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ABSTRACT 

 

The style of imparting medical training has evolved, over the years. The traditional methods of 

teaching and practicing basic surgical skills under apprenticeship model, no longer occupy the 

first place in modern technically demanding advanced surgical disciplines like neurosurgery. 

Furthermore, the legal and ethical concerns for patient safety as well as cost-effectiveness have 

forced neurosurgeons to master the necessary microsurgical techniques to accomplish desired 

results. This has lead to increased emphasis on assessment of clinical and surgical techniques of 

the neurosurgeons. However, the subjective assessment of microsurgical techniques like micro-

suturing under the apprenticeship model cannot be completely unbiased. A few initiatives using 

computer-based techniques, have been made to introduce objective evaluation of surgical skills. 

This thesis presents a novel approach involving computerized evaluation of different components 

of micro-suturing techniques, to eliminate the bias of subjective assessment. The work involved 

acquisition of cine clips of micro-suturing activity on synthetic material. Image processing and 

computer vision based techniques were then applied to these videos to assess different 

characteristics of micro-suturing viz. speed, dexterity and effectualness. In parallel subjective 

grading on these was done by a senior neurosurgeon. Further correlation and comparative study 

of both the assessments was done to analyze the efficacy of objective and subjective evaluation. 
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1. INTRODUCTION 

 

The human central nervous system with its intricate neural network, is the most advanced 

structure known in the universe. It is characterized by complex and intricate anatomy involving 

the nerves, blood vessels, and deep seated and inaccessible areas [1]. Thus, Neurosurgical 

procedures pose series of challenges for the neurosurgeons, requiring detailed knowledge of 

micro-neuro-anatomy and well-versed surgical skills [2]. Owing to the complex anatomy, the 

margin of error in these surgical procedures is very low. Even a minor surgical error made by the 

surgeon can lead to irreversible catastrophes like paralysis and death [1,2].  

Traditional skills training in neurosurgery is imparted by ‘Halstedian apprenticeship method’. In 

this set up, the trainee is allowed to initially learn by observation and then followed by hands-on 

experience on human brain (patient) under the supervision of senior neurosurgeon. But, these 

methods of imparting surgical education and training are constantly being challenged by 

concerns of patient safety, increased operation room time and cost-ineffectiveness [11]. This 

suggests the use of alternative methods of instruction for MIS training [5-10]. 

Moreover, the apprenticeship model subjects the trainees progress to the evaluation by a senior 

surgeon which cannot be completely unbiased and does not give a component-wise objective 

feedback indicating distinguished deficit skills. Such a supervised evaluation in a 

monitored/constrained environment adds to the anxiety of the trainee resulting in poor 

performance. Teaching, developing, and practicing basic surgical skills via the apprenticeship 

model of training are no longer considered appropriate in the operating room [12].  

The medical fraternity has been confronted with challenges of keeping pace with evolving 
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technologies and changes in healthcare system [4]. A variety of newer methods to prepare 

trainees for the operating room have been implemented in recent years, due in large part to the 

fact that surgical procedures are changing from open surgery to minimal access surgery (MAS) 

[or minimally invasive surgery (MIS)], a practice requiring new suites of technical skills. Also, 

iatrogenic errors made by the trainees have drawn increasing attention to the surgical techniques 

and dexterity of the surgeons, which require elaborate and effectual training [12]. 
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1.1  Background 

1.1.1 Neurosurgery Skills Training 

In the current state of the art, neurosurgical procedures require high competence of different 

surgical skills such as endoscopy, microsurgery, high speed drilling and spinal instrumentation 

[2]. A major proportion of the neurosurgical procedures involve microsurgical techniques, which 

are complex and require significant level of precision owing to the fine anatomy of the central 

nervous system.  

In neurosurgical procedures, microsurgical skills/techniques are predominantly demonstrated in 

surgical tasks like dural repair, nerve anastomosis and blood vessel anastomosis, where the 

tissues being worked on are roughly of the thickness/diameter varying between 0.5 to 3.0 mm 

[12]. As per the paper published in 1979 [20], the minimum diameter of vessel considered for 

operation is 0.3 mm in microsurgery. This constraint was found to be guided by limitations of 

low magnifying optic aid, large suture material, human-hand motor functions like dexterity and 

degrees of freedom.  

The several reasons that contribute to microsurgical procedures being demanding are as follows:  

1. The microscope magnifies, and amplifies the small movements into larger 

displacements when seen from the eye-piece in all dimensions. 

2. It limits the visual field. 

3. Physiological tremor becomes more prominent/apparent, in-proportion to the 

length of the surgical instrument. 

4. The movements in the direction of the depth are equally altered, which have 

slower cognitive learning curve as compared to planar movements [3]. 
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Also, long operating hours for the surgeon in the same posture and limited amount of movements 

can add to his fatigue and affect his performance adversely. 

Therefore, in order to regain visual-motor coordination in the new magnified habitat and acquire 

microsurgical techniques, needs good amount of practice in the environment/field and getting 

used to, and is not a skill that can be acquired by observation. Also, a continual practice is 

necessary even after the skill is gained to prevent the loss of dexterity [2,3].  

 

1.1.2  Skills Training and Evaluation: Micro-neurosurgery 

Efforts are being made to address the constraints of microsurgery and stretch the limits of 

operative cases, such as development of finer sutures, higher-magnification microscopes, finer 

instrument/micro-manipulators and robotic manipulators [3]. However, the key area needing 

attention still remains surgical skills and dexterity of the neurosurgeons that require elaborate 

and effectual training as well as continuous practice. 

Various institutions in the world have begun microsurgical skills training courses using 

simulator, synthetic material or training sessions on small laboratory animals to allow the 

trainees to hone their surgical skills. This training is imparted under variety of schemes, such as 

several consecutive weeks/months of gradual advancement through the modules or short annual 

weekend workshops. The non-clinical, surgical skills training methods can be broadly divided 

into the following four categories: 

 Skills Training on Computerized Modules or Virtual Reality Simulators  

 Skills Training on Synthetic Modules 

 Skills Training on Cadaver Modules 
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 Skills Training on Animal Modules  

Skills training and practice sessions on each of these modules have their own advantages and 

disadvantages that are still being elucidated in various validation processes [21].  

 

1.1.2.1 Skills Training on Computerized Modules or Virtual Reality Simulators  

Simulation based systems have gained popularity over the last 20 years. Simulation may 

be defined as the imitation of the operation of a real-world process or system over time 

[22], thus providing an opportunity to learn and experience in a riskless situation. Its 

broad applicability is exemplified in neuro-endoscopy training. Neuro-endoscopy is a 

popular surgical choice for the management of intra-ventricular lesions and the 

treatment of hydrocephalus. Neuro-endoscopic techniques were predominantly 

demonstrated on cadaver sections as they are the closest one can get preserved structural 

neuro-anatomy without working with patients [23,24]. However, cadavers do not 

recreate a realistic semblance for ventriculoscopic work due to lack in the physical 

tissue properties of tissues such as consistency, color and fluidity. Adding to this high 

cost of embalming, preservation and storage of cadavers, and also lack of availability in 

various countries [23,24], have necessitated the adoption of newer methods. 

The challenges in development of surgical simulators is to provide a good semblance of 

the experience of various pathologies, while having standardized training milestones 

that allow a gradual progression through different modules increasing in the level 

complexity judged by objective assessments of performance [25].  
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NeuroTouch (shown in Figure 1.1.2-1), being one of the most popular and advanced 

virtual reality neurosurgery simulator with haptic feedback, used for imparting skills 

training and assessment aided by tactile and visual cues. NeuroTouch is a product of 

collaboration between National Research Council Canada and medical teaching 

hospitals across Canada. Its primary components are a stereovision system, bimanual 

haptic tool manipulators, and a high-end computer. The software engine of this 

simulator runs on 3 processes for computing graphics, haptics, and mechanics. Training 

tasks are built from MRI scans of patients suffering with different pathologies. The 

training tasks modeled by this system allow the user to practice surgical skills with 4 

different surgical tools. This system has been developed for three different surgical 

tasks. 

 Brain tumor resection: Where the main objective is to execute complete removal of 

the vascularized tumor tissue without removing non-tumor tissues, using the regular 

surgical aspirator (suction), the ultrasonic aspirator, and bipolar electro cautery.  

 Endoscopic transnasal procedures: Where training scenario involves navigating 

with an endoscope inside a nasal cavity to find the ostium of the sphenoid sinus 

while observing the cavity and anatomy through endoscopic view. 

 Endoscopic Third Ventriculostomy: Where the user navigates through first and 

third ventricles to select a target perforation [26-28]. 
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Figure 1.1.2-1 - NeuroTouch: Virtual Reality Neurosurgery Simulator 

 

Another interesting virtual reality neurosurgical simulator is ImmersiveTouch 

(Fig 1.1.2-2), which facilitates the surgeon in interacting with a 3D computer-

generated virtual anatomical model using haptic device. The simulator provides 

visual, tactile, and audio feedback of a surgical procedure. This system builds 

the 3D anatomical model cases using the pathologies observed in patient’s CT 

and/or MRI data. The system facilitates the user by allowing him to view 

relevant fluoroscopic shots if required to give a closer semblance to OR 

capabilities. This system also has additional 3D monitors so that the trainee can 

discuss or share different procedural steps with other trainees or seniors. The 

ImmersiveTouch and MicrovisTouch simulators have been developed for open 

and percutaneous procedures, and Micro-surgery procedures. 

The ImmersiveTouch simulator incorporates: 
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 A two-handed instrument replicates 

 Surgery specific foot pedals 

 Fluoroscopy and ultrasound guidance (during procedure steps) 

 Endoscopic views (when needed) 

 Real time surgical effectiveness and accuracy metrics 

 iPad for controls, visualization software and apps [32]. 

 

Figure 1.1.2-2 - ImmersiveTouch: Virtual Reality Neurosurgery Simulator 

 

However, the virtual reality simulators are still in the development phase, and require a 

huge initial investment [29,30]. Also, the computational burden often results in lack of 

fluidity of real-time interactive simulators due to digital piecewise rendering. The 
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production of realistic tactile sensory feedback remains unachieved, due to cost 

requirements. Moreover, the current systems lack the expected semblance to live tissues 

[31]. 

 

1.1.2.2 Skills Training on Synthetic Modules 

According to some researchers, synthetic physical simulators are more reliable, 

effective, and comparatively more cost-efficient as compared to virtual simulators, 

human cadavers, and animal models [33-38]. Moreover, the synthetic surgical 

simulators for neurosurgery have better semblance of live tissue as compared to virtual 

simulators. These designs can also offer repetitive practice sessions, while allowing the 

user to perform image-guided navigation using CT and MRI data [39,40].  

One of the portable synthetic module based training tool is Microvascular Practice Card. 

It allows repeated practicing of microvascular anastomosis procedure in various 

situations. This non-animal practice tool helps trainees practice under safe and hygienic 

conditions that reduces the need of laboratory animals during technical training and can 

be used in dry labs for practice purposes. This module allows trainees to hone their 

skills by gradual advancement through tube diameters reducing in diameter from 1.0 

mm to tubes with 0.5 and 0.3 mm diameter [43].    
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Figure 1.1.2-3 - Microvascular Practice Card 

 

A very important advantage with these modules is that they have much better semblance 

of OR environment, due to high-fidelity haptic and visual feedback [41]. One of the 

developments of synthetic surgical simulators involved, a brain silicone replica 

mimicking normal mechanical properties of a 4-month-old child with hydrocephalus 

pathology, encased in a replicated skull, and immersed in water. As claimed by the 

paper, the intraventricular landmarks including the choroid plexus, veins, mammillary 

bodies, infundibular recess, and basilar artery demonstrating bleeding scenarios, give a 

much realistic semblance of live tissues. The thinned-out third ventricle floor in this 

model is replaceable, making this model reusable. Standard neuroendoscopic equipment 

including irrigation is used [42].  
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1.1.2.3 Skills Training on Cadaver Modules 

As discussed earlier, the cadaver based modules offer the closest structural semblance to 

the minutiae’s of Neuro-anatomy, but due to lack of the physical properties in the 

tissues such as consistency, color and fluidity, they fail to provide satisfactory 

experience for surgical skills training. Also, the added cost of embalming, preservation 

and storage of cadavers, and also lack of availability in various countries [23,24], make 

them inadequate for surgical skills training. But, they are definitely are a good subject to 

impart educative lessons and lectures on structural neuro-anatomy using different slices 

of the brain and spinal cord [1]. 

 

1.1.2.4 Skills Training on Animal Modules 

Hands-on skills training on small laboratory animals provides trainees the closest 

semblance to surgical scenario as they are dealing with tissues. The neurosurgical skills 

training under this module involves nerve and vessel anastomosis procedures performed 

on femoral artery and sciatic nerve of the anaesthetized albino rats [1]. But, 

establishment of such laboratories require various ethics committees permissions. Thus, 

not every institute can establish such a laboratory.  

The vitro perfusion module for microvascular anastomosis training is a technique that 

falls in the category of animal modules and synthetic modules. This module is 

developed by extracting arteries and veins of 1 mm in diameter from the chicken wings. 

For the explanation the vessels were cannulated at both ends and mounted on a 
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platform. These vessels were then supplied with blood obtained from blood banks 

injected through the proximal catheter, using an automatic perfusor to give a natural 

semblance of a vascular anastomosis procedure. This is very simple and reliable module 

facilitating repeated use of low cost materials. Also, vessels explanted from the human 

placenta or earthworms may be used in a similar manner to develop such modules as 

supplement for microvascular tissues [44,45].  The discussion above related to the non-

clinical surgical skills training methods, is summarized in Table 1.2. 

Moreover, the impact of hands-on micro-surgical skills training has been evident in 

several studies [13,14]. The assessments on synthetic material or anaesthetized small 

laboratory animal, are mostly conducted by a senior surgeons, thus trainee’s 

performance is still subject to bias and his progress through modules and his evaluation 

is collectively subjective. OSATS is one popular method that creates a structured way of 

analyzing the microsurgical task to make evaluation by a senior surgeon more reliable 

and consistent [15-18]. OSATS stands for Objective Structured Assessment Of 

Technical Skills; it follows the different parameters to assess the surgical performance 

shown in Table 1.1, where each parameter is graded on a scale of 5 [19]. One of the 

drawbacks of this technique is that even though the grading is comparatively more 

reliable, it is still subject to human errors and undeniably varies with the bias of the 

evaluator.   
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Table 1-1 - Global Scale of Objective Structured Assessment of Technical Skills (OSATS) 

Respect for 

tissue  

 

1 2 3 4 5 

Frequently used 

unnecessary force 

on tissue or caused 

damage by 

inappropriate use of 

instruments 

Careful handling of 

tissue but 

occasionally caused 

inadvertent damage 

Consistently 

handled tissues 

appropriately with 

minimal tissue 

damage, no rough 

handling 

Time and 

motion  

 

1 2 3 4 5 

Many unnecessary 

moves 

Efficient time/motion 

but some unnecessary 

moves 

Clear economic 

movement and 

maximum 

efficiency 

Instrument 

handling  

 

1 2 3 4 5 

Repeatedly makes 

tentative or 

awkward moves 

with instruments 

Competent use of 

instruments although 

occasionally 

appeared still and 

awkward 

Fluid moves with 

instruments and no 

awkwardness 

Knowledge of 

instruments  

 

1 2 3 4 5 

Frequently asked 

for wrong 

instrument or used 

inappropriate 

instrument 

Knew names of most 

and used appropriate 

instrument 

Obviously familiar 

with the 

instruments 

required and their 

names 

Flow of 

operation  

 

1 2 3 4 5 

Frequently stopped 

operating and 

seemed unsure of 

the next move 

Demonstrated some 

forward planning 

with reasonable 

progression of 

procedure 

Obviously planned 

course of operation 

with effortless 

flow from one 

move to the next 

Knowledge of 

specific 

procedure  

 

1 2 3 4 5 

Deficient 

knowledge, needed 

specific instruction 

at most steps 

Knew all important 

steps of operation 

Demonstrated 

familiarity with all 

the aspects of 

operation  

Quality of 

anastomosis  

1 2 3 4 5 

Crossed and tangled 

suture material, 

sloppy knots, 

imprecise and 

inconsistent suture 

placement 

Minimal tangling, 

mostly square knots, 

good suture 

placement and 

consistency with 

some variability 

Excellent suture 

material 
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Table 1-2 - Non-clinical Skills Training Methods 

Skills Training 

Method 

Semblance to 

Surgical 

Scenario 

Re-

Usability/ 

Repetition 

Initial 

Cost 

Maintenance 

Cost 

Patient Specific 

Cases 

Visual and Haptic 

Feedback 

Best suited for 

Computerized 

Modules or 

Virtual Reality 

Simulators  

Not as good, 

as most of the 

products are 

still in the 

development 

phase. 

Yes Very 

High 

Low Possible Not good. Surgical skills 

practice 

Synthetic 

Modules 

Much better 

than Virtual 

Modules. But 

less explored 

domain. 

For Some Lower 

than 

other 

options 

Higher, as 

repetition 

requires 

replacement 

Possible but harder. Quite good Evaluation and 

surgical skills 

training  

Cadaver 

Modules 

Good 

structural 

semblance, 

but not tissue 

properties. 

No High  High cost of 

embalming 

and storage. 

Possible but 

tougher to obtain. 

Not good. Education on 

Neuro-anatomy 

Animal 

Modules  

Very good Once or 

twice 

Modera

te 

High cost of 

laboratory 

maintenance 

Not possible Very good Surgical skills 

training and 

practice 
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1.1.3 Object Segmentation 

Background subtraction is a widely used approach to distinguish and successively detect moving 

foreground objects from the background. The basic approach involves detecting the moving 

objects from the difference between the current frame and a reference frame (often called the 

“background image”, or “background model”). One of the basic requirements of this approach to 

understand the background elements is representation of the scene with certain number of frames 

with no moving objects. In order to make the subtraction more robust to varying luminance 

conditions and geometry settings, these must regularly be updated [46]. 

Several techniques for performing background subtraction have been proposed, which estimate 

the background model successfully from temporal sequence of frames. 

1.1.3.1 Running Gaussian average 

This technique proposes to model the background independently at each pixel (i, j) 

location by ideally fitting a Gaussian probability density function on the last ‘n’ pixel 

values. In order to avoid the overhead of fitting the probability density function from 

scratch for every new frame time, t, a running (or on-line cumulative) average is 

computed instead as per equation 1.1. 

 

 𝜇t = 𝛼It + (1 − 𝛼) 𝜇t-1            (1.1) 

 

where, 

 It  = pixel’s current value 

 𝜇t = previous average 
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𝛼 = empirical weight (stability and quick update) 

 

The standard deviation 𝜎 for each pixel can also be computed. This technique has two 

parameters (𝜇t , 𝜎t ) for each pixel, in place of the buffer for last n pixel values. One can 

classify a particular It at time frame t as foreground pixel if it satisfies equation 1.2. 

| It - 𝜇t | > k 𝜎t             (1.2) 

This, running average computation results in reducing the complexity as well as the 

memory requirement [47]. Koller et al. [48] modification to this scheme suggested 

modification in the model given in equation 1.3, 

𝜇t = 𝑀𝜇t-1 + (1-M)(𝛼It + (1 − 𝛼) 𝜇t-1)           (1.3) 

where,  

M = 1 if foreground value 

     = 0 otherwise  

Since, the input values required for this algorithm is only the intensity values of pixels, 

this technique can accept inputs in form of any of the color models (RGB or YUV) for 

multiple components or a single channel gray scale images. The update rate for the 

algorithm can be set, lower the update rate of the background model, the slower the 

system will be able to adapt to the actual background dynamic [46].  
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1.1.3.2 Temporal median filter 

Temporal median filtering is another well-known technique for background subtraction. 

The basic fundamental of this technique is to use the median value of the last n frames 

as the background model [49]. To further increase the stability of the background 

model, the median should be computed on a special set of values containing the last n, 

sub-sampled frames and w times the last computed median value. One of the major 

disadvantages of the median-based approach is that its computation requires a buffer 

overhead with the recent pixel values. Moreover, the median filter does not 

accommodate for a rigorous statistical description and does not provide a deviation 

measure for adapting the subtraction threshold [50].  

 

1.1.3.3 Mixture of Gaussians 

This technique uses the knowledge that, over time different background objects are 

likely to appear at a same (i,j) pixel location, particularly when this is due to a 

permanent change in the scene's geometry. In such a scenario, above-mentioned 

background subtraction models will promptly adapt to reflect the value of the current 

background object. But, sometimes the changes in the background object are not 

permanent; rather change at a rate faster than the background update. In such cases a 

single-valued background is not appropriate for the classification purpose. (Example is 

that of an outdoor scene with trees partially covering a building) 

Gaussian mixture model proposes a case of multi-valued background model that is more 

robust to such variations due to multiple background objects.  
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This is a probability-based approach of observing a certain pixel value, x, at time t by 

means of a mixture of Gaussians given in equation 1.4. 

P (xt) = ∑ ωK
i=1 i,t η (xt - μi,t Σ i,t )            (1.4) 

 

Where, for each value of the K, Gaussian distributions are to describe only one of the 

observable background or foreground objects.  

When K is set to a value between 3 and 5, gaussians are multi-variate to describe red, 

green and blue values. If these values are assumed independent, the co-variance matrix, 

simplifies into a diagonal matrix. In addition, if the standard deviation for the three 

channels is assumed the same, it further reduces to a simpler problem, σ2
iI. 

In order to define the discrimination between the foreground and background 

distributions, first all the distributions are ranked based on the ratio between their peak 

amplitude, ωi and the standard deviation, σi. 

Then the pixels are classified based on the knowledge, that higher and more compact 

the distribution is, higher is the likelihood of it belonging to the background.  

Using this scheme, the first B distributions in the ordered ranking satisfying with a 

threshold T, are considered as the background (refer equation 1.5). 

   ∑ ωB
i=1 i > T are classified as background pixels         (1.5) 

Therefore, at each t frame time, two problems are simultaneously solved  

 Assigning the new observed value xt to the best matching distribution 

 Estimating the updated model parameters 

These concurrent problems can be solved by an expectation maximization (EM) 

algorithm working on the buffer of the last n frames [51,52].  
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1.1.4  Object Tracking 

The goal of the object-tracking algorithm is to generate the trajectory of an object over time, by 

locating its position in every video frame, and establishing correspondence between the object 

instances across frames. There are two different ways to this. First, the possible object regions in 

every frame can be obtained by means of object detection, and then the tracker can correspond to 

these individual sets of locations of the objects across frames. And second, the object region and 

correspondence locations are estimated in an iterative fashion by updating object location and 

region information obtained from previous frames [53]. Broad classification of tracking 

techniques can be as seen in the Fig 1-4 [53]. 

 

  

Figure 1-4 - Tracking taxonomy 
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Point-based Tracking: An object is either represented by a point or by a set of points, such as the 

centroid or certain interest points. Point correspondence observed between frames using such a 

technique suffers in the presence of occlusions, misdetections, entries, and exits of objects. This 

approach can be further classified into two broad categories, namely, deterministic and statistical 

methods. In the deterministic approach the correspondence problem is constrained by the use of 

qualitative motion heuristics. While in the probabilistic approach, object measurement is taken 

explicitly as well as the uncertainties are taken into account to establish correspondence. In 

general, the point representation is suitable for tracking objects that occupy small regions in an 

image [54,55]. Deterministic approaches proposed by different papers demonstrate the 

deployment of distinguished constraint schemes, such proximity, rigidity, maximum velocity, 

smallest velocity, common motion, temporal coherency, etc. [53,58,59]. 

Points detected on objects in video sequences are invariably affected by noise. Even the object 

motions can undergo sudden/random changes. Incorporation of statistics in correspondence 

methods can improve the accuracy of these tracking problems by taking into account not just the 

detection but the possible uncertainties. Different approaches that work under such a scheme 

using state space model with the detections fall under the category of probabilistic point-based 

tracking techniques. This category of object tracking has had applications in not just tracking but 

also in the computation of shape-from-motion [60], activity recognition [61], object 

identification [62], contour tracking [63], etc. One of the popular probabilistic point based 

tracking technique using single object state estimation, Kalman Filtering is detailed below.  

1.1.4.1 Kalman Filter 

Kalman filter is a technique that works on the assumption that the state distribution is 
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Gaussian, to estimate the state of a linear system. This technique can be broadly divided 

into two components, prediction and correction. The prediction component of the 

algorithm uses the state model to find an estimation of the position of the object in the 

current frame is given by the equation 1.6 and 1.7. 

p Xt = DXt−1+W              (1.6) 

pΣ t =D Σ t−1DT+Qt             (1.7) 

where, 

  pX
t
 = state prediction at time t 

  pΣ
t 

= covariance prediction at time t 

  D = state transition matrix, determining the relation between the states at  

               time t and t-1 

Q = covariance factor of white noise  

Whereas, the correction component of the algorithm uses the detections in the current 

frame to update the state of the object as given by equation 1.8, equation 1.9 and 

equation 1.10. 

Kt = pΣ
t
MT[MpΣ

t
MT + Rt]−1            (1.8) 

Xt = pX
t
+Kt[Zt−MpX

t
]            (1.9) 

Σt =pΣ
t
−KtMpΣ

t  
          (1.10) 

Where,  

  Zt−MpX
t 

= innovation at time t 

  M = measurement matrix 
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  K = Kalman gain, used for propagation of state models 

  

Over time, various adaptations of Kalman filter algorithm for different applications 

[80,81].  

 

Primitive geometric shapes/Kernel Tracking: Object shapes can be represented by known regular 

shapes such as rectangle and ellipse. Motion detection for such object representations can be 

modeled by translation, affine, or projective homography-based transformations. This technique 

using primitive geometric shapes, can be used for representing both simple rigid objects and non-

rigid objects [53,56].   

Silhouette Tracking: This is an efficient technique apt for tracking and recognizing non-rigid 

objects, using either silhouette or contour representations or both [57]. Objects with complex 

shapes such as human body with flailing parts(hands, head, and shoulders) cannot be well 

described by simple geometric shapes. Silhouette- based methods provide a much accurate 

description for these objects. The goal of a silhouette-based object tracker is to find the object 

region in each frame by means of an object model generated using the previous frames. These 

models can be described using color histogram, object edges, object contour or combinations of 

them [64,65]. Silhouette trackers further divided into two categories, shape matching and contour 

tracking. Shape matching techniques are based on finding object silhouette in each frame, 

whereas, contour tracking techniques, work with evolving an initial contour into its new position 

at each frame [53]. Active Shape Models are one of successful and popularly used technique for 

object fitting using contour based. 



    23 

1.1.4.2 Multiple Objects 

In a successful multiple object tracking system, we need the algorithm to consistently 

model the background and all moving objects explicitly tracked. But the motion object 

tracking models do not take into account the interaction between the moving objects. 

When tracking multiple objects using Kalman or particle filters, one needs to 

deterministically associate the different observations in consecutive frames to the 

particular object and its state. This is a correspondence problem that needs to be 

addressed before the application of filters. The simplest method to perform 

correspondence is to use the nearest neighbor approach, except when objects are close 

to each other. This problem can even lead the filter to fail to converge. There exist 

several statistical data association techniques to tackle this problem. Joint Probability 

Data Association Filtering (JPDAF) and Multiple Hypothesis Tracking (MHT) are two 

widely used statistical data association techniques to solve this problem [66]. MHT 

works on the conclusion that there is a significant chance of an incorrect 

correspondence, if tracking correspondence is established using only two frames. 

Therefore, it tries to establish correspondence decision over detections in several 

frames, based on several correspondence hypotheses for each object at each time frame 

[53, 67].  

 

1.1.5 Object Fitting and Modelling 

Unlike non-rigid object tracking, quite a bit of work has been done in the field of rigid object 

tracking and fitting. However, in many problems there is need to model and track the non-rigid 

object over time. A popular deformable model technique used to solve this type of problem is 
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Snakes. This technique and its revised variants have gained significant attention and are 

popularly used for the segmentation of non-rigid 2D and 3D objects [68-74]. But different 

problems associated with snakes techniques such as initialization sensitivity, lead to 

unacceptable results. These problems were overcome by a technique called Active Shape 

Models, by incorporation prior training based on the knowledge of the shapes. Moreover, this 

technique relies upon a statistical variation possibility is the shapes of a given class of object as 

presented by the training set [75,76]. A trained ASM model moves towards the convergence of 

the object shape, given an initial location estimate of the object in a new frame. With each 

iteration this technique moves each contour point to a better position in the frame and tries to 

adjust the shape and location of the points in the object contour to fit the model to the object in 

the new frame. Cootes proposed a method to generate a model of shape and appearance of 2D 

images objects. Both the papers [77] and [78] have shown the successful results with application 

of this technique to models with objects exhibiting natural shape, lighting conditions and pose 

variations.   
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1.2 Lacunae of Knowledge 

I. Globally there is no validated skills training curriculum incorporated under the doctorate 

and post-doctorate education and training program for Neurosurgery. A radical change in 

the training pattern is observed as the need of the hour, as neurosurgery operating rooms 

(ORs) are now under continuous surveillance of expert, social and legal cameras. And 

various factors such as work hour restrictions, patient safety concerns, governmental 

policies, patient loads in ORs, increasing costs and rapidly changing technologies have 

caused a trend towards minimally invasive surgeries.  

Due to the increase in iatrogenic error made by the novice neurosurgeons have drawn 

increasing attention to surgical skills, necessitating the development of a standardized 

evaluation and training system for neurosurgery skills training. 

II. There is not much progress made in the field of objective component-wise analysis of 

neurosurgical skills training and evaluation. Even though, some virtual reality based 

systems have been developed for certain neurosurgical procedural training, they are in 

developing phase and lack the representation of the live human surgical field, in terms of 

semblance of live tissue interaction and feedback both visual and haptic. 
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1.3 Objective 

The objective of this thesis/research work is the development of an algorithm for the evaluation 

of characteristics micro-neurosurgical skills. As a micro-suturing activity comprehensively 

encapsulates almost the complete gamut skills required for micro-neurosurgery techniques, the 

assessment of the skills/performance is done by the application of image segmentation, tracking 

and object fitting algorithms on the cine clips of the surgical performance of the trainee.  

Under the component-wise evaluation scheme we propose, the assessment of microsurgical 

techniques should be guided by the following characteristics  

 Dexterity 

 Effectualness 

 Speed 

 Eye-hand co-ordination 

 Instrument-tissue manipulation 

For the scope of this Master’s thesis, I have limited my work to the evaluation of only the first 3 

characteristics. 

Such a component-wise evaluation feedback shall help the trainee, in understanding his strengths 

and weakness’, and in turn help improvise their surgical techniques individually and collectively.  
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1.4 Organization of Thesis 

We have comprehensively covered the different state-the-art developments in the field of 

neurosurgery skills training, and advancements in the field of object tracking and localization. 

The rest of this thesis is organized into the following chapters. Chapter 3 covers methodology 

used by our algorithm and results at various intermediate steps. Chapter 4 presents the results 

detailing the evaluation of the efficacy of different parts of the algorithms deployed. Chapter 5 

concludes with reflections on the currently used methods and proposition of future work in the 

domain.  
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2. METHODOLOGY 

 

After exploring and studying existing skills training modules and considering the various factors 

presented in Table 1.1, it was established that the training and evaluation of basic microsurgical 

skill for neurosurgery should be conducted on synthetic modules under operating microscope for 

the following reasons: 

 Better semblance of human tissue properties: Visual and Haptic 

 Use of actual surgical instruments 

 Lesser deviance from surgical environment 

 Possibility of re-usability of modules  

 Reduced cost 

 Avoiding potential harm to live tissues patients or small laboratory animals  

 

The research work for this thesis began with acquisition of cine clips of the microsurgical 

activity performed by the trainee neurosurgeon on synthetic material using silk and 

monofilament sutures of varied thickness. The synthetic material used in this acquisition varies 

in thickness 0.4 to 2 mm and gives haptic feedback similar to that of human Dura (protective 

covering of brain and spinal cord). 

 

2.1 Acquisition Process 

This acquisition process is done using a two separate high-end 3-chip cameras installed at the 

ends of two ocular paths of the operating microscopes, that help us in capturing left and right  
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frames individually as shown in Figure 2.1-1. The two ocular channels are extracted by the use 

of an attachment called the beam splitter as shown in Figure 2.1-2. 

 

 

Figure 2.1-1 - Operating Microscope with a beam splitter, adapter and cameras for the acquisition 
purpose 

 

 

 

 

Figure 2.1-2 - Beam Splitter for Operating Microscope 
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The operating microscope used has the capability of manual adjustments to modify the 

magnification factors. The recordings are done at suitable magnifications for different suture 

thickness as given by Table 2.1-1. The magnification number to magnification factor conversion 

is given by the formula. 

 

Magnification Factor= 
Focal length of Binocular tube x Magnification of eye pieces x magnification number

Focal length of objective 
  

Where, 

  Focal length of the tube = 170mm 

  Magnification of the eye piece = 10 x or 12.5 x 

  Magnification number = 0.4 x – 2.0 x 

  Focal length of the objective lens= 85mm for OPMI Pico specifications. 

 

Table 2.1-1 - Recording Parameters for Basic and Intermediate Micro-suturing 

Basic and Intermediate Micro-suturing training on Synthetic Material 

Suture Material Magnification 

Number 

Magnification 

Factor 

4-0 Silk 0.4 2.83 

  0.6 4.25 

5-0 Silk 0.4 2.83 

  0.6 4.25 

7-0 Monofilament 1.0 7.08 

  1.6 11.33 

9-0 Monofilament 1.6 11.33 

  2.5 17.71 

10-0 Monofilament 1.6 11.33 

  2.5 17.71 
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2.2 System Design: Dexterity and Speed 

Dexterity is characteristic for micro-suturing procedure, which can be measured by checking the 

tremors of the instrument. The central nervous system is marked by highly intricate anatomy and 

the thickness of tissues the neurosurgeons operate with are of the diameter as fine as 0.3 mm i.e. 

the margin of error is as small as 0.3mm. Therefore, the existence of such a tremor in the hand of 

neurosurgeon can lead to unwanted morbid consequences. The primary factors influencing this 

characteristic of surgeon’s skill are the lack of visual motor coordination in the magnified 

environment, level of confidence and level of anxiety. This factor can primarily be noticed by 

observing the instrument movements before the actual surgical manipulation activity begins.   

The problem of analyzing two characteristics of the micro-suturing activity, viz. Speed and 

Dexterity, can be done by the blocks of algorithmic units shown in Figure 2.2-1. 

 

 

Figure 1.1.5-1 - Basic Block Diagram for Speed and Dexterity Computation 
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Lets go through all these blocks and their respective algorithms one by one. 

 

2.2.1 Stereo Correction Block 

After the acquisition procedure of the left eye and right eye views was obtained. It was observed 

that there existed minor translation and rotation based distortion between the two views. Also 

this system had inherent parallax i.e. there is a difference in the apparent position of the object or 

points, when observed from two different view-points (refer Figure). Thus, this problem was 

identified to fall under the domain of plane-induced parallax. Such a problem can be solved by, 

finding homography between the two views, and then warping one of the image obtained by one 

view to the other. This is guided by equation 2.1. 

 

 

Figure 2.2.1-1 - Plane Induced Parallax   
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x’ = Hx                 (2.1) 

 where, 

  x=apparent position of the point as observed from the left camera 

  x’=apparent position of the point as observed from the right camera 

  H=Homography between the two views 

The following algorithm details the steps deployed to perform the stereo correction. 

 

Algorithm 

Step 1: Read the stereoscopic images of a planar surface used for microsurgical activity  

as shown in Figure 2.2.1-2 

 

Figure 2.2.1-2 - Stereoscopic frame  
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Step 2: Separate the stereoscopic frame to read the left and right frames separately as  

  shown in Figure 2.2.1-3 and 2.2.1.4 and find the SIFT features on both the frames  

respectively, as shown in Figure 2.2.1-5 and 2.2.1.6 

    

Figure 2.2.1-3 - Left Image 

 

  

Figure 2.2.1-4 - Right Image 
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Figure 2.2.1-5 - SIFT features on Left Image 

 

 

Figure 2.2.1-6 - SIFT features on Right Image 

 

 Step 3: Align the SIFT feature points in order to understand the correspondences 

 Step 4: Apply Ransac to Fit a 2D homography using the overestimated system on the  

aligned SIFT feature points 
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Step 5: Compute the homography matrix for the left image with respect to its  

right image using equation 2.1. 

Step 6:  Rectify/Warp the both the images and their weight mask by using the  

            homography found in step 5, as shown in Figure 2.2.1-7, 2.2.1-8, 2.2.1-9 and  

2.2.1-10 

 

   

          Figure 2.2.1-7 - Warped Mask: Left 
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       Figure 2.2.1-8 - Warped Mask: Right  

 

   

                     Figure 2.2.1-9 - Warped Left Image 
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      Figure 2.2.1-10 - Warped Right Image 

 

Step 7: Overlay and crop these images to observe the warping correction in Figure 2.2.1-11 

 

          Figure 2.2.1-11 - Superimposed and cropped Images 

demonstrating the correction 
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2.2.2 Background Subtraction and Modeling Block 

Background subtraction and modeling is a method used for segmenting out and clean detection 

of the moving objects. The main purpose of this method is to get a clear extraction of the region 

of interest. If one has a model of how the background pixels behave, the “subtraction” process is 

very simple. But, in our problem due to high illumination of the region, the situation is much 

more challenging as the pixel values for the background keep varying just due to the minutest 

change in illumination.  

Such a problem, can be best modeled by Adaptive Gaussian Mixture Model. Gaussian Mixture 

Model is a probabilistic model that assumes all the data points are generated from the mixture of 

finite number of Gaussian distributions with unknown parameters [82]. The principle behind the 

working of the GMM has already been covered in the introduction section. This technique does 

not have high memory requirement as the parameters are updated in each frame. The basic flow 

diagram for GMM is as shown in Figure 2.2.2-1, constituting of three parts: background 

initialization using the first ‘n’ frames as per our problem modeling, background modeling and 

updating with changes observed in new frames, and foreground pixel classification and 

extraction with the generation of a foreground mask [51,79].  
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Figure 2.2.2-1 - GMM Block Diagram 

 

After obtaining the output of a binary mask of the object as the output of GMM based 

foreground detection, in order to have a complete silhouette of the object we have explored some 

basic morphological operations like opening and closing with a defined kernel size found 

appropriate for the problem (narrowed down on a certain size purely based on experimentation). 

The input image and respective masks obtained by adaptive Gaussian mixture model and 

application of morphological operations are as shown in Figure 2.2.2-2 and 2.2.2-3 respectively. 
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Figure 2.2.2-2 - Input Frame 

 

  

Figure 2.2.2-3 - Frame Mask  
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2.2.3 Multiple Object Tracking 

This algorithm is based on the groundwork of clean object segmentations obtained in section 

2.2.2, followed by application of blob analysis to segregate the different moving objects. This 

algorithm maintains individual tracks for each object. Once the tracks are initialized for a certain 

object, detections of the same object in the current frame are assigned to the respective tracks 

based solely on the probability associated with the motion of the object. This motion for each 

track is estimated using individual Kalman filter objects for each track. Algorithm deployed for 

multiple instrument tracking used in this project is detailed below [83]. 

 

Algorithm  

Step 1: Read Video and for each frame do step 2 to step 22 

Step 2: Read prevDetections from track’s structure 

Step 3: Read current frame from video object 

Step 4: Look for the foreground pixels based on the background model if  

frameNum>NumFramesUsedForBackgroundModeling  

Step 5: Initialize or update the background model using this frame 

Step 6: If any prevDetections not empty do steps 7 to 12 

Step 7: Determine collision or overlap in objects if  

numberOfCurrentDetections < prevDetections and unexpected increase in size 

Step 8: If the condition in step 6 is true do steps 9 else jump to step 10 

Step 9: Delete the currentDetections 

Step 10: Determine if an objects is breaking into two parts  

prevDetections < numberOfCurrentDetections  and unexpected decrease in size 
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Step 11: If the condition in step 10 is true do steps 12 else jump to step 13 

Step 12: Delete the respective track data from the structure as it was storing incorrect  

  tracks  

Step 13: If tracks not empty predict new locations 

Step 14: if tracks not empty assign current detections to respective tracks 

Step 15: if any tracks were assigned in step 14 update them 

Step 16: If certain track was not assigned, add predicted value to the detection 

Step 17: if the last update to the track is a predicted location do steps 18 to 19 

Step 18: if the last predicted location is not within the image or at an incorrect location do  

  step 19 else jump to step 20 

Step 19: Remove the predicted location from the track 

Step 20: Delete tracks whose invisibility/life ratio is > threshold 

Step 21: If any detection is unassigned, create a new track 

Step 22: Display the reliable tracks>minVisibility 

Step 23: Stop 

 

Throughout the running of the above algorithm, we have accumulated each and every object 

tracks of different objects in the video frames in a structure called AllTracks as shown in Figure 

2.2.3-1.  
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Figure 2.2.3-1 - AllTracks structure 

 

This structure is then refined to obtain a copy of only shortlisted tracks in EvalTracks, satisfying 

the criteria of minimum life and visibility count as shown in Figure 2.2.3-2.  

 

Figure 2.2.3-2 - EvalTracks structure 

 

The assessment of Speed and Dexterity based on the basis of centroid locations is then conducted 

on EvalTracks using the technique mentioned in section 2.2.4. 
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2.2.4 Short Time Fourier Transform 

Short time fourier transform is a popular technique for frequency domain analysis in smaller time 

windows or local sections of signal as it varies over time [80]. 

We have deployed this technique to understand the different frequency components present in 

individually x and y component of the displacement of the object. The narrowing down of the 

time frame where higher frequency components are observed, helps this software in prompting 

the trainee where he went wrong, also this avoids over-averaging as opposed to traditional 

Fourier transform. The algorithmic steps for this technique are detailed below. 

 

Algorithm  

Step 1: For each track in EvalTracks shown in Figure 2.2.3-2 do step 2 to step 7 

Step 2: Compute displacement signal using centroid locations for both x and y components  

individually  

Step 3: Generate a Hamming Window of the defined window size 

Step 4: For each temporal section in the displacement signal of x and y components do steps 5 to  

6 

Step 5: Perform Windowing using the equation 2.2 

 xW=x(1:wLen).*HammingWindow           (2.2) 

Step 6: Compute Discrete Fourier Transform using equation 2.3 

 X(k) =  ∑ x(n)e
2π(n−1)(k−1)

NN
n=1            (2.3) 

Step 7: Using the X(k) obtained in step 6 for different temporal sections fill the bins of the STFT  

Matrix for the respective displacement signal, as shown in Figure 2.2.4-1 

Step 8: Stop 
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Application of this algorithm to a given displacement signal yields STFT bin matrix as seen in 

Figure 2.2.4-1 and Figure 2.2.4-2. Figure 2.2.4-1 illustrates, the impact of the presence of tremor 

or high frequency component in the beginning of the signal, on the STFT matrix. 

 

 

Figure 2.2.4-1 - Results STFT: (Top) Input Displacement with more tremor initially (Bottom) 
Corresponding STFT matrix plot frequency vs. time 
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Figure 2.2.4-2 - Results STFT: (Top) Input Displacement with more tremor initially (Bottom) 
Corresponding STFT matrix plot frequency vs. time 

 

2.2.5 Assessment: Dexterity and Speed 

Once such STFT matrices are obtained for x and y components of each signal, we compute the 

presence of high frequency components above a certain magnitude threshold, to give a score for 

dexterity out of 4. The algorithm used to compute this score is as detailed below. 

 

Algorithm  

Step 1: For each track in EvalTracks observed in a TestVideo shown in Figure 2.2.3-2 do step 2  
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to step 5 

Step 2: Compute STFT matrices for each displacement signal: x and y components  

Individually, do steps 3  

Step 3: Find the score each signal using its STFT matrix and equation 2.4 

 Score = Weighted sum of Frequency Components>ThresholdSpecified      (2.4) 

Step 4: Find the average of the of the score obtained for x and y components 

Step 5: Normalize this score using the total number of frames and duration of the respective track 

 And store them in DexterityScore(EvalTracks(n))  

Step 6: Compute FinalDexterity Score using equation 2.5 

FinalDexterityScores=
1

N
∑ DexterityScore(EvalTracks(n)N

n=1 )       (2.5) 

Step 7: Stop 

 

2.2.6 Assessment: Speed 

In parallel, compute the score for speed for each individual track in EvalTracks. This 

computation is guided by the algorithm given below. 

Algorithm  

Step 1: For each track in EvalTracks observed in a TestVideo shown in Figure 2.2.3-2 do step 2  

to step 5 

Step 2: Compute displacement signal: x and y components individually, do steps 3  

Step 3: Find the individual speeds  

Step 4: Find the average of the of the two speeds obtained for x and y components 

Step 5: Normalize this speed using the total number of frames and duration of the respective  

track and store them in Speed(EvalTracks(n))  
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Step 6: Compute FinalSpeed using Speed scores of each track in EvalTrack equation 2.6 

FinalSpeed=
1

𝑁
∑ 𝑆𝑝𝑒𝑒𝑑(𝐸𝑣𝑎𝑙𝑇𝑟𝑎𝑐𝑘𝑠(𝑛)𝑁

𝑛=1 )         (2.6) 

Step 7: Assign FinalSpeedScore based on the difference between ideal speed and final speed of  

observed for the TestVideo, guided by the equation 2.7 

 𝐹𝑖𝑎𝑛𝑙𝑆𝑝𝑒𝑒𝑑𝑆𝑐𝑜𝑟𝑒 = 𝐹(|𝐼𝑑𝑒𝑎𝑙𝑆𝑝𝑒𝑒𝑑 − 𝐹𝑖𝑛𝑎𝑙𝑆𝑝𝑒𝑒𝑑|)           (2.7) 

 

Both these scores are then converted into a grade using the Table 2.2.4-1. 

 

Table 2.2.6-2 - Score to Grade Conversion for Dexterity and Speed 

Score Grade 

4 A 

3 B 

2 C 

1 D 

0 E 

 

 

2.2.7 Frame Segregation 

Also all the frame numbers in EvalTracks mark the presence of object in track-able form, these 

frame numbers can then be segregated in a set named FrameNumsInEvalTracks. We can 

determine the set of frames with collisions or without any objects, in set named 

FrameNumsWithProbableColission by using the formula given in equation 2.8 below, 

FrameNumsWithProbableColission = AllFrameNums – FrameNumsInEvalTracks      (2.8) 

Once, these frames are determined we know that, these can used for further evaluation of 

characteristics like Eye-hand Co-ordination and Instrument-Tissue Manipulation. 

This is a vital result as it enables us in not just extracting the frames where dexterity and speed 
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need to be evaluated, but it also helps in narrowing down to the frames where future algorithm 

on eye-hand tracking and instrument-tissue manipulation evaluations can be applied as shown in 

Figure 2.2.7-1.  

 

 

Figure 2.2.7-1 - Showing tracking of the object in different frames, except when the objects are too close: 
where other characteristics like eye-hand co-ordination and instrument-tissue manipulation need to 

evaluated 

 

2.2.8 Object Fitting: Active Shape Model 

Active Shape Models is a distinguished object fitting technique. It has applications in the area of 

non-rigid object segmentation, recognition and tracking. This technique has been popularly been 

used in face detection algorithms and biomedical imaging. 
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We have used this technique to locate and determine the object in the microsurgical activity 

video sequence. The algorithm deployed for the same is as detailed below. 

 

Algorithm 

Step 1: Annotated Training Data with major landmark points and interspersed with  

additional points on each of the image of a particular class of objects is provided to the  

algorithm, as shown in Figure 2.2.8-1. 

 

Figure 2.2.8-1 - Annotated training images: Knife 

  

Step 2: The above training data is used to first align the different training shapes into a common  

co-ordinate frame using a popular approach called Procruste’s Analysis [75,77] 

Step 3: This realigned data is then stored in a structure named TrainingData,  
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with following attributes,  

   Vertices for Landmark and interspersed points,  

   Lines describing the connectivity of these points  

and the Images that are now in common coordinate frame 

Step 4: Empty elements from the structure TrainingData are removed 

Step 5: Active Shape model is developed in this step by modeling the variations between  

TrainingData set contours, using PCA model  

Step 6: The results of step 5 are stored in a structure named ShapeData,  

with following attributes, Eigen values, Eigen vectors, x-mean, x and lines. 

Step 7: The variations in the shapes of the training data for the instrument can be as seen  

 in Figure 2.2.8-2  

 

Figure 2.2.8-2 - Variations of different shape as compared to the mean shape 
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Step 8:  In this step an Active appearance model from the given training images is built, which  

samples a intensity pixel profile/line perpendicular to each contour points. This is then  

used to build correlation matrices for each landmark (which is used later to converge to  

the object contour edge). 

Step 9: Test image with either a manual initialized location or automatically initialized location  

are provided. The algorithm computes similar intensity profile lines along the contour 

points as done in step 8 for the training images and uses the Active appearance model and 

Active shape model to observe comparative variations to converge on the approximated 

contour points in the test frame. 

This step converges by reducing the covariance offset, as the initialized contour points 

move towards the actual contour edge. 

Step 10: Once the iterations converge, the two silhouettes are compared: Original Mask and  

Generated Mask. Values of Precision and Recall are obtained by equations 2.9 and 2.10. 

Precision = 
True Positive

True Positive+False Positive
                (2.9) 

Recall = 
True Positive

True Positive+False Negative
          (2.10) 

Step 11: These values of Precision and Recall and then projected on PCA subspace for  

  classification purposes 
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2.2.9 Evaluation of Effectualness 

End effectualness of the micro-suturing activity performed by the trainee neurosurgeon, is one of 

the key assessment characteristic of his performance. This algorithm evaluates the end result of 

the micro-suturing activity, on the basis of the following components. 

 Bite Thickness is given by A + B, as shown in Figure  2.2.9-2  

Thickness of Bites = A+B            (2.11) 

 Approximations  is given by C + D, as shown in Figure  2.2.9-2     (2.12) 

 Angle of knot with respect to the cut as shown in Figure 2.2.9-1   

 Inter-suture distance as shown in Figure  2.2.9-1 

 

 

Figure 2.2.9-1 - Angle of the knot with that of the cut and inter-suture distance 
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Figure 2.2.9-2 - Bite Thickness and Approximations 

 

This algorithm is applied on top of the basic Gaussian mixture model and foreground or region 

of interest extraction procedures discussed in section 2.2.2. First, the acquisition of the frames 

with the cut, bites and final knots is done. These frames are then sent to the Background 

subtraction model (section 2.2.2) for the extraction of region of interest. Once, this is achieved 

the respective frames are analyzed to measure different characteristics as per the steps detailed 

below. 

 

Algorithm 

Step 1: The cut made, is analyzed using hough transform based line and curve fitting  

Techniques as shown in Figure 2.2.9-3. The result of the same is as observed by the  

annotated cut mark in Figure 2.2.9-4. 
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Figure 2.2.9-3 - Input cut Image 

 

Figure 2.2.9-4 - Annotated Cut Mark: with an observed angle of 89.13 degree 

 

Step 2: Thickness of the bites taken on either sides of the cut are analyzed in the input frame,  

Figure 2.2.9-5. The identification of the each bite points is done by the deployment of 

corner detecting algorithm on top of multi-resolution approach. Once these bite points are 

obtained their distance from cut measured and summed to get the Thickness of bites, as 

given by equation 2.11. 
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       Figure 2.2.9-5 - Frame input to measure the bites 

 

 

Figure 2.2.9-6 - Bites as analyzed by multi-resolution approach 

 

The Bite Thickness observed in this particular sample were,  

  A=24, B=39 

Thickness of Bites = A+B = 63 
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Step 3: Knot Extraction and analysis is done by the deployment of Hough transform based line 

 fitting techniques, on Figure 2.2.9-7 to record the orientation of the knot as well as the  

length as shown in Figure 2.2.9-8 and Figure 2.2.9-9.  

 

Figure 2.2.9-7 - Input Image with knots 

 

  

Figure 2.2.9-8 - Extracted knot contour 

 

 

Figure 2.2.9-9 - Knot Silhouette with annotated line signifying the orientation of the knot  
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Measured parameters in the above example are, 

Orientation of the knot= 6 degrees 

Length of the knot = C+D= 59 

The knot length and knot orientation recorded in step 3 are the compared with the orientation of 

the cut and bite thickness recorded in steps 1 and 2 respectively. 

In this particular example, the Total Bite Thickness > Length of the Knot. Thus, categorizing this 

sample as good approximation. 

Angle the angle of the knot with respect to that of the cut for this example was measured to be 

96.8 degrees. 
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3. RESULTS 

 

To understand the efficacy of our algorithms, this chapter is broadly classified in the following 

three sections to individually understand the different components like Tracking, Dexterity and 

Speed, Object Fitting and Effectualness. 

3.1  Tracking Algorithm 

The multiple object-tracking algorithm deployed to track and localize the instruments is built on 

basic Kalman Filter approach, followed by maintaining individual tracks for each of the objects 

observed.  

Tracking algorithm was run on video samples with single and multiple instruments involving 

different interaction between the foreground objects as well as interaction between the 

foreground and background objects.  

As the results of the localization of the instruments are stored in the form of list of centroids 

observed in each frame for different instrument tracks, to understand the efficacy of the tracking 

algorithm, it was studied by recording the observations on the WEIZMANN Dataset). This 

helped is in understanding the accuracy of the localization of objects by this algorithm. 

(http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html) 

The results generated on these can be studied in the following steps. 

Step 1: Comparison of the centroids generated by the algorithm to the ground truth. The results  

on one of the samples in the Dataset can be seen in Figure 3.1-1. Figure 3.1-2 (a), (b) and  

(c) illustrate with plots he difference in the location of the centroids as compared to  

ground truth for the sample shown in Figure 3.1-1, in direction of motion, in direction  
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perpendicular to the direction of motion and overall difference in position of the centroid  

as compared to the Ground Truth respectively. 

 

 

Figure 2.2.9-1 - Tracks: Centroid locations measured by the Algorithm are shown in blue and ground 
truth shown in red 
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Figure 2.2.9-2 - The difference in the location of the Centroids as compared to ground truth for the 
sample shown above is (a) direction of motion (b) direction perpendicular to the direction of motion (c) 

Overall difference in position of the centroid as compared to the Ground Truth 

 

This difference in the position of the centroids was tabulated and the difference in the values was 

analyzed by the application of threshold T (=1 pixel).  

The accuracy percentage was then studied by the following equation 3.1, 

  Accuracy Percentage = 1 −
Number frames with Difference in Position>T

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑟𝑎𝑚𝑒𝑠
 x 100     (3.1) 

 

Accuracy percentage for different samples in the WEIZMANN data set, were then recorded as 

shown in Table 3.1. 
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          Table 3.1-1 - Accuracy Percentage for WEIZMANN Dataset 

Sample Name Accuracy Percentage 

Eli Walk 100 

Daria Walk 96.15 

Lena Walk 98.68 

Lyova Walk 95.74 

Denis Walk 78.69 

           

Average accuracy was then computed to be 93.85 %. 

 

3.2  Dexterity and Speed 

In order to understand the effectualness of the dexterity and speed evaluation done by system 

developed as compared to that done by senior neurosurgeons. Therefore, the data of scores was 

obtained by a blinded evaluation done by the senior surgeon and the score provided by our 

algorithm i.e. objective and subjective analysis (as shown in Table 3.2-1 and Figure 3.2-1). 
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Table 3.2-2 - Percentage Match for Dexterity and Speed 

Factors Percentage Match 
 

Dexterity 45.00% 

Speed 60.00% 

 

 

Figure 2.2.9-1 - Similarity vs. dissimilarity percentages of the results of Dexterity and Speed 

 

It was observed that even though computerized analysis cannot completely surpass the training 

under apprenticeship model, it is required to remove the ambiguity of biasedness of scoring as 

well as to intimate trainees about the specific target areas (that need improvisation).  
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3.3 Object Fitting 

As discussed in section 2.2.8, active shape model based technique is deployed for object fitting 

and recognition in this system. This particular technique is used in our system for classification 

purpose of the instruments. Thus, we have studied the performance of this algorithm in order to 

maximize the difference between the different classes of objects, by varying the following 

parameters. 

 

Case I: Contour Points between the given Landmark Points 

The contour points and landmark points are annotated by green stars and red stars as shown in 

Figure 2.2.8-1.  

The results were studied by using a sample set of 10 images each of the positive and negative 

sample. But for the convenience in understanding, they have been demonstrated for one positive 

and negative example by varying the number of contour points between landmarks. The Figure 

3.3-1 illustrates the difference in measurement for precision and recall between the positive and 

negative samples at different set number of contour points interpolated between the landmark 

points. 
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Figure 2.2.9-1 - Difference in measurement for precision and recall between the positive and negative 
samples at different set number of contour points interpolated between the landmark points 

 

As observed in Figure 3.3-1 the difference in the two sets of examples i.e. positive and negative 

was maximized when the number of contour points between the landmark points was set to 20. 

 

Case II: Length of Landmark Intensity Profile 

The landmark intensity profile length is the length in direction of the normal at each contour 

point (annotated by green stars and red stars as shown in Figure 2.2.8-1).  

This length guides the modeling of active appearance sub-unit discussed in section 2.2.8. The 
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impact of varying length of landmark profiles on the classification problem was done using a 

sample set of 10 images each of the positive and negative sample. But for the convenience in 

understanding, they have been demonstrated for one positive and negative example by varying 

the number of contour points between landmarks. The Figure 3.3-2 illustrates the difference in 

measurement for precision and recall between the positive and negative samples at different set 

landmark profile lengths. 

 

 Figure 2.2.9-2 - Difference in measurement for precision and recall between the positive and negative 
samples at different set landmark profile lengths 

 

As observed in Figure 3.3-2 the difference in the two sets of examples i.e. positive and negative 
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was maximized when the landmark intensity profile length was set to 6 pixels. 

 

Case III: Search Length for Contour Points 

The search length for contour points guides the search model while converging or fitting the 

contour on test image (as discussed in section 2.2.8). This is the search length in the direction of 

the normal on each side of the contour. The impact of varying search length of contour points on 

the classification problem, was studied using a sample set of 10 images each of the positive and 

negative sample. But for the convenience in understanding, they have been demonstrated for one 

positive and negative example by varying the number of contour points between landmarks. The 

Figure 3.3-3 illustrates the difference in measurement for precision and recall between the 

positive and negative samples at different search lengths of contour points. 
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Figure 2.2.9-3 - Difference in measurement for precision and recall between the positive and negative 
samples at different search lengths of contour points 

 

As observed in Figure 3.3-3 the difference in the two sets of examples i.e. positive and negative 

was maximum when the search lengths at contour points was set to 8 pixels. 

 

Case IV: Scale 

The search model in algorithm discussed in section 2.2.8 is modeled for a multi-resolution 

approach based object fitting technique. The parameter scale aids in defining the number of the 

scales the search model of the algorithm should work on while converging the object contour 

points on the given image. The impact of varying scale parameter on the classification problem, 
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was studied using a sample set of 10 images each of the positive and negative sample. But for the 

convenience in understanding, they have been demonstrated for one positive and negative 

example by varying the number of contour points between landmarks. The Figure 3.3-4 

illustrates the difference in measurement for precision and recall between the positive and 

negative samples at different values of scale parameter. 

 

 

Figure 2.2.9-4 - Difference in measurement for precision and recall between the positive and negative 
samples at different values of scale parameter 

 

As observed in Figure 3.3-4 the difference in the two sets of examples i.e. positive and negative 
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was maximum when the parameter scale was set to 2. 

 

Case V: Iterations 

The search model in algorithm discussed in section 2.2.8 converges for the purpose of object 

fitting problem on the given test image in defined number of iterations. The impact of varying 

iterations parameter on the classification problem, was studied using a sample set of 10 images 

each of the positive and negative sample. But for the convenience in understanding, they have 

been demonstrated for one positive and negative example by varying the number of permitted 

iterations. It was observed that once all the other parameters are appropriately set there is almost 

no variation observed in the difference in the two sets of examples (i.e. positive and negative). 

 

Once all the parameter were set in accordance to maximize the difference between two classes of 

object / instruments, the system was run for 63 samples each of positive and negative samples to 

demonstrate the segregation of data on Precision vs. Recall plot as shown in Figure 3.3-5. 
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Figure 2.2.9-5 - Precision Vs. Recall for Positive and Negative Samples 

 

3.4  Object Classification 

Further, for classification purposes PCA is deployed on the precision and recall values of two 

classes observed in Figure 3.3-5 and the resultant classifier is as shown in Figure 3.4-1. 

In order to estimate the potential of the algorithm in object classification, precision and recall 

values were computed using the TP, TN, FP and FN values obtained in Figure 3.4-1.  
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Figure 2.2.9-1 - Precision Vs. Recall Value based Object Classifier 

 

The values of precision and recall for object classification using the current algorithm were 

observed as: 

Precision = 
True Positive

True Positive+False Positive
 = 0.675 

Recall = 
True Positive

True Positive+False Negative
 = 0.857 

 

3.5  Effectualness 

Data was obtained after comparing evaluation results obtained from the software and by the 

examiner i.e. objective and subjective analysis (as shown in Table 3.5-13, Figure 3.5-1 and 3.5-
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2).  

Figure 3.5-1 details the similarity vs. dissimilarity percentages of the results of effectualness of 

4-0 and 5-0 sutures, whereas Figure 3.5-2 demonstrates the similarity and dissimilarity 

percentage of 9-0 and 10-0 sutures. It was observed that even though computerized analysis 

cannot completely surpass the training under apprenticeship model, it is required to remove the 

ambiguity of biasedness as well as to intimate trainees about the specific target areas (that need 

improvisation).  

 

Table 3.5-3 - Percentage Match between Objective and Subjective Assessment: Effectualness 

Factors Percentage Match 

Thick Sutures 

(4-0, 5-0) 

Percentage Match  

Fine Sutures 

(7-0, 9-0, 10-0) 

Bites 38.46% 62.50% 

Approximations 46.15% 50.00% 

Angle of knot w.r.t. cut 38.46% 37.50% 

Inter-Suture Distance 38.46% 62.50% 
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Figure 2.2.9-1 - Similarity vs. dissimilarity percentages of the results of effectualness of 4-0 and 5-0 
sutures 
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Figure 2.2.9-2 - Similarity vs. dissimilarity percentages of the results of effectualness of 9-0 and 10-0 
sutures 

 

It was realized that such a computerized evaluation and assessment system can provide an 

unbiased, component-wise, individual and collective assessment of micro-suturing techniques 

under supervised yet unsupervised environment. Thus, this system can be used to validate as well 

as supplement the evaluation done by an examiner, while helping the trainees understand their 

flaws and improving their micro-suturing skills in a more focused manner. 

  

0

20

40

60

80

100



    77 

4. CONCLUSION 

 

4.1  Conclusion and Final Thoughts 

In this thesis we have explored different methods to segment, detect and track the location of the 

instruments and analyze their movements as well as end results of microsurgical activity. The 

key contribution of this work is that different microsurgical instruments can be identified and 

tracked consistently for the frames where dexterity and speed need to be evaluated. Also a 

byproduct of this research was the identification of set of frames or section of the video clip 

where other characteristics i.e. techniques like eye-hand co-ordination and instrument-tissue 

manipulation need to be evaluated. 

A detailed presentation and analysis of the problem being targeted and various developments in 

this field were explored for their efficacy in providing surgical skills training. It was argued that 

even though techniques like active shape models seem promising in the area of non-rigid object 

localization and recognition, they take a couple of seconds to execute for each frame. More 

techniques for on the go, tracking learning and detection might be suitable for a real-time system. 

It was realized that such a computerized evaluation and assessment system can provide an 

unbiased, component-wise, individual and collective assessment of micro-suturing techniques 

under supervised yet unsupervised environment. Thus, this system can be used to validate as well 

as supplement the evaluation done by an examiner, while helping the trainees understand their 

flaws and improving their micro-suturing skills in a more focused manner. 
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4.2  Future Work 

Current state-of-the-art approaches to skills training in neurosurgery are being made, which 

highlight involvement of graphics and haptic devices, but they tend to create an environment far 

from the one in the OR in terms of unnaturalness in response of the visual feedback as well as 

with the dimensions/feel of the haptic devices. Our current technique definitely lacks closeness 

to the pathological and anatomical semblance to the live surgery on human brain and spinal cord. 

But, it gives the trainees an opportunity to work with actual instruments under the operating 

microscope, and in turn help them hone their surgical skills in similar environment.  

Work in the field of activity recognition can be explored, for different steps in the micro-suturing 

procedure, to aid in the identification of the intent. This problem will fall under the category of 

complex activity recognition guided by features or cues like instruments present, presence of 

suture material, movements of the instrument, interaction with the tissue, etc. This can help the 

algorithm have better judgments of the surgical technique, and in turn produce more reliable 

evaluations.  

Once the development of the computer vision-based surgical evaluation system is achieved with 

a good level of efficiency, the area of Mixed-reality can be explored to give a closer semblance 

to surgical scenario and activity area. This can also be the first step towards the development of 

Robotic Micro-neurosurgery. 

 

4.3 Conference Presentations 

 Payal Jotwani, Ashish Suri and Hassan Foroosh et al. “Paradigm Shift From Apprenticeship 

Training Model To Computerized Evaluation: Effectualness of Micro-Suturing In 
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Neurosurgery Skills Training.” Proceedings of 30th Annual Meeting AANS (American 

Association of Neurological Surgeons) / CNS Section on Disorders of the Spine and 

Peripheral Nerves, 2014. 

 Payal Jotwani, Ashish Suri and Hassan Foroosh et al. “Stereoscopy-based Computerized 

Evaluation of Microneurosurgery Skills.” Proceedings of 2014 CNS Annual Meet (Congress 

of Neurological Surgeons Society) 
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