
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2006

Pipelining Of Double Precision Floating Point Division And Square Pipelining Of Double Precision Floating Point Division And Square

Root Operations On Field-programmable Gate Arrays Root Operations On Field-programmable Gate Arrays

Anuja Thakkar
University of Central Florida

 Part of the Electrical and Electronics Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Thakkar, Anuja, "Pipelining Of Double Precision Floating Point Division And Square Root Operations On
Field-programmable Gate Arrays" (2006). Electronic Theses and Dissertations, 2004-2019. 1100.
https://stars.library.ucf.edu/etd/1100

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/236257848?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/270?utm_source=stars.library.ucf.edu%2Fetd%2F1100&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/1100?utm_source=stars.library.ucf.edu%2Fetd%2F1100&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

PIPELINING OF DOUBLE PRECISION FLOATING POINT DIVISION AND SQUARE
ROOT OPERATIONS ON FIELD-PROGRAMMABLE GATE ARRAYS

by

ANUJA JAYRAJ THAKKAR
B.S. Walchand Institute of Technology, India, 2002

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science

in the School of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Spring Term
2006

 ii

© 2006 Anuja Jayraj Thakkar

 iii

ABSTRACT

Many space applications, such as vision-based systems, synthetic aperture radar, and

radar altimetry rely increasingly on high data rate DSP algorithms. These algorithms use double

precision floating point arithmetic operations. While most DSP applications can be executed on

DSP processors, the DSP numerical requirements of these new space applications surpass by far

the numerical capabilities of many current DSP processors. Since the tradition in DSP

processing has been to use fixed point number representation, only recently have DSP processors

begun to incorporate floating point arithmetic units, even though most of these units handle only

single precision floating point addition/subtraction, multiplication, and occasionally division.

While DSP processors are slowly evolving to meet the numerical requirements of newer

space applications, FPGA densities have rapidly increased to parallel and surpass even the gate

densities of many DSP processors and commodity CPUs. This makes them attractive platforms

to implement compute-intensive DSP computations. Even in the presence of this clear advantage

on the side of FPGAs, few attempts have been made to examine how wide precision floating

point arithmetic, particularly division and square root operations, can perform on FPGAs to

support these compute-intensive DSP applications.

In this context, this thesis presents the sequential and pipelined designs of IEEE-754

compliant double floating point division and square root operations based on low radix digit

recurrence algorithms. FPGA implementations of these algorithms have the advantage of being

easily testable. In particular, the pipelined designs are synthesized based on careful partial and

full unrolling of the iterations in the digit recurrence algorithms. In the overall, the

implementations of the sequential and pipelined designs are common-denominator

 iv

implementations which do not use any performance-enhancing embedded components such as

multipliers and block memory. As these implementations exploit exclusively the fine-grain

reconfigurable resources of Virtex FPGAs, they are easily portable to other FPGAs with similar

reconfigurable fabrics without any major modifications. The pipelined designs of these two

operations are evaluated in terms of area, throughput, and dynamic power consumption as a

function of pipeline depth. Pipelining experiments reveal that the area overhead tends to remain

constant regardless of the degree of pipelining to which the design is submitted, while the

throughput increases with pipeline depth. In addition, these experiments reveal that pipelining

reduces power considerably in shallow pipelines. Pipelining further these designs does not

necessarily lead to significant power reduction. By partitioning these designs into deeper

pipelines, these designs can reach throughputs close to the 100 MFLOPS mark by consuming a

modest 1% to 8% of the reconfigurable fabric within a Virtex-II XC2VX000 (e.g., XC2V1000 or

XC2V6000) FPGA.

 v

I dedicate this thesis to my parents, Sunita Shah and Late Rajendra Shah. They have always been

an inspiration in my life. Mom and Dad, I dedicate all the success I have achieved or will achieve

in future to both of you.

 vi

ACKNOWLEDGMENTS

I would like to take this opportunity to thank my advisor, Dr. Abdel Ejnioui, for his

tireless assistance and endless contribution.

Thanks to the committee members Drs Ronald Demara and Brian Petrasko.

The realization of this work would not be possible without the support of my husband,

Jayraj. Thanks for supporting me all along the way, for sacrifices above and beyond and for your

unconditional love. I would also love to thank my baby to come, for being so patient and

supportive when I was putting in long hours of work.

 Thanks to GOD for guiding me all the way. I would not have achieved success without

His guidance and blessings.

 vii

TABLE OF CONTENTS

LIST OF FIGURES ... xi

LIST OF TABLES... xiv

LIST OF ACRONYMS/ABBREVIATIONS... xv

CHAPTER ONE: INTRODUCTION... 1

1.1 DSP Space Applications ... 1

1.1.1 Vision-Based Systems .. 1

1.1.2 Space SAR .. 2

1.2 DSP Processors vs. FPGA Devices .. 2

1.3 IEEE 754 Floating Point Representations... 8

1.4 FPGA Technology .. 10

1.4.1 Logic Resources.. 10

1.4.2 Routing Resources .. 13

1.4.3 IO Resources... 14

1.4.4 Device Reconfiguration .. 16

1.5 Thesis Contribution... 18

1.6 Thesis Outline ... 20

CHAPTER TWO: RELATED WORK... 21

2.1 Floating Point Division ... 21

2.2 Floating Point Square Root Operation.. 26

2.3 Summary ... 32

 viii

CHAPTER THREE: DOUBLE PRECISION FLOATING POINT DIVISION.......................... 35

3.1 Architecture of the Divider ... 35

3.1.1 Unpacking ... 36

3.1.2 Sign Logic... 36

3.1.3 Exponent Subtraction.. 36

3.1.4 Bias Addition .. 36

3.1.5 Mantissa Division ... 37

3.1.6 Normalization ... 37

3.1.7 Rounding Control.. 38

3.1.8 Rounding... 39

3.1.9 Exponent Adjustment.. 39

3.1.10 Packing.. 40

3.2 Pipelining of the Divider... 40

3.3 Verification of the Divider.. 41

3.3.1 Modeling of the Sequential and Pipelined Dividers ... 41

3.3.2 Simulation of the Divider.. 43

3.3.3 Simulation of the Sequential Divider.. 43

3.3.4 Simulation of the 55-stage Pipelined Divider... 45

3.3.5 Simulation of the 28-stage Pipelined Divider... 46

3.3.6 Simulation of the 14-stage Pipelined Divider... 48

3.3.7 Simulation of the Seven-stage Pipelined Divider ... 50

3.4 Evaluation of the Divider.. 51

3.4.1 Divider Design Comparison ... 51

 ix

3.4.2 Throughput Evaluation ... 54

3.4.3 Area Evaluation .. 55

3.4.4 Dynamic Power Evaluation .. 58

3.5 Conclusion .. 61

CHAPTER FOUR: DOUBLE PRECISION FLOATING POINT SQUARE ROOT UNIT 62

4.1 Architecture of the Square Root Unit ... 62

4.1.1 Unpacking ... 63

4.1.2 Exponent Calculation.. 63

4.1.3 Mantissa Square Root ... 63

4.1.4 Rounding Control.. 65

4.1.5 Rounding... 65

4.1.6 Exponent Adjustment.. 65

4.1.7 Packing.. 66

4.2 Pipelining of the Square Root Unit... 66

4.3 Verification of the Square Root Unit .. 66

4.3.1 Modeling of the Sequential and Pipelined Square Root Units 66

4.3.2 Simulation of the Square Root Units .. 68

4.3.3 Simulation of the Sequential Square Root Unit.. 68

4.3.4 Simulation of the 55-stage Pipelined Square Root Unit 70

4.3.5 Simulation of the 28-stage Pipelined Square Root Unit 71

4.3.6 Simulation of 14-stage Pipelined Square Root Unit ... 72

4.3.7 Simulation of the Seven-stage Pipelined Square Root Unit 73

4.4 Evaluation of the Square Root Unit .. 74

 x

4.4.1 Square Root Design Comparison.. 74

4.4.2 Throughput Evaluation ... 77

4.4.3 Area Evaluation .. 78

4.4.4 Dynamic Power Evaluation .. 81

4.5 Conclusion .. 83

CHAPTER FIVE: CONCLUSION... 84

LIST OF REFERENCES.. 89

 xi

LIST OF FIGURES

Figure 1: Expected trend in FPGA CMOS feature size.. 4

Figure 2: Expected FPGA trend in 4-LUT density... 5

Figure 3: Expected trend in FPGA clock rates. .. 5

Figure 4: Expected trend in double precision floating point multiplication on FPGAs. 6

Figure 5: Expected trend in double precision floating point division on FPGAs........................... 7

Figure 6: IEEE 754-1985 single and double precision formats. ... 9

Figure 7: FPGA architecture... 11

Figure 8: Virtex II architecture overview. .. 12

Figure 9: CLB elements. ... 12

Figure 10: Slice configurations... 12

Figure 11: Active interconnect technology in Virtex-II. .. 13

Figure 12: Routing resources in Virtex-II... 13

Figure 13: Hierarchical routing resources in Virtex-II. .. 14

Figure 14: Virtex II input/output tile. ... 15

Figure 15: Virtex II supported single ended I/O standards... 15

Figure 16: Configuration flow diagram. ... 17

Figure 17: Layout with two reconfigurable modules.. 18

Figure 18: Radix-4 SRT single stage. ... 22

Figure 19: Fixed point divider structure. .. 22

Figure 20: Two-layer pipelining of a radix-4 single stage.. 23

Figure 21: Pipelined implementation of SRT division. .. 23

 xii

Figure 22: Block diagram of the proposed divider. .. 24

Figure 23: Structure of the pipelined divider.. 25

Figure 24: Pipelined non-restoring array divider.. 26

Figure 25: Floating point square root diagram. .. 27

Figure 26: Fixed point square root structure... 27

Figure 27: Pipelined implementation of a single precision square root unit. 28

Figure 28: Block diagram of a single stage in the restoring square root algorithm..................... 29

Figure 29: Steps to perform the floating point square root algorithm. ... 30

Figure 30: Structure of the pipelined square root unit. ... 31

Figure 31: Eight bit non-restoring square root array. ... 31

Figure 32: Double precision floating point divider... 35

Figure 33: Simulation snapshot of the sequential divider... 44

Figure 34: Register placement in the 55-stage pipelined divider. .. 45

Figure 35: Simulation snapshot of the 55-stage pipeline divider. ... 46

Figure 36: Register placement in the 28-stage pipelined divider. ... 47

Figure 37: Simulation snapshot of the 28-stage pipelined divider. .. 48

Figure 38: Register placement in the 14-stage pipelined divider. .. 49

Figure 39: Simulation snapshot of the 14-stage pipelined divider. .. 49

Figure 40: Register placement in the seven-stage pipelined divider. ... 50

Figure 41: Simulation snapshot of the seven-stage pipelined divider. ... 51

Figure 42: Clock frequencies and throughputs of the dividers. .. 55

Figure 43: Area costs of the dividers. ... 56

Figure 44 : Throughput-area ratios of the dividers. .. 57

 xiii

Figure 45 : Power analysis methodology.. 59

Figure 46 : Dynamic power of the dividers. ... 60

Figure 47: Double precision floating point square root unit... 62

Figure 48: Simulation snapshot of the sequential square root unit. .. 69

Figure 49: Simulation snapshot of the 55-stage pipelined square root unit.................................. 70

Figure 50: Simulation snapshot of the 28-stage pipelined square root unit.................................. 71

Figure 51: Simulation snapshot of the 14-stage pipelined square root unit.................................. 72

Figure 52: Simulation snapshot of the seven-stage pipelined square root unit............................. 73

Figure 53: Clock frequencies and throughputs of the square root units. 78

Figure 54: Area cost of the square root units. ... 79

Figure 55: Throughput-area ratio of the square root units.. 80

Figure 56: Dynamic power of the square root units. .. 82

 xiv

LIST OF TABLES

Table 1: IEEE 754 floating point number representations.. 8

Table 2: Configuration modes in Virtex II. .. 16

Table 3: Summary of the reviewed dividers. ... 33

Table 4: Summary of the reviewed square root units. .. 34

Table 5: Determination of sign SQ of the final quotient Q. .. 36

Table 6: Breakdown of VHDL lines of codes based on divider entities. 41

Table 7: Implementation results of the divider units on the Virtex XCV1000............................. 52

Table 8 : Performance of the divider units on the Virtex II XC2V6000. 52

Table 9: Breakdown of VHDL lines of codes based on the entities of the square root units. 67

Table 10 : Implementation results of the square root units on the Virtex XCV1000. 74

Table 11: Performance of the square root units on the Virtex II XC2V6000............................... 75

Table 12: Summary of the implemented designs.. 86

 xv

LIST OF ACRONYMS/ABBREVIATIONS

FPGA Field Programmable Gate Array

DSP Digital Signal Processing

SAR Synthetic Aperture Radar

CCD Charge Coupled Device

ALU Arithmetic Logic Unit

ASIC Application Specific Integrated Circuit

IEEE Institute for Electrical and Electronics Engineers

CLB Configurable Logic Block

SOP Sum of Products

LUT Look Up Table

IOB Input Output Block

MFLOPS Mega Floating Point Operations per Second

KFLOPS Kilo Floating Point Operations per Second

 1

CHAPTER ONE: INTRODUCTION

In space applications, many systems require advanced digital signal processing (DSP)

algorithms to address their mission needs. In particular, an entire class of satellite sub-systems,

such as payload processing, data-handling, communications, guidance, navigation, and control,

rely on applications of DSP techniques. As these systems evolve, the amount of data which

needs to be processed increases significantly.

1.1 DSP Space Applications

Data-intensive DSP algorithms make up the foundation of many space applications.

Among these applications are vision-based systems, synthetic aperture radar (SAR), and radar

altimetry [1].

1.1.1 Vision-Based Systems

These vision applications interface with the ambient space through a high-resolution

charge-coupled device (CCD) camera. This camera is responsible of taking images at high speed

and feed them to an image DSP processor. The latter performs numerous basic low-level image

processing algorithms on the received image data. This low-level processing is followed by

knowledge extraction from the images. Among these vision applications are visual telemetry

(i.e., collection and compression of images of deployment of various instruments such as solar

arrays and antennas), vision landing (i.e., guiding a planetary module to a safe landing without

assistance from a human operator), rover vision (i.e., collection and transmission of images from

a planetary body’s surface, planning of navigation routes on the planetary surface by computer

vision), rendezvous (i.e., detecting and navigating closer to a comet or asteroid), docking (i.e.,

 2

approaching another spacecraft for docking maneuvers), and star tracking (i.e., tracking the

position of one or more starts to determine the altitude and orientation of a spacecraft).

1.1.2 Space SAR

SAR processing transforms the raw radar data into a high resolution image of the terrain

scanned by radar instruments. Many space systems rely on high continuous SAR data rates for

the acquisition of high resolution images. These rates, combined with compute-intensive full-

resolution image processing, make space SAR an application with unusually demanding

requirements. Because of these high data rates, two approaches were adopted in the past. The

first consists of avoiding processing data on-board of the space spacecraft by downloading it to a

ground station for additional processing while the second approach consists of processing the

assembled images at low resolution. Recently, new space applications have emerged with a high

level of autonomy requirements. For instance, NASA, in collaboration with the Air Force

Research Labs, is exploring space vehicles that can fly in formation by using an advanced space

borne differential global positioning system [2]. It is expected that this technology will result in

swarms of spacecrafts flying as a virtual platform to gather significantly more and better

scientific data in a totally autonomous fashion. Such autonomy requires minimal or no support

from ground stations. This autonomy can be realized only if sufficient computing power is

available to process on-board the received raw SAR data at full resolution.

1.2 DSP Processors vs. FPGA Devices

As customary in many DSP applications, fixed point data representation is used in order

to ease the computing requirements of these applications. Subsequently, various numerical

analyses have to be completed to show that the conversion to fixed point representations does not

 3

worsen cumulative errors associated with long runtime of DSP algorithms. However, newer

DSP algorithms used to support many space applications require that the data format be

represented in wide bit precision to accommodate various ranges of values and eliminate

problems of numerical fidelity. To support these new applications, high performance, low

power, computing devices which can produce high throughput floating point computations are

needed. To meet these numerical requirements, many of these applications rely on the IEEE

754-1985 binary floating point standard [3]. In fact, many DSP algorithms, which support the

space applications described in the previous section, are centered on calculations involving wide-

ranging floating point numbers. These numbers are used in double precision bit widths in order

to accommodate the range and precisions required by these DSP algorithms. While most DSP

applications can be implemented on DSP processors, only recently have DSP processors been

equipped with floating point ALUs. The majority of these floating point ALUs can handle at

most 32-bit wide floating point numbers particularly, ALUs introduced in DSP processors

intended for audio applications [4, 5]. Even when multiple DSP processors are cascaded for

increased performance, there are computing scenarios in which these processor configurations,

initially thought to be necessary to provide the required throughput, fails to deliver such

throughput. In fact, duplication of processors does not necessarily lead to a speedup in

computation as is known in parallel processing.

Lately, FPGAs have begun to capture the attention of the DSP community as an

alternative implementation technology capable of delivering significant speedups for compute-

intensive DSP algorithms. Despite dire predictions at each step in technology evolution, FPGA

densities continue to double approximately every 18 months as predicted by Moore’s Law. With

today’s nanometer CMOS technology, it is now possible to deliver multi-million gate FPGAs,

 4

which can implement complete systems integrated entirely on a single device [6, 7]. Although

FPGAs are still lagging behind many ASICs in terms of raw performance, they have nevertheless

crossed a gate density threshold that is usually seen in DSP processors and commodity CPUs as

shown in Figure 1, Figure 2 and Figure 3 [8, 9].

Figure 1: Expected trend in FPGA CMOS feature size.

 5

Figure 2: Expected FPGA trend in 4-LUT density.

Figure 3: Expected trend in FPGA clock rates.

 6

Starting with earlier FPGA chips, many designers have realized that it is beneficial to

implement double precision floating point computations on these chips due to their mapping

versatility and reconfigurability. Since then, various mapping efforts of floating point

computations on FPGAs have realized performances that are steadily surpassing the performance

of those computations on commodity CPUs. Figure 4 and Figure 5 show the trends of double

precision floating point multiplication and division in FPGAs and commodity CPUs [9].

Figure 4: Expected trend in double precision floating point multiplication on FPGAs.

What is attractive about FPGAs is their diverse catalog of embedded architectural

features specifically optimized for arithmetic operations. For example, Xilinx FPGAs embed

carry-chains along their CLB columns designed to speedup addition with narrow operands.

 7

These features can be exploited to support efficient floating point operations. However,

exploiting these features require arithmetic algorithms, such as low-radix digit recurrence

algorithms, that can be easily mapped on these structures. In fact, careful pipelining and mapping

of these algorithms on specific FPGA architectures can yield easily testable implementations

which can produce throughputs that are comparable to the throughputs seen in high-radix

algorithms [10].

Figure 5: Expected trend in double precision floating point division on FPGAs.

 Although their area overhead is marginally higher than high radix implementations in

many cases, low-radix digit recurring algorithms can easily reach the 100 MFLOPS mark on

some FPGA chips.

 8

1.3 IEEE 754 Floating Point Representations

The IEEE 754 format represents floating point numbers in scientific notation. In this

notation, a number consists of a base and an exponent. For example, 123.456 can be represented

as 1.23456× 210 where 1.23456 is the base part and 102 is the exponent part. Contrary to

floating-point representations, fixed-point relies on a fixed window of representation, which

limits its range and precision. Floating point representations employs a "sliding window" to

accommodate the range and precision of the represented number. This allows it to represent

widely varying numbers such as 1,000,000,000,000 and 0.0000000000000001 without any error

accumulation.

To accommodate various ranges and precision, the IEEE 754 standard recommends four

presentations, namely single precision, double precision, extended single precision and extended

double precision formats as shown in Table 1[11]. The most commonly used are the single

precision and double precision formats.

Table 1: IEEE 754 floating point number representations.

 Format

Parameter

Single

Single Extended

Double

Double

Extended

Significand bits 24 ≥ 32 53 ≥ 64
emax +127 ≥+1023 +1023 ≥+16383
emin -126 ≤ -1022 -1022 ≤ -16382
Ebias +127 unspecified +1023 unspecified

Exponent bits 8 ≥ 11 11 ≥ 15
Format bits 32 ≥ 43 64 ≥ 79

In general, a real number N in radix β can be represented in terms of a sign s, an exponent

e and a significand S as N = (-1)s⋅βe⋅S where s ∈ {0, 1}. For example, for a radix β =10, the

 9

values s = 1, e = 2 and S = 6.45678 represent the number N = (-1)1⋅102⋅6.45678. Similarly, for β

= 2, the values s = 0, e = 5 (1012) and S = 1.40625 (1.01101) represent the number N = (-

1)0⋅25⋅1.40625 = +45.

As shown in Figure 6, double precision numbers comprise of a sign bit, 11 bits of

exponent and 52 bits of fraction. The 11 bit exponent E is an unsigned number containing a bias.

The true exponent e of a floating point number is obtained by subtracting the Ebias from E, i.e. e

= E-Ebias. The fraction f represents a 52 bit fraction in the range [0, 1) and the significand S is

obtained by adding ‘1’ (hidden bit) to the MSB of the fraction. Significand S is given by S = 1.f.

Figure 6: IEEE 754-1985 single and double precision formats.

As an example, consider the double precision floating point number

s E f

0 10000000011 100100

 10

The biased exponent E is 1027 and the unbiased exponent e=E-Ebias =1027-1023=4. The

fraction f is .5625, making the significand S = 1.f = 1.5625. The sign bit is set to 0. Hence, the

number is N = (-1)0⋅24⋅1.5625 = 25.

The IEEE standard requires that a numeric environment support addition, subtraction,

multiplication, division, square root, remainder, and round-to-integer as the basic floating-point

arithmetic operations. A floating point calculation often involves some approximation or

rounding because the result of an operation may not be exactly representable [3].

1.4 FPGA Technology

A field-programmable gate array or FPGA is a semiconductor device used to process

digital information, similar to a microprocessor. Whereas an application specific integrated

circuit (ASIC) performs a particular function defined at the time of manufacture, the

functionality of the FPGA is defined by a program written by someone other than the device

manufacturer. Depending on the particular device, the program is either burned in permanently

or semi-permanently as part of a board assembly process. In addition, it can be loaded from an

external memory each time the device is powered up. This programmability gives the user

access to complex integrated designs without the high engineering costs associated with ASICs.

1.4.1 Logic Resources

FPGAs come in a wide variety of sizes and with many different combinations of internal

and external features. Most FPGAs are composed of relatively small blocks of programmable

logic called Configurable Logic Blocks (CLB). These blocks, each of which typically contains a

few registers and a few dozen low-level, configurable logic elements, are arranged in a grid and

tied together using programmable interconnections as shown in Figure 7. Figure 8 shows an

 11

architectural overview of a Virtex II FPGA. Each CLB typically consist of two to four slices as

shown in Figure 9 . In a typical FPGA, the slices that make up the bulk of the device are based

on lookup tables, of four or five inputs, combined with one or two single-bit registers and

additional logic elements such as clock enables and multiplexers as shown in Figure 10.

Figure 7: FPGA architecture.

In more complex FPGAs these general-purpose logic blocks are combined with higher-

level arithmetic and control structures, such as multipliers and counters, in support of common

types of applications such as signal processing.

 12

Figure 8: Virtex II architecture overview.

Figure 9: CLB elements. Figure 10: Slice configurations.

 13

1.4.2 Routing Resources

Virtex-II logic resources are all connected to an identical switch matrix for access to

global routing resources as shown in Figure 11.

Figure 11: Active interconnect technology in Virtex-II.

Each Virtex-II device can be represented as an array of switch matrices with logic blocks

attached as shown in Figure 12.

Figure 12: Routing resources in Virtex-II.

 14

Optimum system performance and fast compile times are possible due to this regular

array structure. Most Virtex-II signals are routed using the global routing resources, which are

located in horizontal and vertical routing channels between each switch matrix. The hierarchical

routing resources consist of long lines, hex lines, double lines, direct connect lines and fast

connect lines as shown in Figure 13.

 Figure 13: Hierarchical routing resources in Virtex-II.

In addition to the local and global routing, dedicated signals are also available. The

dedicated signals consist of eight global clock nets per quadrant, two dedicated carry chain per

slice column, one dedicated Sum-of-Products (SOP) chain per slice row, one dedicated shift

chain per CLB, and three-state busses.

1.4.3 IO Resources

Virtex II I/O blocks (IOBs) are provided in groups of two or four on the perimeter of

each device. Each IOB can be used as input and/or output for single-ended I/Os. Two IOBs can

 15

be used as a differential pair. Figure 14 shows how a differential pair is connected to the same

switch matrix.

Figure 14: Virtex II input/output tile.

Virtex II IOBs are designed for high performance I/Os, supporting 19 single ended

standards, as well as differential signaling with LVDS, LDT, bus LVDS and LVPECL. Figure 15

shows the supported single ended I/O standards by Virtex II.

Figure 15: Virtex II supported single ended I/O standards.

 16

1.4.4 Device Reconfiguration

Virtex II devices are configured by loading data into their internal configuration registers.

The device can be set in a particular mode by setting the Mode bits in the configuration register

as shown in Table 2.

Table 2: Configuration modes in Virtex II.

Configuration Mode M2 M1 M0 Pull-ups
Master Serial 0 0 0 No
Slave Serial 1 1 1 No
SelectMAP 1 1 0 No

Boundary Scan 1 0 1 No
Master Serial
(w/ pull-ups)

1 0 0 Yes

Slave Serial
(w/ pull-ups)

0 1 1 Yes

SelectMAP
(w/ pull-ups)

0 1 0 Yes

Boundary Scan
(w/ pull-ups)

0 0 1 Yes

The external configuration process is a simple matter of loading the configuration

bitstream into the FPGA using the selected configuration mode as illustrated in Figure 16.

Xilinx proposes two standard flows for partial reconfiguration process: Difference based

and Module based flows [12]. With the Difference Based flow, the designer must manually edit a

design with low-level changes. Using a low-level editing tool, such as the FPGA Editor, small

changes can be made to different components, such as lookup tables, flip-flops, and I/O pins.

After the changes are completed, the partial bit stream, which contains information only

regarding the modifications, is generated and stored in a file.

 17

Figure 16: Configuration flow diagram.

 18

For the Module based flow, the full design is partitioned into modules, some of which

can be fixed while others can be reconfigurable. The reconfigurable fabric of the FPGA is

partitioned into column-based rectangular regions in which the fixed and reconfigurable modules

can be arranged based on specified area constrains. A bus macro can be used to maintain

correct connections between the modules placed in these areas by sitting across the boundaries of

these rectangular regions. Figure 17 shows the basic concept of this flow [12].

Figure 17: Layout with two reconfigurable modules.

1.5 Thesis Contribution

While very few attempts have been made to study wide precision floating point

arithmetic on FPGAs, this thesis presents a study of IEEE 754-compliant double precision

floating point operations by focusing on division and square root operations. Performance and

design tradeoffs related to these two operations in particular are not well understood in terms of

FPGA implementations. Based on this rationale, this thesis makes the following contributions:

 19

(i) Contrary to established wisdom, this thesis focuses on the simplest algorithms to

perform division and square root operations. The division operation is implemented

based on a method similar to the pencil-and-paper method known as the sequential

non-performing algorithm. On the other hand, the square root operation is

implemented based on a basic non-restoring algorithm. Both algorithms are radix-2

digit recurrence algorithms.

(ii) For comparison purposes, this thesis presents the implementations of low area

sequential designs and high performance pipelined designs of division and square

root operations.

(iii) In order to explore the tradeoffs between area, throughput, and power consumption,

this thesis partitions the pipelined designs of both operations into different pipeline

depths. These different depths are used to characterize the area overhead, maximum

throughput and dynamic power consumption of each operation.

(iv) While most previous implementations rely on highly optimized cores and

occasionally manual layouts, all the implementation of both operations in this thesis

can be qualified as common-denominator implementations. These implementations

do not take advantage of any advanced architectural features available in the Virtex

FPGAs such as Block RAMs or embedded multipliers. In addition, these

implementations do not use optimized cores or any custom floor planning at all. The

rationale behind this design philosophy is to quantify how much performance can be

obtained by exploiting exclusively the fine-grain reconfigurable resources available in

FPGAs. Such implementations have the advantage of being easily portable to other

FPGA architectures with minimum modifications.

 20

(v) Careful attention to the pipelining approach of this thesis has led to implementations

whose performances are comparable to those of high-radix implementations, and in

some case even superior. This approach is based on a precise unrolling of the

iterations in the digit recurring algorithms.

(vi) Whereas high-radix implementations are difficult to verify, the radix-2

implementations presented in this thesis are easy to test and verify.

1.6 Thesis Outline

Chapter 2 discusses and summarizes previously proposed work related to division and

square root operations. Chapter 3 and 4 present the design, implementation, and performance

evaluation of the divider and square root unit respectively. Finally, chapter 5 summarizes the

findings in this thesis and provides future direction for research.

 21

CHAPTER TWO: RELATED WORK

In this chapter, a brief overview of the different designs proposed for floating-point

division and square root operations are presented. In section 2.1, four different designs proposed

for floating point division are briefly described while in section 2.2 five designs proposed for

square root operations are briefly reviewed. Section 2.3 concludes this chapter by summarizing

the reviewed designs and comparing them to the designs of the divider and square root unit

proposed in this thesis.

2.1 Floating Point Division

Division algorithms can be broadly classified into five classes: digit recurrence,

functional iteration, very high radix, table lookup, and variable latency [13]. Among these

classes, digit recurrence algorithms are widely used since they are easy to implement. In digit

recurrence, algorithms, such as restoring, non-restoring, and SRT division, rely on

addition/subtraction and shift operations to complete division.

In [14], the author presents the sequential and pipelined designs of a floating point

divider for three different precisions based on SRT division. The recurrence equation for this

division is given by wj+1 = r⋅wj − D⋅qj+1, where wx is the remainder after the xth iteration, r is the

radix of the algorithm, D is the divisor, and qx is the xth quotient digit from the most-significant

bit of the quotient Qx. In order to reduce the delay of a single stage of the pipelined version of

the divider, a radix-4 divider was chosen for the significant division as shown in Figure 18. The

structure of the fixed point divider is shown in Figure 19.

 22

Figure 18: Radix-4 SRT single stage. Figure 19: Fixed point divider structure.

The implemented sequential double precision floating point divider consumes 1705 slices

and runs at a frequency of 3.3 MHz with a throughput of 3.17 MFLOPS on a Virtex II FPGA.

This design is further pipelined to increase the throughput to 78 MFLOPS with 1.5× area

overhead when implemented on a Virtex II XC2V6000 FPGA. However, the authors do not

explicitly describe the pipelining approach applied to their sequential divider.

In [15], the authors present three designs of a floating point divider with three different

bit precisions the largest of which is 32-bit precision. These three designs are based on iterative,

array, and pipeline approaches. In particular, the pipelined design is based on the insertion of

registers between division steps of an array divider. In this divider, the authors unroll the

hardware for each step by rebuilding this hardware and cascading the iterative steps in the array.

 23

Figure 20 shows the sub-pipelining of a single stage in the pipelined radix-4 divider while Figure

21 shows the structure of the pipelined divider.

Figure 20: Two-layer pipelining of a radix-4
single stage.

Figure 21: Pipelined implementation of SRT
division.

The three designs of the divider are implemented on a Virtex II XC2V1000 FPGA.

Compared to the array version of the divider, 30× improvement in throughputs are observed

over 10-20× increase in the area of the pipelined version. The authors conclude that the radix-4

implementations are preferable from a performance standpoint while radix-2 implementations

are preferable when area × latency or area × clock period is considered.

In [10], the authors implement IEEE-754 compliant pipelined dividers based on non-

restoring and SRT divisions on a Virtex II XC2VP7 FPGA. Figure 22 shows the block

architecture of the proposed divider.

 24

Figure 22: Block diagram of the proposed divider.

These dividers are pipelined from 32 to 68 stages depending on the selected division

algorithm. The most compliant divider is a non-restoring divider pipelined into 68 stages while a

low area overhead SRT divider is pipelined into 32 stages for comparison purposes. The former

divider runs at 140 MHz with an area utilization of 4234 slices while the latter runs at 90 MHz

with an area utilization of 3713 slices. The authors remark that the non-restoring divider can

achieve a superior performance only when it is pipelined into a large number of stages. On the

other hand, the SRT divider displays a slightly lower performance at the expense of a larger area.

In [16], the authors propose a scalable 32-bit pipelined design of a divider implemented

on a Virtex XC2V1000 FPGA. This design is based on a radix-2 non-restoring division

 25

algorithm. Figure 23 shows the structure of the pipelined divider while Figure 24 shows the

pipelined non-restoring array divider.

Figure 23: Structure of the pipelined divider.

A 24-stage version of the pipelined design can run at 160 MHz with an area utilization of

870 slices thus producing a throughput of 158 MFLOPS. The authors claim that by pipelining

further the divider, the number of slices needed to support additional stages increases in a linear

fashion. This increase in slices is caused by the need for additional latches to implement newly

inserted registers.

 26

Figure 24: Pipelined non-restoring array divider.

This thesis presents a sequential divider based on a radix-2 digit-recurring non-

performing sequential algorithm [17]. The iterations in the digit recurring algorithm are unrolled

to various degrees to generate pipelined dividers with different pipeline depths. These depths are

used to characterize the impact of pipeline depth on area cost, throughput, and dynamic power

within the divider.

2.2 Floating Point Square Root Operation

Square root algorithms share numerous features with division algorithms. Among the

widely known square algorithms are the traditional pencil-and-paper method, shift/subtract based

restoring algorithms, non-restoring algorithms, high radix square rooting algorithms, and square

rooting by convergence algorithms [18].

 27

In [14], the authors present a non-restoring square root algorithm based on the square root

recurrence equation Ri+1 = r⋅R − 2⋅Q⋅qi+1 – (q2
i+1 / ri+1). The non- restoring algorithm uses the

digit set {1.-1} and therefore the least significant bit of the current partial root Qi is always 1.

This helps in generating the next value to add to or subtract from the shifted partial remainder

2⋅Ri. The new generated value of 2⋅Qi can be added or subtracted from the shifted partial

remainder according to the sign of the quotient digit qi+1. Figure 25 shows the block diagram of a

square root unit while Figure 26 shows the fixed point square root structure. The authors

implement a non pipelined double precision floating point square root unit which occupies 869

slices and produces a throughput of 3.99 MFLOPS at a frequency of 4.18 MHz on Virtex II

XC2V6000 chip. This square root unit is further pipelined to run at 72.46 MHz with an area

overhead of 1.64× .

Figure 25: Floating point square root

diagram.
Figure 26: Fixed point square root structure.

 28

In [19], the authors propose a single precision sequential and pipelined square root units

based on a non-restoring algorithm. The pipelined version of the unit is shown in Figure 27.

Although the authors did not specify the clock frequency or throughput, they stated that the

single precision square root unit displays a latency of 25 clock cycles by utilizing 82 CLB

function generators and 138 CLB flip-flops while its pipelined counterpart has a latency of 15

clock cycles by utilizing 408 CLB function generators and 675 CLB flip-flops on a Xilinx

XC4000 FPGA.

Figure 27: Pipelined implementation of a single precision square root unit.

 29

In [15], the authors propose the implementation of a square root unit for three bit

precisions based on a restoring digit recurrence algorithm. This algorithm consists primarily of a

sequence of subtract and shift operations. Figure 28 shows the design of one restoring square

root stage. The resulting sequential implementation runs at 153 MHz by occupying 234 slices

while the pipelined implementation runs at 169 MHz by occupying 1313 slices of an XC2V1000

FPGA.

Figure 28: Block diagram of a single stage in the restoring square root algorithm.

In [10], the authors present the design of a pipelined square root unit based on the non-

restoring algorithm proposed in [20]. This algorithm computes the square root by a series of

additions or subtractions based on the successive values of the bits generated for the quotient.

Figure 29 shows a block diagram of the steps required to perform the square root algorithm.

 30

Figure 29: Steps to perform the floating point square root algorithm.

The most compliant pipelined implementation consists of 60 stages and runs at 164 MHz

by occupying 2332 slices while the least compliant (i.e., lowest overhead) implementation

consists of 55 stages and runs at 169 MHz by occupying 1666 slices of a Virtex II XC2VP7

FPGA.

In [16], the authors propose a scalable single-precision square root unit based on a non-

restoring digit recurring algorithm. The pipelining of this unit is based on array architecture of

the non-restoring algorithm. Figure 30 shows the structure of pipelined square root unit while

Figure 31 shows an eight-bit non-restoring array used in a smaller square root unit.

 31

Figure 30: Structure of the pipelined square root unit.

Figure 31: Eight bit non-restoring square root array.

 32

A 12-stage single-precision version of the pipelined square root unit can run at 211 MHz

with an area utilization of 302 slices thus producing a throughput of 204 MFLOPS. The same

claims made by the authors regarding the dividers apply also the square root unit.

This thesis presents a sequential square root unit based on a radix-2 digit-recurring non-

performing sequential algorithm [17]. The iterations in the digit recurring algorithm are unrolled

to various degrees to generate pipelined square root units with different pipeline depths. These

depths are used to characterize the impact of pipeline depth on area cost, throughput, and

dynamic power within the unit.

2.3 Summary

Table 3 shows a summary of the reviewed dividers. This table shows the 32-bit designs

highlighted in gray color. Given the diversity of FPGA chips used in these designs and the wide

ranges observed in their throughputs and area overhead, it can be quite difficult to construct a

meaningful comparison between these designs. As a result, a generic metric, that is independent

of implementation technology, is needed to quantify the efficiency of a given design. In fact,

such a metric can be easily constructed by considering the level of throughput measured in

FLOPS, produced by unit of area, measured in slices. This metric, shown in the rightmost

column of each table, can be used as the basis for comparison of the various designs shown in

Table 3 and Table 4

In order to obtain a fair comparison of the 32-bit designs to the 64-bit designs, the

throughput and area utilization of the 32-bit designs have to be halved and doubled respectively.

Based on these new numbers, a scaled throughput-area ratio can be recomputed for comparison

purposes.

 33

Table 3: Summary of the reviewed dividers.

Reference Algorithm Radix Precision
(bits)

Pipelining
(stages)

Device Throughput
(MFLOPS)

Area
(Slices)

Throughput/Area
(KFLOPS/Slice)

[14] SRT 4 64 29 XC2V6000 97.81 2595 30.12
[15] SRT 2 32 47 XC2V1000 166.66 3245 51.36
[10] SRT, Non-

restoring
2 64 68 XC2VP7 140.05 4243 33

[16] Non-
restoring

2 32 24 XC2V1000 158 870 181.6

This
thesis

Pencil-
and-paper

2 64 60 XC2V6000 97.81 2920 33.49

As Table 3 shows, the divider proposed in this thesis presents a throughput-area ratio that

is higher than the ratio of the other 64-bit dividers. With the exception of the divider by [16], the

other 32-bit divider presents a lower throughput-area ratio after it is scaled to a 64-bit precision.

It is worth noting that the design proposed in [16]consumes a significant area in terms of slices in

comparison to the divider proposed in this thesis as more stages are added to the pipeline.

Instead, the divider in this thesis consumes an almost constant area regardless of the depth of the

pipeline. This constant consumption of resources can be leveraged by maximally pipelining the

design in order to reach the highest throughput possible.

Table 4 shows a summary of the reviewed square root units where the 32-bit designs are

highlighted in gray color. With the exception of the design proposed by [10], this table shows

that the square root unit proposed in this thesis has a throughput-area ratio that is comparable to

the other 64-bit designs. It is worth noting that the authors in [10] implemented their design on

an XC2VP7. This device is a high-end reconfigurable system that is fabricated in a 0.13 μm, 1.5

V CMOS process with fast switching devices. This device can reach clock frequencies that

surpass by far the frequencies of the other Virtex-II devices. The divider and square root units

 34

proposed in this thesis are based on simple radix-2 algorithms that lead to implementations that

are easy to test and parameterize.

Table 4: Summary of the reviewed square root units.

Reference Algorithm Radix Precision
(bits)

Pipelining
(stages)

Device Throughput
(MFLOPS)

Area
(Slices)

Throughput/Area
(KFLOPS/Slice)

[14] Non-
restoring

2 64 28 XC2V6000 69.1 1433 48.22

[19] Non-
restoring

2 32 25 XC4000 Not stated 408+675
(LUTs+FFs)

Not stated

[15] Non-
restoring

2 32 28 XC2V1000 166 1313 126.42

[10] Non-
restoring

2 64 66 XC2VP7 164.2 2332 70.41

[16] Non-
restoring

2 32 15 XC2V1000 204 302 675.9

This
thesis

Non-
restoring

2 64 59 XC2V6000 126.82 2700 46.97

 35

CHAPTER THREE: DOUBLE PRECISION FLOATING POINT DIVISION

In this chapter, section 3.1 presents the architecture of the double precision floating point

divider while section 3.2 presents the approach used to pipeline the divider. Section 3.3 presents

the verification of the divider while 3.4 presents the experimental results of the divider and a

related discussion. Finally, section 3.5 presents the conclusion of the chapter.

3.1 Architecture of the Divider

As Figure 32 shows, the divider takes as inputs two 64-bit numbers A and B, and outputs

a quotient Q as a 64-bit number.

Figure 32: Double precision floating point divider.

 36

3.1.1 Unpacking

The unpacking block separates the 64 bits of each number, A and B, into the sign bit S

which is the most significant bit, the exponent E which is the next significant 11 bits, and the

mantissa M which is the least significant 52 bits. The biased exponent and the input operand are

used to determine whether the input operand is NaN (i.e., not a number), infinity, zero, or neither

of these. If any of the three first conditions is true, the flag F is set and computation is halted.

Otherwise, S, E and M are fed to the next appropriate blocks.

3.1.2 Sign Logic

This block determines the sign SQ of the final quotient Q. The sign of the quotient is

found by XORing the signs of A and B as SQ = SA XOR SB. Table 5 shows how the sign of the

final quotient is calculated from the sign of A and B.

Table 5: Determination of sign SQ of the final quotient Q.

SA SB SQ
0 0 0
0 1 1
1 0 1
1 1 1

3.1.3 Exponent Subtraction

This block computes the exponent of the quotient by subtracting the exponent of B from

that of A. The subtraction is an 11-bit operation: EAB = EA − EB.

3.1.4 Bias Addition

This block adds the bias, which is 1023, to the output EAB of the exponent subtraction

block as follows: Eb = EAB + 1023.

 37

3.1.5 Mantissa Division

This block computes the quotient and remainder of the mantissa using a 55-bit remainder

register R as follows:

Input: MA, MB Both are 53-bit mantissas
Output: MAB 55-bit mantissa

1: R = MA;
2: for (i = 0; i < 55; i = i + 1)
3: if (R – MB) ≥ 0
4: MAB[54-i] = 1;
5: R = R – MB;
6: else
7: MAB[54-i] = 0;
8: endif
9: R = R << 1;
10: end for

In line 1, the remainder is initialized with A’s mantissa. In each iteration, if the

difference between the contents of register R and B’s mantissa is greater then or equal to 0, a 1 is

inserted in the current bit position of the quotient register as shown in line 3 and 4. Next, the

difference is stored in the remainder as shown in line 5. Otherwise, a 0 is inserted in the current

bit position of the quotient register as shown in line 7. At the end of the iteration, the contents of

the remainder register are shifted to the left by one bit as shown in line 9. Note that the insertion

of bits in MAB starts from the most significant bit in the first iteration and proceeds towards the

least significant bit in MAB. The mantissa division takes 55 clock cycles to complete.

3.1.6 Normalization

If the quotient MAB is not normalized, this block normalizes it based on the quotient

obtained form the mantissa division. If the most significant bit of the mantissa MAB is 0, it is

shifted to the left by one bit. Otherwise, the mantissa is copied to Mn as it is.

 38

Input: MAB 55-bit mantissa
Output: Mn 55-bit mantissa
 Fa1 adjust flag

1: Fa1 = 0;
2: if MAB[54] = 0
3: Mn[54..1] = MAB << 1;
4: Mn[0] = 0;
5: Fa1 = 1;
6: else
7: Mn = MAB;
8: endif

If the most significant bit of the mantissa is 0, it is shifted to the left by one bit and copied

to Mn as shown in lines 2 and 3. Next the least significant bit of Mn is updated to 0 in line 4 and

the adjustment flag is set in line 5. Otherwise, the mantissa is copied to Mn as shown in line 7.

3.1.7 Rounding Control

In this block, the sticky bit is computed first. Next, the sticky, guard, and the round bits

are used to determine whether rounding is necessary or not. The latter two bits are the least

significant bits of the 55-bit quotient, namely Mn.

Input: Mn 55-bit mantissa
Output: Fr round flag

1: Fr = 0;
2: s = (Mn[0] ∨ Mn[1] ∨ … Mn[55]);
3: if ((Mn[0] = 0) and (s = 0))
4: if ((Mn[1] = 1) and (Mn[2] = 1))
5: Fr = 1;
6: else
7: if (Mn[1] = 1)
8: Fr = 1;
9: endif

This rounding approach implements the round-to-nearest-even mode of rounding

documented in the IEEE standard. Among the four rounding modes specified by the IEEE

 39

standard, this mode is considered the default mode. When rounding occurs, the rounding flag Fr

is set.

3.1.8 Rounding

The rounding block rounds the quotient’s mantissa based on the decision taken in the

rounding control block. If a rounding decision has been made, meaning when Fr = 1, then a 1 is

added to the least significant bit of the input Mn, and the flag Fa2 is set for exponent adjustment.

Otherwise, no action is taken. The output of this block, MQ, is the mantissa of Q.

Input: Mn 55-bit mantissa
 Fr round flag
Output: MQ 53-bit mantissa
 Fa2 adjust flag

1: Fa2 = 0;
2: if (Fr = 1)
3: MQ = Mn[52..0] + 1;
4: Fa2 = 1;
5: else
6: MQ = Mn[52..0];
7: endif

3.1.9 Exponent Adjustment

The exponent adjustment block adjusts the exponent based on the decision taken in the

rounding block. If Fa2 = 1, then Ea is incremented and the result is stored in EQ. Otherwise, no

action is taken. The output EQ is the exponent of Q.

Input: Ea 11-bit exponent
 Fa2 adjust flag
Output: EQ 11-bit exponent

1: if (Fa2 = 1)
2: EQ = Ea + 1;
3: else
4: EQ = Ea;
5: endif

 40

3.1.10 Packing

The packing block concatenates from left to right the sign (S), the 11-bit exponent (EQ),

and the 53-bit mantissa (MQ).

3.2 Pipelining of the Divider

In the divider, the slowest component is the block which computes the division of the

mantissas. Since this block executes this division sequentially, any incoming operands have to

be stopped until all iterations are complete. As a result, the throughput of the divider is

significantly low. This throughput is 1
seq

nd
τ = where n is the number of iterations in the

sequential divider while d is the execution delay of a single iteration. Pipelining this divider will

definitely increase their throughputs. A straightforward way to pipeline iterative algorithms is to

unroll the iterations of the loops embedded within the algorithm. In this case, the 55 iterations of

the loop, which computes the division of the two mantissas, can be unrolled 55 times. As such,

the throughput is 1
pipe

md
τ = where m is the number of unrolled iterations per stage and d is as

defined above. Note that 1 ≤ m ≤ n where m = 1 represents a fully unrolled sequential design

while m = n represents the un-pipelined sequential design. However, full unrolling can

theoretically increase the area cost. In fact, the area of a pipeline design can be expressed as

pipe

n
A nc r

m
= + where c is the combinational area of a single iteration, r is the number of bit

registers required for a single pipeline stages, and m and n are as defined above. Note that in

Apipe, m varies while nc is constant regardless of how many iterations are packed into a single

pipeline stage. Furthermore, Apipe is at its maximum when m = 1. Faced with this difficulty, it

 41

would make sense to consider (i) partially unrolling the loops, or (ii) optimizing the operations of

a single iteration, in order to decrease this complexity. Considering the above factors, the divider

is pipelined to various degrees in order to assess the impact of the pipeline depth on area

overhead.

3.3 Verification of the Divider

This section presents the modeling of the sequential and the pipelined dividers, and

shows the simulation results obtained for these dividers.

3.3.1 Modeling of the Sequential and Pipelined Dividers

To verify the divider, 5 VHDL models were developed where the first model implements

the sequential divider while the remaining four models implement the 7, 14, 28, and 55-stage

pipelined dividers. Table 6 shows the entities modeled in VHDL for each divider where the

VHDL models of the sequential divider and its four pipelined versions total 5117 lines of code.

Table 6: Breakdown of VHDL lines of codes based on divider entities.

Module Entity VHDL lines of code
Sequential Divider NON_PPL_DIVIDER (top level) 172
 UNPACK_DIVIDER 86
 SIGN_LOGIC_DIVIDER 25
 EXPONENT_SUBTRACTION_DIVIDER 23
 BIAS_ADDITION_DIVIDER 23
 DIVIDER_NON_PPL 72
 NORMALISE_DIVIDER 30
 ROUNDING_CONTROL_DIVIDER 30
 ROUND_DIVIDER 31
 EXPONENT_ADJUST_DIVIDER 27
 PACK_DIVIDER 29

 Subtotal 548

55-stage Divider PPL_DIVIDER (top level) 172

 42

 UNPACK_DIVIDER 86
 SIGN_LOGIC_DIVIDER 25
 EXPONENT_SUBTRACTION_DIVIDER 23
 BIAS_ADDITION_DIVIDER 23
 OVERFLOW_DIVIDE 741
 NORMALISE_DIVIDER 30
 ROUNDING_CONTROL_DIVIDER 30
 ROUND_DIVIDER 31
 EXPONENT_ADJUST_DIVIDER 27
 PACK_DIVIDER 29

 Subtotal 1,217

28-stage Divider DIVIDER_PPL_28 (top level) 172
 UNPACK_DIVIDER 86
 SIGN_LOGIC_DIVIDER 25
 EXPONENT_SUBTRACTION_DIVIDER 23
 BIAS_ADDITION_DIVIDER 23
 DIVIDER_28 702
 NORMALISE_DIVIDER 30
 ROUNDING_CONTROL_DIVIDER 30
 ROUND_DIVIDER 31
 EXPONENT_ADJUST_DIVIDER 27
 PACK_DIVIDER 29

 Subtotal 1,178

14-stage Divider DIVIDER_PPL_14 (top level) 172
 UNPACK_DIVIDER 86
 SIGN_LOGIC_DIVIDER 25
 EXPONENT_SUBTRACTION_DIVIDER 23
 BIAS_ADDITION_DIVIDER 23
 DIVIDER_14 630
 NORMALISE_DIVIDER 30
 ROUNDING_CONTROL_DIVIDER 30
 ROUND_DIVIDER 31
 EXPONENT_ADJUST_DIVIDER 27
 PACK_DIVIDER 29

 Subtotal 1,106

7-stage Divider PPL_DIVIDER_7 (top level) 172
 UNPACK_DIVIDER 86
 SIGN_LOGIC_DIVIDER 25

 43

 EXPONENT_SUBTRACTION_DIVIDER 23
 BIAS_ADDITION_DIVIDER 23
 DIVIDER_PPL_8 592
 NORMALISE_DIVIDER 30
 ROUNDING_CONTROL_DIVIDER 30
 ROUND_DIVIDER 31
 EXPONENT_ADJUST_DIVIDER 27
 PACK_DIVIDER 29

 Subtotal 1,068

Total 5,117

3.3.2 Simulation of the Divider

The VHDL model of each five different versions of the divider has been verified through

extensive simulation using ModelSim 5.8. In this process, separate simulations were performed

on each individual entity to insure its functional correctness.

3.3.3 Simulation of the Sequential Divider

Figure 33 shows the simulation snapshot of the top level module of the sequential

divider. In this figure, two 64-bit operands, A and B being 3.75 and 1.5 respectively, are input to

the divider. The highlighted a_divide output in the leftmost pane of the simulation snapshot

represents the 64-bit quotient produced by the sequential divider. This sequential divider takes

58 clock cycles to produce an output as it calculates one output bit per clock cycle. While the

computation progresses through the iterations of the divider, the latter cannot accept any new

operands until the division operation is complete. As a result, this divider can take a new pair of

operands only after every 58 cycles. The sign of the quotient is calculated as the XOR of the sign

 44

bits of the A and B operands as described in section 3.1.2. In this case, both inputs are positive,

and hence the sign of the quotient is also positive.

Figure 33: Simulation snapshot of the sequential divider.

On the other hand, the 11-bit exponents of A and B are made biased as described in

section 3.1.4. In this case, 1
10 23.75 11.11 1.111 10A = = = × . Since A’s exponent is 1,

then 10 21 1023 1024 10000000000AE = + = = . Also, since 0
10 21.5 1.1 1.1 10B = = = × , its exponent

is 10 20 1023 1023 01111111111BE = + = = . Based on these two exponents, EAB and Eb can be

calculated as 1024 1023 1AB A BE E E= − = − = and

10 21023 1023 1 1021 10000000000b ABE E= + = + = = respectively. Finally, the quotient mantissa

 45

can be computed as 1 22 (1) 2 (1 2) 2 1.25 2.5bE
QM fraction −= × + = × + = × = . In the simulation

snapshot, the quotient a_divide represents the expected output MQ.

3.3.4 Simulation of the 55-stage Pipelined Divider

In this divider, pipeline registers are inserted after each iteration of the mantissa division

(i.e., m = 1) as shown in Figure 34. Since 55 iterations are required to calculate the quotient of

the division, 55 registers are inserted in the mantissa divider. This maximum pipeline depth

produces maximum throughput. After an initial latency of 55 clock cycles, a new output is

produced every clock cycle.

Figure 35 shows a simulation snapshot of the 55-stage pipelined divider. The simulation

illustrated in this figure consists of feeding the first pair of operands to the divider, namely A =

3.74 and B = 1.5, in the first clock cycle, followed by a second pair of operands, namely A = 10.5

and B = 2.5.

Figure 34: Register placement in the 55-stage pipelined divider.

 46

Figure 35: Simulation snapshot of the 55-stage pipeline divider.

The simulation run goes through 55 cycles before the first quotient 2.5 appears at the output of

the divider. This is due to the 55-cycle initial latency of this divider. Immediately after the first

quotient, the second quotient 4.2 appears at the output of the divider in the following cycle.

3.3.5 Simulation of the 28-stage Pipelined Divider

In this divider, pipeline registers are inserted after every two iterations of the mantissa

division (i.e., m = 2) as shown in Figure 36. This results in the insertion of 28 pipeline registers.

 47

The achieved throughput is roughly half of the throughput achieved by the 55-stage divider with

a 28-cycle initial latency.

Figure 36: Register placement in the 28-stage pipelined divider.

Figure 37 shows a simulation snapshot of the 28-stage pipelined divider. Similarly to the

simulation of the 55-stage divider, this simulation consists of feeding the same two pairs of

operands in consecutive cycles to the divider. This simulation run show how both quotients

appear in consecutive cycles after the 28-cycle initial latency of the pipelined divider.

 48

Figure 37: Simulation snapshot of the 28-stage pipelined divider.

3.3.6 Simulation of the 14-stage Pipelined Divider

In this divider, pipeline registers are inserted after every four iterations of the mantissa

division (i.e., m = 4) as shown in Figure 38. In total, 14 pipeline registers are inserted in the

pipeline. The achieved throughput of this divider is roughly half of the throughput of the 28-

stage divider.

Figure 39 shows a simulation snapshot of the 14-stage pipelined divider. Similarly to the

simulation of the 55-stage divider, this simulation consists of feeding the same two pairs of

operands in consecutive cycles to the divider. This simulation run show how both quotients

appear in consecutive cycles after the 14-cycle initial latency of the pipelined divider.

 49

Figure 38: Register placement in the 14-stage pipelined divider.

Figure 39: Simulation snapshot of the 14-stage pipelined divider.

 50

3.3.7 Simulation of the Seven-stage Pipelined Divider

In this divider, pipeline registers are inserted after every eight iterations of the mantissa

division (i.e., m = 8) as shown in Figure 40. In total, 7 pipeline registers are inserted in the entire

divider. The throughout achieved by this divider is roughly half of the throughput achieved by

the 14-stage divider.

Figure 40: Register placement in the seven-stage pipelined divider.

Figure 41 shows a simulation snapshot of the 7-stage pipelined divider. Similar to the

simulation of the 55-stage divider, this simulation consists of feeding the same two pairs of

operands in consecutive cycles to the divider. This simulation run show how both quotients

appear in consecutive cycles after the seven-cycle initial latency of the pipelined divider.

 51

Figure 41: Simulation snapshot of the seven-stage pipelined divider.

3.4 Evaluation of the Divider

In this section, the results of the synthesized divider are compared to earlier related

dividers implemented on FPGAs. This comparison is followed by an evaluation of the impact of

pipeline depth on area, throughput, and dynamic power of the divider.

3.4.1 Divider Design Comparison

 The divider unit was modeled in VHDL, simulated in ModelSim 5.8, synthesized using

Synplify Pro 7.2, and placed using Xilinx ISE 5.2. Table 7 shows the implementation results of

the divider units on the Virtex XCV1000 chip. These units were mapped on this chip in order to

compare our results with the sequential results obtained in [17] where no pipelined

 52

implementations of the units were presented. Sequential implementation of the divider has a

throughput that is quite comparable to the throughputs in [17]. This implementation is

significantly low in area overhead measured in terms of LUTs as shown in Table 7 although its

throughput hovers around the single MFLOP mark. In contrast, the pipelined implementation

displays a throughput that is significantly higher in this unit. In fact, the throughput of the

pipelined divider is 62× higher than its iterative counterpart. The 62× increase in the divider

throughput leads to a modest 13× increase in slices. This shows that the pipelined

implementation of the divider is highly efficient since the gain in performance is offset by a

relatively low cost in area overhead.

Table 7: Implementation results of the divider units on the Virtex XCV1000.

Unit Clock Period
(ns)

Clock Frequency
(MHz)

Throughput
(MFLOPS)

Slices LUTs Flip-Flops

Sequential divider 15.33 65.20 1.03 222 443 (1%) 274

Pipelined divider 14.90 67.10 64 2915 5830 (23%) 5734

With the exception of a few attempts, most previously published designs of division

address only single or parameterizable precision floating point implementation [15]. For a

meaningful comparison, it would make sense to map both units on the same chips used in [10,

14]. Table 8 contrasts our implementation results to the results obtained in [14].

Table 8 : Performance of the divider units on the Virtex II XC2V6000.

Unit Clock
Period

(ns)

Clock
Frequency

(MHz)

Clock
Cycles

Latency
(ns)

Throughput
(MFLOPS)

Area
(Slices)

Throughput/Area
(KFLOPS/Slice)

Sequential divider 9.93 100.70 60 595.8 1.60 284 5.63
Array divider [14] 300 3.33 1 300 3.17 1705 1.85
Pipelined divider

(60 stages)
9.75 102.50 1 9.75 97.81 2920 33.49

Pipelined divider
(29 stages) [14]

12.20 81.96 1 12.20 78.17 2595 30.12

 53

Column 1 shows the units to be compared and the number of stages in the pipelined units

while column 2 shows the clock period of the critical path of each unit. Column 3 shows the

clock frequency of the implemented unit while column 4 shows the number of clock cycles

required to produce a single output. Column 5 shows the latency or the time required to produce

a single output while column 6 shows the throughput of each unit measured in Mega floating

point operations per second (MFLOPS). Column 7 shows the number of slices needed to

implement the unit of the XC2V6000 chip while column 8 shows the throughput per area of each

unit. While our non-pipelined units are sequential in nature, the units in [14] are not. As a

result, the areas required to implement our divider units are significantly smaller than the areas

required to implement the units in [14]. They can occupy only 0.16× of the divider compared to

the areas of the array units in [14]. On the other hand, the latencies in our sequential unit is

1.98× higher for the divider than the latency of the non-pipelined units in [14] although the

clock periods in our unit is significantly lower than the clock periods in the non-pipelined units

in [14]. However, the latencies of our pipelined unit is 0.79× smaller for the divider than the

latencies of the pipelined units in [14]. This can be attributed to the high degree of pipelining

introduced in our units. In fact, the iterative computations in our divider units were fully

unrolled to yield a 55-stage pipeline in the mantissa divider block of the divider unit. In contrast,

the pipelined divider in [14] consists of only 29 stages. Considering this difference in pipeline

stages, the areas measured in slices of our implemented pipelined unit is obviously higher than

the area of the pipelined unit in [14].

Although the number of pipeline stages differs over implementations, a relatively

accurate metric to assess the efficiency of these various implementations can be derived by

considering the ratio of throughput over area shown in column 8 of Table 8. This ratio gives a

 54

rough idea about the level of throughput produced by a single slice regardless of the area used in

the implementation. Based on this ratio, our pipelined divider is 1.11× more efficient that the

pipeline divider in [14]. Although our design is sequential in nature and does not take advantage

of other radices to reduce delay as done in [14], it is clear that it is quite comparable in

performance to the design in [14]. Furthermore, it is worth noting that designs based on radix-2

computations, such as ours, are easier to implement and test. Note that these throughputs were

achieved by merely spreading spatially the computations across the LUTs of the FPGA. The

performance of our unit can be boosted further by constructing highly optimized layouts of the

units which take advantage of the block RAMs and embedded multipliers within the Virtex

FPGA.

3.4.2 Throughput Evaluation

In order to understand the impact of loop unrolling on area and throughput, the divider

was pipelined into different depths as described in section 3.3.2. The pipeline depth, or number

of pipeline stages, depends on the degree of unrolling of the iterative loops in the division unit of

the mantissa. Experiments were conducted to measure area and performance parameters by

partitioning the mantissa’s divider into pipelines of 1, 7, 14, 28, and 55 stages. The four last

depths can be obtained by embedding eight iterations, four iterations, two iterations, and one

iteration per stage respectively. Figure 42 shows clock frequency and throughput across the

mentioned pipeline depths for the divider units on the Xilinx XC2V6000-4 chip.

The figure shows that the frequency and throughput of a divider increases as the pipeline

depth increases in a non linear fashion. The sequential divider unit is considered as one-stage

 55

pipeline. Note that in these designs, the iterative computations of the loop are performed in the

same small area leading to a short clock period, and subsequently a high clock frequency.

Frequency and Throughput

0.00

20.00

40.00

60.00

80.00

100.00

120.00

1 8 14 28 55

Stages

M
H

z
or

 M
FL

O
P

S
Frequency (MHz) Throughput (MFLOPS)

Figure 42: Clock frequencies and throughputs of the dividers.

However, the 55 iterations of the loop have to be completed for division computations

before an output is produced. This leads to a significantly low throughput as shown in Figure 42.

This shows that a complete unrolling of the loop in the iterative design of the divider can provide

higher level of throughputs. However, this gain in throughput can be accompanied by an area

penalty.

3.4.3 Area Evaluation

Figure 43 shows area cost, measured in slices, LUTs, and flip-flops for various pipeline

depths of the divider units on XC2V6000-4. As this figure shows, the overall area increases as

the pipeline becomes deep. Among LUTs and flip-flops, the increase seems to be more

pronounced for the latter. This can be explained by the fact that, except for the sequential

 56

design, the pipelined designs have roughly the same amount of combinational logic regardless of

the degree of loop unrolling.

Area Cost

0
1000
2000
3000

4000
5000
6000
7000

1 8 14 28 55

Stages

Slices LUTs Flip-Flops

l

Figure 43: Area costs of the dividers.

As such, the increase in area tends to affect the number of flip-flops since flip-flops are

gradually added to implement the increase in the number of inter-stage registers required to

support deeper pipelines. By examining the trend lines of this increase, it is clear that it is non-

linear across the implemented divider units. With regard to slices, it seems that their numbers

reach their maximum in the 28-stage pipeline. The trend line of this increase is an extremely flat

bell curve spanning the pipelines of 8 to 55 stages. This shows that the degree of unrolling does

not impact significantly the slice area needed to implement the pipeline. One can speculate that

roughly the same slice area is used to implement the same amount of combinational logic

embedded in the four pipelines. As more stages are added to a pipeline, the flip-flops contained

in the same slices are being used to implement the increasing numbers of pipeline registers. If

 57

additional flip-flops are needed, additional slices are marshaled to provide the needed flip-flop

thus leading to a slight increase in slices.

When considering the throughput and area cost, one can quantify the incurred area

penalty associated with throughput gain as a ratio. Figure 44 shows the throughput-area ratio of

the divider units on XC2V6000-4. This ratio can be usefully used in measuring the level of

throughput provided by unit of area expressed as a single slice.

Throughput/Area

0.00

5.00

10.00

15.00

20.00

25.00

1 8 14 28 55

Stages

K
FL

O
P

S/
S

lic
e

Figure 44 : Throughput-area ratios of the dividers.

As this figure shows, this ratio increases as the pipeline depth increases. In fact, by

further unrolling the loop, and subsequently adding more stages to the pipeline, one is not adding

combinational logic, but merely shortening the critical path in each pipeline stage. This results

in a speedup of the clock of the pipeline without a significant increase in area. The net effect is a

visible increase in the throughput-area ratio. These observations suggest that in iterative designs,

maximum performance benefits can be obtained by totally unrolling the iterative loops of the

computations without incurring a significant area penalty. This is somewhat counter-intuitive

 58

considering that advanced pipelining in ASIC implementations always lead to a gradual increase

in area penalty. This increase can reach a point where the throughput-area ratio starts to

gradually decrease as more stages are added to the pipeline after which partitioning further the

pipeline can only yield diminishing returns in terms of throughput-area ratio.

3.4.4 Dynamic Power Evaluation

In order to understand the impact of loop unrolling on dynamic power consumption, the

divider was pipelined into different depths as described in section 3.3.2. Each pipelined divider

is placed and routed using Xilinx ISE 6.2i on a Virtex XCV600 since the latter is the closest chip

in architecture to the XC2V6000 chip used in the area and throughput experiments that is

provided by Xilinx tools for power analysis. After setting the simulation clock period to 10 ns, a

simulation run of 700 ns is performed on each divider by feeding a diverse set of 70 input

vectors. The output of this simulation produces a vcd file which is fed to the XPower tool

packaged with Xilinx ISE software tools. XPower reads the vcd file and generates a report

showing the switching power consumed by various components such as IO blocks, logic,

routing, clocking, etc…Figure 45 shows the adopted methodology to conduct power analysis on

the pipelined dividers. For a focused power analysis, we disregarded the power consumed by all

device-dependent components such as IO blocks. In return, only design-dependent power

components were taken into account. These components are the switching power of the clock

tree, design logic, and routing signals. Figure 46 shows the dynamic power consumed by the

pipelined dividers.

As shown in the figure, dynamic power decreases as pipeline depth increases. However,

the values of dynamic power consumed by the 14, 28, and 55-stage dividers are all below 7,000

 59

mW in contrast to the 142,750 mW consumed by the 8-stage divider based on the log scale of the

y-axis in Figure 46. The latter figure is equivalent to 21.54× more power than the power

consumed by the 14-stage divider. Note that the amount of combinational logic is roughly the

same in all the dividers. The only difference is the amount of logic embedded within a single

stage of the divider.

Figure 45 : Power analysis methodology.

 60

Dynamic Power

1

10

100

1000

10000

100000

1000000

8 14 28 55

Stages

Po
w

er
 (m

 W
)

Figure 46 : Dynamic power of the dividers.

In the case of an eight-stage divider, there are eight iterations embedded within a single

stage. These eight iterations present a logic network that contains numerous paths which do not

have necessarily the same length. In particular, long paths are notorious for displaying glitching

behavior. In fact, glitching activity increases with signal length [21]. By inserting registers at

various points in the design, the amount of interconnect between registers is reduced thereby

reducing the amount of glitching plaguing these signals. As a result, the dynamic power

displayed by the divider is also reduced. However, Figure 46 shows that this reduction in

dynamic power tends to slow down as the divider is pipelined further. Apparently, there is a

large initial payoff in power reduction in the initial pipelined design (e.g., eight-stage pipeline)

up to a point beyond which further pipelining does not return any substantial reduction in

dynamic power (e.g., 14-, 28-, and 55-stage pipeline). This can be explained by the fact that in

shallow pipelined designs, glitching can make up to 80% of the total power consumed by the

divider. As the pipeline depth of the design is slightly increased, glitching activity can fall to

 61

levels below 40% of total power displayed by the divider [22]. This sudden fall in glitching

activity explains the decreasing returns observed in deeper pipelines. In essence, while

pipelining can improve throughput in a non-linear fashion, its impact on reducing power is

limited to shallow pipelines.

3.5 Conclusion

This chapter presents the design of IEEE-compliant double precision floating point

sequential and parallel dividers. This design is based on a low-radix iterative division algorithm

known as the binary version of the pencil-and-paper method. The pipelining of the divider was

based on partial and full unrolling of the loops in the iterative mantissa division. The

implementation of this divider did not take advantages of any advanced architectural features

available in high end FPGA chips or use any pre-designed architecture-specific arithmetic cores.

The experiments reveal that this divider can produce maximum throughput when the iteration of

the computational loops are totally unrolled without incurring a significant area penalty. While

the sequential divider occupies less than 3% of an XC2V6000 FPGA chip, its pipelined

counterparts can produce throughputs that exceed the 100 MFLOPS mark by consuming at most

a modest 8% of the chip area. These throughputs surpass by far the throughputs of division on

many processors [9]. Such performances are indeed perfectly suited to accelerate numeric

applications.

 62

 CHAPTER FOUR: DOUBLE PRECISION FLOATING POINT SQUARE
ROOT UNIT

In this chapter, section 4.1 presents the architecture of the double precision floating point

square root unit while section 4.2 describes the approach used to pipeline this unit. Section 4.3

presents the verification of the unit while section 4.4 explains the experimental results conducted

on the unit. Finally, section 4.5 concludes the chapter.

4.1 Architecture of the Square Root Unit

As Figure 47 shows, the square root units takes as input a 64-bit number A and outputs

its square root R as a 64-bit number.

Figure 47: Double precision floating point square root unit.

 63

4.1.1 Unpacking

The unpacking block separates the 64 bits of A in a manner similar to the one performed

by the unpacking block of the divider.

4.1.2 Exponent Calculation

This block computes the resultant exponent of the square root based on the biased

exponent:

Input: EA 11-bit exponent
Output: Ec 11-bit exponent
 Fs shift flag

1: Fs = 0;
1: if (EA is even)
2: Ec = (EA + 1022) >> 1;
3: Fs = 1;
4: else if (EA is odd)
5: Ec = (EA + 1023) >> 1;
6: end if

If the biased exponent is even, it is added to 1022 and divided by two. In addition, the

shift flag Fs is set to indicate that the mantissa should be shifted to the left by 1 bit before

computing its square root. Note that before shifting, the mantissa bits are stored in the 53-bit

register MA as 1.xxxx… After shifting to the left, MA contents become 1x.xxx… If the biased

exponent is odd, it is added to 1023 and divided by two.

4.1.3 Mantissa Square Root

The block, which computes the square root of the mantissa, uses the following iterative

approach based on two 57-bit registers, namely X and T, and a 55-bit register Mr.

Input: MA 53-bit mantissa
 Fs 1-bit shift flag
Output: Mr 55-bit mantissa

 64

1: Mr = 000…0;
2: T = 01000…0;
3: for (i = 0; i < 55; i = i + 1)
4: if (i = 0)
5: if (Fs = 1)
6: MA = MA[53].MA[51..0].0;
7: end if
8: X = MA >> 1;
9: else
10: if (X ≥ T)
11: X = (X – T) << 1;
12: T = T[(56-i)..0] >> 1;
13: T[56-i] = 1;
14: else
15: X = X << 1;
16: T = T[56-i)..0] >> 1;
17: T[56-i] = 0;
18: end if
19: end if
20: end for
21: Mr = T[56..2];

In the first iteration, the contents of MA are shifted to the left and stored in X if the shift

flag Fs is on as shown in lines 4, 5, and 6. Otherwise, these contents are shifted to the right by

one bit and stored in X as shown in line 8. In other iterations, X is compared to T as shown in

line 10. If it is greater or equal to T, the contents of X are subtracted from those of T, shifted to

the left, and stored in X as shown in line 11. The contents of T are shifted to the left by one bit

starting from the current pointer position as shown in line 12. Then, a 1 is inserted in the current

bit position in T as shown in line 13. Note that in each iteration, a pointer points to the current

bit that will be replaced in T. If X is less than T, its contents are shifted to the left and stored in X

as shown in line 15. The contents of T are shifted to the right by one bit starting from the current

pointer position as shown in line 16. Then, a 0 is inserted in the current bit position in T as

shown in line 17. After the last iteration, the contents of T, with the exception of the two least

 65

significant bits, are copied to Mr as shown in line 21. The computation of the mantissa’s square

root takes 55 clock cycles to complete.

4.1.4 Rounding Control

In this block, the rounding decision is executed in the same way as the rounding control

block used in division. The only difference is that the mantissa Mr in the square root unit is a 53-

bit number instead of the 55-bit mantissa Mn used in the rounding control of the divider. Of

course, this rounding control implements the same rounding mode used in the divider.

4.1.5 Rounding

The rounding block rounds the mantissa based on the same approach used in the divider.

MR is the mantissa of R.

Input: Mr 53-bit mantissa
 Fr round flag
Output: MR 53-bit mantissa
 Fa adjust flag

1: Fa = 0;

2: if (Fr = 1)
3: MR = Mr + 1;
4: Fa = 1;
5: else
6: MR = Mr;
7: end if

4.1.6 Exponent Adjustment

The exponent adjustment block adjusts the exponent based on the same approach used in

the exponent adjustment block of the divider.

 66

4.1.7 Packing

The packing block concatenates from left to right the sign (S), the 11-bit exponent (ER),

and the 53-bit mantissa (MR).

4.2 Pipelining of the Square Root Unit

In the square root unit, the slowest component is the block which computes the square

root of the mantissa. Since this block executes the square root operation sequentially, any

incoming operand will have to be stopped until all iterations are complete. As a result, the

throughput of the square root unit is significantly low. This throughput is 1
seq

nd
τ = where n is the

number of iterations in the sequential square root unit while d is the execution delay of a single

iteration. Pipelining this square root block will definitely increase its throughput. Hence, this unit

is pipelined in a way similar to the pipelining approach described in section 3.2 of Chapter 3 for

the divider.

4.3 Verification of the Square Root Unit

This section presents the modeling of the sequential and the pipelined square root units as

well as the simulation results obtained for these square root units.

4.3.1 Modeling of the Sequential and Pipelined Square Root Units

To verify the square root, five VHDL models were developed where the first model

implements the sequential square root unit while the remaining four models implement the

seven, 14, 28, and 55-stage pipelined square root units. Table 9 shows the entities modeled in

 67

VHDL for each square root unit along with the numbers of lines of VHDL code resulting in a

total of 4,943 lines.

Table 9: Breakdown of VHDL lines of codes based on the entities of the square root units.

Module Entity VHDL lines of code
Sequential Square Root Unit SQUARE_ROOT (top level) 158
 UNPACK_SQRT 56
 EXPO_CALC 66
 SQRT_NON_PPL 93
 ROUND_CONTROL_SQRT 29
 ROUND_SQRT 58
 EXPO_ADJUST_SQRT 56
 PACK_SQRT 30

 Subtotal 546

55-stage Square Root Unit SQUARE_ROOT_PPL (top level) 158
 UNPACK_SQRT 56
 EXPO_CALC 66
 STAGE2 782
 ROUND_CONTROL_SQRT 29
 ROUND_SQRT 58
 EXPO_ADJUST_SQRT 56
 PACK_SQRT 30

 Subtotal 1,235

28-stage Square Root Unit SQUARE_ROOT_28 (top level) 158
 UNPACK_SQRT 56
 EXPO_CALC 66
 TRIAL_SQRT 636
 ROUND_CONTROL_SQRT 29
 ROUND_SQRT 58
 EXPO_ADJUST_SQRT 56
 PACK_SQRT 30

 Subtotal 1,089

14-stage Square Root Unit SQUARE_ROOT_14 (top level) 158
 UNPACK_SQRT 56
 EXPO_CALC 66
 TRIAL_SQRT_14 594

 68

 ROUND_CONTROL_SQRT 29
 ROUND_SQRT 58
 EXPO_ADJUST_SQRT 56
 PACK_SQRT 30

 Subtotal 1,047

7-stage Square Root Unit SQUARE_ROOT_7 (top level) 158
 UNPACK_SQRT 56
 EXPO_CALC 66
 TRIAL_SQRT_7 573
 ROUND_CONTROL_SQRT 29
 ROUND_SQRT 58
 EXPO_ADJUST_SQRT 56
 PACK_SQRT 30

 Subtotal 1,026

Total 4,943

4.3.2 Simulation of the Square Root Units

The VHDL models of the five versions of the square root units have been verified

through extensive simulation using ModelSim 5.8. In this process, separate simulations were

performed on each individual unit to insure its functional correctness.

4.3.3 Simulation of the Sequential Square Root Unit

 Figure 48 shows the simulation snapshot of the top level entity of the sequential

square root unit. In this figure, a 64-bit operand A = 30.25 is input to the square root. The

highlighted a_sqrt output in the leftmost pane of the simulation snapshot represents the 64-bit

square root produced by the sequential square root unit. This sequential square root unit takes 65

clock cycles to produce an output as it calculates one output bit per clock cycle. As the

computation progresses through the iterations of the square root, the unit cannot accept any new

 69

operands until the square root operation is complete. As a result, this square root can take a new

operand only after every 65 cycles.

 Figure 48: Simulation snapshot of the sequential square root unit.

The 11-bit exponent of A is converted to a biased exponent as described in section 3.1.4.

In this case, 4
10 230.25 11110.11001 1.111011001 10A = = = × . Since A’s exponent EA = 4+1023

= 1027 which is odd, then 10 10 2(1023) 2 2050 2 1025 10000000011c AE E= + ÷ = ÷ = = . Based on

this result, 10 21025 10000000011RE = = as the rounding bit = 0. Finally, the square root mantissa

can be computed as 2 2 32 (1) 2 (1 2 2) 4 1.375 5.5RE
RM fraction − −= × + = × + + = × = . In the

simulation snapshot, the quotient a_sqrt represents the expected output MR.

 70

4.3.4 Simulation of the 55-stage Pipelined Square Root Unit

In this square root unit, pipeline registers are inserted after each iteration of the mantissa

square root (i.e., m = 1) as shown in Figure 34. Since 55 iterations are required to calculate the

quotient of the square root, 55 registers are inserted in the mantissa square root block. This

maximum pipeline depth produces maximum throughput. After an initial latency of 55 clock

cycles, a new output is produced every clock cycle. Figure 49 shows a simulation snapshot of

the 55-stage pipelined square root unit.

Figure 49: Simulation snapshot of the 55-stage pipelined square root unit.

 The simulation illustrated in this figure consists of feeding the first operand to the square

root, namely A = 30.25, in the first clock cycle, followed by a second operand, namely A = 20.25,

in the second cycle. The simulation run goes through 55 cycles before the first square root 5.5

appears at the output of the square root unit. This is due to the 55-cycle initial latency of this

 71

unit. Immediately after the first remainder, the second remainder 4.5 appears at the output of the

unit in the following cycle.

4.3.5 Simulation of the 28-stage Pipelined Square Root Unit

In this square root unit, pipeline registers are inserted after every two iterations of the

mantissa square root (i.e., m = 2) as shown in Figure 36. This results in the insertion of 28

pipeline registers. The achieved throughput is roughly half of the throughput achieved by the 55-

stage square root with a 28-cycle initial latency.

Figure 50 shows a simulation snapshot of the 28-stage pipelined square root. Similar to

the simulation of the 55-stage square root, this simulation consists of feeding the same operands

in consecutive cycles to the square root. This simulation run shows how both square roots

appear in consecutive cycles after the 28-cycle initial latency of the pipelined square root unit.

Figure 50: Simulation snapshot of the 28-stage pipelined square root unit.

 72

4.3.6 Simulation of 14-stage Pipelined Square Root Unit

In this square root, pipeline registers are inserted after every four iterations of the

mantissa square root (i.e., m = 4) as shown in Figure 38. In total, 14 pipeline registers are

inserted in the pipeline. The achieved throughput of this square root unit is roughly half of the

throughput of the 28-stage square root unit.

Figure 51 shows a simulation snapshot of the 14-stage square root. Similar to the

simulation of the 55-stage square root unit, this simulation consists of feeding the same two

operands in consecutive cycles to the square root. This simulation run shows how both

remainders appear in consecutive cycles after the 14-cycle initial latency of the pipelined square

root unit.

Figure 51: Simulation snapshot of the 14-stage pipelined square root unit.

 73

4.3.7 Simulation of the Seven-stage Pipelined Square Root Unit

In this square root, pipeline registers are inserted after every eight iterations of the

mantissa square root (i.e., m = 8) as shown in Figure 40. In total, seven pipeline registers are

inserted in the entire square root unit. The throughout achieved by this square root is roughly half

of the throughput achieved by the 14-stage square root unit.

Figure 52 shows a simulation snapshot of the 7-stage pipelined square root unit.

Similarly to the simulation of the 55-stage square root unit, this simulation consists of feeding

the same two operands in consecutive cycles to the square root. This simulation run shows how

both remainders appear in consecutive cycles after the seven-cycle initial latency of the pipelined

square root unit.

Figure 52: Simulation snapshot of the seven-stage pipelined square root unit.

 74

4.4 Evaluation of the Square Root Unit

In this section, the results of the synthesized square root units are compared to earlier

related square root units implemented on FPGAs. This comparison is followed by an evaluation

of the impact of pipeline depth on area, throughput, and dynamic power of the square root.

4.4.1 Square Root Design Comparison

 The square root unit was modeled in VHDL, simulated in ModelSim 5.8,

synthesized using Synplify Pro 7.2, and placed using Xilinx ISE 5.2. Table 10 shows the

implementation results of the units on the Virtex XCV1000 chip. These units were mapped on

this chip in order to compare our results with the sequential results obtained in [17] where no

pipelined implementations of the units were presented.

Table 10 : Implementation results of the square root units on the Virtex XCV1000.

Unit

Clock Period
(ns)

Clock Frequency
(MHz)

Throughput
(MFLOPS)

Slices

LUTs

Flip-Flops

Sequential square
root

16.81 59.50 0.96 400 818 (3%) 438

Pipelined square
root

14.33 69.80 66.55 2699 5364 (21%) 3165

Sequential implementation of the square root has a throughput that is quite comparable to

the throughputs in [17]. This implementation is significantly low in area overhead measured in

terms of LUTs as shown in Table 10 although its throughput hovers around the single MFLOP

mark. In contrast, the pipelined implementation displays a throughput that is significantly higher.

In fact, the throughput of the pipelined square root unit is 69× higher than its iterative

counterpart. The 69× increase in the square root throughput leads to a modest 6× increase in

 75

slices. This shows that the pipelined implementation of the square root is highly efficient since

the gain in performance is offset by a relatively low cost in area overhead.

With the exception of a few attempts such as the one in [14], most previously published

designs of square root units address only single or parameterizable precision floating point

implementations [10, 15, 19]. For a meaningful comparison, it would make sense to map both

units on the same chips used in [10, 14]. Table 11 contrasts our implementation results to the

results obtained in [14].

Table 11: Performance of the square root units on the Virtex II XC2V6000.

Unit

Clock
Period

(ns)

Clock
Frequency

(MHz)

Clock
Cycles

Latency

(ns)

Throughput
(MFLOPS)

Area

(Slices)

Throughput/Area
(KFLOPS/Slice)

Sequential square
root

9.03 110.70 59 532.77 1.79 405 4.41

Array square root
[14]

239 4.18 1 239 3.99 869 4.59

Pipelined square
root

(59 stages)

7.52 132.98 1 7.52 126.82 2700 46.97

Pipelined square
root

(29 stages) [14]

13.80 72.46 1 13.80 69.10 1433 48.22

Column 1 shows the units to be compared and the number of stages in the pipelined units

while column 2 shows the clock period of the critical path of each unit. Column 3 shows the

clock frequency of the implemented unit while column 4 shows the number of clock cycles

required to produce a single output. Column 5 shows the latency, which is the time required to

produce a single output, while column 6 shows the throughput of each unit measured in Mega

floating point operations per second (MFLOPS). Column 7 shows the number of slices needed

to implement the unit of the XC2V6000 chip while column 8 shows the throughput per area of

each unit. While our non-pipelined units are sequential in nature, the units in [14] are not. As a

 76

result, the areas required to implement our square root units are significantly smaller than the

areas required to implement the units in [14]. They can occupy only 0.46× of the square root

unit area compared to the areas of the array units in [14]. On the other hand, the latencies in our

sequential unit is 2.22× higher for the square root than the latency of the non-pipelined units in

[14]. However, the latencies of our pipelined unit is 0.54× smaller for the square root units than

the latencies of the pipelined units in [14]. This can be attributed to the high degree of pipelining

introduced in our units. In fact, the iterative computations in our square root units were fully

unrolled to yield a 55-stage pipeline in the mantissa square root block of the square root unit. In

contrast, the pipelined square roots in [14] consist of only 28 stages. Considering this difference

in pipeline stages, the areas measured in slices of our implemented pipelined unit is obviously

higher than the area of the pipelined unit in [14].

Although the number of pipeline stages differs over implementations, a relatively

accurate metric to assess the efficiency of these various implementations can be derived by

considering the ratio of throughput over area shown in column 8 of Table 11. This ratio gives a

rough idea about the level of throughput produced by a single slice regardless of the area used in

the implementation. Based on this ratio, our pipelined square root is 0.03× less efficient that the

pipeline square root unit in [14]. While our design is sequential in nature and does not take

advantage of other radices to reduce delay as is the case in [14], it is clear that it is quite

comparable in performance to the design proposed in [14]. Furthermore, it is worth noting that

designs based on radix-2 computations, such as ours, are easier to implement and test than those

of high-radices implemented in [14]. Note that these throughputs were achieved by merely

spreading spatially the computations across the LUTs of the FPGA. The performance of our unit

 77

can be boosted further by constructing highly optimized layouts of the units which take

advantage of the block RAMs and embedded multipliers within the Virtex FPGA.

4.4.2 Throughput Evaluation

In order to understand the impact of loop unrolling on area and throughput, the square

root unit was pipelined into different depths as described in section 4.2. The pipeline depth, or

number of pipeline stages, depends on the degree of unrolling of the iterative loops in the square

root unit block of the mantissa. Experiments were conducted to measure area and performance

parameters by partitioning the mantissa’s square root block into pipelines of one, seven, 14, 28,

and 55 stages. The four last depths can be obtained by embedding eight iterations, four

iterations, two iterations, and one iteration per stage respectively. Figure 53 shows the clock

frequencies and throughputs for the mentioned pipeline depths of the square root unit on the

Xilinx XC2V6000-4 chip. The figure shows that the frequency and throughput of a square root

unit increases as the pipeline depth increases in a non linear fashion. The sequential square root

unit is considered as one-stage pipeline. Note that in these designs, the iterative computations of

the loop are performed in the same small area leading to a short clock period, and subsequently a

high clock frequency. However, the 55 iterations of the loop have to be completed for square

root computations before an output is produced. This leads to a significantly low throughput as

shown in Figure 53. This shows that a complete unrolling of the loop in the iterative design of

the square root block can provide higher level of throughputs. However, this gain in throughput

may be accompanied by an area penalty.

 78

Frequency and Throughput

0.00
20.00

40.00
60.00
80.00

100.00

120.00
140.00

1 8 14 28 55

Stages

M
H

z
or

 M
FL

O
P

S

Frequency (MHz) Throughput (MFLOPS)

Figure 53: Clock frequencies and throughputs of the square root units.

4.4.3 Area Evaluation

Figure 54 shows the area cost, measured in slices, LUTs, and flip-flops for various

pipeline depths of the square root units on XC2V6000-4. As this figure shows, the overall area

increases as the pipeline becomes deep. Among LUTs and flip-flops, the increase seems to be

more pronounced for the latter. This can be explained by the fact that, except for the sequential

design, the pipelined designs have roughly the same amount of combinational logic regardless of

the degree of loop unrolling. As such, the increase in area tends to affect the number of flip-

flops since flip-flops are gradually added to implement the increase in the number of inter-stage

registers required to support deeper pipelines. By examining the trend lines of this increase, it is

clear that it is non-linear across the implemented square root units. With regard to slices, it seems

that their numbers reach their maximum in the 28-stage pipeline. The trend line of this increase

is an extremely flat bell curve spanning the pipelines of eight to 55 stages. This shows that the

 79

degree of unrolling does not impact significantly the slice area needed to implement the pipeline.

One can speculate that roughly the same slice area is used to implement the same amount of

combinational logic embedded in the four pipelines. As more stages are added to a pipeline, the

flip-flops contained in the same slices are being used to implement the increasing numbers of

pipeline registers. If additional flip-flops are needed, additional slices are marshaled to provide

the needed flip-flop thus leading to a slight increase in slices.

Area Cost

0
1000
2000
3000

4000
5000
6000
7000

1 8 14 28 55

Stages

Slices LUTs Flip-Flops

Figure 54: Area cost of the square root units.

 When considering the throughput and area cost, one can quantify the incurred area

penalty associated with throughput gain as a ratio. Figure 55 shows the throughput-area ratios of

the square root units on XC2V6000-4. This ratio can be used in measuring the level of

throughput provided by unit of area expressed as a single slice. As this figure shows, this ratio

increases as the pipeline depth increases. In fact, by further unrolling the loop, and subsequently

adding more stages to the pipeline, one is not adding combinational logic, but merely shortening

the critical path in each pipeline stage. This results in a speedup of the clock of the pipeline

 80

without a significant increase in area. The net effect is a visible increase in the throughput-area

ratio. These observations suggest that in iterative designs, maximum performance benefits can

be obtained by totally unrolling the iterative loops of the computations without incurring a

significant area penalty. This is somewhat counter-intuitive considering that advanced pipelining

in ASIC implementations always lead to a gradual increase in area penalty.

Throughput/Area

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00

1 8 14 28 55

Stages

KF
LO

P
S/

Sl
ic

e

Figure 55: Throughput-area ratio of the square root units.

As this figure shows, this ratio increases as the pipeline depth increases. In fact, by

further unrolling the loop, and subsequently adding more stages to the pipeline, one is not adding

combinational logic, but merely shortening the critical path in each pipeline stage. This results

in a speedup of the clock of the pipeline without a significant increase in area. The net effect is a

visible increase in the throughput-area ratio. These observations suggest that in iterative designs,

maximum performance benefits can be obtained by totally unrolling the iterative loops of the

computations without incurring a significant area penalty. This is somewhat counter-intuitive

considering that advanced pipelining in ASIC implementations always lead to a gradual increase

 81

in area penalty. This increase can reach a point where the throughput-area ratio starts to

gradually decrease as more stages are added to the pipeline after which partitioning further the

pipeline can only yield diminishing returns in terms of throughput-area ratio.

4.4.4 Dynamic Power Evaluation

To study the effect of loop unrolling on dynamic power consumption, the square root unit

was pipelined into different depths as described in section 4.2. Each pipelined square root unit is

placed and routed using the same tools and simulation set up as described in section 3.4.4 for the

divider. Before running the post place and route simulation, Xilinx ISE 6.2i is set to generate a

vcd file after the simulation is over. This vcd file which is fed to the XPower tool packaged with

Xilinx ISE software tools. XPower reads the vcd file and generates a report showing the

switching power consumed by various components such as IO blocks, logic, routing, clocking,

etc. The adopted methodology for power analysis is similar to the one described Figure 45. We

disregarded the power consumed by all device-dependent components such as IO blocks. Only

design-dependent power components were taken into account. These components are the

switching power of the clock tree, design logic, and routing signals. Figure 56 shows the

dynamic power consumed by the pipelined square root.

Figure 56 show that dynamic power decreases as the pipeline depth increases. Similar

trend is observed in the dynamic power evaluation of the divider in section 3.4.4. However, the

values in dynamic power consumed by the 28 and 55 stage pipeline square root are all below

3,000 mW in contrast to the 47,641 mW consumed by the 8 stage square root based on the log

scale of the y-axis of Figure 56. The power consumed by the 8 stage square root is 17.23× and

more compared to the power consumed by the 28 stage square root. The amount of the

 82

combinational logic is roughly the same across all square root units. The only difference is the

amount of logic embedded in single stage of the square root.

Dynamic Power

1

10

100

1000

10000

100000

8 14 28 55

Stages

Po
w

er
 (m

 W
)

Figure 56: Dynamic power of the square root units.

In case of the eight stage square root, there are eight iterations embedded within a single

stage. These eight iterations present a logic network that contains various paths of varied lengths.

In particular, long paths are notorious for displaying glitching behavior. In fact, glitching

activity increases with signal length [21]. As the pipeline depth increases, more registers are

added at various points of the design. This reduces the amount of interconnect between registers

thereby reducing the glitching plaguing these signals. This results in the reduction of dynamic

power consumed by the square root as the pipeline depth increases. However, Figure 56 shows

that this reduction in dynamic power tends to slow down as the square root is pipelined further. It

is observed that there is a huge power benefit when the 8 stage design is pipelined to 14 stage

and 28 stage square root. However, this power benefit cannot be seen much as the design is

pipelined further to 55 stages. This can be explained by the fact that in shallow pipelined designs,

glitching can make up to 80% of the total power consumed by the square root. As the pipeline

 83

depth of the design is slightly increased, glitching activity can fall to levels below 40% of total

power displayed by the square root [22]. This sudden fall in glitching activity explains the

decreasing returns observed in deeper pipelines. In essence, while pipelining can improve

throughput in a non-linear fashion, its impact on reducing power is limited to shallow pipelines.

4.5 Conclusion

This chapter presents the design of an IEEE-compliant double precision floating point

sequential and parallel square root unit. This design is based on a low-radix iterative square root

algorithm known as the binary version of the pencil-and-paper method. The pipelining of the

square root was based on partial and full unrolling of the loops in the iterative mantissa square

root block. The implementation of this square root unit did not take advantages of any advanced

architectural features available in high end FPGA chips or use any pre-designed architecture-

specific arithmetic cores. The experiments reveal that this square root can produce maximum

throughput when the iteration of the computational loops are totally unrolled without incurring a

significant area penalty. While the sequential square root unit occupies less than 1% of an

XC2V6000 FPGA chip, its pipelined counterparts can produce throughputs over 100 MFLOPS

by consuming 7× more area as its sequential counterpart.

 84

CHAPTER FIVE: CONCLUSION

This thesis presents the sequential and pipelined designs of division and square root

operations on FPGAs. These designs are based on radix-2 digit recurrence algorithms. While

the division design is based on a sequential non-performing algorithm, the square root unit is

based on an iterative non-restoring algorithm. These designs are all IEEE 754-compliant double

precision floating point implementations. These implementations are built in a way to allow

them to use only the most common reconfigurable resources available in most FPGAs. As a

result, they should be highly portable to most popular FPGA devices.

The pipelining of these designs reveal that the area overhead tends to remain constant

regardless of the degree of pipelining to which the design is submitted. In fact, the unrolling of

the iterations of the digit recurrence algorithm consumes the same amount of logic resources

regardless of how many iterations are packed per pipeline stage. The only minor change in area

overhead is due to the usage of flip-flops to insert registers between the pipeline stages. These

flip-flops are recalled from the already used slices to implement the combinational logic of the

stages.

With regard to throughput, it seems to increase as the pipeline depth increases. By

decreasing the delay of each stage, it is possible to increase the overall pipeline throughput. This

can be realized by reducing the number of iterations embedded in a single pipeline stage. This

trend reaches its maximum when a pipeline stage consists of one iteration of the digit recurring

algorithm. This trend can be pushed further by introducing sub-pipelining in each stage. It

remains to be seen how much throughput can be achieved using the sub-pipelining approach.

 85

Since these computations are intended for space application where power budgets are a

primary concern, this thesis examines pipelining as a means to reduce dynamic switching power.

Pipelining reveals that it reduces power considerably in shallow pipelines. Pipelining further

these designs does not necessarily lead to significant power reduction. In fact, the pay-off curve

in terms or dynamic power reduction seems to go down as more stages are added to the pipeline.

This has been attributed to the fact that pipelining reduces the amount of glitching activity on the

logic paths by the insertion of pipeline registers. The latter acts as a reducing factor on the

length of these glitching-prone logic paths. Glitching activity is by no means the only

component that contributes to the overall dynamic power budget. Other components such as the

switching of the clock lines and the order of input arrival to switching logic LUTs can increase

the amount of switching within the power budget. To reduce power further, it would be

worthwhile using other techniques such as clock gating, guarded evaluation, bus multiplexing, or

pre-computing [23].

In summary, the pipelined implementations of double precision floating point division

and square root operations, based on elementary digit recurrence algorithms, are able to reach the

100 MFLOPS mark by consuming only a minor 1% of the fine-grain resources of an XC2V6000

FPGA. Note that this chip does not even belong to the high-end full-blown reconfigurable

system-on-chips such as the Virtex-II Pro FPGA series. Although they tend to consume more

power, these chips have a much faster clock than the XC2VX000 chips. Table 12 summarizes

the implemented designs.

While this thesis undertakes to examine the effect of pipelining radix-2 digit recurrence

algorithms of division and square root operations on area, throughput, and dynamic power in

 86

FPGA implementations, it nevertheless raises new questions which would be interesting to

pursue as directions for future research:

Table 12: Summary of the implemented designs.

 Sequential
Divider

Sequential
Square Root Unit

Pipelined
Divider

Pipelined Square
Root Unit

Algorithm Non-Performing Non-Restoring Non-Performing Non-Restoring
Radix 2 2 2 2

Precision (bits) 64 64 64 64
Pipelining

(stages)
1 1 60 59

Device XC2V6000 XC2V6000 XC2V6000 XC2V6000
Clock Period (ns) 9.93 9.03 9.75 7.52
Clock Frequency

(MHz)
100.70 110.70 102.50 132.98

Clock Cycles 60 59 1 1
Latency (ns) 595.8 532.77 9.75 7.52
Throughput
(MFLOPS)

1.60 1.79 97.81 126.82

Area (Slices) 284 405 2920 2700
Throughput/Area
(KFLOPS/Slice)

5.63 4.41 33.49 46.97

How does wide bit representation affects the area, throughput, and power performance of

these designs? It is meant by wide bit representation arbitrarily large bit fields to support

extremely large and small numbers with high accuracy. These numbers are commonly used in

many scientific applications such weather modeling and astronomical simulations. Based on the

findings of this thesis, one can speculate that wider bit representations will not affect the latency

per pipeline stage. However, it will increase the number of iterations needed to produce a single

output granted that digit recurring algorithms are used. If that is the case, the maximum

throughput can be achieved only if the iterations are fully unrolled to the point where a single

iteration is embedded per pipeline stage. With regard to area and power, it seems that the results

 87

obtained for double precision representations may remain valid for arbitrarily wide bit

representations. These speculations need to be confirmed with actual experimentation.

If high radix algorithms are used instead, how would they affect the performance of

division and square root operations? High radix digit recurrence algorithms have the advantage

of retiring several digits per iteration. This has the effect of reducing the number of iterations to

compute the quotient or square root. From a pipelining perspective, this has the effect or

reducing the maximum pipeline depth. However, this advantage comes at the cost of a

noticeable increase in the area required to support computing multi-digits per iteration. By

increasing the area of a single iteration, the area of a single pipeline stage will subsequently

increase, which may lead to an increase in its latency. If that is the case, it is not clear how

reducing the number of pipeline stages and increasing the latency of each stage will affect the

overall area, throughput, and power consumption of a pipeline based on these high radix

algorithms.

Can advanced architectural features available in current FPGAs be used to support

floating point arithmetic operations? Many high-end FPGAs contain embedded multipliers and

blocks of memory. Several studies show that these embedded structures tend to consume less

power than the fine-grain reconfigurable fabric of these FPGAs [24]. It is tempting to take

advantage of these structures by using arithmetic algorithms that can be easily mapped on these

structures. For instance, many division and square root algorithms are based on table lookup

operations. These operations can be easily mapped on BlockRAMs available in Virtex FPGAs.

It would be interesting to see whether it is possible to reach throughputs in the GHz range by

mapping these algorithms on these embedded structures.

 88

How do the implementations of elementary functions fair on FPGAs? While square root

operations are less common than division, elementary functions such as the logarithm,

exponential, and the powering operations are even more infrequent than square root operations.

However, they began recently to occur more frequently thanks to newer applications in DSP

[25], 3D graphics [26], scientific computing, artificial neural networks, and multimedia

applications [27]. Although these operations have always been implemented as software

routines, these routines provide accurate results, but are often too slow to meet the needs of

numerical-intensive applications [28, 29]. In addition, these operations have been rarely

implemented in hardware due to the prohibitive costs of their table lookup requirements. Lately,

improved algorithms which reduce significantly the hardware costs of these operations have been

proposed [30]. These algorithms can serve as the basis for high-performance FPGA

implementations targeting numerical applications. Preliminary scrutiny suggests that these

implementations cannot be realized unless the advanced architectural features available within

high-end FPGAs are heavily exploited.

Addressing these issues can expand the levels of performance needed to support

numerically intense applications in general, and space DSP applications in particular.

 89

LIST OF REFERENCES

1. S. M. Parkes, “DSP (Demanding Space-based Processing!): The Path Behind and the

Road Ahead,” Proc. International Workshop on Digital Signal Processing Techniques for

Space Applications, pp. 1-11, Sep. 23-25 1998.

2. F. H. Bauer, K. Hartman, J. P. How, J. Bristow, D. Weidow, F. Busse, "Enabling

Spacecraft Formation Flying through Spaceborn GPS and Enhanced Automation

Technology," Institute of Navigation GPS Conference, Sep. 1999.

3. IEEE Standard Board, "IEEE Standard for Binary Floating-point Arithmetic," The

Institute for Electrical and Electronics Engineers, 1985.

4. J. Eiler, A. Ehliar, D. Liu, "Using Low Precision Floating Point Numbers to Reduce

Memory Cost for MP3 Decoding," Proc. IEEE International Workshop on Multimedia

Signal Processing, Siena, Italy, Sep. 2004.

5. J. Fridman, Z. Greenfield, "The TigerSHARC DSP Architecture," Proc. IEEE Micro, pp.

66-76, Jan.-Feb. 2000.

6. K. Keutzer, "Challenges in CAD for the One Million Gate FPGAs", Proc. 5th ACM

International Symposium on Field-Programmable Gate Arrays, Monterey, CA, pp.133-

134, Feb. 1997.

7. Xilinx, Inc, "Virtex - II Platform FPGAs: Complete Data Sheet," 2005.

8. B. L. Hutchings, B. E. Nelson, "GigaOp DSP on FPGA," VLSI Signal Processing

Systems, Hingham ,MA, vol. 36, pp. 41-55, 2004.

 90

9. K. Underwood, "FPGAs vs. CPUs: Trends in Peak Floating-Point Performance,"

International Conference on Field-Programmable Gate Arrays, Monterey, CA, pp. 171-

181, Feb. 2004.

10. G. Govindu, R. Scrofano, V. K. Prasanna, "A Library of Parameterizable Floating-Point

Cores for FPGAs and Their Application to Scientific Computing,".International

Conference on Engineering of Reconfigurable Systems and Algorithms (ERSA), 2005.

11. S. Paschalakis, Moment Methods and Hardware Architectures for High Speed Binary,

Greyscale and Colour Pattern Recognition, Ph D Dissertation, Dept. of Electronics,

University of Kent at Canterbury, Aug. 2001.

12. Xilinx, Inc., "Two Flows for Partial Reconfiguration: Module Based or Difference

Based," Application Note, Nov. 2003.

13. S. F. Oberman, M. J. Flynn, "Division Algorithms and Implementations," IEEE

Transactions on Computers, vol. 26, no.8, pp. 833-854, Aug. 1997.

14. B. Lee, N. Burgess, "Parameterisable Floating-Point Operations on FPGA," Asilomar

Conference on Signals, Systems, and Computers, vol. 2, pp. 1064-1068, 2002.

15. X. Wang, B. E. Nelson, "Tradeoffs of Designing Floating-Point Division and Square

Root on Virtex FPGAs," IEEE Symposium on Field-Programmable Custom Computing

Machines (FCCM), pp. 195-203, 2003.

16. I. Ortiz, M. Jimenez, "Scalable Pipeline Insertion in Floating-Point Division and Square

Root Units," Proc. IEEE Midwest Symposium on Circuits and Systems, vol. II, pp. 225-

228, 2004.

17. S. Paschalakis, "Double Precision Floating-Point Arithmetic on FPGAs," IEEE

Conference on Field-Programmable Technology (FPT), pp. 352-358, 2003.

 91

18. B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs, Oxford, 2000.

19. Y. Li, W. Chu, "Implementation of Single Precision Floating Point Square Root on

FPGAs," IEEE Symposium on Field Programmable Custom Computing Machines

(FCCM), pp. 226-232, 1997.

20. Y. Li, W.Chu, "A New Non-Restoring Square Root Algorithm and its VLSI

Implementations," Proc. International Conference on Computer Design, Oct. 1996.

21. G. K. Yeap, Practical Low Power Digital VLSI Design, Kluwer Academic Publishers,

Second Edition, 2001.

22. N. Rollins, M. Wirthlin, "Reducing Energy in FPGA Multipliers through Glitch

Reduction," Bringham Young University, Dept. of Electrical and Computer Engineering,

2005.

23. Actel Inc., "Design for Low Power in Actel Antifuse FPGAs," Application Note, Sep.

2000.

24. S. Choi, R. Scrofano, V. K. Prasanna, J. W. Jang, "Energy-Efficient Signal Processing

using FPGAs," ACM International Symposium on FPGAs, Feb. 2003, pp. 225-234.

25. D. M. Lewis,"114 MFLOPS Logarithmic Number System Arithmetic Unit for DSP

Applications" IEEE Journal of Solid-State Circuits, vol. 30, no. 12, pp. 1547-1553.

26. D. Harris, "A Powering Unit for an OpenGL Lighting Engine," Proc. 35th Asilomar

Conference on Signals, Systems, and Computers, pp. 1641-1645, 2001.

27. J.-A. Piňero, J. D. Bruguera, J.M. Muller, "Faithful Powering Computation Using Table

Look-Up and Fusion Accumulation Tree," Proc. IEEE 15th International Symposium on

Computer Architecture, pp. 40-47, 2001.

28. W. Cody, W. Waite, Software Manual for Elementary Functions, Prentice-Hall, 1980.

 92

29. S. Gal, B. Bachelis, "An Accurate Elementary Mathematical Library for the IEEE

Floating Point Standard," ACM Transactions on Mathematical Software, vol. 17, no. 1,

pp. 26-45, Mar. 1991.

30. J.-A. Piňero, M. D. Ercegovac, J. D. Bruguera, "Algorithm and Architecture for

Logarithm, Exponential, and Powering Computation," IEEE Transactions on Computers,

vol. 53, no. 9, pp. 1085-1096, Sep. 2004.

	Pipelining Of Double Precision Floating Point Division And Square Root Operations On Field-programmable Gate Arrays
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	 LIST OF TABLES
	 LIST OF ACRONYMS/ABBREVIATIONS
	CHAPTER ONE: INTRODUCTION
	1.1 DSP Space Applications
	1.1.1 Vision-Based Systems
	1.1.2 Space SAR

	1.2 DSP Processors vs. FPGA Devices
	1.3 IEEE 754 Floating Point Representations
	1.4 FPGA Technology
	1.4.1 Logic Resources
	1.4.2 Routing Resources
	1.4.3 IO Resources
	1.4.4 Device Reconfiguration

	1.5 Thesis Contribution
	1.6 Thesis Outline
	 CHAPTER TWO: RELATED WORK
	2.1 Floating Point Division
	2.2 Floating Point Square Root Operation
	2.3 Summary

	 CHAPTER THREE: DOUBLE PRECISION FLOATING POINT DIVISION
	3.1 Architecture of the Divider
	3.1.1 Unpacking
	3.1.2 Sign Logic
	3.1.3 Exponent Subtraction
	3.1.4 Bias Addition
	3.1.5 Mantissa Division
	3.1.6 Normalization
	3.1.7 Rounding Control
	3.1.8 Rounding
	3.1.9 Exponent Adjustment
	3.1.10 Packing

	3.2 Pipelining of the Divider
	3.3 Verification of the Divider
	3.3.1 Modeling of the Sequential and Pipelined Dividers
	3.3.2 Simulation of the Divider
	3.3.3 Simulation of the Sequential Divider
	3.3.4 Simulation of the 55-stage Pipelined Divider
	3.3.5 Simulation of the 28-stage Pipelined Divider
	3.3.6 Simulation of the 14-stage Pipelined Divider
	3.3.7 Simulation of the Seven-stage Pipelined Divider

	3.4 Evaluation of the Divider
	3.4.1 Divider Design Comparison
	3.4.2 Throughput Evaluation
	3.4.3 Area Evaluation
	3.4.4 Dynamic Power Evaluation

	3.5 Conclusion

	 CHAPTER FOUR: DOUBLE PRECISION FLOATING POINT SQUARE ROOT UNIT
	4.1 Architecture of the Square Root Unit
	4.1.1 Unpacking
	4.1.2 Exponent Calculation
	4.1.3 Mantissa Square Root
	4.1.4 Rounding Control
	4.1.5 Rounding
	4.1.6 Exponent Adjustment
	4.1.7 Packing

	4.2 Pipelining of the Square Root Unit
	4.3 Verification of the Square Root Unit
	4.3.1 Modeling of the Sequential and Pipelined Square Root Units
	4.3.2 Simulation of the Square Root Units
	4.3.3 Simulation of the Sequential Square Root Unit
	4.3.4 Simulation of the 55-stage Pipelined Square Root Unit
	4.3.5 Simulation of the 28-stage Pipelined Square Root Unit
	4.3.6 Simulation of 14-stage Pipelined Square Root Unit
	4.3.7 Simulation of the Seven-stage Pipelined Square Root Unit

	4.4 Evaluation of the Square Root Unit
	4.4.1 Square Root Design Comparison
	4.4.2 Throughput Evaluation
	4.4.3 Area Evaluation
	4.4.4 Dynamic Power Evaluation

	4.5 Conclusion

	 CHAPTER FIVE: CONCLUSION
	 LIST OF REFERENCES

