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ABSTRACT 

Many space applications, such as vision-based systems, synthetic aperture radar, and 

radar altimetry rely increasingly on high data rate DSP algorithms.  These algorithms use double 

precision floating point arithmetic operations.  While most DSP applications can be executed on 

DSP processors, the DSP numerical requirements of these new space applications surpass by far 

the numerical capabilities of many current DSP processors.  Since the tradition in DSP 

processing has been to use fixed point number representation, only recently have DSP processors 

begun to incorporate floating point arithmetic units, even though most of these units handle only 

single precision floating point addition/subtraction, multiplication, and occasionally division.           

While DSP processors are slowly evolving to meet the numerical requirements of newer 

space applications, FPGA densities have rapidly increased to parallel and surpass even the gate 

densities of many DSP processors and commodity CPUs.  This makes them attractive platforms 

to implement compute-intensive DSP computations.  Even in the presence of this clear advantage 

on the side of FPGAs, few attempts have been made to examine how wide precision floating 

point arithmetic, particularly division and square root operations, can perform on FPGAs to 

support these compute-intensive DSP applications.              

In this context, this thesis presents the sequential and pipelined designs of IEEE-754 

compliant double floating point division and square root operations based on low radix digit 

recurrence algorithms.  FPGA implementations of these algorithms have the advantage of being 

easily testable.  In particular, the pipelined designs are synthesized based on careful partial and 

full unrolling of the iterations in the digit recurrence algorithms.  In the overall, the 

implementations of the sequential and pipelined designs are common-denominator 
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implementations which do not use any performance-enhancing embedded components such as 

multipliers and block memory.  As these implementations exploit exclusively the fine-grain 

reconfigurable resources of Virtex FPGAs, they are easily portable to other FPGAs with similar 

reconfigurable fabrics without any major modifications.  The pipelined designs of these two 

operations are evaluated in terms of area, throughput, and dynamic power consumption as a 

function of pipeline depth.  Pipelining experiments reveal that the area overhead tends to remain 

constant regardless of the degree of pipelining to which the design is submitted, while the 

throughput increases with pipeline depth.  In addition, these experiments reveal that pipelining 

reduces power considerably in shallow pipelines.  Pipelining further these designs does not 

necessarily lead to significant power reduction.  By partitioning these designs into deeper 

pipelines, these designs can reach throughputs close to the 100 MFLOPS mark by consuming a 

modest 1% to 8% of the reconfigurable fabric within a Virtex-II XC2VX000 (e.g., XC2V1000 or 

XC2V6000) FPGA.          
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CHAPTER ONE: INTRODUCTION 

In space applications, many systems require advanced digital signal processing (DSP) 

algorithms to address their mission needs.  In particular, an entire class of satellite sub-systems, 

such as payload processing, data-handling, communications, guidance, navigation, and control, 

rely on applications of DSP techniques.  As these systems evolve, the amount of data which 

needs to be processed increases significantly.  

1.1 DSP Space Applications 

Data-intensive DSP algorithms make up the foundation of many space applications.  

Among these applications are vision-based systems, synthetic aperture radar (SAR), and radar 

altimetry [1].    

1.1.1 Vision-Based Systems 

These vision applications interface with the ambient space through a high-resolution 

charge-coupled device (CCD) camera.  This camera is responsible of taking images at high speed 

and feed them to an image DSP processor.  The latter performs numerous basic low-level image 

processing algorithms on the received image data.  This low-level processing is followed by 

knowledge extraction from the images.  Among these vision applications are visual telemetry 

(i.e., collection and compression of images of deployment of various instruments such as solar 

arrays and antennas), vision landing (i.e., guiding a planetary module to a safe landing without 

assistance from a human operator), rover vision (i.e., collection and transmission of images from 

a planetary body’s surface, planning of navigation routes on the planetary surface by computer 

vision), rendezvous (i.e., detecting and navigating closer to a comet or asteroid), docking (i.e., 
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approaching another spacecraft for docking maneuvers), and star tracking (i.e., tracking the 

position of one or more starts to determine the altitude and orientation of a spacecraft).  

1.1.2 Space SAR 

SAR processing transforms the raw radar data into a high resolution image of the terrain 

scanned by radar instruments.  Many space systems rely on high continuous SAR data rates for 

the acquisition of high resolution images.  These rates, combined with compute-intensive full-

resolution image processing, make space SAR an application with unusually demanding 

requirements.  Because of these high data rates, two approaches were adopted in the past.  The 

first consists of avoiding processing data on-board of the space spacecraft by downloading it to a 

ground station for additional processing while the second approach consists of processing the 

assembled images at low resolution.  Recently, new space applications have emerged with a high 

level of autonomy requirements.  For instance, NASA, in collaboration with the Air Force 

Research Labs, is exploring space vehicles that can fly in formation by using an advanced space 

borne differential global positioning system [2].  It is expected that this technology will result in 

swarms of spacecrafts flying as a virtual platform to gather significantly more and better 

scientific data in a totally autonomous fashion.  Such autonomy requires minimal or no support 

from ground stations.  This autonomy can be realized only if sufficient computing power is 

available to process on-board the received raw SAR data at full resolution.             

1.2 DSP Processors vs. FPGA Devices 

As customary in many DSP applications, fixed point data representation is used in order 

to ease the computing requirements of these applications.  Subsequently, various numerical 

analyses have to be completed to show that the conversion to fixed point representations does not 
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worsen cumulative errors associated with long runtime of DSP algorithms.  However, newer 

DSP algorithms used to support many space applications require that the data format be 

represented in wide bit precision to accommodate various ranges of values and eliminate 

problems of numerical fidelity.  To support these new applications, high performance, low 

power, computing devices which can produce high throughput floating point computations are 

needed.  To meet these numerical requirements, many of these applications rely on the IEEE 

754-1985 binary floating point standard [3]. In fact, many DSP algorithms, which support the 

space applications described in the previous section, are centered on calculations involving wide-

ranging floating point numbers.  These numbers are used in double precision bit widths in order 

to accommodate the range and precisions required by these DSP algorithms.  While most DSP 

applications can be implemented on DSP processors, only recently have DSP processors been 

equipped with floating point ALUs.  The majority of these floating point ALUs can handle at 

most 32-bit wide floating point numbers particularly, ALUs introduced in DSP processors 

intended for audio applications [4, 5]. Even when multiple DSP processors are cascaded for 

increased performance, there are computing scenarios in which these processor configurations, 

initially thought to be necessary to provide the required throughput, fails to deliver such 

throughput.  In fact, duplication of processors does not necessarily lead to a speedup in 

computation as is known in parallel processing.   

Lately, FPGAs have begun to capture the attention of the DSP community as an 

alternative implementation technology capable of delivering significant speedups for compute-

intensive DSP algorithms.  Despite dire predictions at each step in technology evolution, FPGA 

densities continue to double approximately every 18 months as predicted by Moore’s Law.  With 

today’s nanometer CMOS technology, it is now possible to deliver multi-million gate FPGAs, 
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which can implement complete systems integrated entirely on a single device [6, 7].  Although 

FPGAs are still lagging behind many ASICs in terms of raw performance, they have nevertheless 

crossed a gate density threshold that is usually seen in DSP processors and commodity CPUs as 

shown in Figure 1, Figure 2 and Figure 3 [8, 9].  

  

 

Figure 1: Expected trend in FPGA CMOS feature size. 
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Figure 2: Expected FPGA trend in 4-LUT density. 
 

 

Figure 3: Expected trend in FPGA clock rates. 
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Starting with earlier FPGA chips, many designers have realized that it is beneficial to 

implement double precision floating point computations on these chips due to their mapping 

versatility and reconfigurability.  Since then, various mapping efforts of floating point 

computations on FPGAs have realized performances that are steadily surpassing the performance 

of those computations on commodity CPUs.  Figure 4 and Figure 5 show the trends of double 

precision floating point multiplication and division in FPGAs and commodity CPUs [9].   

 

Figure 4: Expected trend in double precision floating point multiplication on FPGAs. 
 
 

What is attractive about FPGAs is their diverse catalog of embedded architectural 

features specifically optimized for arithmetic operations.  For example, Xilinx FPGAs embed 

carry-chains along their CLB columns designed to speedup addition with narrow operands.  
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These features can be exploited to support efficient floating point operations.  However, 

exploiting these features require arithmetic algorithms, such as low-radix digit recurrence 

algorithms, that can be easily mapped on these structures. In fact, careful pipelining and mapping 

of these algorithms on specific FPGA architectures can yield easily testable implementations 

which can produce throughputs that are comparable to the throughputs seen in high-radix 

algorithms [10]. 

 

Figure 5: Expected trend in double precision floating point division on FPGAs. 
 
 

  Although their area overhead is marginally higher than high radix implementations in 

many cases, low-radix digit recurring algorithms can easily reach the 100 MFLOPS mark on 

some FPGA chips.   
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1.3 IEEE 754 Floating Point Representations  

The IEEE 754 format represents floating point numbers in scientific notation. In this 

notation, a number consists of a base and an exponent. For example, 123.456 can be represented 

as 1.23456× 210  where 1.23456 is the base part and 102 is the exponent part.  Contrary to 

floating-point representations, fixed-point relies on a fixed window of representation, which 

limits its range and precision.  Floating point representations employs a "sliding window" to 

accommodate the range and precision of the represented number. This allows it to represent 

widely varying numbers such as 1,000,000,000,000 and 0.0000000000000001 without any error 

accumulation.  

To accommodate various ranges and precision, the IEEE 754 standard recommends four 

presentations, namely single precision, double precision, extended single precision and extended 

double precision formats as shown in Table 1[11]. The most commonly used are the single 

precision and double precision formats. 

Table 1: IEEE 754 floating point number representations. 
 

         Format         
 
 
Parameter 

 
Single 

 
Single Extended 

 
Double 

 
Double 

Extended 

Significand bits 24 ≥ 32 53 ≥ 64 
emax +127 ≥+1023 +1023 ≥+16383 
emin -126 ≤ -1022 -1022 ≤ -16382 
Ebias +127 unspecified +1023 unspecified 

Exponent bits 8 ≥ 11 11 ≥ 15 
Format bits 32 ≥ 43 64 ≥ 79 

 

In general, a real number N in radix β can be represented in terms of a sign s, an exponent 

e and a significand S as N = (-1)s⋅βe⋅S where s ∈ {0, 1}. For example, for a radix  β =10, the 
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values s = 1, e = 2 and S = 6.45678 represent the number N = (-1)1⋅102⋅6.45678. Similarly, for β 

= 2, the values s = 0, e = 5 (1012) and S = 1.40625 (1.01101) represent the number N = (-

1)0⋅25⋅1.40625 = +45.  

As shown in Figure 6, double precision numbers comprise of a sign bit, 11 bits of 

exponent and 52 bits of fraction. The 11 bit exponent E is an unsigned number containing a bias. 

The true exponent e of a floating point number is obtained by subtracting the Ebias from E, i.e. e 

= E-Ebias. The fraction f represents a 52 bit fraction in the range [0, 1) and the significand S is 

obtained by adding ‘1’ (hidden bit) to the MSB of the fraction. Significand S is given by S = 1.f.   

 

Figure 6: IEEE 754-1985 single and double precision formats. 
 

As an example, consider the double precision floating point number  

s E f 

0 10000000011 1001000000000000000000000000000000000000000000000000 
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The biased exponent E is 1027 and the unbiased exponent e=E-Ebias =1027-1023=4. The 

fraction f is .5625, making the significand S = 1.f = 1.5625. The sign bit is set to 0. Hence, the 

number is N = (-1)0⋅24⋅1.5625 = 25. 

The IEEE standard requires that a numeric environment support addition, subtraction, 

multiplication, division, square root, remainder, and round-to-integer as the basic floating-point 

arithmetic operations. A floating point calculation often involves some approximation or 

rounding because the result of an operation may not be exactly representable [3].   

1.4 FPGA Technology 

A field-programmable gate array or FPGA is a semiconductor device used to process 

digital information, similar to a microprocessor.  Whereas an application specific integrated 

circuit (ASIC) performs a particular function defined at the time of manufacture, the 

functionality of the FPGA is defined by a program written by someone other than the device 

manufacturer.  Depending on the particular device, the program is either burned in permanently 

or semi-permanently as part of a board assembly process.  In addition, it can be loaded from an 

external memory each time the device is powered up.  This programmability gives the user 

access to complex integrated designs without the high engineering costs associated with ASICs. 

1.4.1 Logic Resources 

FPGAs come in a wide variety of sizes and with many different combinations of internal 

and external features.  Most FPGAs are composed of relatively small blocks of programmable 

logic called Configurable Logic Blocks (CLB). These blocks, each of which typically contains a 

few registers and a few dozen low-level, configurable logic elements, are arranged in a grid and 

tied together using programmable interconnections as shown in Figure 7. Figure 8 shows an 
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architectural overview of a Virtex II FPGA. Each CLB typically consist of two to four slices as 

shown in Figure 9 . In a typical FPGA, the slices that make up the bulk of the device are based 

on lookup tables, of four or five inputs, combined with one or two single-bit registers and 

additional logic elements such as clock enables and multiplexers as shown in Figure 10.  

 
Figure 7: FPGA architecture. 

 
 

In more complex FPGAs these general-purpose logic blocks are combined with higher-

level arithmetic and control structures, such as multipliers and counters, in support of common 

types of applications such as signal processing.  
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Figure 8: Virtex II architecture overview. 
 
 

 
 

Figure 9: CLB elements. Figure 10: Slice configurations. 
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1.4.2 Routing Resources 

Virtex-II logic resources are all connected to an identical switch matrix for access to 

global routing resources as shown in Figure 11.  

 
Figure 11: Active interconnect technology in Virtex-II.  

 
 

Each Virtex-II device can be represented as an array of switch matrices with logic blocks 

attached as shown in Figure 12. 

 

Figure 12: Routing resources in Virtex-II. 
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Optimum system performance and fast compile times are possible due to this regular 

array structure. Most Virtex-II signals are routed using the global routing resources, which are 

located in horizontal and vertical routing channels between each switch matrix. The hierarchical 

routing resources consist of long lines, hex lines, double lines, direct connect lines and fast 

connect lines as shown in Figure 13.  

 

 
 Figure 13: Hierarchical routing resources in Virtex-II. 

 
 

In addition to the local and global routing, dedicated signals are also available. The 

dedicated signals consist of eight global clock nets per quadrant, two dedicated carry chain per 

slice column, one dedicated Sum-of-Products (SOP) chain per slice row, one dedicated shift 

chain per CLB, and three-state busses.  

1.4.3 IO Resources 

Virtex II I/O blocks (IOBs) are provided in groups of two or four on the perimeter of 

each device. Each IOB can be used as input and/or output for single-ended I/Os. Two IOBs can 
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be used as a differential pair. Figure 14 shows how a differential pair is connected to the same 

switch matrix.  

 
Figure 14: Virtex II input/output tile. 

 
Virtex II IOBs are designed for high performance I/Os, supporting 19 single ended 

standards, as well as differential signaling with LVDS, LDT, bus LVDS and LVPECL. Figure 15 

shows the supported single ended I/O standards by Virtex II.  

 

Figure 15: Virtex II supported single ended I/O standards. 
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1.4.4 Device Reconfiguration 

Virtex II devices are configured by loading data into their internal configuration registers. 

The device can be set in a particular mode by setting the Mode bits in the configuration register 

as shown in Table 2. 

Table 2: Configuration modes in Virtex II. 
 

Configuration Mode M2 M1 M0 Pull-ups 
Master Serial 0 0 0 No 
Slave Serial 1 1 1 No 
SelectMAP 1 1 0 No 

Boundary Scan 1 0 1 No 
Master Serial 
(w/ pull-ups) 

1 0 0 Yes 

Slave Serial 
(w/ pull-ups) 

0 1 1 Yes 

SelectMAP 
(w/ pull-ups) 

0 1 0 Yes 

Boundary Scan 
(w/ pull-ups) 

0 0 1 Yes 

 

The external configuration process is a simple matter of loading the configuration 

bitstream into the FPGA using the selected configuration mode as illustrated in Figure 16. 

Xilinx proposes two standard flows for partial reconfiguration process: Difference based 

and Module based flows [12]. With the Difference Based flow, the designer must manually edit a 

design with low-level changes. Using a low-level editing tool, such as the FPGA Editor, small 

changes can be made to different components, such as lookup tables, flip-flops, and I/O pins. 

After the changes are completed, the partial bit stream, which contains information only 

regarding the modifications, is generated and stored in a file.  
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Figure 16: Configuration flow diagram. 
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For the Module based flow, the full design is partitioned into modules, some of which 

can be fixed while others can be reconfigurable.  The reconfigurable fabric of the FPGA is 

partitioned into column-based rectangular regions in which the fixed and reconfigurable modules 

can be arranged based on specified area constrains.   A bus macro can be used to maintain 

correct connections between the modules placed in these areas by sitting across the boundaries of 

these rectangular regions. Figure 17 shows the basic concept of this flow [12].  

 
Figure 17: Layout with two reconfigurable modules.  

1.5 Thesis Contribution 

While very few attempts have been made to study wide precision floating point 

arithmetic on FPGAs, this thesis presents a study of IEEE 754-compliant double precision 

floating point operations by focusing on division and square root operations.  Performance and 

design tradeoffs related to these two operations in particular are not well understood in terms of 

FPGA implementations.  Based on this rationale, this thesis makes the following contributions: 
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(i) Contrary to established wisdom, this thesis focuses on the simplest algorithms to 

perform division and square root operations.  The division operation is implemented 

based on a method similar to the pencil-and-paper method known as the sequential 

non-performing algorithm.  On the other hand, the square root operation is 

implemented based on a basic non-restoring algorithm.  Both algorithms are radix-2 

digit recurrence algorithms.  

(ii) For comparison purposes, this thesis presents the implementations of low area 

sequential designs and high performance pipelined designs of division and square 

root operations.  

(iii) In order to explore the tradeoffs between area, throughput, and power consumption, 

this thesis partitions the pipelined designs of both operations into different pipeline 

depths.  These different depths are used to characterize the area overhead, maximum 

throughput and dynamic power consumption of each operation.  

(iv) While most previous implementations rely on highly optimized cores and 

occasionally manual layouts, all the implementation of both operations in this thesis 

can be qualified as common-denominator implementations.  These implementations 

do not take advantage of any advanced architectural features available in the Virtex 

FPGAs such as Block RAMs or embedded multipliers.  In addition, these 

implementations do not use optimized cores or any custom floor planning at all.  The 

rationale behind this design philosophy is to quantify how much performance can be 

obtained by exploiting exclusively the fine-grain reconfigurable resources available in 

FPGAs.  Such implementations have the advantage of being easily portable to other 

FPGA architectures with minimum modifications.       
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(v) Careful attention to the pipelining approach of this thesis has led to implementations 

whose performances are comparable to those of high-radix implementations, and in 

some case even superior.  This approach is based on a precise unrolling of the 

iterations in the digit recurring algorithms.     

(vi) Whereas high-radix implementations are difficult to verify, the radix-2 

implementations presented in this thesis are easy to test and verify.       

1.6 Thesis Outline 

Chapter 2 discusses and summarizes previously proposed work related to division and 

square root operations.  Chapter 3 and 4 present the design, implementation, and performance 

evaluation of the divider and square root unit respectively.  Finally, chapter 5 summarizes the 

findings in this thesis and provides future direction for research.    
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CHAPTER TWO: RELATED WORK 

In this chapter, a brief overview of the different designs proposed for floating-point 

division and square root operations are presented.  In section 2.1, four different designs proposed 

for floating point division are briefly described while in section 2.2 five designs proposed for 

square root operations are briefly reviewed.  Section 2.3 concludes this chapter by summarizing 

the reviewed designs and comparing them to the designs of the divider and square root unit 

proposed in this thesis.   

2.1 Floating Point Division 

Division algorithms can be broadly classified into five classes: digit recurrence, 

functional iteration, very high radix, table lookup, and variable latency [13].  Among these 

classes, digit recurrence algorithms are widely used since they are easy to implement.  In digit 

recurrence, algorithms, such as restoring, non-restoring, and SRT division, rely on 

addition/subtraction and shift operations to complete division.      

In [14], the author presents the sequential and pipelined designs of a floating point 

divider for three different precisions based on SRT division.  The recurrence equation for this 

division is given by wj+1 = r⋅wj − D⋅qj+1, where wx is the remainder after the xth iteration, r is the 

radix of the algorithm, D is the divisor, and qx is the xth quotient digit from the most-significant 

bit of the quotient Qx.  In order to reduce the delay of a single stage of the pipelined version of 

the divider, a radix-4 divider was chosen for the significant division as shown in Figure 18.  The 

structure of the fixed point divider is shown in Figure 19. 
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Figure 18: Radix-4 SRT single stage. Figure 19: Fixed point divider structure. 

 

The implemented sequential double precision floating point divider consumes 1705 slices 

and runs at a frequency of 3.3 MHz with a throughput of 3.17 MFLOPS on a Virtex II FPGA.  

This design is further pipelined to increase the throughput to 78 MFLOPS with 1.5× area 

overhead when implemented on a Virtex II XC2V6000 FPGA.  However, the authors do not 

explicitly describe the pipelining approach applied to their sequential divider.        

In [15], the authors present three designs of a floating point divider with three different 

bit precisions the largest of which is 32-bit precision.  These three designs are based on iterative, 

array, and pipeline approaches.  In particular, the pipelined design is based on the insertion of 

registers between division steps of an array divider.  In this divider, the authors unroll the 

hardware for each step by rebuilding this hardware and cascading the iterative steps in the array.  
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Figure 20 shows the sub-pipelining of a single stage in the pipelined radix-4 divider while Figure 

21 shows the structure of the pipelined divider. 

 

 

Figure 20: Two-layer pipelining of a radix-4 
single stage. 

Figure 21: Pipelined implementation of SRT 
division. 

 

The three designs of the divider are implemented on a Virtex II XC2V1000 FPGA. 

Compared to the array version of the divider, 30×  improvement in throughputs are observed 

over 10-20×  increase in the area of the pipelined version.  The authors conclude that the radix-4 

implementations are preferable from a performance standpoint while radix-2 implementations 

are preferable when area × latency or area × clock period is considered.     

In [10], the authors implement IEEE-754 compliant pipelined dividers based on non-

restoring and SRT divisions on a Virtex II XC2VP7 FPGA. Figure 22 shows the block 

architecture of the proposed divider.   



 24

 

Figure 22: Block diagram of the proposed divider.   
 

These dividers are pipelined from 32 to 68 stages depending on the selected division 

algorithm.  The most compliant divider is a non-restoring divider pipelined into 68 stages while a 

low area overhead SRT divider is pipelined into 32 stages for comparison purposes.  The former 

divider runs at 140 MHz with an area utilization of 4234 slices while the latter runs at 90 MHz 

with an area utilization of 3713 slices.  The authors remark that the non-restoring divider can 

achieve a superior performance only when it is pipelined into a large number of stages.  On the 

other hand, the SRT divider displays a slightly lower performance at the expense of a larger area.      

In [16], the authors propose a scalable 32-bit pipelined design of a divider implemented 

on a Virtex XC2V1000 FPGA.   This design is based on a radix-2 non-restoring division 
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algorithm.  Figure 23 shows the structure of the pipelined divider while Figure 24 shows the 

pipelined non-restoring array divider.  

 

Figure 23: Structure of the pipelined divider. 
 
 

A 24-stage version of the pipelined design can run at 160 MHz with an area utilization of 

870 slices thus producing a throughput of 158 MFLOPS.  The authors claim that by pipelining 

further the divider, the number of slices needed to support additional stages increases in a linear 

fashion.  This increase in slices is caused by the need for additional latches to implement newly 

inserted registers. 
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Figure 24: Pipelined non-restoring array divider. 
 
 

This thesis presents a sequential divider based on a radix-2 digit-recurring non-

performing sequential algorithm [17].  The iterations in the digit recurring algorithm are unrolled 

to various degrees to generate pipelined dividers with different pipeline depths.  These depths are 

used to characterize the impact of pipeline depth on area cost, throughput, and dynamic power 

within the divider.    

2.2 Floating Point Square Root Operation  

Square root algorithms share numerous features with division algorithms.  Among the 

widely known square algorithms are the traditional pencil-and-paper method, shift/subtract based 

restoring algorithms, non-restoring algorithms, high radix square rooting algorithms, and square 

rooting by convergence algorithms [18].         
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In [14], the authors present a non-restoring square root algorithm based on the square root 

recurrence equation Ri+1 = r⋅R − 2⋅Q⋅qi+1 – (q2
i+1 / ri+1). The non- restoring algorithm uses the 

digit set {1.-1} and therefore the least significant bit of the current partial root Qi is always 1. 

This helps in generating the next value to add to or subtract from the shifted partial remainder 

2⋅Ri.  The new generated value of 2⋅Qi can be added or subtracted from the shifted partial 

remainder according to the sign of the quotient digit qi+1. Figure 25 shows the block diagram of a 

square root unit while Figure 26 shows the fixed point square root structure.  The authors 

implement a non pipelined double precision floating point square root unit which occupies 869 

slices and produces a throughput of 3.99 MFLOPS at a frequency of 4.18 MHz on Virtex II 

XC2V6000 chip.  This square root unit is further pipelined to run at 72.46 MHz with an area 

overhead of 1.64× .  

 
Figure 25: Floating point square root 

diagram. 
Figure 26: Fixed point square root structure. 
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In [19], the authors propose a single precision sequential and pipelined square root units 

based on a non-restoring algorithm.  The pipelined version of the unit is shown in Figure 27.  

Although the authors did not specify the clock frequency or throughput, they stated that the 

single precision square root unit displays a latency of 25 clock cycles by utilizing 82 CLB 

function generators and 138 CLB flip-flops while its pipelined counterpart has a latency of 15 

clock cycles by utilizing 408 CLB function generators and 675 CLB flip-flops on a Xilinx 

XC4000 FPGA. 

 

Figure 27: Pipelined implementation of a single precision square root unit.  
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In [15], the authors propose the implementation of a square root unit for three bit 

precisions based on a restoring digit recurrence algorithm.  This algorithm consists primarily of a 

sequence of subtract and shift operations.  Figure 28 shows the design of one restoring square 

root stage.  The resulting sequential implementation runs at 153 MHz by occupying 234 slices 

while the pipelined implementation runs at 169 MHz by occupying 1313 slices of an XC2V1000 

FPGA. 

 

Figure 28:  Block diagram of a single stage in the restoring square root algorithm. 
 
 

In [10], the authors present the design of a pipelined square root unit based on the non-

restoring algorithm proposed in [20].  This algorithm computes the square root by a series of 

additions or subtractions based on the successive values of the bits generated for the quotient. 

Figure 29 shows a block diagram of the steps required to perform the square root algorithm. 
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Figure 29: Steps to perform the floating point square root algorithm.  
 
 

The most compliant pipelined implementation consists of 60 stages and runs at 164 MHz 

by occupying 2332 slices while the least compliant (i.e., lowest overhead) implementation 

consists of 55 stages and runs at 169 MHz by occupying 1666 slices of a Virtex II XC2VP7 

FPGA.   

In [16], the authors propose a scalable single-precision square root unit based on a non-

restoring digit recurring algorithm.  The pipelining of this unit is based on array architecture of 

the non-restoring algorithm.  Figure 30 shows the structure of pipelined square root unit while 

Figure 31 shows an eight-bit non-restoring array used in a smaller square root unit.   
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Figure 30: Structure of the pipelined square root unit. 

 

Figure 31: Eight bit non-restoring square root array. 
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A 12-stage single-precision version of the pipelined square root unit can run at 211 MHz 

with an area utilization of 302 slices thus producing a throughput of 204 MFLOPS.  The same 

claims made by the authors regarding the dividers apply also the square root unit.   

This thesis presents a sequential square root unit based on a radix-2 digit-recurring non-

performing sequential algorithm [17].  The iterations in the digit recurring algorithm are unrolled 

to various degrees to generate pipelined square root units with different pipeline depths.  These 

depths are used to characterize the impact of pipeline depth on area cost, throughput, and 

dynamic power within the unit.  

2.3 Summary  

Table 3 shows a summary of the reviewed dividers.  This table shows the 32-bit designs 

highlighted in gray color.  Given the diversity of FPGA chips used in these designs and the wide 

ranges observed in their throughputs and area overhead, it can be quite difficult to construct a 

meaningful comparison between these designs. As a result, a generic metric, that is independent 

of implementation technology, is needed to quantify the efficiency of a given design. In fact, 

such a metric can be easily constructed by considering the level of throughput measured in 

FLOPS, produced by unit of area, measured in slices.  This metric, shown in the rightmost 

column of each table, can be used as the basis for comparison of the various designs shown in 

Table 3 and Table 4 

In order to obtain a fair comparison of the 32-bit designs to the 64-bit designs, the 

throughput and area utilization of the 32-bit designs have to be halved and doubled respectively.  

Based on these new numbers, a scaled throughput-area ratio can be recomputed for comparison 

purposes.   
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Table 3:  Summary of the reviewed dividers. 
 

Reference Algorithm Radix Precision
(bits) 

Pipelining
(stages) 

Device Throughput
(MFLOPS) 

Area 
(Slices) 

Throughput/Area 
(KFLOPS/Slice) 

[14] SRT 4 64 29 XC2V6000 97.81 2595 30.12 
[15] SRT 2 32 47 XC2V1000 166.66 3245 51.36 
[10] SRT, Non-

restoring 
2 64 68 XC2VP7 140.05 4243 33 

[16] Non-
restoring 

2 32 24 XC2V1000 158 870 181.6 

This 
thesis 

Pencil-
and-paper 

2 64 60 XC2V6000 97.81 2920 33.49 

 

As Table 3 shows, the divider proposed in this thesis presents a throughput-area ratio that 

is higher than the ratio of the other 64-bit dividers.  With the exception of the divider by [16], the 

other 32-bit divider presents a lower throughput-area ratio after it is scaled to a 64-bit precision.  

It is worth noting that the design proposed in [16]consumes a significant area in terms of slices in 

comparison to the divider proposed in this thesis as more stages are added to the pipeline.  

Instead, the divider in this thesis consumes an almost constant area regardless of the depth of the 

pipeline.  This constant consumption of resources can be leveraged by maximally pipelining the 

design in order to reach the highest throughput possible.  

Table 4 shows a summary of the reviewed square root units where the 32-bit designs are 

highlighted in gray color.  With the exception of the design proposed by [10], this table shows 

that the square root unit proposed in this thesis has a throughput-area ratio that is comparable to 

the other 64-bit designs.  It is worth noting that the authors in [10] implemented their design on 

an XC2VP7.  This device is a high-end reconfigurable system that is fabricated in a 0.13 μm, 1.5 

V CMOS process with fast switching devices.  This device can reach clock frequencies that 

surpass by far the frequencies of the other Virtex-II devices.  The divider and square root units 
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proposed in this thesis are based on simple radix-2 algorithms that lead to implementations that 

are easy to test and parameterize.  

Table 4: Summary of the reviewed square root units. 
 

Reference Algorithm Radix Precision 
(bits) 

Pipelining
(stages) 

Device Throughput
(MFLOPS) 

Area 
(Slices) 

Throughput/Area 
(KFLOPS/Slice) 

[14] Non-
restoring 

2 64 28 XC2V6000 69.1 1433 48.22 

[19] Non-
restoring 

2 32 25 XC4000 Not stated 408+675 
(LUTs+FFs) 

Not stated 

[15] Non-
restoring 

2 32 28 XC2V1000 166 1313 126.42 

[10] Non-
restoring 

2 64 66 XC2VP7 164.2 2332 70.41 

[16] Non-
restoring 

2 32 15 XC2V1000 204 302 675.9 

This 
thesis 

Non-
restoring 

2 64 59 XC2V6000 126.82 2700 46.97 
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CHAPTER THREE: DOUBLE PRECISION FLOATING POINT DIVISION 

In this chapter, section 3.1 presents the architecture of the double precision floating point 

divider while section 3.2 presents the approach used to pipeline the divider. Section 3.3 presents 

the verification of the divider while 3.4 presents the experimental results of the divider and a 

related discussion. Finally, section 3.5 presents the conclusion of the chapter.  

3.1 Architecture of the Divider 

As Figure 32 shows, the divider takes as inputs two 64-bit numbers A and B, and outputs 

a quotient Q as a 64-bit number.  

 

Figure 32: Double precision floating point divider. 
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3.1.1 Unpacking 

The unpacking block separates the 64 bits of each number, A and B, into the sign bit S 

which is the most significant bit, the exponent E which is the next significant 11 bits, and the 

mantissa M which is the least significant 52 bits.  The biased exponent and the input operand are 

used to determine whether the input operand is NaN (i.e., not a number), infinity, zero, or neither 

of these. If any of the three first conditions is true, the flag F is set and computation is halted. 

Otherwise, S, E and M are fed to the next appropriate blocks. 

3.1.2 Sign Logic 

This block determines the sign SQ of the final quotient Q. The sign of the quotient is 

found by XORing the signs of A and B as  SQ   = SA  XOR  SB.  Table 5 shows how the sign of the 

final quotient is calculated from the sign of A and B. 

Table 5: Determination of sign SQ  of the final quotient Q. 
 

SA SB SQ 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

3.1.3 Exponent Subtraction 

This block computes the exponent of the quotient by subtracting the exponent of B from 

that of A. The subtraction is an 11-bit operation: EAB   = EA  − EB.  

3.1.4 Bias Addition 

This block adds the bias, which is 1023, to the output EAB of the exponent subtraction 

block as follows: Eb   = EAB  + 1023.    
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3.1.5 Mantissa Division 

This block computes the quotient and remainder of the mantissa using a 55-bit remainder 

register R as follows: 

Input: MA, MB  Both are 53-bit mantissas 
Output: MAB    55-bit mantissa 
 
1: R = MA; 
2: for (i = 0; i < 55; i = i + 1) 
3:    if (R – MB) ≥ 0 
4:       MAB[54-i] = 1; 
5:       R = R – MB; 
6:    else 
7:       MAB[54-i] = 0; 
8:    endif 
9:    R = R << 1; 
10: end for 
 

In line 1, the remainder is initialized with A’s mantissa.  In each iteration, if the 

difference between the contents of register R and B’s mantissa is greater then or equal to 0, a 1 is 

inserted in the current bit position of the quotient register as shown in line 3 and 4. Next, the 

difference is stored in the remainder as shown in line 5. Otherwise, a 0 is inserted in the current 

bit position of the quotient register as shown in line 7.  At the end of the iteration, the contents of 

the remainder register are shifted to the left by one bit as shown in line 9.  Note that the insertion 

of bits in MAB starts from the most significant bit in the first iteration and proceeds towards the 

least significant bit in MAB.  The mantissa division takes 55 clock cycles to complete. 

3.1.6 Normalization 

If the quotient MAB is not normalized, this block normalizes it based on the quotient 

obtained form the mantissa division. If the most significant bit of the mantissa MAB is 0, it is 

shifted to the left by one bit. Otherwise, the mantissa is copied to Mn as it is. 
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Input: MAB  55-bit mantissa 
Output: Mn  55-bit mantissa 
        Fa1  adjust flag 
 
1: Fa1 = 0; 
2: if MAB[54] = 0 
3:    Mn[54..1] = MAB << 1; 
4:    Mn[0] = 0; 
5:    Fa1 = 1; 
6: else 
7:    Mn = MAB; 
8: endif 
 

If the most significant bit of the mantissa is 0, it is shifted to the left by one bit and copied 

to Mn as shown in lines 2 and 3.  Next the least significant bit of Mn is updated to 0 in line 4 and 

the adjustment flag is set in line 5.  Otherwise, the mantissa is copied to Mn as shown in line 7.  

3.1.7 Rounding Control 

In this block, the sticky bit is computed first. Next, the sticky, guard, and the round bits 

are used to determine whether rounding is necessary or not.  The latter two bits are the least 

significant bits of the 55-bit quotient, namely Mn.  

Input: Mn  55-bit mantissa 
Output: Fr  round flag 
 
1: Fr = 0; 
2: s = (Mn[0] ∨ Mn[1] ∨ … Mn[55]); 
3: if ((Mn[0] = 0) and (s = 0)) 
4:    if ((Mn[1] = 1) and (Mn[2] = 1)) 
5:       Fr = 1; 
6: else 
7:    if (Mn[1] = 1) 
8:       Fr = 1; 
9: endif  
 

This rounding approach implements the round-to-nearest-even mode of rounding 

documented in the IEEE standard.  Among the four rounding modes specified by the IEEE 
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standard, this mode is considered the default mode.  When rounding occurs, the rounding flag Fr 

is set.  

3.1.8 Rounding  

The rounding block rounds the quotient’s mantissa based on the decision taken in the 

rounding control block. If a rounding decision has been made, meaning when Fr  = 1, then a 1 is 

added to the least significant bit of the input Mn, and the flag Fa2 is set for exponent adjustment. 

Otherwise, no action is taken. The output of this block, MQ, is the mantissa of Q. 

Input: Mn  55-bit mantissa  
       Fr   round flag 
Output: MQ  53-bit mantissa 
        Fa2  adjust flag 
 
1: Fa2 = 0; 
2: if (Fr = 1) 
3:    MQ = Mn[52..0] + 1; 
4:    Fa2 = 1; 
5: else 
6:    MQ = Mn[52..0]; 
7: endif 
 

3.1.9 Exponent Adjustment 

The exponent adjustment block adjusts the exponent based on the decision taken in the 

rounding block.  If Fa2  = 1, then Ea is incremented and the result is stored in EQ. Otherwise, no 

action is taken. The output EQ is the exponent of Q. 

Input: Ea   11-bit exponent 
       Fa2   adjust flag 
Output: EQ  11-bit exponent 
 
1: if (Fa2 = 1) 
2:    EQ = Ea + 1; 
3: else 
4:    EQ = Ea; 
5: endif    
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3.1.10 Packing 

The packing block concatenates from left to right the sign (S), the 11-bit exponent (EQ), 

and the 53-bit mantissa (MQ). 

3.2 Pipelining of the Divider 

In the divider, the slowest component is the block which computes the division of the 

mantissas.  Since this block executes this division sequentially, any incoming operands have to 

be stopped until all iterations are complete.  As a result, the throughput of the divider is 

significantly low.  This throughput is 1
seq

nd
τ = where n is the number of iterations in the 

sequential divider while d is the execution delay of a single iteration. Pipelining this divider will 

definitely increase their throughputs. A straightforward way to pipeline iterative algorithms is to 

unroll the iterations of the loops embedded within the algorithm.  In this case, the 55 iterations of 

the loop, which computes the division of the two mantissas, can be unrolled 55 times.  As such, 

the throughput is 1
pipe

md
τ = where m is the number of unrolled iterations per stage and d is as 

defined above. Note that 1 ≤ m ≤ n where m = 1 represents a fully unrolled sequential design 

while m = n represents the un-pipelined sequential design. However, full unrolling can 

theoretically increase the area cost. In fact, the area of a pipeline design can be expressed as 

pipe

n
A nc r

m
= + where c is the combinational area of a single iteration, r is the number of bit 

registers required for a single pipeline stages, and m and n are as defined above.  Note that in 

Apipe, m varies while nc is constant regardless of how many iterations are packed into a single 

pipeline stage. Furthermore, Apipe is at its maximum when m = 1. Faced with this difficulty, it 
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would make sense to consider (i) partially unrolling the loops, or (ii) optimizing the operations of 

a single iteration, in order to decrease this complexity.  Considering the above factors, the divider 

is pipelined to various degrees in order to assess the impact of the pipeline depth on area 

overhead.   

3.3 Verification of the Divider  

This section presents the modeling of the sequential and the pipelined dividers, and 

shows the simulation results obtained for these dividers.  

3.3.1 Modeling of the Sequential and Pipelined Dividers 

To verify the divider, 5 VHDL models were developed where the first model implements 

the sequential divider while the remaining four models implement the 7, 14, 28, and 55-stage 

pipelined dividers. Table 6 shows the entities modeled in VHDL for each divider where the 

VHDL models of the sequential divider and its four pipelined versions total 5117 lines of code.  

Table 6:  Breakdown of VHDL lines of codes based on divider entities. 
 

Module Entity VHDL lines of code
Sequential Divider NON_PPL_DIVIDER (top level ) 172
    UNPACK_DIVIDER 86
    SIGN_LOGIC_DIVIDER 25
    EXPONENT_SUBTRACTION_DIVIDER 23
    BIAS_ADDITION_DIVIDER 23
    DIVIDER_NON_PPL 72
    NORMALISE_DIVIDER 30
    ROUNDING_CONTROL_DIVIDER 30
    ROUND_DIVIDER 31
    EXPONENT_ADJUST_DIVIDER 27
    PACK_DIVIDER 29
  
 Subtotal 548
  
55-stage Divider PPL_DIVIDER (top level) 172
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    UNPACK_DIVIDER 86
    SIGN_LOGIC_DIVIDER 25
    EXPONENT_SUBTRACTION_DIVIDER 23
    BIAS_ADDITION_DIVIDER 23
    OVERFLOW_DIVIDE 741
    NORMALISE_DIVIDER 30
    ROUNDING_CONTROL_DIVIDER 30
    ROUND_DIVIDER 31
    EXPONENT_ADJUST_DIVIDER 27
    PACK_DIVIDER 29
  
 Subtotal 1,217
  
28-stage Divider DIVIDER_PPL_28 (top level) 172
    UNPACK_DIVIDER 86
    SIGN_LOGIC_DIVIDER 25
    EXPONENT_SUBTRACTION_DIVIDER 23
    BIAS_ADDITION_DIVIDER 23
    DIVIDER_28 702
    NORMALISE_DIVIDER 30
    ROUNDING_CONTROL_DIVIDER 30
    ROUND_DIVIDER 31
    EXPONENT_ADJUST_DIVIDER 27
    PACK_DIVIDER 29
   
 Subtotal 1,178
  
14-stage Divider DIVIDER_PPL_14 (top level) 172
    UNPACK_DIVIDER 86
    SIGN_LOGIC_DIVIDER 25
    EXPONENT_SUBTRACTION_DIVIDER 23
    BIAS_ADDITION_DIVIDER 23
    DIVIDER_14 630
    NORMALISE_DIVIDER 30
    ROUNDING_CONTROL_DIVIDER 30
    ROUND_DIVIDER 31
    EXPONENT_ADJUST_DIVIDER 27
    PACK_DIVIDER 29
  
 Subtotal 1,106
  
7-stage Divider PPL_DIVIDER_7 (top level ) 172
    UNPACK_DIVIDER 86
    SIGN_LOGIC_DIVIDER 25
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    EXPONENT_SUBTRACTION_DIVIDER 23
    BIAS_ADDITION_DIVIDER 23
    DIVIDER_PPL_8 592
    NORMALISE_DIVIDER 30
    ROUNDING_CONTROL_DIVIDER 30
    ROUND_DIVIDER 31
    EXPONENT_ADJUST_DIVIDER 27
    PACK_DIVIDER 29
  
 Subtotal 1,068
  
Total   5,117

 

3.3.2 Simulation of the Divider 

The VHDL model of each five different versions of the divider has been verified through 

extensive simulation using ModelSim 5.8.  In this process, separate simulations were performed 

on each individual entity to insure its functional correctness.  

3.3.3 Simulation of the Sequential Divider  

Figure 33 shows the simulation snapshot of the top level module of the sequential 

divider.  In this figure, two 64-bit operands, A and B being 3.75 and 1.5 respectively, are input to 

the divider. The highlighted a_divide output in the leftmost pane of the simulation snapshot 

represents the 64-bit quotient produced by the sequential divider.  This sequential divider takes 

58 clock cycles to produce an output as it calculates one output bit per clock cycle. While the 

computation progresses through the iterations of the divider, the latter cannot accept any new 

operands until the division operation is complete. As a result, this divider can take a new pair of 

operands only after every 58 cycles. The sign of the quotient is calculated as the XOR of the sign 
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bits of the A and B operands as described in section 3.1.2. In this case, both inputs are positive, 

and hence the sign of the quotient is also positive. 

 

Figure 33: Simulation snapshot of the sequential divider. 
 

On the other hand, the 11-bit exponents of A and B are made biased as described in 

section 3.1.4.  In this case, 1
10 23.75 11.11 1.111 10A = = = × .  Since A’s exponent is 1, 

then 10 21 1023 1024 10000000000AE = + = = .  Also, since 0
10 21.5 1.1 1.1 10B = = = × , its exponent 

is 10 20 1023 1023 01111111111BE = + = = .  Based on these two exponents, EAB and Eb can be 

calculated as 1024 1023 1AB A BE E E= − = − =  and 

10 21023 1023 1 1021 10000000000b ABE E= + = + = =  respectively.  Finally, the quotient mantissa 
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can be computed as 1 22 (1 ) 2 (1 2 ) 2 1.25 2.5bE
QM fraction −= × + = × + = × = .  In the simulation 

snapshot, the quotient a_divide represents the expected output MQ. 

3.3.4 Simulation of the 55-stage Pipelined Divider 

In this divider, pipeline registers are inserted after each iteration of the mantissa division 

(i.e., m = 1) as shown in Figure 34. Since 55 iterations are required to calculate the quotient of 

the division, 55 registers are inserted in the mantissa divider. This maximum pipeline depth 

produces maximum throughput. After an initial latency of 55 clock cycles, a new output is 

produced every clock cycle. 

Figure 35 shows a simulation snapshot of the 55-stage pipelined divider.  The simulation 

illustrated in this figure consists of feeding the first pair of operands to the divider, namely A = 

3.74 and B = 1.5, in the first clock cycle, followed by a second pair of operands, namely A = 10.5 

and B = 2.5. 

 

Figure 34: Register placement in the 55-stage pipelined divider. 
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Figure 35:  Simulation snapshot of the 55-stage pipeline divider. 
 
 

The simulation run goes through 55 cycles before the first quotient 2.5 appears at the output of 

the divider.  This is due to the 55-cycle initial latency of this divider.  Immediately after the first 

quotient, the second quotient 4.2 appears at the output of the divider in the following cycle.    

3.3.5 Simulation of the 28-stage Pipelined Divider 

In this divider, pipeline registers are inserted after every two iterations of the mantissa 

division (i.e., m = 2) as shown in Figure 36. This results in the insertion of 28 pipeline registers. 
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The achieved throughput is roughly half of the throughput achieved by the 55-stage divider with 

a 28-cycle initial latency.     

 

Figure 36:  Register placement in the 28-stage pipelined divider. 
 
 

Figure 37 shows a simulation snapshot of the 28-stage pipelined divider.  Similarly to the 

simulation of the 55-stage divider, this simulation consists of feeding the same two pairs of 

operands in consecutive cycles to the divider.  This simulation run show how both quotients 

appear in consecutive cycles after the 28-cycle initial latency of the pipelined divider.   
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Figure 37: Simulation snapshot of the 28-stage pipelined divider. 
 

3.3.6 Simulation of the 14-stage Pipelined Divider 

In this divider, pipeline registers are inserted after every four iterations of the mantissa 

division (i.e., m = 4) as shown in Figure 38. In total, 14 pipeline registers are inserted in the 

pipeline.  The achieved throughput of this divider is roughly half of the throughput of the 28-

stage divider.  

Figure 39 shows a simulation snapshot of the 14-stage pipelined divider.  Similarly to the 

simulation of the 55-stage divider, this simulation consists of feeding the same two pairs of 

operands in consecutive cycles to the divider.  This simulation run show how both quotients 

appear in consecutive cycles after the 14-cycle initial latency of the pipelined divider. 
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Figure 38: Register placement in the 14-stage pipelined divider. 
 

 

Figure 39: Simulation snapshot of the 14-stage pipelined divider. 
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3.3.7 Simulation of the Seven-stage Pipelined Divider 

In this divider, pipeline registers are inserted after every eight iterations of the mantissa 

division (i.e., m = 8) as shown in Figure 40.  In total, 7 pipeline registers are inserted in the entire 

divider. The throughout achieved by this divider is roughly half of the throughput achieved by 

the 14-stage divider.  

 

 

Figure 40: Register placement in the seven-stage pipelined divider. 
 
 

Figure 41 shows a simulation snapshot of the 7-stage pipelined divider.  Similar to the 

simulation of the 55-stage divider, this simulation consists of feeding the same two pairs of 

operands in consecutive cycles to the divider.  This simulation run show how both quotients 

appear in consecutive cycles after the seven-cycle initial latency of the pipelined divider. 
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Figure 41: Simulation snapshot of the seven-stage pipelined divider. 
  

3.4 Evaluation of the Divider 

In this section, the results of the synthesized divider are compared to earlier related 

dividers implemented on FPGAs.  This comparison is followed by an evaluation of the impact of 

pipeline depth on area, throughput, and dynamic power of the divider.  

3.4.1 Divider Design Comparison 

  The divider unit was modeled in VHDL, simulated in ModelSim 5.8, synthesized using 

Synplify Pro 7.2, and placed using Xilinx ISE 5.2. Table 7 shows the implementation results of 

the divider units on the Virtex XCV1000 chip. These units were mapped on this chip in order to 

compare our results with the sequential results obtained in [17] where no pipelined 
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implementations of the units were presented. Sequential implementation of the divider has a 

throughput that is quite comparable to the throughputs in [17]. This implementation is 

significantly low in area overhead measured in terms of LUTs as shown in Table 7 although its 

throughput hovers around the single MFLOP mark. In contrast, the pipelined implementation 

displays a throughput that is significantly higher in this unit. In fact, the throughput of the 

pipelined divider is 62× higher than its iterative counterpart. The 62× increase in the divider 

throughput leads to a modest 13× increase in slices. This shows that the pipelined 

implementation of the divider is highly efficient since the gain in performance is offset by a 

relatively low cost in area overhead.  

Table 7: Implementation results of the divider units on the Virtex XCV1000. 
 

Unit Clock Period 
(ns) 

Clock Frequency 
(MHz) 

Throughput 
(MFLOPS) 

Slices LUTs Flip-Flops 

Sequential divider 15.33 65.20 1.03 222 443 (1%) 274 

Pipelined divider 14.90 67.10 64 2915 5830 (23%) 5734 

 

With the exception of a few attempts, most previously published designs of division 

address only single or parameterizable precision floating point implementation [15]. For a 

meaningful comparison, it would make sense to map both units on the same chips used in [10, 

14]. Table 8 contrasts our implementation results to the results obtained in [14].   

Table 8 : Performance of the divider units on the Virtex II XC2V6000. 
 

Unit Clock 
Period 

(ns) 

Clock 
Frequency

(MHz) 

Clock 
Cycles 

Latency
(ns) 

Throughput
(MFLOPS) 

Area 
(Slices) 

Throughput/Area 
(KFLOPS/Slice) 

Sequential divider 9.93 100.70 60 595.8 1.60 284 5.63 
Array divider [14]  300 3.33 1 300 3.17 1705 1.85 
Pipelined divider 

(60 stages) 
9.75 102.50 1 9.75 97.81 2920 33.49 

Pipelined divider 
(29 stages) [14]  

12.20 81.96 1 12.20 78.17 2595 30.12 
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Column 1 shows the units to be compared and the number of stages in the pipelined units 

while column 2 shows the clock period of the critical path of each unit.  Column 3 shows the 

clock frequency of the implemented unit while column 4 shows the number of clock cycles 

required to produce a single output.  Column 5 shows the latency or the time required to produce 

a single output while column 6 shows the throughput of each unit measured in Mega floating 

point operations per second (MFLOPS).  Column 7 shows the number of slices needed to 

implement the unit of the XC2V6000 chip while column 8 shows the throughput per area of each 

unit.  While our non-pipelined units are sequential in nature, the units in [14] are not.  As a 

result, the areas required to implement our divider units are significantly smaller than the areas 

required to implement the units in [14].  They can occupy only 0.16× of the divider compared to 

the areas of the array units in [14].  On the other hand, the latencies in our sequential unit is 

1.98× higher for the divider  than the latency of the non-pipelined units in [14] although the 

clock periods in our unit is significantly lower than the clock periods in the non-pipelined units 

in [14]. However, the latencies of our pipelined unit is 0.79× smaller for the divider than the 

latencies of the pipelined units in [14]. This can be attributed to the high degree of pipelining 

introduced in our units.  In fact, the iterative computations in our divider units were fully 

unrolled to yield a 55-stage pipeline in the mantissa divider block of the divider unit.  In contrast, 

the pipelined divider in [14] consists of only 29 stages.  Considering this difference in pipeline 

stages, the areas measured in slices of our implemented pipelined unit is obviously higher than 

the area of the pipelined unit in [14].   

Although the number of pipeline stages differs over implementations, a relatively 

accurate metric to assess the efficiency of these various implementations can be derived by 

considering the ratio of throughput over area shown in column 8 of Table 8.  This ratio gives a 
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rough idea about the level of throughput produced by a single slice regardless of the area used in 

the implementation.  Based on this ratio, our pipelined divider is 1.11× more efficient that the 

pipeline divider in [14]. Although our design is sequential in nature and does not take advantage 

of other radices to reduce delay as done in [14], it is clear that it is quite comparable in 

performance to the design in [14].  Furthermore, it is worth noting that designs based on radix-2 

computations, such as ours, are easier to implement and test.  Note that these throughputs were 

achieved by merely spreading spatially the computations across the LUTs of the FPGA.  The 

performance of our unit can be boosted further by constructing highly optimized layouts of the 

units which take advantage of the block RAMs and embedded multipliers within the Virtex 

FPGA.  

3.4.2 Throughput Evaluation 

In order to understand the impact of loop unrolling on area and throughput, the divider 

was pipelined into different depths as described in section 3.3.2.  The pipeline depth, or number 

of pipeline stages, depends on the degree of unrolling of the iterative loops in the division unit of 

the mantissa.  Experiments were conducted to measure area and performance parameters by 

partitioning the mantissa’s divider into pipelines of 1, 7, 14, 28, and 55 stages.  The four last 

depths can be obtained by embedding eight iterations, four iterations, two iterations, and one 

iteration per stage respectively. Figure 42 shows clock frequency and throughput across the 

mentioned pipeline depths for the divider units on the Xilinx XC2V6000-4 chip.   

The figure shows that the frequency and throughput of a divider increases as the pipeline 

depth increases in a non linear fashion.  The sequential divider unit is considered as one-stage 
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pipeline.  Note that in these designs, the iterative computations of the loop are performed in the 

same small area leading to a short clock period, and subsequently a high clock frequency.  
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Figure 42: Clock frequencies and throughputs of the dividers.  
 

However, the 55 iterations of the loop have to be completed for division computations 

before an output is produced.  This leads to a significantly low throughput as shown in Figure 42.  

This shows that a complete unrolling of the loop in the iterative design of the divider can provide 

higher level of throughputs.   However, this gain in throughput can be accompanied by an area 

penalty.  

3.4.3 Area Evaluation 

Figure 43 shows area cost, measured in slices, LUTs, and flip-flops for various pipeline 

depths of the divider units on XC2V6000-4.  As this figure shows, the overall area increases as 

the pipeline becomes deep.  Among LUTs and flip-flops, the increase seems to be more 

pronounced for the latter.  This can be explained by the fact that, except for the sequential 
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design, the pipelined designs have roughly the same amount of combinational logic regardless of 

the degree of loop unrolling. 
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Figure 43: Area costs of the dividers. 
 

As such, the increase in area tends to affect the number of flip-flops since flip-flops are 

gradually added to implement the increase in the number of inter-stage registers required to 

support deeper pipelines.  By examining the trend lines of this increase, it is clear that it is non-

linear across the implemented divider units. With regard to slices, it seems that their numbers 

reach their maximum in the 28-stage pipeline. The trend line of this increase is an extremely flat 

bell curve spanning the pipelines of 8 to 55 stages. This shows that the degree of unrolling does 

not impact significantly the slice area needed to implement the pipeline.  One can speculate that 

roughly the same slice area is used to implement the same amount of combinational logic 

embedded in the four pipelines.  As more stages are added to a pipeline, the flip-flops contained 

in the same slices are being used to implement the increasing numbers of pipeline registers.  If 
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additional flip-flops are needed, additional slices are marshaled to provide the needed flip-flop 

thus leading to a slight increase in slices.   

When considering the throughput and area cost, one can quantify the incurred area 

penalty associated with throughput gain as a ratio. Figure 44 shows the throughput-area ratio of 

the divider units on XC2V6000-4.  This ratio can be usefully used in measuring the level of 

throughput provided by unit of area expressed as a single slice.   
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Figure 44 : Throughput-area ratios of the dividers.  
 

As this figure shows, this ratio increases as the pipeline depth increases.  In fact, by 

further unrolling the loop, and subsequently adding more stages to the pipeline, one is not adding 

combinational logic, but merely shortening the critical path in each pipeline stage.  This results 

in a speedup of the clock of the pipeline without a significant increase in area.  The net effect is a 

visible increase in the throughput-area ratio.  These observations suggest that in iterative designs, 

maximum performance benefits can be obtained by totally unrolling the iterative loops of the 

computations without incurring a significant area penalty.  This is somewhat counter-intuitive 
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considering that advanced pipelining in ASIC implementations always lead to a gradual increase 

in area penalty.  This increase can reach a point where the throughput-area ratio starts to 

gradually decrease as more stages are added to the pipeline after which partitioning further the 

pipeline can only yield diminishing returns in terms of throughput-area ratio.  

3.4.4 Dynamic Power Evaluation 

In order to understand the impact of loop unrolling on dynamic power consumption, the 

divider was pipelined into different depths as described in section 3.3.2.  Each pipelined divider 

is placed and routed using Xilinx ISE 6.2i on a Virtex XCV600 since the latter is the closest chip 

in architecture to the XC2V6000 chip used in the area and throughput experiments that is 

provided by Xilinx tools for power analysis.  After setting the simulation clock period to 10 ns, a 

simulation run of 700 ns is performed on each divider by feeding a diverse set of 70 input 

vectors.  The output of this simulation produces a vcd file which is fed to the XPower tool 

packaged with Xilinx ISE software tools.  XPower reads the vcd file and generates a report 

showing the switching power consumed by various components such as IO blocks, logic, 

routing, clocking, etc…Figure 45 shows the adopted methodology to conduct power analysis on 

the pipelined dividers.  For a focused power analysis, we disregarded the power consumed by all 

device-dependent components such as IO blocks.  In return, only design-dependent power 

components were taken into account.  These components are the switching power of the clock 

tree, design logic, and routing signals.  Figure 46 shows the dynamic power consumed by the 

pipelined dividers.   

As shown in the figure, dynamic power decreases as pipeline depth increases.  However, 

the values of dynamic power consumed by the 14, 28, and 55-stage dividers are all below 7,000 
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mW in contrast to the 142,750 mW consumed by the 8-stage divider based on the log scale of the 

y-axis in Figure 46.  The latter figure is equivalent to 21.54× more power than the power 

consumed by the 14-stage divider.  Note that the amount of combinational logic is roughly the 

same in all the dividers.  The only difference is the amount of logic embedded within a single 

stage of the divider. 

 

 

Figure 45 : Power analysis methodology.  
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Figure 46 : Dynamic power of the dividers. 
 

In the case of an eight-stage divider, there are eight iterations embedded within a single 

stage.  These eight iterations present a logic network that contains numerous paths which do not 

have necessarily the same length.  In particular, long paths are notorious for displaying glitching 

behavior.  In fact, glitching activity increases with signal length [21].  By inserting registers at 

various points in the design, the amount of interconnect between registers is reduced thereby 

reducing the amount of glitching plaguing these signals.  As a result, the dynamic power 

displayed by the divider is also reduced.  However, Figure 46 shows that this reduction in 

dynamic power tends to slow down as the divider is pipelined further.  Apparently, there is a 

large initial payoff in power reduction in the initial pipelined design (e.g., eight-stage pipeline) 

up to a point beyond which further pipelining does not return any substantial reduction in 

dynamic power (e.g., 14-, 28-, and 55-stage pipeline).  This can be explained by the fact that in 

shallow pipelined designs, glitching can make up to 80% of the total power consumed by the 

divider.  As the pipeline depth of the design is slightly increased, glitching activity can fall to 
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levels below 40% of total power displayed by the divider [22].  This sudden fall in glitching 

activity explains the decreasing returns observed in deeper pipelines.  In essence, while 

pipelining can improve throughput in a non-linear fashion, its impact on reducing power is 

limited to shallow pipelines.          

3.5 Conclusion 

This chapter presents the design of IEEE-compliant double precision floating point 

sequential and parallel dividers.  This design is based on a low-radix iterative division algorithm 

known as the binary version of the pencil-and-paper method.  The pipelining of the divider was 

based on partial and full unrolling of the loops in the iterative mantissa division.  The 

implementation of this divider did not take advantages of any advanced architectural features 

available in high end FPGA chips or use any pre-designed architecture-specific arithmetic cores.  

The experiments reveal that this divider can produce maximum throughput when the iteration of 

the computational loops are totally unrolled without incurring a significant area penalty.  While 

the sequential divider occupies less than 3% of an XC2V6000 FPGA chip, its pipelined 

counterparts can produce throughputs that exceed the 100 MFLOPS mark by consuming at most 

a modest 8% of the chip area.  These throughputs surpass by far the throughputs of division on 

many processors [9].  Such performances are indeed perfectly suited to accelerate numeric 

applications.     
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 CHAPTER FOUR: DOUBLE PRECISION FLOATING POINT SQUARE 
ROOT UNIT 

In this chapter, section 4.1 presents the architecture of the double precision floating point 

square root unit while section 4.2 describes the approach used to pipeline this unit. Section 4.3 

presents the verification of the unit while section 4.4 explains the experimental results conducted 

on the unit. Finally, section 4.5 concludes the chapter.  

4.1 Architecture of the Square Root Unit 

As Figure 47 shows, the square root units takes as input a 64-bit number A  and outputs 

its square root R  as a 64-bit number.  

 

Figure 47: Double precision floating point square root unit. 
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4.1.1 Unpacking 

The unpacking block separates the 64 bits of A in a manner similar to the one performed 

by the unpacking block of the divider. 

4.1.2 Exponent Calculation 

This block computes the resultant exponent of the square root based on the biased 

exponent: 

Input: EA  11-bit exponent 
Output: Ec  11-bit exponent 
        Fs  shift flag 
 
1: Fs = 0; 
1: if (EA is even) 
2:    Ec = (EA + 1022) >> 1; 
3:    Fs = 1; 
4: else if (EA is odd) 
5:    Ec = (EA + 1023) >> 1;  
6: end if 
 

If the biased exponent is even, it is added to 1022 and divided by two. In addition, the 

shift flag Fs is set to indicate that the mantissa should be shifted to the left by 1 bit before 

computing its square root.  Note that before shifting, the mantissa bits are stored in the 53-bit 

register MA as 1.xxxx… After shifting to the left, MA contents become 1x.xxx…  If the biased 

exponent is odd, it is added to 1023 and divided by two. 

4.1.3 Mantissa Square Root 

The block, which computes the square root of the mantissa, uses the following iterative 

approach based on two 57-bit registers, namely X and T, and a 55-bit register Mr. 

Input: MA  53-bit mantissa 
       Fs  1-bit shift flag  
Output: Mr 55-bit mantissa 
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1: Mr = 000…0; 
2: T = 01000…0; 
3: for (i = 0; i < 55; i = i + 1) 
4:    if (i = 0) 
5:       if (Fs = 1) 
6:          MA = MA[53].MA[51..0].0; 
7:       end if  
8:       X = MA >> 1;    
9:    else 
10:      if (X ≥ T)  
11:         X = (X – T) << 1; 
12:         T = T[(56-i)..0] >> 1; 
13:         T[56-i] = 1; 
14:      else 
15:         X = X << 1; 
16:         T = T[56-i)..0] >> 1; 
17:         T[56-i] = 0;  
18:      end if 
19:   end if 
20: end for 
21: Mr = T[56..2]; 
 

In the first iteration, the contents of MA are shifted to the left and stored in X if the shift 

flag Fs is on as shown in lines 4, 5, and 6. Otherwise, these contents are shifted to the right by 

one bit and stored in X as shown in line 8.  In other iterations, X is compared to T as shown in 

line 10.  If it is greater or equal to T, the contents of X are subtracted from those of T, shifted to 

the left, and stored in X as shown in line 11.  The contents of T are shifted to the left by one bit 

starting from the current pointer position as shown in line 12.  Then, a 1 is inserted in the current 

bit position in T as shown in line 13.  Note that in each iteration, a pointer points to the current 

bit that will be replaced in T.  If X is less than T, its contents are shifted to the left and stored in X 

as shown in line 15.  The contents of T are shifted to the right by one bit starting from the current 

pointer position as shown in line 16.  Then, a 0 is inserted in the current bit position in T as 

shown in line 17.  After the last iteration, the contents of T, with the exception of the two least 
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significant bits, are copied to Mr as shown in line 21.  The computation of the mantissa’s square 

root takes 55 clock cycles to complete.    

4.1.4 Rounding Control 

In this block, the rounding decision is executed in the same way as the rounding control 

block used in division.  The only difference is that the mantissa Mr in the square root unit is a 53-

bit number instead of the 55-bit mantissa Mn used in the rounding control of the divider.  Of 

course, this rounding control implements the same rounding mode used in the divider. 

4.1.5 Rounding 

The rounding block rounds the mantissa based on the same approach used in the divider. 

MR is the mantissa of R.  

Input: Mr   53-bit mantissa   
       Fr   round flag 
Output: MR  53-bit mantissa 
        Fa  adjust flag 
 

1: Fa = 0; 

2: if (Fr = 1) 
3:    MR = Mr + 1; 
4:    Fa = 1; 
5: else 
6:    MR = Mr; 
7: end if 
 

4.1.6 Exponent Adjustment 

The exponent adjustment block adjusts the exponent based on the same approach used in 

the exponent adjustment block of the divider.   
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4.1.7 Packing 

The packing block concatenates from left to right the sign (S), the 11-bit exponent (ER), 

and the 53-bit mantissa (MR). 

 

4.2 Pipelining of the Square Root Unit 

In the square root unit, the slowest component is the block which computes the square 

root of the mantissa.  Since this block executes the square root operation sequentially, any 

incoming operand will have to be stopped until all iterations are complete.  As a result, the 

throughput of the square root unit is significantly low.  This throughput is 1
seq

nd
τ = where n is the 

number of iterations in the sequential square root unit while d is the execution delay of a single 

iteration. Pipelining this square root block will definitely increase its throughput. Hence, this unit 

is pipelined in a way similar to the pipelining approach described in section 3.2 of Chapter 3 for 

the divider.  

4.3 Verification of the Square Root Unit 

This section presents the modeling of the sequential and the pipelined square root units as 

well as the simulation results obtained for these square root units.  

4.3.1 Modeling of the Sequential and Pipelined Square Root Units  

To verify the square root, five VHDL models were developed where the first model 

implements the sequential square root unit while the remaining four models implement the 

seven, 14, 28, and 55-stage pipelined square root units. Table 9 shows the entities modeled in 
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VHDL for each square root unit along with the numbers of lines of VHDL code resulting in a 

total of 4,943 lines.   

Table 9: Breakdown of VHDL lines of codes based on the entities of the square root units. 
 

Module Entity VHDL lines of code
Sequential Square Root Unit SQUARE_ROOT (top level ) 158
 UNPACK_SQRT 56
 EXPO_CALC 66
 SQRT_NON_PPL 93
 ROUND_CONTROL_SQRT 29
 ROUND_SQRT 58
 EXPO_ADJUST_SQRT 56
 PACK_SQRT 30
  
 Subtotal 546
  
55-stage Square Root Unit SQUARE_ROOT_PPL (top level) 158
 UNPACK_SQRT 56
 EXPO_CALC 66
 STAGE2 782
 ROUND_CONTROL_SQRT 29
 ROUND_SQRT 58
 EXPO_ADJUST_SQRT 56
 PACK_SQRT 30
  
 Subtotal 1,235
  
28-stage Square Root Unit SQUARE_ROOT_28 (top level) 158
 UNPACK_SQRT 56
 EXPO_CALC 66
 TRIAL_SQRT 636
 ROUND_CONTROL_SQRT 29
 ROUND_SQRT 58
 EXPO_ADJUST_SQRT 56
 PACK_SQRT 30
   
 Subtotal 1,089
  
14-stage Square Root Unit SQUARE_ROOT_14 (top level) 158
 UNPACK_SQRT 56
 EXPO_CALC 66
 TRIAL_SQRT_14 594
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 ROUND_CONTROL_SQRT 29
 ROUND_SQRT 58
 EXPO_ADJUST_SQRT 56
 PACK_SQRT 30
  
 Subtotal 1,047
  
7-stage Square Root Unit SQUARE_ROOT_7 (top level) 158
 UNPACK_SQRT 56
 EXPO_CALC 66
 TRIAL_SQRT_7 573
 ROUND_CONTROL_SQRT 29
 ROUND_SQRT 58
 EXPO_ADJUST_SQRT 56
 PACK_SQRT 30
  
 Subtotal 1,026
  
Total   4,943

4.3.2 Simulation of the Square Root Units 

The VHDL models of the five versions of the square root units have been verified 

through extensive simulation using ModelSim 5.8.  In this process, separate simulations were 

performed on each individual unit to insure its functional correctness.  

4.3.3 Simulation of the Sequential Square Root Unit  

 Figure 48 shows the simulation snapshot of the top level entity of the sequential 

square root unit.  In this figure, a 64-bit operand A = 30.25 is input to the square root. The 

highlighted a_sqrt output in the leftmost pane of the simulation snapshot represents the 64-bit 

square root produced by the sequential square root unit.  This sequential square root unit takes 65 

clock cycles to produce an output as it calculates one output bit per clock cycle. As the 

computation progresses through the iterations of the square root, the unit cannot accept any new 



 69

operands until the square root operation is complete. As a result, this square root can take a new 

operand only after every 65 cycles.  

 

 Figure 48: Simulation snapshot of the sequential square root unit.  
 

The 11-bit exponent of A is converted to a biased exponent as described in section 3.1.4.  

In this case, 4
10 230.25 11110.11001 1.111011001 10A = = = × . Since A’s exponent EA = 4+1023 

= 1027 which is odd, then 10 10 2( 1023) 2 2050 2 1025 10000000011c AE E= + ÷ = ÷ = = . Based on 

this result, 10 21025 10000000011RE = = as the rounding bit = 0. Finally, the square root mantissa 

can be computed as 2 2 32 (1 ) 2 (1 2 2 ) 4 1.375 5.5RE
RM fraction − −= × + = × + + = × = .  In the 

simulation snapshot, the quotient a_sqrt represents the expected output MR. 



 70

4.3.4 Simulation of the 55-stage Pipelined Square Root Unit 

In this square root unit, pipeline registers are inserted after each iteration of the mantissa 

square root (i.e., m = 1) as shown in Figure 34. Since 55 iterations are required to calculate the 

quotient of the square root, 55 registers are inserted in the mantissa square root block. This 

maximum pipeline depth produces maximum throughput. After an initial latency of 55 clock 

cycles, a new output is produced every clock cycle.  Figure 49 shows a simulation snapshot of 

the 55-stage pipelined square root unit. 

  

Figure 49: Simulation snapshot of the 55-stage pipelined square root unit. 
 

 The simulation illustrated in this figure consists of feeding the first operand to the square 

root, namely A = 30.25, in the first clock cycle, followed by a second operand, namely A = 20.25, 

in the second cycle.  The simulation run goes through 55 cycles before the first square root 5.5 

appears at the output of the square root unit.  This is due to the 55-cycle initial latency of this 
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unit.  Immediately after the first remainder, the second remainder 4.5 appears at the output of the 

unit in the following cycle.    

4.3.5 Simulation of the 28-stage Pipelined Square Root Unit 

In this square root unit, pipeline registers are inserted after every two iterations of the 

mantissa square root (i.e., m = 2) as shown in Figure 36. This results in the insertion of 28 

pipeline registers. The achieved throughput is roughly half of the throughput achieved by the 55-

stage square root with a 28-cycle initial latency.     

Figure 50 shows a simulation snapshot of the 28-stage pipelined square root.  Similar to 

the simulation of the 55-stage square root, this simulation consists of feeding the same operands 

in consecutive cycles to the square root.  This simulation run shows how both square roots 

appear in consecutive cycles after the 28-cycle initial latency of the pipelined square root unit.   

 

Figure 50: Simulation snapshot of the 28-stage pipelined square root unit. 
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4.3.6 Simulation of 14-stage Pipelined Square Root Unit 

In this square root, pipeline registers are inserted after every four iterations of the 

mantissa square root (i.e., m = 4) as shown in Figure 38. In total, 14 pipeline registers are 

inserted in the pipeline.  The achieved throughput of this square root unit is roughly half of the 

throughput of the 28-stage square root unit.  

Figure 51 shows a simulation snapshot of the 14-stage square root.  Similar to the 

simulation of the 55-stage square root unit, this simulation consists of feeding the same two 

operands in consecutive cycles to the square root.  This simulation run shows how both 

remainders appear in consecutive cycles after the 14-cycle initial latency of the pipelined square 

root unit. 

 

Figure 51: Simulation snapshot of the 14-stage pipelined square root unit. 
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4.3.7 Simulation of the Seven-stage Pipelined Square Root Unit 

In this square root, pipeline registers are inserted after every eight iterations of the 

mantissa square root (i.e., m = 8) as shown in Figure 40.  In total, seven pipeline registers are 

inserted in the entire square root unit. The throughout achieved by this square root is roughly half 

of the throughput achieved by the 14-stage square root unit.  

Figure 52 shows a simulation snapshot of the 7-stage pipelined square root unit.  

Similarly to the simulation of the 55-stage square root unit, this simulation consists of feeding 

the same two operands in consecutive cycles to the square root.  This simulation run shows how 

both remainders appear in consecutive cycles after the seven-cycle initial latency of the pipelined 

square root unit. 

 

Figure 52: Simulation snapshot of the seven-stage pipelined square root unit.   
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4.4 Evaluation of the Square Root Unit 

In this section, the results of the synthesized square root units are compared to earlier 

related square root units implemented on FPGAs.  This comparison is followed by an evaluation 

of the impact of pipeline depth on area, throughput, and dynamic power of the square root. 

4.4.1 Square Root Design Comparison 

   The square root unit was modeled in VHDL, simulated in ModelSim 5.8, 

synthesized using Synplify Pro 7.2, and placed using Xilinx ISE 5.2. Table 10 shows the 

implementation results of the units on the Virtex XCV1000 chip. These units were mapped on 

this chip in order to compare our results with the sequential results obtained in [17] where no 

pipelined implementations of the units were presented.  

Table 10 : Implementation results of the square root units on the Virtex XCV1000. 
 

 
Unit 

Clock Period 
(ns) 

Clock Frequency 
(MHz) 

Throughput 
(MFLOPS) 

 
Slices 

 
LUTs 

 
Flip-Flops 

Sequential square 
root 

16.81 59.50 0.96 400 818 (3%) 438 

Pipelined square 
root 

14.33 69.80 66.55 2699 5364 (21%) 3165 

 

Sequential implementation of the square root has a throughput that is quite comparable to 

the throughputs in [17]. This implementation is significantly low in area overhead measured in 

terms of LUTs as shown in Table 10 although its throughput hovers around the single MFLOP 

mark. In contrast, the pipelined implementation displays a throughput that is significantly higher. 

In fact, the throughput of the pipelined square root unit is 69× higher than its iterative 

counterpart. The 69× increase in the square root throughput leads to a modest 6× increase in 
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slices. This shows that the pipelined implementation of the square root is highly efficient since 

the gain in performance is offset by a relatively low cost in area overhead.  

With the exception of a few attempts such as the one in [14], most previously published 

designs of square root units address only single or parameterizable precision floating point 

implementations [10, 15, 19]. For a meaningful comparison, it would make sense to map both 

units on the same chips used in [10, 14]. Table 11 contrasts our implementation results to the 

results obtained in [14].   

Table 11: Performance of the square root units on the Virtex II XC2V6000. 
 

 
 

Unit 

Clock 
Period 

(ns) 

Clock 
Frequency

(MHz) 

 
Clock 
Cycles 

 
Latency

(ns) 

 
Throughput
(MFLOPS) 

 
Area 

(Slices) 

 
Throughput/Area 
(KFLOPS/Slice) 

Sequential square 
root 

9.03 110.70 59 532.77 1.79 405 4.41 

Array square root 
[14]  

239 4.18 1 239 3.99 869 4.59 

Pipelined square 
root 

(59 stages) 

7.52 132.98 1 7.52 126.82 2700 46.97 

Pipelined square 
root 

(29 stages) [14]  

13.80 72.46 1 13.80 69.10 1433 48.22 

 

Column 1 shows the units to be compared and the number of stages in the pipelined units 

while column 2 shows the clock period of the critical path of each unit.  Column 3 shows the 

clock frequency of the implemented unit while column 4 shows the number of clock cycles 

required to produce a single output.  Column 5 shows the latency, which is the time required to 

produce a single output, while column 6 shows the throughput of each unit measured in Mega 

floating point operations per second (MFLOPS).  Column 7 shows the number of slices needed 

to implement the unit of the XC2V6000 chip while column 8 shows the throughput per area of 

each unit.  While our non-pipelined units are sequential in nature, the units in [14] are not.  As a 



 76

result, the areas required to implement our square root units are significantly smaller than the 

areas required to implement the units in [14].  They can occupy only 0.46× of the square root 

unit area compared to the areas of the array units in [14].  On the other hand, the latencies in our 

sequential unit is 2.22× higher for the square root than the latency of the non-pipelined units in 

[14]. However, the latencies of our pipelined unit is 0.54× smaller for the square root units than 

the latencies of the pipelined units in [14]. This can be attributed to the high degree of pipelining 

introduced in our units.  In fact, the iterative computations in our square root units were fully 

unrolled to yield a 55-stage pipeline in the mantissa square root block of the square root unit.  In 

contrast, the pipelined square roots in [14] consist of only 28 stages.  Considering this difference 

in pipeline stages, the areas measured in slices of our implemented pipelined unit is obviously 

higher than the area of the pipelined unit in [14].   

Although the number of pipeline stages differs over implementations, a relatively 

accurate metric to assess the efficiency of these various implementations can be derived by 

considering the ratio of throughput over area shown in column 8 of Table 11.  This ratio gives a 

rough idea about the level of throughput produced by a single slice regardless of the area used in 

the implementation.  Based on this ratio, our pipelined square root is 0.03× less efficient that the 

pipeline square root unit in [14]. While our design is sequential in nature and does not take 

advantage of other radices to reduce delay as is the case in [14], it is clear that it is quite 

comparable in performance to the design proposed in [14].  Furthermore, it is worth noting that 

designs based on radix-2 computations, such as ours, are easier to implement and test than those 

of high-radices implemented in [14].  Note that these throughputs were achieved by merely 

spreading spatially the computations across the LUTs of the FPGA.  The performance of our unit 
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can be boosted further by constructing highly optimized layouts of the units which take 

advantage of the block RAMs and embedded multipliers within the Virtex FPGA.  

4.4.2 Throughput Evaluation 

In order to understand the impact of loop unrolling on area and throughput, the square 

root unit was pipelined into different depths as described in section 4.2.  The pipeline depth, or 

number of pipeline stages, depends on the degree of unrolling of the iterative loops in the square 

root unit block of the mantissa.  Experiments were conducted to measure area and performance 

parameters by partitioning the mantissa’s square root block into pipelines of one, seven, 14, 28, 

and 55 stages.  The four last depths can be obtained by embedding eight iterations, four 

iterations, two iterations, and one iteration per stage respectively. Figure 53 shows the clock 

frequencies and throughputs for the mentioned pipeline depths of the square root unit on the 

Xilinx XC2V6000-4 chip.  The figure shows that the frequency and throughput of a square root 

unit increases as the pipeline depth increases in a non linear fashion.  The sequential square root 

unit is considered as one-stage pipeline.  Note that in these designs, the iterative computations of 

the loop are performed in the same small area leading to a short clock period, and subsequently a 

high clock frequency.  However, the 55 iterations of the loop have to be completed for square 

root computations before an output is produced.  This leads to a significantly low throughput as 

shown in Figure 53.  This shows that a complete unrolling of the loop in the iterative design of 

the square root block can provide higher level of throughputs.   However, this gain in throughput 

may be accompanied by an area penalty.   
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Figure 53: Clock frequencies and throughputs of the square root units. 
 

4.4.3 Area Evaluation 

Figure 54 shows the area cost, measured in slices, LUTs, and flip-flops for various 

pipeline depths of the square root units on XC2V6000-4.  As this figure shows, the overall area 

increases as the pipeline becomes deep.  Among LUTs and flip-flops, the increase seems to be 

more pronounced for the latter.  This can be explained by the fact that, except for the sequential 

design, the pipelined designs have roughly the same amount of combinational logic regardless of 

the degree of loop unrolling.  As such, the increase in area tends to affect the number of flip-

flops since flip-flops are gradually added to implement the increase in the number of inter-stage 

registers required to support deeper pipelines.  By examining the trend lines of this increase, it is 

clear that it is non-linear across the implemented square root units. With regard to slices, it seems 

that their numbers reach their maximum in the 28-stage pipeline.  The trend line of this increase 

is an extremely flat bell curve spanning the pipelines of eight to 55 stages.  This shows that the 
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degree of unrolling does not impact significantly the slice area needed to implement the pipeline.  

One can speculate that roughly the same slice area is used to implement the same amount of 

combinational logic embedded in the four pipelines.  As more stages are added to a pipeline, the 

flip-flops contained in the same slices are being used to implement the increasing numbers of 

pipeline registers.  If additional flip-flops are needed, additional slices are marshaled to provide 

the needed flip-flop thus leading to a slight increase in slices.   
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Figure 54: Area cost of the square root units. 
 

 When considering the throughput and area cost, one can quantify the incurred area 

penalty associated with throughput gain as a ratio. Figure 55 shows the throughput-area ratios of 

the square root units on XC2V6000-4.  This ratio can be used in measuring the level of 

throughput provided by unit of area expressed as a single slice.  As this figure shows, this ratio 

increases as the pipeline depth increases.  In fact, by further unrolling the loop, and subsequently 

adding more stages to the pipeline, one is not adding combinational logic, but merely shortening 

the critical path in each pipeline stage.  This results in a speedup of the clock of the pipeline 



 80

without a significant increase in area.  The net effect is a visible increase in the throughput-area 

ratio.  These observations suggest that in iterative designs, maximum performance benefits can 

be obtained by totally unrolling the iterative loops of the computations without incurring a 

significant area penalty.  This is somewhat counter-intuitive considering that advanced pipelining 

in ASIC implementations always lead to a gradual increase in area penalty.   
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Figure 55: Throughput-area ratio of the square root units.  
 

As this figure shows, this ratio increases as the pipeline depth increases.  In fact, by 

further unrolling the loop, and subsequently adding more stages to the pipeline, one is not adding 

combinational logic, but merely shortening the critical path in each pipeline stage.  This results 

in a speedup of the clock of the pipeline without a significant increase in area.  The net effect is a 

visible increase in the throughput-area ratio.  These observations suggest that in iterative designs, 

maximum performance benefits can be obtained by totally unrolling the iterative loops of the 

computations without incurring a significant area penalty.  This is somewhat counter-intuitive 

considering that advanced pipelining in ASIC implementations always lead to a gradual increase 
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in area penalty.  This increase can reach a point where the throughput-area ratio starts to 

gradually decrease as more stages are added to the pipeline after which partitioning further the 

pipeline can only yield diminishing returns in terms of throughput-area ratio.  

4.4.4 Dynamic Power Evaluation 

To study the effect of loop unrolling on dynamic power consumption, the square root unit 

was pipelined into different depths as described in section 4.2. Each pipelined square root unit is 

placed and routed using the same tools and simulation set up as described in section 3.4.4 for the 

divider. Before running the post place and route simulation, Xilinx ISE 6.2i is set to generate a 

vcd file after the simulation is over. This vcd file which is fed to the XPower tool packaged with 

Xilinx ISE software tools.  XPower reads the vcd file and generates a report showing the 

switching power consumed by various components such as IO blocks, logic, routing, clocking, 

etc. The adopted methodology for power analysis is similar to the one described Figure 45. We 

disregarded the power consumed by all device-dependent components such as IO blocks. Only 

design-dependent power components were taken into account.  These components are the 

switching power of the clock tree, design logic, and routing signals.  Figure 56 shows the 

dynamic power consumed by the pipelined square root.  

Figure 56 show that dynamic power decreases as the pipeline depth increases. Similar 

trend is observed in the dynamic power evaluation of the divider in section 3.4.4. However, the 

values in dynamic power consumed by the 28 and 55 stage pipeline square root are all below 

3,000 mW in contrast to the 47,641 mW consumed by the 8 stage square root based on the log 

scale of the y-axis of Figure 56. The power consumed by the 8 stage square root is 17.23× and 

more compared to the power consumed by the 28 stage square root.  The amount of the 
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combinational logic is roughly the same across all square root units. The only difference is the 

amount of logic embedded in single stage of the square root.  
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Figure 56: Dynamic power of the square root units. 
 

In case of the eight stage square root, there are eight iterations embedded within a single 

stage. These eight iterations present a logic network that contains various paths of varied lengths. 

In particular, long paths are notorious for displaying glitching behavior.  In fact, glitching 

activity increases with signal length [21].  As the pipeline depth increases, more registers are 

added at various points of the design. This reduces the amount of interconnect between registers 

thereby reducing the glitching plaguing these signals. This results in the reduction of dynamic 

power consumed by the square root as the pipeline depth increases. However, Figure 56 shows 

that this reduction in dynamic power tends to slow down as the square root is pipelined further. It 

is observed that there is a huge power benefit when the 8 stage design is pipelined to 14 stage 

and 28 stage square root. However, this power benefit cannot be seen much as the design is 

pipelined further to 55 stages. This can be explained by the fact that in shallow pipelined designs, 

glitching can make up to 80% of the total power consumed by the square root.  As the pipeline 
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depth of the design is slightly increased, glitching activity can fall to levels below 40% of total 

power displayed by the square root [22].  This sudden fall in glitching activity explains the 

decreasing returns observed in deeper pipelines.  In essence, while pipelining can improve 

throughput in a non-linear fashion, its impact on reducing power is limited to shallow pipelines.    

4.5 Conclusion 

This chapter presents the design of an IEEE-compliant double precision floating point 

sequential and parallel square root unit.  This design is based on a low-radix iterative square root 

algorithm known as the binary version of the pencil-and-paper method.  The pipelining of the 

square root was based on partial and full unrolling of the loops in the iterative mantissa square 

root block.  The implementation of this square root unit did not take advantages of any advanced 

architectural features available in high end FPGA chips or use any pre-designed architecture-

specific arithmetic cores.  The experiments reveal that this square root can produce maximum 

throughput when the iteration of the computational loops are totally unrolled without incurring a 

significant area penalty.  While the sequential square root unit occupies less than 1% of an 

XC2V6000 FPGA chip, its pipelined counterparts can produce throughputs over 100 MFLOPS 

by consuming 7× more area as its sequential counterpart.       
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CHAPTER FIVE: CONCLUSION 

This thesis presents the sequential and pipelined designs of division and square root 

operations on FPGAs.  These designs are based on radix-2 digit recurrence algorithms.  While 

the division design is based on a sequential non-performing algorithm, the square root unit is 

based on an iterative non-restoring algorithm.  These designs are all IEEE 754-compliant double 

precision floating point implementations.  These implementations are built in a way to allow 

them to use only the most common reconfigurable resources available in most FPGAs.  As a 

result, they should be highly portable to most popular FPGA devices.   

The pipelining of these designs reveal that the area overhead tends to remain constant 

regardless of the degree of pipelining to which the design is submitted.  In fact, the unrolling of 

the iterations of the digit recurrence algorithm consumes the same amount of logic resources 

regardless of how many iterations are packed per pipeline stage.  The only minor change in area 

overhead is due to the usage of flip-flops to insert registers between the pipeline stages.  These 

flip-flops are recalled from the already used slices to implement the combinational logic of the 

stages.  

With regard to throughput, it seems to increase as the pipeline depth increases.  By 

decreasing the delay of each stage, it is possible to increase the overall pipeline throughput.  This 

can be realized by reducing the number of iterations embedded in a single pipeline stage.  This 

trend reaches its maximum when a pipeline stage consists of one iteration of the digit recurring 

algorithm.  This trend can be pushed further by introducing sub-pipelining in each stage.  It 

remains to be seen how much throughput can be achieved using the sub-pipelining approach.   
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Since these computations are intended for space application where power budgets are a 

primary concern, this thesis examines pipelining as a means to reduce dynamic switching power.  

Pipelining reveals that it reduces power considerably in shallow pipelines.  Pipelining further 

these designs does not necessarily lead to significant power reduction.  In fact, the pay-off curve 

in terms or dynamic power reduction seems to go down as more stages are added to the pipeline.  

This has been attributed to the fact that pipelining reduces the amount of glitching activity on the 

logic paths by the insertion of pipeline registers.  The latter acts as a reducing factor on the 

length of these glitching-prone logic paths.  Glitching activity is by no means the only 

component that contributes to the overall dynamic power budget.  Other components such as the 

switching of the clock lines and the order of input arrival to switching logic LUTs can increase 

the amount of switching within the power budget.  To reduce power further, it would be 

worthwhile using other techniques such as clock gating, guarded evaluation, bus multiplexing, or 

pre-computing [23].   

In summary, the pipelined implementations of double precision floating point division 

and square root operations, based on elementary digit recurrence algorithms, are able to reach the 

100 MFLOPS mark by consuming only a minor 1% of the fine-grain resources of an XC2V6000 

FPGA.  Note that this chip does not even belong to the high-end full-blown reconfigurable 

system-on-chips such as the Virtex-II Pro FPGA series.  Although they tend to consume more 

power, these chips have a much faster clock than the XC2VX000 chips. Table 12 summarizes 

the implemented designs. 

While this thesis undertakes to examine the effect of pipelining radix-2 digit recurrence 

algorithms of division and square root operations on area, throughput, and dynamic power in 
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FPGA implementations, it nevertheless raises new questions which would be interesting to 

pursue as directions for future research: 

Table 12: Summary of the implemented designs.  
 

 Sequential 
Divider 

Sequential 
Square Root Unit

Pipelined 
Divider 

Pipelined Square 
Root Unit 

Algorithm Non-Performing Non-Restoring Non-Performing Non-Restoring 
Radix 2 2 2 2 

Precision (bits) 64 64 64 64 
Pipelining 

(stages) 
1 1 60 59 

Device XC2V6000 XC2V6000 XC2V6000 XC2V6000 
Clock Period (ns) 9.93 9.03 9.75 7.52 
Clock Frequency 

(MHz) 
100.70 110.70 102.50 132.98 

Clock Cycles 60 59 1 1 
Latency (ns) 595.8 532.77 9.75 7.52 
Throughput 
(MFLOPS) 

1.60 1.79 97.81 126.82 

Area (Slices) 284 405 2920 2700 
Throughput/Area 
(KFLOPS/Slice) 

5.63 4.41 33.49 46.97 

 

How does wide bit representation affects the area, throughput, and power performance of 

these designs?  It is meant by wide bit representation arbitrarily large bit fields to support 

extremely large and small numbers with high accuracy.  These numbers are commonly used in 

many scientific applications such weather modeling and astronomical simulations.  Based on the 

findings of this thesis, one can speculate that wider bit representations will not affect the latency 

per pipeline stage.  However, it will increase the number of iterations needed to produce a single 

output granted that digit recurring algorithms are used.  If that is the case, the maximum 

throughput can be achieved only if the iterations are fully unrolled to the point where a single 

iteration is embedded per pipeline stage.  With regard to area and power, it seems that the results 
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obtained for double precision representations may remain valid for arbitrarily wide bit 

representations.  These speculations need to be confirmed with actual experimentation.     

If high radix algorithms are used instead, how would they affect the performance of 

division and square root operations?  High radix digit recurrence algorithms have the advantage 

of retiring several digits per iteration.  This has the effect of reducing the number of iterations to 

compute the quotient or square root.  From a pipelining perspective, this has the effect or 

reducing the maximum pipeline depth.  However, this advantage comes at the cost of a 

noticeable increase in the area required to support computing multi-digits per iteration.  By 

increasing the area of a single iteration, the area of a single pipeline stage will subsequently 

increase, which may lead to an increase in its latency.  If that is the case, it is not clear how 

reducing the number of pipeline stages and increasing the latency of each stage will affect the 

overall area, throughput, and power consumption of a pipeline based on these high radix 

algorithms.   

Can advanced architectural features available in current FPGAs be used to support 

floating point arithmetic operations?  Many high-end FPGAs contain embedded multipliers and 

blocks of memory.  Several studies show that these embedded structures tend to consume less 

power than the fine-grain reconfigurable fabric of these FPGAs [24].  It is tempting to take 

advantage of these structures by using arithmetic algorithms that can be easily mapped on these 

structures.  For instance, many division and square root algorithms are based on table lookup 

operations.  These operations can be easily mapped on BlockRAMs available in Virtex FPGAs.  

It would be interesting to see whether it is possible to reach throughputs in the GHz range by 

mapping these algorithms on these embedded structures.                                
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How do the implementations of elementary functions fair on FPGAs?  While square root 

operations are less common than division, elementary functions such as the logarithm, 

exponential, and the powering operations are even more infrequent than square root operations.  

However, they began recently to occur more frequently thanks to newer applications in DSP 

[25], 3D graphics [26], scientific computing, artificial neural networks, and multimedia 

applications [27].  Although these operations have always been implemented as software 

routines, these routines provide accurate results, but are often too slow to meet the needs of 

numerical-intensive applications [28, 29].  In addition, these operations have been rarely 

implemented in hardware due to the prohibitive costs of their table lookup requirements.  Lately, 

improved algorithms which reduce significantly the hardware costs of these operations have been 

proposed [30].  These algorithms can serve as the basis for high-performance FPGA 

implementations targeting numerical applications.  Preliminary scrutiny suggests that these 

implementations cannot be realized unless the advanced architectural features available within 

high-end FPGAs are heavily exploited.         

Addressing these issues can expand the levels of performance needed to support 

numerically intense applications in general, and space DSP applications in particular.  
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