurnal constituent 11.61 0.000150369 

L2=2MN2 Smaller lunar elliptic semidiurnal constituent 12.19 0.000143158 

K2 Luni-solar semidiurnal 11.97 0.000145842 

M8 Shallow water eighth diurnal constituent 3.11 0.000562076 

MS4 Shallow water quarter diurnal constituent 6.10 0.000285963 

STEADY Principal water level ∞  0.000000000 

MNS2 Arising from the interaction between MN and S2 13.13 0.000132954 

2MN6 Shallow water twelfth diurnal constituent 4.17 0.000418918 

MSN6 Arising from the interaction between M2, N2 and S2 4.12 0.000423843 

M10 Shallow water tenth diurnal constituent 2.48 0.000702595 
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Table 27 37 tidal constituents gathered from the NOS tidal stations - constituent 
names gathered from (Kojima, 2005) 

Tidal 
Constituent Constituent Name Period 

(hr) 
Frequency 

(rad/s) 

M2 Principal lunar semidiurnal constituent 12.42 0.000140519 

S2 Principal solar semidiurnal constituent 12.00 0.000145444 

N2 Larger lunar elliptic semidiurnal constituent 12.66 0.000137880 

K1 Luni-solar diurnal constituent 23.93 0.000072921 

M4 Shallow water overtides of principal lunar 
constituent 6.21 0.000281038 

O1 Principal lunar diurnal constituent 25.82 0.000067598 

M6 Shallow water terdiurnal constituent 4.14 0.000421557 

MK3 Shallow water terdiurnal constituent 8.18 0.000213440 

MN4 Shallow water quarter diurnal constituent 6.27 0.000278399 

NU2 Larger lunar evectional constituent 12.63 0.000138233 

S6 Shallow water overtides of principal solar 
constituent 6.21 0.000436332 

MU2=2MS2 Variational constituent 12.87 0.000135594 

2N2 Lunar elliptical semidiurnal second-order 
constituent 12.91 0.000135240 

OO1 Lunar diurnal 22.31 0.000078245 

LAM2 Smaller lunar evectional constituent 12.22 0.000142805 

S1 Solar diurnal constituent 24.00 0.000072722 

M1 Smaller lunar elliptic diurnal constituent 24.83 0.000070282 

J1 Smaller lunar elliptic diurnal constituent 23.10 0.000075560 

MM=MN Lunar monthly constituent 661.31 0.000002639 

MSF=SM Lunisolar synodic fortnightly constituent 354.37 0.000004925 

MF Lunisolar fortnightly constituent 327.86 0.000005323 

RHO Larger lunar evectional diurnal constituent 26.72 0.000065312 

Q1 Larger lunar elliptic diurnal constituent 26.87 0.000064959 

T2 Larger solar elliptic constituent 12.02 0.000145245 
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Table 27 37 tidal constituents gathered from the NOS tidal stations - constituent 
names gathered from (Kojima, 2005) 

Tidal 
Constituent Constituent Name Period 

(hr) 
Frequency 

(rad/s) 

R2 Smaller solar elliptic constituent 11.98 0.000145643 

2Q1 Larger elliptic diurnal 28.01 0.000062319 

P1 Solar diurnal constituent 24.07 0.000072523 

2SM2 Shallow water semidiurnal constituent 11.61 0.000150369 

L2=2MN2 Smaller lunar elliptic semidiurnal constituent 12.19 0.000143158 

K2 Luni-solar semidiurnal 11.97 0.000145842 

M8 Shallow water eighth diurnal constituent 3.11 0.000562076 

MS4 Shallow water quarter diurnal constituent 6.10 0.000285963 
 

 Figure 94 through Figure 102 present plots of the resynthesized historical data and model 

output for each of the nine water level recording stations, shown in Figure 92 and Figure 93.  

Each plot depicts the water surface elevation, in meters, from the datum (NAVD88) (y-axis) 

versus a 14-day time period (x-axis) to capture a full spring-neap tidal cycle.  The black curve is 

the historical data, the red curve is water levels from in-bank model number 1 and the blue curve 

is water levels from in-bank model number 2.  If the red curve is not visible, it resides behind the 

blue curve, suggestive of a small difference between the two red and blue curves. 

 



 

176 
 

 

Figure 94 A resynthesis of historical (red) and modeled (black and blue) tidal 
constituents for a complete spring and neap tidal cycle at tidal station NOS 
8732828 – Weeks Bay, Alabama. 

 

Figure 95 A resynthesis of historical (red) and modeled (black and blue) tidal 
constituents for a complete spring and neap tidal cycle at tidal station NOS 
8735180 – Dauphin Island, Alabama. 
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Figure 96 A resynthesis of historical (red) and modeled (black and blue) tidal 
constituents for a complete spring and neap tidal cycle at tidal station NOS 
8741041 – Dock E Port of Pascagoula, Mississippi. 

 

Figure 97 A resynthesis of historical (red) and modeled (black and blue) tidal 
constituents for a complete spring and neap tidal cycle at tidal station NOS 
8741196 – Pascagoula Point, Mississippi. 
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Figure 98 A resynthesis of historical (red) and modeled (black and blue) tidal 
constituents for a complete spring and neap tidal cycle at tidal station NOS 
8741533 – Pascagoula NOAA Lab, Mississippi. 

 

Figure 99 A resynthesis of historical (red) and modeled (black and blue) tidal 
constituents for a complete spring and neap tidal cycle at water level station 
USGS 02480212 – Pascagoula River mile 1, Pascagoula, Mississippi. 
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Figure 100 A resynthesis of historical (red) and modeled (black and blue) tidal 
constituents for a complete spring and neap tidal cycle at water level station 
USGS 02480285 – West Pascagoula River at Highway 90 at Gautier, 
Mississippi. 

 

Figure 101 A resynthesis of historical (red) and modeled (black and blue) tidal 
constituents for a complete spring and neap tidal cycle at water level station 
USGS 0248018020 – Escatawpa River at I-10 near Orange Grove, 
Mississippi. 
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Figure 102 A resynthesis of historical (red) and modeled (black and blue) tidal 
constituents for a complete spring and neap tidal cycle at water level station 
USGS 02479310 – Pascagoula River at Graham Ferry, Mississippi. 

RMSE is computed at each water level station for both in-bank models.  RMSE is 

expressed as: 

 
( )2

1

N

i i
i

Hist Mod
RMSE

N
=

−
=
∑

 12.2 

where iHist  and iMod  are the water surface elevations at time index i for the historical and 

modeled tidal elevation, respectively.  RMSE provides a way to estimate the difference in 

historical and model tidal signal for the entire 14-day period.  RMSE is computed to 

quantitatively determine that the higher resolution in-bank mesh (in-bank mesh number 2) 

performs better than in-bank mesh number 1.  It is not used to validate either model.  Table 28 

presents the RMSE for all stations for each in-bank mesh. 
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Table 28 RMSE for all 9 stations for both in-bank models. 

Agency Station No. Station Name RMSE (cm) 
Mesh 1 Mesh 2 

NOS 8732828 Weeks Bay 3.42 3.42 
NOS 8735180 Dauphin Island 3.52 3.52 
NOS 8741041 Dock E, Port of Pascagoula 5.51 5.51 
NOS 8741196 Pascagoula Point 3.58 3.51 
NOS 8741533 NOAA Lab 6.83 6.83 

USGS 2480212 Pascagoula River @ MI 1 10.59 10.60 
USGS 2480285 W. Pascagoula River 8.28 8.28 
USGS 248018020 Escatawpa River 9.02 9.05 
USGS 2479310 Graham Ferry 11.21 11.12 

 

In general, results for both in-bank tidal simulations depict a well performing model, 

producing reasonable results.  However, some disagreement occurs between the historical and 

modeled data.  For all NOS stations, the model under-predicts tidal amplitude for the first seven 

days of the spring-neap tidal cycle.  During the remaining 7-days, the amplitude of the modeled 

data better predicts that of the historic data.  As the stations move upstream into the Pascagoula 

River (USGS), the model over-predicts the amplitude, except in the Escatawpa River, where the 

flood tides for the first 7-days are similar to the historic data, but the ebb tides are under-

predicted.  During the last 7-days, the ebb tides are over-predicating the tidal amplitude.  It is 

apparent in Figure 99 that at station USGS 02480212 there is a slight phase difference.  The 

models flood and ebb tide amplitudes generally arrive before the historic peaks and troughs 

during the first seven days of the tidal cycle. 

Furthermore, by evaluating the tidal signals for mesh 1 and mesh 2, it can be concluded 

that the higher resolution in-bank model (in-bank mesh number 2) does not improve the tidal 

results with respect to in-bank model number 1.  As long as the river channel is described as a 



 

182 
 

trapezoidal cross-section (Figure 58), proper tidal flow is captured regardless of how well it is 

resolved.  However, both meshes utilize the same source of bathymetry.  If higher-resolution 

bathymetry was available and used for in-bank mesh number 2, tide results may improve. 

12.2 Storm Surge Results 

 A comparison of maximum inundation extent and maximum water levels from 

adjustments made to the floodplain mesh (160-m, 80-m, 40-m, and 20-m equilateral regions) 

during simulated storm tide are presented.  Recall that for each mesh, the only difference occurs 

within the equilateral boundary (transition zone and pure equilateral elements).  Differences in 

maximum water levels and inundation area between each simulation are not extreme, but are 

significant.  Figure 103 illustrates the maximum inundation area combining all simulations, the 

maximum of maximums (MOM).  The MOM is the maximum water level, globally, for all 

simulations.  Therefore inundation extent of the MOM represents the maximum possible 

inundation area for the suite of results.  Much of the land area in each of the equilateral zones 

(orange boundary) is inundated, with the Center Zone completely flooded. 

 The response to adjustments in topographic representation in the equilateral regions 

maximum water level is both local and non-local.  Figure 104 graphically compares the MEOW 

(maximum envelope of water) of each storm surge simulation to the MOM.  Minor differences 

are observed within each equilateral region between the MOM and each simulations respective 

MEOW, however differences do occur.  Larger differences in inundation are observed in regions 

outside the equilateral zones, especially around the upper Escatawpa River (Figure 105).  The 

largest difference is noticed in the 40 m mesh, followed by the 80-m mesh, and the 160-m and 

20-m mesh producing minimal differences. 
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Figure 103 Maximum inundation area (or maximum of maximums) for the four 
ADCRC meshes.  The black line is the ADCIRC mesh boundary. 
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Figure 104 The total inundation area (blue) over the inundation area from the MOM (red) for A) 160-m, B) 80-m,   
C) 40-m, and D) 20-m equilateral meshes.  Figures in the red inset box are shown in Figure 105. 

A B 

C D 
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Figure 105 The total inundation area (blue) over the inundation area from the MOM (red) for A) 160-m, B) 80-m,   
C) 40-m, and D) 20-m equilateral meshes for red inset from Figure 104. 

A B 

C D 
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 Figure 106 highlights the mesh that contributes to the highest water level in the MOM 

and similarly, Figure 107 shows the mesh that contributed to the lowest water level in the MOM.  

Figure 108 illustrates the 5-m DEM for the Pascagoula region for comparing the inundation 

extent to the topography.  The 160-m equilateral mesh contributed a great deal of the highest 

water levels in the low-lying marsh regions and creeks and tributaries.  The 80-m equilateral 

mesh produced the highest water levels along the coastal shoreline, coastal marsh areas, and into 

the shallower waters of the bays surrounding Pascagoula, MS.  The 40-m mesh contributed to the 

highest water levels just offshore.  Additionally, the 20-m equilateral mesh supplied the highest 

water level in the further extents of the inundation area which are along the highest inundated 

topographic elevations.  For example, in the Left Equilateral Zone, the area around HWY 90 is 

colored red for the 20-m equilateral zone.  Further upstream along the Escatawpa River, the 20-

m mesh contributed the highest water level in close proximity to the Mississippi Sandhill Crane 

National Wildlife Refuge along I-10 as well as the further inundation extent of the Pascagoula 

River.  On the other hand, the 20-m equilateral mesh contributed to the lowest water levels 

offshore, along the immediate coastal shoreline and into the marsh areas surrounding both 

Pascagoula River inlets (Figure 107).  Within the floodplain, the 40-m equilateral mesh 

contributed the lowest water levels from the MOM.  These results further demonstrate changes in 

water levels and inundation extent in regions nearby and away from the local topographic 

changes. 
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Figure 106 Equilateral mesh contributing to the MOM 

Mississippi Sandhill 
Crane National 
Wildlife Refuge 

I-10 

Upper Pascagoula 
River 
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Figure 107 Equilateral mesh contributing to the lowest water level from the MOM. 
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Figure 108 5-m DEM with ADCIRC mesh boundary (black) and equilateral zones 
(orange).  Elevations are referenced to NAVD88. 

 Figure 109 through Figure 114 present the difference in maximum water levels between 

each of the four simulations.  Differences in inundation less than 1-cm and areas that remained 

dry during the simulation are colored as transparent.  First, Figure 109 shows the differences 

between the extremes of the equilateral mesh resolutions, 160-m and 20-m.  Differences in water 

levels are as much as 16-cm for much of the marsh area and differences occurring well beyond 

the equilateral zones.  Some of the largest observed differences, over 30-cm (1-ft), are found 

when subtracting from the 40-m mesh.  Maximum water levels in the floodplain are generally 



 

190 
 

less than the other mesh resolutions, including the 20-m mesh.  Also, differences in water levels 

occur offshore, away from the equilateral regions. 

 Results show the local and non-local response to in both inundation extent and maximum 

water levels in for local changes in topography.  In other words, the representation of the ground 

surface has a strong influence on inundation extent and total water levels in areas outside the 

adjusted topographic features. 
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Figure 109 Difference in maximum water levels between the 160-m and 20-m equilateral mesh simulations.  Hot 
colors represent higher water levels for the 160-m mesh and cool colors are higher water levels for the 20-
m mesh. 
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Figure 110 Difference in maximum water levels between the 160-m and 40-m equilateral mesh simulations.  Hot 
colors represent higher water levels for the 160-m mesh and cool colors are higher water levels for the 40-
m mesh. 
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Figure 111 Difference in maximum water levels between the 160-m and 80-m equilateral mesh simulations.  Hot 
colors represent higher water levels for the 160-m mesh and cool colors are higher water levels for the 80-
m mesh. 
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Figure 112 Difference in maximum water levels between the 80-m and 20-m equilateral mesh simulations.  Hot 
colors represent higher water levels for the 80-m mesh and cool colors are higher water levels for the 20-
m mesh. 
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Figure 113 Difference in maximum water levels between the 80-m and 40-m equilateral mesh simulations.  Hot 
colors represent higher water levels for the 80-m mesh and cool colors are higher water levels for the 40-
m mesh. 
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Figure 114 Difference in maximum water levels between the 40-m and 20-m equilateral mesh simulations.  Hot 
colors represent higher water levels for the 40-m mesh and cool colors are higher water levels for the 20-
m mesh.
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CHAPTER 13: CONCLUSIONS AND FUTURE WORK 

 This thesis presents a method for determining topographic elevation error in DEMs and 

overland unstructured FEMs derived from bare earth LiDAR and its influence on simulated 

astronomic tides and hurricane storm surge.  Also, an accurate interpolation method based on 

element size to minimize errors in vertical elevations was investigated. 

 First, a method for assessing topographic elevation error was developed in southern 

Mississippi and further verified in southeastern Louisiana.  Second, two in-bank FEMs of the 

Pascagoula River were developed and incorporated into the WNAT model domain such that 

astronomic tides could be accurately modeled.  Third, the methodology developed to test 

topographic error was applied to three large regions in coastal Pascagoula, Mississippi.  Fourth, a 

high-resolution DEM was created for coastal Mississippi based on minimal topographic error 

and data efficiency.  Fifth, a large-domain, high-resolution, FEM was constructed up to the 15-m 

contour to study regional topographic elevation error and the effect topographic representation 

has on simulated storm tide.  Four variations were made to the FEM by changing the element 

resolution using equilateral elements of 160-m, 80-m, 40-m, and 20-m in three areas surrounding 

the overland region of the East and West Pascagoula inlets.  Lastly, astronomic tides, winds and 

pressures from Hurricane Katrina were simulated on all four FEMs using the ADCIRC-2DDI 

code to determine topographic influence on inundation extent and total water levels. 

 Five major conclusions were drawn from this study (not listed in order of importance):  

1) DEM/FEM topographic elevation error is not normally distributed; 2) significantly increasing 
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element resolution (more than three elements spanning the river bank) in the Pascagoula River 

did not produce more accurate results when simulating astronomic tides; 3) the 5-m raster DEM 

interpolated to the FEMs performed with the most accuracy and efficiency compared to other 

bare earth derived-source elevation datasets; 4) a set of equations to interpolate a 5-m raster 

DEM to a FEM was established based on minimizing topographic elevation error: 
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5) changes in topographic representation affect inundation extent and maximum water levels 

from simulated storm tide both locally and non-locally. 

 It is also noted how the Shannon-Nyquist theorem from digital signal processing served 

well in determining the minimum limit of grid size in a bare earth LiDAR-derived DEM. 

 Topographic elevation error was found to be highly dependent on interpolation error and 

element size.  This was shown with RMSE and it changed was changed drastically with 

adjustment of either the interpolation method, element size, or both.  Additionally, since storm 

surge response was found to be non-local to changes in topography, it is important to consider 

the description of the ground surface in all regions and not just in the area of interest.  A final 

product of this thesis is a methodology to examine topographic error that is based on an efficient 

interpolating scheme to acquire elevation values from high-density bare earth LiDAR to mesh 

nodes with minimal elevation error. 

 The following are subjects to future work.  First, an analysis should be conducted to 

better assess topographic elevation error for non-normal distributions.  The non-normality of the 

errors eliminate the use of RMSE in computing the 95th percentile, as required by both FEMA 
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and ASPRS (FEMA, 2003; ASPRS, 2004).  Additionally, transforming the error dataset to a 

normal distribution to compute the standard deviation (equal to the RMSE of the differences) 

may allow a better assessment of topographic accuracy. 

 Second, a topographic error assessment including vertical features could benefit the 

methodology.  Since larger errors of elevation were found around high gradients in slope (i.e. 

roadbed, creek, etc.), placing mesh nodes along these features should drastically increase the 

accuracy of the FEM.  An algorithm is needed to efficiently automate unstructured triangular 

element paving of the overland region by incorporating significant raised features while 

minimizing topographic error and generating numerically stable elements. 

 Finally, a hydrodynamic assessment including wind driven waves would enable 

assessment of how the topographic representation affects waves and their momentum transfer to 

the water column. 

 Results of physically based numerical models improve when inputs mimic those of the 

real world, provided the applicability of the governing equations.  This thesis provides a 

foundation for quantitatively assessing the uncertainty in the discrete topographic surface 

representation of bare earth LiDAR.  Such quantitative assessment of mesh quality, as related to 

capture of the underlying source data, can serve a useful component to an overall scheme of 

assessing model uncertainty for a tide and storm surge model. 

  



 

200 
 

REFERENCES 

Aguilar, F. J., Aguera, F., Aguilar, M. A., & Carvajal, F. (2005). Effects of terrain morphology, 
sampling density, and interpolation methods on grid DEM accuracy. Photogrammetric 
Engineering & Remote Sensing, 71(7), 805-816.  

Aguilar, F. J., & Mills, J. P. (2008). Accuracy Assessment of LiDAR-Derived Digital Elevation 
Models. The Photogrammetric Record, 23(122), 148-169.  

Ali, T. (2004). On the selection of an interpolation method for creating a terrain model (TM) 
from LIDAR data. Paper presented at the American Congress on Surveying and Mapping 
(ACSM) Conference 2004, Nashville, TN, U.S.A. 

Anderson, E. S., Thompson, J. A., & Austin, R. E. (2005). LIDAR data density and linear 
interpolator effects on elevation estimates. International Journal of Remote Sensing, 
26(18), 3889-3900.  

Anderson, E. S., Thompson, J. A., Crourse, D. A., & Austin, R. E. (2006). Horizontal resolution 
and data density effects on remotley sensed LIDAR-based DEM. Geoderma, 132(3-4), 
406-415.  

Aquaveo. (2007a). SMS: Inverse Distance Weighted Interpolation, from 
http://www.xmswiki.com/xms/SMS:Inverse_Distance_Weighted_Interpolation 

Aquaveo. (2007b). SMS: Linear Interpolation, from 
http://www.xmswiki.com/xms/SMS:Linear_Interpolation 

Aquaveo LLC. (2010). Surface-water Modeling System (Version 10.1). Provo, Utah. Retrieved 
from http://xmswiki.com/xms/SMS:SMS, 

Aquaveo LLC. (2011). GMS: Triangulation, from 
http://www.xmswiki.com/xms/GMS:Triangulation 

http://www.xmswiki.com/xms/SMS:Inverse_Distance_Weighted_Interpolation
http://www.xmswiki.com/xms/SMS:Linear_Interpolation
http://xmswiki.com/xms/SMS:SMS
http://www.xmswiki.com/xms/GMS:Triangulation


 

201 
 

ASPRS. (2004). ASPRS Guidelines, Vertical Accuacy Reporting for LiDAR Data: American 
Society for Photogrammetry and Remote Sensing. 

Atkinson, J. (2007). Representation of vegetation on the wind boundary layer and surface bottom 
friction. Paper presented at the 10th International Workshop on Wave Hindcasting and 
Forecasting and Coastal Hazard Symposium, Oahu, Hawaii. 

Atkinson, J. H., Roberts, H. J., Hagen, S. C., Zou, S., Bacopoulos, P., Medeiros, S., . . . Cobell, 
Z. (2011). Deriving frictional parameters and performing historical validation for an 
ADCIRC storm surge model of the Florida Gulf Coast. Florida Watershed Journal, 4(2), 
22-27.  

Axelsson, P. (1999). Processing of laser scanner data - algorithms and applications. ISPRS - 
Journal of Photogrammetry and Remote Sensing, 54(2-3), 138-147.  

Bacopoulos, P. (2009). Estuarine Influence on Tidally Driver Circulation in the South Atlantic 
Bight. Ph.D., University of Central Florida, Orlando, FL.    

Bater, C. W., & Coops, N. C. (2009). Evaluating error associated with lidar-derived DEM 
interpolation. Journal of Computers and Geosciences, 35(2), 289-300.  

Bates, P. D., Marks, K. J., & Horritt, M. S. (2003). Optimal Use of High-Resolution Topographic 
Data in Flood Inundation Models. Hydrological Processes, 17, 537-557. doi: 
10.1002/hyp.1113 

Bilskie, M. V., Hagen, S. C., Salisbury, M., & Coggin, D. (2011). Low- Versus High-Resolution 
Finite Element Modeling of the Yellow River, FL. Paper presented at the Solutions to 
Coastal Disasters 2011, Anchorage, AL.  

Blain, C. A., Westerink, J. J., & Luettich, R. A. (1994). The influence of domain size on the 
response characteristics of a hurricane storm surge. Journal of Geophysical Research, 
99(C9), 18,467-418,479.  

Blain, C. A., Westerink, J. J., & Luettich, R. A. (1998). Grid convergence studies for the 
prediction of hurricane storm surge. International Journal of Numerical Methods in 
Fluids, 26, 369-401.  



 

202 
 

Blanton, J. O., Werner, F. E., Seim, H. E., Luettich, R. A. J., Lynch, D. R., Smith, K. W., . . . 
Way, F. (2004). Barotropic tides in the South Atlantic Bight. Journal of Geophysical 
Research, 109(C12024), 1-17.  

Blue Marble Geographics. (2011). Global Mapper (Version 12.02). Retrieved from 
http://www.globalmapper.com/ 

Bunya, S., Dietrich, J. C., Westerink, J. J., Ebersole, B. A., Smith, J. M., Atkinson, J. H., . . . 
Roberts, H. J. (2010). A high-resolution coupled riverine flow, tide, wind, wind wave, 
and storm surge model for southeastern Lousiana and Mississippi. Part I: Model 
development and validation. Monthly Weather Review, 128(345-377).  

Burrough, P., & McDonnell, R. A. (1998). Principles of geographical information systems: 
Oxford University Press. 

Carter, R. W. G. (1988). Coastal Environments London: Academic Press Limited. 

Chaplot, V., Darboux, F., Bourennane, H., Leguedois, S., Silvera, N., & Phachomphon, K. 
(2006). Accuracy of interpolation techniques for the derivation of digital elevation 
models in relation to landform types and data density. Journal of Geomorphology, 77, 
126-141.  

Coggin, D. (2008). LIDAR in coastal storm surge modeling: modeling linear raised features. 
M.S., University of Central Florida, Orlando, FL.    

Coggin, D. (2011). A digital elevation model for Franklin, Wakulla, and Jefferson Counties. 
Florida Watershed Jounral, 4(2), 5-10.  

Darboux, F., Gascuel-Odoux, C., & Davy, P. (2002). Effects of surface water storage by soil 
roughness on overland-flow generation. Earth Surface Processes and Landforms, 27, 
223-233.  

Dean, R. G., & Dalrymple, R. A. (2002). Coastal Processes with Engineering Applications. 
Cambridge: Cambridge University Press. 

http://www.globalmapper.com/


 

203 
 

Department of Atmospheric Sciences at University of Illinoise at Urbana-Champaign. (2010). 
Pressure and Winds  Retrieved 09-24, 2011, from 
http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/hurr/stages/cane/pswd.rxml 

Desmet, P. J. J. (1997). Effects of interpolation errors on the analysis of DEMs. Earth Surface 
Processes and Landforms, 22, 563-580.  

Dietrich, J. C., Tanaka, S., Westerink, J. J., Dawson, C. N., Luettich, R. A., Zijlema, M., . . . 
Westerink, H. J. (2012). Performance of the Unstructured-Mesh, SWAN+ADCIRC 
Model in Computing Hurricane Waves and Surge. Journal of Scientific Computing, In 
Press.  

Dietrich, J. C., Westerink, J. J., & Kennedy, A. B. (2011). Hurricane Gustav (2008) Waves and 
Storm Surge: Hindcast, Synoptic Analysis, adn Validation in Southern Lousiana. Monthly 
Weather Review, 139(8), 2488-2522.  

Dietsche, D., Hagen, S. C., & Bacopoulos, P. (2007). Storm surge simulations for Hurricane 
Hugo (1989): On the significance of inundation areas. Journal of Waterway, Port, 
Coastal, and Ocean Engineering, 133(3), 183-191.  

EarthData International. (2005a). Elevation Mapping Jackson and Hancock Counties, MS 
LiDAR Final Project Report. Frederick, MD. 

EarthData International. (2005b). Harrison County, Mississippi LiDAR Acquisition Report. 
Frederick, MD. 

EarthData International. (2005c). Harrison County, Mississippi LiDAR Processing Report. 
Frederick, MD. 

Eckstein, W., & Munkelt, O. (1995). Extracting objects from digital terrain models. Paper 
presented at the SPIE. 

ESRI. (2008). ArcGIS: The complete enterprise GIS  Retrieved 04-25-2011, 2011, from 
http://www.esri.com/software/arcgis/ 

http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/hurr/stages/cane/pswd.rxml
http://www.esri.com/software/arcgis/


 

204 
 

ESRI. (2011a). ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research 
Institute.  

ESRI. (2011b). ArcGIS Resource Center, from http://resources.arcgis.com/ 

FEMA. (2003). Appendix A, Guidance for aerial mapping and surveying, Guidelines and 
Specifications for Flood Hazard Mapping Partners: Federal Emergency Management 
Agency. 

Fisher, P. F., & Tate, N. J. (2006). Causes and Consequences of Error in Digital Elevation 
Models. Progress in Physical Geography, 22(1), 33-60.  

Florinksy, I. V. (1998). Combined analysis of digital terrain models and remotely sensed data in 
landscape investigations. Progress in Physical Geography, 22(1), 33-60.  

Florinksy, I. V. (2002). Errors of signal processing in digital terrain modelling. International 
Journal of Geographical Information Science, 16(5), 475-501.  

Franke, R., & Nielson, G. (1980). Smooth interpolation of large sets of scattered data. 
International Journal for Numerical Methods in Engineering, 15(11), 1691-1704.  

Fritsch, D., & Kilian, J. (1994). Filtering and calibration of laser scanner measurements. 
International Archives of Photogrammetry and Remote Sensing, 30(3/1), 227-234.  

Gao, J. (1997). Resolution and accuracy of terrain representation by grid DEMs at a micro-scale. 
International Journal of Geographical Information Science, 11(2), 199-212.  

Garratt, J. R. (1977). Review of drag coefficients over oceans and continents. Monthly Weather 
Review, 105(7), 915-929.  

Gesch, D., Oimoen, M., Greenlee, S., Nelson, C., Steuck, M., & Tyler, D. (2002). The National 
Elevation Dataset. Photogrammetric Engineering and Remote Sensing, 68(1), 5-11.  

Gesch, D. B. (2007). The National Elevation Dataset. In D. F. Maune (Ed.), Digital Elevation 
Model Technologies and Applications: The DEM Users Manual (Second Edition ed., pp. 

http://resources.arcgis.com/


 

205 
 

99-118). Bethesda, Maryland: American Society for Photogrammetry and Remote 
Sensing. 

Gong, J., Li, Z., Zhu, Q., Zhou, S., & Zhou, Y. (2000). Effects of Various Factors On the 
Accuracy of DEMs: An Intensive Experimental Investigation. Photogrammetric 
Engineering & Remote Sensing, 66(9), 1113-1117.  

Goslee, S. C. (2011). Analyzing remote sensing data in R: The landsat package. Journal of 
Statistical Software, 43(4), 1-25.  

Greenwalt, C. R., & Shultz, M. E. (1962). Principles of error theory and cartographic 
applications ACIC Technical Report No. 96 (pp. 89). St. Louis, Missouri. 

Hagen, S., Bacopoulos, P., Medeiros, S., Coggin, D., Salisbury, M., Atkinson, J. H., & Roberts, 
H. J. (2009). Storm surge modeling for FEMA map modernization for Franklin, Wakulla, 
and Jefferson Counties, Florida: University of Central Florida. 

Hagen, S. C. (2001). Estimation of the Truncation Error for the Linearized, Shallow Water 
Momentum Equations. Engineering with Computers, 17, 354-362.  

Hagen, S. C., Bacopoulos, P., Cox, A. T., & Cardone, V. J. (2011). Hydrodynamics of the 2004 
Florida Hurricanes. Journal of Coastal Research, In Press. doi: 10.2112/JCOASTRES-
D-10-00170.1. 

Hagen, S. C., & Parrish, M. (2004). Meshing Requirements for Tidal Modeling in the Western 
North Atlantic. International Journal of Computational Fluid Dynamics, 18(7), 585-595.  

Hagen, S. C., Westerink, J. J., & Kolar, R. L. (2000). One-dimensional finite element grids based 
on a localized truncation error analysis. International Journal for Numerical Methods in 
Fluids, 32, 241-261.  

Hagen, S. C., Westerink, J. J., Kolar, R. L., & Horstmann, O. (2001). Two-dimensional, 
unstructured mesh generation for tidal models. International Journal for Numerical 
Methods in Fluids, 35, 669-686.  



 

206 
 

Hagen, S. C., Zundel, A. K., & Kojima, S. (2006). Automatic, unstructured mesh generation for 
tidal calculations in a large domain. International Journal of Computational Fluid 
Dynamics, 20(8), 593-608.  

Harris, D. L. (1963). Characteristics of the Hurricane storm surge Technical Paper No. 48: U.S. 
Weather Bureau. 

Hasan, A., Pilesjo, P., & Persson, A. (2011). The use of LiDAR as a data source for digital 
elevation models - a study of the relationship between the accuracy of digital elevation 
models and topographical attributes in northern peatlands. Hydrology and Earth System 
Sciences Discussion, 8, 5497-5522.  

Hengl, T. (2006). Finding the right pixel size. Computers & Geosciences, 32(9), 1283-1298. doi: 
DOI 10.1016/j.cageo.2005.11.008 

Hjelle, O., & Dæhlen, M. (2006). Triangulations and Applications (1 ed.): Springer. 

Homer, Huang, C. C., Yang, L., Wylie, B. K., & Coan, M. (2004). Development of a 2001 
National Land Cover Database for the United States. Photogrammetric Engineering and 
Remote Sensing, 70(7), 829-840.  

Horrit, M. S., & Bates, P. D. (2001). Predicting floodplain inundation: raster-based modelling 
versus the finite-element approach. Hydrological Processes, 15, 825-842.  

Kennedy, A. B., Gravois, U., Zachry, B. C., Westerink, J. J., Hope, M. E., Luettich, R. A., & 
Dean, R. G. (2011). Origin of the Hurricane Ike forerunner surge. Geophysical Research 
Letters, 38(L08608).  

Kenward, T., Lettenmaier, D. P., Wood, E. F., & Fielding, E. (2000). Effects of digital elevation 
model accuracy on hydrological processes. Remote Sensing of Environment, 74, 432-444.  

Kienzle, S. (2004). The Effect of DEM Raster Resolution on First Order, Second Order and 
Compound Terrain Derivatives. Transactions in GIS, 8(1), 83-111.  

Kinnmark, I. (1985). The shallow water wave equations: forumulation, analaysis, and application 
Lecture Notes in Engineering. New York, New York: Springer-Verlag. 



 

207 
 

Kojima, S. (2005). Optimization of an unstructured finite element mesh for tide and storm surge 
modeling applications in the western north Atlantic Ocean. M.S., University of Central 
Florida, Orlando, FL.    

Kolar, R. L., Grey, W., Westerink, J. J., & Luettich, R. A. (1994). Shallow water modeling in 
spherical coordinates: Equation formulation, numerical implementation, and application. 
Journal of Hydraulic Research, 32(1), 3-24.  

Kubik, K., & Botman, A. G. (1976). Interpolation accuracy for topographic and geological 
surfaces. ITC Journal, 2(236-274).  

Le Provost, C., Lyard, F., Molines, J. M., Genco, M. L., & Rabilloud, F. (1998). A 
hydrodynamic ocean tide model improved by assimilating a satellite altimeter-derived 
data set. Journal of Geophysical Research, 103(C3), 5513-5529.  

Lefsky, M. A., Cohen, W. B., Parker, C. G., & Harding, D. J. (2002). LiDAR remote sensing for 
ecosystem studies. Bioscience, 52, 19-30.  

Lennon, G. W. (1963). A frequency investigation of abnormally high tidal levels at certain west 
coast ports. Paper presented at the Institution Civil Engineers. 

Li, Z., Zhu, Q., & Gold, C. (2005). Digital Terrain Modeling: Principles and Methodology. 
London, New York, and Washington, D.C.: CRC Press. 

Lilliefors, H. (1967). On the Kolmogorov-Smirnov test for normality with mean and variance 
unknown. Journal of the American Statistical Association, 62, 399-402.  

Liu, X. (2008). Airborne LiDAR for DEM generation: some critical issues. Progress in Physical 
Geography, 32(1), 31-49.  

Liu, X., Zhang, Z., Peterson, J., & Chandra, S. (2007a). The effect of lidar data density on DEM 
accuracy. Paper presented at the International Congress on Modelling and Simulation 
(MODSIM07), Christchurch, New Zealand. 

Liu, X., Zhang, Z., Peterson, J., & Chandra, S. (2007b). LiDAR-derived high quality ground 
control information and DEM for image orthorectification. GeoInformatica, 11(1), 37-53.  



 

208 
 

Liu, X., Zhang, Z., Peterson, J., & Chandra, S. (2008, June 25-27). Large area DEM generation 
using airborne LiDAR data and quality control. Paper presented at the 8th International 
Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental 
Sciences, Shanghai, P.R. China. 

Lloyd, C. D., & Atkinson, P. M. (2002). Deriving DSMs from LiDAR data with kriging. 
International Journal of Remote Sensing, 23(12), 2519-2524.  

Lloyd, C. D., & Atkinson, P. M. (2006). Deriving ground surface digital elevation models from 
LiDAR data with geostatistics. International Journal of Geographical Information 
Science, 20(5), 535-563.  

Lohmann, P., & Hug, C. (1998). Topographic mapping using the scanning laser altitude and 
reflectance Sensor (ScaLARS). Proc. ISPRS Joing Workshop "Sensors and Mapping 
from Space", University of Hanover, Institue for Photogrammetry and Engineering 
Surveys, WG I/1 & IV/4, 83-96.  

Lohr, U. (1998). Digital elevation models by laser scanning. Photogrammetric Record, 16(9), 
105-109.  

Longley, P., Goodchild, P. F., Maguire, D. J., & Rhind, D. W. (1999). Spatial Interpolation 
Geographical Informational Systems: Principles, Techniques, Management and 
Applications. New York: Wiley. 

Louisiana State University. (2009). Louisiana LiDAR, from http://atlas.lsu.edu/lidar/ 

Luettich, R. A., & Westerink, J. J. (2006). ADCIRC User's Manual - v46, from 
http://www.adcirc.org/documentv46/fort_15.html 

Luettich, R. A., Westerink, J. J., & Scheffner, N. W. (1992). ADCIRC: An Advanced Three-
Dimensional Circulation Model For Shelves, Coasts, and Estuaries, I: Theory and 
Methodology of ADCIRC-2DDI and ADCIRC-3DL: U.S. Army Corps of Engineers. 

Maune, D. F. (2007). Digital Elevation Model Technologies and Applications: The DEM Users 
Manual (2 ed.). Bethesda, Maryland: American Society for Photogrammetry and Remote 
Sensing. 

http://atlas.lsu.edu/lidar/
http://www.adcirc.org/documentv46/fort_15.html


 

209 
 

McCullagh, M. J. (1988). Terrain and surface modelling systems: theory and practice. 
Photogrammetric Record, 12(72), 747-779.  

Medeiros, S., & Hagen, S. C. (2011). Review of wetting and drying algorithms for numerical 
tidal flow models. International Journal for Numerical Methods in Fluids, Under Review.  

Medeiros, S. C., Ali, T., & Hagen, S. C. (2011). Development of a seamless 
topographic/bathymetric digital terrain model for Tampa Bay, Florida. Photogrammetric 
Engineering & Remote Sensing, In Press.  

Mendenhall, W., & Sincich, T. (2007). Statistics for Engineering and the Sciences (Fifth ed.). 
Upper Saddle River, NJ: Pearson Prentice Hall. 

Mississippi Department of Environmental Quality. (2001). Pascagoula River Basin Status Report 
2001. 

Mossa, J., Walker, F., Hermansen, G., Coley, D., & Ogbugwo, M. (2003). Geomorphic 
assessment of channel changes along a modified floodplain, Pascagoula River, 
Mississippi: Year 1 Interim Report. Gainsville: University of Florida. 

Mukai, A., Westerink, J. J., Luettich, R. A., & Mark, D. (2002). Eastcoast 2011: A tidal 
constituent database for the Western North Atlantic, Gulf of Mexico, and Caribbean Sea. 
Tech. Rep. ERDC/CHL TR-02-24,U.S. Army Corps of Engineers (pp. 201). 

National Oceanic and Atmospheric Administration (NOAA). (1998). Population: Distribution, 
Density, and Growth NOAA's State of the Coast Report. Silver Springs, MD: NOAA. 

National Weather Service. (2009). Glossary of NHC Terms. National Hurricane Center, from 
http://www.nhc.noaa.gov/aboutgloss.shtml 

NDEP. (2004). Guidelines for Digital Elevation Data Version 1.0. Reston, VA: National Digital 
Elevation Program. 

NOAA. (2010). Storm Surve Overview  Retrieved 09-22, 2011, from 
http://www.nhc.noaa.gov/surge/ 

http://www.nhc.noaa.gov/aboutgloss.shtml
http://www.nhc.noaa.gov/surge/


 

210 
 

Northwest Florida Water Management District. (2011). Flood Insurance Study: Florida 
Panhandle and Alabama: In Review. 

Oksanen, J., & Sarjakoski, T. (2006). Uncovering the statistical and spatial charactersitics of fine 
toposcale DEM error. International Journal of Geographic Information Science, 20, 345-
369.  

Oldham, M. B. J., & Rushing, J. W. (1970). Water Resources Planning for Pascagoula Basin. 
Journal of Waterways and Harbors Division, Proceedings of the American Society of 
Civil Engineers, 96(WWI), 65-85.  

Parrish, M. (2007). Target Element Sizes For Finite Element Tidal Models From A Domain-
Wide, Localized Truncation Error Analysis Incorporating Bottom Stress and Coriolis 
Force. Ph.D., University of Central Florida, Orlando, FL.    

Pawlowicz, R. B., Beardsley, B., & Lentz, S. (2002). Classical tidal harmonic analysis including 
error estimates in MATLAB using T_TIDE. Computers and Geosciences, 28, 929-937.  

Pearson, F. (1990). Map Projections: Theory and applications. Boca Rator, Florida: CRC Press. 

Perrott, C. (2007). Pascagoula River Basin  Retrieved 08/10/2011, 2011, from 
http://www.deq.state.ms.us/mdeq.nsf/page/WMB_Pascagoula_River_Basin?OpenDocum
ent 

Pielke, R. A. (1990). The Hurricane. London: Routledge. 

Pore, A. N. (1965). Chesapeake bay extratropical storm surges. Chesapeake Science, 6(3), 172-
182.  

Powell, M. D., Vickery, P. J., & Reinhold, T. A. (2003). Reduced drag coefficient for high wind 
speeds in tropical cyclones. Nature, 422, 279-283.  

Pugh, D. (2004). Changing Sea Levels. United Kingdom: Cambridge University Press. 

Rappaport, J. (2003). The United States as a Coastal Nation. Journal of Economic Growth, 8, 5-
46.  

http://www.deq.state.ms.us/mdeq.nsf/page/WMB_Pascagoula_River_Basin?OpenDocument
http://www.deq.state.ms.us/mdeq.nsf/page/WMB_Pascagoula_River_Basin?OpenDocument


 

211 
 

Reid, R. O. (1990). Waterlevel changes, tides and storm surges. Houston, Texas. 

Roberts, H. J. (2004). Grid Generation Methods for High Resolution Finite Element Models 
Used For Hurricane Storm Surge Prediction. Master of Science in Civil Engineering, 
Notre Dame, South Bend.    

Salisbury, M. B., Hagen, S. C., Coggin, D., Bacopoulos, P., Atkinson, J. H., & Roberts, H. J. 
(2011). Unstructured mesh development for the Big Bend Region (Florida). Florida 
Watershed Jounral, 4(2), 11-14.  

Samburg, A. (1997). What laser scanning can do today: current techniques. Advances in Remote 
Sensing, 5(Yearbook 1997), 114-119.  

Schoorl, J. M., Sonneveld, M. P. W., & Veldkamp, A. (2000). Three-dimensional landscape 
process modelling: The effect of DEM resolution. Earth Surface Processes and 
Landforms, 25, 1025-1034.  

Shannon, C. E. (1949). Communication in the presence of noise. Paper presented at the Institute 
of Radio Engineers. 

Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete 
samples). Biometrika, 52, 591-599.  

Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced data. Paper 
presented at the ACM National Conference. 

Shi, W. (2010). Principles of Modeling Uncertainties in Spatial Data and Spatial Analysis. Boca 
Raton, FL: CRC Press. 

Sibson, R. (1981). A brief description of natural neighbor interpolation Interpreting Multivariate 
Data (pp. 21-36). Chichester: John Wiley. 

Slack, L. J. (1991). Mississippi Stream Water Quality: National Water Summary 1990-91 United 
States Geological Survey Water Supply Paper 2400 (pp. 343-350). 



 

212 
 

Smith, J. M., Sherlock, A. R., & Resio, D. T. (2002). STWAVE: Steady-State Spectral Wave 
Model User's Manual for STWAVE, Version 3.0 Technical Report ERDC/CHL SR-01-1, 
Coastal Hydraulic Laboratory, U.S. Army Corps of Engineers, Engineer Research and 
Development Center. Vicksburg, MS. 

Southeast Digital Mapping, L. (2003). Standards and Specifications for Mobile County LiDAR 
Products. Theodore, AL. 

Strom, E. W. (1998). The Pascagoula River Basin. The Rivers of Mississippi  Retrieved 
08/11/2011, 2011, from http://ms.water.usgs.gov/ms_proj/eric/pasca.html 

Su, J., & Borke, E. (2006). Influence of vegetation, slope and lidar sampling angle on DEM 
accuracy. Photogrammetric Engineering & Remote Sensing, 72(11), 1265-1274.  

Takahashi, N. (2008). A high-resolution storm surge model for the Pascagoula region, 
Mississippi. University of Central Florida, Orlando, FL.    

Turnipseed, D. P., & Storm, J. B. (1995). Streamflow characteristics of the Lower Pascagoula 
River, Mississippi. Paper presented at the Twenty-Fifth Mississippi Water Resources 
Conference, Jackson, MS. 

Vogelmann, J. E., Howard, S. M., Yang, L., Larson, C. R., Wylie, B. K., & DVan Driel, N. 
(2001). Completion of the 1990s National Land Cover Data Set for the conterminous 
United States from Landsat thematic mapper data and ancillary data sources. 
Photogrammetric Engineering and Remote Sensing, 67, 650-652.  

Wang, Q. (2008). Finite element modeling of tides and currents of the Pascagoula River. M.S., 
University of Central Florida, Orlando.    

Watershed Concepts. (2004). Quality Control Evaluation of LiDAR Data For Louisiana FEMA 
Region VI Task Area 5 Louisiana Phase 1 LiDAR Project: Final Lidar Evaluation (pp. 
139). 

Weber, D., & Englund, E. (1994). Evaluation and comparison os spatial interpolators II. 
Mathematical Geology, 26, 589-603.  

http://ms.water.usgs.gov/ms_proj/eric/pasca.html


 

213 
 

Wehr, A., & Lohr, U. (1999). Airborne laser scanning - an introduction and overview. Journal of 
Photogrammetry and Remote Sensing, 54, 68-82.  

Westerink, J. J., Blain, C. A., Luettich, R. A., & Scheffner, N. W. (1994a). ADCIRC: An 
advanced three-dimensional circulation model for shelves, coasts, and estuaries: Report 2 
(pp. 168). Vicksburg, Mississippi: U.S. Army Corps of Engineers. 

Westerink, J. J., Feyen, J. C., Atkinson, J. H., Luettich, R. A., Dawson, C. N., Powell, M. D., . . . 
Pourtaheri, H. (2004). A New Generation Hurricane Storm Surge Model for Southern 
Lousiana ADCIRC Development Group Publications. 

Westerink, J. J., Luettich, R. A., Feyen, J. C., Atkinson, J. H., Dawson, C., Roberts, H. J., . . . 
Pourtaheri, H. (2008). A basin- to channel-scale unstructured grid hurricane storm surge 
model applied to Southern Lousiana. Monthly Weather Review, 136, 833-864.  

Westerink, J. J., Luettich, R. A., & Muccino, J. C. (1994b). Modeling tides in the western North 
Atlantic using unstructured graded grids. Tellus, 46A, 178-199.  

Zandbergen, P. A. (2008). Positional accuracy of spatial data: non-normal distributions and a 
critique of the National Standard for Spatial Data Accuracy. Transactions in GIS, 12(1), 
103-130.  

Zandbergen, P. A. (2011). Characterizing the error distribution of LiDAR elevation data. 
International Journal of Remote Sensing, 32(2), 409-430.  

Zhu, C., Shi, W., Li, Q., Wang, G., Cheung, T. C. K., Dai, E., & Shea, G. Y. K. (2005). 
Estimation of average DEM accuracy under linear interpolation considering random error 
at the nodes of a TIN model. International Journal of Remote Sensing, 26(24), 5509-
5523.  

Zimmerman, D., Pavlik, C., Ruggles, A., & Armstrong, M. (1999). An experimental comparison 
of ordinary and unverisal kriging and inverse distance weighting. Mathematical Geology, 
31, 375-390.  

 
 


	Influence Of Topographic Elevation Error On Modeled Storm Surge
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER 1: INTRODUCTION
	CHAPTER 2: LITERATURE REVIEW
	2.1 Large Domain Storm Surge Modeling
	2.2 Digital Elevation Models
	2.2.1 Interpolation Error
	2.2.2 DEM Grid Size

	2.3 LiDAR in Coastal Hydrodynamic Finite Element Models
	2.4 Introduction to Storm Surge

	CHAPTER 3: INTERPOLATION METHODS
	3.1 Linear Interpolation
	3.2 Inverse Distance Weighed Interpolation
	3.3 Natural Neighbor Interpolation
	3.4 Area Averaging

	CHAPTER 4: DESCRIPTION OF STUDY DOMAIN
	CHAPTER 5: LiDAR DATA ACQUISITION
	5.1 LiDAR Requirements for Flood Modeling
	5.2 LiDAR Source Data

	CHAPTER 6: TOPOGRAPHIC ERROR ASSESSMENT METHODOLOGY
	6.1 Selection of Test Sites
	6.2 DEM and Finite Element Mesh Generation
	6.3 Accuracy Analysis Statistics (RMSE)
	6.4 Test for Normality
	6.5 Accuracy Assessment Results
	6.6 Louisiana Test Sites
	6.7 Preliminary Conclusions

	CHAPTER 7: DEM DEVELOPMENT
	7.1 Terrain Dataset
	7.2 Test and Training Data
	7.3 Raster DEM Generation
	7.4 Results of LiDAR DEM Generation
	7.5 Seamless Pascagoula Floodplain DEM Generation

	CHAPTER 8: FINITE ELEMENT MESH DEVELOPMENT
	8.1 In-Bank Mesh Development
	8.1.1 Digitization of Model Boundary
	8.1.2 Triangulation
	8.1.3 Bathymetry

	8.2 Floodplain Mesh Development
	8.2.1 Equilateral Regions
	8.2.2 Remaining Floodplain Mesh
	8.2.3 Mesh Node Interpolation


	CHAPTER 9: LARGE DOMAIN TOPOGRAPHIC ERROR ASSESSMENT
	9.1 Equilateral Mesh Node Interpolation
	9.2 Accuracy Assessment Results and Discussion

	CHAPTER 10: NUMERICAL CODE DOCUMENTATION
	10.1 Numerical Model Description
	10.2 Governing Equations
	10.3 ADCIRC Bottom Friction Formulation

	CHAPTER 11: MODEL SETUP
	11.1 Astronomic Tide Model Setup
	11.2 Coupled Tide and Storm Surge Model Setup

	CHAPTER 12: MODEL RESULTS
	12.1 Astronomic Tide Results
	12.2 Storm Surge Results

	CHAPTER 13: CONCLUSIONS AND FUTURE WORK
	REFERENCES

