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ABSTRACT 

This work provides a fundamental view of the mechanisms which affect the power efficiency of 

communications processes along with a method for efficiency enhancement. Shannon’s work is 

the definitive source for analyzing information capacity of a communications system but his 

formulation does not predict an efficiency relationship suitable for calculating the power 

consumption of a system, particularly for practical signals which may only approach the capacity 

limit.  This work leverages Shannon’s while providing additional insight through physical 

models which enable the calculation and improvement of efficiency for the encoding of signals.  

The proliferation of Mobile Communications platforms is challenging capacity of networks 

largely because of the ever increasing data rate at each node. This places significant power 

management demands on personal computing devices as well as cellular and WLAN 

terminals.The increased data throughput translates to shorter meantime between battery charging 

cycles and increased thermal footprint. Solutions are developed herein to counter this trend.  

Hardware was constructed to measure the efficiency of a prototypical Gaussian signal prior to 

efficiency enhancement. After an optimization was performed, the efficiency of the encoding 

apparatus increased from 3.125% to greater than 86% for a manageable investment of resources. 

Likewise several telecommunications standards based waveforms were also tested on the same 

hardware. The results reveal that the developed physical theories extrapolate in a very accurate 

manner to an electronics application, predicting the efficiency of single ended and differential 

encoding circuits before and after optimization.  
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  INTRODUCTION 1.

Shannon created the standard by which communications systems are measured. His information 

capacity theorems are universally recognized and routinely applied by communications systems 

engineers. Shannon’s theorems provide a means for calculating information transfer per unit time 

for given signal and noise power, yet there is no explicit connection of these concepts to power 

consumption. This work provides that connection. Power efficiency is an increasingly important 

topic due to the proliferation of mobile communications and mobile computing. Battery life and 

heat dissipation vs. the bandwidth and quality of service are driving market concerns for mobile 

communications. The ultimate goal is to render companion equations which provide joint 

solutions for calculating and maximizing efficiency while maintaining capacity , based on 

physical principles complementary to information theory. A method of improving efficiency for 

physically encoding  any signal is also introduced and analyzed in detail. 

The preferred power efficiency metric is the thermodynamic efficiency 휂 defined as the effective 

power output of a system for a given invested input power. 𝑃𝑒 is the effective power delivered by 

the system and 𝑃𝑤 is the waste power so that efficiency is given by; 

휂 =
𝑃𝑒

𝑃𝑒 + 𝑃𝑤
 

In a communications system the effective output power is defined as the power delivered to the 

communications load or sink and exclusively associated with the information bearing content of 

a signal. The waste energy is associated with non-information bearing degrees of freedom within 
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the communications system which siphon some portion of the available input power. Though 𝑃𝑤 

may take many intermediate forms of expression it is ultimately dissipated as heat in the 

environment. 

The principles presented herein are general in nature and can be applied to any communications 

process whether it be mechanical, electrical or optical by nature. The classical laws of motion, 

first two laws of thermodynamics and Shannon’s uncertainty function provide a common means 

of analysis and foundation for development of important models.  

Shannon’s approach is based on a mathematical model rather than physical insight. A particle 

based model is introduced to emphasize physical principles. At a high level of abstraction the 

model retains the classical form used by Shannon, consisting of transmitter (Tx), physical 

transport media and receiver (Rx). Collectively, these elements and supporting functions 

comprise the extended channel. The extended channel model along with the band width limited 

additive white Gaussian Noise (AWGN) is illustrated in figure 1-1.  

 

Figure 1-1 Extended Channel 
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Since this dissertation focuses on thermodynamic efficiency it is necessary to introduce some 

principles at a fundamental level which reveal the nature of the communications process and are 

complementary to Shannon’s approach. Momentum is a common metric for analyzing the 

motion of material bodies and particles. It will be shown that the transfer of information using 

particle based models is accomplished through the exchange of momentum, imprinting the 

information expressed in the motion of one particle on another. Although not commonly used by 

electrical engineers, a change in momentum for a charge coupled to a dynamic electromagnetic 

field is a cornerstone principle of electrodynamics as formulated by Lorentz.  The Lorentz force 

expressed as a rate of change in momentum is reviewed in chapter 5.5.  

Momentum transfer principles are presented which can be used to analyze the efficiency of any 

communications subsystem or extended channel.  The principles can be applied to any interface 

where information is transferred.  

The Shannon-Hartley capacity equation 1-1 provides a fulcrum for the evolving discussion [1, 2, 

3]. The capacity, 𝐶, of an extended  communications channel which propagates a signal with 

average power,  �̅�, in watts, and bandwidth 𝐵, in Hz, in the presence of band limited AWGN 

with average power �̅�, is given by; 

𝐶 = 𝐵 𝑙𝑜𝑔2  (
�̅� + �̅�

�̅�
)      bits/second 

( 1-1 ) 

B=2𝑓𝑠 Hz where 𝑓𝑠 is a Shannon-Nyquist sampling frequency required for signal construction [2, 

4, 5, 6].  
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In chapter 3, 𝑓𝑠 is derived as the frequency of the forces required to impart momentum to a 

particle to encode it with information. It is shown that the bandwidth B in a physical system is a 

direct consequence of the maximum available power 𝑃𝑚, to facilitate particle motion. 𝑃𝑚 plays 

the analogous role in an electronics apparatus when specifying the maximum limit of a power 

supply with average power 𝑃𝑠. 

In chapter 5, the efficiency 휂 is studied in detail to establish the power resource required to 

generate the average signal power �̅�. From the basic definition of efficiency we can state; 

휂 =
�̅�

𝑃𝑠
 

It is shown in chapters 3 and 5 that the average power supplied to a communications apparatus is 

𝑓𝑠〈ℰ𝑖𝑛〉𝑠 where 〈ℰ𝑖𝑛〉𝑠 is the average energy per sample of a communications process over time. 

Some of this energy, ℰ𝑒, is effectively used to generate and transfer a signal and some is waste, 

ℰ𝑤. 

It is clear that for an efficiency of 100 percent that a given non zero and finite capacity in bits per 

second is attained with the lowest investment of power, 𝑓𝑠〈ℰ𝑖𝑛〉𝑠. Ordinarily, 휂 would be fixed 

for a given C. However, methods are introduced in chapters 5,6 and 7 to permit improvement of 

휂 subject to an optimization procedure. 

It is further shown in chapter 5 that the efficiency of an information encoding process can be 

captured by the following simple equation; 

〈휂〉 =
1

𝑘𝑚𝑜𝑑𝑃𝐴𝑃𝑅 + 𝑘𝜎
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𝑘𝑚𝑜𝑑 and 𝑘𝜎 are constants of implementation for the encoding apparatus and 𝑃𝐴𝑃𝑅 is defined as 

the peak to average power ratio of the encoded signal. The 𝑃𝐴𝑃𝑅 is defined for a non-dissipative 

system as; 

𝑃𝐴𝑃𝑅 =
𝑃𝑚

〈𝑃𝑒〉
 

The encoding theory also applies for decoding of information in a particle based model since 

imparted momentum is relative. 

The conservation of energy is a necessary but not sufficient principle to account for the 

efficiencies of interest.  Communications processes should conserve information with maximum 

efficiency as a design goal.   The fundamental principles which determine conserved momentum 

exchanges between particles or virtual particles are necessary and sufficient to satisfy the 

required information theory constraints and derive efficiency optimization relationships. In this 

manner the macroscopic observable, 휂 which is regarded as a thermodynamic quantity, may be 

related to microscopic momentum exchanges. This is the preferred approach for joining the 

calculation of capacity vs. efficiency in terms of a physical model.  

 Comments Concerning Capacity and Efficiency 1.1.

Shannon proved that the capacity of a system is achieved when the signal possesses a Gaussian 

statistic. However, this poses a dilemma because such signals are not finite. In the context of a 

physical model, the power resource 𝑃𝑚 would grow  infinitely large and the efficiency of 
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encoding a signal would correspondingly become zero. In addition, the duration of a signal 

would be infinite as shown in chapter 2. These extremes are avoided by utilizing a prototypical 

Gaussian signal truncated to a 12 dB PAPR which preserves nearly all of the information 

encoded in the Gaussian signal.  

A capacity equation is derived in chapter 4 using the physical model developed in chapter 3. This 

capacity equation is called the physical capacity equation and resembles the Shannon-Hartley 

equation with variations substantiated by physical principles. A notable differentiation is that for 

a given energy investment the capacity is twice that of the classical capacity equation per 

encoding dimension because information may be independently encoded in both position and 

momentum of a particle. Another difference is a modification to avoid an infinite capacity for the 

condition of zero degrees Kelvin. The quantities 𝑓𝑠, 𝑃𝑚,  and PAPR play a prominent role in the 

equation along with the random variables, momentum and position. 

In chapter 5, the efficiency of the capacity based on the prototypical Gaussian signal with a 12 

dB PAPR is obtained. This Gaussian signal possesses an entropy defined by Shannon (ref 

chapter 2) and Appendix J which is given by ~ln (√2𝜋𝑒𝜎) where 𝜎 is the standard deviation of 

the Gaussian signal. 𝜎 is approximately 1 for the prototypical Gaussian reference signal. The 

thermodynamic efficiency for encoding this signal is strongly inversely related to the PAPR yet 

may be improved by using techniques introduced in chapters 6 and 7. It is also shown that PAPR 

is a nonlinear monotonically increasing parameter of a signal as capacity increases up to the 

classical Gaussian limit. Thus ,efficiency is strongly inversely proportional to capacity.  

Efficiency enhancement exploits this relationship. The procedures for efficiency enhancement 
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are accompanied with an optimization procedure which is a numerical calculus of variations 

approach in chapter 7. 

Even though capacity is classically defined using the Gaussian signal, it is well known that 

designing an extended channel with a calculated theoretical capacity also sets an upper bound for 

the information throughput for other signal types which are not Gaussian. In high SNR it is easy 

to estimate the performance bounds of other signals possessing non-Gaussian densities in a 

comparative manner by defining a normalized entropy ratio 𝐻𝑟 which compares the Shannon 

entropy of a signal of interest to the quantity ln (√2𝜋𝑒𝜎) in such a manner that the ratio 𝐻𝑟 ≤ 1.  

It is argued in chapter 5 that as 𝐻𝑟 becomes smaller the information transfer of a channel 

becomes smaller but the efficiency can correspondingly increase. This is because the PAPR for 

such signals correspondingly decreases. 

It is of practical concern to design efficient systems which ever press Shannon’s theoretical limit 

but do not achieve 𝐻𝑟 = 1. The methods for efficiency enhancement for the Gaussian prototype 

signal are shown to also apply to all signals. Thus, even if a signal is inherently more efficient 

than the Gaussian prototype, the efficiency may still be significantly improved. This 

improvement can be several fold for complexly encoded signals. This is of particular interest to 

those engaged in designs which use standards based signals deployed by the telecommunications 

industry as well as wireless local area networks (WLAN). 

There is a diminishing rate of return for the investment of resources to improve efficiency. This 

is evident in the theoretical calculations of chapter 5 and verified with laboratory hardware in 

chapter 7. Hardware was constructed to measure the efficiency of the prototypical Gaussian 
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signal prior to efficiency enhancement and after an optimization was performed. Likewise 

several standards based waveforms were also tested on the same hardware. The results reveal 

that the particle based theories extrapolate in a very accurate manner to an electronics 

application. The theory is not restricted to Gaussian waveforms but enables prediction of the 

efficiency for any signal before and after optimization.  

 Additional Background Comments  1.2.

Communications is the transfer of information through space and time. 

 It follows, that information transfer is based on physical processes. This approach is consistent 

with the views of Landauer [7, 8] as well as Karnani, Mahesh, Kimmo Paakkonen, and Arto 

Annila [9].  This may introduce some ambiguity at a philosophical level concerning Shannon’s 

definition of information.  However, the view introduced here is complementary and does not 

diminish the utility of classical ideas since we shall focus on the nature of information transfer 

rather than argue the definition of information.  The advantage provided, permits the injection of 

ideas which suggest origins of information transfer derived from laws of nature and therefore are 

principle rather than constructive theories. 

The essential assumptions are; that a transmitter and receiver cannot be collocated in the 

coordinates of space-time, and that information is transferred between unique coordinates in 

space-time. Instantaneous action at a distance is not permitted. Also, the discussion is restricted 

to classical speeds where it is assumed 𝑣 𝑐⁄ ≪ 1. 
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The measure for information is usually defined by Shannon’s uncertainty metric 𝐻(𝜌(𝑥)), 

discussed in detail in the next chapter.  Shannon’s uncertainty function permits maximum 

deviation of a constituent random variable 𝑥, given its describing probability density  𝜌(𝑥), on a 

per sample basis without physical restriction or impact.  It is a focus of this work to introduce 

these restrictions through the joint entropy 𝐻(𝜌(𝑞, 𝜌)) where q is position and 𝜌 is momentum.  

It should be noted that a practical form of the Shannon – Hartley capacity equation requires the 

insertion of the bandwidth 𝐵.  This insertion was originally justified by a brilliant argument 

borrowed from the theory of function interpolation developed by E. T. Whittaker and others [6, 

10]. The insertion of 𝐵 limits the rate of change of the random signal 𝑥(𝑡) through a Fourier 

transform. Since 𝑥(𝑡) has a limited rate of change, the physical states of encoding must evolve to 

realize full uncertainty over a specified phase space. It will be shown that the more rapid the 

evolution, the greater the investment of energy per unit time for a moving particle to access the 

full uncertainty of a phase space based on physical coordinates, q, 𝜌. 

A signal shall be defined as an information bearing, function of space-time.  

It is assumed that continuous signals may be represented by discrete samples vs. time through 

sampling theorems [3, 11, 12]. The discrete samples shall be associated as the position and 

momentum coordinates of particles comprising the signals.   
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 REVIEW OF CLASSICAL 2.

CAPACITY EQUATION  

Shannon proved the following capacity limit (Shannon–Hartley Equation) for information 

transfer through a bandwidth limited continuous AWGN channel based on mathematical 

reasoning and geometric arguments [3]. 

𝐶 = 𝐵 log2 (
𝑃 + 𝑁

𝑁
) 

( 2-1 ) 

𝐶 ∆ Channel capacity in bits/second. 

𝐵 ∆ Bandwidth of the entire channel in Hz. 

𝑃 ∆ Average power for the signal of interest in Joules/second (𝐽 𝑠⁄ ). 

𝑁 ∆ Average power for additive white Gaussian noise (AWGN) of the channel in 

 Joules/second (𝐽 𝑠⁄ ). 

The definition for capacity is based on; 

𝐶 =
lim

𝑇 → ∞

log2 𝑀

𝑇
 

( 2-2 ) 

𝑀 is the number of unique signal functions or messages per time interval 𝑇 which may be 

distinguished within a hyper geometric message space constraining the signal plus additive white 
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Gaussian noise (AWGN).  The noise does not remain white due to the influence of 𝐵 yet does 

retain its Gaussian statistic.  Shannon reasoned that each point in the hyperspace represents a 

single message signal of duration 𝑇 and that there is no restriction on the number of such 

distinguishable points except for the influence of uncorrelated noise sharing the hyperspace.  

Consider figure 2-1. 

 

Figure 2-1 Location of Message 𝑚𝑖 in Hyperspace 

Several points are illustrated in Shannon’s hypergeometric space, in this case a simple  

3-dimensional view. Shannon permits an infinite number of dimensions in his hyperspace. Time 

is collapsed at each point. The radial vector �⃑�  is a distance from the origin in this hyperspace and 

is related to the average power 𝑃𝑖 of the 𝑚𝑖
𝑡ℎ message.  Consider the following structure of time 

continuous sampled message signals with time on the horizontal.  Each sample ordinate is 

marked with a vertical line punctuated by a dot. 
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Figure 2-2 Sampled Message Signals 𝑚𝑖(𝑡) each of Duration 𝑇 in Seconds and Sampling Interval 

𝑇𝑠 = (𝑇 𝑁𝑆⁄ ) = (1 2𝐵⁄ ) where 𝑁𝑆 is the Number of Samples over  𝑇, 𝑇𝑠𝑁𝑠 = 𝑇 
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It is known that the continuous waveforms can be precisely reproduced by interpolation of the 

samples using the Cardinal Series originally introduced by Whittaker and adopted by Shannon 

[6].  The following series forms the basis for Shannon’s sampling theorem. 

𝑚𝑖(𝑡) = ∑ 𝑚𝑖,𝑛

∞

𝑛=−∞

sin 𝜋(2𝐵𝑡 − 𝑛)

𝜋(2𝐵𝑡 − 𝑛)
 

( 2-3 ) 

If the samples are enumerated according to the principles of Nyquist and Shannon, equation 2-3 

becomes; 

𝑚𝑖(𝑡) = ∑ 𝑚𝑖,𝑛

2𝑇𝑁𝑠

𝑛=1

sin 𝜋(2𝐵𝑡 − 𝑛)

𝜋(2𝐵𝑡 − 𝑛)
 

( 2-4 ) 

For regular sampling, the time between samples, 𝑇𝑠, is given by a constant 1 2𝐵⁄  in seconds.  

This scheme permits faithful reproduction of each 𝑚𝑖(𝑡) message signals with discrete 

coordinates whose weights are 𝑚𝑛 for the 𝑛𝑡ℎ sample. 

Thus, Shannon conceives a hyperspace whose coordinates are message signals, statistically 

independent, and mutually orthogonal over 𝑇.  He further proves that the magnitude of 

coordinate radial �⃑� 𝑖 is given by; 

|𝑅𝑖| = √2𝐵𝑇𝑃𝑖 

( 2-5 ) 
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𝑃𝑖 is the average of 2𝐵𝑇 sample energies per unit time obtained from the expected value of the 

squared message signals. 

𝑃𝑖 =
1

2𝐵𝑇
∑𝑚𝑖,𝑛

2

𝑛

≡ 𝐸{𝑚𝑖
2} 

( 2-6 ) 

Shannon focused on the conditions where 𝑇 → ∞.  This also implies 𝑁𝑠 → ∞.  If all messages 

permitted in the hyperspace are characterized by statistically independent and identically 

distributed (𝑖𝑖𝑑) random variables (𝑅𝑉) then the expected values of 2-6 are identical. The 

independently averaged message signal energies in his representation are compressed to a thin 

hyper shell at the nominal radius; 

 

𝑅 = √2𝐵𝑇𝑃 

( 2-7 ) 

Having established the geometric view without noise, it is a simple matter to introduce a noise 

process which possesses a Gaussian statistic.  Each of the 𝑚𝑖 messages is corrupted by the noise.  

The noise on each message is also 𝑖𝑖𝑑.  It is implied that each of the potential 𝑚𝑖 messages, or 

sub sequence of samples hereafter referred to as symbols, are known a priori and thus 

distinguishable through correlation methods at a receiver.  The symbols are known to be from a 

standard alphabet.  However, the particular transmitted symbol from the alphabet is unknown 

until detected at the receiver.  Hence, each coordinate in the hyper-space possesses an associated 
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function which must be cross-correlated with the incoming messages and the largest correlation 

is declared as the message which is most likely communicated.  Whenever averaged noise 

waveform, 𝑛(𝑡)̅̅ ̅̅ ̅̅ = 0 , then the normalized correlation coefficient magnitude, |𝜌| = 1 for the 

correct message and zero for all other cross–correlation events.  Whenever 𝑛(𝑡) ≠ 0 there are 

partial correlations for all potential messages.  Each sample illustrated in Figure 2-2 would 

become perturbed by the noise process.  Reconstruction of the sampled signals plus noise would 

still faithfully reproduce the original message along with a superposition of the noise samples 

according to the sampling theorem.  The affect that noise induces in the hyper geometric view 

can be understood by considering adjacent messages in the space when the message of interest is 

corrupted and the observation interval 𝑇 is finite. 

 

Figure 2-3 Effect of AWGN 𝑚2 with Average Power 𝑃2 Corrupted by AWGN of Power 𝑁 in a Hyperspace 

Adjacent to Message Coordinates 𝑚1 𝑎𝑛𝑑 𝑚3 

Figure 2-3 illustrates the effect of AWGN on the probable coordinate displacement when 

correlation is performed on 𝑚2 given that 𝑚2 was communicated.  The cloud of points 

surrounding the proper coordinate assigned to 𝑚2 illustrates the possible region for the un-
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normalized correlation result.  The density of the cloud is proportional to the probability of the 

correlation output associated with the perturbed coordinate system, with 𝑚2 as the most likely 

outcome since the multi–dimensional Gaussian noise possesses an unbiased statistic.  However, 

it is important to notice that it is possible to mistake the correlation result as corresponding to 

messages 𝑚1 or 𝑚3 on occasion for 𝑇 < ∞, because the resolved hyperspace coordinate, after 

processing, can be closer to a competing (noisy) result with some probability. 

Finally, Shannon argues the requirements for capacity 𝐶 which guarantees that the adjacent 

messages or any wrong message within the space will not be interpreted during the decoding 

process even for the case where the signals are corrupted by AWGN.  The remarkable but 

intuitively satisfying result is that even for the case of AWGN, the perturbations may be 

averaged out over an interval 𝑇 → ∞ because the expected value of the noise is zero, yet the 

magnitude of normalized correlation for the message of interest approaches 1.  Thus the 

correlation output is always correctly distinguishable.  This infinite interval of averaging would 

have the effect of removing the cloud of uncertainty around 𝑚2 in Figure 2-3. 

The additional geometrical reasoning to support his result comes from the idea that a hyper 

volume of radius 𝑅 which consists of points weighted by signal plus noise energy per unit time 

(𝑃𝑖 + 𝑁), must occupy a larger volume than the case when noise only is present.  The ratio of 

the two volumes must bound the number of possible messages 𝑀 given in equation 2-8. 
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𝑀 ≤

𝜋𝐵𝑇

Γ(𝐵𝑇 + 1)
(√2𝐵𝑇(𝑃 + 𝑁))

2𝐵𝑇

𝜋𝐵𝑇

Γ(𝐵𝑇 + 1)
(√2𝐵𝑇𝑁)

2𝐵𝑇 = (
𝑃 + 𝑁

𝑁
)

𝐵𝑇

 

( 2-8 ) 

Hence from 2-8 and 2-2 

𝐶 = lim
𝑇→∞

log2 𝑀

𝑇
≤ 𝐵 log2 (

𝑃 + 𝑁

𝑁
) 

( 2-9 ) 

 The Uncertainty Function 2.1.

Shannon’s uncertainty function is given in both discrete and continuous forms;  

𝐻(𝜌(𝑥)) = −∑𝜌(𝑥)ℓℓ𝑛 𝜌(𝑥)ℓ

ℓ

 

( 2-10 ) 

𝐻(𝜌(𝑥)) = −∫ 𝜌(𝑥)ℓ𝑛 𝜌(𝑥)𝑑𝑥
+∞

−∞

 

( 2-11 ) 

𝜌(𝑥)ℓ is the ℓ𝑡ℎ probability of discrete samples from a message function in the 2-10 and 𝜌(𝑥) is 

the probability of a continuous random variable assigned to a message function in 2-11. 2-11 

shall also be referred to as the differential entropy. The choice of metric depends on the type of 



18 

 

analysis and message signal. The cumulative metric considers the entire probability space with a 

normalized measure of 1. The units are given in nats for the natural logarithm kernel and bits 

whenever the logarithm is base 2.  This uncertainty relationship is the same formula as that for 

thermodynamic entropy from statistical physics though they are not generally equivalent [13, 14, 

16]. 

Jaynes and others have pointed out certain challenges concerning the continuous form which 

shall be avoided [14, 15].  An adjustment to Shannon’s continuous form was proposed by Jaynes 

and one of the approaches taken in this work.  It requires recognition of the limit for discrete 

probabilities as they become more densely allocated to a particular space [14]. Equations 2-10 

and 2-11 are not precisely what is needed moving forward but they provide an essential point of 

reference for a measure of information.  In Shannon’s case 𝑥 is a nondeterministic variable from 

some normalized probability space which encodes information.  For instance, the random values 

𝑚𝑖,𝑛 from the prior section could be represented by 𝑥.  The nature of 𝐻(𝜌(𝑥))shall be modified 

in subsequent discussion to accommodate rules for constraining 𝑥 according to physical 

principles.  In this context the definition for information is not altered from Shannon’s, merely 

the manner in which the probability space is dynamically derived and defined. Hereafter we will 

also refer to 𝐻(𝜌(𝑥))as 𝐻(𝑥)on occasion, where the context of the probability density 𝜌(𝑥) is 

assumed.  

Capacity is defined in terms of maximization of the channel data rate which in turn may be 

derived from the various uncertainties or Shannon entropies whenever they are assigned a rate in 
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bits or nats per second.  Each sample from the message functions, 𝑚𝑖, possess some uncertainty 

and therefore information entropy.  

Using Shannon’s notation, the following relationships illustrate how the capacity is obtained 

[15]. 

𝐻(𝑥) + 𝐻𝑥(𝑦) = 𝐻(𝑦) + 𝐻𝑦(𝑥) 

𝐻(𝑥) − 𝐻𝑦(𝑥) = 𝐻(𝑦) − 𝐻𝑥(𝑦) 

𝑅 ≜ 𝐻(𝑥) − 𝐻𝑦(𝑥)    𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒 

𝐶∆max{𝑅} 

( 2-12 ) 

𝐻(𝑥):  Uncertainty metric or information entropy of the source in bits  

𝐻𝑥(𝑦):  Uncertainty of the channel output given precise knowledge of the channel input. 

𝐻(𝑦):  Uncertainty metric for the channel output in bits  

𝐻𝑦(𝑥): Uncertainty of the input given knowledge of the output observable (this quantity 

is also called equivocation). 

𝑅:  Rate of the channel in bits/sec.  

It is apparent that rates less than 𝐶 are possible.  Shannon’s focus was to obtain 𝐶.   
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 Physical Considerations  2.2.

The prior sections presented the Shannon formulation based on mathematical and geometrical 

arguments.  However, there are some important observations if one acknowledges physical 

limitations.  These observations fall into the following general categories.  

a) An irreducible message error rate floor of zero is possible for the condition of maximum 

channel capacity only for the case of 𝑇 → ∞. 

b) There is no explicit energy cost for transitioning between samples within a message.  

c) There is no explicit energy cost for transitioning between messages.  

d) Capacities may approach infinity under certain conditions. This is counter to physical 

limitations since no source can supply infinite rates and no channel can sustain such rates.  

e) The messages 𝑚1, 𝑚2, ⋯𝑚𝑖, may be arbitrarily close to one another within the hyper 

geometric signal space.  

By collapsing the time variable associated with each message in Shannon’s Hyper-space b), c) 

become obscured. We shall expand the time variable. d) and e) may be addressed by 

acknowledging physical limits on the resolution of 𝑥(𝑡). We introduce this resolution.   
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 A PARTICLE THEORY  3.

OF COMMUNICATION  

In this chapter, a physical model for communications is introduced in which particle dynamics 

are modeled by encoding information in the position and momentum coordinates of a phase 

space.  The formulation leverages some traditional characteristics of classical phase space 

inherited from statistical mechanics but also requires the conservation of particle information.  

The subsequent discussions suppose that the transmitter, channel, receiver, and environment may 

be partitioned for analysis purposes and that each may be modeled as occupying some phase 

space which supports particle motion, as well as exchanged momentum and radiation.  The 

analysis provides a, characterization of trajectories of particles and their fluctuations through the 

phase space. Mean statistics are also necessary to discriminate the fluctuations and calculate 

average energy requirements. Fortunately, the characteristic intervals of communications 

processes are typically much shorter than thermal relaxation time constants for the system.  This 

enables the most robust differentiation of information with respect to the environment for a given 

energy resource. The fundamental nature of communications involves extraction of information 

through these differentiations.   

The primary goals of chapter 3 are to;  

a) Establish a model consisting of a phase space with boundary conditions and a particle 

which encodes information in discrete samples from a nearly continuous random process.  

b) Obtain equations of motion for a single particle within phase space for item a) 
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c) Discover the nature of forces required to move the particle and establish a physical 

sampling theorem along with the physical description of signal bandwidth. 

d) Derive the interpolation of sampled motion 

e) Describe the statistic of motion consistent with a maximum uncertainty communications 

process 

f) Discuss the circumstance for physically analytic behavior of the model  

The preliminaries of this chapter pave the way for obtaining channel capacity in chapter 4 and 

deriving efficiency relations of chapter 5. Particular emphasis is applied to items c) and e). 

 Transmitter 3.1.

The transmitter generates sequences of states through a phase space for which a particle 

possesses a coordinate per state as well as specific trajectory between states. Although more than 

one particle may be modeled we shall restrict analysis to a single particle since the model may be 

extended by assuming non-interacting particles. The information entropy of the source is 

assigned a mathematical definition originated by Shannon, a form similar to the entropy function 

of statistical mechanics [14, 16].  Shannon’s entropy is devoid of physical association and that is 

its strength as well as limitation. Subsequent models provide a remedy for this omission by 

assigning a time and energy cost to information encoded by particle motion. Chapter 8 provides a 

more explicit investigation of a time evolving uncertainty function.  
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3.1.1. Phase Space Coordinates, and Uncertainty 

The model for the transmitter consists of a hyper spherical phase space in which the information 

encoding process is related to an uncertainty function of the state of the system.  That is;  

𝐻 = −∬ 𝜌(�⃗�, �⃗�)
∞

−∞

𝑙𝑛 𝜌(�⃗�, �⃗�) 𝑑�⃗�𝑑�⃗� 

( 3-1 ) 

�⃗�, �⃗� are the vector position, in terms of generalized coordinates, and conjugate momenta of the 

particle respectively. In the case of a single particle system we can choose to consider these 

quantities as an ordinary position and momentum pairing for the majority of subsequent 

discussion. A specific pair, �⃗�(𝑡ℓ), �⃗�(𝑡ℓ) along with time derivatives �̇⃗�(𝑡ℓ), �̇⃗�(𝑡ℓ) also defines a 

state of the system at time 𝑡ℓ. 𝐻 represents uncertainty or lack of knowledge concerning position 

of a particle in configuration space and momentum space, or jointly, phase space. Equation 3-1 is 

the differential form of Shannon’s continuous entropy presented in Chapter 2.  If all conceivable 

state transitions are statistically independent then uncertainty is maximized for a given 

distribution, 𝜌(�⃗�, �⃗�).   

{�̇⃗�, �̇⃗�} appear often in the study of mechanics and shall be occasionally referred to as the 

coordinate derivatives with respect to time, or conjugate derivative field.  {�̇⃗�, �̇⃗�} are random 

variables.  

A transmitter must by practical specification be locally confined to a relatively small space 

within some reference frame even if that frame is in relative motion to the receiver.  The 
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dynamics of particles within a constrained volume therefore demands that the particles move in 

trajectories which can reverse course, or execute other randomized curvilinear maneuvers whilst 

navigating through states, such that the boundary of the transmitter phase space not be violated.  

This requires acceleration according to Newton’s second law of motion [17, 18, 19]. If a particle 

is aggressively accelerated, its inertia defies the change of its future course according to 

Newton’s first law [17, 18, 19]. A particle with significant momentum will require greater 

energy per unit time for path modification, compared to a relatively slow particle of the same 

mass which executes the same maneuver through configuration space. The probability of path 

modification per unit time is a function of the uncertainty 𝐻. The greater the uncertainty in 

instantaneous particle velocity and position, the greater the instantaneous energy requirement 

becomes to sustain its dynamic range.  

3.1.2. Transmitter Phase Space, Boundary Conditions and Metrics  

Another important model feature is that particle motion is restricted such that it may not 

energetically contact the transmitter phase space boundary in a manner changing its momentum.  

Such contact would alter the uncertainty of the particle in a manner which annihilates 

information.   

An example is that of the Maestro’s baton.  It moves to and fro rhythmically, with its material 

points distributing information according to its dynamics.  Yet, the motions cannot exist beyond 

the span of the Maestro’s arm or exceed the speeds accommodated by his or her physique and 
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the mass of the baton.  In fact, the motions are contrived with these restrictions inherently 

enforced by physical laws and resource limitations. A velocity of zero is required at the extreme 

position (phase space boundary) of the Maestro’s stroke and the maximum speed of the baton is 

limited by the rate of available energy per unit time. The essential features of this analogy apply 

to all communications processes.  

Suppose that it is desirable to calculate the maximum possible rate of information encoding 

within the transmitter where information is related to the uncertainty of position and momentum 

of a particle.  It is logical that both velocity and acceleration of the transitions between states 

should be considered in such a maximization. Speed of the transition is dependent on the rate at 

which the configuration 𝑞  and momentum 𝑝 random variables may change.  

The following bound for the motions of ordinary matter, where velocity is well below the speed 

of light, is deduced from physical principles; 

lim
𝑣=𝑣𝑚𝑎𝑥

(�̇⃗�, �̇⃗�) = (𝑣𝑚𝑎𝑥 ,
𝑚𝑎𝑥{ℰ̇𝑘}

𝑣𝑚𝑎𝑥
) = (𝑣𝑚𝑎𝑥 ,

𝑃𝑚𝑎𝑥

𝑣𝑚𝑎𝑥
) 

 ( 3-2 ) 

𝑣𝑚𝑎𝑥 and 𝑃𝑚𝑎𝑥 are the maximum particle velocity and the maximum applied power respectively.  

Equation 3-2 naturally provides a regime of most interest for engineering application, where 

forces and powers are finite for finite space-time transitions. Motions which are spawned by 

finite powers and forces shall be considered as physically analytic.   
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It is most general to consider a model analyzing the available phase space of a hyper geometric 

spherical region around a single particle and the energy requirements to support a limiting case 

for motion. Appendix A justifies the consideration of the hyper sphere.  

The following figure illustrates the geometry for a visually convenient three dimensional case, a 

relevant model subset of interest. A particle with position and momentum {�⃗�, �⃗�} is illustrated. 

The velocity �⃗� is also illustrated and the classical linear momentum is given by the particle mass 

times it’s velocity.  

 

Figure 3-1 3D Phase Space with Particle 
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The phase space volume accessible to a particle in motion is a function of the maximum 

acceleration available for the particle to traverse the volume in a specified time, ∆𝑡. Maximum 

acceleration is a function of the available energy resource.  

An accessible particle coordinate at some future ∆𝑡 must always be less than the physical span of 

the phase space configuration volume.  Considering the transmitter boundary for the moment, the 

greatest length along a straight Euclidian path that a particle may travel under any condition is 

simply 2𝑅𝑠 where 𝑅𝑠 is the sphere radius. 

At least one force, associated with  �⃗�,̇  is required to move the particle between these limits.  

However, two forces are necessary and sufficient to comply with the boundary conditions while 

stimulating motion.  It is expedient to assign an interval between observations of particle motion 

at 𝑡ℓ+1, 𝑡ℓ and constrain the energy expenditure over  ∆𝑡 = 𝑡ℓ+1 − 𝑡ℓ.  Both starting and stopping 

the motion of the particle contribute to the allocation of energy.  If a constraint is placed on ℰ̇𝑘 , 

the rate of kinetic energy expenditure to accelerate the particle, then the corresponding rate must 

be considered as the limit for decelerating the particle.  The proposition is that the maximum 

constant rate max{ℰ̇𝑘} = 𝑃𝑚𝑎𝑥 = 𝑃𝑚 bound acceleration and deceleration of the particle over 

equivalent portions ∆𝑡/2 of the interval ∆𝑡, and to be considered as a physical limiting resource 

for the apparatus. 𝑃𝑚 is regarded as a boundary condition.   

Given this limiting formulation, the maximum possible particle kinetic energy must occur for a 

position near the configuration space center.  The prior statements imply that  ∆𝑡/2 is the 

shortest time interval possible for an acceleration or deceleration cycle to traverse the sphere.  
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The total transition energy expenditure may be calculated from adding the contributions of the 

maximum acceleration and deceleration cycles symmetrically; 

2∫ 𝑚𝑎𝑥{ℰ̇𝑘𝑑𝑡} =
𝑡ℓ+∆𝑡 2⁄

𝑡ℓ

2∫ 𝑚𝑎𝑥{�̇⃗� ∙ �̇⃗�} 𝑑𝑡
𝑡ℓ+∆𝑡 2⁄

𝑡ℓ

= 𝑃𝑚𝑎𝑥∆𝑡 

( 3-3 ) 

Peak velocity vs. time is calculated from 𝑃𝑚𝑎𝑥. 

𝑣 𝑝 = √2
𝑃𝑚𝑎𝑥(𝑡 − 𝑡ℓ)

𝑚
  �̂�𝑅   ,           𝑓𝑜𝑟         𝑡ℓ < 𝑡 < ∆𝑡

2⁄  

( 3-4 ) 

𝑣 𝑝 = [√
2𝑃𝑚𝑎𝑥

𝑚
(√(𝑡ℓ + ∆𝑡) − 𝑡)]  �̂�𝑅  ,         𝑓𝑜𝑟        𝑡ℓ + ∆𝑡 2⁄ < 𝑡 <  𝑡ℓ + ∆𝑡 

( 3-5 ) 

�̂�𝑅 is the unit radial vector within the hypersphere.  

The range, 𝑅𝑠, traveled by the particle in ∆𝑡/2 seconds from the boundary edge is; 

𝑅𝑠 =
2

3
√

2𝑃𝑚𝑎𝑥

𝑚
(∆𝑡 2⁄ )

𝟑
𝟐 

( 3-6 ) 
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The following equation summary and graphics provide the result for the one dimensional case 

along the 𝑥𝛼 axis where the maximum power is applied to move the particle from boundary to 

boundary, along a maximum radial. 

𝑚𝑎𝑥{ℰ̇𝑘} = 𝑃𝑚  

( 3-7 ) 

ℰ𝑘 = 𝑃𝑚(𝑡 − 𝑡ℓ)      𝑡ℓ ≤ 𝑡 ≤ 𝑡ℓ +
∆𝑡

2
 

( 3-8 ) 

ℰ𝑘 = 𝑃𝑚((𝑡ℓ + ∆𝑡) − 𝑡)      𝑡ℓ + ∆𝑡 2⁄ ≤ 𝑡 ≤ (𝑡ℓ + ∆𝑡) 

( 3-9 ) 

Let 𝑡ℓ equal zero for the following equations and graphical illustration of a particular maximum 

velocity trajectory.  
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 ( 3-10 ) 

The characteristic radius and maximum velocity are solved using proper initial conditions 

applied to integrals of velocity and acceleration.  

𝑅𝑠 =
𝑣𝑚𝑎𝑥∆𝑡

3
   

( 3-11 ) 

  𝑣𝑚𝑎𝑥 = √
𝑃𝑚∆𝑡

𝑚
  

( 3-12 ) 

𝑣𝑚𝑎𝑥 Is the greatest velocity magnitude along the trajectory, occurring at 𝑡 =
∆𝑡

2
. More detail is 

provided for the derivation of equations 3-10, 3-11 and 3-12 in appendix B.  

𝑣 𝑝 = √
2𝑃𝑚𝑡

𝑚
�̂�𝛼 = (

3𝑃𝑚

𝑚
(𝑞 + 𝑅𝑠))

1

3
(�̂�𝛼)               −𝑅𝑠 ≤ 𝑞 ≤ 0;  0 ≤ 𝑡 ≤

∆𝑡

2
 

𝑣 𝑝 = √
2𝑃𝑚(∆𝑡−𝑡)

𝑚
�̂�𝛼 = (

3𝑃𝑚

𝑚
(𝑞 − 𝑅𝑠))

1

3
(�̂�𝛼)        0 ≤ 𝑞 ≤ 𝑅𝑠;   

∆𝑡

2
≤ 𝑡 ≤

∆𝑡 

 

Positive 

Trajectory 

𝑣 𝑝 = −√
2𝑃𝑚𝑡

𝑚
�̂�𝛼 = (

3𝑃𝑚

𝑚
(𝑞 − 𝑅𝑠))

1

3
(−�̂�𝛼)              0 ≤ 𝑞 ≤ 𝑅𝑠;  0 ≤ 𝑡 ≤

∆𝑡

2
 

𝑣 𝑝 = −√
2𝑃𝑚(∆𝑡−𝑡)

𝑚
�̂�𝛼 = (

3𝑃𝑚

𝑚
(𝑞 + 𝑅𝑠))

1

3
(−�̂�𝛼)     −𝑅𝑠 ≤ 𝑞 ≤ 0; 

∆𝑡

2
≤ 𝑡 ≤

 ∆𝑡

 

Negative 

Trajectory 
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Figure 3-2 Peak Particle Velocity vs. Time  

 

Figure 3-3 Peak Particle Velocity vs. Position 
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Figure 3-2 depicts peak velocity vs. time where the upper segment of the trajectory in the 

positive direction is a positive vector velocity.  The negative vector velocity is a mirror image. 

Maximum absolute velocity, 𝑣𝑚𝑎𝑥 ,  occurs at  𝑡 =
∆𝑡

2
 . The second graphic transforms the time 

coordinate to position along the 𝑥𝛼  axis, where 𝛼 is a dimension index from 𝐷 possible 

dimensions.  Note that the maximum velocity occurs at 𝑞 = 0, the sphere center.  This is the 

coordinate with a maximum distance, 𝑅𝑠,  from the boundary.   𝑅𝑠 is the maximum configuration 

span over which positive acceleration occurs.  Likewise maximum deceleration is required over 

the same distance to satisfy proper boundary conditions.  These representations are the extremes 

of velocity profile given 𝑅𝑠, and 𝑃𝑚 and shall be referred to as the maximum velocity profile.  

Slower random velocity trajectories which fall within these boundaries are required to support 

general random motion.   

3.1.3. Momentum Probability  

We will now pursue a statistical description for velocity trajectories within the boundaries 

established in the prior section.  

The vector 𝑣  may be given a Gaussian distribution assignment based on a legacy solution 

obtained from the calculus of variations.  An isoperimetric bound is applied to the uncertainty 

function [20]. 𝐻 can be maximized, subject to a simultaneous constraint on the variance of the 

velocity random variable, resulting in the Gaussian pdf [21]. In this case the variance of the 

velocity distribution is proportional to the average kinetic energy of the particle.  It follows that 
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this optimization extends to the multi-dimensional Gaussian case [15]. This solution justifies 

replacement of the uniform distribution assumption often applied to maximize the uncertainty of 

a similar phase space from statistical mechanics [13, 14].  While the uniform distribution does 

maximize uncertainty, it comes at a greater energy cost compared to the Gaussian assignment.  

Hence, a Gaussian velocity distribution emphasizes energetic economy compared to the uniform 

density function. A derivation justifying the Gaussian assumption is provided in appendix A for 

reference.  

The Gaussian assignment is enigmatic because infinite probability tails for velocity invoke 

relativity considerations, with 𝑐 (speed of light) as an absolute asymptotic limit. Therefore, the 

value of the peak statistic shall be limited and approximated on the tail of the pdf to avoid 

relativistic concerns.  The variance or average power is another important statistic.  The peak to 

average power or peak to average energy ratio of a communications signal is an especially 

significant consideration for transmitter efficiency.  The analog of this parameter can also be 

applied to the multidimensional model for the transmitter particle velocity and shall be 

subsequently derived for calculating a peak to average power or peak to average kinetic energy 

ratio, hereafter PAPR, PAER, respectively.  The following figure illustrates the standard zero 

mean Gaussian velocity 𝑣  RV with 𝜎2=1.  
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Figure 3-4 Gaussian Velocity pdf 

It is apparent that whenever 𝑣 = 4 or greater for the pdf with variance 𝜎2=1, the probability 

values are very small in a relative sense. If 𝑣2/2 is directly proportional to the instantaneous 

kinetic energy then a peak velocity excursion of 4 corresponds to an energy peak of 8.  For the 

case of 𝜎2=1, a range of 𝑣 = ±2√2 encompasses the majority (97.5 %) of the probability space. 

Hence, PAER≥4 is a comprehensive domain for the momentum pdf with a normalized variance. 

The PAER must always be greater than 1 by design because 𝜎2 → 0 as PAER→ 1 . One may 

always define a PAER provided 𝜎2 ≠ 0. This is a fundamental restriction. As 𝜎2 → 0 the pdf 

becomes a delta function with area 1 by definition . In the case of a zero mean Gaussian RV the 

average power becomes zero in the limit along with the peak excursions if the PAER approaches 

a value of 1.  
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The probability tails beyond the peak excursion values may simply be ignored (truncated) as 

insignificant or replaced with delta functions of appropriate weight. This approximation shall be 

applied for the remainder of the discussion concerning velocities or momenta of particles. PAER 

is an important parameter and may be varied to tailor a design. PAER provides a suitable means 

for estimating the required energy of a communications system over significant dynamic range. 

It shall be convenient to convert back and forth between power and energy from time to time. In 

general, PAPR is used whenever variance is given in units of Joules per second and PAER is 

used whenever units in joules, are preferred.  

Maximum velocity and acceleration along the radial is bounded.  At the volume center the 

probability model for motion is completely independent of 휃, ∅ in spherical geometry.  However, 

as the particle position coordinate 𝑞 varies off volume center, the spread of possible velocities 

must correspondingly modify.  Either the particle must asymptotically halt or move tangential at 

the boundary or otherwise maneuver away from the boundary avoiding collision.  It is apparent 

that angular distribution of the velocity vector changes as a function of offset radial with respect 

to the sphere center.  

Momentum will be represented using orthogonal velocity distributions.  This approach follows 

similar methods originated by Maxwell and Boltzmann [13, 22]. The subsequent analysis focuses 

on the statistical motion of a single particle in one configuration dimension.  Additional D 

dimensions are easily accommodated from extension of the 1-D solution.  Vibrational, rotational 

and internal energies of the particle are not presently considered.  It is therefore a simple scenario 

involving a classical particle without additional qualification of its quantum states.  
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 The configuration coordinate may be identified at the tip of the position vector 𝑞  given an 

orthonormal basis.   

𝑞 = 𝑞1�̂�𝑥1
+ 𝑞2�̂�𝑥2

+ ⋯𝑞𝐷�̂�𝑥𝐷
 

( 3-13 ) 

Likewise the velocity is given by; 

𝑣 = �̇�1�̂�𝑥1
+ �̇�2�̂�𝑥2

+ ⋯ �̇�D�̂�𝐷 

( 3-14 ) 

Distributions for each orthogonal direction are easily identified from the prior velocity profile 

calculations, definition of PAER, and Gaussian optimization for velocity distribution due to 

maximization of momentum uncertainty.  

The generalized axes of the 𝐷 dimensional space shall be represented as 𝑥1, 𝑥2, … 𝑥𝐷 where 𝐷 

may be assigned for a specific discussion. Similarly, unit vectors in the 𝑥𝛼 dimension are 

assumed a given assignment of �̂�𝛼 as the defining unit vector.  Velocity and position vectors are 

given by 𝑣 𝛼 and 𝑞 𝛼 respectively.  

The following figure illustrates the particle motion with one linear degree of freedom within a 

𝐷 = 3 configuration space of interest.   
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Figure 3-5 Phase Space Boundary 

The radial velocity 𝑣 𝑟 as illustrated is defined by 𝑣 𝑟 = 𝑣𝛼�̂�𝛼 which is a convenient alignment 

moving forward.  The equations for the peak velocity profile were given previously and are used 

to calculate the peak velocity vs. radial offset coordinate along the 𝑥𝛼 axis.  PAER may be 

specified at a desired value such as 4 (6 dB) for example and the pseudo-Gaussian distribution of 

the velocities obtained as a function of 𝑞𝛼.  

The velocity probability density is written in two forms to illustrate the utility of specifying 

PAER.  

𝜌(𝑣 𝑟) =
1

√2𝜋𝜎𝑣𝑟

𝑒
−

𝑣𝑟2

2(𝜎𝑣𝑟)
2

, 𝑣 ̅𝑟 = 𝑣 ̅𝛼 = 0,  𝜎𝑣𝑟
2 = 𝜎𝑣𝛼

2 

( 3-15 ) 
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𝜌(�⃑⃑� 𝛼) ≅
√𝑃𝐴𝐸𝑅

√2𝜋𝑣𝛼_𝑝𝑒𝑎𝑘

𝑒
−

(𝑃𝐴𝐸𝑅)𝑣𝛼
2

2(𝑣𝛼_𝑝𝑒𝑎𝑘)
2

, 𝑃𝐴𝐸𝑅 ≡ (
𝑣𝛼𝑝𝑒𝑎𝑘

𝜎𝑣𝜶

)

2

=
ℰ𝑘𝑚𝑎𝑥

⟨ℰ𝑘⟩
 

( 3-16 ) 

𝑣 𝛼_𝑝𝑒𝑎𝑘 is the peak velocity profile as a function of 𝑞𝛼 which shall occasionally be referred to as 

𝑣 𝑝 whenever convenient . PAER is a constant.  Therefore 𝜎𝑣𝜶
 may be distinctly calculated for 

each value of 𝑞𝛼 as well.  The peak velocity bound versus 𝑞𝛼 is illustrated in Figure 3-2 as 

obtained from ( 3-10 ) 

Each value of 𝑞𝛼 along the radial possesses a unique Gaussian random variable for velocity.  The  

graphical illustration of this distribution follows;  

 

Figure 3-6 pdf of Velocity 𝑣 𝛼 as a Function of Radial Position for a Particle in Motion, Restricted to a Single 

Dimension and Maximum Instantaneous Power, 𝑃𝑚, Peak to Average Energy Ratio (PAER = 4), 

𝑃𝑚 = 10 𝐽 𝑠⁄ , 𝑣𝑚𝑎𝑥 = √10𝑚 𝑠⁄ , ∆𝑡 = 1, 𝑅𝑠 = (∆𝑡(𝑣𝑚𝑎𝑥 3⁄ )),𝑚 = 1𝑘𝑔 
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Probability is given on the vertical axis.  Notice that the probability of the vector velocity is 

maximum for zero velocity on the average at the phase space center, with equal probability of 

positive and negative velocities at a given q. The sign or direction of the trajectory corresponds 

to positive or negative velocity in the figure.  It is also apparent that the velocity probability of 

zero occurs at the extremes of + −𝑅𝑠⁄ , the phase space boundary.  Correspondingly, the 

variances of the Gaussian profiles are minimum at the boundaries and maximum at the center.  

A cross-sectional view from the perspective of the velocity axis is Gaussian with variance that 

changes according to 𝑞𝛼.  In this case a PAER of 4 is maintained for all 𝑞𝛼 coordinates.  

Suppose 𝑃𝑚  is decreased from 10 to 5 𝐽/𝑠.  The corresponding scaling of phase space is 

illustrated in the subsequent graphical representations.  This trade in phase space access is a 

fundamental theme illustrating the relationship between phase space volume and rate of energy 

expenditure.  
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Figure 3-7 Probability of Velocity 

 

Figure 3-8 Probability of Velocity given q (Top View) 



41 

 

The velocity dynamic range is decreased by the factor √𝑃𝑚_𝑛𝑒𝑤/𝑃𝑚_𝑜𝑙𝑑 . 𝑅𝑠 , the characteristic 

and accessible radius of the sphere, must correspondingly reduce even though the PAER=4 is 

unchanged.  Thus, the hyper-sphere volume decreases in both configuration and momentum 

space. 

Now that the momentum conditional pdf is defined for one dimension, the extension to the other 

dimensions is straight forward given the assumption of orthogonal dimensions and statistically 

independent distributions.  The distribution of interest is 3 dimensional Gaussian.  This is similar 

to the classical Maxwell distribution except for the boundary conditions and the requirement for 

maintaining vector quantities [22, 23].  The distribution for the multivariate hyper-geometric 

case may easily be written in terms of the prior single dimensional case. 

𝜌(𝑣 ) = ∏ 𝜌(𝑣 𝛼)
𝐷

𝛼=1
 

( 3-17 ) 

𝑣 = ∑𝑣𝛼�̂�𝛼

𝛼

 

𝜎�⃑� 
2 = ∑𝜎𝑣𝜶

2

𝛼

 

𝑣 ̅ = ∑𝑣 ̅𝛼
𝛼

= 0 

The following figure illustrates the vector velocity deployment in terms of the velocity and 

configuration coordinates.  
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Figure 3-9 Vector Velocity Deployment 

The pdf for velocity is easily written in a general form.  In this particular representation, the 

vectors enumerated as 𝛼, 𝛽 through subscripts, are considered to represent orthogonal 

dimensions for 𝛼 ≠ 𝛽.  This is an important distinction of the notation which shall be assumed 

from this point forward except where otherwise noted.   

The multidimensional pdf may be given as;  

 

𝜌(𝑣 ) =
1

√(2𝜋)𝐷|Λ|
𝑒[−

1
2
(𝑣𝛼−�̅�𝛼)𝑇Λ−1(𝑣𝛽−�̅�𝛽)]

 

( 3-18 ) 
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[Λ] = [

𝜎𝑣1
2 𝜎12 … 𝜎1𝐷

𝜎21 𝜎𝑣2
2 … 𝜎2𝐷

𝜎𝐷1 𝜎𝐷2 … 𝜎𝑣𝐷
2

] 

( 3-19 ) 

The covariance and normalized covariance are also given explicitly for reference;  

𝜎𝛼,𝛽 = 𝑐𝑜𝑣{𝑣𝛼 , 𝑣𝛽} = ∬( 𝑣𝛼 − �̅�𝛼)(𝑣𝛽 − �̅�𝛽)𝜌( 𝑣𝛼 , 𝑣𝛽)

+∞

−∞

𝑑𝑣𝛼𝑑𝑣𝛽  

( 3-20 ) 

𝛤𝑛𝑜𝑟𝑚(𝛼,𝛽) =
𝜎𝛼,𝛽

𝜎𝛼𝜎𝛽
 

( 3-21 ) 

𝛤𝑛𝑜𝑟𝑚(𝛼,𝛽)  is also known as the normalized statistical covariance coefficient. The diagonal of 3-

19 shall be referred to as the dimensional auto covariance and the off diagonals are dimensional 

cross-covariance terms.  These statistical terms are distinguished from the corresponding forms 

which are intended for the time analysis of sample functions of an ensemble obtained from a 

random process. However, a correspondence between the statistical form above and the time 

domain counterpart is anticipated and justified in later sections. Discussions proceed 

contemplating this correspondence.  

[Λ] permits the greatest flexibility for analyzing arbitrarily assigned vectors within the space.  

Statistically independent vectors are also orthogonal in this particular formulation over suitable 

intervals of time and space.  3-18 can account for spatial correlations. In the case where state 
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transitions possesses statistically independent origin and terminus, the off diagonal elements, 

(𝛼 ≠ 𝛽), will be zero.  

In the Shannon uncertainty view, each statistically independent state is equally probable at a 

successive infinitesimal instant of time, i.e. (∆𝑡/2) → 0 .  More directly, time is not an explicit 

consideration of the uncertainty function.  As will be shown in chapter 8, this cannot be true 

independent of physical constraints such as 𝑃𝑚𝑎𝑥 , and 𝑅𝑠.  Statistically independent state 

transitions may only occur more rapidly for greater investments of energy per unit time.  

3.1.3.1.   Transmitter Configuration Space Statistic 

The Configuration space statistic is a probability of a particle occupying coordinates 𝑞𝛼.  A 

general technique for obtaining this statistic is part of an overall strategy outlined in the 

following brief discussion. 

A philosophy which has been applied to this point, and will be subsequently advanced, follows:  

First, system resources are determined by the maximum rate of energy per unit time limit. This 

quantity is 𝑃𝑚. 𝑃𝑚 limits 𝑝 ̇ which requires consideration of acceleration. Secondly, information 

is encoded in the momentum of particle motion at a particular spatial location. Momentum is 

approximately a function of the velocity at non-relativistic speeds which in turn is an integral 

with respect to the acceleration. The momentum is constrained by the joint consideration of 𝑃𝑚 

and maximum information conservation. Finally, the position is an integral with respect to the 

velocity which makes it a second integral with respect to the force and in a sense a subordinate 

variable of the analysis, though a necessary one.  
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The hierarchy of inter-dependencies is significant. A choice was made to use momentum as an 

analysis fulcrum because it permits the unambiguous encoding of information in vector 

quantities. Fortuitously, momentum couples configuration and force through integrals. Since the 

momentum is Gaussian distributed it is easy to argue that the position is also Gaussian. That is, 

the integral or the derivative of a Gaussian process remains Gaussian. This is known from the 

theory of stochastic processes and linear systems [12, 23, 24]. 

Boundary conditions and laws of motion do provide a basis for obtaining the phase space density 

of states for a non-uniform configuration. The specific form of the configuration dependency is 

reserved for section 3.1.10.1 where the joint density 𝜌(�⃗�, �⃗�) is fully developed. 

3.1.4. Correlation of Motion, and Statistical Independence 

Discussions in this section are related to correlation of motion. Since the RV’s of interest are 

statistically independent zero mean Gaussian then they are also uncorrelated over sufficient 

intervals of time and space.  

The mathematical requirement for statistical independence is well known and is repeated here 

with the appropriate variable representation, preserving space – time indexing [25]. Time 

indexing 𝑡ℓ and 𝑡ℓ + 𝜏 is retained to acknowledge that the pdfs of interest may not evolve from 

strictly stationary processes.  
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𝜌(𝑣𝛽(𝑡ℓ + 𝜏)|𝑣𝛼(𝑡ℓ)) =
𝜌(𝑣𝛼(𝑡ℓ), 𝑣𝛽(𝑡ℓ + 𝜏))

𝜌(𝑣𝛼(𝑡ℓ))
= 𝜌(𝑣𝛽(𝑡ℓ + 𝜏)) 

( 3-22 ) 

𝜌(𝑣𝛽(𝑡ℓ + 𝜏)|𝑣𝛼(𝑡ℓ)) is the probability of the (𝑣𝛽 , 𝑡ℓ + 𝜏) velocity vector given the 

𝑣𝛼(𝑡ℓ)velocity vector.  It is important to understand the conditions enabling 3-22. 

Partial time correlation of Gaussian RVs characterizing physical phenomena is inevitable over 

relatively short time intervals when the RV’s originate from processes subject to regulated 

energy per unit time. Bandwidth limited AWGN with spectral density 𝑁0 is an excellent example 

of such a case where the infinite bandwidth process is characterized by a delta function time 

auto-correlation and the same strictly filtered process is characterized by a harmonic 𝑠𝑖𝑛𝑐 auto-

correlation function with nulls occurring at intervals 𝜏 = ±𝑛 (1 2𝐵)⁄  , where B is the filtering 

bandwidth and ± 𝑛 are non-zero integers.  

ℜ𝑛,𝑛(𝜏) = 𝑁0𝛿(𝜏),          𝐵 = ∞ 

( 3-23 ) 

ℜ𝑛,𝑛(𝜏) = 2𝐵𝑁0

sin (2𝜋𝐵𝜏)

2𝜋𝐵𝜏
,          𝐵 < ∞ 

( 3-24 ) 

The nature of correlations at specific instants, or over extended intervals, can provide insight into 

various aspects of particle motions such as the work to implement those motions and the 

uncertainty of coordinates along the trajectory.  
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Λ was introduced to account for the inter-dimensional portions of momentum correlations. 

Whenever  𝑣𝛼 and 𝑣𝛽 are not simultaneous in time, the desired expressions may be viewed as 

space and time cross–covariance.  This is explicitly written for the ℓ𝑡ℎ  and (ℓ𝑡ℎ + 1) time 

instants in terms of the pdf as;  

Λ𝛼,𝛽 = ∬( 𝑣𝛼,ℓ)(𝑣𝛽,ℓ+1)𝜌( 𝑣𝛼,ℓ, 𝑣𝛽,ℓ+1)

+∞

−∞

 𝑑𝑣𝛼,ℓ 𝑑𝑣𝛽,ℓ+1 = E{ 𝑣𝛼,ℓ𝑣𝛽,ℓ+1}   

( 3-25 ) 

This form accommodates a process which defines the random variables of interest yet is not 

necessarily stationary.  This mixed form is a bridge between the statistical and time domain 

notations of covariance and correlation. It acknowledges probability densities which may vary as 

a function of time offset and therefore 𝑞, as is the current case of interest. 

The time cross correlation of the velocity for 𝜏 offset is;  

ℜ𝒗𝜶,𝒗𝜷
= 〈𝑣 𝛼(𝑡 − 𝑡ℓ) ∙ 𝑣 𝛽(𝑡 − (𝑡ℓ + 𝜏)〉 = lim

𝑇→∞

1

2𝑇
∫ ( 𝑣 𝛼,(𝑡ℓ)) ∙ (𝑣 𝛽,(𝑡ℓ+𝜏))𝑑𝑡

𝑇

−𝑇

 

( 3-26 ) 

If 𝛼 = 𝛽 then 3-26 corresponds to a time auto-correlation function.  This form is suitable for 

cases where the velocity samples are obtained from a random process with finite average power 

[21]. Whenever 𝛼 ≠ 𝛽 then the vector velocities are uncorrelated because they correspond to 

orthogonal motions.  Arbitrary motion is equally distributed amongst one or more dimensions 

over an interval 2𝑇, and compared to time shifted trajectories. Then the resulting time based 
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correlations over sub intervals may range from -1 to 1. In the case of independent Gaussian RV’s,  

equations 3-25 and 3-26 should approach the same result.  

In the most general case the momentum, and therefore the velocity, may be decomposed into 𝐷 

orthogonal components. If such vectors are compared at 𝑡 = 𝑡ℓ and 𝑡 = 𝑡ℓ + 𝜏 offsets, then a 

correlation operation can be decomposed into 𝐷 kernels of the form given in 3-25 where it is 

understood that the velocity vectors must permute over all indices of 𝛼 and 𝛽 to obtain 

comprehensive correlation scores. A weighted sum of orthogonal correlation scores determines a 

final score. 

A metric for the velocity function similarity as the correlation space-time offset varies, is found 

from the normalized correlation coefficient which is the counterpart to the normalized covariance 

presented earlier.  It is evaluated at a time offset  . 

𝛾𝑣𝛼,𝑣𝛽
=

ℜ𝑣𝛼,𝑣𝛽
(𝜏)

〈𝑣 𝛼,𝑡ℓ ∙ 𝑣 𝛽,𝑡ℓ+𝜏〉
 

( 3-27 ) 

It is possible to target the space and time features for analysis by suitably selecting the values 

𝛼, 𝛽, 𝜏.  

A finite energy, time autocorrelation is also of some value.  Sometimes this is a preferred form in 

lieu of the form in 3-26. The energy signal auto and cross correlation can be found from [21];  

ℜ𝑣𝛼,𝑣𝛽
= 〈𝑣 𝛼(𝑡 − 𝑡ℓ) ∙ 𝑣 𝛽(𝑡 − (𝑡ℓ + 𝜏)〉 = lim

𝑇→∞
∫ ( 𝑣 𝛼,𝑡ℓ) ∙ (𝑣 𝛽,𝑡ℓ+𝜏)𝑑𝑡

𝑇

−𝑇

 

( 3-28 ) 
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Now we examine the character of the time auto-correlation of the linear momentum over some 

characteristic time interval, such as  ∆𝑡 = 𝑡ℓ − 𝑡ℓ+1.  The correlation must become zero as the 

offset time (𝑡ℓ + ∆𝑡) is approached, to obtain statistical independence outside that window.  In 

that case, time domain de-correlation requires;   

〈𝑝 (𝑡 − 𝑡ℓ) ∙ 𝑝 (𝑡 − (𝑡ℓ + ∆𝑡))〉 = 0 ;      𝑡 ≥ |(𝑡ℓ + ∆𝑡)| 

( 3-29 ) 

Similarly, the forces which impart momentum change must also decouple implying that.  

〈�̇⃗�(𝑡 − 𝑡ℓ) ∙ �̇⃗�(𝑡 − (𝑡ℓ + ∆𝑡))〉 = 0 ;      𝑡 ≥ |(𝑡ℓ + ∆𝑡)|  

( 3-30 ) 

Suppose it is required to de-correlate the motions of a rapidly moving particle and this operation 

is compared to the same particle moving at a diminutive relative velocity over an identical 

trajectory.  Greater energy per unit time is required to generate the same uncorrelated motions for 

the fast particle over a common configuration coordinate trajectory. The controlling rate of 

change in momentum must increase corresponding to an increasing inertial force.  Likewise, a 

proportional oppositional momentum variation is required to establish equilibrium, thus arresting 

a particle’s progress along some path. This argument deduces from Newton’s laws. 

Another consideration is whether or not the particle motion attains and sustains an orthogonal 

motion or briefly encounters such a circumstance along its path. Both cases are of interest. 

However, a brief orthogonal transition is sufficient to remove the memory of prior particle 

momentum altogether if the motions are distributed randomly through space and time.  



50 

 

A basic principle emerges from 3-29 and 3-30 and a consideration of Newton’s laws.  

Principle: Successive particle momentum and force states must become individually zero, jointly 

zero or orthogonal, corresponding to the erasure of momentum memory beyond some 

characteristic interval ∆𝒕, assuming no other particle or boundary interactions. This is a 

requirement for zero mean Gaussian motion of a single particle.  

If a particle stops while releasing all of its kinetic energy, or turns in an orthogonal direction, 

prior information encoded in its motion is lost.  This is an important concept because evolving 

uncertainty is coupled to the particle memory through momentum.  Extended single particle de-

correlations outside of the interval ±∆𝑡, with respect to ℜ𝑣𝛼,𝑣𝛽
 @ 𝜏 = 0 , are evidence of 

increasing statistical independence in those regimes.  

Autocorrelations shall be zero outside of the window (−∆𝑡 ≤ 𝜏 ≤ ∆𝑡)  for the immediate 

analysis unless otherwise stated.  The reason for this initial analysis restriction is to bound the 

maximum required energy resource for statistically independent motion beyond a characteristic 

interval. In other words there is no information concerning the particle motion outside that 

interval of time.  

The derivative ℰ̇𝑘 is random up to a limit, 𝑃𝑚𝑎𝑥. ℰ̇𝑘 is a function of the derivative field;  

ℰ̇𝑘 = 𝑝 ̇ ∙ 𝑞 ̇ 

( 3-31 ) 

This leads to a particular inter-variable cross-correlation expression.   
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lim
𝑇→∞

1

2𝑇
∫ 𝑝 ̇(𝑡 − 𝑡ℓ) ∙ 𝑞 ̇(𝑡 − (𝑡ℓ + 𝜏))𝑑𝑡

𝑇

−𝑇

= 〈𝑝 ̇ ∙ 𝑞 ̇〉 ≤ 𝑃𝑚𝑎𝑥  @ 𝜏 = 0 

( 3-32 ) 

The kernel is a measure of the rate of work accomplished by the particle.  It is useful as an 

instantaneous value or an accumulated average.  This equation is identically zero only for the 

case where 𝑝 ̇ or 𝑞  ̇  are zero or for the case where the vector components of 𝑝 ̇, 𝑞  ̇  are mutually 

orthogonal.  If they are orthogonal for all time then there is no power consumed in the course of  

the executed motions.  Thus, the assumption for statistical independence of momentum and force 

at relatively the same instant in time can only be possible for the case where the instantaneous 

rate of work is zero.  Whenever there is consumption of energy, force and velocity must share 

some common nonzero directional component and will be statistically codependent to some 

extent. This is necessary to bridge between randomly distributed coordinates of the phase space 

at successively fixed time intervals . If we restrict motions to an orthogonal maneuver within the 

derivative field we collapse phase space  access and uncertainty of motion goes to zero along 

with the work performed on the particle.  

3.1.5. Autocorrelations and Spectra for Independent Maximum Velocity Pulses 

At this point it is convenient to introduce the concept of the velocity pulse.  Particle memory, due 

to prior momentum, is erased moving beyond time ∆𝑡 into the future for this analysis.  

Conversely, this implies a deterministic component in the momentum during the interval  ∆𝑡.  
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Such structure, where the interval is defined as beginning with zero momentum in the direction 

of interest and terminating with zero momentum in that same direction is referred to as a velocity 

pulse. For example, the maximum velocity profiles may be distinctly defined as pulses over ∆𝑡 .  

The maximum velocity pulse possesses a time autocorrelation that is analyzed in detail in 

Appendix C. The corresponding normalized autocorrelation, is plotted in the following graph 

with  ∆𝑡 = 1 .  

 

Figure 3-10 Normalized Autocorrelation of a Maximum Velocity Pulse 

This is the normalized autocorrelation for the pulse of the maximum velocity which spans the 

hyper sphere with a single degree of freedom. If it is further assumed that the orthogonal 

dimensions execute independent motions, it follows that the autocorrelations in the  𝑥1, 𝑥2, ⋯ 𝑥𝐷 

directions are of the same form. One feature of interest here is that the autocorrelation is zero for 

the extremums, ±∆𝑡. This feature significantly influences the Fourier transform response.  The 
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Fourier transform of the autocorrelation may be calculated from the Fourier response of the 

convolution of two functions by a change of variables. The transform of the convolution is given 

by;  

𝔍(𝑔1 ∗ 𝑔2) = ∫ {∫ 𝑔1(𝑡 − 𝜆)
∞

−∞

𝑔2(𝜆) 𝑑𝜆}
∞

−∞

𝑒−𝑖𝜔𝑡𝑑𝑡 = 𝐺1(𝜔)𝐺2(𝜔) 

( 3-33 ) 

The transform of the correlation operation for real functions is given by; 

𝔍{〈𝑔1𝑔2〉} = ∫ {∫ 𝑔1(𝑡
′ + 𝜏)

∞

−∞

𝑔2(𝑡
′) 𝑑𝑡′}

∞

−∞

𝑒−𝑖𝜔𝑡𝑑𝑡 

( 3-34 ) 

If (𝑡′ + 𝜏) → (𝑡 − 𝜆) then the convolution is identical to the correlation which is precisely the 

case for symmetric functions of time.  Hence, the Fourier transform of the autocorrelation can be 

obtained from the Fourier transform squared of the velocity pulse in this case.  

𝔍 {∫ 𝑣(𝑡′ + 𝜏)
∞

−∞

𝑣(𝑡′) 𝑑𝑡′} = ∫ {∫ 𝑣(𝑡′ + 𝜏)
∞

−∞

𝑣(𝑡′) 𝑑𝑡′}
∞

−∞

𝑒−𝑖𝜔𝑡𝑑𝑡 = 𝑉(𝜔)𝑉(𝜔) 

( 3-35 ) 

The following figures illustrate the magnitude response for the transform of the normalized 

maximum velocity pulse autocorrelation for linear and logarithmic scales.  
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Figure 3-11 Normalized Fourier Transform of Maximum Velocity Pulse Autocorrelation  

 

Figure 3-12 Normalized Fourier Transform of Maximum Velocity Pulse Autocorrelation 

Figures 3-11 and 3-12 represent the energy spectrum generated by the most radical particle 

maneuver within the phase space to insure de-correlation of motion beyond a time ∆𝑡 into the 
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future. The spectrum possesses infinite frequency content which corresponds to the truncated 

time boundary conditions requiring zero momentum at those extremes.  

The maximum velocity pulse functions given above are not specifically required except at the 

statistically rare boundary condition extreme.  Whenever the transmitter is not pushed to an 

extreme dynamic range the pulse function can assume a different form. 

According to the Gaussian statistic, the maximum velocity pulse, and therefore its associated 

autocorrelation illustrated above, would be weighted with a low probability asymptotically 

approaching zero for a large PAER parameter. General pulses will consume energy at a rate less 

than or equal to the maximum velocity pulse and possess spectrums well within the frequency 

extremes of the derived maximum velocity pulse energy spectrum .  

3.1.6. Characteristic Response 

Independent pulses of duration ∆𝑡 possess a characteristic autocorrelation response.  All spectral 

calculations based on this fundamental structure will require a main lobe with a frequency span 

which is at least on the order of or greater than 2(∆𝑡)−1 according to the Fourier transform of the 

autocorrelation. This can be verified by Gabor’s uncertainty relation [26] .  

The Fourier transform of the rectangular pulse autocorrelation follows;  
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Figure 3-13 Fourier Transform of the Rectangular Pulse Autocorrelation 

The pulse, ∏(
𝑡

∆𝑡
), can be formed from elementary operations which possess significant intuitive 

and physical relevance.  Any finite rectangular pulse can be modeled with at least two impulses 

and corresponding integrators.  The following figure illustrates schematically the formation of 

such a pulse.  

 

Figure 3-14 Forming a Rectangular Pulse from the Integration of Delta Functions 
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ℎ(𝑡) is the impulse response of the system which deploys two integrated delta function forces.  

Now suppose that the impulse functions are forces applied to a particle of mass 𝑚 = 1.  To 

obtain particle velocity one must integrate the acceleration due to the force.  The result of the 

given integration is the rectangular velocity pulse vs. time. This is a circumstance without 

practical restrictions on the force functions 𝛿(𝑡 ∓ ∆𝑡/2), i.e. physically non-analytic, yet 

corresponds mathematically to Newton’s laws of motion.  

The result is accurate to within a constant of integration.  Only the time variant portion of the 

motion may encode information so the constant of integration is not of immediate interest.  

Notice further, that if the first integral were not opposed by the second, motion would be 

constant and change in momentum would not be possible after 𝑡 = −∆𝑡/2,. Otherwise 

uncertainty of motion would be extinguished after the first action. Thus, two forces are required 

to alter the velocity in a prescribed manner to create a pulse of specific duration.  

Recall the original maximum velocity pulse with one degree of freedom previously analyzed in 

detail.  In that case at least two distinct forces are also required to create the velocity profile, 

which ensures statistical independence of motion outside the interval ±∆𝑡/2. The following 

illustration provides a comparison to the rectangular pulse example.  ℎ𝑝(𝑡) indicates that two 

distinct forces are required; one to first accelerate then one to decelerate the particle.  We may 

insist that the majority of pulses within the extreme velocity pulse bound can be physically 

analytic even though the maximum velocity pulse is not.  Assume that ℎ𝑓(𝑡) is the characteristic 

system impulse response function and ∗ is a convolution operator.   
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Then;  

ℎ𝑝(𝑡) = [𝛿(𝑡 ) ∗ ℎ𝑓(𝑡) ] − [𝛿(𝑡 − ∆𝑡/2 ) ∗ ℎ𝑓(𝑡)] 

( 3-36 ) 

 

Figure 3-15 Model for a Force Doublet Generating a Maximum Velocity Pulse 

 

Figure 3-16 Max. Velocity Pulse Impulse Response for Transmitter Model with 𝑃𝑚𝑎𝑥 Constraint, 𝑚 = 1 
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Information is encoded in the pulse amplitude.  This level is dependent on the nature of the force 

over the interval ∆𝑡 and changes modulo ∆𝑡.  Regardless of the specific function realized by the 

velocity pulse, at least two distinct forces are always required to permit independence of motion 

between succeeding pulse intervals.  This property is also evident from energy conservation in 

the case where work is accomplished on the particle since;  

〈𝑝 ̇1 ∙ 𝑞 ̇1〉 = 〈𝑝 ̇2 ∙ 𝑞 ̇2〉        ∆𝑡1 + ∆𝑡2 = ∆𝑡 

( 3-37 ) 

ℰ1 = ℰ2 

( 3-38 ) 

The left hand side of the equation is the average energy ℰ1 over the interval ∆𝑡1, the first half of 

the pulse.  The right hand side is the analogous quantity for the second half of the pulse. If the 

average rate of work by the particle, 〈𝑝 ̇1 ∙ 𝑞 ̇1〉, increases, then ∆𝑡1 may decrease in turn reducing 

∆𝑡, the time to uniquely encode an uncorrelated motion spanning the phase space. The total 

kinetic energy expended for the first half of the pulse is equivalent to the energy expended in the 

second half given equivalent initial and final velocities. If the initial and final velocities in a 

particular direction are zero then the momentum memory for the particle is reset to zero in that 

direction, and prior encoded information is erased. 

This theme is reinforced by �̇�1(𝑡) and �̇�2(𝑡) associated with forces 𝐹1, 𝐹1 illustrating the 

dynamics of a maximum velocity pulse in figure 3-16 and leads to the following principle;  
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Principle; At least two unique forces are both necessary and sufficient to encode information in 

the motion of a particle over an interval ∆𝑡.   These forces occur at the average rate 𝑓𝑠 ≥ 2 ∙

(∆𝑡)−1.  

This is a physical form of a sampling theorem. Whether generating such motions or observing 

them, 𝑓𝑠_𝑚𝑖𝑛 = 2(∆𝑡)−1 is a minimum requirement for the most extreme trajectory possible, 

which de-correlates particle motion in the shortest time given the limitation of finite energy per 

unit time. The justification has been provided for generating motions but the analogous 

circumstance concerning observation of motion logically follows. Acquisition of the information 

encoded in an existing motion through deployment of forces, requires extracting momentum in 

the opposite sense according to Newton’s 3
rd

 law. Encoding changes particle momentum in one 

direction and decoding extracts this momentum by an opposite relative action. In both cases the 

momentum imparted or extracted goes to the heart of information transfer and the efficiency 

concern to be discussed further in chapter 5.  

The well-known heuristic, mathematical, and information theory origins have roots firmly 

established in the work of Nyquist, Hartley, Gabor, Whitaker,  Shannon and others [1, 4, 6, 26].  

This current theory addresses questions raised by Nyquist as early as 1924 and Gabor in 1946, 

concerning physical origins of a sampling theorem [4, 5, 26]. 

The work of Shannon leveraged the interpolation function derivations of Whittaker as an 

expedient mathematical solution to a sampling theorem [1].  Because of its importance, 

Shannon’s original statement of the sampling theorem is repeated here, extracted from his 1949 

paper;  
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Shannon’s Sampling Theorem; If a function contains no frequencies higher than W cps, it is 

completely determined by giving its ordinates at a series of points spaced (2𝑊)−1 seconds apart 

[1]. 

In the same paper, Shannon states, concerning the sample rate; “This is a fact which is common 

in the communications art”.  Furthermore, he credits Whittaker, Nyquist and Gabor.  

In the limiting case of a maximum velocity pulse, the pulse is symmetrical.  The physical 

sampling theorem does not require this in general as is evident from the equation for averaged 

kinetic energy from the first half of a pulse over interval ∆𝑡1 vs. the second interval ∆𝑡2.  In the 

general circumstance, 〈𝑃1〉 ≠ 〈𝑃2〉 and ∆𝑡1 ≠ ∆𝑡2.   Thus, the pulse shape restriction is relaxed 

for the more general case when {𝑃1, 𝑃2} < 𝑃𝑚.  Since the sampling forces which occur at the rate 

𝑓𝑠 are analyzed under the most extreme case, all other momentum exchanges are subordinate. 

The fastest pulse, the maximum velocity pulse, possesses just enough power 𝑃𝑚 to accomplish a 

comprehensive maneuver over the interval ∆𝑡, and this trajectory possesses only one derivative 

sign change. Slower velocity trajectories may possess multiple derivative sign changes over the 

characteristic configuration interval 2 𝑅𝑠 but 𝑓𝑠 will always be greater than or equal to twice the 

number of derivative sign changes of the velocity and also always be greater than or equal to 

twice the transition rate between orthogonal dimensions.  

In multiple dimensions the force is a diversely oriented vector but must always possess these 

specified sampling qualities when decomposed into orthogonal components and the resources 

spawning forces must support the capability of maximum acceleration and deceleration over the 

interval ∆𝑡, even though these extreme forces are seldom required.  
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Equations 3-39, 3-40 recall the calculations for the maximum work over the interval ∆𝑡 2⁄  and 

the average kinetic energy limit of velocity pulses in general, based on the PAER metric and 

practical design constraints. Equation 3-41 is due to the physical sampling theorem. 

ℰ𝑘∆𝑡 2⁄
= ℰ𝑚𝑎𝑥 = 𝑃𝑚

∆𝑡

2
 

( 3-39 ) 

∆𝑡

2
𝑃𝑚 ≥ 〈ℰ𝑘〉(𝑃𝐴𝐸𝑅) 

( 3-40 ) 

𝑓𝑠 ≥ 2 ∙ (∆𝑡)−1 

( 3-41 ) 

Equations 39,40 and 41 may be combined and rearranged, noting that the average kinetic energy 

must always be less than or equal to the maximum kinetic energy.  In other words, 𝑃𝑚 is a 

conservative upper bound and a logical design limit to enable conceivable actions,. Therefore; 

𝑃𝑚

〈ℰ𝑘〉𝑠(𝑃𝐴𝐸𝑅)
≤ 𝑓𝑠 

( 3-42 ) 

The averaged energy 〈ℰ𝑘〉𝑠 is per sample. The total available energy ℰ𝑡𝑜𝑡 must be allocated 

amongst say 2N samples or force applications. The average energy per unique force application 

is therefore just ℰ𝑡𝑜𝑡 2𝑁⁄ = 〈ℰ𝑘〉𝑠. This is the quantity that should be used in the denominator of 
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3-42 to calculate the proper force frequency 𝑓𝑠. Using 3-42 we may state another form of 

physical sampling theorem which contemplates extended intervals modulo  𝑇 2𝑁 = 𝑇𝑠⁄ . 

The physical sampling rate for any communications process must be greater than the maximum 

available power to invest in the process, divided by the average encoded particle kinetic energy 

per unique force (sample), times the peak to average energy ratio (PAER) for the particle 

motions over the duration of a signal.  

The prior statement is best understood by considering single particle interactions but can be 

applied to bulk statistics as well. We shall interpret 𝑓𝑠 as the number of unique force applications 

per unit time and 𝑓𝑠_𝑚𝑖𝑛  is the number of statistically independent momentum exchanges per 

unit time. This rate shall also be referred to hereafter, as the sampling frequency. Adjacent 

samples in time may be correlated. If the correlation is due to the limitation 𝑃𝑚 then the system is 

oversampled whenever more than 2 forces per characteristic interval ∆𝑡 are deployed. 

Conversely, if only two forces are deployed per characteristic interval then it must be possible to 

make them independent (i.e unique) given an adequate 𝑃𝑚. Therefore, the physical sampling 

theorem specifies a minimum sampling frequency 𝑓𝑠_𝑚𝑖𝑛 as well as an interval of time over 

which successive samples must be deployed to generate or acquire a signal. By doing so, all 

frequencies of a signal up to the limit B are contemplated. The lowest frequency of the signal is 

given by 𝑇−1. 

More samples are required when they are correlated because they impart or acquire smaller 

increments of momentum change per sample compared to the circumstance for which a 
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minimum of two samples must enable particle dynamics which span the entire phase space over 

the interval ∆𝑡. 

Shannon’s sampling theorem as stated is necessary but not sufficient because it does not require 

a duration of time over which samples must be deployed to capture both high frequency and low 

frequency components of a signal over the frequency span B, though his general analysis 

includes this concept. As Marks  points out, Shannon’s sampling number is a total of 2B𝑇𝑠 

samples required to characterize a signal [6]. 

As a simple example, consider a 1 kg mass which has a peak velocity limit of 1m/s for a motion 

which is random and the peak to total average energy ratio for a message is limited to 4 to 

capture much of the statistically relevant motions (97.5 % of the particle velocities for a 

Gaussian statistic). Let the power source possess a 10 Joule capacity, ℰ𝑡𝑜𝑡 . If the apparatus 

power available to the particle has a maximum energy delivery rate limit of 𝑃𝑚 equal to 1 joule 

per second and we wish to distribute the available energy source over 1 million force exchanges 

spaced equally in time to encode a message, then the frequency of force application is; 

𝑓𝑠 =
1

10
106 (4)

= 2.5 𝑥 104     𝑓𝑜𝑟𝑐𝑒𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 

If 𝑓𝑠 falls below this value, then the necessary maneuvers required to encode information in the 

particle motion cannot be faithfully executed, thereby eroding access to phase space, which in 

turn reduces uncertainty of motion  and ultimately information loss. If 𝑓𝑠 increases above this 

rate then information encoding rates can be achieved or increased, trading the reduction in 

transmission time vs. energy expenditure.  
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Capacity equations can be related to the physical sampling theorem and therefore related to the 

peak rate of energy expenditure, not just the average. The peak rate is a legitimate design metric, 

and the ratio of the peak to average is inversely related to efficiency as will be shown. It is even 

possible to calculate capacity vs. efficiency for non-maximum entropy channels by fairly 

convenient means, an exercise of considerable challenge according to Shannon [15].  By 

characterizing sample rate in terms of its physical origin, we gain access to the conceptual utility 

of other disciplines such as dynamics and thermodynamics and advance toward the goal of 

trading capacity for efficiency.  

3.1.7. Sampling Bound Qualification 

Shannon’s form of the sampling theorem contains a reference to frequency bandwidth limitation, 

W.  It is of important to establish a connection with the physical sampling theorem.  An intuitive 

connection may be stated simply by comparing two equations (where W is replaced by B); 

𝑓𝑠 ≥
𝑃𝑚

〈ℰ𝑘〉𝑠𝑃𝐴𝐸𝑅
,          𝑓𝑠 ≥ 2𝐵  

( 3-43 ) 

B, shall be justified as the variable symbolizing Nyquist’s bandwidth for the remainder of this 

paper and possesses the same meaning as the variable W used by Shannon.  It should be noted 

that though both the inequalities in equation 3-43 appear different, they possess the same units if 

one regards a force event (i.e. an exchange of force with a particle) to be defined as a sample.  
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The bound provided for the sampling rate in equation 3-43 and Shannon’s theorem are obtained 

by two very different strategies. 3-46 is based on physical laws while Shannon’s restatement of 

the sampling rate proposed by Nyquist and Gabor is of mathematical origin and logic. We now 

examine the conditions under which the inequalities in 3-43 provide the most restrictive 

interpretation of 𝑓𝑠.  This occurs as both equations in 3-43 approach the same value. 

𝑃𝑚

〈ℰ𝑘〉𝑠(𝑃𝐴𝐸𝑅)
→ 2𝐵 

( 3-44 ) 

The arrow in the equation indicates “as the quantity on the left approaches the quantity on the 

right”. We shall investigate the circumstance for this to occur. It will be shown that when signal 

energy as calculated in a manner consistent with the method employed by Shannon is equated to 

the kinetic energy of a particle, the implied relation of 3-44 becomes an equality.  

The bounding conditions for relating 𝐵 to f𝑠, in a traditional information theory context, have 

been exhaustively established in the literature and will not be rehashed [2, 3, 4, 5, 6, 10, 11, 21, 

26].   

A direct approach can be illustrated from the Fourier transform pair of a sequence of samples 

from a message ensemble member.  This technique depends on the definition for bandwidth.  

Shannon’s definition requires zero energy outside of the frequency spectrum defined by 

bandwidth 𝐵.  A parallel to Shannon’s simple proof is provided for reference.  In his proof he 

employs a calculation of the inverse Fourier transform of the band limited spectrum for a 

sampled function of time, 𝑔(𝑡), sampled at discrete instants (𝑡 −
𝑛

2𝐵
).  
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𝑔 (
𝑛

2𝐵
) =

1

2𝜋
∫ 𝐺(𝜔)𝑒−𝑖𝜔

𝑛
2𝐵 𝑑𝜔

2𝜋𝐵

−2𝜋𝐵

 

( 3-45 ) 

This results in an infinite series expansion over n, the sample number.   

There is a simple way to establish 3-44 as an equality using Rayleigh’s and Parseval’s theorems.  

In this treatment the kinetic energy of individual velocity samples for a dynamic particle are 

equated to the energy of signal samples so that;  

1

2
𝑚 (𝑣 (

𝑛

2𝐵
))

2

= (𝑔 (
𝑛

2𝐵
))

2

 

( 3-46 ) 

If 3-46 is true then the right hand side of 3-43 has a kinetic energy form and a signal energy 

form. We now proceed using Shannon’s definition for signal energy. 

Consider the signal 𝑔(𝑡) to be of finite power in a given Shannon bandwidth B; 

ℰ𝑔 = ∑ (𝑔 (
𝑛

2𝐵
))

2∞

𝑛=−∞

= ∫ |𝐺(𝑓)|2𝑑𝑓
𝐵

−𝐵

 

( 3-47 ) 

Shannon requires the frequency span 2𝐵 to be a constant spectrum over 𝐺(𝑓) [2].  Since the 

approach here is to discover how the particle kinetic energy limitations per unit time correspond 

to Shannon’s bandwidth, a constant is substituted for 𝐺(𝑓) in Rayliegh’s expression to obtain; 
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ℰ𝑔 = 2𝐵 〈ℰ𝑔𝐻𝑧
〉 = 𝑇 〈ℰ̃𝑔〉 = 2𝑁〈ℰ𝑔〉   𝐽𝑜𝑢𝑙𝑒𝑠 

( 3-48 ) 

We have multiplied both sides of 3-47, 3-48 by unit time to obtain energy.  〈ℰ𝑔𝐻𝑧
〉 is given in 

terms of average Joules per Hz where |𝐺(𝑓)|2is the constant energy spectral density. 𝑇 = 2𝑁𝑇𝑠 

is the duration of the signal 𝑔(𝑡) , 2N is the number of samples, 𝑇𝑠 is the time between samples, 

〈ℰ𝑔〉𝑠 is the average energy per sample and 〈ℰ̃𝑔〉 is the average energy per unit time.  Then; 

ℰ𝑔

〈ℰ𝑔𝐻𝑧
〉
= 2𝐵    𝐻𝑧 

( 3-49 ) 

An alternate form of 3-44 may now be written; 

𝑃𝑚

〈ℰ𝑘〉𝑠(𝑃𝐴𝐸𝑅)
→

ℰ𝑔

〈ℰ𝑔𝐻𝑧
〉
 

( 3-50 ) 

ℰ𝑔

〈ℰ𝑔𝐻𝑧
〉
=

〈ℰ̃𝑔〉 𝑇

〈ℰ𝑔𝐻𝑧
〉 

=
ℰ𝑔𝑝𝑘

 

〈ℰ𝑔𝐻𝑧
〉

2𝑁𝑇𝑠
 
ℰ𝑔𝑝𝑘

〈ℰ̃𝑔〉

=
𝑇𝑠 ℰ𝑔𝑝𝑘

 

ℰ𝑔

2𝑁 
ℰ𝑔𝑝𝑘

〈ℰ̃𝑔〉

=
𝑃𝑔𝑚𝑎𝑥

 

〈ℰ𝑔〉𝑠𝑃𝐴𝐸𝑅
;    𝑓𝑜𝑟 2𝐵 = (𝑇𝑠)

−1 

( 3-51 ) 

∴    
𝑃𝑚

〈ℰ𝑘〉(𝑃𝐴𝐸𝑅)
=

𝑃𝑔𝑚𝑎𝑥
 

〈ℰ𝑔〉𝑃𝐴𝐸𝑅
;          𝑓𝑜𝑟     〈ℰ𝑘〉𝑠 = 〈ℰ𝑔〉𝑠 

( 3-52 ) 
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Given equation 3-52 is now an equality, 3-44 may be employed as a suitable measure for 

bandwidth or sampling rate requirements, in a classical context. Thus, for a communications 

process modeled by particle motion which is peak power limited; 

1

𝑇𝑠
≥

𝑚𝑎𝑥 {
𝑑ℰ𝑘

𝑑𝑡
}

𝑘𝑝〈ℰ𝑘〉(𝑃𝐴𝐸𝑅)
=

𝑚𝑎𝑥{𝑞 ̇ ∙ 𝑝 ̇}

𝑘𝑝〈ℰ𝑘〉(𝑃𝐴𝐸𝑅)
 

𝑓𝑠_𝑚𝑖𝑛 =
𝑚𝑎𝑥 {

𝑑ℰ𝑘

𝑑𝑡
}

𝑘𝑝〈ℰ𝑘〉𝑠(𝑃𝐴𝐸𝑅)
= 2𝐵 

( 3-53 ) 

This equation and its variants shall be referred to as the sampled time-energy relationship or 

simply the TE relation. The TE relation may be applied for uniformly sampled motions of any 

statistic. If trajectories are conceived to deploy force rates which exceed 𝑓𝑠_𝑚𝑖𝑛 , then B may also 

increase with a corresponding modification in phase space volume. In addition, the factor 𝑘𝑝 

appears in the denominator. This constant accounts for any adjustment to the maximum velocity 

profile which is assigned to satisfy the momentum space maximum boundary condition. For the 

case of the nonlinear maximum velocity pulse studied thus far, in the hyper sphere, 𝑘𝑝 ≡ 1. This 

is one design extreme. Another design extreme occurs whenever the boundary velocity profile 

must also be physically analytic under all conditions. Finally, notice the appearance of the 

derivatives of the canonical variables, 𝑞 ̇, 𝑝 ̇, in the numerator, illustrating the direct connection 

between the particle dynamics within phase space to a sampling theorem. In particular, these 

variables illustrate the required increased work rate  for encoding greater amounts of 
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information per unit time. The quantity 𝑚𝑎𝑥{𝑞 ̇ ∙ 𝑝 ̇} maximizes the rate of change of momentum 

per unit time over a configuration span. 

An example illustrates the utility of eq. 3-53. Suppose a signal of 1 MHz bandwidth must be 

synthesized. Let the maximum power delivery for the apparatus be set to 𝑚𝑎𝑥 {
𝑑ℰ𝑘

𝑑𝑡
} = 1 𝑤𝑎𝑡𝑡. 

Furthermore, the signal of interest is known to possess a 3dB PAER statistic. From these 

specifications we calculate that the average energy rate per sample is 2.5e-7 Joules. If the 

communications apparatus is battery powered with a voltage of 3.3 V @ 1000 mAh rating, then 

the signal can sustain for 6.6 hours between recharge cycles of the battery, assuming the 

communications apparatus is otherwise 100% efficient.  

3.1.8. Interpolation for Physically Analytic Motion 

This section provides a derivation for the interpolation of sampled particle motion.  The Cardinal 

series is derived from a perspective dependent on the limitations of available kinetic energy per 

unit time and the assumption of LTI operators for reconstructing a general particle trajectory 

from its impulse sample representation.  A portion of the LTI operator is assumed to be inherent 

in the integrals of motion.  Additional sculpting of motion is due to the impulse response of the 

apparatus. Together these two effects constitute an aggregate impulse response which determines 

the form of the characteristic velocity pulse.  The cardinal series is considered a sequence of such 

velocity pulses.  



71 

 

Up to this point the physically analytic requirement for trajectory has not been strictly enforced 

at the boundary as is evident when reviewing figure 3-16 where the force associated with a 

maximum nonlinear velocity pulse diverges to infinity.  

We now pursue a remedy which insures that all energy rates and forces are finite.  

Suppose that there is a reservoir of potential energy ℰ𝛷 available for constructing a signal.  At 

some phase coordinate {𝑞0, 𝑝0} at time 𝑡0−, the infinitesimal instant of time prior to 𝑡0, the 

quantity of energy allocated for encoding is;  

ℰ𝛷(𝑡 − 𝑡0−) 

( 3-54 ) 

The initial velocity and acceleration are zero and the position is arbitrarily assigned at the center 

of the configuration space.  𝜎𝑘_𝑡𝑜𝑡
2  is a variance which accounts for the energy to be distributed 

into all the degrees of freedom forming the signal .  The total energy of the particle is; 

ℰ𝑡𝑜𝑡 = ℰ𝛷(𝑡) + ℰ𝑘_𝑡𝑜𝑡(𝑡) + ℰ𝑑𝑖𝑠(𝑡) 

ℰ𝑘(𝑡 − 𝑡0−) = 0 

ℰ𝑑𝑖𝑠(𝑡 − 𝑡0−) = 0 

( 3-55 ) 

ℰ𝑡𝑜𝑡 remains constant and ℰ𝑑𝑖𝑠(𝑡) accounts for system losses. We shall focus on ℰ𝑘_𝑡𝑜𝑡(𝑡) the 

evolving kinetic energy of the particle, and ignore dissipation. 
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Signal evolution begins through dynamic distribution of ℰ𝑡𝑜𝑡 which depletes ℰ𝛷 on a per sample 

basis when the motion is not conservative. Particle motion is considered to be physically analytic 

everywhere possessing at least two well behaved derivatives, �̇�, �̈�. Such motions may consist of 

suitably defined impulsive forces smoothed by the particle-apparatus impulse response.  

Allocation of the energy proceeds according to a redistribution into multiple dimensions.; 

〈ℰ𝑘_𝑡𝑜𝑡〉 = 𝜎𝑘_𝑡𝑜𝑡
2 = ∑𝜎𝛼

2

𝛼

 

( 3-56 ) 

All 𝛼 = 1, …𝐷 dimensional degrees of freedom for motion possess the same variance when 

observed over very long time intervals and thus the over bar is retained to acknowledge a mean 

variance. In this case 𝜎𝑘_𝑡𝑜𝑡
2  is finite for the process and must be allocated over a duration 𝑇 for 

the signal.   

The total available energy may be parsed to 2𝑁 samples of a message signal with normalized 

particle mass (𝑚 = 1).  

𝜎𝑘_𝑡𝑜𝑡
2 =

1

2
𝐸{𝑣2}Σ𝛼,𝑛 =

1

2
∑ ∑ 𝑣2

𝛼,𝑛𝛿(𝑡 − 𝑛𝑇𝑠),    𝑁 =
𝑇

2𝑇𝑠

𝑁

𝑛=−𝑁𝛼

 

( 3-57 ) 

The time window 𝑇/2 is an integral  multiple of the sample time 𝑇𝑠.  𝑁𝑇𝑠. ±𝑇/2 may approach 

±∞.  The equation illustrates how the kinetic energy ℰ𝑘 is reassigned to specific instants in time 

via the delta function representation.  The average energy per sample is simply; 
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1

2
〈

1

2𝑁
∑𝑣2(𝑡 − 𝑛𝑇𝑠)

𝑛

〉 =
1

2

𝐸{𝑣2}Σ𝛼,𝑛

2𝑁
 

( 3-58 ) 

And the average power per sample is given as; 

〈𝑃𝑠𝑎𝑚𝑝〉 =
1

2𝑇
∑ ∑ 𝑣2

𝛼,𝑛𝛿(𝑡 − 𝑛𝑇𝑠)    

𝑁

𝑛=−𝑁𝛼

 

( 3-59 ) 

The delta function weighting has a corresponding sifting notation;  

 

𝑣𝛼,𝑛(𝑡 − 𝑛𝑇𝑠) = ∫ 𝑣𝛼,𝑛(𝑡)𝛿(𝑡 − 𝑛𝑇𝑠)𝑑𝑡 = 𝑣𝛼(𝑛𝑇𝑠)
+∞

−∞

 

( 3-60 ) 

A sampled velocity signal is also represented by a series of convolutions; 

�̃�𝛼(𝑡) = 𝑣𝛼(𝑡 − 𝑛𝑇𝑠) ∗ ℎ𝑡 = ∑ 𝑣𝛼(𝑡)𝛿(𝑡 − 𝑛𝑇𝑠) ∗ ℎ𝑡

𝑁

𝑛=−𝑁

 

( 3-61 ) 

Let �̃�𝛼(𝑡) = 𝑣𝛼(𝑡)𝛿(𝑡 − 𝑛𝑇𝑠) ∗ ℎ𝑡 be a discretely encoded and interpolated approximation of a 

desired velocity for a dynamic particle.  We are mainly concerned with obtaining an 

interpolation function for reconstitution of 𝑣𝛼(𝑡) from the discrete representation.  It is logical to 
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suppose that the interpolation trajectories will spawn from linear time invariant (LTI) operators 

given that the process is physically analytic. With this basic assumption, a familiar error metric 

can be minimized to optimize the interpolation. [ 23, 25]; 

1

2
〈𝑣𝜖

2〉 = 𝜎𝜀
2 =

1

4𝑁
[∑𝑣𝛼(𝑡)(𝑡) − 𝑣𝛼(𝑡)(𝑡)𝛿(𝑡 − 𝑛𝑇𝑠) ∗ ℎ𝑡)

𝑛

]

2

 

( 3-62 ) 

Minimizing the error variance 𝜎𝜀
2 requires solving; 

𝑣𝛼(𝑡) − 𝑣𝛼(𝑡)𝛿(𝑡 − 𝑛𝑇𝑠) ∗ ℎ𝑡 = 0 

( 3-63 ) 

ℎ𝑡 may be regarded as a filter impulse response where the associated integral of the time domain 

convolution operator is inherent in the laws of motion.  

A schematic is a convenient way to capture the concept at a high level of abstraction.  
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Figure 3-17 Schematic 

Figure 3-17 illustrates the 𝛼𝑡ℎ dimension sampled velocity and its interpolation. Extension to D 

dimensions is straightforward.  

It is evident that an effective LTI impulse response ℎ𝑒𝑓𝑓 = 1 provides the solution which 

minimizes 𝜎𝜖
2. ℎ𝑡 can be obtained from recognition that; 

∑ℎ𝑡 ∗ 𝛿(𝑡 − 𝑛𝑇𝑠)

𝑛

= ℎ𝑒𝑓𝑓 = 1 

( 3-64 ) 

∴ ℎ𝑡 ∗ 𝛿(𝑡 − 𝑛𝑇𝑠) = 1, @ 𝑡 = 𝑛𝑇𝑠 

( 3-65 ) 
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Convolution is the flip side of the correlation coin under certain circumstances involving 

functions which possess symmetry.  ℎ𝑡 ∗ 𝛿(𝑡 − 𝑛𝑇𝑠) may be viewed as a particular cross 

correlation operation when ℎ𝑡 is symmetric.  

Correlation functions for the velocity and interpolated reconstructions are constrained by the TE 

relation.  The circumstances for decoupling of velocity samples at the deferred instants 𝑡 − 𝑛𝑇𝑠 

are discussed in Appendix E.  The cross correlation of a reference velocity function with an ideal 

reconstruction at zero time shift results in;   

ℜ𝜏,𝑛𝑇𝑠
(0) = 〈ℰ𝑘〉 = ∑𝑛

𝑇𝑠𝑃𝑚

𝑘𝑝𝑃𝐴𝑃𝑅
 

( 3-66 ) 

Therefore; 

1

2
〈 ∑ (𝑣𝛼(𝑡 − 𝑛𝑇𝑠) ∗ ℎ𝑡)

2

𝑁

𝑛=−𝑁

〉 =
2𝑁𝑇𝑠𝑃𝑚

𝑃𝐴𝑃𝑅 𝑘𝑝
 

( 3-67 ) 

where; 

𝑇𝑠 = 𝑘𝑝〈ℰ𝑘〉𝑠
𝑃𝐴𝐸𝑅

𝑃𝑚
 

( 3-68 ) 

As appendix E also shows, the values of a correlation function are zero at offsets, 
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𝜏 = ∓𝑛𝑘𝑝〈ℰ𝑘〉𝑠
𝑃𝐴𝐸𝑅

𝑃𝑚
 

( 3-69 ) 

Equations 3-66 through 3-69 are necessary but not sufficient to identify the cardinal   series 

because the correlation function parameters as given are not unique. However, 3-66 through 3-69 

along with knowledge that the signal is based on a bandwidth limited AWGN process fit the 

cardinal series profile.  

The effective Fourier transform for a sequence of decoupled unit sampled impulse responses 

may be represented as follows [3, 11]; 

𝔍 {∑ℎ𝑡(𝑡 − 𝑛𝑇𝑠)

𝑛

} =
𝑃𝑚

𝑘𝑝〈ℰ𝑘〉𝑠𝑃𝐴𝐸𝑅
∑𝐻𝑡(𝑓 − 𝑛𝑓𝑠)

𝑛

𝑒
−𝑗2𝜋𝑓𝑛

𝑘𝑝〈ℰ𝑘〉𝑠𝑃𝐴𝐸𝑅

𝑃𝑚 = 𝛿(𝑓) = 𝐻𝑒𝑓𝑓 

( 3-70 ) 

The Fourier transform above is thus a series representation for the transform of the constant, 

unity.  The response for 𝐻𝑡(𝑓) is symmetric for positive and negative frequencies.  There are 2𝑁 

such spectrums 𝐻𝑡(𝑓 − 𝑛𝑓𝑠) due to the recursive phase shifts induced by a multiplicity of 

delayed samples. The time dependency of the frequency kernel has been supplanted by the 

preferred TE metric.   

Consider the operation; 

𝑣𝛼(𝑡)ℎ𝑒𝑓𝑓 = �̃�𝛼(𝑡) 

Then the frequency domain representation is; 
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𝑉(𝑓) ∗ 𝐻𝑒𝑓𝑓 = �̃�(𝑓) 

( 3-71 ) 

The series expansion for 𝐻𝑒𝑓𝑓 is now tailored to the target signal 𝑣(𝑡). The spectrum of interest 

is simply; 

𝑉(𝑓)𝐻𝑒𝑓𝑓(𝑓) = 𝑉(𝑓) ∗
𝑃𝑚

𝑘𝑝〈ℰ𝑘〉𝑠𝑃𝐴𝐸𝑅
∑𝐻𝑡(𝑓 − 𝑛𝑓𝑠)

𝑛

𝑒
−𝑗2𝜋𝑓𝑛

𝑘𝑝〈ℰ𝑘〉𝑠𝑃𝐴𝐸𝑅

𝑃𝑚 = 𝑉(𝑓) 

( 3-72 ) 

In this representation 𝑉(𝑓) need not be constant over frequency contrary to Shannon’s 

assumption.  

It is evident from investigation of the magnitude response of 𝐻𝑡(𝑓 − 𝑛𝑓𝑠) ∗ 𝑉(𝑓) that 𝐻𝑡(𝑓) 

must not alter the magnitude response of the velocity spectrum 𝑉(𝑓) over the relevant spectral 

domain, else encoded information is lost and energy not conserved.  It is also evident that 𝐻𝑡(𝑓) 

must possess this quality over the spectral range of 𝑉(𝑓) but not necessarily beyond. 

The magnitude of the complex exponential function is always one. Also, the phase response is 

linear and repetitive over all harmonic spectrums according to the frequency of the complex 

exponential.  This is most apparent when examining the spectral components of the original 

sampled signal. 

𝔍{𝑣(𝑛𝑇𝑠)} = 𝑓𝑠 ∑𝑉(𝑓 − 𝑛𝑓𝑠)

𝑛

 

( 3-73 ) 
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From the fundamentals of LTI systems and the associated impulse response requirements, 

𝑉(𝑓 − 𝑛𝑓𝑠) possesses even magnitude symmetry and odd phase symmetry and this fundamental 

spectrum repeats every 𝑓𝑠 Hz [3, 11].  Thus only 𝑉0(𝑓) is required to implement any 

reconstruction strategy because a single correct spectral instantiation contains all encoded 

information (i.e. 𝑉0(𝑓) = 𝑉1(𝑓) = 𝑉2(𝑓) = ⋯ 𝑉𝑛(𝑓)). Reconstruction of an arbitrary 

combination of 𝑉𝑛(𝑓), beyond 𝑉0(𝑓) spectrums, requires deployment of increased energy per 

unit time, violating the 𝑃𝑚 constraint of the TE relation. In other words, preservation of an 

unbounded number of identical spectrums also represents an unsupported and inefficient 

expansion of phase space (requiring ever increasing power).  

From the TE relation, the unambiguous spectral content is limited by ℰ̇𝑘 such that; 

1

2𝑇𝑠
≥

𝑃𝑚

2𝑘𝑝〈ℰ𝑘〉𝑠(𝑃𝐴𝐸𝑅)
= 𝐵 

( 3-74 ) 

This leads to the logical deduction that the optimal filter impulse response requirement can be 

obtained from;  

ℎ𝑡 =
𝑃𝑚

𝑘𝑝〈ℰ𝑘〉𝑠(𝑃𝐴𝐸𝑅)
𝔍−1 {∑ 𝐻𝑡(𝑓 − 𝑛𝑓𝑠)

𝑛=0

𝑒
−𝑗2𝜋𝑓𝑛

𝑘𝑝〈ℰ𝑘〉𝑠(𝑃𝐴𝐸𝑅)

𝑃𝑚 } = ℎ𝑒𝑓𝑓|𝑛=0
 

( 3-75 ) 

where the frequency domain of 𝐻𝑡(𝑓) must correspond to the frequency domain of 𝑉0(𝑓) (the 

0𝑡ℎimage in the infinite series) , resulting in; 
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ℎ𝑡 =
𝑃𝑚

𝑘𝑝〈ℰ𝑘〉𝑠𝑃𝐴𝐸𝑅
∫ ∑𝑒−𝑗2𝜋𝑓𝑡

0

𝑒
−𝑗2𝜋𝑓𝑛

𝑘𝑝〈ℰ𝑘〉𝑠𝑃𝐴𝐸𝑅

𝑃𝑚

𝑈𝐿

−𝐿𝐿

𝑑𝑓 

( 3-76 ) 

𝐿𝐿 = − 
𝑃𝑚

2𝑘𝑝〈ℰ𝑘〉𝑠𝑃𝐴𝐸𝑅
  , 𝑈𝐿 =  

𝑃𝑚

2𝑘𝑝〈ℰ𝑘〉𝑠𝑃𝐴𝐸𝑅
 

( 3-77 ) 

𝐿𝐿 and 𝑈𝐿 are necessary limits imposed by the allocation of available energy per unit time, i.e. 

the TE relation.  

Therefore; 

ℎ𝑡 =
𝑃𝑚

𝑘𝑝〈ℰ𝑘〉𝑠𝑃𝐴𝐸𝑅
[
𝑠𝑖𝑛[𝑓𝑠𝜋𝑡]

𝜋𝑡
] 

( 3-78 ) 

ℎ𝑡 is recognized as the unity weighted cardinal series kernel at n=0 .  This is the LTI operator 

which must be recursively applied at the rate 𝑓𝑠 to obtain an optimal reconstruction of the 

velocity function 𝑣𝛼(𝑡) from the discrete samples 𝑣𝛼(𝑛𝑇𝑠).  

That is;  

𝑣𝛼(𝑡) = ∑𝑣𝛼𝛿(𝑡 − 𝑛𝑇𝑠) ∗ ℎ𝑡

𝑛

= ∑𝑣𝛼(𝑛𝑇𝑠)
𝑇𝑠

𝜋

𝑠𝑖𝑛[𝑓𝑠𝜋(𝑡 − 𝑛𝑇𝑠)]

(𝑡 − 𝑛𝑇𝑠)
𝑛

 

( 3-79 ) 

The cardinal series is thus obtained;  



81 

 

In D dimensions the velocity is given by; 

𝑣(𝑡) = ∑𝑣𝛼(𝑡)

𝐷

𝛼

 

( 3-80 ) 

Figure 3-18 Illustrates the general interpolated trajectory for D=3 and several adjacent time 

samples, depicted by vectors coincident with impulsive forces within the phase space.  The 

trajectory is smooth with no derivative sign changes between samples and correspond to the 

cumulative character of 𝛿(𝑡 − 𝑛𝑇𝑠) ∗ ℎ𝑡 dispersing the forces through time and space.  

 

 

Figure 3-18 General Interpolated Trajectory 



82 

 

The derivation above is different from Shannon’s approach in the following significant way.  In 

contrast with Shannon’s approach, general excitations of the system are contemplated herein 

with arbitrary response spectrums automatically accommodated even when the maximum 

uncertainty requirement for �⃗�, �⃗� is waived.  Therefore, the result here is that the cardinal series is 

substantiated for all physically analytic motions not just those which exhibit maximum 

uncertainty statistics. Whittaker’s 1915 result is confirmed by this alternate approach based on 

physical principles without Shannon’s restrictions.  

It is apparent by examining multiple derivatives that a cardinal pulse is physically analytic and 

therefore is a candidate pulse response up to and including phase space boundary conditions. 

This naturally raises a question concerning preferred maximum velocity pulse type. The next 

sections provide some additional detail concerning the tradeoff for the boundary condition pulse 

type.  

3.1.8.1. Cardinal Autocorrelation  

The autocorrelation of a stationary 𝑣𝛼(𝑡) process can be obtained from the Wiener–Kinchine 

theorem as the averaged time correlation for velocity; 

𝔍{ℜ̃𝑣𝛼,𝑣𝛼
} = 𝔍{ lim

𝑁𝑇𝑠→∞

1

2𝑁𝑇𝑠
∫ 𝑣𝛼(𝑡)𝑣𝛼(𝑡 + 𝜏)

𝑁𝑇𝑠

−𝑁𝑇𝑠

𝑑𝜏} = [𝑉(𝑓)]2 

( 3-81 ) 

Suppose that it is known that 𝑣𝛼 has a maximum uncertainty  (ℜ𝜈 = 0) associated with the time 

domain response at regular intervals, 𝑁𝑇𝑠 . The frequency domain representation of the process 
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must also be of maximum entropy form. The greatest possible uncertainty in its spectral 

expression, will be due to uniform distribution. This can be verified through the calculus of 

variations [21]. The result provides further justification for the discussions of 3.1.8 and the 

required form of autocorrelation in general.  

Taking the inverse transform for [𝑉(𝑓)]2 reveals the autocorrelation for the finite power process 

which has maximum uncertainty in the frequency domain; 

ℜ̃(𝜏)𝑣𝛼,𝑣𝛼
=

𝑃𝑚𝑉2

𝑘𝑝〈ℰ𝑘〉𝑠𝑃𝐴𝐸𝑅

𝑠𝑖𝑛 [𝜋
𝑃𝑚

𝑘𝑝〈ℰ𝑘〉𝑠𝑃𝐴𝐸𝑅
𝜏]

𝜋
𝑃𝑚

𝑘𝑝〈ℰ𝑘〉𝑠𝑃𝐴𝐸𝑅
𝜏

 

( 3-82 ) 

ℜ̃(0)𝑣𝛼,𝑣𝛼
= 〈𝑣2〉 = ∫ 𝑉2

𝑈𝐿

𝐿𝐿

𝑑𝑓 =
𝑃𝑚𝑉2

𝑘𝑝〈ℰ𝑘〉𝑠𝑃𝐴𝐸𝑅
 

( 3-83 ) 

𝐿𝐿 = − 
𝑃𝑚

2𝑘𝑝〈ℰ𝑘〉𝑠𝑃𝐴𝐸𝑅
  , 𝑈𝐿 =  

𝑃𝑚

2𝑘𝑝〈ℰ𝑘〉𝑠𝑃𝐴𝐸𝑅
 

( 3-84 ) 

𝑉2 is in watts per Hz.  Likewise , 𝑣2 is in watts.  ℜ̃(𝜏)𝑣𝛼,𝑣𝛼
 is the classical result for a bandwidth 

limited Gaussian process with a TE relation substitution [12, 21]. 

Integration of any member of the cardinal series squared over the time interval ±∞ will result in 

𝑣𝛼
2(𝑁𝑇𝑠), a finite energy per sample.   
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Unique information is obtained by independent observation of random velocity samples at 

intervals separated by these correlation nulls located at modulo ±𝑁𝑇𝑠 time offsets. The cardinal 

series distributes sampled momentum interference for the duration of an entire trajectory 

throughout phase space. Hence, each member of the cardinal series will constructively or 

destructively interfere with all other members accept at intervals deduced from the correlation 

nulls. Eventually, at ±∞ time offset from a reference sample time, all memory of sampled 

motion dissipates leaving no mutual information between such extremely separated observation 

points.  This is due to the decaying momentum for each member of the cardinal series. Each 

member function of the cardinal series is instantiated through the allocation of some finite 

sample energy.  

Figure 3-21 illustrates the autocorrelation for a Gaussian distributed velocity. Members of the 

cardinal series also possess this characteristic 𝑠𝑖𝑛𝑐 response so that the unit cardinal series may 

be regarded as an infinite sum of shifted correlation functions ∑ ℎ𝑡 ∗ 𝛿(𝑡 − 𝑁𝑇𝑠)𝑁 .  

 

Figure 3-19 Autocorrelation for Power limited Gaussian Momentum (m=1) 
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3.1.8.2. Max. Nonlinear Velocity Pulse vs. Max Cardinal Pulse  

It is now apparent that two pulses can be considered for boundary conditions. The maximum 

velocity pulse is not physically analytic but does define an extreme for the calculation of energy 

requirements per unit time to traverse the phase space. A cardinal pulse may also be used for the 

extreme if the boundary must be physically analytic as well, though 𝑃𝑚 has a different limiting 

value for the cardinal pulse option. This section discusses the tradeoff between the two pulse 

types in terms of trajectory, 𝑃𝑚, B, etc. 

Comparison of both velocity types is provided in the following figure where the peak value is 

conserved. In this case, 𝑘𝑝 = 1.28 for the TE relation as can be verified through the equations of 

appendices F,G.  

 

Figure 3-20 MaximumVelocity Pulse Compared to Main Lobe Cardinal Velocity Pulse 
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The following graphic illustrates the comparison of kinetic energy vs. time and the derivatives 

for both pulse types with identical amplitudes. It provides an alternate reference for comparing 

the two pulse types.  

 

Figure 3-21 Kinetic Energy vs. Time for Velocity and Cardinal Pulses 

This analysis suggests that linear operating ranges may easily be established within the domain 

of the nonlinear maximum velocity pulse or classical cardinal pulse provided appropriate design 

margins are regarded.  

The maximum velocity pulse in the above figure could be exceeded by the generalized cardinal 

pulse near the time 𝑡 = .5 ± ~.07.  A design “back off” can be implemented to eliminate this 

boundary conflict. The following figure illustrates this concept with a modest .4 dB back off for 

the power associated with the peak pulse amplitude. 
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Figure 3-22 Max Velocity Pulse and Main Lobe Cardinal Velocity Pulse with .4 dB “Backoff”  

However, this design criteria is not as important to the current theme as the criteria for 

determining peak power, peak energy, and bandwidth impacts required to maintain a physically 

analytic profile for the desired boundary condition.  

Consider the requirement to sustain identical span of the phase space for both maximum pulse 

types, given fixed ∆𝑡=2𝑇𝑠. Solving the position integrals for both pulse types and equating the 

span covered per characteristic interval results in the following equation (refer to appendix F for 

additional detail); 

∫ 𝑣𝑝𝑑𝑡
𝑇𝑠

0

= ∫ 𝑣𝑚_𝑐𝑎𝑟𝑑

𝑠𝑖𝑛 (𝑡
𝜋
𝑇𝑠

)

𝑡
𝜋
𝑇𝑠

𝑑𝑡
𝑇𝑠

0
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𝑣𝑚_𝑐𝑎𝑟𝑑 =
2π

3
√

2𝑃𝑚𝑇𝑠

𝑚
(
1

𝜋
∑

(2𝑛 + 1)(2𝑛 + 1)!

(−1)𝑛(𝑇𝑠)2𝑛+1

∞

𝑛=1

) ≈ 1.6√𝑃𝑚   ,       𝑓𝑜𝑟 𝑇𝑠 = 1,   𝑚 = 1 

( 3-85 ) 

𝑣𝑚_𝑐𝑎𝑟𝑑 is the required cardinal pulse amplitude to maintain a specific configuration space span. 

The relative velocity increase and peak kinetic energy increase, compared to the nonlinear 

maximum velocity pulse case, are; 

𝑣𝑚_𝑐𝑎𝑟𝑑

𝑣𝑚
≅ 1.13  

ℰ𝑚_𝑐𝑎𝑟𝑑

ℰ𝑚
≅ 1.28  

This represents a modest increase in peak kinetic energy of roughly 1.07 dB. The relative 

increase for the maximum instantaneous power requirement is noticeably larger. 

𝑃𝑚_𝑐𝑎𝑟𝑑

𝑃𝑚
≅ 2.158 

Hence, there is a relative requirement to enhance the peak power source specification by 3.34 dB 

to maintain a physically analytic boundary condition utilizing the maximum cardinal velocity 

pulse profile.  Another way to consider the result is that one may design an apparatus choosing 

𝑃𝑚 using the nonlinear maximum velocity pulse equations and then expect perfectly linear 

trajectories up to ~.68 𝑣𝑚 where 𝑣𝑚 is the maximum velocity of the nonlinear maximum 

velocity pulse. Beyond that point velocity excursions of the cardinal pulse begin to encounter 
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nonlinearities due to the apparatus power limitations. Alternatively, one may use the appropriate 

scaling value for 𝑘𝑝 in the TE relation to guarantee linearity over the entire dynamic range.  

The following figure illustrates velocity vs. position for the circumstance where the two 

velocities are compared and required to span the same configuration space in the time ∆𝑡. 

Positive and negative trajectories are illustrated for both types. The precursor and post cursor 

tails for the maximum cardinal velocity pulse illustrate trajectories outside of the time window 

−𝑇𝑠 ≤ 𝑡 ≤ 𝑇𝑠 . Though the time span for a maximum cardinal pulse is without bound the 

position converges to ±.8459𝑅𝑠 within the phase space. The first cardinal pulse nulls occur at 

the phase space boundaries (±𝑅𝑠) and the derivatives of these reflection points are smooth 

unlike the maximum nonlinear velocity pulse derivatives.  

 

Figure 3-23 Comparison of Max. Nonlinear Velocity Pulse and Max. Cardinal Velocity Pulse 
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Now consider an alternate case where the value for 𝑃𝑚 = 1 and is fixed for both pulse types. In 

this case there are two separate time intervals permitted to span the same physical space. Let the 

time interval 𝑇𝑟𝑒𝑓 = 1 apply to the sampling interval for the nonlinear maximum velocity pulse 

and 𝑇𝑠 apply to the sampling interval for the cardinal maximum velocity pulse. 𝑇𝑠 may be 

calculated from (refer to appendix F for additional detail); 

𝑇𝑠 ≡ 1.179 𝑇𝑟𝑒𝑓 

( 3-86 ) 

The bandwidth is then approximately .848 of the nonlinear maximum velocity case with 

𝑇𝑟𝑒𝑓 = 1. Another way to consider the result is that for a given 𝑃𝑚 in both cases, a physically 

analytic bandwidth .848 (𝑇𝑟𝑒𝑓)
−1

 is always guaranteed. As a dynamic particle challenges the 

boundary through greater peak power excursions, violations of the boundary occur and some 

information will begin to be lost in concert with undesirable spectral regrowth. In the scenario, 

where 𝑃𝑚 = 𝑃max _𝑐𝑎𝑟𝑑, instantaneous peak power and configuration span are conserved for both 

pulse types and 𝑘𝑝 = 1.179 for the TE relation.  

The derivative illustrated in the next figure depicts a time variant force associated with a 𝑠𝑖𝑛𝑐 

momentum impulse response.  
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Figure 3-24 Max. Cardinal Vel. Pulse,  Associated Force Function and Work Function  

Although �̇� appears as one continuous function it clearly identifies companion acceleration and 

deceleration cycles which restrict particle motion to the characteristic phase space radius.  The 

continuous momentum function can be obtained from impulse forces redistributed via ℎ𝑡. Also, 

that there are two derivative sign changes in the force over the interval ±∆𝑡/2 = ±𝜋 . Moreover, 

the forces are finite. This verifies consistency with the physical sampling theorem and a desire to 

maintain physically analytic motion. In addition, the instantaneous work function is illustrated 

for the particle. It is reassuring that the work function is also finite everywhere.  The momentum 

response resembles the impulse response of an infinite Q filter without dissipative loss.  

The tails of the 𝑠𝑖𝑛𝑐 and its derivative extend in both directions of time to infinity. Fortunately, 

there are useful classes of impulse responses which avoid this difficulty. For instance, we may 

opt for a finite length impulse response modification of the 𝑠𝑖𝑛𝑐 pulse which performs with 
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suitable error metrics or resort to other related approximations adapted from a family of impulse 

responses developed by Harry Nyquist [3, 27]. We will not pursue those discussions as Nyquist 

pulses are well documented in the literature as are tradeoffs for implementing finite time 

approximations. Rather, we focus on the 𝑠𝑖𝑛𝑐 pulse for the remainder of analysis whenever the 

physically analytic conditions are desired, confident that suitable finite time duration 

approximations exist.  Therefore, all extended physically analytic trajectories may be considered 

as a superposition of suitably weighted 𝑠𝑖𝑛𝑐 like pulses.  

Neither the nonlinear maximum velocity pulse nor the maximum cardinal pulse are absolutely 

required at the phase space boundary. They represent two logical extremes with constraints such 

as energy expenditure per unit time  for the most expedient trajectory to span a space or this 

property in concert with physically analytic motion. There can be many logical constructions 

between these extremes which append other practical design considerations.  

3.1.9. Statistical Description of the Process  

In this section we establish a framework for describing the characteristics of the model in terms 

of a stochastic processes. The necessity of this more detailed discussion is to leverage certain 

conditional stationary properties of the model.  

There are physical attributes attached to the random variables of interest with a corresponding 

timeline due to laws of motion.  Each configuration coordinate has assigned to it a corresponding 

probability density for momentum of a particle, 𝜌(�⃗�|𝑞) which is D dimensional Gaussian.   
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The following discussions assume that the continuous process may be approximated by a 

sampled process.  This assumption is liberally exploited. Middleton provides a thorough 

justification for this approach [12].   

Even though the random variables associated with the process are Gaussian, the variance of 

momentum is dependent on the coordinate in space which in turn is a function of time.  This is 

true whenever the samples of analysis are organized with an ordered time sequence, which is a 

desirable feature. On the other hand, statistical characterization may not require such 

organization. However, any statistical formulation which does not preserve time sequences 

resists spectral analysis. This is no small impediment.  

It is possible to obtain the inverse Fourier transform for the general velocity pulse spectrum 

justified by the Wiener – Kinchine (W-K) theorem if the underlying process is stationary in the 

strict or wide sense [3, 11, 21, 24, 25]. Such an analysis can prove valuable since working in 

both the time and frequency domain affords the greatest flexibility for understanding and 

specifying communications processes. However, sometimes the underlying process may evade 

fundamental assumptions which facilitate a routine Fourier analysis of the autocorrelation. Such 

is the case here.  

We now pursue description of the stochastic process with an ensemble of functions possessing 

random values at regular time intervals separated by 𝑇𝑠. 

Several definitions for a random process provides some theoretical and practical insights going 

forward;  
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A random process is an uncountable infinite, time ordered continuum of statistically independent 

random variables [28]; 

The author’s tweak will be adopted for this definition to accommodate physically analytic 

processes which can adapt to classical or quantum scenarios;  

A random physical process is a time ordered set of statistically independent random variables 

which are maximally dense over their spatial domains.  

Middleton’s definition provides practical insight [12]. 

 “ …an ensemble of events in time for which there exists a probability measure, descriptive of the 

statistical properties, or regularities, that can be exhibited in the real world in a long series of 

trials under similar conditions”  

Thomas provides a flexible interpretation [21]. 

“A random process (or stochastic process) is an ensemble, or set, of functions of some 

parameter (usually taken to be time) together with a probability measure by which we can 

determine that any member, or group of members, has certain statistical properties.”  

Thomas’s statement is perhaps the most versatile, acknowledging the prominence of a time 

parameter but not requiring it.  

In the following discussions a classical time sampled or momentum ensemble view is discussed 

as well as a reorganization of the time samples into configuration bins (configuration ensemble). 

The configuration bins are defined to collect samples which are maximum uncertainty Gaussian 
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distributed for momentum, at respective positions 𝑞ℓ. Evolving time samples are required to 

populate these configuration bins at random time intervals, modulo 𝑇𝑠. 

A general statistical treatment of the motions for particles within the phase space can be given 

when the ensemble members which are functions of time are sampled from the process. This is 

the usual procedure referred to here as a momentum ensemble. Consider the set of 𝑘 sample 

functions extracted from the random process Ж(𝑞, 𝑝) organized as the following momentum 

ensemble: 

Ж(𝑞, 𝑝) = {[𝑞(𝑡), 𝑝(𝑡)]1, [𝑞(𝑡), 𝑝(𝑡)]2, [𝑞(𝑡), 𝑝(𝑡)]3, ………… . [𝑞(𝑡), 𝑝(𝑡)]𝑘} 

( 3-87 ) 

If each sample function is evaluated (discretely sampled) at a certain time, 𝑡ℓ, then the collection 

of instantaneous values from the 𝑘 sample functions, also become random variables.    This view 

implies that a large number of hypothetical experiments or observations could be performed 

independently and in parallel, given multiple indistinguishable instantiations of the phase space.  

Figure 3-25 illustrates the parallel observations characterizing a momentum ensemble with 𝑘 

experiments, where each experiment may be mapped from the 𝐼𝑘 information sources through 

some linear operator 𝐽 and sampled in time to obtain a record of each sample function. If the time 

samples occurring at 𝑡ℓ = 𝑡 − ℓ𝑇𝑠 are independent for sequential incremental integer values of ℓ 

then position and momenta appear as samples from a Gaussian RV. If the process is viewed with 

time ordering then the collection of sampled random variables is non-stationary because the 

momenta second moments change vs. each unique position to accommodate boundary 
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conditions. Even though variance of a trajectory’s samples changes for each position, the total 

variance of a collective is bound by the cumulative sum of the independent sample variances, 

which is a stationary quantity. 

 

Figure 3-25 Parallel Observations for Momentum Ensemble 

The following graphics illustrate three continuous sample functions from the momentum 

ensemble where the underlying process is of the type discussed here. Two of the members have 

been provided with an artificially induced offset in the average for utility of inspection (all three 

sample functions are actually zero mean).  



97 

 

 

Figure 3-26 Three Sample Functions from a Momentum Ensemble 

A closer inspection illustrates the velocity with a bandwidth limit 𝐵 of approximately 1Hz.  

 

Figure 3-27 Three sample Functions from a Momentum Ensemble  
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The following plot illustrates how continuous velocity is related to continuous position through 

an integral of motion for one of the sample functions.  

 

Figure 3-28 Velocity and Position for a Sample Function (𝑅𝑠 ≈ 1) 

These graphics clearly illustrate a limited frequency response. This response however is not the 

result of a traditional filter but rather the result of the limit for the maximum rate of change of 

energy (𝑃𝑚) available to the apparatus. Between samples, physical interpolation such as 

suggested in section 3.8.1 produces a smoothing effect which incorporates momentum memory 

between the independent samples. In the case of a maximum velocity pulse the memory is finite 

while the maximum cardinal pulse distributes momentum over an infinite range of time albeit 

with a value of zero at multiples of the sampling interval.  

At this juncture, the existence of an ergodic process has not been substantiated.  Such a 

characterization provides considerable utility yet demands a process description which is 
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stationary in the strict sense.  The conditional stationary properties assumed by earlier 

discussions are now in question here.  In order to clarify the concern, the ergodic theorem 

paraphrased by Middleton and attributed to Doob is provided as a reference [12, 29]. 

For an ergodic ensemble, the average of a function of the random variables over the ensemble is 

equal with probability unity to the average over all possible time translations of a particular 

member function of the ensemble, except for a subset of representations of measure zero.  

It is clear from this definition that the process cannot be assumed ergodic from inspection.  

The apparatus of each unique phase space (ref fig. 3-25) is causally subordinate to its own 

information source and no other.  Each information source maps information i.e. phase space 

coordinates {𝑝, 𝑞} to physical function of the apparatus with consideration of boundary 

conditions.    

There is a curiosity in that each of the unique iid Gaussian sources possess space-time dependent 

variances. Each Gaussian RV may not be considered stationary in the usual sense at a specific 

configuration coordinate 𝑞 because a particle in motion does not remain at one location. The 

momentum or velocity samples, at a specific time 𝑡ℓ, come from differing configuration 

locations 𝑞1,2…𝑘;ℓ in the separate experiments. The conditional momentum statistic, 𝜌(𝑝|𝑞), is 

determined by the frequency of observed sample values over many subsequent random and 

independent particle trajectory visits to a specific configuration coordinate. It may not be obvious 

that statistics of the ensemble collective predict the time averaged moments of ensemble 

members when considered in this manner or vice-versa. A reorganization of the data will 

however confirm that this is the case with certain caveats.  
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The relevance of organizing the RVs in a particular manner can be illustrated by revisiting the 

peak momentum profile and considering 3 unique configuration coordinates 𝑞1,𝑞2,𝑞3 located on 

the trajectory of a particle moving along the 𝛼𝑡ℎ axis in a hyper space. This concept is illustrated 

for both the maximum nonlinear and the maximum cardinal pulse velocity pulses in figure 3-29.  

 

 

Figure 3-29 Three Particle Samples in Phase Space along the 𝛼 axis 
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The extended tail response for the cardinal pulse is also illustrated and reverberates on the 𝛼𝑡ℎ 

axis ad infinitum. In contrast, the maximum velocity pulse profile is extinguished at the phase 

space boundary at relative times ±𝑇𝑠 corresponding to ±𝑅𝑠.  

Each position 𝑞1,𝑞2,𝑞3 has an associated peak momentum on the Gaussian pdf tail illustrated by 

the associated pdf profiles of figures 3-29 and 3-30. The Gaussian RV at each location has its 

own variance although the PAER is constant and equivalent at each position. Legitimate 

momentum values of interest lie inside the peak velocity boundaries along the dashed lines and 

are statistically captured by the following conditional probability densities for the 3 illustrated 

example configuration points.  

 

Figure 3-30 Three Gaussian pdf’s for Three Sample Rv’s 

Thus, samples at different times which intersect these position coordinates must be collected and 

organized to characterize the random variables. The collection of samples at a specific 
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configuration coordinate would almost never encounter a circumstance where the specific 

configuration coordinate occupies back to back time samples because this would imply a nearly 

stationary particle. Rather, the instants at which the coordinates 𝑞ℓ are repeated are separated by 

random quantities of time samples. Nevertheless, the new collections of samples at each 

coordinate bin may still be ordered chronologically. These new ensembles possess discontinuous 

time records though the time records are sequential and each sample is still independent. Such a 

collection is suitable for obtaining the frequency of occurrence for specific momenta given a 

particular configuration coordinate, i.e. a statistical counting with dependency. Each pdf at each 

coordinate possesses a stationary behavior. In contrast, a continuous time record consists of 

values each from the collection of such differing Gaussian variables at 𝑇𝑠 intervals. Each new 

RV in the time sampled momentum ensemble view is acquired through a time evolution  

governed by laws of motion. However, time sampled trajectories from the momentum ensemble 

do not represent a stationary set of samples because each sample comes from a pdf with a 

different second moment. 

A new configuration bin arrangement for the random process can be written with the following 

representation; (the 𝑘-th ensemble member is followed by the set of all 𝑘 members) 

Ж̃(𝑞, 𝑝)𝑘 = {(𝑞1, [𝑝(𝑡ℓ1
)]); (𝑞2, [𝑝(𝑡ℓ2

)])… (𝑞𝒾, [𝑝(𝑡ℓ𝑖
)])}

𝑘
 

Ж̃(𝑞, 𝑝) = {Ж̃(𝑞, 𝑝)1 , Ж̃ (𝑞, 𝑝)2 , … Ж̃(𝑞, 𝑝)𝑘} 

( 3-88 ) 



103 

 

Each of the k members of a time continuous momentum ensemble is partitioned into sub-

ensembles with 𝑖 configuration centric members. Each sub ensemble is time ordered but also 

time dis-continuous. The momenta are statistically characterized by pdf’s like the examples of 

figure 3-30.  

(𝑞𝒾, 𝑝(𝑡ℓ𝑖
)) is a sample from the new process at the 𝒾𝑡ℎ position along the 𝛼𝑡ℎ dimensional axis 

where each position is accompanied by a time ordered set of momenta 𝑝(𝑡ℓ𝑖
) , with a random but 

sequential time index 𝑡ℓ𝑖
. That is, 𝑡ℓ𝑖

 is the sample time record for the 𝑖𝑡ℎ configuration. 𝑡ℓ𝑖
 is set 

of numbers extracted from the superset (𝑡 − ℓ𝑇𝑠) only when those sample times correspond to an 

observed configuration bin location 𝑞𝒾 for the corresponding particle momentum. The bin can be 

defined to have a span 𝑞𝒾 ± 𝜖, where 𝜖 is some suitably small increment of distance. In this 

configuration ensemble view, each configuration coordinate is associated with its own set of 

“time stamped” momenta, albeit separated by random intervals of ℓ𝑇𝑠.  Furthermore, the time 

index sets for 𝑡ℓ𝐴
 and 𝑡ℓ𝐵

 ,where 𝑖 = 𝐴 ≠ 𝐵, do not permit coincident time samples allocated to 

two different configuration locations. None of the integer values from the time index ℓ𝐴 can be 

shared by ℓ𝐵. This is essentially a statement of an exclusion principle for the case of a single 

particle. The particle cannot occupy two different locations in space at the same time. This is a 

classical approximation of a quantum view where the dominant probability for particle location 

is assigned a single unique particle coordinate, 𝑞𝒾 ± 𝜖 . In a multiple particle scenario, each 

particle requires a unique set of indices and also must be subject to Pauli’s exclusion principle as 

well [30]. 
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The following sample plots illustrate how the Gaussian momentum samples are sparsely 

populated in time for 3 unique coordinates 𝑞1, 𝑞2, 𝑞3 from a configuration sub-ensemble. Even 

though a particular record is sparse, the full ensemble is comprehensive of all coordinates in time 

and space (i.e all 𝑖, k and ℓ values)  and therefore dense in the aggregate.  

 

Figure 3-31 Three Configuration Ensemble Sample Functions 

There are (𝑖) such sets. While suitable for statistical characterization, it is obvious that such an 

arrangement is not suitable for time domain analysis of a random process because time 

continuity is disrupted in this view. Thus, spectral analysis via the W-K theorem is out of the 

question for these records. The organization illustrated in fig. 3-31 shall be described as a 

configuration ensemble.  
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The configuration ensemble representation, Ж̃(𝑞, 𝑝) is a very different sample and ensemble 

organization than the momentum ensemble prescription for the random process given 

by Ж(𝑞, 𝑝). In the momentum ensemble arrangement each sample function traces the unique 

trajectory of a particle sequentially through time and therefore provides an intuitive basis for 

understanding how one might extract encoded information. It is a continuum of coordinates 

tracing the particle history in space time. Traditional autocorrelations and spectrums may be 

calculated in the usual manner via the W-K theorem for the classical momentum ensemble view 

only if the process is stationary in that view.  

A reorganization of time samples into a configuration ensemble for purpose of statistical analysis 

does not alter the character of the configuration centric RVs. Their moments are constant for 

each 𝑞𝒾. The justification for this stationary behavior in the configuration ensemble view is due 

to the boundary conditions, specifically; 

𝑑𝑃𝑚

𝑑𝑡
= 0 

𝑑(𝑃𝐴𝐸𝑅)

𝑑𝑡
= 0 

𝑑𝑅𝑠

𝑑𝑡
= 0 

𝑣(±𝑅𝑠) = 0 

An overall expected momentum variance can be calculated based on the variances at each 

configuration coordinate. Probabilities for conditional momenta, given position, will blend in 

some weighted fashion on the average over many trajectories, and time.   One may calculate 𝜎𝑞𝑖

2  



106 

 

by statistical means or measure the power at each configuration coordinate by averaging over 

time. Both values will be identical simply due to energy conservation and the conditional 

stationary behavior. The averages of momenta in both cases remain zero. Since the variable is 

Gaussian at each position, the higher order moments may also be deduced as well. Any linear 

operation on the collection of such random variables cannot alter this conditional stationary 

behavior.  

3.1.9.1.   Momentum Averages 

At an arbitrary position, the velocity variance is based on the location of the particle with respect 

to the phase space boundary. The span of momentum values is determined by the 𝑃𝐴𝐸𝑅𝑐 and 𝑃𝑚 

parameters at each position and the span of the configuration domain radius is ±𝑅𝑠. 𝑃𝐴𝐸𝑅𝑐 is 

the peak to average energy ratio of the configuration ensemble. 𝑃𝐴𝐸𝑅𝑝 is typically specified for 

a design or analysis not 𝑃𝐴𝐸𝑅𝑐. Ultimately we shall prefer the 𝑃𝐴𝐸𝑅𝑝 design parameter. 

If each momentum sample function is of sufficiently long duration, consisting of many 

independent time samples, then particle motions will eventually probe a representative number 

of states within the space and an appropriate momentum variance could be calculated from a 

densely populated configuration ensemble with diminishing bias on the alpha axis by averaging 

all configuration dependent variances. Such a calculation is given by; 

〈𝑣𝛼
2〉 =

1

2𝑅𝑠
∫ 𝑣𝑞

2

𝑅𝑠

−𝑅𝑠

 𝜌(𝑣|𝑞) 𝑑𝑞 

( 3-89 ) 
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The time average on the left is then equated with the statistical quantity on the right.  This is a 

correct calculation even if the velocity variance is not stationary. There is an inconvenience with 

this calculation however. We may only possess the velocity 𝑣𝑞 = 𝑣max |𝑞 explicitly for 

trajectories of phase space at boundary conditions. Fortunately there is an alternative. 

A time sampled trajectory from the momentum ensemble is composed of independent Gaussian 

random variables from the configuration ensemble. Hence, we may calculate an average 

momentum variance over 𝑖 members of the configuration ensemble where 𝑖 is a sufficiently large 

number and 𝜆𝑖 is a relative weighting factor for each configuration ensemble member variance . 

〈𝑣𝛼
2〉 = ∑𝜆𝑖𝑣𝑞𝑙

2

𝑖

= ∑𝜆𝑖

𝑖

𝑣max |𝑞
2

 𝑃𝐴𝐸𝑅𝑐
 

( 3-90 ) 

The variance on the left comes from a Gaussian RV because the variances on the right come 

from independent Gaussian RV’s. Therefore, we can specify the variance we want from the peak 

to average ratio of energy or power directly in the momentum ensemble, along with 𝑃𝑚, as 

design or analysis criteria. We need not explicitly calculate 𝜆𝑖 or even specify  𝑃𝐴𝐸𝑅𝑐 from the 

configuration ensemble because eq. 3-90 must be true from the properties of Gaussian RV’s. 

Therefore; 

〈𝑣𝛼
2〉휁 =

2𝑃𝑚

 𝑚 𝑓𝑠 𝑃𝐴𝐸𝑅𝑝
 

( 3-91 ) 
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This is the velocity variance per sample for the 휁𝑡ℎ sample function of the momentum ensemble. 

Hence, the variables from the configuration ensemble, which are dictated by maximum 

uncertainty requirements, constrain all samples from continuous time domain trajectories of the 

momentum ensemble to also be Gaussian distributed. The converse is also true. By simply 

specifying that the time domain sample functions are composed of Gaussian Random variables 

we have guaranteed that the uncertainty for any position must be maximum for a given variance.  

Now 3-90 and 3-91 are verified more deliberately in a derivation where each sample function of 

the momentum ensemble is treated as a unique message sequence and the time ordered message 

sequence is reordered to configuration bins. In this analysis, each member of the message 

sequence is a time sample. 

A message is defined by a sequence of 2𝑁 independent time samples similar to the formulation 

of chapter 2. The message sequence is then given by; 

𝑚𝜁(𝑡 − ℓ𝑇𝑠) = {(𝑞, 𝑝)1, (𝑞, 𝑝)2, … (𝑞, 𝑝)2𝑁}𝜁 

( 3-92 ) 

The message is jointly Gaussian since it is a collection of independent Gaussian RV’s. Position 

and momentum are related through an integral of motion and therefore 𝑞 also possesses a 

Gaussian pdf which may be derived from 𝑝.  

Now the statistical average is reviewed and compared to message time averages from the 

perspective of the process first and second moments. The long term time average is nearly 



109 

 

equivalent to the average of the accumulated independent samples, given a suitably large number 

of samples 2𝑁 [23, 25, 31, 32, 33]. 

〈𝑚𝜁(𝑡)〉 ≅ lim
𝑁→∞

1

2𝑁
∑ (𝑞, 𝑝)ℓ

𝑁

ℓ=−𝑁

 

( 3-93 ) 

The mean square of the message is likewise approximated by; 

〈𝑚𝜁(𝑡)
2〉 ≅ lim

𝑁→∞

1

2𝑁
∑ (𝑞2, 𝑝2)ℓ = ∑(𝜆𝑖𝜎𝑞𝑖

2

𝑖

,

𝑁

ℓ=−𝑁

𝜆𝑖𝜎𝑝𝑖

2 ) 

( 3-94 ) 

A long term time average is approximated by the sum of independent samples. It is reasonable to 

assume that the variance of each sample contributes to the mean squared result weighted by 

some number 𝜆𝑖 where 𝑖 is a configuration coordinate index. The left hand side of 3-94 is a time 

average of sample energies over 2N samples and the right hand side is the weighted sum of the 

variances of the same samples organized into configuration bins. Conservation requires the 

equivalence.  

Each time sample may be mapped to a specific configuration coordinate and momentum 

coordinate at the ℓ𝑡ℎ instant. Each position 𝑞𝑖 is accompanied by a stationary momentum 

statistic, 𝜌(𝑝|𝑞𝑖). The averaged first and second moments for each 𝑞𝑖 are therefore stationary. 

This insures that any linear functional of a set RVs with these statistics must also be stationary 

when averaged over long intervals. Thus, long term time averages inherit a global stationary 
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property as will be shown. The right hand side of the prior equations are a sum of Gaussian RVs 

and Gamma RVs, respectively. Therefore, the mean and variance of the sum is the sum of the 

independent means and variances if the samples are statistically independent. The cumulative 

result remains Gaussian and Gamma distributed respectively. This permits relating the time 

averages and statistical averages of the messages in the following manner; 

lim
𝑁→∞

1

2𝑁
∑ (𝑞, 𝑝)ℓ =

1

ℓ
∑√𝜆𝑖 ∑(𝑞ℓ, 𝑝ℓ)𝑖

ℓ𝑖

= (�̅�, �̅�)

∞

ℓ=−∞

 

( 3-95 ) 

lim
𝑁→∞

1

2𝑁
∑ (𝑞2, 𝑝𝟐)ℓ =

1

ℓ
∑𝜆𝑖 ∑(𝑞ℓ

2, 𝑝ℓ
2)𝑖

ℓ𝑖

= (𝜎𝑞
2, 𝜎𝑝

2)

∞

ℓ=−∞

 

( 3-96 ) 

The right hand sides of these equations is no more than a reordering of the left hand side time 

samples in a manner which does not alter the overall averages. 𝜆𝑖 are ultimately determined by 

the characteristic process pdf and boundary conditions and are related to the relative frequency of 

time samples near a particular coordinate 𝑞𝑖 . Whenever the averages are conducted over suitably 

large 𝑖, ℓ the sampled averages are good estimates of a continuum average . Since the right hand 

side is stationary, then the left hand side is stationary also.  

The prior analysis requires that the process appear stationary in the wide sense or [Thomas, 

Middleton];  
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〈{𝑝 𝛼
𝑧
}
𝜁
〉 = ∫ {[𝑝 𝛼(𝑞𝛼)]𝑧𝜌(𝑣 𝛼|𝑞𝛼)}𝜁 𝑑𝑣 𝛼  

∞

−∞

    ; 𝑧 = 1,2 

( 3-97 ) 

The maximum weighting is logically at the configuration origin where it is possible to achieve 

𝑣𝑚𝑎𝑥 at the apex of the 𝑣𝑝 profile.  The conditional pdf provides a weighting function for this 

statistic averaged over all possible positions 𝑞𝛼. Over an arbitrarily long interval of random 

motion, all coordinates will be statistically visited. The specific order for probing the coordinates 

vs. time is unimportant because the statistic at each particular configuration coordinate is known 

to be stationary. The time axis for the momentum ensemble member thus cannot affect the 

ensemble average or variance per sample.  

In summary; 

1

휁
∑〈{𝑝𝛼

𝑧}𝜁〉

𝑘

𝜁=1

≅ 𝐸{𝑝𝛼
𝑧}   ; 𝑧 = 1,2 

( 3-98 ) 

(𝜎𝑣𝛼
2 )

𝑠
=

 𝑃𝑚∆𝑡

 𝑚 𝑃𝐴𝐸𝑅 
   

( 3-99 ) 

〈ℰ𝑘〉 =
𝑚(𝑣𝑚𝑎𝑥)

2

2 𝑃𝐴𝐸𝑅
 

( 3-100 ) 
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〈𝑝𝛼
2〉 =

(𝑝𝑚𝑎𝑥 _𝛼)
2

 𝑃𝐴𝐸𝑅
 

( 3-101 ) 

〈ℰ̃𝑘〉 may also be calculated for a maximum cardinal pulse boundary condition. We need only 

consider the primary lobe of the 𝑠𝑖𝑛𝑐 function. The average energy for the maximum cardinal 

velocity pulse main lobe is calculated from (ignoring the tails); 

〈ℰ̃𝑘_𝑐𝑎𝑟𝑑〉 = 〈
𝑚 𝑣𝑚_𝑐𝑎𝑟𝑑

2

2
∫

sin2 (𝜋𝑓𝑠𝑡)

(𝜋𝑓𝑠𝑡)2
𝑑𝑡

𝑇𝑠

−𝑇𝑠

〉 ≅ .903
𝑚 𝑣𝑚_𝑐𝑎𝑟𝑑

2

2
 

( 3-102 ) 

The average energy and momentum of all trajectories subordinate to the maximum cardinal pulse 

bound is therefore ; 

〈ℰ𝑘_𝑐𝑎𝑟〉 = .4515
𝑚 𝑣𝑚_𝑐𝑎𝑟𝑑

2

(𝑃𝐴𝐸𝑅)
;   

〈𝑝𝑐𝑎𝑟𝑑
2〉 = .903

𝑚2 𝑣𝑚_𝑐𝑎𝑟𝑑
2

(𝑃𝐴𝐸𝑅)
;   

( 3-103 ) 

The ratio of the average energy for the trajectories subordinate to the two profiles is 

approximately 1.1074 when 𝑣𝑚_𝑐𝑎𝑟𝑑
2 = 𝑣𝑚

2 . If the two cases are compared with an equivalent 𝑅𝑠 

design parameter then the ratio of comparative energies increases to (1.13)(1.1074)~1.25. This 

was obtained from 3-103 and section 3.1.8.2, as well as appendices F, G.  
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3.1.10.   Configuration Position Coordinate Time Averages  

Since the configuration coordinates are related to the momentum by an integral, the position 

statistic is also zero mean Gaussian with a variance related to the average of the mean square 

velocity profile. Davenport & Root and Middleton provide extensive discussion and proof of the 

Linear transformation of a Gaussian random process [12, 24]. Figure 3-32 illustrates the 

relationship between velocity and position for a particular sample function.  

 

Figure 3-32 Momentum and Position Related by an Integral of Motion 

Since the statistics of a position 𝑞𝑖 are stationary, the linear function of a particular 𝑞𝑖 also 

possesses a stable statistic.  
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In the prior sections, the Gaussian nature of momentum was argued from the maximum 

uncertainty requirement of momentum at each phase space coordinate. The position over an 

interval of time 𝑡𝑎 − 𝑡𝑏 is given by; 

𝑞𝜁(𝑡) =
1

𝑚
∫ �̌�𝜁(𝑡)

𝑡𝑏

𝑡𝑎

 𝑑𝑡 =
1

𝑚
∫ 𝑎𝜁(𝑡)𝑝𝜁(𝑡)

𝑡𝑏

𝑡𝑎

 𝑑𝑡 + 𝑞𝑎 

( 3-104 ) 

The momentum 𝑝𝜁(𝑡) could be scaled by a continuous function of time 𝑎𝜁(𝑡) resulting in an 

effective momentum, �̌�𝜁(𝑡). Sample functions of this form produce output RV’s which are 

Gaussian when the kernel 𝑝𝜁(𝑡) is Gaussian. Furthermore, if for each 휁 this is true it can also be 

shown that, 

𝑞𝜁(𝑡) =
1

𝑚
∫ 𝐴𝜁(𝑡, 𝜏)𝑝𝜁(𝜏)

𝑡𝑏

𝑡𝑎

 𝑑𝜏 + 𝑞𝑎 

( 3-105 ) 

and the output process is also Gaussian when 𝐴(𝑡, 𝜏) is a continuous function of both time and 𝜏, 

an offset time variable [12]. In such cases, the position covariance Κ𝑞 due to this class of linear 

transformations can be obtained from; 

Κ𝑞 =
1

𝑚2
∬𝐴(𝑡, 𝜏1)𝐴(𝑡,

𝑡𝑏

𝑡𝑎

𝜏2)Κ𝑝(𝜏1, 𝜏2) 𝑑𝜏1 𝑑𝜏2 

( 3-106 ) 
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An alternate form in terms of an effective filter impulse response and input covariance Κ𝑝,  is 

given by [12, 24]; 

Κ𝑞 =
1

𝑚2
∬ℎ(𝑡 − 𝜏1)ℎ(𝑡 −

∞

−∞

𝜏2)Κ𝑝(𝜏1 − 𝜏2) 𝑑𝜏1 𝑑𝜏2 

( 3-107 ) 

When the covariance in each sample function is unaffected by time axis offset then ℎ(𝑡) =

𝑢(𝑡 − 𝑡𝑎) is the impulse response from the integral of motion which leads to; 

Κ𝑞 =
1

𝑚2
∬𝑢(𝑡 − 𝑡𝑎 − 𝜏1)𝑢(𝑡 − 𝑡𝑎 −

∞

𝑡𝑎

𝜏2)Κ̌𝑝(𝜏1 − 𝜏2) 𝑑𝜏1 𝑑𝜏2 = (𝜎𝑞
2)

𝑠
 

( 3-108 ) 

Κ̌𝑝 includes any time invariant scaling effects due to 𝐴(𝑡). (𝜎𝑞
2)

𝑠
 is a position variance per 

sample and 𝑇𝑠 is a sample interval. 3-108 is given in meters squared per sample. Alternately, the 

frequency domain calculation for the covariance is given by; 

Κ𝑞 =
1

𝑚2
∫ |𝐻𝑝(𝑗𝜔)|

2
∞

−∞

𝑆𝑝(𝜔)𝑑𝜔 

( 3-109 ) 

𝑆𝑝(𝜔) is the double sided power spectral density of the momentum and 𝐻𝑝(𝑗𝜔) is the frequency 

response of the effective filter. We also know that for maximum uncertainty conditions that 

𝑆𝑝(𝜔) is a constant power spectral density. 
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Finally, the variance of  𝑞 is also given in terms of the 𝑞𝑖 variables from the prior section (for 

large 𝑖) ; 

Κ𝑞(𝜏 = 0) = 𝜎𝑞
2 ≅ ∑𝜆𝑖𝑞𝑖

2

𝑖

=
1

𝑚2
(𝜎𝑝

2)
𝑠
𝑇𝑠

2 

( 3-110 ) 

Therefore, if we specify 𝜎𝑝
2, 𝑃𝐴𝐸𝑅𝑝 , and 𝑚 we can calculate 𝜎𝑞

2. A simulation creating the 

signals of Figure 3-32 reveals that except for the units, the position and momentum as functions 

of time seem to possess the same dynamic behavior. This is due to the fact that the momentum is 

significantly filtered prior to obtaining the position and both are analytic.  

3.1.10.1. Joint Probability for Momentum and Position  

𝜌(𝑝|𝑞) is recalled as a point of reference. The multidimensional pdf may be given as (m=1);  

𝜌(𝑣 𝑝|𝑞) =
1

√(2𝜋)𝐷|Λ|
𝑒[−

1
2
(𝑣𝛼−𝑣𝛼̅̅̅̅ )𝑇Λ−1(𝑣𝛽−𝑣𝛽̅̅ ̅̅ )]

 

( 3-111 ) 

𝜎𝛼
2, the velocity variance and diagonal of Λ, are averaged over all probable configurations. Each 

configuration coordinate possesses a characteristic momentum variance which contributes to that 

average.   

A phase space density of states in terms of configuration position must therefore be scaled 

according to; 
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𝜌(𝑞
𝛼
) =

1

√2𝜋〈𝑞𝛼
2〉

𝑒
−

(𝑞𝛼)
2

2〈𝑞𝛼
2〉 

〈𝑞𝛼
2〉 ≡ 𝜎𝑞

2 

( 3-112 ) 

The density along the 𝛼𝑡ℎ dimension of phase space is obtained from; 

𝜌(𝑣𝛼 , 𝑞𝛼) = 𝜌(𝑣𝛼|𝑞𝛼)𝜌(𝑞𝛼) 

( 3-113 ) 

The following sequence of plots illustrates the joint density of configuration and momentum 

coordinates in a single dimension for the maximum velocity profile. The probability has been 

scaled relative to the peak which occurs at the center of the space, at 𝑞𝛼 = 0. In the following 

plots, parameters of interest are; 𝑃𝐴𝐸𝑅 = 4, ∆𝑡 = 1𝑠, 𝑚 = 1 𝑘𝑔, 𝑃𝑚 = 1 𝐽/𝑠. 

 

Figure 3-33 Joint pdf of Momentum and Position 1 
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Figure 3-34 Joint pdf of Momentum and Position 2 

 

Figure 3-35 Joint pdf of Momentum and Position 3 
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Whenever, the orthogonal dimensions are also statistically independent then each dimension will 

have the form illustrated in the figures and there are 2 degrees of freedom per dimension. The 2 

degrees of freedom per dimension per particle are fully realized if sample intervals 𝑇𝑠 are 

prescribed. 

A joint phase space density representation for the continuous RV’s can be specified from the 

following synopsis of equations whenever momentum and position may be decoupled (case 

𝑚 = 1). 

𝜌(𝑣𝛼 , 𝑞𝛼) = 𝜌(𝑞𝛼)𝜌(𝑣𝛼|𝑞𝛼) 

( 3-114 ) 

𝜌(𝑞,𝑝)𝛺 = (
1

√2𝜋〈𝑞𝛼
2〉

𝑒
−

𝑞𝛼
2

2〈𝑞𝛼
2〉  (

√𝑃𝐴𝐸𝑅

√2𝜋𝑣𝛼_𝑝𝑒𝑎𝑘

𝑒
−

(𝑃𝐴𝐸𝑅)𝑣𝜶2

2(𝑣𝛼_𝑝𝑒𝑎𝑘)
2

)) 

( 3-115 ) 

1 = ∫ ∫ 𝜌(𝑞,𝑝)𝛺 𝑑𝑞 𝑑𝑝
𝑅𝑠

−𝑅𝑠

𝑣𝑝

−𝑣𝑝

;      for 𝑚 = 1 

( 3-116 ) 

This joint statistic is also zero mean Gaussian.  
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3.1.11. Summary Comments on the Statistical Behavior of the Particle  

Based Communications Process Model 

Localized motions in time are correlated over the intervals less than ∆𝑡 due to the momentum 

and associated inertia. Eventually, the memory of prior motions is erased by cumulative 

independent forces as the particle is randomly directed to new coordinates. This erasure requires 

energy. The evolving coordinates possess both Gaussian momentum and configuration statistics 

by design and the variance at each configuration coordinate is sculpted to accommodate 

boundary conditions. The boundary conditions require particle accelerations which may be 

deduced from the random momenta and finite phase space dimension. If a large number of 

independent samples are analyzed at a specific configuration coordinate, the momentum variance 

calculated for that coordinate is stationary for any member of the ensemble.  Each configuration 

coordinate may be analyzed in this manner with its sample values reorganized as a configuration 

centric ensemble member. 

The set of all momentum variances from all configuration coordinates may be averaged.  That 

result is stationary.  Yet, the process is not stationary in the strict sense because the momentum 

statistics are a function of position and therefore fluctuate in time as the history of a single 

particle evolves sequentially through unique configuration states.  The process is technically not 

stationary in the wide sense because the autocorrelations fluctuate as a function of time origin. 

The moments of the process are however predictable at each configuration coordinate though the 

sequence of such coordinates is uncertain. 
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This process shall be distinguished as an” entropy stable” stationary (ESS) process.  The features 

of such a process are; 

a) Autocorrelations possess the same characteristic form at all-time offsets but differ in some 

predictable manner; for instance, variance vs. position or parametrically vs. time.  The 

uncertainty of these variances can be removed given knowledge of relative configuration 

offsets compared to an average, given the boundary conditions of the phase space are known 

and stationary. 

b) Shannon’s entropy over all  the configuration ensembles is unchanging even though the 

momentum random variable is not stationary as each configuration coordinate changes. The 

momentum does possess a known long term average variance. 

c) The long term time averages are characterized by the corresponding statistical average for a 

specific RV. The RV statistics (in this case momentum) may change as a function of time but 

will be constant at a particular configuration coordinate. 

d) Time averages and statistical averages for the ensemble members can be globally related by 

reorganizing samples from the process to favor either the momentum or configuration 

ensemble views respectively. The statistics of the process are unaltered by such comparative 

organizations. 

e) The variance of position  may not necessarily be obtained through the momentum 

autocorrelation and system impulse response without further qualification. That is, the 

configuration variance may not always be calculated by direct application of the W-K 

theorem and system impulse response, through knowledge of the momentum variance 

without detailed consideration of boundary conditions. 
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Items a) and b) are of specific interest because they illustrate that statistical characterizations 

which are not classically stationary still may possess an information theoretic stability of sorts.   

Stability of the uncertainty metric should be the preoccupation and driving principle rather than 

the legacy quest to establish an ergodic assumption.  This point cannot be overemphasized for if 

the statistics which encode information change on an instant to instant basis in a stochastic way 

then the phase space is unstable and may become unbounded or otherwise ill-defined. 

Information may be lost or annihilated. 

Perhaps the most general view is that the entropy stable stationary communications process is a 

collection of individually stationary random variables with differing moments determined by 

physical boundary conditions and a time sequence for accessing the RV’s which is randomly 

manifest whenever the process is sequentially sampled at sufficient intervals.  

 Comments Concerning Receiver and Channel 3.2.

It shall not be necessary to analyze the receiver and channel in detail to obtain an analysis of 

capacity or efficiency. For the purposes herein, both the channel and receiver are considered to 

be linear. Therefore, the signal at the receiver is a replica of the transmit signal scaled by some 

attenuation factor, contaminated by additive white Gaussian noise (AWGN) and perhaps some 

interference with an arbitrary statistic. The channel conveys motion from the transmitter to the 

receiver via some momentum exchange whether field or material based.  
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The extended Channel consists of transmitter, physical transport media, and receiver. The 

physical transport medium can be modeled as an attenuator without adding other impairments 

except for AWGN noise.  Although, the AWGN contribution may be distributed amongst the 

transmitter, transport medium and receiver, it is both convenient and sufficient to lump its affect 

into the receiver since we are concerned with the capacity of a linear system.  The following 

figure illustrates the extended channel. 

 

Figure 3-36 Extended Channel 

Figure 3-36 represents the continuous bandwidth limited AWGN channel model without 

physical transport medium memory. Both the transmitter and receiver may possess finite 

bandwidth restrictions. 

It is useful to connect this classical idea to the concepts of phase space. One approach is a global 

phase space model since it is an extension of the current theme and preserves a familiar analysis 

context. The following figure indicates the concept. 
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Figure 3-37 Global Phase Space 

The coordinate systems for the transmitter, receiver, and channel may be co-referenced. Relative 

motions between the transmitter and receiver may be accommodated. The implied momentum 

exchanges between the transmitter, transport medium and receiver indicated by figure 3-37 may 

be assigned arbitrary direction within the global space. Arbitrary interferences can be simulated 

by insertion of additional transmitter sources if so desired. Channel distortions may require more 

detailed consideration and specification of the spatial properties of the transport medium between 

the transmitter and receiver but such models exist which can be easily adapted [34, 35, 36].  

Channel attenuation is a property of the space between the transmitter and receiver. Attenuation 

is different for mechanical models, electromagnetic models, etc. There is a preferred 

consideration for the case of free space and an electromagnetic model where the power radiated 

in fields follows an inverse square law. Likewise, the momentum transferred with the radiated 
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field is well understood and this momentum reflects corresponding accelerated motions of the 

charged particles within the transmitter and receiver phase spaces. This will be revisited in 

section 5.5. 

If we assume that transmission times are relatively long term compared to observation intervals 

then average momentum densities at each point in the global phase space will be relatively 

stationary if the transmit and receive platforms are fixed in terms of relative position. The 

momentum density is 3 dimensional Gaussian with a spatial profile sculpted proportional to 𝑅−2 

where 𝑅 is the radius from the transmitter, excluding the near field zone [40]. This follows the 

same theme as the analysis for the velocity profiles with the exception of the boundary condition. 

At large distances, the PAPR for the momentum profile is the same as for local fields but the 

variance converges as 𝑅−2. The pdf for the field momentum in the channel transport medium 

will be of the following form. 

𝜌(𝑝 𝜶) ≅
√𝑃𝐴𝐸𝑅

√2𝜋𝑝𝛼_𝑝𝑒𝑎𝑘

𝑒
−
(𝑃𝐴𝐸𝑅)𝑝𝒙𝜶2

2(𝑝𝛼_𝑝𝑒𝑎𝑘)
2

, 𝑃𝐴𝐸𝑅 ≡ (
𝑝𝑥𝛼_𝑝𝑒𝑎𝑘

𝜎𝑝𝒙𝜶

)

2

 

𝜌(𝑝 ) = ∏ 𝜌(𝑝 𝛼)
𝐷=3

𝛼=1
 

( 3-117 ) 

𝜎𝑝𝜶
 is a function of radial offset from the transmitter and the radius vector is a composition of 3 

orthogonal position vectors. In the basic model the density is independent of direction. That is, 

the propagation is omnidirectional. This follows if the receiver position is uncertain. 𝜎𝑝𝜶
 could 

vary as a function of azimuth and elevation for more advanced analysis if the receiver position is 
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known and the transmitter is equipped to take advantage of this a priori knowledge. The receiver 

may occupy any region accept the transmitter position. 

There are two interfaces to consider in the basic model; transmitter-channel and channel-

receiver. Maximum power transfer is assumed at both interfaces. Hence, the effect of loading, is 

that half of the source power is transferred at each interface [41]. Otherwise, the relative statistics 

for motions of particles and fields through phase space are unaffected except by scale. 

Similar analogies can be leveraged for acoustic channels and optical channels. In those cases, 

momentum may be transferred by material or virtual particles but the same concepts apply. 

The receiver model mimics the transmitter model in many respects. The geometry of phase space 

for the receiver can be hyper-geometric and  spherical as well. The significant differences are; 

a) Relative location of information source and phase space 

b) The direction of information flow is from the channel which is reversed from the Tx 

scenario 

c) The sampling theorem applies in the sense of measuring rather than generating signals 

d) There can be significant competitive interfering signals and contamination of motion 

beyond thermal agitation, though that is not addressed by this work 

With respect to item d); the relative power of the desired signal compared to potential 

interference power, which may contaminate the channel, can be many orders of magnitude in 

deficit. The demodulator which decodes the desired signal must discriminate encoded 

information while removing the effects of the often much larger noise and interference, to the 

greatest extent possible 
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Signal strength and therefore capacity is greatly influenced by the separation R of  the 

information source and the information sink (see eq. 3-117). The receiver must redact patterns of 

motions which can survive transfer through large contaminated regions of space (transport 

medium) and still recognize the patterns. The sensitivity of this process is remarkable in some 

cases because the desired signal momenta and associated powers interacting with the particles of 

the receiver can be on the order of pica watts [35, 42]. This requires very sensitive and linear 

receiver technology.   

The following receiver phase space graphic illustrates a momentum trajectory consisting of the 

desired signal motions summed with random noise and interference. Notice the collision with the 

boundary producing a compression event. At that boundary the motions become nonlinear and 

information is lost. If the signal portion of the motion is much less in magnitude compared to the 

noise and interference then the nonlinearities will also create competing intermodulation 

distortions in the preferred motions, unwanted spectrums will grow, etc. . Thus, the 𝑃𝑚 and 

PAER of design are heavily influenced by the levels of permitted interference and noise as well 

as signal. In chapter 4 it is shown that the particle momenta encoding information must be 

sufficient to overcome competing momenta from environmental contamination, to achieve a 

certain capacity. This in turn influences the efficiency of the operating hardware as will be 

established in chapter 5. 
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Figure 3-38 Maximum Cardinal Pulse Profile in a Receiver Phase Space along with a Random  

Particle Trajectory 

It will be shown that at the most fundamental level the same concepts for communications 

efficiency apply throughout the extended channel. Similarly, capacity, while independently 

affected by receiver performance, transmitter performance and extended channel conditions, 

finds common expression in certain distributed aspects of the capacity equation such as signal 

power, noise power, observation time, sampling time, etc. We proceed with a high level analysis 

of capacity vs. efficiency dependent on these common variables applied to the current particle 

based model where information is transferred through momentum exchange.  
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 UNCERTAINTY AND INFORMATION CAPACITY 4.

This  chapter accomplishes  two goals; 

a) Refine a suitable uncertainty metric for a communications process of the model 

described in chapter three. 

b) Derive the physical channel capacity. 

What is required is an uncertainty associated with coordinates of phase space. This can be 

obtained from a density of the phase space states which calculates the probability of particle 

occupation for position and momentum. Once the uncertainty metric is known, the capacity may 

be obtained from this metric, the TE relation, and some basic knowledge of the extended 

channel.  

 Uncertainty 4.1.

Uncertainty is a function of the momentum and configuration coordinates. Thus, formulations 

from statistical mechanics may be adopted at least in part. However, one of the most powerful 

assumptions of statistical mechanics is forfeit. A basic postulate of statistical mechanics asserts 

that all microstates (pairings of {𝑞, 𝑝}) of equal energy for a closed system be equally probable 

[13, 43]. This postulate provides much utility because particles possess equal energy distribution 

everywhere within a container or restricted phase space under equilibrium conditions. The 

communications process of chapter 3 requires that the average kinetic energy for a particle in 
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motion is a specific function of 𝑞 due to boundary conditions. Therefore, communications 

processes require more detailed consideration of the statistics for the particle motion to calculate 

the uncertainty because they are not in equilibrium. 

The uncertainty for a single particle moving in D dimensional continuum is given by; 

𝐻𝛺 = −∬… 𝜌(�⃗�, �⃗�)𝛺 𝑙𝑛 𝜌(�⃗�, �⃗�)𝛺 𝑑𝐷(𝑞) 𝑑𝐷(𝑝) 

( 4-1 ) 

The joint density 𝜌(�⃗�, 𝑝)𝛺 was obtained in Chapter 3. Some attention must be afforded to 

Jaynes’ scrutiny of Shannon’s differential entropy (eq.2-11, 4-1)  which was earlier stated by 

Boltzman in his discussion of statistical mechanics [14]. The discrete form of Shannon’s entropy 

given in eq. 2-10 cannot be readily transformed to the continuous form in 4-1, which may 

provide some ambiguity for the absolute counting of states. Shannon overcame this ambiguity by 

calculating a relative entropy metric. In addition to Jaynes’ arguments, C. Arndt addresses this 

concern in significant detail with a conclusion that ”…the information of discrete random 

variables, measured in bits, cannot be transformed to the information of continuous random 

variables in a simple way” [44]. However, in the same reference Arndt acknowledges the value 

of continuous differential entropy forms and indeed engages the classical maximum entropy 

solutions based on the continuous Gaussian distribution. He points out that the infinite offset 

which plagues the differential entropy  “…is neglected in all practical applications of this 

entropy measure” [44]. In addition to infinite offsets precluding absolute measure, the 

differential entropy may assume negative values. Shannon was aware of these limitations and 
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used ratios of pdfs in his uncertainty functions which eliminates ambiguities [15]. The ratio of 

probabilities in the argument of the natural logarithm results in difference terms for uncertainty 

which neutralizes the effect of the probability continuum resolution. 

It is the difference in entropy measures which is at the heart of capacity. This is because capacity 

is a property of the communication system’s ability to both convey and differentiate variations in 

states rather than evaluate absolute states.  

If the mechanisms which encode and decode information possess baseline uncertainties prior to 

information transfer, then such pre-existing ambiguity cannot contribute to the capacity. Thus, a 

change in state referred to a baseline state is necessary and sufficient as a metric to calculate 

capacity. This is a kind of information relativity principle in that only relative differences of 

some physical quantity may convey information.  

In this chapter, we promote a lower limit resolution for the momentum and configuration, based 

on quantum uncertainty.  A discrete resolution is introduced to limit the number of states per 

trajectory which may be unambiguously observed.  

That is, even though a continuum of states may exist mathematically they cannot be resolved due 

to physical limitations. Hence, we may only count what we can resolve. 

Middleton also forwarded a similar suggestion though he did not pursue the details of a 

probability density function [12]. He stated that uncertainty functions based on pdf ratios, result 

in forms of mutual information metrics which eliminate the concerns for cell resolution of the 

phase space. He states “ Cell size no longer appears in these expressions for information gain, 

since they represent the difference between two states of ignorance or uncertainty” [12]. This 
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statement is based on his assessment of the insertion of quantum uncertainty into the analysis and 

thus the reference to “cell size”. However, discarding an explicit quantum uncertainty in the 

numerator and denominator terms of the mutual information kernel of the uncertainty function 

ignores certain physical aspects for limiting conditions in a capacity equation. Therefore this 

quantum uncertainty will be addressed in the subsequent analysis. 

One may be tempted to simply write down a proposed discrete form of a pdf without a physical 

measure. This is unnecessary and potentially problematic as Arndt points out. Arndt provides the 

logical motivation to begin with a continuous rather than discrete entropy form. He asserts, 

“Discrete entropies are based on probabilities of the events and do not have any reference to the 

concrete observations” [44]. Continuous entropies originate from observables connected to the 

phase space proper. In this connection the Gaussian distribution explicitly includes the variance 

of the observable as well as the character of its time evolution. If the discrete random variable is 

derived by sampling a continuous process then it may logically inherit attributes of the 

continuous physical process, if it is properly sampled. Conversely if it is merely a probability 

measure of events without connection to physics it may provide an incomplete characterization.  

The approach moving forward, adopts the statistical mechanics formulation . The applicable 

probability density is normalized to a measure of unity while accommodating the quantum 

uncertainty by setting the granularity of phase space cells for each observable coordinate [13, 

43].  
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1

𝒽𝐷
∫…∫𝜌(�⃗�, �⃗�)𝛺𝑑𝐷(𝑞)𝑑𝐷(𝑝) = 1 

( 4-2 ) 

𝒽𝐷 provides a scale according to a phase cell possessing a 𝐷 dimension span on the order of 𝒽 , 

Planck’s constant.  

The total uncertainty may be calculated from a weighted accumulation of Gaussian random 

variables. Each variable is associated with a position coordinate 𝑞𝛼 and each coordinate 

possesses a corresponding probability weighting.  

The inclusion of the factor 
1

𝒽𝐷𝜈  (where the number of particles 𝜈=1) addresses Jaynes’ concern 

since he suggested its use in the absence of an explicit statistical quantum theoretical treatment. 

Quoting Jaynes [14]; 

“Before we can set up the information measure for this case, we must decide on a basic measure 

for phase space. In classical statistical mechanics, one has always taken uniform measure largely 

because one couldn’t think of anything else to do……In other words, the well-known 

proposition that each discrete quantum state corresponds to a volume 
1

𝒽3𝜈 of classical phase 

space, will determine our uniform measure….” 

Landau had a complementary perspective with respect to Gibbs’ entropy [43];  

“It is not difficult to establish the relation between ∆𝛤 (number of relevant quantum states within 

a phase space) in quantum theory and ∆𝑝∆𝑞 in the limit of classical theory. …we can say that a 
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“cell”  of volume (2𝜋ℎ)𝑠 (where s is the number of degrees of freedom of the system) 

“corresponds” in phase space to each quantum state…the number of states ∆𝛤 may be written 

∆𝛤 =
∆𝑝∆𝑞

(2𝜋𝒽)𝑠
 

He further points out that the logarithm of ∆𝛤 is dimensionless when scaled by the denominator 

and that 

 “changes of entropy in a given process, are definite quantities independent of the choice of 

units…Only the concept of the number of discrete quantum states, which necessarily involves a 

non-zero quantum constant, enables us to define a dimensionless statistical weight and so to give 

an un-ambiguous definition of the entropy” 

This phase space measure normalization is generally regarded as a cornerstone for classical 

statistical mechanics [13]. This theme is carried forward to derive uncertainty and capacity. 

However, we must add an important note to distinguish the classical entropy of statistical 

mechanics and the uncertainty function we seek here. Classical statistical mechanics is largely 

preoccupied with conditions of equilibrium.  Thermodynamic equilibrium entropy may be 

defined by the condition (𝑑𝑆 𝑑𝑡⁄ ) = 0 [43]. Also, typically a large number of particles on the 

order of Avagadro’s number are statistically examined for a closed system. Here we begin with 

the analysis of a single particle where the fluctuations of the particle momentum are governed by 

Gaussian not uniform distributions. We ignore rotational, vibrational and other degrees of 

freedom and retain only the translation motions since the other modes are extensible [13]. The 

statistics of many non-interacting particles may then be implied. Nevertheless, in both 
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circumstances the distribution of momentum and position are at the heart of uncertainty, only the 

boundary conditions of the system differ between the two paradigms.  

The single particle uncertainty with finite phase cell, in 3 dimensions is; 

𝐻 = −
1

𝒽3
∫ …∫ …𝜌(𝑞, 𝑝)𝛺𝑙𝑛[𝜌(𝑞, 𝑝)𝛺]

𝑅𝑠

−𝑅𝑠

𝑝𝑚𝑎𝑥

−𝑝𝑚𝑎𝑥

𝑑𝑞1 𝑑𝑝1 …𝑑𝑞3 𝑑𝑝3  

( 4-3 ) 

It is apparent that this entropy is that of a scaled Gaussian multivariate and;  

𝐻 = 𝐻𝑞 + 𝐻𝑝 

( 4-4 ) 

𝐻𝑞 , 𝐻𝑝 are the uncertainties due to position and momentum respectively which are statistically 

independent Gaussian RV’s. The momentum and position may be encoded independent of one 

another subject to the boundary conditions.  

𝐻𝑞 + 𝐻𝑝 = 𝑙𝑛(√2𝜋𝑒)
2𝐷

+ 𝑙𝑛(|𝛬|𝐷) = 𝑙𝑛(2𝜋𝑒𝜎𝑞)
𝐷

+ 𝑙𝑛(2𝜋𝑒𝜎𝑝)
𝐷

 

( 4-5 ) 

𝛬  is the joint covariance matrix. 

The lower limit of this entropy can be calculated by allowing the classical quantity (𝜎𝑞𝜎𝑝), to 

approach the quantum value (𝜎𝑞�̃�
𝜎𝑝�̃�

), and assuming that the quantum variance may be 
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approximated as Gaussian. �̃� is the rationalized form of Plank’s constant and �̃�/2 ≤ 𝜎𝑞�̃�
𝜎𝑝�̃�

 , 

according to the quantum uncertainty relation [45].  

�̃� =  
𝒽

2𝜋
 

The number of single particle degrees of freedom 𝐷 may be set to one since the entropy is 

extensible.  Our limit is achieved for 𝜎𝑞𝜎𝑝 → 𝜎𝑞�̃�
𝜎𝑝�̃�

, D=1 case, 

𝐻𝑚𝑖𝑛 ≥ lim
𝜎𝑞𝜎𝑝→𝜎𝑞

�̃�
𝜎𝑝

�̃�

{𝑙𝑛(2𝜋𝑒) + 𝑙𝑛(𝜎𝑞𝜎𝑝)} 

( 4-6 ) 

𝐻𝑚𝑖𝑛 ≥ {𝑙𝑛(2𝜋𝑒) + 𝑙𝑛 (
𝒽

4𝜋
)} 

( 4-7 ) 

Therefore, the minimum entropy is non negative and fixed by a physical constant, assuming the 

resolution of the phase space cell is subject to the uncertainty principle. This limit is approached 

whenever the joint particle position and momentum recedes to the quantum “noise floor”.  

Positive differences from this limit correspond to the uncertainty in motions available to encode 

information.  The limit is also independent of temperature. An equivalent form of the entropy 

limit is revisited subsequently as derived by Hirschman and Beckner [45, 46, 47]. 
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 Capacity 4.2.

Capacity is defined as the maximum transmission rate possible for error free reception.  Error 

free will be defined as the ability to resolve position and momentum of a particle. We shall direct 

the following analysis to the continuous bandwidth limited AWGN channel without memory.  

“Without memory” refers to the circumstance where samples of momentum and position from 

the random communications process may be decoupled and treated as independent quantities at 

proper sampling time intervals.  

The capacity of a system is determined by the ability to generate and discriminate sequences of 

particle phase space states, and their associated connective motions through an extended channel. 

Each sequence can be regarded as a unique message similar to the discussion of chapter 2. The 

ability to discriminate one sequence from all others necessarily must contemplate environmental 

contamination which can alter the intended momentum, and position of the particle. 

4.2.1. Classical Capacity  

In this section Shannon’s definition of capacity is extended to encompass the desired physical 

models. In doing so, the difficulties associated with continuous probability densities for 

describing communications processes have been avoided so that entropy expressions do not 

diverge as pointed out by Jaynes and others.  

A summary of Shannon’s solution follows [15]; 
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𝐶 = max
𝜌(𝑥)

{𝐻(𝜌(𝑥)) − 𝐻𝑦(𝜌(𝑥))} 

𝐶 = lim
𝑇→∞

𝑚𝑎𝑥 {
1

𝑇
[−∫𝜌(𝑥)ln (𝜌(𝑥)) 𝑑𝑥 + ∬𝜌(𝑥, 𝑦) ln (

𝜌(𝑥, 𝑦)

𝜌(𝑦)
)  𝑑𝑥 𝑑𝑦]} 

𝐶 = lim
𝑇→∞

𝑚𝑎𝑥 {
1

𝑇
[∬𝜌(𝑥, 𝑦) ln (

𝜌(𝑥, 𝑦)

𝜌(𝑥)𝜌(𝑦)
)  𝑑𝑥 𝑑𝑦]} 

( 4-8 ) 

Maximization is with respect to the Gaussian pdf 𝜌(𝑥) given a fixed variance.  The channel input 

and output variables are given by 𝑥, 𝑦 respectively, where 𝑦 is a contaminated version of 𝑥. Now 

the scale within the argument of the logarithm is ratio-metric and therefore the concerns of 

infinities are dispensed, but only in the case where thermal noise variance is greater than zero, as 

will be shown. This form can also be applied to the continuous approximation of the quantized 

space or even the quantized space if each volume element is suitably weighted with a Dirac delta 

function. Thomas, Mackay and Middleton have similar treatments and provide thorough 

derivations based on principles of mutual information [12, 21, 48]. In the following derivation 

we use differential entropy forms and take ratios. Ultimately, the quantum uncertainty shall also 

be accounted for through distinct terms to emphasize its limiting impact on capacity. 

The mutual information can be defined as; 

𝐼(𝑥; 𝑦) = 𝑙𝑛 (
𝜌(𝑥|𝑦)

𝜌(𝑥)
) 
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𝜌(𝑥|𝑦) is the probability of 𝑥 entering the channel given the observation of y at the receiver load. 

This is the probability kernel of the equivocation 𝐻𝑦(𝑥). Thomas derives the capacity for the 

discretely sampled continuous AWGN channel as;  

𝐶 = 𝑚𝑎𝑥{𝐸[𝐼(𝑥; 𝑦)]} = 𝑚𝑎𝑥 {𝐸 [𝑙𝑛 (
𝜌(𝑥|𝑦)

𝜌(𝑥)
)]} = 𝑚𝑎𝑥 {𝐸 [𝑙𝑛 (

𝜌(𝑦|𝑥)

𝜌(𝑦)
)]} 

( 4-9 ) 

E is the expectation operator. Mackay shows the equivalence of Shannon’s solution and this 

mutual information form [48]. 

Finding the capacity requires, weighting all possible mutual information conditions, resulting in 

an uncertainty relationship. The averaged mutual information of interest may be written as; 

𝐸[𝐼(𝑥; 𝑦)] = [𝐼(𝑥; 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅] = 𝐻(𝑦) − 𝐻𝑥(𝑦) 

[𝐼(𝑥; 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅] = 𝐻(𝑥) − 𝐻𝑦(𝑥) 

[𝐼(𝑥; 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅] = +𝐻(𝑥, 𝑦) − 𝐻(𝑥) − 𝐻(𝑦) 

( 4-10 ) 

The joint density 𝜌(𝑞, 𝑝)𝛺 developed in the previous sections accounts for this through detailed 

expansion of covariance as a function of time where all off diagonal terms of the covariance 

matrix are zero. The pdf for the channel output is given by; 

𝜌(𝑦) = 𝜌(�̃�, 𝑝)𝛺 
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The tilde represents the corrupted observation of the joint position and momentum. The 

variances introduced by a noise process can be represented by 𝜎𝑞𝑛
2 , 𝜎𝑝𝑛

2  . The joint pdf 𝜌(𝑥, 𝑦) is 

easily obtained for the Gaussian case where time samples are elements of the Gaussian vector 

(see Appendix D). Using a shorthand notation, which simultaneously contemplates position and 

momentum, the expected value for the mutual information for a single dimension can be 

calculated from; 

𝐼(𝑥; 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑙𝑛((2𝜋𝑒)𝑁/2|Λ𝑥|
1/2) + 𝑙𝑛 ((2𝜋𝑒)𝑁/2|Λ𝑦|

1/2
) − 𝑙𝑛 ((2𝜋𝑒)𝑁|Λ𝑥,𝑦|

1/2
) 

( 4-11 ) 

Λ𝑥, Λ𝑦,  are the input, output covariance matrices respectively for the samples. Λ𝑥 , Λ𝑦 are N 

square in dimension while Λ𝑥,𝑦 is a 2N by 2N composite covariance of the N input and output 

samples [21] . The approach for the single configuration dimension thus mimics Shannon’s 

where the independent time samples are arranged as a Gaussian multivariate vector of sample 

dimension N=2BT, sometimes referred to as Shannon’s number [6]. The extension of capacity 

for D configuration dimensions may then be calculated simply by using a multiplicative constant 

if all D dimensions are independent. The variance terms for the input and output samples are; 

𝜎𝑥
2 = {〈𝑞

𝛼
2〉,

(𝑝𝛼_𝑚𝑎𝑥)
2

2 𝑃𝐴𝐸𝑅
} 

𝜎𝑦
2 = {[𝑘𝑔〈𝑞𝛼

2〉 + 𝜎𝑞𝑛
2 ], [𝑘𝑔

(𝑝𝛼_𝑚𝑎𝑥)
2

2 𝑃𝐴𝐸𝑅
+ 𝜎𝑝𝑛

2 ]} 

( 4-12 ) 
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The variance terms are segregated because they have different units. Each sample has a unique 

position and momentum variance. Thus, position and momentum are treated as independent data 

types. Subsequently the units will be removed through ratios. 𝑘𝑔 is a gain constant for the 

extended channel and may be set to 1 provided the channel noise power terms are accounted for 

relative to signal power. The elements of the covariance matrices are therefore obtained from the 

enumeration of (𝑖, 𝑗) over N for 𝜎𝑥𝑖𝜎𝑥𝑗  and 𝜎𝑦𝑖𝜎𝑦𝑗. The elements for the joint covariance Λ are 

derived from the composite input-output vector samples. The compact representation for the 

averaged mutual information from 4-11 then becomes; 

𝐼(𝑥; 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅ =
1

2
𝑙𝑛 [

|Λ𝑥||Λ𝑦|

|Λ|
] 

( 4-13 ) 

Maximization of this quantity yields capacity. 

In the case where the process interfering with the input variable x is Gaussian and independent 

from x, the capacity can be obtained from the alternate version of 𝐼(𝑥; 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅ by inspection; 

𝐶 = 𝑚𝑎𝑥{𝐼(𝑥; 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅} = 𝑚𝑎𝑥{𝐻(𝑦) − 𝐻𝑥(𝑦))} 

( 4-14 ) 

𝐻𝑥(𝑦) is the uncertainty in the output sample given the desired variable x entered the channel. 

This is simply the uncertainty due to the corrupting noise or; 

 



142 

 

𝐻𝑥(𝑦) =
1

2
𝑙𝑛[(2𝜋𝑒)𝑁|Λ𝑛|]             ; 𝐷 = 1 

( 4-15 ) 

Likewise, 

𝐻(𝑦) =
1

2
𝑙𝑛[(2𝜋𝑒)𝑁|Λ𝑦|]             ; 𝐷 = 1 

( 4-16 ) 

Since the corruption consists of N independent samples from the same process, samples possess 

a statistic with noise variance 𝜎𝑛
2 and the capacity becomes; 

𝐶 =
1

2
(𝑙𝑛 [

(𝜎𝑥
2+𝜎𝑛

2)

𝜎𝑛
2

])  
𝑛𝑎𝑡𝑠

𝑠𝑎𝑚𝑝𝑙𝑒
 

( 4-17 ) 

𝑁 is not present in the normalized capacity because of the ratio of 4-13 and 4-14. Furthermore, it 

is assumed that the required variances are calculated over representative time intervals for the 

process.  

The capacity of 4-17 is per unit sample for a one particle system. Capacity rate must consider the 

minimum sample rate 𝑓𝑠_𝑚𝑖𝑛 which sets the information rate. This is known from the TE 

relationship as the minimum number of forces per unit time to encode information. 

𝐶 =
𝑓𝑠_𝑚𝑖𝑛

2
(𝑙𝑛 [

(𝜎𝑥
2+𝜎𝑛

2)

𝜎𝑛
2

]) =
𝑃𝑚

2〈ℰ𝑘〉𝑠𝑃𝐴𝐸𝑅
(𝑙𝑛 [

(𝜎𝑥
2+𝜎𝑛

2)

𝜎𝑛
2

]) = 𝐵 (𝑙𝑛 [
(𝜎𝑥

2+𝜎𝑛
2)

𝜎𝑛
2

]) 

( 4-18 ) 
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Now an appropriate substitution using the results of chapter 3 can be made for 𝜎𝑥
2 and 𝜎𝑛

2 to 

realize the capacity for the case of a particle in motion with information determined from 

independent momentum and position in the 𝛼𝑡ℎ dimension. Capacity can be organized into 

configuration and momentum terms. 

𝐶𝛼 = 𝐶𝑞_𝛼 + 𝐶𝑝_𝛼 

𝐶𝛼 =
𝑃𝑚𝛼

2〈ℰ𝑘𝛼
〉𝑠𝑃𝐴𝐸𝑅𝛼

(𝑙𝑛 [
([〈𝑞

𝑥𝛼

2 〉 + �̃�𝑞𝑛𝛼

2 ])

�̃�𝑞𝑛𝛼

2
] + 𝑙𝑛 [

([〈(𝑝𝑥𝛼
)
2
〉 + �̃�𝑝𝑛𝛼

2 ])

�̃�𝑝𝑛𝛼

2
]) 

( 4-19 ) 

It is presumed that there will always be some variance due to quantum uncertainty. The variances 

𝜎𝑞�̃�

2 , 𝜎𝑝�̃�

2  prevent the capacity equation from diverging because their minimums reflect this 

quantum uncertainty. One way of expressing this is; 

�̃�𝑞𝑛
2 = 𝜎𝑞𝑛

2 + 𝜎𝑞�̃�

2  

�̃�𝑝𝑛
2 = 𝜎𝑝𝑛

2 + 𝜎𝑝�̃�

2  

( 4-20 ) 

This formulation estimates the maximum entropy of the quantum uncertainty to be based on a 

Gaussian RV. Therefore the variance of quantum uncertainty may add to the noise variance 𝜎𝑞𝑛
2  

and 𝜎𝑝𝑛
2  in a simple way. Hirschman and Beckner studied this form of entropy with a bound 

given by [45, 46, 47]; 
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𝐻𝑞 + 𝐻𝑝 ≥ 𝑙𝑛 (
𝜋𝑒�̃�

2
) 

[𝑙𝑛 (𝜎𝑞�̃�
) + 𝑙𝑛(√2𝜋𝑒)] + [ln (𝜎𝑝�̃�

) + 𝑙𝑛(√2𝜋𝑒)] ≥ 𝑙𝑛(𝜋𝑒�̃�) 

𝜎𝑞�̃�
𝜎𝑝�̃�

≥
�̃�

2
𝑒(𝐻𝑞+𝐻𝑝−ln(𝑒𝜋)) ≥

�̃�

2
 

( 4-21 ) 

Hirschman exploited the property that if |𝑓(𝑞)|2 and |𝑔(𝑝)|2 are both probability frequency 

functions and 𝑔(𝑝) is the Fourier transform of 𝑓(𝑞) then the entropies of |(𝑞)|2 and |𝑔(𝑝)|2 

cannot be simultaneously concentrated in q and p.  Beckner proved Hirschman’s entropy 

conjecture for the case where 𝑞 and 𝑝 are the position and momentum conjugates. This agrees 

with Weyl’s result for quantum mechanics and the uncertainty of position and momentum [47]. 

Hirschman’s bound was derived using Shannon’s entropy metric for the quantum uncertainty 

based on continuous Gaussian probability densities. The usual maximum entropy Gaussian 

assumption applies to derive the bound. The Hirschman-Beckner result is considered as a robust 

bound with a lower limit consistent with Heisenberg’s uncertainty principle [45]. Even if the 

temperature of the communications system reaches absolute zero, this uncertainty is retained. 

Figure 8-1 illustrates the impact of the quantum uncertainty compared to the thermal noise floor. 

The implication is that;    It is impossible to attain a capacity of infinity for the band limited 

AWGN channel with finite signal power.   

This is a logical and physically correct conclusion, unsupported by the Shannon-Hartley capacity 

equation. 
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For the case of information transfer via D independent dimensions, the available energy and 

information may be distributed amongst these dimensions. When all dimensions have parity, the 

capacity with a maximum velocity pulse boundary condition (𝑘𝑝 = 1), is given by; 

𝐶 ≤ ∑
𝑃𝑚_𝛼

2〈ℰ𝑘_𝛼〉𝑠𝑃𝐴𝐸𝑅𝛼
(𝑙𝑛 [

([
1

𝑚2 (𝜎𝑝_𝛼
2 )

𝑠
 𝑇𝑠_𝛼

2 𝑓𝑠_𝛼 + �̃�𝑞𝑛_𝛼
2 ])

�̃�𝑞𝑛_𝛼
2

] + 𝑙𝑛 [
([(𝜎𝑝_𝛼

2 )
𝑠
𝑓𝑠_𝛼 + �̃�𝑝𝑛_𝛼

2 ])

�̃�𝑝𝑛_𝛼
2

])

𝐷

𝛼=1

 

( 4-22 ) 

, where variances from chapter 3 have been substituted and are also normalized per unit time. 

A multidimensional channel can behave like D independent channels which share the capacity of 

the composite. Given a fixed amount of energy, the bandwidth per dimension scales as 

𝐵 𝐷 =⁄
𝑃𝑚_𝛼

2𝐷〈ℰ𝑘_𝛼〉𝑃𝐴𝐸𝑅𝛼
 and the overall capacity remains constant for the case of independently 

modulated dimensions.  Capacity as given, is in units of nats/second but can be converted to 

bits/second if the logarithm is taken in base 2. 

The capacity equation may also be written in terms of the original set of hyperspace design 

parameters (𝑚 = 1).  

𝐶 ≤ ∑
𝑃𝑚_𝛼

2〈ℰ𝑘_𝛼〉𝑠𝑃𝐴𝐸𝑅𝛼

(

 
 

𝑙𝑛

[
 
 
 
 ([

2𝑃𝑚_𝛼𝑇𝑠_𝛼
2

  𝑃𝐴𝐸𝑅𝛼
 + �̃�𝑞𝑛_𝛼

2 ])

�̃�𝑞𝑛_𝛼
2

]
 
 
 
 

+ 𝑙𝑛 [
([

2𝑃𝑚_𝛼

  𝑃𝐴𝐸𝑅𝛼
+ �̃�𝑝𝑛_𝛼

2 ])

�̃�𝑝𝑛_𝛼
2

]

)

 
 

𝐷

𝛼=1

 

( 4-23 ) 
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𝐶 ≤ ∑
𝑃𝑚_𝛼

2〈ℰ𝑘_𝛼〉𝑠𝑃𝐴𝐸𝑅𝛼
(𝑙𝑛[𝑆𝑁𝑅̅̅ ̅̅ ̅̅

𝑞_𝛼 + 1] + 𝑙𝑛[𝑆𝑁𝑅̅̅ ̅̅ ̅̅
𝑝_𝛼 + 1])

𝐷

𝛼=1

 

( 4-24 ) 

This form assumes that D dimensions from the original hyper sphere transmitter are linearly 

translated through the extended channel. The signal is sampled at an effective rate of 𝑓𝑠 , though 

each dimension is sampled at the rate 𝑓𝑠_𝛼 = 𝑓𝑠/𝐷. It should be noted that a reference coordinate 

system at the receiver may be ambiguous and the aggregate sample rate of 𝑓𝑠 may in general be 

required to resolve this ambiguity in the absence of additional extended channel knowledge. 

 �̃�𝑞𝑛_𝛼
2  may be replaced by the filtered variance of a noisy process with input variance �̃�𝑝𝑛_𝛼

2  . This 

was calculated in chapter 3 and results in the substitution (for m=1); 

�̃�𝑞𝑛_𝛼
2 = �̃�𝑝𝑛_𝛼

2 𝑇𝑠_𝛼
2  

After substitution into 4-23 and cancelling the 𝑇𝑠_𝛼
2  terms, the capacity equation becomes; 

𝐶 ≤ ∑
𝑃𝑚_𝛼

〈ℰ𝑘_𝛼〉𝑠𝑃𝐴𝐸𝑅𝛼
(𝑙𝑛 [

(
2 𝑃𝑚_𝛼

  𝑃𝐴𝐸𝑅𝛼
)

�̃�𝑝𝑛_𝛼
2

+ 1])

𝐷

𝛼=1

 ;    𝑃𝐴𝐸𝑅 > 1  

𝐶 ≤ ∑
𝑃𝑚𝛼

〈ℰ𝑘𝛼
〉𝑠𝑃𝐴𝐸𝑅𝛼

(𝑙𝑛[𝑆𝑁𝑅̅̅ ̅̅ ̅̅
𝑒𝑞 + 1])

𝐷

𝛼=1

 

( 4-25 ) 

The influence of The TE relation in 4-25 indicates that greater energy rates correspond to larger 

capacities. The scaling coefficient is the number of statistically independent forces per unit time 
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encoding particle information while the logarithm kernel reflects the allocated signal momentum 

squared relative to competing environmental momentum squared. 

A similar result can be written for the case with a cardinal velocity pulse boundary condition by 

appropriate substitutions for the variance in equation 4-23. The proper substitutions from chapter 

3 are (𝑚 = 1); 

〈(𝑝𝑥𝛼
)
2
〉𝑐𝑎𝑟𝑑 = .903

𝑚2𝑣𝑚𝑐𝑎𝑟𝑑
2

 (𝑃𝐴𝐸𝑅)
;   

( 4-26 ) 

〈𝑞𝑐𝑎𝑟𝑑
2〉 ≅ 〈𝑝𝑐𝑎𝑟𝑑

2〉𝑇𝑠
2 

( 4-27 ) 

𝑅𝑠 = 1.85 (𝑣𝑚_𝑐𝑎𝑟𝑑)      (see Appendix F) 

( 4-28 ) 

Both position and momentum are regarded as statistically independent and equally important in 

this capacity formula. This is an intuitively satisfying result since the coordinate pairings (𝑞, 𝑝) 

are equally uncertain, at least to lower bound values just above the quantum noise floor. 

Although not contemplated by these equations, an upper relativistic bound would also limit the 

momentum accordingly. The implication of this model is that physical capacity summarized by 

equation 4-25 is twice that given in the Shannon-Hartley formula.  

Quantum uncertainty prevents the argument of the logarithm in equation 4-23 from diverging 

when environmental thermal agitation is zero, unlike the classical forms of the Shannon-Hartley 



148 

 

capacity equation . When the absolute temperature of the system is zero, the capacity is quite 

large but finite for finite 𝑃𝑚. 𝑆𝑁𝑅̅̅ ̅̅ ̅̅
𝑒𝑞 applies to any one dimension or all dimensions collectively 

for this capacity formula since energy is equally partitioned for signal and noise processes alike. 

Capacity in nats per second and bits per second are plotted in the following graphics.  

 

Figure 4-1 Capacity in Nats/s vs. 𝑆𝑁𝑅̅̅ ̅̅ ̅̅  for a D dimensional link with a maximum velocity pulse profile,  

Capacity in nats/s vs. given the following parameters, PAER=10, 𝑃𝑚 = 1 J/s, m=1 kg, 𝑓𝑠 = 1  
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Figure  4-2 Capacity in bits/s vs. (SNR) ̅ for a D dimensional link given the following parameters, PAER=10, 

P_m=1 J/s, m=1 kg, f_s=1 samp./s , B=.5 Hz, D=1,2,3,4, 8  

The capacity for the case of a cardinal velocity pulse boundary condition follows the same form 

but the SNR for a given 𝑃𝑚_𝑐𝑎𝑟𝑑 must necessarily adjust according to the relationships provided 

in 4-26, 4-27, 4-28. There it was illustrated that the energy increase on the average for the 

cardinal case is approx. 1.967 times that of a maximum nonlinear velocity pulse boundary 

condition.  This factor ignores the precursor and post cursor tails of the maximum cardinal pulse 

profile.  If the tails are considered then the factor is approximately equal to the peak power 

increase requirement.  The peak power increase ratio for the cardinal profile is 2.158. This 

corresponds to the circumstance where the same 𝑅𝑠 must be spanned in an equivalent time while 

comparing the impact of the two prototype pulse profiles.  Thus, roughly 3 dB more power is 

required by the cardinal profile to maintain a standard configuration span for a given time 

interval and capacity comparison. 
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 Multi-Particle Capacity 4.3.

Capacity for the multi-particle system is extensible from the single particle case. We now expand 

comments to non-interacting species of particles under the influence of independent forces with 

multiple internal degrees of freedom. 

The form for the uncertainty function is given as a reference for 𝜇 species of particle, where the 

particle clusters might exhibit dynamics governed by 𝜇 Gaussian pdfs.  Each cluster would 

consist of one or more particles.  A general uncertainty function considers coordinates from all 

the particle clusters which can contain 𝜈𝜇 particles per cluster and ℓ𝜇 states per particle and 

spatial dimensionality = 1, 2…𝐷 .  Within each cluster domain, particles may swarm subject to a 

few constraints.  One constraint is that particle collisions are forbidden. The total number of 

degrees of freedom , ℵ, can generally be considered as the product ℵ = 𝐷𝜈𝜇ℓ and for a single 

particle type with one internal state per sample, ℵ = 𝐷. 

𝐻𝛺(𝑞, 𝑝) = −∑∑∑∑∫⋯∫𝜌𝜇(𝑞𝜈,ℓ, 𝑝𝜈,ℓ)ℓ𝑛 𝜌𝜇(𝑞𝜈,ℓ, 𝑝𝜈,ℓ) 𝑑
𝐷𝞶𝜇(𝑞𝜈,ℓ) 𝑑

𝐷𝞶𝜇(𝑝𝜈,ℓ)

𝜈𝜇

1

ℓ𝜇

1

𝜇

1

𝐷

1

 

( 4-29 ) 

The pdf for this form of uncertainty can be adjusted using the procedures previously justified.  

The normalization integral is integrated over all states within the D dimensional hyper-sphere 

where the lower and upper limits (𝑙𝑙, 𝑢𝑙) are set according to the techniques presented in chapter 

3.  
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The capacity for a system with ℵ equivalent degrees of freedom is simply 

𝐶 ≤ ∑
𝑃𝑚ℵ

〈ℰ𝑘ℵ
〉𝑠𝑃𝐴𝐸𝑅ℵ

(𝑙𝑛[𝑆𝑁𝑅̅̅ ̅̅ ̅̅
𝑒𝑞 + 1])

ℵ

𝑖=1

 

( 4-30 ) 

Energy is equally dispersed amongst all the degrees of freedom in equation 4-30.  

Whenever ℵ is not composed of homogeneous degrees of freedom then the form of 4-30 may be 

adjusted by calculating an 𝑆𝑁𝑅̅̅ ̅̅ ̅̅
𝑒𝑞 from the amalgamation of particle diversities. 

The multi-particle impact is an additional consideration which is important to mention at this 

point. The effect of particle number  𝜈 on the momentum and energy of a signal is as important 

as velocity. Energy and energy rate of signals is a central theme of legacy theories as well as the 

theories presented here. Classical formulations are somewhat deficient in this respect. 

Modulation of momentum through velocity is emphasized for the present discussion. However, 

this presents the obvious challenge in the classical case because of the uncertainty ∆𝑞∆𝑝 ≥ 𝒽. At 

the least, two factors which may accommodate this concern when particles are indistinguishable, 

are, (𝜈! 𝒽𝐷𝜈)−1 and 𝑚, where 𝜈! is the Gibb’s correction factor for counting states of 

indistinguishable particles [13]. Mass 𝑚 is extensive and therefore may represent a bulk of 

particles. Such a bulk at a particular velocity will have a greater momentum and kinetic energy 

as the mass (number of particles) increases. The same is true of charge. A multiplicity of charges 

in motion will proportionally increase momentum and the energies of interest both in terms of 

material and electromagnetic quantities. Hence, velocity is not the only means of controlling 
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signal energy. The number of particles can also fluctuate whilst maintaining a particular velocity 

of the bulk. Such is the case for instance where current flow in an electronic circuit is modulated. 

The fundamental motions of electrons and associated fields may possess characteristic wave 

speeds in certain media yet the square of the number of wave packets per interval of time 

traversing a cross section of the media is a measure of the power in the signal.  This logically 

means that counting particles and possibly additional particle states is every bit as important as 

acknowledging their individual momentums. Indeed, the probability density of numbers of 

particles possessing particular kinetic energies distributed in various degrees of freedom is the 

comprehensive approach. This requires specific detail of the physical phenomena involved, 

accompanied by greater analytic complexity.  
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 COMMUNICATIONS PROCESS 5.

 ENERGY EFFICIENCY 

In this chapter we discuss the efficiency of target particle motion  within the phase space 

introduced in chapter 3. Though we have a primary interest in Gaussian motion, the derived 

relationships for efficiency can be applied to any statistic given knowledge of the PAPR for the 

particle motions. This is a remarkable inherent characteristic of the TE relation. 

The 1
st
 Law of thermodynamics accounts for all types of energy conversions as well as 

exchanges and requires that energy is conserved in processes restricted to some boundary such as 

a closed system.  We can account for energy at a specific time using simple equations such as; 

ℰ𝑡𝑜𝑡 = ∑ℰ𝑘𝑖𝑛 + ∑ℰ𝜑 + ∑ℰ𝑒𝑙𝑒𝑐. + ∑ℰ𝑚𝑎𝑔. + ⋯+ 𝑈 

ℰ𝑡𝑜𝑡 = ∑ℰ𝑒 + ∑ℰ𝑤 + ∑ℰ𝜑 + 𝑈 

( 5-1 ) 

In this representation, energy is effectively utilized, ℰ𝑒, wasted, ℰ𝑤, or potential, ℰ𝜑. 𝑈 is defined 

as the internal system energy. From the work of Mayer, it is known that all forms of energy may 

be included in this accumulation, such as chemical, mechanical, electrical, magnetic, thermal, 

etc. [13, 49].  

Alternatively, consider a classical formulation of the first law. 𝛿𝑄 is an incremental amount of 

energy acquired from some source to power an apparatus and 𝛿𝑊 is an incremental quantity of 
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work accomplished by an apparatus.  A change in the total internal energy of a closed system can 

be given in terms of heat and work as [50];  

∆𝑈 = 𝑄 − 𝑊 

𝑑𝑈 = 𝛿𝑄 − 𝛿𝑊 

( 5-2 ) 

Although originally formulated for heat engines, this equation is useful for general purpose. 𝑑𝑈 

is an exact differential and is therefore independent of the procedure required for exchange of 

heat and work between the apparatus and environment [50].  

For a system in isolation, the total energy and internal energy are equivalent [13, 51]. Using this 

definition enables several interchangeable representations which will be employed from time to 

time depending on circumstance. 

𝑄 − 𝑊 = ∑∆ℰ𝑒 + ∑∆ℰ𝑤 + ∑∆ℰ𝜑 

∆ℰ𝑡𝑜𝑡 = Q − (W𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 + W𝑤𝑎𝑠𝑡𝑒) 

ℰ𝑡𝑜𝑡 = ℰ𝑒 + ℰ𝑤 + ℰ𝜑 = ℰ𝜑 + ℰ𝑘 

( 5-3 ) 

ℰ𝑘 and ℰ𝜑 are kinetic and potential energies respectively. One may account for the various 

quantities using the most convenient formulation to fit the circumstance and a suitable sign 

convention for the directional flow of work when the energy varies with time. Negative work 

shall mean that the apparatus accomplishes work on its environment. Positive work means that 
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the environment accomplishes work on the apparatus. Work forms of energy exchange such as 

kinetic for example or a charge accelerated by an electric field may be effective or waste. Thus 

the change in total energy of a system can be found from, Q, the energy supplied and, W, the 

work accomplished with sign conventions determined by the direction of energy and work flow. 

The forms of energy exchanged for work in equation 5-3 is a form of the work energy theorem 

[52].  

It is also desirable to define energy efficiency consistent with the second law of thermodynamics.  

In the streamlined view needed here we simply state that the consequence of the second law is 

that efficiency 휂 ≤ 1 where the equality is never observed in practice.   The tendency for waste 

energy to be translated to heat, with an increase of environmental entropy, is also a consequence 

of the second law [51].  ℰ𝑤 reduces to heat by various direct and indirect dissipative 

mechanisms.  Directly dissipative refers to the portion of waste originating from particle motion 

and described by such phenomena including, drag, viscous forces, friction, electrical resistance 

etc.. Indirectly dissipative or ancillary dissipative phenomena, in a communications process, are 

defined as those inefficiencies which arise from the necessary time variant potentials 

synthesizing forces to encode information. 

As will be illustrated, momentum exchange between particles of an information encoding 

mechanism possess overhead as uncertainty of motion increases. The overhead cannot be 

efficiently recycled and significant momentum must be discarded as a byproduct of encoding. ℰ𝑒 

is the deliverable portion of energy to a load which evolves through the process of encoding. ℰ𝑤 

is generated by the absorption of overhead momentum into various degrees of freedom for the 
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system, including modes which increase the molecular kinetic energy of the apparatus 

constituents. This latter form is generally lost to the environment, eventually as heat.  

The equation for energy efficiency can be written as; 

〈휂〉 =
〈ℰ𝑒〉

〈ℰ𝑒 + ℰ𝑤〉
=

〈ℰ𝑒〉

〈ℰ𝑖𝑛〉
≤

𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
 

( 5-4 ) 

𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
 represents a familiar definition for efficiency often utilized by engineers.  In this definition, 

the output power from an apparatus is compared to the total input power consumed to enable the 

apparatus function [51]. The proper or effective output power, 𝑃𝑒, is the portion of the output 

power which is consistent with the defined function of the apparatus and delivered to the load. 

Usually, we are concerned with the case where 𝑃𝑜𝑢𝑡 = 𝑃𝑒 . This definition is important so that 

waste power is not incidentally included in 𝑃𝑜𝑢𝑡.  

In subsequent discussion the phase space target particle is considered as a load. Its energy 

consists of ℰ𝑒 and ℰ𝑤 corresponding to desired and unwanted kinetic energies, respectively. Not 

only are there imperfections in the target particle motion, but there will be waste associated with 

the conversion of a potential energy to a dynamic form. This conversion inefficiency may be 

modeled by delivery particles which carry specified momentum between a power source and the 

load. Thus the inefficiencies of encoding particle motion are distributed within the encoding 

apparatus where ever there is a possibility of momentum exchange between particles.  
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 Average Thermodynamic Efficiency for a Canonical Model 5.1.

Consider the basic efficiency definition using several useful forms including the sampled TE 

relation from chapter 3 (eq. 3-42); 

 〈휂〉 =
〈ℰ𝑒〉

〈ℰ𝑒〉 + 〈ℰ𝑤〉
= 1 −

〈𝑃𝑤〉

〈𝑃𝑖𝑛〉
=

〈𝑃𝑒〉

〈𝑃𝑖𝑛〉
=

𝑃𝑚_𝑒

𝑓𝑠〈ℰ𝑖𝑛〉𝑠𝑃𝐴𝑃𝑅𝑒
 

( 5-5 ) 

In terms of apparatus power transfer from input to output; 

〈𝑃𝑖𝑛〉〈휂〉 = 〈𝑃𝑒〉 

𝑓𝑠〈ℰ𝑖𝑛〉𝑠〈휂〉 =
𝑃𝑚_𝑒

𝑃𝐴𝑃𝑅𝑒
= 〈𝑃𝑒〉 

( 5-6 ) 

〈ℰ𝑖𝑛〉𝑠 is defined as the average system input energy per sample, given the force sample 

frequency 𝑓𝑠 obtained in chapter 3. In systems which are 100 percent efficient, the effective 

maximum power associated with the signal, 𝑃𝑚_𝑒, and maximum power required by the 

apparatus, 𝑃𝑚, are equivalent. In general though, 𝑃𝑚 ≥ 𝑃𝑚_𝑒 , when dissipation exists where, 

𝑃𝑚 = 𝑚𝑎𝑥 {
𝑑

𝑑𝑡
ℰ𝑖𝑛}. In both 5-5 and 5-6 we recognize that 𝑃𝐴𝑃𝑅𝑒 is inversely proportional to 

efficiency. Whenever directly dissipative phenomena are not present we may assume 𝑃𝑚 = 𝑃𝑚_𝑒,  

unless otherwise specified. 
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The phase space model of chapter 3 is now extended to facilitate a discussion concerning the 

nature of momentum exchange which stimulates target particle motion.  The following figure 

illustrates the relationship between the several functions; information encoding/modulation, 

power source and target particle phase space. As a whole, this could be considered as a 

significant portion of a transmitter phase space for an analogous communications system. 

 

Figure 5-1 Extended Encoding Phase Space 

The information source possesses a Gaussian statistic of the form introduced in chapter 3.  It 

provides instruction to internal mechanisms which convert potential energy to a form suitable to 

encode the motion of particles in the target phase space.  The interaction between the various 

apparatus segments may be through fields or virtual particles which convey the necessary forces.  

The energy source for accomplishing this task, illustrated in a separate sub phase space, is 
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characterized by its specific probability density for particle motions within its distinct 

boundaries.  ℰ𝑠𝑟𝑐 is used as the resource to power motions of particles comprising the apparatus. 

A modulator is required which encodes these particles with a specific information bearing 

momentum profile. As a consequence, delivery particles or fields recursively interact with the 

target particle imparting impulsive forces at an average rate greater than or equal to 𝑓𝑠_𝑚𝑖𝑛. The 

sculpting rate of the impulse forces may be much greater than the effective sample rate 𝑓𝑠_𝑚𝑖𝑛 for 

detailed models. However, when 𝑓𝑠 is used to characterize the signal samples it is understood that 

a single equivalent impulse force per sample at the 𝑓𝑠 frequency may be used, provided the TE 

relation is regarded. 

The following figures illustrates the desired target particle momentum statistic 𝜌𝜑 = 𝜌𝑒 and an 

actual target particle statistic 𝜌𝑡𝑎𝑟 for an example.  

 

Figure 5-2 Desired Information Bearing Momentum 
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Figure 5-3 Actual Momentum of a Target Particle 

One hypothetical method for encoding the particle motion is illustrated in apparatus graphic, 

figure 5-4. All particles of this hypothetical model are ballistic and possess the same mass. 

 

Figure 5-4 Encoding Particle Motion on the 𝑥1 axis via Momentum Exchange 

There are two delivery particle streams illustrated, oriented along the 𝑥1 axis. Such an 

arrangement could be deployed for generating motion along the 𝑥2 and 𝑥3 axes as well. The 
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𝑙𝑡ℎmomentum impulse (∆𝑝 𝑚𝑜𝑑_𝑎)𝑙
 from a successive non-interacting stream of delivery particles 

accelerates the target particle to the right (positive 𝑥1 direction). The modulation impulse stream 

∆𝑝 𝑚𝑜𝑑_𝑏 decelerates the target particle through application of forces in the negative direction. 

These two opposing streams interact with the target particle at regular intervals, ~∆𝑇𝑠 , though 

their relative interactions may not be perfectly synchronized. That is, the opposing particle 

streams can possess some relative small time offset ∆𝑡𝜀 ≪ ∆𝑇𝑠. The domains for the impulse 

momenta are; 

0 ≤ ∆𝑝𝑚𝑜𝑑_𝑎 ≤ ∆𝑝𝑚𝑎𝑥 

0 ≥ ∆𝑝𝑚𝑜𝑑_𝑏 ≥ ∆𝑝𝑚𝑎𝑥 

In the absence of ∆𝑝 𝑚𝑜𝑑_𝑏 the particle accelerates up to a terminal velocity 𝑣 𝑚𝑎𝑥 and can no 

longer be accelerated whenever 𝑝 𝑡𝑎𝑟 ≥ 𝑝 𝑚𝑎𝑥. 𝑝 𝑚𝑎𝑥 is a boundary condition inherited from the 

phase space model of chapter 3. The finite power resource 𝑃𝑚 limits the maximum available 

momentum, system wide. The finite limit of the velocity due to forward acceleration can be 

deduced through the difference equation; 

 ∆𝑝 (𝑚𝑜𝑑𝑎)𝑙
= (𝑝 𝑚𝑎𝑥 − ∆ 𝑝 𝑡𝑎𝑟𝑙−1

)
𝑙
 

 ∆𝑝 (𝑚𝑜𝑑𝑎)𝑙
= (𝑝 𝑚𝑎𝑥 [(1 −  

∆𝑝 𝑡𝑎𝑟𝑙−1

𝑝 𝑚𝑎𝑥
)])

𝑙

 

( 5-7 ) 
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,where 𝑝 𝑡𝑎𝑟𝑙−1
≥ 0. Thus, the impulse momentum of the delivery particle at the 𝑙𝑡ℎ sample is a 

function of the maximum available momentum and the prior target particle momentum. The 

output differential momentum is given by; 

  ∆𝑝 𝑡𝑎𝑟𝑙
= ∆𝑝 (𝑚𝑜𝑑𝑎)𝑙+∆𝑝 (𝑚𝑜𝑑_𝑏)𝑙  

( 5-8 ) 

The output momentum at the 𝑙𝑡ℎ sample is obtained by; 

𝑝 𝑡𝑎𝑟𝑙
= ∫   ∆𝑝 𝑡𝑎𝑟𝑙

δ(𝑡 − 𝑇𝑠(𝑙 − 1)) 𝑑𝑡
𝑇𝑠(𝑙)

𝑇𝑠(𝑙−1)

+ 𝑝 𝑡𝑎𝑟𝑙−1
 

( 5-9 ) 

5-9 indicates that an impulse momentum weighted by   ∆𝑝 𝑡𝑎𝑟𝑙
is imparted during the sampling 

interval to generate a new momentum value 𝑝 𝑡𝑎𝑟𝑙
 when summed to the initial condition 𝑝 𝑡𝑎𝑟𝑙−1

. 

The target particle momentum samples at the 𝑙𝑡ℎ and (𝑙 − 1)𝑡ℎ are Gaussian and statistically 

independent by definition. Therefore, ∆𝑝 (𝑚𝑜𝑑_𝑎)𝑙  and ∆𝑝 (𝑚𝑜𝑑_𝑏)𝑙 are also independent in this 

case. However, careful review of figures 5-6,5-7 and 5-10 in the following simulation records, 

illustrate that these waveforms are inverted with respect to one another and delayed by one 

sample. The inversion follows since one waveform is associated with acceleration and one with 

deceleration. If not for the delay of one cycle, these signals would be anti-correlated, a 

consequence of Newton’s third law and momentum conservation. 

A momentum exchange diagram (figure 5-5) illustrates the successive interaction of modulation 

delivery and target particles.  
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Figure 5-5 Momentum Exchange Diagram 

Interactions are realized via impulse doublets. Impulses forming the doublets may be slightly 

skewed in time by ∆𝑡𝜀 seconds and the doublets are separated by a nominal 𝑡𝑠 = ∆𝑡/2 seconds 

corresponding to a sampling interval. The target particle may possess a nonzero average drift 

velocity along 𝑥1. Figure 5-6 and 5-7 illustrate the input and output impulses related to the 

interactions for the cases where  ∆𝑡𝜀 = 0 and ∆𝑡𝜀 ≠ 0 respectively. The error in timing 

alignment does not affect motion appreciably at the time scale of interest because ∆𝑡𝜀 is much 

less than the nominal sampling time interval separating doublets. The integral of eq. 5-8 

suppresses the  effect of a  ∆𝑡𝜀 offset. 
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Figure 5-6 Encoding Particle Stream Impulses, 𝑡𝜀 = 0   

 

Figure 5-7 Encoding Particle Stream Impulses with Timing Skew, 𝑡𝜀 ≠ 0   
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A block diagram suitable for simulating the particle motion follows; 

 

Figure 5-8 Particle Encoding Simulation Block Diagram for Canonical Offset Model 

The following sequence of graphics illustrate various signals and waveforms associated with the 

simulation model of figure 5-8. 𝑇𝑠 equals 1 in these simulations. 
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Figure 5-9 Simulation Waveforms and Signals 

 

Figure 5-10 Simulation Waveforms and Signals 
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Figure 5-11 Simulation Waveforms and Signals 

 

Figure 5-12 Encoded Output and Encoded Input 
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Figure 5-12 confirms the reproduction of the input signal 𝑝𝜑 in the form 𝑝𝑡𝑎𝑟 at the target 

particle, albeit with an offset. The startup transient near time sample 450 confirms the nature of 

the feedback convergence of the model. In addition, there is a one sample delay. 

The momentum transfers from the power source through two branches labeled 𝑝𝑠𝑟𝑐_𝑎 and 𝑝𝑠𝑟𝑐_𝑏. 

The maximum power transfer from the power source is less than or equal to 𝑃𝑚𝑎𝑥. The 

momentum flows through these supply paths metered by the illustrated control functions. Due to 

symmetry, each input supply branch possesses the same average momentum transfer and energy 

consumption statistics though the instantaneous values fluctuate. In the ∆𝑝𝑠𝑟𝑐_𝑏 path, momentum 

is controlled by an input labeled (
𝑝𝜑

𝑝𝑚𝑎𝑥
−

1

2
). This unit-less control, gates effective impulse 

momentum weighting ∆𝑝𝑠𝑟𝑐_𝑏 through to the branch segment labeled ∆𝑝𝑚𝑜𝑑_𝑏 such that  

∆𝑝𝑠𝑟𝑐_𝑏~∆𝑝𝑚𝑜𝑑_𝑏 = ∆(𝑝𝜑 −
𝑝𝑚𝑎𝑥

2
), causing deceleration. It is a virtually lossless gating 

operation analogous to a sluice gate metering water flow supplied by a gravity driven reservoir. 

Impulse momentum weighting ∆𝑝𝑠𝑟𝑐_𝑎 is formed from the difference of the maximum available 

momentum 𝑝𝑚𝑎𝑥 and target particle momentum 𝑝𝑡𝑎𝑟 as indicated by equation 5-7, 5-8. This is a 

feedback mechanism built into nature through the laws of motion. This feedback control meters 

the gating function channeling the resource ∆𝑝𝑠𝑟𝑐_𝑎 to generate ∆𝑝𝑚𝑜𝑑_𝑎, which in turn causes 

forward acceleration. The gating process in the feedback path is also virtually 100 percent 

efficient so that ∆𝑝𝑠𝑟𝑐_𝑎~∆𝑝𝑚𝑜𝑑_𝑎. 

Given this background, we proceed to calculate the work associated with the two input/delivery 

particle streams from corresponding cumulative kinetic energy differentials over n exchanges.  
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〈∆ℰ𝑘〉𝑖𝑛 = ⟨∆ℰ𝑘⟩𝑚𝑜𝑑_𝑎 + ⟨∆ℰ𝑘⟩𝑚𝑜𝑑_𝑏 

〈∆ℰ𝑘〉𝑖𝑛 ≅
1

(2𝑚)𝑛
∑∆𝑝 (𝑚𝑜𝑑𝑎)𝑙

2

𝑛

𝑙=1

+
1

(2𝑚)𝑛
∑∆𝑝 (𝑚𝑜𝑑𝑏)𝑙

2

𝑛

𝑙=1

 

〈∆ℰ𝑘〉𝑖𝑛 ≅
1

(2𝑚)𝑛
∑(∆[𝑝𝑚𝑎𝑥 − 𝑝𝑡𝑎𝑟𝑙−1

])
2

𝑛

𝑙=1

+
1

(2𝑚)𝑛
∑(∆ [

𝑝𝑚𝑎𝑥

2
− 𝑝𝜑𝑙

])
2

𝑛

𝑙=1

 

  

〈∆ℰ𝑘〉𝑖𝑛 ≅
1

(2𝑚)𝑛
∑(∆ [

𝑝𝑚𝑎𝑥

2
− 𝑝𝜑𝑙

])
2

𝑛

𝑙=1

+
1

(2𝑚)𝑛
∑(∆ [

𝑝𝑚𝑎𝑥

2
− 𝑝𝜑𝑙

])
2

𝑛

𝑙=1

 

~2 〈([
𝑝𝑚𝑎𝑥

2
− 𝑝𝜑𝑙

])
2

〉 

 

( 5-10 ) 

The time average and statistical average are approximately equal for a sufficiently large 𝑛, the 

number of sample intervals observed for computing the average. The final two lines of eq. 5-10 

were obtained by substitution of the relevant pdf definitions for 𝑝𝜑 and 𝑝𝑡𝑎𝑟 (see figures 5-2 and 

5-3). Each average can be obtained from the sum of the variance and mean squared, recognizing 

that the relevant power statistic for both input impulse streams is also given by a non-central 

Gamma probability density [25,32, and appendix H]. Hence, 

〈∆ℰ𝑘〉𝑖𝑛 = 2(𝑃𝑚_𝑒 +
𝜎𝜑

2

2𝑚
) 
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𝜎𝑒
2 =

1

2𝑚
𝜎𝜑

2 

𝑃𝑚_𝑒 =
1

2𝑚
(
𝑝𝑚𝑎𝑥

2
)
2

 

( 5-11 ) 

The effective output power is by definition 𝜎𝑒
2 and 𝜎𝜑

2 is the information momentum pdf of 

interest. The maximum waveform momentum 𝑝𝑚𝑎𝑥, in 5-11 is twice that of the effective signal 

momentum. Therefore the efficiency is given by; 

휂 =
𝑃𝑒

𝑃𝑖𝑛
=

𝜎𝑒
2

2(𝑃𝑚_𝑒 + 𝜎𝑒
2)

=
1

2(𝑃𝐴𝑃𝑅𝑒 + 1)
 

( 5-12 ) 

For large information capacity signals the efficiency is approximately (2𝑃𝐴𝑃𝑅𝑒)
−1. This result 

may also be deduced by noticing that the total input power to the encoding process is split 

between delivery particles and the target particle. This power may be calculated by inspecting 

figures 5-2 and 5-3. The target particle power in this process may be calculated from a non-

central Gamma RV applied to figure 5-3 or simply obtained from inspection as 𝑃𝑡𝑎𝑟 = 𝑃𝑒 +

𝑃𝑤 = 𝜎𝑒
2 + 𝑃𝑚_𝑒. In the example provided, the delivery particles recoil, which is evidence of a 

form of overhead. The statistic of this recoil momentum is identical to the statistic of figure 5-3 

which can be reasoned from the principle of momentum conservation and Newton’s laws. 

Hence, the input power due to conveyed momentum in the exchange and the recoil momentum, 
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is simply 𝑃𝑖𝑛 = 2(𝜎𝑒
2 + 𝑃𝑚_𝑒). The effective output power of the target particle is defined as  𝜎𝑒

2 

and so equations 5-11, 5-12 are justified by inspection. 

Figure 5-13 illustrates a physically analytic version of 𝑝𝑡𝑎𝑟 without offset. 𝑝𝑡𝑎𝑟 = ∆𝑝𝑡𝑎𝑟 ∗ ℎ𝑡 is a 

filtered version of ∆𝑝𝑡𝑎𝑟 which corresponds with the result discussed in section 3.1.8. ℎ𝑡 is an 

effective impulse response for the system created by integrating acceleration and additional non 

dissipative mechanisms which smooth the particle motion. An analytic boundary condition is 

obtained by complying with the TE relation and using the methods disclosed in chapter 3. The 

effective impulse response could be due to some apparatus network of mass, springs and shock 

absorbers operating on the impulses. The analog for an electronic communications system is 

obvious where a preferred form of  ℎ𝑡  could be implemented by capacitors and inductors 

organized to enable a “ raised cosine” or other suitable filtered impulse response. In addition, the 

effect of 𝑃𝑚 via the TE relation could be used to smooth the delivery particle forces. 

 

Figure 5-13 Momentum Change, Integrated Momentum Exchange, Analytic Filtered Result  



172 

 

Figure 5-8 is considered to be the offset canonical model because of the offset in 𝑝𝑡𝑎𝑟 of the 

output waveform of figure 5-12. It is a closed system model because the target particle 

momentum is not transferred beyond the boundary of the target phase space. However, in a 

communications scenario, this momentum must also transfer beyond the target particle phase 

space by some means. In electronic applications, the momentum is primarily transferred through 

the additional interaction of electromagnetic fields. 

Suppose that the model of figure 5-8 is adjusted to reflect the transfer of momentum from the 

target particle sample by sample to some load outside of the original target particle phase space. 

In this circumstance, the feedback is no longer active because 𝑝𝑡𝑎𝑟 is effectively regulated 

sample to sample by transfer of momentum to another load, ensuring a peak target particle 

velocity which resets to some average value just prior to subsequent input momentum exchanges 

from delivery particles. This model variation is referred to as an open system canonical model 

and illustrated in figure 5-14.  

 

Figure 5-14 Zero Offset Open System Canonical Simulation Model 
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The following graphic illustrates the waveforms associated with a simulation of fig. 5-14. 

 

Figure 5-15 Simulation Results for Open System Zero Offset Model 

There is an offset for each branch of the apparatus of 𝑝𝑚𝑎𝑥/2. The offsets cancel while the 

random variables ±∆𝑝𝜑 add in a correlated manner to double the dynamic range of the particle 

momentum peak to peak. The energy source must contemplate this requirement. An efficiency 

calculation follows the procedures introduced earlier, taking into account the symmetry of the 

apparatus, offsets, as well as the correlated acceleration and deceleration components.  

휂 =
𝑃𝑒

𝑃𝑖𝑛
=

𝜎𝑒
2

(𝑃𝑚_𝑒 + 𝜎𝑒
2)

=
1

(𝑃𝐴𝑃𝑅𝑒 + 1)
 

( 5-13 ) 

This model reflects an increase in efficiency over the apparatus of figure 5-8. If the 𝑃𝐴𝑃𝑅𝑒 

approaches 1 then the efficiency approaches 50%.  
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5.1.1. Comments Concerning Power Source 

The particle motions within the information source are statistically independent from the relative 

motions of particles in the power source.   There is no a priori anticipation of information betwixt 

the various apparatus functions. A joint pdf captures the basic statistical relationship between the 

energy source and encoding segment. 

𝜌𝜑𝜀 = 𝜌𝜑𝜌𝑠𝑟𝑐 

( 5-14 ) 

𝜌𝜑𝜀 is the joint probability where the covariance of relative motions are zero in the most logical 

maximum capacity case. The maximum available power resource may or may not be static, 

although the static case was considered as canonical for analytical purposes in the prior 

examples.  In those examples the instantaneous maximum available resource is always 𝑃𝑚𝑎𝑥, a 

constant. This is not a requirement, merely a convenience. If the power source is derived from 

some time variant potential then an additional processing consideration is required in the 

apparatus. Either the time variant potential must be rectified and averaged prior to consumption 

or the apparatus must otherwise ensure that a peak energy demand does not exceed the peak 

available power supply resource at a sampling instant. Given the nature of the likely statistical 

independence between the particle motions in the various apparatus functions, the most practical 

solution is to utilize an averaged power supply resource. An alternative is to regulate and 

coordinate the 𝑃𝐴𝑃𝑅𝑒 and hence the information throughput of the apparatus as the 

instantaneous available power from a power source fluctuates. 
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5.1.2. Momentum Conservation and Efficiency 

Section 5.1 provided a derivation of average thermodynamic efficiency based on momentum 

exchange sampled from continuous random variables. This section verifies that idea with a more 

detailed discussion concerning the nature of a conserved momentum exchange. The quantities 

here are also regarded as recursive changes in momentum at sampling intervals 𝑓𝑠
−1 = 𝑇𝑠, where 

samples are obtained from a continuous process. The model is based on the exchange of 

momentum between delivery particles and a target particle to be encoded with information. The 

encoding pdf is given by 𝜌(𝑝𝜑), a Gaussian random variable. 

The current momentum of a target particle is a sum of prior momentum and some necessary 

change to encode information. Successive samples are de-correlated according to the principles 

presented in chapter 3. The momentum conservation equation is; 

∑𝑝 𝑖
−

𝑖

= ∑𝑝 𝑖
+

𝑖

= 𝐶 

( 5-15 ) 

C is a constant. 𝑝 𝑖
− is the 𝑖𝑡ℎ particle momentum 𝑡𝜖 seconds just prior to the 𝑛𝑡ℎ momentum 

exchange. 𝑝 𝑖
+ is the 𝑖𝑡ℎ particle momentum just after the 𝑛𝑡ℎ momentum exchange. 

𝑝 𝑖
− = 𝑝 𝑖(𝑡 − 𝑛𝑇𝑠 + 𝑡𝜖) 

𝑝 𝑖
+ = 𝑝 𝑖(𝑡 − 𝑛𝑇𝑠 − 𝑡𝜖) 
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In the following example only two particles are deployed per exchange. In concept, many 

particles could be involved.    

Figure 5-16 illustrates the possible single axis relative motions of the delivery and target particles 

prior to exchange. 

 

Figure 5-16 Relative Particle Motion Prior to Exchange 

After the sample instant, i.e. the momentum  exchange, the particles recoil as illustrated in figure 

5-17 for the first of the cases illustrated in 5-16. 

 

Figure 5-17 Relative Particle Motion after an Exchange 

More explicitly we write the conservation equation over n exchanges; 

∑[𝑝 𝑑𝑒𝑙
− + 𝑝 𝑡𝑎𝑟

− ]𝑛
𝑛

= ∑[𝑝 𝑑𝑒𝑙
+ + 𝑝 𝑡𝑎𝑟

+ ]𝑛
𝑛

 

( 5-16 ) 
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First we examine the case of differential information encoding. The information is encoded in 

momentum differentials of the target particle rather than absolute quantities. 

𝑝 𝑡𝑎𝑟
+ − 𝑝 𝑡𝑎𝑟

− = ∆𝑝 𝑡𝑎𝑟 

Also it follows that; 

⟨𝑝 𝑑𝑒𝑙
− ⟩ = ⟨𝑝 𝑡𝑎𝑟

+ − 𝑝 𝑡𝑎𝑟
− ⟩ = ⟨∆𝑝 𝑡𝑎𝑟⟩ 

This comes from the fact that particle motions are relative and random with respect to one 

another, and the exchanging particles possess the same mass. 𝑝 𝑑𝑒𝑙
− = 𝑝 𝜑 + ⟨𝑝 𝑑𝑒𝑙

− ⟩ is exchanged in 

a set of impulses at the delivery and target particle interface at the sample instants, 𝑡 = 𝑛𝑇𝑠. 

⟨𝑝 𝑑𝑒𝑙
− ⟩ is an average overhead momentum for the encoding process. Using the various definitions 

the conservation equation may be restated as; 

∑[𝑝 𝜑 + ⟨𝑝 𝑑𝑒𝑙
− ⟩]

𝑛
𝑛

= ∑[𝑝 𝑑𝑒𝑙
+ + ∆𝑝 𝑡𝑎𝑟]𝑛

𝑛

 

( 5-17 ) 

𝑝 𝑑𝑒𝑙
+  on the right side of 5-17 can be discarded in efficiency calculations since it is a delivery 

particle recoil momentum and therefore output waste. Now we proceed with the efficiency 

calculation which utilizes the average energies from the momentum exchanges. 

휂 (
1

 𝑛
∑[𝑝 𝜑 + ⟨𝑝 𝑑𝑒𝑙

− ⟩]
𝑛

2

𝑛

) =
1

𝑛
∑[∆𝑝 𝑡𝑎𝑟]𝑛

2

𝑛

 

The left hand side of the above equation represents the input energy of delivery particles prior to 

exchange multiplied by efficiency. The right hand side represents the desired output signal 



178 

 

energy associated with a differential encoded target particle. For large n we approximate the 

sample averages with the time averages so that; 

휂 (〈(𝑝 𝜑)
2
〉 + 〈2𝑝 𝜑⟨𝑝 𝑑𝑒𝑙

− ⟩〉 + (⟨𝑝 𝑑𝑒𝑙
− ⟩)2) = 〈(∆𝑝 𝑡𝑎𝑟)

2〉 

( 5-18 ) 

We can calculate the efficiency along the 𝛼𝑡ℎ axis from; 

휂𝛼 = [
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
]
𝛼

=
⟨(∆𝑝𝑡𝑎𝑟)

2⟩𝛼

⟨(𝑝𝜑)
2
⟩
𝛼

+ 〈𝑝𝑑𝑒𝑙
− 〉2

𝛼

 

( 5-19 ) 

We now specify an encoding pdf such that max{𝑝𝜑} = ⟨𝑝𝑑𝑒𝑙
− ⟩ (ref. figures 5-2, 5-3) Also, in the 

differential encoding case, ⟨(∆𝑝𝑡𝑎𝑟)
2⟩ ≡ ⟨(𝑝𝜑)

2
⟩, with a zero mean ∆𝑝𝑡𝑎𝑟.  

Now the averaged efficiency over all dimensions may be rewritten as; 

휂 = ∑

𝜆𝛼 ⟨(𝑝𝜑)
2
⟩
𝛼

⟨(𝑝𝜑)
2
⟩
𝛼

+ (max{𝑝𝜑})
𝛼

2
𝛼

=
⟨(𝑝𝜑)

2
⟩

⟨(𝑝𝜑)
2
⟩ + (max{𝑝𝜑})

2
=

1

1 + 𝑃𝐴𝑃𝑅
 

( 5-20 ) 

𝜆𝛼 is a probability weighting of the efficiency in the 𝛼𝑡ℎ dimension. Equation 5-20 is the 

efficiency of the differentially encoded case. When the PAPR is very large the efficiency may be 

approximated by (𝑃𝐴𝑃𝑅)−1 .  
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Now suppose that we define the encoding to be in terms of absolute momentum values where the 

target particle momentum average is zero as a result of the  symmetry of the delivery particle 

motions. The momentum exchanges per sample are independent Gaussian RV’s so that the two 

sample variance forming ⟨(∆𝑝𝑡𝑎𝑟)
2⟩ is twice that of the absolute quantity ⟨(𝑝𝑡𝑎𝑟

+ )2⟩. That is, 

⟨(𝑝𝑡𝑎𝑟
+ )2⟩ =

1

2
⟨(𝑝𝜑)

2
⟩. If the same PAPR is stipulated for the comparison of the differential and 

absolute encoding techniques then the average of the delivery particle momentum must scale as 

1

√2
 , and we obtain; 

휂 =

1
2 ⟨(𝑝𝜑)

2
⟩

⟨(𝑝𝜑)
2
⟩ + (

1

√2
max{𝑝𝜑})

2 =
1

2(𝑃𝐴𝑃𝑅 + 1)
 

( 5-21 ) 

In the most general encoding cases the efficiency may be written as;  

〈휂〉 =
𝜎2

𝑘𝑚𝑜𝑑𝑃𝑚 + 𝑘𝜎𝜎2
 

𝜎2 is desired output signal power and 𝑘𝑚𝑜𝑑 , 𝑘𝜎 are constants which absorb the variation of 

potential apparatus implementations and contemplate other imperfections as well. 

5.1.3. A Theoretical Limit 

Figures 5-16 and 5-17 illustrate the case for particles where each exchange possesses a random 

recoil momentum because the motions of delivery and target particles are not synchronized and a 
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material particle possesses a finite speed. If we posit a circumstance where the momentum of 

each delivery particle is 100% absorbed in an exchange then the  efficiency can approach a 

theoretical limit of 1 given a fully differential zero offset scenario. In this hypothetical case 

휂 =
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
=

∑ 𝜆𝛼⟨(∆𝑝𝑡𝑎𝑟)
2⟩𝛼𝛼

∑ 𝜆𝛼 ⟨(𝑝𝜑)
2
⟩
𝛼

𝛼

 

Suppose that a stream of virtual delivery particles, such as a photons, acts upon a target particle. 

Each delivery particle possesses a constant momentum used to accelerate or decelerate the target 

particle and the desired target particle statistic 𝑝 𝜑 is created by the accumulation of n impulse 

exchanges over time interval 𝑇𝑠 . The motion of the target particle with statistic 𝑝 𝜑 is verified by 

sampling at intervals of time 𝑡 −ℓ 𝑇𝑠 where ℓ  is a sample index for the target particle signal. 

Also, we identify the time averages ⟨(𝑝 𝜑)
2
⟩ ≤ ⟨(𝑝 𝑑𝑒𝑙)

2⟩ and ⟨(𝑝 𝑑𝑒𝑙)
2⟩ ≤ 〈[𝑚𝑎𝑥{𝑝 𝑑𝑒𝑙}]

2〉. We 

further assume that the statistics in each dimension are iid so that efficiency is a constant with 

respect to 𝛼. 

Time averages may be defined by the following momentum quantities imparted to the target 

particle by the delivery particles over n impulses exchanges per sample interval and N samples 

where N is a suitably large number; 

⟨(𝑝𝜑)
2
⟩ ≡

1

 𝑁𝑇𝑠
∑∑[(𝑝𝑑𝑒𝑙)

2]𝑛
𝑛

𝑁

ℓ=1

 

𝑚𝑎𝑥 {(𝑝𝜑)
2
} ≡

1

 𝑇𝑠
∑∑[𝑚𝑎𝑥{(𝑝𝑑𝑒𝑙)

2}]𝑛
𝑛

𝑁

ℓ=1
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And finally; 

휂 ≤

1
 𝑁𝑇𝑠

∑ ∑ [(𝑝𝑑𝑒𝑙)
2]𝑛𝑛

𝑁
ℓ=1

1
 𝑇𝑠

∑ ∑ [𝑚𝑎𝑥{(𝑝𝑑𝑒𝑙)2}]𝑛𝑛
𝑁
ℓ=1

=
1

𝑃𝐴𝑃𝑅
 

( 5-22 ) 

Equation 5-22 presumes that n the number of delivery particle impulses over the material particle 

sample time 𝑇𝑠 can be much greater than 1.   

When PAPR→1 the efficiency approaches 1. An example of this circumstance is binary antipodal 

encoding where the momentum encoded for two possible discrete states or the momentum 

required to transition between two possible states is equal and opposite in direction and 𝑝 ̇ → ∞. 

This would be a physically non-analytic case. 

 Capacity vs. Efficiency Given Encoding Losses 5.2.

Encoding losses are losses incurred for particle momentum modulation where the encoding 

waveform is an information bearing function of time. This may be viewed as a necessary but 

inefficient activity. If the momentum is perfectly Gaussian then the efficiency tends to zero since 

the PAPR for the corresponding motion is infinite. However, practical scenarios preclude this 

extreme case since 𝑃𝑚 is limited. Therefore, in practice, some reasonable PAPR can be assigned 

such that efficiency is moderated yet capacity not significantly impacted. 
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A direct relationship between PAPR and capacity can be established from the capacity definition 

of equation 4-14.  

𝐶 = 𝑚𝑎𝑥{𝐼(𝑥; 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅} = 𝑚𝑎𝑥{𝐻(𝑦) − 𝐻𝑥(𝑦))} 

As before we shall assume an AWGN which is band limited but we relax the requirement for the 

nature of 𝜌(𝑝) such that a Gaussian density for momentum is not required. Also the following 

capacity discussion is restricted to a consideration of continuous momentum since the capacity 

obtained from position is extensible. Technically we are considering a qualified capacity or 

pseudo capacity �̃� whenever  𝜌(𝑝) is not Gaussian, yet 𝜌(𝑝) is still descriptive of continuous 

encoding. 

�̃� = 𝑚𝑎𝑥 {− ∫ 𝜌(𝑝𝑦) 𝑙𝑛[𝜌(𝑝𝑦)] 𝑑𝑝𝑦 −
1

2
𝑙𝑛(√2𝜋𝑒𝜎𝑛)

𝑝𝑢𝑙

𝑝𝑙𝑙

} 

( 5-23 ) 

We can rewrite equation 5-22 with a change of variables 𝑧 =
𝑝𝑦

𝜎𝑝𝑦
⁄  as follows; 

�̃� = 𝑚𝑎𝑥

{
 

 

−𝜎𝑝𝑦
∫ 𝜌(𝑧) 𝑙𝑛[𝜌(𝑧)] 𝑑𝑧 −

1

2
𝑙𝑛(√2𝜋𝑒𝜎𝑛)

(√𝑃𝐴𝐸𝑅)
𝑦

𝑧𝑙𝑙 }
 

 

 

( 5-24 ) 
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For a given value of momentum variance 𝜎𝑝𝑦
2  with a fixed SNR ratio 

(𝜎𝑝𝑥
)
2

(𝜎𝑝𝑛
)
2⁄  , an increase 

in (√𝑃𝐴𝐸𝑅)
𝑦
 always increases the integral of 5-23 and therefore increases pseudo capacity �̃�. 

This can also be confirmed by finding the derivative of �̃� with respect to (√𝑃𝐴𝐸𝑅)
𝑦

 with the 

lower limit in eq. 5-23 held constant. 

𝑑�̃�

𝑑(√𝑃𝐴𝐸𝑅)
𝑦

= 𝜌(√𝑃𝐴𝐸𝑅) 𝑙𝑛[𝜌(√𝑃𝐴𝐸𝑅)] 

( 5-25 ) 

Equation 25 confirms that capacity is a monotonically increasing function of  𝑃𝐴𝐸𝑅 without 

bound. 

(√𝑃𝐴𝐸𝑅)
𝑦

 includes the consideration of noise as well as signal. When the noise is AWGN and 

statistically independent from the signal; 

𝜎𝑝𝑦
= √(𝜎𝑝𝑥

)
2
+ (𝜎𝑝𝑛

)
2
    , 𝜎𝑦 = √(𝜎𝑥)2 + (𝜎𝑛)2   

Thus 𝑃𝐴𝑃𝑅𝑦 =
𝑃𝑚

𝜎𝑦
2⁄  is the output peak to average power ratio for a corrupted signal.  

𝑃𝐴𝑃𝑅𝑦 may be obtained in terms of the effective peak to average ratio for the signal as; 

𝑃𝐴𝑃𝑅𝑦 =
𝜎𝑒

2

𝜎𝑦
2
𝑃𝐴𝑃𝑅𝑒 +

𝜎𝑛
2

𝜎𝑦
2
𝑃𝐴𝑃𝑅𝑛 +

√𝑃𝑚_𝑒√𝑃𝑚_𝑛

𝜎𝑦
2
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𝑃𝐴𝑃𝑅𝑛 is the peak to average power ratio for the noise. 𝑃𝐴𝑃𝑅𝑦 is of concern for a receiver 

analysis since the contamination of the desired signal plays a role. In the receiver analysis where 

the noise or interference is significant, a power source specification 𝑃𝑚 must contemplate the 

extreme fluctuation due to 𝑝𝑥 + 𝑝𝑛. The efficiency of the receiver is impacted since the phase 

space must be expanded to accommodate signal plus noise and interference so that information is 

not lost as discussed in chapter 3. 

Most often, the efficiency of a communications link is dominated by the transmitter operation. 

That is, the dominant noise is due to some environmental perturbation added after the target 

particle has been modulated. We thus proceed with a focus on the transmitter portion of the link. 

Whenever the signal density is Gaussian we then have the classical result; 

lim
𝑃𝐴𝐸𝑅→∞

�̃� = 𝑚𝑎𝑥 {−𝜎𝑝𝑦
∫ 𝜌(𝑧) 𝑙𝑛[𝜌(𝑧)] 𝑑𝑧 +

1

2
𝑙𝑛(√2𝜋𝑒𝜎𝑛)

∞

−∞

} = 𝑙𝑛(𝑆𝑁𝑅̅̅ ̅̅ ̅̅
𝑒𝑞 + 1) = 𝐶 

( 5-26 ) 

It is possible to compare the pseudo-capacity or information rate of some signaling case to a 

reference case like the standard Gaussian to obtain an idea of relative performance with respect 

to throughput for continuously encoded signals. 

We now define the relative continuous capacity ratio figure of merit from;  

𝐶𝑟 =
�̃�𝜌𝑥

 

𝐶𝐺
=

𝑚𝑎𝑥 {−∫ 𝜌(𝑝𝑦) 𝑙𝑛[𝜌(𝑝𝑦)] 𝑑𝑝𝑦 −
1
2
𝑙𝑛(√2𝜋𝑒𝜎𝑛)

𝑝𝑢𝑙

𝑝𝑙𝑙
}

𝑙𝑛 (
𝜎𝐺

2

𝜎𝑛
2 + 1)

=
𝐻𝑦 − 𝐻𝑥(𝑦)

[𝑙𝑛(𝑆𝑁𝑅̅̅ ̅̅ ̅̅
𝑒𝑞 + 1)]

 

( 5-27 ) 
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The uncertainty 𝐻𝑦  is due to a random signal plus noise. 𝐶𝐺 is a reference AWGN channel 

capacity found in chapter 4 and �̃�𝜌𝑥
  is a pseudo-capacity calculated with the pdf describing the 

signal random variable of interest. The noise is band limited AWGN with entropy 𝐻𝑥(𝑦) = 𝐻𝑛 . 

There are several choices for the constituents of 𝐶𝑟 such as the SNR’s of numerator and 

denominator as well as the form of the probability densities involved. A preferred method 

specifies the denominator as the maximum entropy case for a given variance. Nevertheless, the 

relative choice of numerator and denominator terms can tailor the nature of comparison. 

A precise calculation of  𝐶𝑟  first involves finding the numerator pdf for the sum of signal plus 

noise RV’s. When the signal and noise are completely independent then the separate pdf’s may 

be convolved to obtain the pdf, 𝜌𝑦, of their sum. A generalization of 𝐶𝑟  is possible whenever the 

numerator and denominator noise entropy are identical and when the signal of interest is 

statistically independent from the noise. In this circumstance a capacity ratio bound can be 

obtained from; 

𝐶𝑟 ≤ 𝑙𝑜𝑔
{
𝜎𝐺

2

𝜎𝑛
2+1}

[
𝑘𝜎𝐺

2

𝜎𝑛
2

+ 1] ;   0 ≤ 𝑘 ≤ 1 

( 5-28 ) 

𝑘 is a constant and 𝜎𝑥
2 is the variance of a signal which is to be compared to the Gaussian 

standard. 𝑘 is determined from the entropy ratio 𝐻𝑟 of the signal to be compared to the standard 

entropy, 𝑙𝑛(√2𝜋𝑒𝜎𝐺). Most generally, the value for 𝐶𝜌𝑥
 must be explicitly obtained from the 
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integral in 5-26. However, 𝐶𝜌𝑥
 may also be known for some common distributions like for 

instance a continuous uniform distribution. 

𝐻𝑟 is the relative entropy ratio for an arbitrary random variable compared to the Gaussian case 

with a fixed variance. A bounded value for 𝐻𝑟 can be estimated by assuming that the noise and 

signal are statistically independent and uncorrelated. It has been established that the reference 

maximum entropy process is Gaussian so that for a given variance all other random variables 

will possess lower relative differential entropies. This means that  𝐻𝑟 ≤ 1 for all cases since 

𝐻𝜌𝑥 ≤ 𝐻𝐺𝑥 . Thus; 

𝐻𝑟 ≡
𝐻𝜌𝑥 

𝐻𝐺𝑥 
=

𝐻𝜌𝑥 

𝑙𝑛(√2𝜋𝑒𝜎𝑥)
 

An example illustrates the utility of 𝐻𝑟 . We find 𝐻𝑟  for the case when the signal is characterized 

by a continuous uniform pdf over {−𝑣𝑚𝑎𝑥 , 𝑣𝑚𝑎𝑥} (𝑚 = 1). In that case ; 

𝐻𝑟 =
𝑙𝑛(2 𝑝𝑚𝑎𝑥)

𝑙𝑛(√2𝜋𝑒𝜎)
=

𝑙𝑛(2√3)

𝑙𝑛(√2𝜋𝑒)
≈ .876 

The variance of the Gaussian reference signal and the uniformly distributed signal are equated in 

this example (𝜎𝐺
2 = 𝜎𝑈

2 = 1) to obtain a relative result. At large SNR, the capacity ratio can be 

approximated; 

𝐶𝑟 =
𝐻𝜌𝑦 − 𝐻𝑝𝑛 

𝐻𝐺 − 𝐻𝑛 
≈

𝐻𝜌𝑥 

𝐻𝐺
= 𝐻𝑟    ;     𝑓𝑜𝑟 𝑆𝑁𝑅̅̅ ̅̅ ̅̅

𝑒𝑞 ≫ 1   

( 5-29 ) 
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Therefore, the capacity for the band limited AWGN channel when the signal is uniformly 

distributed and power limited, is approximately . 876 that of the maximum capacity case 

whenever the AWGN of the numerator and denominator are not dominant. Appendix J provides 

additional detail concerning the comparison of the Gaussian and continuous uniform density 

cases. 

In general, the relative entropy is calculated from; 

𝐻𝑟 =
∫ 𝜌(𝑣)𝑙𝑛𝜌(𝑣)𝑑𝑣

+𝑣𝑚𝑎𝑥

−𝑣𝑚𝑎𝑥

∫ 𝜌𝐺(𝑣)𝑙𝑛𝜌𝐺(𝑣)𝑑𝑣     
+∞

−∞

 

( 5-30 ) 

𝜌(𝑣) is the pdf for the signal of analysis and 𝜌𝐺(𝑣) is the Gaussian pdf. 𝑣𝑚𝑎𝑥 is a peak velocity 

excursion. The denominator term is the familiar Gaussian entropy, ln (√2𝜋𝑒𝜎𝐺).  

This formula may be applied to the case where 𝜌(𝑣) for the numerator distribution of a 𝐶𝑟 ≈ 𝐻𝑟 

calculation is based on a family of clipped or truncated Gaussian velocity distributions. 휂 is 

inversely related to PAPR by some function as indicated by two prior examples using particle 

based models, summarized in equations 5-11 and 5-12. PAPR  can be found where ±𝑣𝑚𝑎𝑥 

indicates the maximum or clipped velocities of each distribution. 

 𝑃𝐴𝑃𝑅 =
 𝑣𝑚𝑎𝑥

2

∫ 𝑣2𝜌(𝑣)𝑑𝑣
+𝑣𝑚𝑎𝑥

−𝑣𝑚𝑎𝑥

 

( 5-31 ) 
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The following graphics illustrate the relationship between the relative capacity ratio, 𝑃𝐴𝑃𝑅, and 

휂 for a single degree of freedom at high SNR where 𝜌(𝑣) is a truncated Gaussian density 

function. Both variance and 𝑃𝐴𝑃𝑅 may vary in the numerator function compared to the reference 

Gaussian case of the denominator, though the variance must never be greater than unity when the 

denominator is based on the classical Gaussian case. Notice in figure 5-18 that the relative 

entropy and therefore potential capacity reduces significantly as a function of 𝑃𝐴𝑃𝑅. The lowest 

𝑃𝐴𝑃𝑅 = 1 of the graph approximates the case of a constant (the mean value of the Gaussian 

density) and therefore results in an entropy of zero for the numerator of the 𝐻𝑟 calculation. 

 

Figure 5-18 Capacity ratio for truncated Gaussian distributions vs. PAPR for large SNR 

Figure 5-19 assumes an efficiency due to a particle based encoding model illustrated in 5-14 with 

efficiency given by equation 5-12. 
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Figure 5-19 Efficiency vs. Capacity ratio for Truncated Gaussian Distributions & Large SNR 

The results indicate that preserving greater than 99% of the capacity results in efficiencies lower 

than 15 percent for these particular truncated distribution comparisons.  In the cases where the 

Gaussian distribution is significantly truncated, the momentum variable extremes are not as great 

and efficiency correspondingly increases. However, the corresponding phase space is eroded for 

the clipped signal cases thereby reducing uncertainty and thus capacity. A PAPR of 16 (12 dB) 

preserves nearly all the capacity for the Gaussian case while an efficiency of 40% can be 

obtained by giving up approximately 30 % of the relative capacity.  

As another comparison of efficiency, consider figure 5-20 which illustrates the number of 

encoded Joules per nat (JPN) for the truncated Gaussian densities vs. PAPR given 1 kg mass of 

encoding . 
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Figure 5-20 Canonical Offset Encoding Efficiency 

For relatively low PAPR, an investment of energy is more efficiently utilized to generate 1 nat/s 

of information (i.e. PAPR is inversely proportional to efficiency). However, the total number of 

nats instantly accessible and associated with the physical encoding of phase space, is also lower 

for the low PAPR case compared to the circumstance of high PAPR maximum entropy encoding.  

Another way to state this is; there are fewer nats imparted per momentum exchange for a phase 

space when the PAPR of particle motion is relatively low. Even though a low PAPR favors 

efficiency, more particle maneuvers are required to generate the same total information entropy 

compared to a higher PAPR scenario when the comparison occurs over an equivalent time 

interval. Message time intervals, efficiency, and information entropy are interdependent. 

The TE relation illustrates the energy investment associated with this process as given by eq. 5-5 

and modified to include a consideration of capacity. In this case 𝔍{�̃�} is some function of 
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capacity. The prior analysis indicates the nonlinearly proportional increase of 𝔍{�̃�} for an 

increasing 𝑃𝐴𝑃𝑅𝑒. The following TE relation equivalent combines elements of time, energy, and 

information where information capacity �̃� is a function of 𝑃𝐴𝑃𝑅𝑒 and vice versa. We shall refer 

to this or substantially similar form (eq. 5-32) as a TEC relation, or time-energy-capacity.  

〈휂〉 =
𝑃𝑚_𝑒

𝑓𝑠〈ℰ𝑖𝑛〉𝑠𝑃𝐴𝑃𝑅𝑒
≤

𝑃𝑚_𝑒

𝑓𝑠〈ℰ𝑖𝑛〉𝑠𝔍{�̃�}
 

( 5-32 ) 

If the power resource, sample rate and average energy per momentum exchange for the process 

are fixed then; 

〈휂〉 ≤
𝑘 

𝔍{�̃�}
 

( 5-33 ) 

𝑘 is a constant. As 𝔍{�̃�} increases 〈휂〉 decreases. This trend is always true. The exact form of  

𝔍{�̃�} depends on the realization of the encoding mechanisms.  The ≤ operator accounts for the 

fact that an implementation may always be made less efficient if the signal of interest is not 

required to be of maximum entropy character over its span {−𝑝𝑚𝑎𝑥, 𝑝𝑚𝑎𝑥}.  

Since 𝔍{�̃�} is not usually a convenient function, it is often expedient to use one of several 

techniques for calculating efficiency in terms of capacity. The alternate related metric 𝑃𝐴𝑃𝑅𝑒 

may be used then related back to capacity. Numerical techniques may be exploited such as those 

used to produce the graphics of figures 5-18,5-19, and 5-20. A suitable convenient 
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approximation of the function depicted by graphic 5-18 is sometimes available. For instance, 

𝑃𝐴𝑃𝑅𝑒  can be approximated as follows; 

𝑃𝐴𝑃𝑅𝑒 ≈ (3.1 𝑡𝑎𝑛ℎ−1 [
�̃�

1.4189385
]) + 1 

( 5-34 ) 

The numerical constant in the denominator of the inverse hyperbolic tangent argument is the 

entropy for a Gaussian distribution with variance of unity. When 𝐶𝑟 tends to a value of 1 then 

𝑃𝐴𝑃𝑅𝑒 tends to infinity. Figures 5-18 and 5-19 illustrate that efficiency tends to zero for the 

truncated Gaussian example and 𝑃𝐴𝑃𝑅𝑒 → ∞  . When 𝐶𝑟 = .7 the corresponding calculations 

using eq.5-35 and figure 5-18 predict a 𝑃𝐴𝑃𝑅𝑒 ≈ 3.886 and an efficiency of approximately 40 

% is likewise deduced. This result is also apparent by comparing the graphs from figures 5-18 

and 5-19. 

This approximation is now re-examined using the general result extrapolated from equation 5-32, 

a TEC relation, and some numbers from an example given in section 3.1.6. For our truncated 

Gaussian case then; 

〈휂〉 ≈
𝑃𝑚𝑒

𝑓𝑠〈ℰ𝑖𝑛〉𝑠 [(3.1 𝑡𝑎𝑛ℎ−1 [
�̃�

1.4189385
]) + 1]

=
𝑘

[(3.1 𝑡𝑎𝑛ℎ−1 [
�̃�

1.4189385
]) + 1]

 

( 5-35 ) 
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𝑓𝑠, 〈ℰ𝑖𝑛〉𝑠 and 𝑃𝑚𝑒
 are easily specified or measured system values in practice. We use the 

following values from the example of section 3.1.6 to illustrate the application of this 

approximation and the consistency of the various expressions for efficiency developed thus far.  

𝑃𝑚𝑒
= 1 Joule, 〈ℰ𝑘〉𝑠=10× 10−6 Joules, 𝑓𝑠 = 2.5 × 104 momentum exchanges per second 

If we wish a maximum capacity solution then the efficiency tends to zero in equation 5-35 

verifying prior calculations. If we would like to preserve 70 % of the maximum capacity solution 

then the efficiency should tend to 40% confirming the prior calculation. This would require that 

𝑘 ≅ 1.554 for consistency between the formulations of 5-35 and numerical techniques related to 

the transcendental graphic procedure leveraging figures 5-18 and 5-19. Using the values for 𝑃𝑚𝑒
, 

𝑓𝑠 and the fact that 〈ℰ𝑘〉𝑠 = 〈ℰ𝑖𝑛〉𝑠 휂 we can easily verify that; 

𝑘 =
𝑃𝑚𝑒

𝑓𝑠〈ℰ𝑖𝑛〉𝑠
=

1

. 625
= 1.6 

Alternately, if we insist that 𝑘 = 1.554 then the efficiency calculates to 39.98 %. This is a good 

approximation and a verification of consistency between the various theories and techniques 

developed to this point. 

It is apparent from the prior examples, that we may choose a variety of ratios and metrics to 

compare how arbitrary distributions reduce capacity in exchange for efficiency compared to 

some reference like the Gaussian norm. The curves of 5-18, 5-19 and 5-20 will change 

depending on the distributions to be compared and encoding mechanisms but the trend is always 

the same. Lower PAPR increases efficiency but decreases capacity compared to a canonical case.  
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 Capacity vs. Efficiency Given Directly Dissipative Losses 5.3.

Directly dissipative losses refer to additional energy expenditures due to drag, viscosity, 

resistance, etc. These time variant scavenging affects impact the numerator component of the 

𝑆𝑁𝑅̅̅ ̅̅ ̅̅
𝑒𝑞 term in the capacity equations of chapter 4 by reducing the available signal power. As 

direct dissipation increases, the available 𝑆𝑁𝑅̅̅ ̅̅ ̅̅
𝑒𝑞 also decreases thereby reducing capacity.  

The relationship between channel capacity and efficiency 휂𝑑𝑖𝑠𝑠_𝛼 can be analyzed by recalling 

the capacity equations of  chapter 4 and substituting the total available energy for supporting 

particle motion into the numerator portion of 𝑆𝑁𝑅̅̅ ̅̅ ̅̅
𝑒𝑞. 

𝐶 ≤ ∑ 𝑓𝑠𝛼(𝑙𝑛[𝑆𝑁𝑅̅̅ ̅̅ ̅̅
𝑒𝑞 + 1])

𝐷

𝛼=1

 

𝐶 ≤ ∑ 𝑓𝑠_𝛼 (𝑙𝑛 [𝑚2
( 〈𝑃𝑒〉〈휂𝑑𝑖𝑠𝑠_𝛼〉)

�̃�𝑝𝑛_𝛼
2

+ 1])

𝐷

𝛼=1

 ;    0 ≤ 휂𝑑𝑖𝑠𝑠_𝛼 ≤ 1  

( 5-36 ) 

As the average efficiency 〈휂𝑑𝑖𝑠𝑠_𝛼〉 reduces, the average signal power 〈𝑃𝑒〉 must increase to 

maintain capacity. 
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 Capacity vs. Total Efficiency  5.4.

In this section both direct and modulation efficiency (휂𝑖𝑠𝑠 , 휂𝑚𝑜𝑑) impacts are combined to 

express a total efficiency. The total efficiency is then 휂 = 휂𝑑𝑖𝑠𝑠휂𝑚𝑜𝑑 where 휂𝑚𝑜𝑑 is the 

efficiency due to modulation loss described in sections 5.1 and 5.2.  

We may use the procedure and equations developed in section 5.2 to obtain a modified TEC 

relation; 

〈휂〉 = 휂𝑑𝑖𝑠𝑠휂𝑚𝑜𝑑 ≤
𝑃𝑚_𝑒

𝑓𝑠〈ℰ𝑖𝑛〉𝑠𝔍{�̃�}
 

〈ℰ𝑘〉𝑠 = 〈ℰ𝑖𝑛〉𝑠 휂𝑑𝑖𝑠𝑠휂𝑚𝑜𝑑 

( 5-37 ) 

The capacity equation 5-36 may be modified to include overall efficiency 휂 = 휂𝑑𝑖𝑠𝑠휂𝑚𝑜𝑑. The 

following equation applies only for the case where the signal is nearly Gaussian. As indicated 

before, this requires maintaining a PAPR of nearly 12 dB with only the extremes of the 

distribution truncated. 

𝐶 ≤ ∑ 𝑓𝑠𝛼 (𝑙𝑛 [𝑚2
( 〈𝑃𝑠𝑟𝑐〉휂𝑑𝑖𝑠𝑠_𝛼휂𝑚𝑜𝑑_𝛼)

�̃�𝑝𝑛𝛼

2
+ 1])

𝐷

𝛼=1

;   

( 5-38 ) 

휂 has a direct influence on the effective signal power, 𝑃𝑒 = 〈𝑃𝑠𝑟𝑐〉휂𝑑𝑖𝑠𝑠_𝛼휂𝑚𝑜𝑑_𝛼. When the 

average signal power output decreases, then the channel noise power becomes more significant 

in the logarithm argument, thereby reducing capacity. For a given noise power the average power 
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〈𝑃𝑒〉 for a signal must increase to improve capacity. In order to attain an adequate value for 

〈𝑃𝑒〉 = 〈𝑃𝑠𝑟𝑐〉휂𝑑𝑖𝑠𝑠휂𝑚𝑜𝑑, 〈𝑃𝑠𝑟𝑐〉 must increase.  

The capacity of 5-38 applies only to the maximum entropy process. Arbitrary processes may 

possess a lower PAPR and therefore higher efficiency but the capacity equation must be 

modified by using the approximate relative capacity method of section 5.2 or the explicit 

calculation of pseudo-capacity for a particular information and noise distribution through 

extension of the principles from chapter 4. 

Efficiency vs. capacity in nats/second for the 10 dB SNR Gaussian signal case is illustrated in 

the following graphic. 휂𝑚𝑜𝑑 possesses a small but finite value associated with some standardized 

norm for an approximate Gaussian case and assumed encoder mechanism, such as for instance a 

PAPR of 12 dB and the encoder model of figure 5-14. Since 휂𝑚𝑜𝑑 is fixed in such an analysis, 

capacity performance is further determined by 휂𝑑𝑖𝑠𝑠. 

 

Figure 5-21 Capacity vs. Dissipative Efficiency 
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All members of the capacity curve family can be made identical to the 𝐷 = 1 case if the sample 

rate 𝑓𝑠_𝛼, per sub channel is reduced by the multiplicative factor 𝐷−1. That is, Dimensionality 

may be traded for sample rate to attain a particular value of C, and a given 휂. 

5.4.1. Effective Angle for Momentum Exchange  

Information can be lost in the process of waveform encoding or decoding unless momentum is 

conserved during momentum exchange. The capacity equation may be altered to emphasize the 

effective work based on the angle of time variant linear momentum exchanges. 

𝐶 ≤ ∑ 𝑓𝑠_𝛼 (𝑙𝑛 [
(𝑚2〈�̇�𝛼 ∙ �̇⃗�𝛼〉𝑒𝑓𝑓_𝛼)

�̃�𝑝𝑛_𝛼
2 + 1]) = ∑ 𝑓𝑠_𝛼 (𝑙𝑛 [

(𝑚2 〈(|�̇�𝛼||�̇⃗�𝛼|)
𝑖𝑛_𝛼

cos(휃𝑒𝑓𝑓_𝛼)〉)

�̃�𝑝𝑛_𝛼
2 + 1])

𝐷

𝛼=1

𝐷

𝛼=1

 

( 5-39 ) 

The subscript “𝑖𝑛” refers to input work rate. cos 휃𝑒𝑓𝑓_𝛼 controls the efficiency relationship in the 

second equation. 〈(|�̇⃗�𝛼||�̇⃗�𝛼|)
𝑖𝑛_𝛼

cos(휃𝑒𝑓𝑓_𝛼)〉 is the effective work rendered at the target 

particle. Therefore, 〈휂𝛼〉 = 〈cos 휃𝑒𝑓𝑓_𝛼〉.  

cos 휃𝑒𝑓𝑓_𝛼 must be unity for every momentum exchange to reflect perfect motion and render a 

maximum efficiency of 1. 휃𝑒𝑓𝑓_𝛼 = (휃𝑚𝑜𝑑_𝛼 − 휃𝑑𝑖𝑠𝑠_𝛼) is composed of a dissipative angle and a 

modulation angle, relating to the discussion of the prior section. 휃 provides a means for 

investigation of the inefficiencies at a most fundamental scale in multiple dimensions, where 

angular values may also be decomposed into orthogonal quantities. 
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For an increasing number of degrees of freedom and dimensionality, the relative angle of particle 

encoding and interaction is important and provides more opportunity for inefficient momentum 

exchange. For example, the probability of perfect angular recoil of the encoding process is on the 

order of (2𝜋)−𝐷 in systems whenever the angular error is uniformly distributed. Even when the 

error is not uniformly distributed it tends to be a significant exponential function of the available 

dimensional degrees of freedom. 

Whenever 𝐷 > 1, the angle 휃𝑒𝑓𝑓_𝛼 may be treated as a scattering angle. This concept is well 

understood in various disciplines of physics where momentum exchanges may be modeled as the 

interaction of particles or waves [53, 54].  The variation of this scattering angle due to vibrating 

particles or perturbed waves goes to the heart of efficiency at a fundamental scale. Thermal state 

of the apparatus is one way to increase 휃𝑑𝑖𝑠𝑠_𝛼, the unwanted angular uncertainty in 휃𝑒𝑓𝑓_𝛼. 

Interaction between the particles of the apparatus, environment and the encoded particles 

exacerbates inefficiency evidenced as an inaccurate particle trajectory.  Energy is bilaterally 

transferred at the point of particle interface as we have noted from examining recoil momentum. 

Thus during every targeted non-adiabatic momentum exchange in which some energy is 

dissipated to the local environments there is also some tendency to expose the target particle 

momentum to environmental contamination.  
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 Momentum Transfer via an EM Field  5.5.

The focus of prior discussions has been at the subsystem level, examining the dynamics of 

particles constrained to a local phase space. However, the discussion of section 3.3 and the 

implication of chapter 4 is that such a model may be expanded across subsystem interfaces. It is 

not necessary to resolve all of the particulars of the interfaces enabling the extended channel to 

understand the fundamental mechanisms of efficiency. Where ever  momentum is exchanged the 

principles  previously developed can apply. It is valuable to understand how the momentum may 

extend beyond boundaries of a particular modeled phase space, particularly for the case of 

charge-electromagnetic field interaction. Here we shall restrict the discussion to the case where 

particles are conserved charges. Specifically, charges in the transmitter phase space do not cross 

the ether to the receiver, or vice-versa, yet momentum is transferred by EM fields. This is the 

case for a radio communications link. 

The following figure provides a reference point for the discussion. 

 

Figure 5-22 Momentum Exchange Through Radiated Field 
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The figure illustrates a charge in a restricted transmitter phase space which moves according to 

accelerations from applied forces. The accelerating transmitter charge radiates energy and 

momentum contained in the fields which transport through a physical medium to the receiver.  

The transmitter charge does not  leave the transmitter phase space, complying with the boundary 

conditions of chapter 3. In electronic communications applications, we can obtain the momentum 

of the transmitter charge from the Lorentz force [38, 39, 55, 56, 57].  

𝑑

𝑑𝑡
𝑝 𝑡𝑥 = 𝑒�⃑� +

𝑒

𝑐
𝑣 × �⃑⃑�  

( 5-40 ) 

�⃑�  is the stimulating electric field and �⃑⃑�  is the stimulating magnetic field. Often electronic 

communications application will stimulate charge motion using a time variant scalar potential 

𝜑(𝑡) alone so that the magnetic field is zero. In those common cases;  

𝑑

𝑑𝑡
𝑝 𝑡𝑥 = 𝑒�⃑� = −𝑒∇𝜑(𝑡) 

( 5-41 ) 

The momentum of the transmitter charge is imparted by a time variant circuit voltage in this 

circumstance. Since the charge motions involve accelerations, encoded fields radiate with 

momentum. Radiated fields transfer time variant momentum to charges in the receiver, likewise 

transferring the information originally encoded in the motion of transmitter charges.  

The receiver charge mimics the motion of the transmitter charge at some deferred time.  

The equations of motion for the receiver charge are given by; 
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𝑑

𝑑𝑡
𝑝 𝑟𝑥 = 𝑒�⃑� +

𝑒

𝑐
𝑣 × �⃑⃑�  

𝑑

𝑑𝑡
ℰ = 𝑒(𝑣 ∙ �⃑� ) 

( 5-42 ) 

The Lorentz force, which moves the receiver particle, is a function of the dynamic electric (�⃑� ) 

and magnetic (�⃑⃑� )  field components of the field bridging the channel. These fields can be 

derived from the Lienard-Wiechert potentials which in turn reflect variations associated with the 

transmitter charge motion [58]. The so called radiation field of the transmitter charge is based on 

accelerations i.e.  
𝑑

𝑑𝑡
𝑝 𝑡𝑥 [56]. Literature is replete with the relevant derivations which connect 𝑝 ̇𝑡𝑥 

with  𝑝 ̇𝑟𝑥 via the  components of the retarded scalar and vector potentials which give rise to the 

EM fields according to Maxwell’s equations [39]. 

A comprehensive treatment developed from the equations of motion for a charge in a field is 

provided by Landau and Liftshitz and summarized here [39]. In addition, complementary 

analysis is provided by Jackson, Goldstein, and Griffiths [37, 38, 59]. 

The following integral equation in figure 5-23, for a D=3 hyper sphere illustrates the various 

components of energy and momentum flux through the surface of a transmit phase space 

volume. The integral equation is deduced using the techniques of Landau and Liftshitz as well as 

Jackson. It is written in a conservation form with particle terms on the left and field terms on the 

right accounting for momentum within the space and moving through the surface of the space. 
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The components with super scripts labeled (⇝) and (⧚) in the integral equation refer to particle 

and field components respectively. 

 

Figure 5-23 Conservation Equation for a Radiated Field 

The energy-momentum tensor provides a compact summary of the quantities of interest 

associated with the momentum flux of the phase space based on the calculations of the 

conservation equation [38, 39].  The tensor is related to the space-time momentum 𝒫 by; 

𝒫𝛼 =
1

𝐶
∫𝑇𝛼𝛽𝑑𝑓𝛽 

( 5-43 ) 

𝛼, 𝛽 are the spatial indices of the tensor in three space and the 0𝑡ℎ index is reserved for the time 

components in the first row and column. 
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Figure 5-24 Energy Momentum Tensor 

The energy density associated with the phase space in joules per unit volume is given by; 

𝑇00 =
1

8𝜋
(𝐸2 + 𝐻2) ≡ 𝑊 

( 5-44 ) 

The energy flux density per unit time crossing the differential surface element df (chosen 

perpendicular to the field flux) is given by the tensor elements  𝑇0𝛽 multiplied by c, where ; 

𝑇01 =
𝑆1

𝑐
, 𝑇02 =

𝑆2

𝑐
, 𝑇03 =

𝑆3

𝑐
 

( 5-45 ) 

And Poynting’s Vector is obtained from  ; 

𝑆 =
𝑐

4𝜋
(�⃑� × �⃑⃑� ) 

( 5-46 ) 
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Maxwell’s stress tensor expresses the components of the momentum flux density per unit time 

passing from the transmitter volume through a surface element of the hyper-sphere; 

𝑇𝛼𝛽 = −𝔖𝛼𝛽 = −
1

4𝜋
{𝐸𝛼𝐸𝛽 + 𝐻𝛼𝐻𝛽 −

1

2
𝛿𝛼𝛽(𝐸2 + 𝐻2)} ; 𝛼, 𝛽 = 1,  2,  3 

( 5-47 ) 

The second term in the integral equation of figure 5-23 is zero in our case, {𝜎𝛼,𝛽
(⇝)

= 0}, since 

transmit charges are confined by boundary conditions. The right hand side of the integral 

equation is the momentum change within the transmit volume along with the momentum flux 

transported through the phase space volume surface. The momentum flux carries information 

from the transmitter to the receiver through a time variant modulated field.  Poynting’s vector 

may also be used to calculate the average energy in that field. 

We now comment on extended results by application of modulation to encode information in the 

fields. 

One classic case involves modulated harmonic motion of the electron which corresponds to a 

modulated RF carrier. This case is addressed in detail by Schott [55]. He develops the field 

components from the retarded potentials in several coordinate systems. It can be shown that the 

modulated harmonic motion produces an approximate transverse electromagnetic plane wave in 

the far field given by [60, 61]; 

𝐸𝑦(𝑡) = 𝐸0(𝑎(𝑡))𝑒𝑗(𝜔𝑡−𝜙(𝑡)) 

( 5-48 ) 
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𝐻𝑧(𝑡) =
1

−𝑗𝜔𝜇
 
𝜕

𝜕𝑥
 𝐸𝑦(𝑡) =

2𝜋

𝜆(𝑡)
 

1

𝑗𝜔𝜇
 𝐸0(𝑎(𝑡))𝑒𝑗(𝜔𝑡−𝜙(𝑡)) 

( 5-49 ) 

𝑎(𝑡) and 𝜙(𝑡) are random variables encoded with information in this view corresponding to the 

amplitude and phase of the harmonic field. The momentum of the field changes according to 

𝑎(𝑡) and 𝜙(𝑡) in a correlated manner. Therefore the 𝐸𝑦 and 𝐻𝑧 field components are also 

random variables possessing encoded information from which we may calculate time variant 

momentum using the integral conservation equation above. 

Accelerating charges radiate fields which carry energy away from the charge. This radiating 

energy depletes the kinetic energy of the charge in motion, a distinct difference compared to the 

circumstance of matter without charge. The prior comments do not explicitly contemplate the 

impact of the radiation reaction on efficiency which may become significant at relativistic 

speeds. Schott exhaustively investigates the radiation reaction of the electron and its impact on 

the kinetic energy [55, 56]. We shall not require a separate calculation of the radiation reaction 

for subsequent examples but the reader is cautioned that under certain conditions it may be 

significant. Simple examples involving radiation from circular or other periodic orbits may be 

found in the literature [38]. The simple examples typically involve the use of Larmor’s formula 

or the Abraham-Lorentz formula [37]. In the case of routine circuit analysis it is usually not a  

concern since conduction rather than radiation is a primary method of moving the charge and its 

momentum and drift velocities of the constrained charges are typically far below the speed of 

light [62].  
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The field energies calculated by Poynting’s vector at the receiver are attenuated by the spherical 

expansion of the transmitted flux densities as the EM field propagates through space. This 

attenuation is in proportion to the square of the distance between the transmitter and receiver for 

free space conditions according to Friis’ equation when the separation is on the order of 10 times 

the wavelength of the RF carrier or greater [42].  Ultimately, the effect of this attenuation is 

accounted for in the capacity calculations by a reduction in SNR at the receiver. 

Finally, it is posited that the principles of section 5.5 are extensible to the general electronics 

application moving forward. Variable momentum is due to the modulation of charge densities 

and their associated fields, whether it is viewed as simply a bulk phenomena or the ensemble of 

individual scattering events which average to the bulk result. A circuit composed of conductors 

and semiconductors can be characterized by voltage and current. Voltage is the work per unit 

charge to convey the charge through a potential field. When multiplied by the charge per unit 

time conveyed, we may calculate the total work required to move the charge. This is analogous 

to the prior discussions involving the conjugate derivative field quantities of particles in a model 

phase space used to calculate the trjectory work rate (𝑝 ̇ ∙ 𝑞 ̇) which can be integrated over some 

characteristic time interval ∆𝑡 , to obtain the total work over that interval.   
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 INCREASING 𝜼𝒎𝒐𝒅 AN  6.

OPTIMIZATION APPROACH   

Chapter 5 establishes the total efficiency for processing as 휂 = 휂𝑑𝑖𝑠𝑠휂𝑚𝑜𝑑. 휂𝑚𝑜𝑑 applies for the 

modulation process wherever there is an associated efficiency for any interface where the 

momentum of particles must deliberately be altered to support a communications function. For 

communications this could include encoding, decoding, modulation, demodulation, increasing 

the power of a signal, etc.. In this chapter we introduce a method for increasing 휂𝑚𝑜𝑑 whilst 

maintaining capacity. The method can apply to cases for which distributions of particle 

momentum are not necessarily Gaussian. Nevertheless, we focus on the Gaussian case, since 

modern communications signals and standards are ever marching toward this limit.  

 Sum of Independent RVs 6.1.

Consider the comparative case where 휁=1 vs. some greater integer number where 휁 is the 

number of summed signal inputs 𝑥𝑖 to a channel. Suppose that it is desirable to conserve energy 

in the comparison. The total energy is allocated amongst 휁 distributions with an 𝑖𝑡ℎ branch 

efficiency inversely related to the 𝑃𝐴𝑃𝑅𝑖 of the 𝑖𝑡ℎ signal.   

휂𝑖 = (𝑘𝑖𝑃𝐴𝑃𝑅𝑖 + 𝑎𝑖)
−1 

( 6-1 ) 
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Equation 6-1 is a general form suitable for handling all information encoding circumstances 

given a suitable choice of  𝑘𝑖 and 𝑎𝑖.  

The following diagram assists with ongoing discussion; 

 

Figure 6-1 Summing Random Signals 

It is possible to calculate an effective total efficiency from the input efficiencies when the 

densities of  𝑥𝑖 are independent, beginning from the general form developed in chapter 5 where 

𝑘𝑚𝑜𝑑 and 𝑘𝜎 are constants based on encoder implementation. 

〈휂〉 =
𝜎2

𝑘𝑚𝑜𝑑𝑃𝑚 + 𝑘𝜎𝜎2
 

( 6-2 ) 

𝑃𝑚 = max∑𝑥𝑖
2

𝑖

 

( 6-3 ) 
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Then, eq. 6-2 may be written for the 𝑖𝑡ℎ branch as;   

휂𝑖 =
𝜎𝑖

2

𝑘𝑚𝑜𝑑_𝑖
′𝑃𝑚_𝑖 + 𝑘𝜎_𝑖

′𝜎𝑖
2 

( 6-4 ) 

Now we define 𝑘𝑚𝑜𝑑_𝑖
′ = 𝜆𝑖𝑘𝑚𝑜𝑑  and  𝑘𝜎_𝑖

′ = 𝜆𝑖𝑘𝜎  

6-4 becomes; 

𝜆𝑖휂𝑖 =
𝜎𝑖

2

𝑘𝑚𝑜𝑑_𝑖𝑃𝑚_𝑖 + 𝑘𝜎_𝑖𝜎𝑖
2 

( 6-5 ) 

Now we form a time average of 6-5; 

〈휂〉 = 〈∑ 𝜆𝑖휂𝑖

𝑖

〉 = 〈∑
𝜎𝑖

2

𝑘𝑚𝑜𝑑_𝑖𝑃𝑚_𝑖 + 𝑘𝜎_𝑖𝜎𝑖
2

𝑖

〉 

( 6-6 ) 

We further stipulate that; 

∑𝜆𝑖

𝑖

= 1 

( 6-7 ) 

Equation 6-7 defines 𝜆𝑖 as a suitable probability measure for the 𝑖𝑡ℎ branch. Comparing 6-2 and 

6-6, yields; 
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〈휂〉 = ∑𝜆𝑖휂𝑖

𝑖

 

( 6-8 ) 

Equation 6-8 requires that the weighting coefficients associated with the 𝑖𝑡ℎ branch be specified 

to yield the corresponding composite time average. Equations 6-1 through 6-6 suggest that a 

particular design PAPR may be achieved using a composite of signals and the individual branch 

𝑃𝐴𝑃𝑅𝑖 may be lower than the final output which implies that overall efficiency may be 

improved. 

Examination of figure 6-1 and equation 6-6 carries an additional burden of ensuring that each 

input branch not adversely interact or alternately that 휂𝑖 not be a function of more than 1 input.  

This is no small challenge for linear continuous processing technologies. In a particle based 

model it is possible for all particles of the input delivery streams to interact at a common target 

particle (i.e. summing node). Energy from a delivery particle in one branch may be redistributed 

amongst the 휁 branches as well as the output target particle. A preferred strategy would allocate 

as much momentum from an input branch to the output target particle, without other branch 

interaction. 

In electronics, the analogy is that all the input branches can interact via a circuit summing node 

through the branch impedances, thus distributing energy from the inputs to all circuit branches 

not just the intended output load. Fortunately, there are methods for avoiding these kinds of 

redistributions.    
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 Composite Processing 6.2.

A sampled system provides one means of controlling the signal interactions at the summing node 

of figure 6-1. A solution addressing the Gaussian case, which is also suitable for application 

using any pdf, follows. Figure 6-2 illustrates composite sub densities which fit the continuous 

Gaussian curve precisely. An appealing feature of this approach is that even with a few sub 

distributions the composite is Gaussian and capacity is preserved.  Each sub density, 𝜌1 through 

𝜌6  (휁 = 6), possesses an enhanced efficiency due to a reduced 𝑃𝐴𝑃𝑅𝑖. In addition, it is 

interesting to note that as more sub densities of this ilk are deployed with narrower spans, they 

resemble uniform densities. In the extreme limit 휁 → ∞, they become discrete densities with the 

momenta probabilities equal to 𝜆𝑖 and overall efficiency asymptotically approaches a maximum 

since each 𝑃𝐴𝑃𝑅𝑖 → 1. Just as argued in chapter 4 a quantum resolution can be assigned to avoid 

ill-behaved interpretations of entropy for the theoretical case 휁 → ∞.    

For a single dimension D=1 it is easy to understand that samples for each sub density 𝜌𝑖, occur at 

noninterfering sampling intervals. Thus, if this scheme is applied to the system illustrated in 

figure 6-1 each input 𝑥𝑖 possesses a unique pdf 𝜌𝑖 = 𝜌(𝑥𝑖 ) and unique sets of signal samples are 

assigned to populate the sub densities 𝜌𝑖 whenever the composite signal ∑𝑥𝑖 (𝑡 − 𝑁𝑇𝑠) crosses 

the respective sub density domain thresholds. The thresholds are defined as the boundaries 

between each sub density.  

We may extend this approach to each orthogonal dimension for 𝐷 > 1 since orthogonal samples 

are also physically decoupled. The intersection of the thresholds in multiple dimensions form 
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hyper geometric surfaces defining subordinate regions of phase space. In the most general cases 

these thresholds can be regarded as the surfaces of manifolds. 

Figure 6-2 illustrates each sub distribution as occupying a similar span. However, this is not 

optimal. In fact, the spans only approach parity for a large number of sub densities. For a few sub 

densities the spans must be specifically defined to optimize efficiency. Each unique value of 휁 

will require a corresponding unique set of density domains and corresponding thresholds. 

 

Figure 6-2 Gaussian pdf Formed with Composite Sub Densities 

Figure 6-2 and equation 6-6 suggests that the optimal efficiency can be calculated from; 

휂𝑜𝑝𝑡 = 𝑚𝑎𝑥
휂̃휁

{∑ 𝜆𝑖휂𝑖

�̃�

𝑖=1

} 

( 6-9 ) 
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The coefficients, 𝜆𝑖 are variables dependent on the total number of domains 휁. The thresholds,  

휂̃𝜁, for the domains of each sub-density are varied for the optimization, requiring specific 𝜆𝑖.  휂 

increases as 휁 increases though there is a diminishing rate of return for practical application. 

Therefore a significant design activity is to trade 휂 vs. 휁 vs. cost, size, etc. . The trade between 

efficiency and 휁 is addressed in chapter 7 along with examples of optimization. 
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 MODULATOR EFFICIENCY AND OPTIMIZATION  7.

In this chapter, some modulator examples are presented to illustrate optimization consistent with 

the theory presented in prior chapters. Modulators encode information onto an RF signal carrier.  

This chapter focuses on encoding efficiency. Thus we are primarily concerned with the 

efficiency of processing the amplitude of the complex envelope, though the phase modulated 

carrier case may also be obtained from the analysis.  

 Modulator 7.1.

RF modulation is the process of imparting information uncertainty 𝐻(𝜌(𝑥)) to the complex 

envelope of an RF carrier.  An RF modulated signal takes the form, 

𝑥(𝑡) = 𝑎(𝑡)𝑒𝜔𝑐𝑡+𝜑(𝑡) = 𝑎𝐼(𝑡) cos(𝜔𝑐  𝑡 + 𝜑(𝑡)) − 𝑎𝑄(𝑡) sin(𝜔𝑐  𝑡 + 𝜑(𝑡)) 

𝑎(𝑡) ∆  Magnitude of complex envelope   𝑎(𝑡) = √(𝑎𝐼(𝑡))
2
+ (𝑎𝑄(𝑡))

2

 

𝑎𝐼(𝑡)  ∆  Time variant In Phase (real) component of the RF Envelope 

𝑎𝑄(𝑡)  ∆  Time variant Quadrature (Imaginary) Phase component  

𝜔𝑐  ∆   RF Carrier Frequency 

𝜑(𝑡) ∆  Instantaneous RF carrier phase    𝜑(𝑡) = 𝑡𝑎𝑛−1 𝑎𝑄(𝑡)

𝑎𝐼(𝑡)
 

( 7-1 ) 
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Any point in the complex signaling plane can be traversed by the appropriate orthogonal 

mapping of 𝑎𝐼(𝑡) and 𝑎𝑄(𝑡).  Alternatively, magnitude and phase of the complex carrier 

envelope can be specified provided the angle 𝜑(𝑡) is resolved modulo 𝜋 2⁄ . As pointed out in 

section 5.5, information modulated onto an RF carrier can propagate through the extended 

channel via an associated EM field.  

An example top level RF modulator diagram is shown in figure 7-1. 

 

Figure 7-1 Complex RF Modulator 

A complex modulator consists of orthogonal carrier sources (𝑠𝑖𝑛(𝜔𝑐𝑡 + 𝜑(𝑡)) and (𝑐𝑜𝑠(𝜔𝑐𝑡 +

𝜑(𝑡)), multipliers, in-phase as well as quadrature phase baseband modulators/encoders and an 

output summing node. 

An example of a measured output from an RF modulator  mapped into the complex signal plane 

results in a 2D signal constellation as illustrated in figure 7-2. The constellation corresponds to 

the case of a wideband code division multiple access signal . Specific sampling points are 

illustrated at the connecting nodes of trajectories which collectively define the constellation. The 

2D time variant voltage trajectories of figure 7-2 are analogous to phase space particle 
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trajectories presented in the prior chapters, restricted to 2 dimensions. Section 5.5 makes the 

connection to �̇� through the Lorentz Equation. 

 

Figure 7-2 Complex Signal Constellation for a WCDMA Signal 

Battery operated mobile communications platforms typically possess unipolar energy sources.  In 

such cases, the random variables defining 𝑎𝐼(𝑡) , 𝑎𝑄(𝑡) are usually characterized by non-central 

parameters within the modulator segment.  We shall focus efficiency optimization examples on 

circuits which encode  𝑎𝐼(𝑡) and 𝑎𝑄(𝑡) since extension to carrier modulation is straightforward. 

We need only understand the optimization of in phase 𝑎𝐼(𝑡) voltage or quadrature phase  𝑎𝑄(𝑡) 

voltage encoding, then treat each result as independent parts of a 2D solution. 
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The following discussion advances efficiency performance for a generic series modulator/ 

encoder configuration.  Efficiency analysis of the generic model also enjoys common principles 

applicable to other classes of more complicated modulators. 

The series impedance model for a baseband modulator in phase or quadrature phase segment of 

the general complex modulator is provided in the following two schematics which illustrate 

differential and single ended topologies; 

 

 

Figure 7-3 Differential and Single Ended Type 1 Series Modulator/Encoder 

+

-

+

-
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Figure 7-3 is referred to as a type 1 modulator. 𝑉Δ is some encoding function of the information 

uncertainty 𝐻(𝑥) to be mapped using controlled voltage changes which modify a variable 

impedance 𝑍Δ.  Impedance 𝑍Δ is variable from (0 + 0𝑗)Ω to (∞ + ∞𝑗)Ω. Alternative 

configurations may be Thevinized, consisting of current sources rather than voltage sources, 

working in conjunction with finite 𝑍s.  

Appendices H and I derive the thermodynamic efficiency for the type 1 modulator which results 

in a familiar form for symmetric densities without dissipation; 

휂 =
1

2𝑃𝐴𝑃𝑅𝑠𝑖𝑔
 

( 7-2 ) 

This formula was verified experimentally through the testing of a type one modulator. The 

following graphic provides a synopsis of the results. 

 

Figure 7-4 Measured and Theoretical Efficiency of a Type 1 Modulator   
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Several waveforms were tested, including truncated Gaussian waveforms studied in chapter 5 as 

well as 3G and 4G+ standards based waveforms used by the mobile telecommunications 

industry. The maximum theoretical bound for 휂𝑚𝑜𝑑 (i.e. 휂𝑑𝑖𝑠𝑠 = 1) represented by the upper 

curve is based on the theories of this work, for the ideal circumstance. The efficiency of the 

apparatus due to directly dissipative losses was found to be approximately 70 %. The locus of 

test points depicted by the various markers falls nearly exactly on the predicted performance 

when directly dissipative results are accounted for. For instance, a truncated Gaussian signal 

(inverted triangle) with a PAPR of 2 (3dB) was tested with a measured result of 휂𝑚𝑜𝑑휂𝑑𝑖𝑠𝑠=.175. 

Dividing .175 by the inherent test fixture efficiency of .7 equates to an 휂𝑚𝑜𝑑 = .25 in agreement 

with theoretical prediction of (2𝑃𝐴𝑃𝑅)−1. At the other extreme an IEEE802.11a standard 

waveform based on orthogonal frequency division multiplexed modulation was tested, with a 

result recorded by data point F. Data point E is representative of the Enhanced Voice Data Only 

services typical of most code division multiplexed (CDMA) based cell phone technology 

currently deployed. B and C represent the legacy CDMA cell phone standards. Data points A and 

D are representative of the modulator efficiency for emerging (WCDMA) wideband code 

division multiplexed standards. A key point of the results is that the theory of chapters 3 through 

5 applies to Gaussian and standards waveforms alike with great accuracy. 
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 Modulator Efficiency Enhancement for Fixed 휁 7.2.

An analysis proceeds for a type 1 series modulator with some numerical computations to 

illustrate the application of principles from chapter 5 and a particular example where efficiency 

is improved.   

Voltage domains are related to energy or power domains through a suitable transformation. 

𝜌(휂̌(𝑎(𝑡)) or simply  𝜌(휂̌), may be obtained from the appropriate Jacobian to transform a 

probability density for a voltage at the modulator load to an efficiency (refer to appendix H).  휂̌ 

is defined as the instantaneous efficiency of the modulator and is directly related to the proper 

thermodynamic efficiency (refer to appendix I). 

Let the baseband modulator output voltage probability density, 𝜌(𝑉𝐿), be given by; 

𝜌(𝑉𝐿) ≈
1

√2𝜋𝜎𝑉𝐿

𝑒
− 

(𝑉𝐿−〈𝑉𝐿〉)2

2𝜎𝑉𝐿
2

;          0 ≤ 𝑉𝐿 ≤ 1 

( 7-3 ) 

Equation 7-3 depicts an example pdf which is truncated non-zero mean Gaussian. 𝑉𝐿 corresponds 

to the statistic of a hypothetical in-phase amplitude or quadrature phase amplitude of the 

complex modulation at an output load.  The voltage ranges are selected for ease of illustration 

but may be scaled to any convenient values by renormalizing the random variable.  

 



221 

 

 

Figure 7-5 Gaussian pdf for Output Voltage Voltage, 𝑉𝐿 , with 𝑉𝑠 = 2, 〈𝑉𝐿〉 = 𝑉𝑠 4 = (4𝑉),⁄  and 𝜎 = .15 

Average instantaneous waveform efficiency is obtained from; 

〈휂̌〉 = 〈
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛

〉 = 〈
𝑉𝐿

2

(𝑉𝐿𝑉𝑠) − 𝑅𝑒 {
𝑍𝑠

∗

𝑍𝐿
(𝑉𝐿

2)}
〉 

( 7-4 ) 

Appendix H and I provide a discussion concerning the use of instantaneous efficiency in lieu of 

thermodynamic efficiency. In this example we utilize the instantaneous efficiency to illustrate a 

particular streamlined procedure to be applied for optimization in section 7.3. 

휂𝑊𝐹 is the total waveform efficiency where the output power consists of signal power 〈�̃�𝐿
2
〉 plus 

modulator overhead. That is, the RV of interest is 𝑉𝐿 = �̃�𝐿 + 〈𝑉𝐿〉. This differs from the preferred 

definition of output efficiency given in chapter 5. We are ultimately interested in 휂̃, the 

thermodynamic efficiency, based on the signal output. 휂̃ is based on the proper output power, 
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due exclusively to the information bearing amplitude envelope signal. Optimization of 〈휂𝑊𝐹〉 and 

〈휂̌〉 also optimizes thermodynamic efficiency (reference Appendix H). 

휂̃ = 〈휂𝑊𝐹〉 −
〈𝑉𝐿〉

𝑉𝑠
;         𝑍𝑟=

𝑍𝑠
∗

𝑍𝐿
= 1 

Sometimes the optimization procedure favors manipulation of one form of the efficiency over 

the other depending on the statistic of the output signal.  

We also note the supplemental relationships for an example case where the ratio of the conjugate 

power source impedance to load impedance, 𝑍𝑟 = 1.  

𝑍𝐿 = 𝑍𝑠
∗  

𝑍𝑟 =
𝑍𝑠

∗

𝑍𝐿
 

𝑉𝐿𝑚𝑎𝑥
=

𝑉𝑠
2

 

〈𝑉𝐿〉 =
𝑉𝑠
4

 

𝑉𝐿 =
휂𝑉𝑠

(1 + 𝑍𝑟휂)
=

휂𝑉𝑠
(1 + 휂)

 

More general cases can also consider any value for the ratio 𝑍𝑟 other than 1. 𝑍𝑠 has been defined 

as the power source impedance. The given efficiency calculation adjusts the definition of 

available input power to the modulator and load by excluding consideration of the dissipative 

power loss internal to the source. 𝑉𝑠 therefore is an open circuit voltage in this analysis. 

Ultimately then, 𝑍𝑠 limits the maximum available power 𝑃𝑚𝑎𝑥 from the modulator. 
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Now we write the waveform efficiency pdf.  

The Jacobian, 𝜌𝜂 = 𝜌(𝑉𝐿)
𝑑(𝑉𝐿)

𝑑(𝜂)
, yields; 

𝜌(휂𝑊𝐹) =
𝑉𝑠

(1 + 휂)2

1

√2𝜋𝜎2
𝑒

− 
(𝜂

𝑉𝑠
(1+𝜂)

−
𝑉𝑠
4

)
2

2𝜎2  

( 7-5 ) 

A plot of this pdf follows: 

 

Figure 7-6 pdf for 휂̌ given Gaussian pdf for Output Voltage, 𝑉𝐿 , with 

𝑉𝑠 = 2, 〈𝑉𝐿〉 = 𝑉𝑠 4(. 5𝑉),⁄  and 𝜎 = .15, 〈휂〉 = .34 

This efficiency characteristic possesses an 〈휂𝑤𝑓〉 of approximately .347. The 𝑃𝐴𝑃𝑅𝑤𝑓 is equal to 

〈휂𝑤𝑓〉
−1 or ~4.68 𝑑𝐵. Just as the waveform and signal efficiency are related, the associated peak 

to average power ratios, 𝑃𝐴𝑃𝑅𝑤𝑓 and 𝑃𝐴𝑃𝑅𝑒,  are also related by; 

𝑃𝐴𝑃𝑅𝑤𝑓 =
4𝑃𝐴𝑃𝑅𝑒

1 + 𝑃𝐴𝑃𝑅𝑒
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The signal peak to average power ratio 𝑃𝐴𝑃𝑅𝑒 = 11.11 for this  example. 

Now we apply 2 waveform voltage thresholds which correspond to 3 momentum domains, using 

a modified type 1 modulator architecture illustrated in fig. 7-7 and 7-8. 

In this example the baseband modulation apparatus possesses 3 separate voltage sources 

𝑉𝑠1, 𝑉𝑠2, 𝑉𝑠3 . These sources are multiplexed at the interface between the corresponding potential 

boundaries, 𝑉1, 𝑉2, as the signal requires. An upper potential boundary 𝑉3 = 𝑉𝑚𝑎𝑥 represents the 

maximum voltage swing across the load.  There is no attempt to optimally determine values for 

signal threshold voltages 𝑉1, 𝑉2 at this point. The significant voltage ranges defined by 

{0, 𝑉1}, {𝑉1, 𝑉2}{𝑉2, 𝑉3}, correspond to signal domains within phase space. We regard these 

domains as momentum domains with corresponding energy domains.  

Domains are associated to voltage ranges according to; 

Domain 1 if; 𝑉𝐿 < 𝑉1 

Domain 2 if; 𝑉1 ≤ 𝑉𝐿 ≤ 𝑉2 

Domain 3 if; 𝑉2 < 𝑉𝐿 < 𝑉3 
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Figure 7-7 Gaussian pdf for Output Voltage, 𝑉𝐿 , with 𝑉𝑠 = 2, 〈𝑉𝐿〉 = 𝑉𝑠 4(. 5𝑉),⁄  

and 𝜎 = .15 , 3 Separate Domains 

Average efficiency for each domain  may be obtained from subordinate pdfs parsed from the 

waveform efficiency of figure 7-6. 

The calculations of 〈휂̌1,2,3〉 are obtained from; 

〈휂̌𝜁〉 = 𝑘𝜁_𝑛𝑜𝑟𝑚 ∫ 휂̌ 𝜌𝜁(휂̌)𝑑(휂̌)
�̃�𝜁

�̃�𝜁−1

  ;  휁 = 1, 2, 3 

( 7-6 ) 

휁 is a domain increment for the calculations and 𝑘𝜁_𝑛𝑜𝑟𝑚 provides a normalization of each 

partition domain such that each separate sub pdf possesses a proper probability measure. Thus, 

the averages of eq. 7-6 are proper averages from three unique pdfs. First we calculate the peak 
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efficiency in domain 1, using a 2V power supply as an illustrative reference for a subsequent 

comparison. 

휂̌1𝑝𝑒𝑎𝑘  Δ 
〈𝑉𝐿

2〉

〈𝑉𝐿𝑉𝑠〉 − 𝑉𝐿
2 ;       𝑉𝐿 = .3𝑉, 𝑉𝑠 = 2𝑉, ∴ 휂̌1𝑝𝑒𝑎𝑘 ≈ .176 

휂̌1𝑝𝑒𝑎𝑘 is the instantaneous peak waveform efficiency possible for the modulator output voltage 

of .3V when the modulator supply is at 2V. 〈휂̌1〉 according to eq. 7-6, calculates to ≈ .131 in the 

domain where 0≤ 𝑉𝐿 ≤ .3𝑉.   

Now suppose that this region is operated from a new power source with voltage 𝑉𝑠1 = .6𝑉 

instead of 2 volts.  The calculations above are renormalized so that 

휂̌1𝑝𝑒𝑎𝑘_𝑛𝑜𝑟𝑚 
 Δ 1 ,       {𝑉𝑠1 = .6𝑉,           𝑉𝐿1𝑚𝑎𝑥

= 𝑉𝑠 2⁄ = .3𝑉} 

〈휂̌1_𝑛𝑜𝑟𝑚〉 = . 131 . 176⁄ ≅ .744, 𝑃𝐴𝑃𝑅𝑤𝑓1 ≈ 1.344 

〈휂̌1_𝑛𝑜𝑟𝑚〉 is substantially enhanced because the original peak efficiency of .176 is transformed to 

100 percent available peak waveform efficiency through the selection of a new voltage source, 

𝑉𝑠1. Another way to consider the enhancement is that 𝑍∆ becomes zero for the series modulator 

when .3 volts is desired at the load. There is therefore zero dissipation in 𝑍∆, for that particular 

operating point. Hence, just as 휂̌1𝑝𝑒𝑎𝑘 is transformed from .176 to 1, 〈휂̌1〉 is transformed from 

.131 to .744. 

In domain 2 we perform similar calculations 

휂̌2𝑝𝑒𝑎𝑘 = .538 ; {𝑉𝑠 = 2𝑉, 𝑉𝐿2 = .7𝑉} 
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Again we use the modified CDF to obtain the un-normalized 〈휂̌2〉 ≈ .338 first, followed by 

〈휂̌2_𝑛𝑜𝑟𝑚〉. 

〈휂̌2_𝑛𝑜𝑟𝑚〉 ≈ .629, 휂̌2𝑝𝑒𝑎𝑘𝑛𝑜𝑟𝑚
 Δ 1 ,      {𝑉𝑠2 = 1.4𝑉, 𝑉𝐿2𝑚𝑎𝑥

= .7𝑉}, 𝑃𝐴𝑃𝑅𝑤𝑓2 ≈ 1.589  

Likewise we apply the same procedure for domain 3 and obtain; 

〈휂̌3𝑛𝑜𝑟𝑚
〉 ≈ .626,    휂̌3𝑝𝑛𝑜𝑟𝑚

 Δ 1, {𝑉𝑠 = 2𝑉, 𝑉𝐿3𝑚𝑎𝑥
= 1𝑉}, 𝑃𝐴𝑃𝑅𝑤𝑓3 ≈ 1.597   

The corresponding block diagram for an instantiation of this solution becomes; 

 

Figure 7-8 Three Domain Type 1 Series Modulator 

The switch transitions as each threshold associated with a statistical boundary is traversed, 

selecting a new domain according to ℑ̃{𝐻(𝑥)1, 𝐻(𝑥)2, 𝐻(𝑥)3} (휁 = 3).  The index i in the figure 

7-8 is a domain index which is a degree of freedom for the modulator. The  𝜈, 𝑖 subscript refers 

to 𝜈 degrees of modulator freedom associated with the 𝑖𝑡ℎ domain. In a practical implementation, 

the entropy 𝐻(𝑥) of the information source is parsed between the various modulator degrees of 

freedom. In this example 2 bits of information can be assigned to select the 𝑖𝑡ℎ domain. Using 

this method we obtain efficiency improvements above the single domain average which is 

+ + +

- - -
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calculated as 〈휂〉 ≈ .347.  In comparison, the new efficiencies and probability weightings per 

domain are; 

〈휂̌1〉 = .744;       9.1% probability weighting 

〈휂̌2〉 = .629;      81.8% probability weighting 

〈휂̌3〉 = .626;                 9.1% probability weighting 

The final weighted average of this solution, which has not yet been optimized, is given by; 

〈휂̌𝑡𝑜𝑡〉 = 휂𝑠𝑥 ∙ [(. 091 × .744) + (. 818 × .629) + (. 091 × .626)] ≅  휂𝑠𝑥 ∙ .64  

As we shall show in the next section, the optimal choice of values for 𝑉1, 𝑉2, can improve on the 

results of this example, which is already a noticeable improvement over the single domain 

solution of 〈휂̌𝑚𝑜𝑑〉 = .347 . 

휂𝑠𝑥 is the efficiency associated with the switching mechanism which is a cascade efficiency.  

Typical switch efficiencies of moderate to low complexity can attain efficiencies of .9.  

However, as switch complexity increases, 휂𝑠𝑥  may become a design liability. 휂𝑠𝑥 is considered a 

directly dissipative loss and a design tradeoff. 

Voltage is the fundamental quantity from which the energy domains are derived. Preserving the 

information to voltage encoding is equivalent to properly accounting for momentum. This is 

important because 𝜌(휂̌) is otherwise not unique. We could also choose to represent efficiency as 

an explicit function of momentum as in chapter 5, thereby emphasizing a more fundamental 

view. However, there is no apparent advantage for this simple modulator example. More 



229 

 

complex encoder mappings involving large degrees of freedom and dimensionality may benefit 

from explicitly manipulating the density (휂̌(𝑝)) at a more fundamental level. 

 Optimization for Type 1 Modulator , 휁 = 3 Case 7.3.

From the prior example we can obtain an optimization of the form 

max{〈휂̌𝑡𝑜𝑡〉} = max{𝜆1〈휂̌1〉 + 𝜆2〈휂̌2〉 + 𝜆3〈휂̌3〉} 

( 7-7 ) 

∑𝜆𝑖 = 1 

It is also noted that 

〈휂̌1〉 = ℑ̃{𝑉𝑠1}, 〈휂̌2〉 = ℑ̃{𝑉𝑠1 , 𝑉𝑠2}, 〈휂̌3〉 = ℑ̃{𝑉𝑠2 , 𝑉𝑠3} 

The goal is to solve for the best domains by selecting optimum voltages 𝑉𝑠1 , 𝑉𝑠2 , 𝑉𝑠3.  𝑉𝑠3 is 

selected as the maximum available supply by definition and was set to 2V for the prior example.  

The minimum available voltage is set to 𝑉𝑠0 = 0.  Therefore only 𝑉𝑠1and 𝑉𝑠2 must be calculated 

for the optimization of a three domain example, which also simultaneously determines 𝜆1, 𝜆2 and 

𝜆3 . We proceed with substitutions for thresholds, domains, and efficiencies in terms of 

appropriate variables and supplementary relations; 

max{휂̌𝑡𝑜𝑡} = max {𝜆1𝑘1𝑛𝑜𝑟𝑚
∫ 휂̌1 𝜌1(휂̌1 )𝑑휂̌1 + 𝜆2𝑘2𝑛𝑜𝑟𝑚

∫ 휂̌2 𝜌2(휂̌2 )𝑑휂̌2 + 𝜆2𝑘2𝑛𝑜𝑟𝑚

𝜂2

𝜂12

𝜂1

0

+ ∫ 휂̌3 𝜌3(휂̌3 )𝑑휂̌3 

𝜂3

𝜂23

} 

( 7-8 ) 
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휂1 = 
𝑉𝐿1

2

𝑉𝐿1
𝑉𝑠1 − 𝑉𝐿1

2 , 휂2 =
𝑉𝐿2

2

𝑉𝐿2
𝑉𝑠2 − 𝑉𝐿2

2 , 휂3 =
𝑉𝐿3

2

𝑉𝐿3
𝑉𝑠3 − 𝑉𝐿3

2  

휂12 = 
𝑉𝐿1

2

𝑉𝐿1
𝑉𝑠2 − 𝑉𝐿1

2 , 휂23 =
𝑉𝐿2

2

𝑉𝐿2
𝑉𝑠3 − 𝑉𝐿2

2 ,   

휂̌1 = 
𝑉𝐿

2

𝑉𝐿𝑉𝑠1 − 𝑉𝐿
2 , 휂̌2 =

𝑉𝐿
2

𝑉𝐿𝑉𝑠2 − 𝑉𝐿
2 , 휂̌3 =

𝑉𝐿
2

𝑉𝐿𝑉𝑠3 − 𝑉𝐿
2 

𝑑휂̌𝜁 = (
𝑉𝑆𝜁

(𝑉𝑆𝜁
− 𝑉𝐿)

2
)𝑑𝑉𝐿 ,    휁 = 1, 2, 3  

𝜆1, 𝜆2, 𝜆3 ≥ 0     𝜆1 + 𝜆2 + 𝜆3 = 1 

{
 
 
 

 
 
 𝜆1 = ∫ 𝜌1(𝑉𝐿)𝑑𝑉𝐿

𝑉𝐿1

0

𝜆2 = ∫ 𝜌2(𝑉𝐿)𝑑𝑉𝐿

𝑉𝐿2

𝑉𝐿1

𝜆3 = ∫ 𝜌3(𝑉𝐿)𝑑𝑉𝐿

1

𝑉𝐿2

 

𝑉𝐿𝜁
Δ 

𝑉𝑠𝜁

2
, 휁 = 1, 2, 3 

𝑘𝜁𝑛𝑜𝑟𝑚  are determined such that each sub distribution max{CDF} equal 1, transforming them 

into separate pdfs with proper probability measures. 𝜆1,2,3  are simply the following probabilities 

with respect to the original composited Gaussian pdf 𝜌(𝑉𝐿) ; 

𝜆1 = {𝑃(0 ≤ 𝑉𝐿 ≤ 𝑉𝐿1
} 

𝜆2 = {𝑃(𝑉𝐿1
< 𝑉𝐿 ≤ 𝑉𝐿2

} 
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𝜆3 = {𝑃(𝑉𝐿2
< 𝑉𝐿 ≤ 1} 

What must be obtained from the prior equations are 𝑉𝐿1
 and 𝑉𝐿2

.  Varying 𝑉𝐿1
 and 𝑉𝐿2

 provides 

an optimization for 〈휂̌𝑡𝑜𝑡〉.  The optimization performed according to the domains calculation 

equations yields an optimal set of fixed sources, 𝑉𝑠1 ≅ .976 and 𝑉𝑠2 ≅ 1.328 , which enable the 

overall averaged efficiency 〈휂̌𝑡𝑜𝑡〉 ≅ .736.  This is significantly better than the original single 

domain partition result of .347 and 9.6 % better than the guess used to demonstrate calculation 

mechanics in the previous section.  If the signal amplitude statistic changes then so do the 

numbers.  However, the methodology for optimization remains essentially the same.  What is 

also significant is the fact that partitioning the original pdf has simultaneously lowered the 

dynamic range requirement in each partitioned domain.  This dynamic range reduction can figure 

heavily into strategies for optimization of architectures which use switched power supplies.  

 Ideal Modulation domains  7.4.

Suppose we wish to ascertain an optimal theoretical solution for both number of domains and 

their respective threshold potentials for the case where amplitude is exclusively considered as a 

function of any statistical distribution 𝑝(𝑉𝐿).  We begin in the familiar way using PAPR and 〈휂̌〉 

definitions from chapter 6. 

〈휂̌𝑖〉 =
1

(𝑘𝑖𝑃𝐴𝑃𝑅𝑖 + 𝑎𝑖) 
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This defines instantaneous 〈휂̌〉 for a single domain.  For multiple energy domains and the 1
st
 Law 

of Thermodynamics we may write; 

〈휂̌〉 = ∑〈휂̌𝑖𝜆𝑖〉 = ∑𝜆𝑖 〈
𝑃𝑜𝑢𝑡𝑖

𝑃𝑖𝑛𝑖

〉

𝑖𝑖

 

( 7-9 ) 

From the 2
nd

 Laws of Thermodynamics we know 

〈
𝑃𝑜𝑢𝑡𝑖

𝑃𝑖𝑛𝑖

〉 ≤ 1 

〈휂̌𝑖〉 ≤ 1 

𝜆𝑖 is the statistical weighting for 휂̌𝑖 over the 𝑖𝑡ℎ domain so that; 

∑𝜆𝑖 = 1

𝑖

 

It is apparent that each and every 휂̌𝑖 → 1 for 〈휂̌〉 to become one.  That is, it is impossible to 

achieve an overall efficiency of 〈휂̌〉 → 1 unless each and every 𝑖𝑡ℎ partition is also 100% 

efficient.  Hence, 

max  〈휂̌〉 = ∑𝜆𝑖 = 1

𝑖

 

𝜆𝑖 are calculated as the weights for each 𝑖𝑡ℎ partition such that; 

𝜆𝑖 = ∫ 𝜌(𝑉𝐿)𝑑𝑉𝐿

𝑉𝐿𝑖

𝑉𝐿𝑖−1
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It follows for the continuous analytical density function 𝜌(𝑉𝐿) that 

∑𝜆𝑖 = ∫𝜌(𝑉𝐿)𝑑𝑉𝐿

𝑖

 

In order for the prior statements to be consistent we recognize the following for infinitesimal 

domains; 

Δ𝑉𝐿𝑖 
Δ (𝑉𝐿𝑖

− 𝑉𝐿𝑖−1
) → 𝑑𝑉𝐿 

∆𝜆𝑖 → 𝜆𝑖 − 𝜆𝑖−1 → 𝑑𝜆 

휁 → ∞ 

This means that in order for the Riemannian sum to approximately converge to the integral, 

𝜆𝑖 ≈ 𝜌(𝑉𝐿𝑖
) 

The increments of potentials in the domains must become infinitesimally small such that 휁 grows 

large even though the sum of all probabilities is bounded by the CDF.  Since there are an infinite 

number of points on a continuous distribution and we are approximating it with a limit of 

discrete quantities, some care must be exercised to insure convergence. This is not considered a 

significant distraction if we assign a resolution to phase space according to the arguments of  

chapter 4.  

This analysis implies an architecture consisting of a bank of power sources which in the limit 

become infinite in number with the potentials separated by ∆𝑉𝑠𝑖 → 𝑑𝑉𝑠.  A switch may be used to 

select this large number of separate operating potentials “on the fly”.  Such a switch cannot be 

easily constructed. Also, its dissipative efficiency 휂𝑠𝑥 , would approach zero, thus defeating a 
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practical optimization.  Such an architecture can be emulated by a continuously variable power 

supply with bandwidth calculated from the TE relation of chapter 3. Such a power supply poses a 

number of competing challenges as well.  Fortunately, a continuously variable power source is 

not required to obtain excellent efficiency increases as we have shown with a 3 domain solution 

and will presently revisit for domains of variable number. 

 Sufficient Number of domains, 휁  7.5.

A finite number of domains will suffice for practical applications. A generalized optimization 

procedure  may then be prescribed for setting domain thresholds. 

max{휂̌𝑡𝑜𝑡} = max {∑𝜆𝑖𝑘𝑖𝑛𝑜𝑟𝑚
∫ 휂̌𝑖𝑝𝑖(휂̌𝑖)𝑑휂̌𝑖

𝜂𝑖

𝜂{𝑖−1,𝑖}𝑖

} 

( 7-10 ) 

휂𝑖Δ
𝑉𝐿𝑖

2

𝑉𝐿𝑖
𝑉𝑆𝑖

− 𝑉𝐿𝑖

2  , 휂{𝑖−1,𝑖} Δ 
𝑉𝐿𝑖−1

2

𝑉𝐿𝑖−1
𝑉𝑆𝑖

− 𝑉𝐿𝑖−1

2 

휂̌𝑖Δ
𝑉𝐿

2

𝑉𝐿𝑉𝑆𝑖
− 𝑉𝐿

2 

𝑑휂̌𝑖 = (
𝑉𝑆𝑖

(𝑉𝑆𝑖
− 𝑉𝐿)2

)𝑑𝑉𝐿 

𝜆𝑖 = ∫ 𝑝(𝑉𝐿)𝑑𝑉𝐿

𝑉𝐿𝑖

𝑉𝐿𝑖−1
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∑𝜆𝑖 Δ1

𝑖

 

𝑉𝐿𝑖
 Δ 

𝑉𝑆𝑖
𝑍𝐿

(𝑍𝑠 + 𝑍𝐿)
 

Figure 7-8 illustrates the thermodynamic efficiency improvement as a function of the number of 

optimized domains in the case where the signal PAPR~10.5 𝑑𝐵. Figure 7-9 was verified with 

theoretical calculation and experimentation using a laboratory apparatus. In all cases the 

deviation between calculation and measurement was less than .7%, attributed to test fixture 

imperfections, resolution in generating the test signal distribution and measurement accuracies. 

Figure 7-10 illustrates the relative frequencies of voltages measured across the load for the 

experiment with a circuit source impedance of zero. Table 7-1 lists the optimized voltage 

thresholds or alternately, the power supplies required for implementation. 

 

Figure 7-9 Relative Efficiency Increase as a Function of the Number of Optimised Domains 
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Figure 7-10 Relative Frequency of Output Load Voltage Measurements   

Table 7-1 Corresponding Power Supply Values Defining optimized Thresholds for a given 휁 

 1  
Domain 

2 
Domains 

3 
Domains 

4 
Domains 

5 
Domains 

6 
Domains 

7 
Domains 

8 
Domains 

Supply1 2.0V 2.0V 2.0V 2.0V 2.0V 2.0V 2.0V 2.0V 

Supply2  1.28V 1.41V 1.46V 1.53V 1.55V 1.57V 1.59V 

Supply3   1.07V 1.19V 1.28V 1.34V 1.37V 1.39V 

Supply4    0.95V 1.09V 1.18V 1.22V 1.26V 

Supply5     0.89V 1.02V 1.07V 1.12V 

Supply6      0.85V 0.92V 0.99V 

Supply7       0.81V 0.88V 

Supply8        0.79V 

 

This optimization procedure is applicable for all forms of 𝜌(𝑉𝐿) even those with discrete RVs, 

provided care is exercised in defining the thresholds and domains for the RV.  Optimization is 

best suited to numerical techniques for arbitrary 𝜌(𝑉𝐿).  
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 Zero Offset Gaussian Case  7.6.

A zero offset Gaussian case is reviewed  in this section using a direct optimization method to 

illustrate the contrast compared to the instantaneous efficiency approach. The applicable 

probability density for the load voltage is illustrated in figure 7-11. 

 

Figure 7-11 Probability density of load voltage for zero offset case   

The optimization procedure in this case uses the proper thermodynamic efficiency as the kernel 

of optimization so that; 

max{휂} = max {
〈𝑃𝑒〉

〈𝑃𝑖𝑛〉
} 

The more explicit form with domain enumeration is given by; 

max{휂} = max {∑𝜆𝑖𝑘𝑖𝑛𝑜𝑟𝑚

〈𝑃𝑒〉𝑖
〈𝑃𝑖𝑛〉𝑖

𝑖

} 
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〈𝑃𝑒〉𝑖 and 〈𝑃𝑖𝑛〉𝑖 are the average effective and input powers respectively. Appendix H provides 

the detailed form in terms of the numerator RV and denominator RV which are in the most 

general case non-central gamma distributed with domain spans defined as functions 𝑓{𝑉𝑇}𝑖, 

𝑓{𝑉𝑇}𝑖−1of the threshold voltages. 

휂 = 𝑚𝑎𝑥 {
∑ 𝜆𝑖𝑘𝑖𝑛𝑜𝑟𝑚𝑖 ∫ 𝒳𝑒𝜌(𝒳𝑒)𝑑𝒳𝑒

𝑓{𝑉𝑇}𝑖
𝑓{𝑉𝑇}𝑖−1

∑ 𝜆𝑖𝑘𝑖𝑛𝑜𝑟𝑚𝑖 ∫ 𝒳𝑖𝑛𝜌(𝒳𝑖𝑛)𝑑𝒳𝑖𝑛

𝑓{𝑉𝑇}𝑖
𝑓{𝑉𝑇}𝑖−1

} 

( 7-11 ) 

The general form of the gamma distributed RV in terms of the average 𝑖𝑡ℎ domain load voltage 

is [25, 32];  

𝜌(𝒳) =
1

2
(

𝒳

∑ 〈𝑉𝐿𝑖
〉𝑁

𝑖

)

[
(𝑁−2)

4⁄ ]

𝑒
−
(𝒳−∑ 〈𝑉𝐿𝑖

〉𝑁
𝑖 )

2𝜎2   𝐼
[
(𝑁−2)

2⁄ ]

(

 
1

2𝜎2
√𝒳 ∑〈𝑉𝐿𝑖

〉

𝑁

𝑖
)

 ;     𝒳 ≥ 0 

( 7-12 ) 

Since a single subordinate density corresponds to figure 7-11, N=1 for the current example .  

𝐼
[
(𝑁−2)

2⁄ ]
 is a modified Bessel function. The 𝑖𝑡ℎ domain load voltage in the numerator of eq. 7-11 

is due to signal only while the denominator must contemplate signal plus any overhead terms. It 

is apparent that this direct form of efficiency optimization may be more tedious under certain 

circumstances compared to an optimization based on the instantaneous efficiency metric. The 

optimized thresholds can be calculated by varying the domains similar to the method illustrated 

in Equation 7-10 . This is a numerical calculus of variations approach where the ratio of 7-11 is 
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tested to obtain a converging gradient . Optimized thresholds are provided in table 7-2 for up to 

휁 = 16 and normalized maximum Load Voltage of 1 . In this case symmetry reduces the number 

of optimizations by half. The corresponding circuit architecture is illustrated in figure 7-12. 

Table 7-2 Values for Thermodynamic Efficiency vs. Number of Optimized Partitions (Zs = 0), 𝑃𝐴𝑃𝑅~11.8𝑑𝐵 

Num. of Domains 

𝜻 = 𝒎𝒂𝒙{𝒊} 
Supply Voltages (𝑽𝒔𝒊) Thermodynamic 

Efficiency 

2 ±1 32.0% 

4 ±1, ±0.45 56.6% 

6 ±1, ±0.55, ±0.32 68.26% 

8 ±1, ±0.6, ±0.4, ±0.24 75.0% 

10 ±1, ±0.65, ±0.47, ±0.33, ±0.21 79.45% 

12 ±1, ±0.67, ±0.51, ±0.39, ±0.29, ±0.19 82.5% 

14 ±1, ±0.68, ±0.53, ±0.42, ±0.33, ±0.25, ±0.16 84.8% 

16 ±1, ±0.70, ±0.56, ±0.46, ±0.38, ±0.3, ±0.23, ±0.15 86.5% 

 

 

Figure 7-12 Type 1 differentially sourced modulator   

Table 7-3 and figure 7-13 illustrate the important performance metrics.  
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          Table 7-3 Calculated thermodynamic efficiency using thresholds from table 7-2 

 𝜻 =2  𝜻 =4  𝜻 =6  𝜻 =8  𝜻 =10  

Domain 

Pair 1 

2 λ1 =1 

휂1=32.0% 

2λ1 = 0.627 

휂1=56.6% 

2λ1 = 0.368 

휂1=61.6%  

2λ1 = 0.199 

휂1=64.1%  

2λ1 = 0.147 

휂1=64.8%  

Domain 

Pair 2 

 2λ2 = 0.373 

휂2=56.5%  

2λ2 = 0.424 

휂2=75.7%  

2λ2 = 0.329 

휂2=79.1%  

2λ2 = 0.229 

휂2=81.7%  

Domain 

Pair 3 

  2λ3 = 0.201 

휂3=64.7%   

2λ3 = 0.325 

휂3=80.2%  

2λ3 = 0.295 

휂3=83.4%  

Domain 

Pair 4 

   2λ4 = 0.146 

휂4=68.8%  

2 λ4 = 0.234 

휂4=83.5% 

Domain 

Pair 5 

    2 λ5 = 0.093 

휂5=73.1% 

Final 

Efficiency 

32.0% 56.6% 68.26% 75.0% 79.45% 

 

 𝜻 =12  𝜻 =14  𝜻 =16  

Domain 

Pair 1 

2λ1 = 0.117 

휂11=65.3%  

2λ1 = 0.074 

휂11=66.0%  

2λ1 = 0.063 

휂11=66.1%  

Domain 

Pair 2 

2λ2 = 0.174 

휂2=82.9%  

2λ2 = 0.134 

휂2=82.4%  

2λ2 = 0.110 

휂2=83.14%  

Domain 

Pair 3 

2λ3 = 0.216 

휂3=86.7%  

2λ3 = 0.163 

휂3=87.7%  

2λ3 = 0.133 

휂3=88.3%  

Domain 

Pair 4 

2 λ4 = 0.233 

휂4=87.1% 

2 λ4 = 0.197 

휂4=88.8% 

 2λ4 = 0.177 

휂4=89.1% 

Domain 

Pair 5 

2 λ5 = 0.18 

휂5=85.9% 

 2λ5 = 0.202 

휂5=88.6% 

2 λ5 = 0.168 

휂5=90.7% 

Domain 

Pair 6 

2λ6 = 0.078 

휂6=74.75% 

2λ6 = 0.158 

휂6=87.05% 

2λ6 = 0.162 

휂6=90.2% 

Domain 

Pair 7 

 2λ7 = 0.072 

휂7=75.6% 

2λ7 = 0.127 

휂7=88.2% 

Domain 

Pair 8 

  2λ8 = 0.059 

휂8=77.2% 

Final 

Efficiency 

82.5% 84.8% 86.5% 
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Figure 7-13 Thermodynamic efficiency for a given number of optimized domains   

Experiments were conducted with modulator hardware 4,6, and 8 domains with a signal PAPR 

~11.8 𝑑𝐵 . Figure 7-14 shows the measured results for thermodynamic efficiency compared to 

theoretical. The differences were studied and found to be due to fixture losses (i.e. 휂𝑑𝑖𝑠𝑠 ≠ 1)  

and the resolutions associated with signal generation as well as measurement. The 휁=1 case in 

figure 7-13 is based on the single supply solution. 

 

Figure 7-14 Measured Thermodynamic efficiency for a given number of optimized domains (4, 6, 8)   

Experiments agree well with the theoretical optimization. 
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 Results for Standards Based Modulations  7.7.

The standards based modulation schemes, used to obtain the efficiency curve of figure 7-4 for 

the canonical non-zero offset case, were tested after optimization using a differential based zero 

offset implementation of figure 7-12 . The results are given for 4, 6, 8 domains illustrated in 

figure 7-15. 

 

Figure 7-15 Thermodynamic efficiency for a given number of optimized domains   

Each modulation type is indicated in the legend. Open symbols correspond to a theoretical 

optimal with 휂𝑑𝑖𝑠𝑠 = 1. Filled symbols correspond to measured values with 휂𝑑𝑖𝑠𝑠 ≅ .95. The 

graphics in figure 7-15 ascend from the greatest signal PAPR to the least. Figure 7-16 illustrates 

the performance of the standards over the range of domains from 1 through 10. 
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Figure 7-16 Optimized Efficiency Performance vs. 휁 for (Standards Cases) 

Appendix L provides an additional detailed example of an 802.11a waveform as a consolidation 

of the various calculations  and quantities of interest. In addition, a schematic of the modulation 

test apparatus is included.  
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 MISCELLANEOUS TOPICS 8.

A variety of topics are presented in this chapter to illustrate an array of interesting interpretations 

related to the dissertation topic. The treatments are brief and include, some limits on performance 

for capacity, relation to Landauer’s principle, time variant uncertainty, and Gabor’s uncertainty. 

The diversity of subjects illustrates a wide range of applicability for the disclosed ideas. 

 Encoding Rate , Some Limits, and Relation to Landauer’s Principle 8.1.

The capacity rate equation was derived in chapter 4 for the D dimensional case ; 

𝐶 ≤ ∑
𝑃𝑚_𝛼

〈ℰ𝑘_𝛼〉𝑠𝑃𝐴𝐸𝑅𝛼

(

 
 

𝑙𝑛

[
 
 
 
 (

𝑚2 𝑃𝑚_𝛼

  𝑃𝐴𝐸𝑅𝛼
)

�̃�𝑝𝑛_𝛼
2

+ 1

]
 
 
 
 

)

 
 

𝐷

𝛼=1

     

Consider the circumstance where 
𝑃𝑚𝛼

〈ℰ𝑘𝛼
〉𝑃𝐴𝐸𝑅𝛼

→ ∞ 

lim
𝑃𝑚𝛼

〈ℰ𝑘𝛼
〉𝑃𝐴𝐸𝑅𝛼

→∞

𝐶 =
2𝐷

𝑙𝑛 (2)

𝑃

𝑁0
≡ 𝐶∞ 

( 8-1 ) 

A limit of the following form is used to obtain the result of 8-1 [3, 63];  

lim
𝑥→∞

𝑥 log2 (
𝑥 + 1

𝑥
) = log2(𝑒) =

1

𝑙𝑛(2)
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The infinite slew rate capacity 𝐶∞ is twice that for the comparative Shannon capacity because 

both momentum and configuration spaces are considered here. This is the capacity associated 

with instantaneous access to every unique coordinate of phase space. We may further rearrange 

the equation for  𝐶∞ to obtain the minimum required energy per bit for finite non zero thermal 

noise where P is the average power per dimension; 

𝑃

𝐶∞
=

𝑁𝑜ln (2)

2D
      𝐽/𝑏𝑖𝑡 

( 8-2 ) 

𝑁𝑜 is an approximate equivalent noise power spectral density based on the thermal noise floor , 

𝑁𝑜 = 2𝑘𝘛° , 𝘛°is a temperature in degrees Kelvin (𝐾°) and Boltzman’s constant 𝑘 = 1.38 ×

10−23 J/𝐾°. A factor of 2 is included to account for the independent influence of configuration 

noise and momentum noise. Therefore, the number of Joules per bit for D=1 is the familiar 

classical limit of   (.6931)𝑘𝘛°/2 and the energy per bit to noise density ratio is 
𝐸𝑏

𝑁𝑜
⁄ =

ln(2)

2
≃

−4.6 dB. This is 3dB lower than the classical results because we may encode one bit in 

momentum and one bit in configuration for a single energy investment [63]. 

Each message trajectory consisting of a sequence of samples would be infinitely long and 

therefore require an infinite duration of time to detect at a receiver to reach this performance 

limit. Also, the samples of the sequence must be Gaussian distributed.  
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Shannon also contemplated the error free data through put when the encoded values are other 

than Gaussian. In the case where the values are binary orthogonal encodings it can be shown that 

[63]; 

𝐸𝑏
𝑁𝑜

⁄ ≅
2𝑙𝑛√2

2
= −1.6 𝑑𝐵 

We include both momentum and configuration to obtain the result per dimension. The encoded 

sequence must be comprised of an infinite sequence of binary orthogonal symbols to achieve this 

limit and we must use both configuration and momentum else the results increase by 3dB for the 

given 
𝐸𝑏

𝑁𝑜
⁄ . 

𝑁𝑜 as given is an approximation. Over its domain of accuracy the total noise variance may be 

approximated using [64]; 

𝜎𝑛
2 = ∫ 𝑁𝑜 𝑑𝑓

𝐵

0

 

A difficulty with this approximation arises from the ultra-violet catastrophe when B approaches 

ultra-high frequencies [64]. Plank and Einstein resolved this inconsistency using a quantum 

correction which yields [11, 22, 30, 65]; 

𝑃𝑛(𝑓) =
𝒽𝑓

𝑒𝒽𝑓/𝑘𝑇°
− 1

 𝑊 𝐻𝑧⁄ , ℎ = 6.6254 × 10−34 𝐽𝑠  

( 8-3 ) 
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A plot of the result follows for room temperature and 2.9 𝐾°. �̃�𝑝𝑛_𝛼
2  is composed of thermal and 

quantum terms which are plotted separately in the graph. 

 

Figure 8-1 Noise Power vs. Frequency 

The thermal noise with quantum correction has an approximate 3 dB bandwidth of 7.66e12 Hz 

for the room temperature case and 7.66e10 for the low temp case. The frequencies at which the 

quantum uncertainty variance competes with the thermal noise floor is approximately 4.26e12 

and 4.26e10 Hz respectively. The corresponding adjusted values for 𝑃𝑛(𝑓) + 𝒽𝑓 are the 

suggested values to be used in the capacity equations to calculate noise powers at extreme 

bandwidths or low temperature. At the crossover points, the total value of  �̃�𝑝𝑛_𝛼
2  is increased by 

3dB. 𝒽𝑓 is apparently independent of temperature. 

An equivalent noise bandwidth principle may be applied to accommodate the quantity 𝑃𝑛(𝑓) +

𝒽𝑓 and calculate an equivalent noise density �̃�𝑜 over the information bandwidth B.  
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�̃�𝑜 =
1

𝐵
∫ 𝒽𝑓

𝑒𝒽𝑓/𝑘𝑇°

𝑒𝒽𝑓/𝑘𝑇°
− 1

𝑑𝑓
𝐵

0

 

( 8-4 ) 

We may combine this density with the TE relation to obtain; 

〈ℰ𝑘〉𝑠

�̃�𝑜

≥
𝑚𝑎𝑥{𝑝 ̇ ∙ 𝑞 ̇}

2 ∫ 𝒽𝑓
𝑒𝒽𝑓/𝑘𝑇°

𝑒𝒽𝑓/𝑘𝑇°
− 1

𝑑𝑓
𝐵

0
(𝑃𝐴𝐸𝑅)

 

( 8-5 ) 

If we consider antipodal binary state encoding then the energy per sample correspond to one half 

the energy per bit. At frequencies where thermal noise is predominate we can calculate the 

required energy per bit to encode motion in a particle whilst overcoming the influence of noise 

such that over a suitably long interval of observation, a sequence of binary encodings may be 

correctly distinguished. 

〈ℰ𝑏〉

�̃�𝑜

≥
𝑚𝑎𝑥{𝑝 ̇ ∙ 𝑞 ̇}

𝑓𝑠𝑘𝑇°(𝑃𝐴𝐸𝑅)
 

( 8-6 ) 

The maximum work rate of the particle is therefore bounded by (for thermal noise only); 

𝑚𝑎𝑥{𝑝 ̇ ∙ 𝑞 ̇} ≤ 𝑓𝑠𝑘𝑇°(𝑃𝐴𝐸𝑅)ln (2) 

( 8-7 ) 

According to chapter 5 a maximum theoretical efficiency to generate one bit  is bounded by; 
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휂 ≤
𝑓𝑠𝑘𝑇° ln(2)

𝑃𝑚
 

( 8-8 ) 

An example momentum space trajectory depicting, binary encoding, is illustrated in figure 8-2. 

Information is encoded in ± 𝑝𝑚𝑎𝑥 = ±1 the extremes of the momentum space for this example. 

This extreme trajectory is the quickest path between the two states. It is apparent that |〈𝑣𝑝〉| ≠

𝑣𝑚𝑎𝑥. Therefore 𝑃𝐴𝐸𝑅 ≠ 1. If we require 𝑃𝐴𝐸𝑅 = 1 for maximum encoding efficiency, then ∆𝑡 

(the time span of the trajectory) must approach zero which requires the rate of work to approach 

infinity. Clearly, such a pathological case is also limited by relativistic considerations.  

 

Figure 8-2 Binary Particle Encoding  
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Now suppose that we encode binary data in position rather than momentum. We illustrate this 

activity in the velocity vs. position plane for a single dimension for the position encoding of 

±𝑅𝑠, the extremes of configuration space (ref. figure 8-3). The velocity trajectory as shown is the 

fastest between the extreme positions. In this view the particle momentum may be zero at the 

extremes ±𝑅𝑠 but not between. If we consider that information can be stored in the positions 

±𝑅𝑠 then work is required to move the particle between these positions. Even when thermal 

noise is removed from the scenario we may calculate a finite maximum required work per bit 

because �̃�𝑜  possesses a residual quantum uncertainty variance which must be overcome to 

distinguish between the two antipodal states. This may be given approximately in equation 8-9 ; 

𝑚𝑎𝑥{𝑝 ̇ ∙ 𝑞 ̇} ≳ 𝑓𝑠𝒽(𝑃𝐴𝐸𝑅)ln (2) 

( 8-9 ) 

Note that PAER may only approach 1 as ∆𝑡 approaches zero, requiring 𝑓𝑠 → ∞. No matter the 

encoding technique we cannot escape this requirement. If we construct a binary system which 

transfers distinguishable data in the presence of thermal noise or quantum noise, independent 

states require the indicated work rate per transition. From chapter 5 it is also known that since we 

cannot predict a future state of a particle, the delivery particle possesses an average recoil 

momentum during an exchange equal and opposite in a relative sense to the target particle 

encoding the state. This recoil momentum is waste, and ultimately dissipates in the environment 

according to the second law. According to equation 8.8 (the thermal noise regime) the theoretical 

efficiency of 1 is achieved when 𝑃𝑚 = 𝑓𝑠𝑘𝑇∘ ln √2 which is equivalent to an energy per sample 

of  
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(ℰ𝑘)𝑠 = 𝑘𝑇∘ ln √2 

( 8-10 ) 

 

Figure 8-3 Peak Particle Velocity vs. Position for Motion 

Likewise for the case where 𝑇∘ → 0 we have a minimum energy per sample limited by quantum 

effects. 

ℇ𝑘 ≳ ℎ𝑓𝑠 ln √2 

( 8-11 ) 

In general we can calculate a minimum energy to unambiguously encode a bit of information 

using a binary antipodal encoding procedure  as; 
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휀𝑏 = ∫ 𝑚𝑎𝑥{𝑝 ̇ ∙ 𝑞 ̇}

2𝑇𝑠

0

𝑑𝑡 ≥ 𝑓𝑠�̃�𝑜ln √2 

( 8-12 ) 

If we remove the binary antipodal requirement in favor of maximum entropy encoding then we 

have; 

휀𝑏 ≥
𝑓𝑠�̃�𝑜ln (2)

2
 

( 8-13 ) 

, where �̃�𝑜 is given by equation 8-4.  

However, this is for the circumstance of 100% efficiency, i. e. 𝑃𝐴𝐸𝑅 → 1 

According to principles of chapter 3, if the information is encoded in the form of momentum, 

this information can only be removed by re-setting the momentum to zero. This means that at 

least the same energy investment is required to reverse an encoded momentum state. Likewise, if 

the information is recorded in position then a particle must possess momentum to traverse the 

distance between the positions. In one direction, for instance moving from −𝑅𝑠 to 𝑅𝑠, a quantity 

of work is required. Reversing the direction requires at least the same energy. The foregoing 

discussion reveals a principle that at least �̃�𝑜ln (2) is required to both encode or erase one bit of 

binary information. This resembles Landauer’s principle which requires the environmental 

entropy to raise by the minimum of 𝑘𝑇°ln (2) when one bit of information is erased [7, 8, 66]. 

The important differences here are that the principle applies for the case of generating unique 
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data as well as annihilating data. In addition, the rate at which we require generation or erasure to 

occur, can affect the minimum requirement via the quantity PAER (ref. eq. 8-7) since transitions 

are finite in time and energy. Finite transition times correspond to 𝑃𝐴𝐸𝑅 > 1. This latter effect is 

not contemplated by Landauer. Thus efficiency considerations will necessarily raise the 

Landauer limit under all practical circumstances, because a power source with a maximum 

power of 𝑃𝑚 is required corresponding to a 𝑃𝐴𝐸𝑅 > 1. For the model of chapter 3 applied to 

binary encoding where transitions are defined using a maximum velocity profile such as 

indicated in figure 8-2, we can calculate 𝑃𝐴𝐸𝑅 = 2 which at minimum doubles the power 

requirements to generate the antipodal bits of equation 8-12.  

 Time Variant Uncertainty 8.2.

Time sampling of a particle trajectory in momentum space evolves independently from the 

allocation of dimensional occupation. The dimensional correlations for 𝛼 ≠ 𝛽 will be zero for 

maximum uncertainty cases of interest.  Likewise, the normalized auto-correlation is defined for 

𝛼 = 𝛽.  It is interesting to interject the dimension of time into the autocorrelation as suggested in  

eq. 3-26 through 3-28. In doing so we can derive a form of time variant uncertainty.  

The density function of interest to be used for the uncertainty calculation may be written 

explicitly as; 

𝜌(𝑝 ∆) =
1

√2𝜋(𝜎∆
2)|Λ|

𝑒
[−

1
2
(
𝑝 ∆
𝜎∆

)
𝑇

Λ−1 (
𝑝 ∆
𝜎∆

)]
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[Λ] = [

𝜎𝑣11
2 Γ12𝜎𝑣1

𝜎𝑣2
… Γ1𝐷𝜎𝑣1

𝜎𝑣𝐷

Γ21𝜎𝑣2
𝜎𝑣1

𝜎𝑣22
2 … Γ2𝐷𝜎𝑣2

𝜎𝑣𝐷

Γ𝐷1𝜎𝑣𝐷
𝜎𝑣1

Γ𝐷2 … 𝜎𝑣𝐷𝐷
2

] 

𝛤(𝛼,𝛽) =
𝜎𝛼,𝛽

𝜎𝛼𝜎𝛽
 

( 8-14 ) 

The notation is organized to enumerate the dimensional correlations with 𝛼, 𝛽 and the adjacent 

time interval correlations with ℓ, ℓ̂.  The time interval is given by; 

𝑡ℓ − 𝑡ℓ+1 = 𝑇𝑠 

(𝑡ℓ − 𝑡ℓ̂) ≤ 𝑇𝑠 

𝑝 ∆ = 𝑝 ℓ̂ − 𝑝 ℓ 

𝜎∆ = √𝜎ℓ̂
2 + 𝜎ℓ

2 − 2𝛾ℓ,ℓ̂𝜎ℓ𝜎ℓ̂ 

( 8-15 ) 

𝜌(𝑝 ∆)represents the probability density for a transition between successive states where each 

state is represented by a vector.   We can calculate the correlation coefficients for the time 

differential  (𝑡ℓ̂ − 𝑡ℓ) recalling that the TE relation defines the sampling frequency 𝑓𝑠. 

𝛾ℓ,ℓ̂ =
𝑃𝑚

𝑓𝑠〈ℰ𝑘〉𝑠𝑃𝐴𝐸𝑅 𝑘𝑝

𝑠𝑖𝑛 [
𝑃𝑚

〈ℰ𝑘〉𝑠𝑃𝐴𝐸𝑅
(𝑡ℓ̂ − 𝑡ℓ)]

𝜋
𝑃𝑚

〈ℰ𝑘〉𝑠𝑃𝐴𝐸𝑅
(𝑡ℓ̂ − 𝑡ℓ)

      

( 8-16 ) 
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The uncertainty 𝐻(𝜌(𝑝 ∆)) is maximized whenever information distributed amongst the degrees 

of freedom are iid Gaussian .  It is clear from the explicit form of 𝜌(𝑝 ∆) that the origin and the 

terminus of the velocity transition may be completely unique only under the condition that 

𝛾ℓ,ℓ̂ = 0.  This occurs at specific time intervals modulo 𝑇𝑠. Otherwise, there will be mutual 

information over the interval {ℓ, ℓ̂}.   Elimination of all forms of space-time cross-correlations 

maximizes 𝜌(𝑝 ∆).  Given these considerations,  the pdf for the state transitions may be factored 

to a product of terms. 

𝜌(𝑝 ∆) = ∏
1

√(2𝜋)(𝜎ℓ̂
2 + 𝜎ℓ

2)𝛼

𝑒
−(

(�⃑� ℓ̂)𝛼
2

2(𝜎ℓ̂
2+𝜎ℓ

2)
𝛼

)𝐷

𝛼=1

 

( 8-17 ) 

The origin and terminus coordinates are related statistically through the independent sum of their 

respective variances. An origin for a current trajectory is also a terminus for the prior trajectory. 

The particle may therefore acquire any value within the momentum space and simultaneously 

occupy any conceivable location within the configuration space at the subsequent time offset of 

𝑇𝑠.  The case where the time differential (𝑡ℓ̂ − 𝑡ℓ) is less than 𝑇𝑠 carries corresponding temporal 

reduction of the phase space access, given knowledge of the prior sampling instant. If the phase 

space accessibility fluctuates as a function of time differential, then so too must the 

corresponding uncertainty for (𝑝 ∆), at least over a short interval 0 ≤ (𝑡ℓ − 𝑡ℓ̂) ≤ 𝑇𝑠. The 

corresponding differential entropy which incorporates a relative uncertainty metric over the 

trajectory evolution is governed by the correlation coefficient 𝛾ℓ,ℓ̂. If  the time difference ∆𝑡 = 0 
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then by definition the differential entropy metric may be normalized to zero plus the quantum 

uncertainty variance on the order of 𝒽. This means that if a current sample coordinate is known 

that for zero time lapse it is still known, at least to the quantum resolution. Adopting this 

convention, the relative entropy metric over the interval is defined as; 

𝐻∆ ≡ 𝑙𝑛 (√(𝜎ℓ̂
2 + 𝜎ℓ

2 − 2𝛾ℓ,ℓ̂𝜎ℓ𝜎ℓ̂)2𝜋𝑒 + (1 + 2𝜋𝑒𝒽)) 

( 8-18 ) 

In this simple formula the origin state of the of the trajectory is considered as the average 

momentum state or zero.  

When 𝑇𝑠 = 0 then 𝛾ℓ,ℓ̂ = 1 and 𝐻∆ ≥ 𝑙𝑛(√(1 + 2𝜋𝑒𝒽)). If 𝑇𝑠 =
2〈ℰ𝑘〉𝑠𝑃𝐴𝐸𝑅

𝑃𝑚
 then 𝐻∆ =

ℓ𝑛(√(𝜎ℓ̂
2 + 𝜎ℓ

2)2𝜋𝑒 + (1 + 2𝜋𝑒𝒽)).  The following graph records 𝐻∆ for a normalized 

differential time (𝑇𝑠 = 1)  into the future. 

 

Figure 8-4 Between Sample Uncertainty For a Phase Space Reference Trajectory 
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At some increasing future time relative to a current known state, the particle entropy 

correspondingly increases up to the next sampling event. In this example 𝑃𝑚 is limited to 10 

Joules/second, the average kinetic energy is 1 Joule, the particle mass is 1kg, and the PAER is 10 

dB.  The relative uncertainty as plotted is strictly in momentum space and for a single dimension.  

This function is repetitive modulo 𝑇𝑠.  The plotted uncertainty is proportional to the 𝐷𝑡ℎ root of 

an expanding hyper-sphere volume in which the particle exists.   

At a future time differential of 𝑇𝑠 the particle dynamic acquires full probable access to the phase 

space and entropy is maximized.  Once the particle state is identified by some observation 

procedure then this uncertainty function resets. 𝐻∆ is calculated based on an extreme where the 

origin of the example trajectory is at the center of the phase space. 𝐻∆ may fluctuate depending 

on the origin of the sampled trajectory. 

 A Perspective of Gabor’s Uncertainty 8.3.

In Gabor’s 1946 paper “ Theory of Communication” He rigorously argued the notion that 

fundamental units, “logons”, were a quantum of information based on the reciprocity of time and 

frequency. He commented that “ This is a consequence of the fact that the frequency of a signal 

which is not of infinite duration can be defined only with a certain inaccuracy, which is inversely 

proportional to the duration in time, and vice versa.” Gabor punctuated his paper with the time-

frequency uncertainty relation for a complex pulse; 
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∆𝑓∆𝑡 ≥
1

2
 

( 8-19 ) 

This uncertainty is related to the ambiguity involved when observing and measuring a finite 

function of time such as a pulse. Gabor’s pulse was defined over its rms extent corresponding 

more or less to energy metrics which may be considered as analogous to the baseband velocity 

pulse models of chapter 3. Gabor ingeniously expanded the finite duration pulse in a complex 

series of orthogonal functions and calculated the energy of the pulse in both the time and 

frequency domains. His tool was the Fourier integral. He was interested in complex band pass 

pulsed functions and determined that the envelope of such functions which is compliant with the 

minimum of the Gabor limit to be a probability amplitude commonly used in quantum 

mechanics. Gabor’s paper was partially inspired by Pauli and reviewed by Max Born prior to 

publication. 

Nyquist had reached a related conclusion in 1924 and 1928 with his now classic works, “ Certain 

Factors Affecting Telegraph Speed” and “ Certain Topics in Telegraph Transmission Theory”. 

Nyquist expanded a “DC wave” into a series using Fourier analysis and determined the number 

of signal elements required to transmit a signal is twice the number of the sinusoidal components 

which must be preserved to determine the original DC wave formed by the signal element 

sequence. This was for the case of a sequence of telegraph pulses forming a message and 

repeated perpetually. This cyclic arrangement permitted Nyquist to obtain a proper complex 

Fourier representation without loss in generality since the message sequence duration could be 

made very long prior to repetition; an analysis technique later refined by Wiener [67]. Nyquist’s 
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analysis concluded that the essential frequency span of the signal is half the rate of the signal 

elements and inversely related. The signal elements are fine structures in time or samples in a 

sense and his frequency span was determined by the largest frequency available in his Fourier 

expansion. 

Gabor was addressing this wonder with his analysis and pointing out his apparent dissatisfaction 

with the lack of intuitive physical origin of the phenomena. He also regarded the analysis of 

Bennett in a similar manner concerning the time frequency reciprocity for communications, 

stating; “Bennett has discussed it very thoroughly by an irreproachable method ,but, as is often 

the case with results obtained by Fourier analysis, the physical origin of the results remains 

somewhat obscure.”. Gabor also comments; “In spite of the extreme simplicity of this proof, it 

leaves a feeling of dissatisfaction. Though the proof (one forwarded in Gabor’s 1946 paper) 

shows clearly that the principle in question is based on a simple mathematics identity, it does not 

reveal this identity in tangible form [26].” 

We now present an explanation for the time-frequency uncertainty, using a time bandwidth 

product, based on physical principles expressed through the TE relation and the physical 

sampling theorem. An instantiation of Gabor’s In-phase or Quadrature phase pulse can be 

accomplished by using two distinct forces per in-phase and quadrature phase pulse according to 

the physical sampling theorem presented in chapter 3. The time span of such forces are separated 

in time by 𝑇𝑠. The characteristic duration of a pulse event is ∆𝑡 = 2𝑇𝑠.  

From the TE relation we know; 
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𝑓𝑠_𝑚𝑖𝑛 

2
=

𝑃𝑚

2〈ℰ𝑘〉𝑃𝐴𝐸𝑅
= 𝐵 = ∆𝑡−1 

𝑓𝑠 
2

≥
𝑃𝑚

2〈ℰ𝑘〉𝑃𝐴𝐸𝑅
 

( 8-20 ) 

�̃� the bandwidth available due to the sample frequency 𝑓𝑠  is always greater than or equal to 𝐵 

the bandwidth available due to an absolute minimum sample frequency 𝑓𝑠_𝑚𝑖𝑛  so that; 

�̃� ≥
𝑓𝑠 𝑚𝑖𝑛

2
 

Therefore, 

�̃�𝑇𝑠_𝑚𝑎𝑥 ≥
1

2
 

This is called a time bandwidth product. If one wishes to increase the observable bandwidth �̃� 

then 𝑇𝑠_𝑚𝑎𝑥 may be lowered. If a lower bandwidth is required then 𝑇𝑠_𝑚𝑎𝑥  may be increased 

where 𝑇𝑠_𝑚𝑎𝑥 is an interval of time required between forces such that the forces may be 

uncorrelated given some finite 𝑃𝑚 .  

An example provides a connection between the TE relation, physical sampling theorem and 

Gabor’s uncertainty. Figure 8-5 illustrates the sampling (depicted by vertically punctuated lines)  

of two sine waves of differing frequency. The frequency of the slower sine function is one fifth 

that of the greater and assigned a frequency 𝐵2 = 𝑓𝑐/5 . The sampling rate is set to capture the 

greater frequency sine function with bandwidth 𝐵1 = 𝑓𝑐 . In the first frame of fig. 8-5 the sample 
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rate 𝑓𝑠 ≈ 2𝑓𝑐 with samples generated for both functions slightly skewed in time for convenience 

of representation.              

 

Figure 8-5 Sampling of Two Sine Waves at Different Frequencies 

 

Figure 8-6 Sampling of Two Sine Waves at Different Frequencies 

Only two samples are required to create or capture one cycle of the higher frequency sine wave. 

However, two samples separated in time by 𝑇𝑠 cannot create the trajectory of the slower sine 
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wave over its full interval 10𝑇𝑠. That trajectory is ambiguous without the additional 8 samples, 

as is evident by comparing frame 2 with frame 1 of the figure. The sampling frequency of 

𝑓𝑠 ≈ 2𝑓𝑐 is adequate for both sine waves but in order to resolve the slower sine wave and 

reconstruct it, the samples must be deployed over the full interval 10𝑇𝑠. The prior equation may 

capture this by accounting for the extended interval using a multiplicity of samples. 

𝐵1

5
 (5 𝑇𝑠1) ≥

1

2
 

𝐵2  ≥
1

2(5 𝑇𝑠1)
 

The slow sine wave case is significantly oversampled so that all frequencies below 𝐵1 are 

accommodated but ambiguities may only be resolved if the sample record is long enough. This is 

consistent with Gabor’s uncertainty relation as well as Nyquist’s analysis.  

We can address the requirement for an extended time record of samples by returning to the 

physical sampling theorem and a comparative form of the TE relation. The next equation 

calculates the time required between independently acting forces for a particle along the 

trajectory of the slow sine wave; 

𝑇𝑠2 = 𝑇𝑠1

𝑃𝐴𝐸𝑅2

𝑃𝐴𝐸𝑅1
= 𝑇𝑠1

𝑚𝑎𝑥{ℰ̇𝑘}1
𝑚𝑎𝑥{ℰ̇𝑘}2

= 5𝑇𝑠1 

The result means that effective forces must be deployed with a separation of 5𝑇𝑠1to create 

independent motion for the slower trajectory. Adjacent samples separated by 𝑇𝑠 = 𝑇𝑠1 cannot 

produce independent samples for the slower waveform because they are significantly correlated.  



263 

 

Hence the effective change in momentum �̇� per sample is lower for the over sampled slow 

waveform. As a general result, the corresponding work rate is lower for the lower frequency sine 

wave so that;  

𝑇𝑠2 = 𝑇𝑠1

𝑚𝑎𝑥{𝑝 ̇ ∙ 𝑞 ̇}
1

𝑚𝑎𝑥{𝑝 ̇ ∙ 𝑞 ̇}
2

 

( 8-21 ) 

Even though 10 forces must be deployed to capture the entire slower sine wave trajectory over its 

cycle, only pairs taken from subsets of every 5
th

 force may be jointly decoupled.  

Gabor’s analysis considered the complex envelope modulated onto orthogonal sinusoids. A 

complex carrier consisting of a cosine and sine has a corresponding TE equation; 

𝑓𝑠𝐼 + 𝑓𝑠𝑄 ≥
2𝑃𝑚

〈ℰ𝑘〉𝑃𝐴𝐸𝑅
 

( 8-22 ) 

The effective samples for in phase and quadrature components occur over a common interval so 

that the sample frequency doubles yet so does the peak power excursion 𝑃𝑚 for the complex 

signal. This is analogous to the case D=2. Gabor’s modulation corresponds to a double side band 

suppressed carrier scenario. This is the same as specifying pulse functions 𝑎𝐼(𝑡), 𝑎𝑄(𝑡) in the 

complex envelope as zero offset unbiased RV’s, where the envelope takes the form ; 

𝑥(𝑡) = 𝑎(𝑡)𝑒𝑗𝜔𝑐𝑡+𝜑(𝑡) = 𝑎𝐼(𝑡) cos(𝜔𝑐  𝑡 + 𝜑(𝑡)) − 𝑎𝑄(𝑡) sin(𝜔𝑐  𝑡 + 𝜑(𝑡)) 
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To obtain Gabor’s result, we now realize that the peak power in the baseband pulses expressed 

by 𝑎𝐼(𝑡), 𝑎𝑄(𝑡) will be twice that of the unmodulated carrier. Therefore the TE relation for the 

complex envelope of 𝑥(𝑡) is given by; 

𝑓𝑠𝐼_𝐵𝐵 + 𝑓𝑠𝑄_𝐵𝐵 ≥
2(2𝑃𝑚)

〈ℰ𝑘〉𝑠𝑃𝐴𝐸𝑅
 

This reduces to; 

𝑓𝑠_𝐵𝐵

2
≥

𝑃𝑚_𝐵𝐵

〈ℰ𝑘〉𝑃𝐴𝐸𝑅
 

( 8-23 ) 

The time bandwidth product now becomes; 

𝐵𝐵𝐵∆𝑡𝑚𝑎𝑥 ≥
1

2
 

𝑃𝑚_𝐵𝐵

2〈ℰ𝑘〉𝑠𝑃𝐴𝐸𝑅
∆𝑡𝑚𝑎𝑥 ≥

1

2
 

( 8-24 ) 

A variation in the sample interval for independent forces which create a signal must be countered 

by an inverse variation in the apparatus bandwidth or correspondingly the work rate. 2𝑁𝑇𝑠 =

∆𝑡𝑚𝑎𝑥 for a sequence of deployed forces creating a signal trajectory, always extends to a time 

interval accommodating at least two independent forces for the slowest frequency component of 

the message.  The minimum number of deployed forces occurs for 𝑁 = 1, a single pulse event. 
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This result is also equivalent to Shannon’s number which is given by 𝑁 = 2𝐵𝑇, where 2𝐵 =

𝑓𝑠𝑚𝑖𝑛 and 𝑇 = ∆𝑡𝑚𝑎𝑥 [6]. Care must be exercised using Shannon’s number to account for I and 

Q components.  



266 

 

 SUMMARY  9.

Communications is the transfer of information through space and time via the encoded motions 

of particles and corresponding fields. Information is determined by the uncertainty of momentum 

and position for the dynamic particles over their domain. The rate of encoding information is 

determined by the available energy per unit time required to accelerate and decelerate the 

particles over this domain. Only two statistical parameters are required to determine the 

efficiency of encoding; the average work per deployed force and the maximum required PAPR 

for the trajectory. This is an extraordinary result applicable for any momentum pdf.  

Bandwidth in the Shannon-Hartley capacity equation is a parameter which limits the rate at 

which the continuous signal of the AWGN channel can slew. This in turn limits the rate at which 

information may be encoded. The physical sampling theorem determined from the laws of 

motion and suitable boundary conditions requires that the number of forces per second to encode 

a particle be given by; 

𝑓𝑠 ≥
𝑃𝑚

〈ℰ𝑘〉𝑠𝑃𝐴𝐸𝑅
 

This frequency also limits the slew rate of the encoded particle along its trajectory and 

determines its bandwidth in a manner analogous to the bandwidth of Shannon according to; 

𝐵 =
𝑃𝑚

2〈ℰ𝑘〉𝑠𝑃𝐴𝐸𝑅
 

The calculated capacity rate for the joint encoding of momentum and position in D independent 

dimensions was calculated as; 
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𝐶 ≤ ∑
𝑃𝑚_𝛼

〈ℰ𝑘_𝛼〉𝑠𝑃𝐴𝐸𝑅𝛼
(𝑙𝑛 [

(
2 𝑃𝑚_𝛼

  𝑃𝐴𝐸𝑅𝛼
)

�̃�𝑝𝑛_𝛼
2

+ 1])

𝐷

𝛼=1

 

As this capacity rate increases, the required power source, 𝑃𝑠𝑟𝑐, for the encoding apparatus also 

increases as is evident from the companion equation; 

𝐶 ≤ ∑
𝑃𝑚_𝛼

〈ℰ𝑘_𝛼〉𝑠𝑃𝐴𝐸𝑅𝛼
(𝑙𝑛 [

휂𝑚𝑜𝑑휂𝑑𝑖𝑠𝑠.𝑃𝑠𝑟𝑐

�̃�𝑛
2

+ 1])

𝐷

𝛼=1

 

Therefore, increases in the modulation encoding efficiency 휂𝑚𝑜𝑑 can be quite valuable. For 

instance, in the case of mobile communications platform performance, data rates can be 

increased, time of operation extended, battery size and cost reduced or some preferred blend of 

these enhancements. In addition, the thermal footprint of the modulator apparatus may be 

significantly reduced.  

Efficiency of the encoding process is inversely dependent on the  dot product extreme, 𝑚𝑎𝑥{𝑝 ̇ ∙

𝑞 ̇} = 𝑃𝑚 divided by an average, 〈𝑝 ̇ ∙ 𝑞 ̇〉 = 𝜎2, also known as PAPR or PAER. The fluctuations 

about the average represent changes in inertia which require work. Since these fluctuations are 

random, momentum exchanges required to encode particle motion (and therefore information) 

produce particle recoils which are inefficient. The difference between the instantaneous energy 

requirement and the maximum resource availability is proportional to the wasted energy of 

encoding. On the average, the wasted energy of recoil grows for large PAPR. This generally 

results in an encoding efficiency of the form; 



268 

 

휂𝑒𝑛𝑐 =
𝜎2

𝑘𝑒𝑛𝑐𝑃𝑚 + 𝑘𝜎𝜎2
=

1

𝑘𝑒𝑛𝑐𝑃𝐴𝑃𝑅 + 𝑘𝜎
 

Coefficients 𝑘𝑒𝑛𝑐 and 𝑘𝜎 depend on apparatus implementation. Several cases were analyzed for 

an electronic modulator using the theory developed in this work, then tested in experiments. 

Experiments included theoretical waveforms as well as 3G and 4G standards based waveforms. 

The theory was verified to be accurate within the degree of measurement resolution, in this case 

~.7%.   

The inefficiency of encoding is regarded as a necessary inefficiency juxtaposed to dissipative 

inefficiencies such as friction , drag, resistance, etc. . Capacity for the AWGN channel is 

achieved for very large 𝑃𝐴𝑃𝑅, resulting in low efficiencies. However, if the encoded particle 

phase space is divided into multiple domains, then each domain may possess a lower individual 

PAPR statistic than the case of a single domain phase space with equivalent capacity. The 

implication is that separate resources can be more efficiently allocated in a distributed manner 

throughout the phase space. Resources are accessed as the encoded particle traverses a domain 

boundary. Domain boundaries which are optimized in terms of overall thermodynamic efficiency 

are not arbitrary. The optimization in the case of a Gaussian information pdf takes the form of a 

ratio of composited gamma densities; 

휂𝑒𝑛𝑐 = 𝑚𝑎𝑥{
∑ 𝜆𝑖𝑘𝑖𝑛𝑜𝑟𝑚𝑖 ∫ 𝒳𝑒𝜌(𝒳𝑒)𝑑𝒳𝑒

𝑓{𝑉𝑇}𝑖
𝑓{𝑉𝑇}𝑖−1

∑ 𝜆𝑖𝑘𝑖𝑛𝑜𝑟𝑚𝑖 ∫ 𝒳𝑖𝑛𝜌(𝒳𝑖𝑛)𝑑𝒳𝑖𝑛
𝑓{𝑉𝑇}𝑖
𝑓{𝑉𝑇}𝑖−1

} 

There is no known closed form solutions to this pdf ratio. A numerical calculus of variations 

technique was developed to solve for the optimal thresholds {𝑉𝑇}𝑖 and {𝑉𝑇}𝑖−1, defining domain 
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boundaries. The 𝑖𝑡ℎdomain weighting factor 𝜆𝑖is a probability of domain occupation where a 

domain is defined between thresholds {𝑉𝑇}𝑖 and {𝑉𝑇}𝑖−1. In general, the numerator term 

corresponding to effective signal energy is based on a central gamma RV and the denominator 

term corresponding to apparatus input energy, is based on either a non-central or central gamma 

RV. Another optimization technique was also developed which reduces to an alternate form; 

max{휂̌𝑡𝑜𝑡} = max {∑𝜆𝑖𝑘𝑖𝑛𝑜𝑟𝑚
∫ 휂̌𝑖𝑝𝑖(휂̌𝑖)𝑑휂̌𝑖

𝜂𝑖

𝜂{𝑖−1,𝑖}𝑖

} 

In this case, thresholds are determined in terms of the optimized threshold values for 휂{𝑖−1}, 휂𝑖. 

Although this optimization is in terms of an instantaneous efficiency it was shown to relate to the 

thermodynamic efficiency optimum. 

Modulation efficiency enhancements were theoretically predicted. Several cases were tested 

which corroborate the accuracy of the theory. Efficiencies may be drastically improved  by 

dividing a phase space into only a few domains. For instance, dividing the phase space into 8 

optimized domains results in an efficiency of 75% and dividing it into 16 domains results in an 

efficiency of 86.5% for the case of a zero offset Gaussian signal. Excellent efficiencies were 

observed for experiments using various cell phone and wireless LAN standards as well.  

A key principle of this work is that communication is accomplished through momentum 

exchange. Randomized momentum exchanges are always inefficient because the encoding 

particle and particle to be encoded are always in relative random motion resulting in wasted 

recoil momentum. Particle inertia which must be overcome prior to subsequent encodings  which 

is not conveyed to the channel but rather absorbed by the environment. This raises the local 
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entropy in agreement with the second law of thermodynamics. It was also shown that 

information cannot be encoded without momentum exchange and information cannot be 

annihilated without momentum exchange, since communications is regarded as a physical 

process.  
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APPENDIX A: 

 PHASE SPACE UNCERTAINTY AND THE HYPER SPHERE 
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It is possible to identify the form of probability density function, 𝜌(𝑥), which maximizes 

Shannon’s continuous uncertainty function for a given variance;  

𝐻[𝜌(𝑥)] = −∫ 𝜌(𝑥) ℓ𝑛 𝜌(𝑥)
∞

−∞

 

( A1. 1 ) 

A formulation from the calculus of variations historically known as Dido’s problem can be 

adapted for the required solution [69, 70]. The classical formulation was used to obtain the form 

of a fixed perimeter which maximizes the enclosed area. Thus the formulation is often referred to 

as an isoperimetric solution.  

In the case of interest here it is desirable to find a solution given 𝑣, a single particle velocity in 

the 𝐷 dimensional hyper space and a fixed kinetic energy as the resource which can move the 

particle. Specifically, we wish to obtain a probability density function, (𝑣1, 𝑣2 … . . 𝑣D) , which 

maximizes a 𝐷 dimensional uncertainty hyperspace for momentum with fixed mass, given the 

variance of velocity 𝑣𝛼, where 𝛼 = 1,2, …𝐷.  

This problem takes on the following character; 

max{𝐻[𝜌(𝑣1, 𝑣2 … . . 𝑣D)]} = max {− ∬…

∞

−∞

∫𝜌(𝑣1, 𝑣2 … . . 𝑣D) ℓ𝑛 𝜌( 1, 𝑣2 … . . 𝑣D) 𝑑𝑣1,𝑑𝑣2 …𝑑𝑣D}  

( A1. 2 ) 

The kernel of the integral in A1.2 shall be referred to as 𝔉 on occasion in its various streamlined 

forms.  
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This D dimensional maximization can be partially resolved by recognizing two simple concepts. 

Firstly,  In the absence of differing constraints for each of the D dimensions, a solution cannot 

bias the consideration of one dimension over the other. If all dimensions possess equivalent 

constraints then their physical metrics as well as any related probability distributions for 𝑣𝛼 will 

be indistinguishable in form. A lack of dimensional constraints is in fact a constraint by 

omission.  

Secondly, if the D dimensions are orthogonal, then variation in any one of the 𝑣𝛼 variables is 

unique amongst all variable variations only if the 𝑣𝛼 are mutually decoupled.  It follows that the 

motions corresponding to 𝑣𝛼 must be dimensionally decoupled to maximize A1.2.  Maximizing 

the number of independent degrees of freedom for the particle is the underlying principle, similar 

to maximum entropy principles from statistical mechanics [14].  

{𝑣1, 𝑣2 …𝑣α …𝑣D } cannot be deterministic functions of one another else they share mutual 

information and the total number of independent degrees of freedom for the set is reduced. 

Therefore, 

𝜌(𝑣1, 𝑣2 …𝑣D) = 𝜌(𝑣1)𝜌( 𝑣2)…  𝜌(𝑣D)  

( A1. 3 ) 

for a maximization. The 𝑣𝛼 are orthogonal and statistically independent.  

This reduces the maximization integral to a streamlined form over some interval a,b;  

{ℐ} = ∫ 𝔉{𝑣α, 𝜌(𝑣α), �́�(𝑣α)}
𝑏

𝑎

𝑑𝑣α 
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Or more explicitly, 

𝑚𝑎𝑥{ℐ} = 𝑚𝑎𝑥{𝐻[𝜌(𝑣1, 𝑣2 … . . 𝑣D)]} = 𝑚𝑎𝑥 {−∫𝜌(𝑣α)
𝐷  ℓ𝑛( (𝜌(𝑣α)) 

𝐷 ) 𝑑𝑣α} 

( A1. 4 )  

We now define integral constraints. The first constraint is the probability measure. 

∑ℐ𝛼 = 1 = ∑∫ 𝜌(𝑣α ) 𝑑𝑣α

∞

−∞𝛼𝛼

 

( A1. 5 ) 

Since no distinguishing feature has been introduced to differentiate 𝜌(𝑣α ) from any joint 

members of 𝜌(𝑣1, 𝑣2. . . 𝑣D), all the integrals of A1.5 are equivalent, which requires simply; 

∑ℐ𝛼 = 1 = 𝐷 ∫ 𝜌(𝑣α ) 𝑑𝑣α

∞

−∞𝛼

 

( A1. 6 ) 

A final constraint is introduced which limits the variance of each member function  𝜌(𝑣α). This 

variance is proportional to an entropy power and can also be viewed as proportional to an 

average kinetic energy ℰ𝑘_𝛼 =
1

2
𝜎𝛼

2.   

ℐ𝜎 = 𝐷𝜎𝛼
2 = 𝐷 ∫ 𝑣𝛼

2
∞

−∞

𝜌(𝑣α) 𝑑(𝑣α) 

( A1. 7 ) 
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Lagrange’s method may be used to determine coefficients 𝜆𝛼 of the following formulation [21, 

59]. 

ℐ0 = ℐ + ℐ𝛼 + ℐ𝜎 

ℐ0 = ∫ …∫(𝔉 + ∑𝜆𝛼𝔉𝛼

𝛼

+ ∑𝜆𝜎𝛼
𝔉𝜎𝛼

𝛼

)
𝑏

𝑎

𝑑𝑣1 …𝑑𝑣D  

( A1. 8 ) 

𝔉0 =  𝔉 + 𝐷𝜆𝛼𝔉𝛼 + 𝐷𝜆𝜎𝛼  𝔉𝜎𝛼
 

Euler’s equation of the following form must be solved; 

𝑑

𝑑𝑣𝛼
 
𝜕𝔉0

𝜕�̀�𝛼
−

𝜕𝔉0

𝜕𝜌𝛼
= 0           

( A1. 9 ) 

Since derivative �́� constraints are absent; 

−
𝜕𝔉0

𝜕𝜌𝛼
= 0           

( A1. 10 ) 

And, 

𝔉0 = 𝜌(𝑣𝛼)𝐷 ℓ𝑛 𝜌(𝑣𝛼)𝐷 + 𝐷𝜆𝛼  𝜌(𝑣𝛼) +  𝐷𝜆𝜎𝛼 𝑣𝛼   
2  

( A1. 11 ) 

From A1.10; 
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𝜕𝔉0

𝜕𝜌(𝑣𝛼)
= 𝐷𝜌(𝑣𝛼)𝐷−1 + 𝐷𝜌(𝑣𝛼)𝐷−1 ℓ𝑛 𝜌(𝑣𝛼)𝐷 +  𝐷𝜆𝛼 + 𝐷𝜆𝜎𝛼 𝑣𝛼   

2 = 0 

( A1. 12 ) 

Since all of the D dimensions are orthogonal with identically applied constraints, 𝐷 = 1 is a 

suitable solution subset of A1.12. The problem therefore is reduced to solving; 

1 +  ℓ𝑛 𝜌𝛼 + 𝜆𝛼 + 𝜆𝜎𝛼 𝑣𝛼   
2 = 0 

 𝜌𝛼 = 𝑒−𝜆𝛼  𝑒−𝜆𝜎𝛼 𝑣𝛼   
2

𝑒−1 

( A1. 13 ) 

A1.13 can be substituted into A1.7 to obtain; 

𝜎𝛼
2 = ∫ (𝑒−𝜆𝛼𝑒−1)𝑣2𝑒−𝜆𝜎𝛼 𝑣𝛼   

2
∞

−∞

𝑑𝑣𝛼 

( A1. 14 ) 

𝜎𝛼
2 =

1

2
 𝑒(−𝜆𝛼+1)𝑣𝛼   

2 𝑒−𝜆𝜎𝛼 𝑣𝛼   
2

|
−∞

∞

− ∫  𝑒(−𝜆𝛼+1)
∞

−∞

𝑣𝛼 𝑒
−𝜆𝜎𝛼 𝑣𝛼   

2
 𝑑𝑣𝛼 

∴ 𝜎𝛼
2 =

 𝑒(−𝜆𝛼+1)

2𝜆𝜎𝛼 
 ∫ 𝑒−𝜆𝜎𝛼 𝑣𝛼   

2
 𝑑𝑣𝛼

∞

−∞

 

( A1. 15 ) 

Rearranging A1.15 gives; 

𝜎𝛼
2 =

1

2𝜆𝜎𝛼 
∫  𝑒(−𝜆𝛼+1)

∞

−∞

𝑒−𝜆𝜎𝛼 𝑣𝛼   
2

 𝑑𝑣𝛼 
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𝜎𝛼
2 =

1

2𝜆𝜎𝛼 
∫ 𝜌𝛼

∞

−∞

(𝑣𝛼)𝑑𝑣𝛼 =
1

2𝜆𝜎𝛼 
 

∴ 𝜆𝜎𝛼 =
1

2𝜎𝛼
2
= 1 

This requires;  

  𝑒(𝜆𝛼+1) = ∫ 𝑒−𝜆𝜎𝛼 𝑣𝛼   
2

 𝑑𝑣𝛼

∞

−∞

= ∫ 𝑒
−𝑣𝛼   

2

2𝜎𝛼
2
 𝑑𝑣𝛼

∞

−∞

 

( A1. 16 ) 

  𝑒(𝜆𝛼+1) = √2𝜋𝜎𝛼
2 

( A1. 17 ) 

And; 

𝜌(𝑣𝛼) =  𝑒−(𝜆𝛼+1)𝑒
−𝑣𝛼   

2

2𝜎𝛼
2

=
1

√2𝜋𝜎𝛼

 𝑒
−𝑣𝛼   

2

2𝜎𝛼
2
  

( A1. 18 ) 

It follows from A1.3 that the density function for the D dimensional case is simply; 

(𝜌(𝑣𝛼))
𝐷

=
1

(2𝜋)𝐷 2⁄ 𝜎𝛼
𝐷
∏𝑒

−𝑣𝛼   
2

2𝜎𝛼
2

𝛼

 

( A1. 19 ) 

This is the density which maximizes A1.2 subject to a fixed total energy 𝜎2 = ∑ 𝜎𝛼
2

𝛼  where the 

D dimensions are indistinguishable from one another. 
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𝑣 is Gaussian distributed in a D-dimensional space. This velocity has a maximum uncertainty for 

a given variance 𝜎𝛼
2.  

Now if the particle is confined to some hyper volume it is useful to know the character of the 

volume. It was previously deduced that the dimensions are orthogonal. Thus we may represent 

the velocity as a vector sum of orthogonal velocities.  

𝑣 = ∑ 𝑣 𝛼 �̂�𝛼 

𝐷

𝛼=1

 

( A1. 20 ) 

It was also determined that the 𝜌(𝑣𝛼) have identical forms, i.e. they are 𝑖𝑖𝑑 Gaussian. Now let 

the maximum velocity 𝑣max _𝛼 in each dimension be determined as some multiple 𝑘𝜎𝛼 on the 

probability tail of the Gaussian pdf, ignoring the asymptotic portions greater than that peak. Then 

A1.21 may be written in an alternate form; 

𝑣𝑚𝑎𝑥
2 − ∑(𝑣𝛼)2 

𝐷

𝛼=1

≥ 0;     𝑣𝛼 ≤ 𝑣𝑚𝑎𝑥 

( A1. 21 ) 

𝑣𝑚𝑎𝑥
2 = ∑𝑣 max _𝛼

2

𝛼

= ∑𝑘2

𝛼

𝜎𝛼
2 

( A1. 22 ) 

A1.21 together with A1.22 define a hyper sphere volume with radius. 
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√ℰ𝑚𝑎𝑥 = √∑
𝑚

2
𝑘2

𝛼

𝜎𝛼
2 = √∑

𝑃𝐴𝐸𝑅

2𝑚
𝛼

𝜎𝑝𝛼
2  

( A1. 23 ) 

𝑘2 is the PAER and 𝜎𝑝𝛼
2  is the momentum variance in the 𝛼𝑡ℎ dimension. The hyper sphere has 

an origin of zero with a zero mean Gaussian velocity pdf characterizing the particle motion in 

each dimension.  

The form of the momentum space is a hyper sphere and therefore the physical coordinate space 

is also a hyper sphere. This follows since position is an integral of velocity. The mean velocity is 

zero and therefore the average position of the space may be normalized to zero. The position 

coordinates within the space are Gaussian distributed since the linear function of a Gaussian RV 

remains Gaussian. Just as the velocity may be truncated to a statistically significant but finite 

value so too the physical volume containing the particle can be limited to a radius 𝑅𝑠. Truncation 

of the hyper sphere necessarily comes at the price of reducing the uncertainty of the Gaussian 

distribution pdf in each dimension. Therefore, PAER should be selected to moderate this entropy 

reduction for this approximation given the application requirements.  

The preceding argument justifying the hyper sphere may also be solved using the calculus of 

variations. The well-known solution in two dimensions is a circle. The perimeter of the circle is 

the shortest perimeter enclosing the largest area [70]. Since a hyper sphere may be synthesized as 

a volume of revolution based on the circle, it possesses the greatest enclosed volume for a given 

surface. The implication is that a particle may move in the largest possible volume given fixed 

energy resources when the volume is a hyper sphere. The greater the volume of the space which 
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contains the particle, the more uncertain its random location and if the particle is in motion the 

more uncertain its velocity. Joint representation of the momentum and position is a hyper 

spherical phase space.  
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APPENDIX B:  

DERIVATION FOR MAXIMUM VELOCITY PROFILE   
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This Appendix derives the maximum velocity profile subject to a limit of 𝑃𝑚 𝑗𝑜𝑢𝑙𝑒𝑠/𝑠𝑒𝑐𝑜𝑛𝑑 

available to accelerate a particle from one end of a spherical space to the other where the sphere 

radius is 𝑅𝑠. Furthermore, it is assumed that the particle can execute the maneuver in ∆𝑡 seconds 

but no faster. There is an additional constraint of zero velocity (momentum) at the sphere 

boundary. The maximum kinetic energy expenditure per unit time is given by; 

𝑚𝑎𝑥{ℇ̇𝑘} = 𝑃𝑚 

( B1. 1 ) 

The particle’s kinetic energy and rate of work is given by;  

ℇ𝑘 = 1
2⁄ 𝑚𝑣2 

( B1. 2 ) 

ℇ̇𝑘 = 𝑚𝑣 ∙
𝑑𝑣 

𝑑𝑡
= 𝑝 ̇ ∙ 𝑣  

( B1. 3 ) 

𝑚 ≡ 𝑚𝑎𝑠𝑠,    𝑝 ≡ 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚,     𝑣 ≡ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

Since the volume is symmetrical and boundary conditions require |𝑣| = 0 at a distance ±𝑅𝑠 from 

the sphere center; 

ℇ𝑘𝑚𝑎𝑥
= ∫ 𝑚𝑎𝑥{ℇ̇𝑘}𝑑𝑡 =

Δ𝑡

2
 𝑃𝑚

Δt
2⁄

0

 

( B1. 4 ) 
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ℇ𝑘𝑝𝑒𝑎𝑘
= 𝑡𝑃𝑚            0 ≤ 𝑡 ≤

Δ𝑡

2
 

( B1. 5 ) 

ℇ𝑘𝑝𝑒𝑎𝑘
= (Δ𝑡 − 𝑡) 𝑃𝑚            Δ𝑡

2⁄ ≤ 𝑡 ≤ Δ𝑡 

( B1. 6 ) 

Under conditions of maximum acceleration and deceleration the kinetic energy vs. time is a 

ramp, illustrated in the following figure;  

 

Figure B-1 Kinetic Energy vs. Time for Maximum Acceleration 
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𝑞  𝑎𝑛𝑑 𝑞 ̇  are position and velocity respectively  (𝑞 ̇ = 𝑣 ). B1.5 and B1.6 can be used to obtain 

peak velocity over the interval Δ𝑡. 

1

2
𝑚 𝑣𝑝

2 = 𝑡𝑃𝑚         0 ≤ 𝑡 ≤
Δ𝑡

2
 

                                   𝑅𝑠 ≤ 𝑞 ≤ 0 

±𝑣 𝑝 = √
2𝑃𝑚𝑡

𝑚
�̂�𝑟 

( B1. 7 ) 

1

2
𝑚 𝑣𝑝

2 = (Δ𝑡 − 𝑡) 𝑃𝑚          𝑡 2⁄ ≤ 𝑡 ≤ Δ𝑡 

                                                   0 ≤ 𝑞 ≤ 𝑅𝑠 

∓𝑣 𝑝 = √
2𝑃𝑚(Δ𝑡 − 𝑡)

𝑚
�̂�𝑟 

( B1. 8 ) 

B1.7 and B1.8 are defined as the peak velocity profile.  

Positive and negative velocities may also be defined as those velocities which are associated with 

motion of the particle in the ±�̂�𝑟 direction with respect to the sphere center.  

It should be clear that it is possible to have  ±𝑣𝑝 over the entire domain since ±𝑣𝑝 is rectified in 

the calculation of ℇ𝑘 and boundary constraints do not preclude such motions.  

Position 𝑞 may be calculated from these quantities through an integral of motion 
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𝑞 = ∫𝑣 𝑝 𝑑𝑡 

( B1. 9 ) 

𝑞 = ∫−√
2𝑃𝑚𝑡

𝑚
�̂�𝑟 𝑑𝑡 = (𝑅𝑠 − 2

3⁄ 𝑣𝑚𝑎𝑥√
2

Δ𝑡
 𝑡3 2⁄ ) �̂�𝑟       0 ≤ 𝑡 ≤

Δ𝑡

2
 

                                                                                                              𝑅𝑠 ≥ 𝑞 ≥ 0 

( B1. 10 ) 

Integration of the opposite velocity yields; 

𝑞 = ∫−√
2𝑃𝑚𝑡

𝑚
�̂�𝑟 𝑑𝑡 = (2

3⁄ 𝑣𝑚𝑎𝑥√
2

Δ𝑡
 𝑡3 2⁄ − 𝑅𝑠) �̂�𝑟       0 ≤ 𝑡 ≤

Δ𝑡

2
 

                                                                                                              0 ≥ 𝑞 ≥ 𝑅𝑠 

( B1. 11 ) 

±𝑅𝑠 is the constant of integration in both cases which may be deduced from boundary 

conditions, or initial and final conditions.  

The other peak velocity profile trajectories (from B1.8) yield similar relationships; 

𝑞 = ∫±√
2𝑃𝑚(Δ𝑡 − 𝑡)

𝑚
�̂�𝑟 𝑑𝑡 = ±(2

3⁄ 𝑣𝑚𝑎𝑥√
2

Δ𝑡
 (Δ𝑡 − 𝑡)3 2⁄ − 𝑅𝑠) �̂�𝑟 

( B1. 12 ) 



286 

 

where; 

𝑣𝑚𝑎𝑥 = √
𝑃𝑚 Δ𝑡

𝑚
 

( B1. 13 ) 

The result of B1.10 may be solved for the characteristic radius of the sphere, 𝑅𝑠 ; 

𝑅𝑠 = 𝑣𝑚√
2

Δ𝑡
 (

Δ𝑡

2
)
3 2⁄

= √
2𝑃𝑚

𝑚
 (

Δ𝑡

2
) 

( B1. 14 ) 

At this point it is possible to parametrically relate velocity and position. This can be 

accomplished by solving for time in equations B1.10, B1.11 and B1.12 then eliminating the time 

variable in the 𝑞 and �̇� equations. 

𝑡 = (
3

2
√

Δ𝑡

2
  
𝑅𝑠 − 𝑞

𝑣𝑚
)

2 3⁄

                    𝑅𝑠 ≥ 𝑞 ≥ 0 

( B1. 15 ) 

𝑡 = Δ𝑡 − (
3

2
√

Δ𝑡

2
  
𝑞 + 𝑅𝑠

𝑣𝑚
)

2 3⁄

                    0 ≥ 𝑞 ≥ −𝑅𝑠 

( B1. 16 ) 

B1.15 and B1.16 may be substituted into the peak velocity equations B1.7 and B1.8. 
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𝑣 𝑝 = √
2𝑃𝑚

𝑚
  √𝑡 �̂�𝑟 = (

3𝑃𝑚

𝑚
(𝑞 + 𝑅𝑠))

1 3⁄

�̂�𝑟              −𝑅𝑠 ≤ 𝑞 ≤ 0 

𝑣 𝑝 = −(
3𝑃𝑚

𝑚
(𝑞 + 𝑅𝑠))

1 3⁄

�̂�𝑟                                      −𝑅𝑠 ≤ 𝑞 ≤ 0 

Similarly 

𝑣 𝑝 = √
2𝑃𝑚

𝑚
  √Δ𝑡 − 𝑡  = (

3𝑃𝑚

𝑚
(𝑞 − 𝑅𝑠))

1 3⁄

�̂�𝑟              0 ≤ 𝑞 ≤ 𝑅𝑠 

−𝑣 𝑝 = −(
3𝑃𝑚

𝑚
(𝑞 − 𝑅𝑠))

1 3⁄

�̂�𝑟                             0 ≤ 𝑞 ≤ 𝑅𝑠 
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APPENDIX C:  

MAXIMUM VELOCITY PULSE AUTO CORRELATION  
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Consider the piece wise pulse specification; 

𝑣 𝛼 = √
2𝑃𝑚𝑡

𝑚
�̂�𝛼       0 ≤ 𝑡 ≤

Δ𝑡

2
 

( C1. 1 ) 

𝑣 𝛼 = √
2𝑃𝑚(Δ𝑡 − 𝑡)

𝑚
�̂�𝛼         

Δ𝑡

2
≤ 𝑡 ≤ Δ𝑡 

( C1. 2 ) 

The auto correlation of this pulse is given by (where we drop vector notations);  

ℜ𝑣,𝑣 = ∫ 𝑣𝛼(𝑡) 𝑣𝛼(𝑡 + 𝜏)𝑑𝑡
∞

−∞

 

( C1. 3 ) 

The auto correlation must be solved in segments. Since it is symmetric in time the result for the 

first half of the correlation response may simply be mirrored for the second half of the solution.  

Figure C-1 illustrates the reference pulse described by equations C1.1, C1.2, along with the 

replicated convolving pulse. As the convolving pulse migrates through its various variable time 

domain positions equation C1.3 is recursively applied. The shaded area in the figure illustrates 

the evolving functional overlap in the domains of the two pulses. This is the domain of 

calculation.  
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Figure C-1 Convolution Calculation Domain 

For the first segment of the solution the two pulses overlap with their specific functional domains 

determined according to their relative variable time offsets. The reference pulse functional 

description of course does not change but the convolving pulse domain is dynamic. 

The first solution then involves solving; 

ℜ𝑣𝑎,𝑣𝑎
= ∫ √𝑡  √−𝑡 +

Δ𝑡

2
+ 𝜏     𝑑𝑡 = ∫ (−𝑡2 + 𝑡 (

Δ𝑡

2
+ 𝜏))

1
2⁄

Δ𝑡
2

+𝜏

0

   𝑑𝑡

Δ𝑡
2

+𝜏

0

    

( C1. 4 ) 

 



291 

 

ℜ𝑣𝑎,𝑣𝑎
=   (

𝑡

2
−

Δ𝑡

8
−

𝜏

4
) √−𝑡2 + 𝑡 (

Δ𝑡

2
+ 𝜏)|

0

Δ𝑡
2

+𝜏

+
(
Δ𝑡
2 + 𝜏)

2

8
(−sin(

Δ𝑡
2 + 𝜏 − 2𝑡

Δ𝑡
2 + 𝜏

))|

0

Δ𝑡
2

+𝜏

 

( C1. 5 ) 

ℜ𝑣𝑎,𝑣𝑎
=

𝜋

8
(
Δ𝑡

2
+ 𝜏)

2

               − Δ𝑡 ≤ 𝜏 ≤ −
Δ𝑡

2
 

( C1. 6 ) 

The next segment for evaluation corresponds with the pulse overlap illustrated in figure C-2.  

 

Figure C-2 Convolution Calculation Domain 

The applicable equation to be solved is; 

∫ √𝑡  √𝑡 − 𝜏   𝑑𝑡 = ∫ √𝑡2 − 𝜏𝑡

Δ𝑡
2

+𝜏

0

  𝑑𝑡

Δ𝑡
2

+𝜏

0

        −
Δ𝑡

2
≤ 𝜏 ≤ 0   
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=
2𝑡 − 𝜏

4
 √t(𝑡 − 𝜏)|

0

Δ𝑡
2

+𝜏

−
𝜏2

8
[ln(2√t(𝑡 − 𝜏) + 2𝑡 − 𝜏)]

0

Δ𝑡
2

+𝜏

 

( C1. 7 ) 

ℜ𝑣𝑏,𝑣𝑏
= (

Δ𝑡 + 𝜏

4
√(

Δ𝑡

2
+ 𝜏)

Δ𝑡

2
) × 2            −

Δ𝑡

2
≤ 𝜏 ≤ 0     

( C1. 8 ) 

ℜ𝑣𝑐,𝑣𝑐
= (

𝜏2

8
[ln(2√(

Δ𝑡

2
+ 𝜏) (

Δ𝑡

2
) + Δ𝑡 − 𝜏) − ln(−𝜏)]) × 2             −

Δ𝑡

2
≤ 𝜏 ≤ 0   

( C1. 9 ) 

C1.8 and C1.9 have been multiplied by 2 to account for both regions of overlap in figure C-2.  

The last segment of solution also yields two results.   The overlap region is indicated in figure 

12-3.  

 

Figure C-3 Convolution Calculation Domain 



293 

 

The applicable integral is; 

∫ √𝑡  √Δ𝑡 − 𝑡 + 𝜏   𝑑𝑡 = ∫ √t(Δ𝑡 + 𝜏)

Δ𝑡
2

Δ𝑡
2

+𝜏

  𝑑𝑡

Δ𝑡
2

Δ𝑡
2

+𝜏

        −
Δ𝑡

2
≤ 𝜏 ≤ 0   

( C1. 10 ) 

ℜ𝑣𝑑,𝑣𝑑
=   (

𝑡

2
+

Δ𝑡 + 𝜏

−4
) √𝑡(Δ𝑡 + 𝜏) − 𝑡2|

Δ𝑡
2

+𝜏

Δ𝑡
2

 

=
𝜏

4
√

Δ𝑡

2
(Δ𝑡 + 𝜏) − (

Δ𝑡

2
)
2

−
𝜏

4
√(

Δ𝑡

2
+ 𝜏) (Δ𝑡 + 𝜏) − (

Δ𝑡

2
+ 𝜏)

2

          −
Δ𝑡

2
≤ 𝜏 ≤ 0   

( C1. 11 ) 

ℜ𝑣𝑒,𝑣𝑒
=   

(Δ𝑡 + 𝜏)2

8
 [−sin−1 (

−2t + Δ𝑡 + 𝜏

Δ𝑡 + 𝜏
)]|

Δ𝑡
2

+𝜏

Δ𝑡
2

 

( C1. 12 ) 

ℜ𝑣𝑒,𝑣𝑒
=   

(Δ𝑡 + 𝜏)2

8
 [− sin−1 (

𝜏

Δ𝑡 + 𝜏
) + sin−1 (−

𝜏

Δ𝑡 + 𝜏
)]          −

Δ𝑡

2
≤ 𝜏 ≤ 0    

( C1. 13 ) 

The total solution is found from the sum of segmented solutions, C1.6, C1.8, C1.9, C1.11, C1.13 

combined with its mirror image in time, symmetric about the peak of the autocorrelation.  

ℜ𝑣,𝑣 = ℜ𝑣𝑎,𝑣𝑎
+ ℜ𝑣𝑏,𝑣𝑏

+ ℜ𝑣𝑐,𝑣𝑐
+ ℜ𝑣𝑑,𝑣𝑑

+ ℜ𝑣𝑒,𝑣𝑒  

( C1. 14 ) 
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The terms in C1.14 may therefore be scaled as required to normalize the peak of the auto 

correlation corresponding to the mean of the square for the pulse. For instance, the peak energy 

of the maximum velocity pulse corresponds to a value of 𝑃𝑚/𝑚. The following plot illustrates 

the result for 𝑃𝑚/𝑚 =1.  

 

Figure C-4 Normalized Autocorrelation for Maximum Velocity Pulse 
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APPENDIX D: 

DIFFERENTIAL ENTROPY CALCULATION  
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Shannon’s continuous entropy also known as differential entropy may be calculated for the 

Gaussian multi-variate. The Gaussian multi-variate for the velocity random variable is given as; 

𝜌(𝑣) =
1

√(2𝜋)𝐷[Λ]
  𝑒−

1
2
(𝑣𝛼−�̅�𝛼)𝑡 Λ−1(𝑣𝛽−�̅�𝛽)

 

( D1. 1 ) 

𝐷 is the dimension of the multi-variate. 𝛼, 𝛽 are enumerated from 1 to 𝐷 and Λ is a covariance 

matrix and (𝑣𝛼 − �̅�𝛼)𝑡 is the transpose of (𝑣𝛽 − �̅�𝛽).  

From Shannon’s definition; 

𝐻[𝜌(𝑣)] = −∫ 𝜌(𝑣)  ln(𝜌(𝑣))  
∞

−∞

𝑑(𝑣) 

( D1. 2 ) 

We note that, 

ln 𝜌(𝑣𝛼) = −
1

2
(𝑣𝛼 − �̅�𝛼)𝑡 Λ−1(𝑣𝛽 − �̅�𝛽)ln (𝑒) − ln(2𝜋)𝐷 2⁄   |Λ|1 2⁄ , 𝛼 = 1,2, …𝐷 

( D1. 3 ) 

Since there are D variables the entropy must be calculated with a D-tuple integral of the form; 

𝐻[𝜌(𝑣)] = −∫ …
∞

−∞

∫ 𝜌(𝑣) ln(𝜌(𝑣))  
∞

−∞

𝑑(𝜌(𝑣)) 

𝜌(𝑣) = 𝜌(𝑣1, 𝑣2, … 𝑣𝐷) 

( D1. 4 ) 
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The 𝐷 = 1 case is obtained in Appendix J. Using the same approach we may extend the result  

over D dimensions  ; 

𝐻[𝜌(𝑣)] =
1

2
∫ …

∞

−∞

∫ ln((2𝜋𝑒)𝐷 |Λ|) 𝜌(𝑣)
∞

−∞

𝑑𝑣

+
1

2
∫ …

∞

−∞

∫ 𝜌(𝑣𝛼)
∞

−∞

(𝑣𝛼 − �̅�𝛼) Λ−1(𝑣𝛽 − �̅�𝛽)𝑑𝑣 

( D1. 5 ) 

We may rewrite D1.5 with a change of variables for the second integral; 

𝐻[𝜌(𝑣)] =
1

2
∫ …

∞

−∞

∫ ln((2𝜋𝑒)𝐷 |Λ|) 𝜌(𝑣)
∞

−∞

𝑑𝑣 + ∫ …
∞

−∞

∫ 𝑧𝑓(𝑧)
∞

−∞

𝑑𝑧 

𝑧𝛼 =
1

2
(𝑣𝛼 − �̅�𝛼) Λ−1(𝑣𝛽 − �̅�𝛽) 

 ( D1. 6 ) 

The second integral then is simply the expected value for 𝑧𝛼 over the D-tuple which is equal to 

the dimension D divided by 2 for uncorrelated RVs; 

𝐸{𝑧𝛼} = 𝐸 {
1

2
(𝑣𝛼 − �̅�𝛼) Λ−1(𝑣𝛽 − �̅�𝛽)} =

𝐷

2
 

( D1. 7 ) 

The covariance matrix is given by; 
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[Λ] =

[
 
 
 
 
𝜎𝑣1

2 𝜎12
… 𝜎1𝐷

𝜎21 𝜎𝑣2
2 ⋮

⋮
𝜎𝐷1 …

⋱
𝜎𝑣𝐷

2
]
 
 
 
 

 

( D1. 8 ) 

𝜎𝛼,𝛽 = 𝜎𝛼 𝜎𝛽 Γ𝛼,𝛽 

( D1. 9 ) 

𝜎2 is a variance of the random variable. Γ𝛼,𝛽 is a correlation coefficient. The covariance is 

defined by 

𝜎𝛼,𝛽 = 𝐸{(𝑣𝛼 − �̅�𝛼) (𝑣𝛽 − �̅�𝛽)} = 𝑐𝑜𝑣 {𝑣𝛼 , 𝑣𝛽} 

= ∬(𝑣𝛼 − �̅�𝛼) (𝑣𝛽 − �̅�𝛽)𝜌(𝑣𝛼  , 𝑣𝛽)

∞

−∞

𝑑𝑣𝛼 𝑑𝑣𝛽 

( D1. 10 ) 

In the case of uncorrelated zero mean Gaussian random variables 𝜎𝛼,𝛽 = 0 for 𝛼 ≠ 𝛽 and 1 

otherwise. Thus only the diagonal of D1.8 survives in such a circumstance. The entropy may be 

streamlined in this particular case to; 

𝐻[𝜌(𝑣)] = 𝑙𝑛 [𝑒
𝐷
2] +

1

2
ln((2𝜋𝑒)𝐷|Λ|) 

( D1. 11 ) 
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𝐻[𝜌(𝑣)] =
1

2
ln((2𝜋𝑒)𝐷|Λ|) 

( D1. 12 ) 

Equation D1.12 is the maximum entropy case for the Gaussian multi-variate.  

In the case where 𝑣𝛼 and 𝑣𝛽 are complex quantities then D1.10 will also spawn a complex 

covariance. In this case the elements of the covariance matrix become [25]; 

Λ̃ = 𝐸 {(𝑣𝛼 − �̅�𝛼) (𝑣𝛽 − �̅�𝛽)
𝑇
} + 𝐸 {(�̃�𝛼 − �̃̅�𝛼) (�̃�𝛽 − �̃̅�𝛽)

𝑇
} 

+𝑗𝐸 {(�̃�𝛼 − �̃̅�𝛼) (𝑣𝛽 − �̅�𝛽)
𝑇
} − 𝑗𝐸 {(𝑣𝛼 − �̅�𝛼) (�̃�𝛽 − �̃̅�𝛽)

𝑇
} 

The complex covariance matrix can be used to double the dimensionality of the space because 

complex components of this vector representation are orthogonal. This form can be useful in the 

representation of band pass processes where a modulated carrier may be decomposed into sin(𝑥) 

and cos(𝑥) components.  

Hence the uncertainty space can increase by a factor of 2 for the complex process if the variance 

in real and imaginary components are equal.   
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APPENDIX E  

MINIMUM MEAN SQUARE ERROR (MMSE) AND CORRELATION 

FUNCTION FOR VELOCITY BASED ON SAMPLED AND 

INTERPOLATED VALUES  
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Let �̃�𝛼(𝑡) = 𝑣𝛼(𝑡)𝛿(𝑡 − 𝑛𝑇𝑠) ∗ ℎ𝑡 be a discretely encoded approximation of a desired velocity 

for a dynamic particle. The input samples are zero mean Gaussian distributed and the input 

process possesses finite power. This is consistent with a maximum uncertainty signal. We are 

mainly concerned with obtaining an expression for the MMSE associated with the reconstitution 

of 𝑣𝛼(𝑡) from a discrete representation.  From the MMSE expression we may also imply the 

form of an correlation function for the velocity.  When �̃�𝛼(𝑡) is compared to 𝑣𝛼(𝑡) the 

comparison metric is cross correlation and becomes autocorrelation for �̃�𝛼(𝑡) = 𝑣𝛼(𝑡). The inter 

sample interpolation trajectories will spawn from a linear time invariant (LTI) operator ∗ ℎ𝑡. 

With this background, a familiar error metric can be minimized to optimize the interpolation, 

where the energy of each sample is conserved [23]; 

〈𝑣𝜖
2〉 = 𝜎𝜀

2 = [∑𝑣𝛼(𝑡) − 𝑣𝛼(𝑡)𝛿(𝑡 − 𝑛𝑇𝑠) ∗ ℎ𝑡)

𝑛

]

2

 

( E1. 1 ) 

Minimizing the error variance 𝜎𝜀
2 requires solution of; 

𝑣𝛼(𝑡) − 𝑣𝛼(𝑡)𝛿(𝑡 − 𝑛𝑇𝑠) ∗ ℎ𝑡 = 0 

( E1. 2 ) 

Impulsive forces 𝛿(𝑡 − 𝑛𝑇𝑠) are naturally integrated through Newton’s laws to obtain velocity 

pulses. That analysis may easily be extended to tailor the forces delivered to the particle via an 

LTI mechanism where ℎ𝑡 disperses a sequence of forces in the preferable continuous manner.  ℎ𝑡 
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may be regarded as a filter impulse response where the integral of the time domain convolution 

operator is inherent in the laws of motion.  

A schematic is a convenient way to capture the concept at a high level of abstraction.  

 

Figure E-1 

The schematic illustrates the 𝛼𝑡ℎ dimension sampled velocity and its interpolation. Extension to 

D dimensions is straightforward.  

It is evident that an effective LTI or linear shift invariant (LSI) impulse response ℎ𝑒𝑓𝑓 = 1 

provides the solution which minimizes 𝜎𝜖
2.  

The expanded error kernel may be compared to a cross correlation where ℎ𝑡 is a portion of the 

correlation operation .  The cross correlation characteristics are gleaned from the expanded error 

kernel and cross correlation definition;  

𝜎𝜖(𝜏, 𝑛𝑇𝑠)
2 = 〈𝑣𝛼(𝑡 + 𝜏)2 − 2𝑣𝛼(𝑡 + 𝜏)𝑣𝛼(𝑡 − 𝑛𝑇𝑠) ∗ ℎ𝑡 + (𝑣𝛼(𝑡 − 𝑛𝑇𝑠) ∗ ℎ𝑡)

2〉 

( E1. 3 ) 

𝜎𝜖(𝜏, 𝑛𝑇𝑠)
2 = 〈𝑣𝜏

2〉 − 2|𝛾𝜏,𝑛𝑇𝑠
|〈𝑣𝜏𝑣𝑛𝑇𝑠

〉 + (𝛾𝜏,𝑛𝑇𝑠
〈𝑣𝑛𝑇𝑠

〉)
2
 

( E1. 4 ) 
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The notation has been streamlined, dropping the 𝛼 subscript and adopting a two dimensional 

variation to allow for sample number and continuously variable time offset.  The reference 

function 𝑣𝛼(𝑡 + 𝜏) is continuously variable over the domain while 𝑣𝛼(𝑡 − 𝑛𝑇𝑠) ∗ ℎ𝑡 is fixed.  

 𝛾𝜏,𝑛𝑇𝑠
 are cross correlation coefficients.  These coefficients essentially reflect how well the 

operator ∗ ℎ𝑡 accomplishes the reconstruction of particle velocity while simultaneously 

providing a means to analyze the dependence between input stimulus and output response at 

prescribed intervals of 𝑇𝑠. . |𝛾𝜏,𝑛𝑇𝑠
|
𝑛𝑜𝑟𝑚

≤ 1 under all circumstances.  

The power cross correlation function (m=1) is defined in the usual manner; 

ℜ𝜏,𝑛𝑇𝑠
=

1

2
〈𝑣𝜏𝑣𝑛𝑇𝑠

〉 

( E1. 5 ) 

Then 

�̃�𝜖
2 = 2 [𝑣𝜏

2 − 2|𝛾𝜏,𝑛𝑇𝑠
|ℜ𝜏,𝑛𝑇𝑠

+ (𝛾𝜏,𝑛𝑇𝑠
𝜎𝑛𝑇𝑠

)
2
] 

( E1. 6 ) 

The extremes may be obtained by solving; 

𝜕𝜎𝜖
2

𝜕𝛾𝜏,𝑛𝑇𝑠

= −ℜ𝜏,𝑛𝑇𝑠
+ |𝛾𝜏,𝑛𝑇𝑠

|(𝜎𝑛𝑇𝑠
)
2
= 0 

( E1. 7 ) 
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ℜ𝜏,𝑛𝑇𝑠
= |𝛾𝜏,𝑛𝑇𝑠

|(𝜎𝑛𝑇𝑠
)
2
 

( E1. 8 ) 

If the particle velocity is random and zero mean Gaussian and of finite power then it is known 

that ℜ𝜏,𝑛𝑇𝑠
 cannot take the form of a delta function [12]. Furthermore the correlation may possess 

only one maximum which occurs for ℜ𝜏=0,𝑛𝑇𝑠=0. Whenever 𝜏 = 𝑛𝑇𝑠 ≠ 0 then the magnitude of 

the correlation cannot be gleaned by E1-7 unless the correlation coefficients may be obtained by 

some other means. They however cannot be 1 or -1, yet they can be zero.  

Also, the correlation function may vary in the following manner; 

𝜕ℜ𝜏,𝑛𝑇𝑠

𝜕𝛾𝜏,𝑛𝑇𝑠

= ±𝜎𝑛𝑇𝑠
2, @ 𝜏 = 𝑛𝑇𝑠 ≠ 0  

( E1. 9 ) 

Now this implies that the autocorrelation is zero for 𝜏 = 𝑛𝑇𝑠 ≠ 0 because E1-7 permits only a 

max. or min. value for the magnitude of correlation coefficients. A local maximum would reflect 

a slope of zero not ±𝜎𝑛𝑇𝑠
2 as obtained in E-9. Thus, if the slope is either positive or negative at 

modulo 𝑇𝑠 offsets, the correlation is zero at those points and will oscillate between positive and 

negative values away from those points whenever the velocity variance is nonzero at 𝜏 = ±𝑛𝑇𝑠. 

This further implies that the correlation possesses crests and valleys between those correlation 

zeros. In addition, the correlation function must converge to zero at large offsets for  𝜏 = ±𝑛𝑇𝑠. 

This is consistent with a bandwidth limited process which insures finite power for the signal, a 

presumption of the analysis since the maximum power is specified as 𝑃𝑚. It is logical to suppose 
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that a finite input power process to a passive LTI network, ℎ𝑡, must also produce a finite output 

power. It is known that the input process is Gaussian so that the output process must also be 

Gaussian. For a MMSE condition, it follows that each sample on the input must equal each 

sample at the output, regardless of the sample time. The only solution possible is that ℎ𝑒𝑓𝑓 = 1. 

We cannot further resolve the form of the correlation function which minimizes the MMSE 

without explicitly solving for ℎ𝑡 or injecting additional criteria. This can be accomplished by 

setting ℎ𝑒𝑓𝑓 = 1 in figure E-1 and solving for ℎ𝑡. When this additional step is accomplished the 

correlation function corresponding to the optimal impulse response LTI operator then takes on 

the form of the 𝑠𝑖𝑛𝑐 function (reference chapter 3).   
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APPENDIX F:  

MAX CARDINAL VS. MAX NL. VELOCITY PULSE  
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This appendix provides some support calculations for the comparison of maximum nonlinear and 

cardinal pulse types. The following figure illustrates the characteristic profiles.  

 

Figure F-1 Maximum Non-Linear and Cardinal Velocity Pulse Profiles 

In this view the maximum cardinal profile is subordinate to the maximum nonlinear velocity 

pulse profile boundary. This is a reference view which implies that the configuration space is 

preserved. The time to traverse this space for both cases cannot be discerned without further 

specification of the resources required in both cases. Notice the precursor and post cursor tails of 

the cardinal pulse. They exist because the extended cardinal pulse persists over the interval 

−∞ ≤ 𝑡 ≤ ∞. The tails possess ~9.3% of the pulse energy.  

Let the fundamental cardinal pulse be given by; 

𝑣𝑝_𝑐𝑎𝑟𝑑 = 𝑣𝑚_𝑐𝑎𝑟𝑑

𝑠𝑖𝑛(𝜋𝑓𝑠𝑡)

𝜋𝑓𝑠𝑡
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The energy of the pulse is proportional to (m=1 unless otherwise indicated); 

ℰ𝑘_𝑐𝑎𝑟𝑑 =
𝑣𝑚_𝑐𝑎𝑟𝑑

2

2

𝑠𝑖𝑛2(𝜋𝑓𝑠𝑡)

(𝜋𝑓𝑠𝑡)2
 

Then (for 𝑣𝑚_𝑐𝑎𝑟𝑑=1) ; 

𝑑ℰ𝑘_𝑐𝑎𝑟𝑑

𝑑𝑡
=

1

2

𝑠𝑖𝑛(𝜋𝑓𝑠𝑡)

(𝜋𝑓𝑠𝑡)3
[2𝜋𝑓𝑠(𝜋𝑓𝑠𝑡 𝑐𝑠(𝜋𝑓𝑠𝑡)) − 𝑠𝑖𝑛(𝜋𝑓𝑠𝑡)] 

𝑃𝑚_𝑐𝑎𝑟𝑑 is calculated from; 

𝑚𝑎𝑥 {
𝑑ℰ𝑘_𝑐𝑎𝑟𝑑

𝑑𝑡
} = 0 

The following graphic illustrates the solution for 𝑃𝑚_𝑐𝑎𝑟𝑑.  

 

Figure F-2 Solution for 𝑃𝑚_𝑐𝑎𝑟𝑑 is approx. .843 @ (𝑡 𝑇𝑠⁄ ) ≈ −.42. 𝑣𝑚𝑎𝑥_𝑐𝑎𝑟𝑑 is unity for this case. 
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Now suppose that the prior case is compared to the maximum nonlinear velocity pulse case 

where 𝑣𝑚 = 1 and 𝑇𝑠 = 1. Then 𝑃𝑚𝑎𝑥 = .5 (reference Appendix B). 

The ratio of the maximum power requirements is; 

𝑃𝑚_𝑐𝑎𝑟𝑑

𝑃𝑚𝑎𝑥
= 1.686 

This is the ratio when the pulse amplitudes are identical for both cases at the time 𝑡 𝑇𝑠⁄ = 0. The 

total energy of the pulses are not equal and the distance a particle travels over a characteristic 

interval ∆𝑡 is not the same for both cases. The information at the peak velocity is however 

equivalent. This circumstance may serve as a reference condition for other comparisons.   

We may also calculate the required velocity in both cases for which the particle traverses the 

same distance in the same length of time ∆𝑡 = 2𝑇𝑠.  This is a conservation of configuration space 

comparison. We equate the two distances by; 

2∫ 𝑣𝑝𝑑𝑡
𝑇𝑠

0

= 2∫ 𝑣𝑝_𝑐𝑎𝑟𝑑𝑑𝑡
𝑇𝑠

0

 

The integral on the left is the distance for a nonlinear maximum velocity pulse case and the 

integral on the right is the maximum cardinal pulse case. Explicitly; 

∫ √
2𝑃𝑚𝑡

𝑚
𝑑𝑡

𝑇𝑠

0

= ∫ 𝑣𝑚_𝑐𝑎𝑟𝑑

𝑠𝑖𝑛(𝜋𝑓𝑠𝑡)

𝜋𝑓𝑠𝑡
𝑑𝑡

𝑇𝑠

0

 

𝑣𝑚_𝑐𝑎𝑟𝑑 is to be calculated. 



310 

 

2

3
√

2𝑃𝑚

𝑚
𝑇𝑠

3/2 = 𝑣𝑚_𝑐𝑎𝑟𝑑  �̃�𝑖(𝑇𝑠) 

�̃�𝑖(𝑇𝑠) is a function of the sine integral, integrated over the range 0 ≤ 𝑡 ≤ 𝑇𝑠, where 𝑇𝑠 = 1 [68]. 

𝑆𝑖(𝑧) = ∫
sin (𝑡)

𝑡
 𝑑𝑡

𝑧

0

 

�̃�𝑖(𝑇𝑠) =
𝑇𝑠

𝜋
∫

sin (�́�)

�́�
 𝑑�́�

𝑇𝑠

0

 

∴ 𝑣𝑚_𝑐𝑎𝑟𝑑 =
2𝜋

3
√

2𝑃𝑚

𝑚
∑

(2𝑛 + 1)(2𝑛 + 1)!

(−1)𝑛𝑇𝑠
(2𝑛+1/2)

∞

𝑛=0

 

 

Figure F-3 Sine Integral Response 

𝑣𝑚_𝑐𝑎𝑟𝑑 ≅
2𝜋

3
√

2𝑃𝑚

𝑚

1

1.85
≈ 1.6√𝑃𝑚;        𝑓𝑜𝑟 𝑇𝑠 = 1 
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In terms of 𝑣𝑚𝑎𝑥; 

1.6√𝑃𝑚 = 1.6 𝑣𝑚𝑎𝑥√
𝑚

2𝑇𝑠
= 1.13 𝑣𝑚𝑎𝑥 

The power increase at peak velocity for the cardinal pulse compared to the nonlinear maximum 

velocity pulse is; 

(
𝑣𝑚_𝑐𝑎𝑟𝑑

𝑣𝑚𝑎𝑥
)
2

= 1.28 

This represents an increase of ~ 1.07 dB at peak velocity.  

The 𝑃𝑚 increase however is noticeably greater and may be calculated using ratios normalized to 

the reference case; 

ℰmax _𝑐𝑎𝑟𝑑

ℰmax _𝑐𝑎𝑟𝑑_𝑟𝑒𝑓
=

𝑃max _𝑐𝑎𝑟𝑑

𝑃max _𝑐𝑎𝑟𝑑_𝑟𝑒𝑓
 

Therefore; 

𝑃max _𝑐𝑎𝑟𝑑 =
(
𝑣𝑚_𝑐𝑎𝑟𝑑

2 )
2

(
𝑣max _𝑟𝑒𝑓

2 )
2
(𝑃m )(𝑃max _𝑐𝑎𝑟𝑑_𝑟𝑒𝑓) =

(1.28)(. 843)

. 5
𝑃𝑚 

And; 

𝑃max _𝑐𝑎𝑟𝑑

𝑃m 
≅ 2.158 

This represents an increase of approximately 3.34 dB required for the peak power source 

enhancement relative to the maximum nonlinear velocity pulse case, to permit a maximum 
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cardinal pulse to span the same physical space in an equivalent time period ∆𝑡. The following 

figure illustrates the required rescaling for this case.  

 

Figure F-4 Maximum Non-Linear and Cardinal Pulse Profiles 

It is possible to calculate the required sampled time 𝑇𝑠 for both pulse types in the case where the 

phase space is conserved for both scenarios and 𝑃max _𝑐𝑎𝑟𝑑 = 𝑃m = 1. We shall assign the sample 

time the variable 𝑇𝑟𝑒𝑓 for the maximum nonlinear pulse type.  

2

3
√

2𝑃𝑚

𝑚
𝑇𝑟𝑒𝑓

3/2 = 𝑣𝑚𝑐𝑎𝑟𝑑 �̃�𝑖(𝑇𝑠) 

𝑣𝑚_𝑐𝑎𝑟𝑑 is first calculated from (refer to reference case);  

𝑃max _𝑐𝑎𝑟𝑑 ≈ 1.28 ℰmax _𝑐𝑎𝑟𝑑 

𝑣𝑚_𝑐𝑎𝑟𝑑 = √2
(𝑃max _𝑐𝑎𝑟𝑑)

1.28
≈ 1.25 
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Therefore; 

(
𝑇𝑠

𝑇𝑟𝑒𝑓
)

3/2

=
2𝜋

3

1

𝑣𝑚_𝑐𝑎𝑟𝑑 �̃�𝑖(𝑇𝑠)
√

2𝑃𝑚

𝑚
≅ 1.289;       𝑓𝑜𝑟 𝑇𝑟𝑒𝑓 = 1 

∴ 𝑇𝑠 = 1.179 𝑇𝑟𝑒𝑓 

This corresponds to a bandwidth which is 𝑇𝑠
−1 or ≈ .848 of the reference BW. Therefore, a 

lower instantaneous power can be considered as a trade for a reduction in bandwidth.  

The characteristic radius of the cardinal pulse case is calculated from the integration of velocity 

over the interval 𝑇𝑠; 

𝑅𝑠 =
𝜋

𝑇𝑠
∫ (𝑣𝑚𝑎𝑥_𝑐𝑎𝑟𝑑 )

𝑇𝑠

𝑜

sin (𝑡)

𝑡
  𝑑𝑡 

For the normalized case of 𝑇𝑠 = 𝜋 we obtain 

𝑅𝑠 = (1.85)(𝑣𝑚𝑎𝑥_𝑐𝑎𝑟𝑑 ) 
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APPENDIX G:  

CARDINAL TE RELATION  
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The TE relation is examined as it relates to a maximum cardinal pulse. Also, the two pulse 

energies are compared. Although the two structures are referred to as pulses, they are applied as 

profiles or boundaries in chapter 3, restricting the trajectory of dynamic particles. 

The general TE relation is given by; 

1

𝑇𝑠
≥

𝑚𝑎𝑥 {
𝑑ℰ𝑘

𝑑𝑡
}

𝑘𝑝〈ℰ𝑘〉(𝑃𝐴𝐸𝑅)
 

In the case of the most expedient velocity trajectory to span a space 𝑘𝑝 = 1. This bound results 

in a nonlinear equation of motion. Therefore, a physically analytic design will constrain motions 

to avoid the most extreme trajectory associated with a 𝑘𝑝 = 1 case or modify 𝑘𝑝. 

The nature of the TE relation can be revealed in an alternate form; 

𝑃𝑚𝑎𝑥 =
𝑘𝑝ℰ𝑘_𝑚𝑎𝑥

𝑇𝑠
 

𝑃𝑚𝑎𝑥 is defined as the maximum instantaneous power of a pulse 𝑚𝑎𝑥 {
𝑑ℰ𝑘

𝑑𝑡
} over the interval 𝑇𝑠. 

ℰ𝑘_𝑚𝑎𝑥 is the maximum kinetic energy over that same span of time. Then from appendix F the 

cardinal pulse will have the following values for 𝑘𝑝. 

Case 1: (ℰ𝑘_max _𝑐𝑎𝑟𝑑 ℰ𝑘_𝑚𝑎𝑥⁄ ) = 1,  (𝑇𝑠_max _𝑐𝑎𝑟𝑑/𝑇𝑠_𝑚𝑎𝑥) = 1,  (𝑅𝑠_max _𝑐𝑎𝑟𝑑/𝑅𝑠_𝑚𝑎𝑥) = 1 

𝑘𝑝 =
𝑃max _𝑐𝑎𝑟𝑑  𝑇𝑠

ℰ𝑘_max _𝑐𝑎𝑟𝑑
= 1.28 

Case 2: (𝑃max _𝑐𝑎𝑟𝑑 𝑃𝑚𝑎𝑥⁄ ) = 1,  (𝑅𝑠_max _𝑐𝑎𝑟𝑑/𝑅𝑠_𝑚𝑎𝑥) = 1 



316 

 

𝑘𝑝 =
𝑃max _𝑐𝑎𝑟𝑑𝑇𝑠

ℰ𝑘_max _𝑐𝑎𝑟𝑑
= 1.179        (see Appendix F) 

The subscript “max_card” refers to the maximum cardinal pulse type and the subscript “max” 

references the maximum nonlinear pulse type.  

The total pulse energies for the 2 cases above are not equivalent. It should be noted that the 

energy average for the cardinal pulse is per unit time 𝑇𝑠 . The total energy for both pulse types 

are given by; 

ℰ𝑘_max _𝑡𝑜𝑡 = 𝑇𝑠 𝑃max  

ℰ𝑘_max _𝑐𝑎𝑟𝑑_𝑡𝑜𝑡 =
𝑚

2
∫ (𝑣𝑚_𝑐𝑎𝑟𝑑

𝑠𝑖𝑛(𝜋𝑓𝑠𝑡)

𝜋𝑓𝑠𝑡
)

2

𝑑𝑡
+∞

−∞

= (ℰ𝑘_max _𝑐𝑎𝑟𝑑)
𝑇𝑠

𝜋
 

If both energies are equated then; 

ℰ𝑘_max _𝑐𝑎𝑟𝑑_𝑡𝑜𝑡

ℰ𝑘_max _𝑡𝑜𝑡
=

ℰ𝑘_max _𝑐𝑎𝑟𝑑

𝜋𝑃max 
= 1 

This reveals a static relation between the two pulse types whenever total energies are equal, 

which can be restated simply as; 

𝑃max _𝑐𝑎𝑟𝑑

𝑃max 
= 𝜋(. 843) ≅ 2.648  



317 

 

APPENDIX H: 

RELATION BETWEEN INSTANTANEOUS EFFICIENCY AND 

THERMODYNAMIC EFFICIENCY  
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In this appendix two approaches for efficiency calculations are compared to provide alternatives 

in algorithm development. Optimization procedures may favor an indirect approach to the 

maximization of thermodynamic efficiency. In such cases, an instantaneous efficiency metric 

may provide significant utility. This appendix does not address those optimization algorithms.   

Thermodynamic Efficiency possesses a very particular meaning. It is determined from the ratio 

of two random variable mean values. 

휂 ≡
〈𝑃𝑜𝑢𝑡〉

〈𝑃𝑖𝑛〉
 

Calculation of this efficiency precludes reduction of the power ratio prior to calculating the 

average. This fact can complicate the calculations in some circumstances. In contrast, consider 

the case where the ratio of powers is given by; 

〈휂𝑖𝑛𝑠𝑡〉 = 〈
𝑃𝑜𝑢𝑡_𝑖𝑛𝑠𝑡

𝑃𝑖𝑛_𝑖𝑛𝑠𝑡

〉 

휂 and 휂𝑖𝑛𝑠𝑡 do not possess the same meaning yet are correlated. It is often useful to reduce 

〈휂𝑖𝑛𝑠𝑡〉 rather than 휂 to obtain an optimization, the former implying the latter.  

The proper thermodynamic calculation begins with the ratio of two differing RV’s. The 

numerator is a non-central gamma or chi squared RV for the canonical case, which is obtained 

from; 

𝜌(𝒳) =
𝑑𝑉𝐿

𝑑𝒳
𝜌(𝑉𝐿) 
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𝒳 is the variable (�̃�𝐿 − 〈𝑉𝐿〉)
2
 where �̃�𝐿 is approximately Gaussian for 𝜎 ≪ 𝑉𝑠. The completed 

transformation is given by; 

𝜌(𝒳) =
1

2√𝒳

1

√2𝜋𝜎
𝑒

−
(√𝒳−〈𝑉𝐿〉)

2

2𝜎2  

This can also be obtained from the more general non-central Gamma multivariable sum [25, 32]; 

𝜌(𝒳) =
1

2
(

𝒳

∑ 〈𝑉𝐿𝑖
〉𝑁

𝑖

)

[
(𝑁−2)

4⁄ ]

𝑒
−
(𝒳−∑ 〈𝑉𝐿𝑖

〉𝑁
𝑖 )

2𝜎2   𝐼
[
(𝑁−2)

2⁄ ]

(

 
1

2𝜎2
√𝒳 ∑〈𝑉𝐿𝑖

〉

𝑁

𝑖
)

 ;     𝒳 ≥ 0 

, where N=1 in the reduced form, 𝐼
[
(𝑁−2)

2⁄ ]
 is a modified Bessel function of the first kind, and 𝜎2 

is the variance of the Gaussian RV. The more general result applies to an arbitrary sum of N 

Gaussian signals with corresponding non-zero means.  

The denominator of the thermodynamic efficiency is obtained from the sum of two RV’s. One is 

positive non central Gaussian and the other is identical to 𝜌(𝒳).  

Hence, the proper thermodynamic waveform efficiency is obtained from (where statistical and 

time averages are equated); 

휂 =
∫ 𝒳𝜌(𝒳)𝑑𝒳

∞

−∞

∫ 𝑃𝑖𝑛
∞

−∞
𝜌(𝑃𝑖𝑛)𝑑𝑃𝑖𝑛

 

We may work directly with this ratio or time averaged equivalents whenever the process is 

stationary in the wide sense. Sometimes the statistical ratio presents a formidable numerical 

challenge, particularly in cases of optimization where calculations must be obtained “ on the fly”.  
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On the other hand, the averaged instantaneous power ratio is (where statistical and time averages 

are equated); 

〈(휂𝑖𝑛𝑠𝑡_𝑊𝐹)〉 = ∫ 휂𝑖𝑛𝑠𝑡_𝑊𝐹

∞

−∞

[
𝑑𝑉𝐿

𝑑휂𝑖𝑛𝑠𝑡_𝑊𝐹
𝜌(𝑉𝐿)] 𝑑휂𝑖𝑛𝑠𝑡_𝑊𝐹 

〈휂𝑖𝑛𝑠𝑡_𝑊𝐹〉 = ∫ 휂𝑖𝑛𝑠𝑡_𝑊𝐹

∞

−∞

[
𝑉𝑠

(1 + 휂)2

1

√2𝜋𝜎2
𝑒

− 
(𝜂

𝑉𝑠
(1+𝜂)

−
𝑉𝑠
4

)
2

2𝜎2 ] 𝑑휂𝑖𝑛𝑠𝑡_𝑊𝐹 

Now 휂 and 휂𝑖𝑛𝑠𝑡_𝑊𝐹 are always obtained from the same fundamental quantities 𝑃𝑜𝑢𝑡 and 𝑃𝑖𝑛 with 

similar ratios and therefore are correlated. In fact they are exactly equivalent prior to averaging.  

The instantaneous waveform power ratio for a type one electronic information encoder or 

modulator is given by; 

휂𝑖𝑛𝑠𝑡_𝑊𝐹 = 𝑅𝑒 {
𝑉𝐿

2

(𝑉𝐿𝑉𝑠) − 𝑍𝑟(𝑉𝐿
2)

} 

, where 𝑍𝑟 is the ratio of power source impedance to load impedance. The meaning of this power 

ratio is an instantaneous measure of work rate at the system load vs. the instantaneous work rate 

referred to the modulator input. It is evident that the right hand side may reduce whenever the 

numerator and denominator terms are correlated. This reduction generally affords some 

numerical processing advantages. 

We can verify that the thermodynamic waveform efficiency is always greater than or equal to the 

instantaneous waveform efficiency for the type 1 modulator.  
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〈휂𝑖𝑛𝑠𝑡_𝑊𝐹〉 = 〈
𝑉𝐿

2

𝑉𝑠𝑉𝐿 − 𝑉𝐿
2
〉 =

1

𝑉𝑠
〈𝑉𝐿〉

− 1
 

Likewise; 

휂 =
〈𝑉𝐿

2〉

〈𝑉𝑠𝑉𝐿 − 𝑉𝐿
2〉

 

The numerator and denominator may be divided by the same constant. 

휂 =
〈

𝑉𝐿
2

〈𝑉𝐿〉2
〉

〈
𝑉𝑠𝑉𝐿

〈𝑉𝐿〉2
−

𝑉𝐿
2

〈𝑉𝐿〉2
〉

=

𝜎2 + 〈𝑉𝐿〉
2

〈𝑉𝐿〉2

𝑉𝑠
〈𝑉𝐿〉

− (
𝜎2 + 〈𝑉𝐿〉2

〈𝑉𝐿〉2
)

 

This result implies that; 

휂 ≥ 〈휂𝑖𝑛𝑠𝑡𝑊𝐹
〉 

always, because; 

𝜎2 + 〈𝑉𝐿〉
2

〈𝑉𝐿〉2
≥ 1 

Whenever the signal component 〈�̃�𝐿
2〉 > 0 then 𝜎2 > 0 and the thermodynamic efficiency is the 

greater of the two quantities.  

Optimizing 휂𝑖𝑛𝑠𝑡𝑊𝐹
 always optimizes 휂 for a given finite value of 𝜎 in the Gaussian case. That is, 

in both circumstances an optimum depends on minimizing 
𝑉𝑠

〈𝑉𝐿〉
. This optimization is not arbitrary 

however and must consider the uncertainty required for a prescribed information throughput 

which is determined by the uncertainty associated with the random signal. 
𝑉𝑠

〈𝑉𝐿〉
 is therefore 
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moderated by the quantity 𝜎2 . As 𝜎2, the information signal variance, increases, the quantity 

𝑉𝑠

〈𝑉𝐿〉
 must adjust such that the dynamic range of available power resources is not depleted or 

characteristic pdf for the information otherwise altered. In all cases of interest the maximum 

dynamic range of available modulation change is allocated to the signal. For symmetric signals 

this implies that 
𝑉𝑠

〈𝑉𝐿〉
= 2 for maximum dynamic range and that the power source impedance is 

zero. Whenever the source impedance is not zero then the available signal dynamic range 

reduces along with efficiency. 

An example illustrates the two efficiency calculations. A series type one modulator is depicted in 

the following block diagram; 

 

Figure H-1 Type 1 Encoder/Modulator 

If the source and load impedances are real and equated then the instantaneous efficiency is given 

by; 

휂𝑖𝑛𝑠𝑡_𝑊𝐹 = 휂̌ = {
𝑉𝐿

2

(𝑉𝐿𝑉𝑠) − (𝑉𝐿
2)

} 

+

-
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The apparatus consists of the variable impedance, or in this case resistance, 𝑅𝑒{𝑍∆}, and the load 

𝑍𝐿. We are concerned with the efficiency of this arrangement when the modulation is 

approximately Gaussian. 𝑍𝑠 impacts the efficiency because it reduces the available input power 

to the modulator at 𝑍∆. 𝑉𝑠 is a measurable quantity whenever the apparatus is disconnected. 

Likewise, 𝑅𝑒{𝑍∆} can be deduced from measurements in static conditions before and after the 

circuit is connected, provided 𝑍𝐿, 𝑍∆,  are known. The desired output voltage across the load is 

obtained by modulating 𝑍∆ with some function of the desired uncertainty 𝐻(𝑥). The output 𝑉𝐿 is 

offset Gaussian for the case of interest and is given by; 

𝜌(𝑉𝐿) =
1

√2𝜋𝜎
𝑒

−
(𝑉𝐿−〈𝑉𝑠/4〉)2

2𝜎2  

The following graphic illustrates the modulated information pdf at an offset where 𝑉𝑠 = 2 𝑣𝑙𝑡𝑠 

and 𝜎 = .15. 

 

Figure H-2 Modulated Information pdf 
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Using the method of instantaneous efficiency we obtain a continuous pdf for 휂𝑖𝑛𝑠𝑡_𝑊𝐹. 

𝜌( 휂̌) =
𝑉𝑠

(1 + 휂̌)2

1

√2𝜋𝜎2
𝑒

− 
(𝜂

𝑉𝑠
(1+�̌�)

−
𝑉𝑠
4

)
2

2𝜎2  

 

Figure H-3 pdf of Instantaneous Efficiency 

The utility of this statistical form is primarily due to the reduction of the ratio to a single 

continuous RV rather than the ratio of two which must be separately analyzed prior to reduction. 

The average of the instantaneous efficiency is then calculated from; 

〈(휂𝑖𝑛𝑠𝑡_𝑊𝐹)〉 = ∫ 휂̌

∞

−∞

[𝜌(휂̌)]𝑑휂̌ 

, or; 

〈휂̅̌〉 =
1

𝑉𝑠
〈𝑉𝐿〉

− 1
≈ .33 
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x 10
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The thermodynamic waveform efficiency is found from; 

휂𝑊𝐹 =
𝜎2 + 〈𝑉𝐿〉

2

𝑉𝑠〈𝑉𝐿〉 − (𝜎2 + 〈𝑉𝐿〉2)
= .375 

Thus we see that the thermodynamic waveform efficiency is greater than the averaged 

instantaneous waveform efficiency in this example.  

휂 may also be obtained from the statistical ratio; 

휂 =
∫ 𝒳𝜌(𝒳)𝑑𝒳

∞

−∞

∫ 𝑃𝑖𝑛
∞

−∞
𝜌(𝑃𝑖𝑛)𝑑𝑃𝑖𝑛

 

𝜌(𝒳) is illustrated in the following graphic; 

 

Figure H-4 Non Central Gamma pdf 
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This is a non-central gamma distribution with non-centrality parameter of .25=〈𝑉𝐿〉
2 and 

𝜎2 = .0225. This pdf was verified by circuit simulation using a histogram to record the relative 

occurrence of output power values; 

 

Figure H-5 Simulation of type 1 Modulator Output Power Histogram 

The marker, m7 is near the theoretical mean of .2725. 

The denominator pdf for Pin is the difference of the RV for Pout and the RV formed by the 

multiplication of 𝑉𝑠𝑉𝐿 where 𝑉𝐿 is non-central Gaussian. The marker is near the theoretical mean 

of .2725. The relative histogram for this RV is given in the following graphic; 
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Figure H-6 Histogram for Pont 𝑉𝑆𝑉𝐿 

The marker m6 is near the theoretical mean of .7275. Calculating the means of these two 

distributions and taking their ratios yields the thermodynamic waveform efficiency. Proper 

thermodynamic efficiency must remove the effect of the offset term of the numerator, leaving a 

numerator dependent on the information bearing portion of the waveform only. Appendix I 

further explores the relationship between 휂 and 휂̌. 

Certain procedures of optimization involving time averages may favor working with 

thermodynamic efficiency directly. However, if an optimization is based on statistical analysis 

then instantaneous efficiency may be a preferable variable which in turn implies an optimized 

thermodynamic efficiency under certain conditions.   
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APPENDIX I:  

WAVEFORM, THERMODYNAMIC, AND INSTANTANEOUS 

EFFICIENCY RELATIONSHIPS   
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This appendix provides several comparisons of waveform and signal efficiencies. The 

comparisons provide a means of conversion between the various forms which can provide some 

analysis utility. 

First, the proper thermodynamic waveform and thermodynamic signal efficiencies are compared 

for a type one modulator where 𝑍𝑟 = 1 .  

휂𝑊𝐹 =
𝜎2 + 〈𝑉𝐿〉

2

𝑉𝑠〈𝑉𝐿〉 − (𝜎2 + 〈𝑉𝐿〉2)
 

휂𝑠𝑖𝑔 = 휂̃ =
𝜎2

𝑉𝑠〈𝑉𝐿〉 − (𝜎2 + 〈𝑉𝐿〉2)
 

휂𝑠𝑖𝑔 considers only the signal power as a valid output. This is as it should be since DC offsets 

and other anomalies do not encode information and therefore do not contribute positively to the 

apparatus deliverable. However,  휂𝑊𝐹 is related to 휂𝑠𝑖𝑔 and therefore is useful even though it 

retains the offset. If the maximum available modulation dynamic range is used then 

maximization of 휂𝑊𝐹 implies maximization of 휂𝑠𝑖𝑔. 

휂𝑊𝐹, 휂𝑠𝑖𝑔 may also be expressed in terms of the PAPR metric.  

휂𝑊𝐹 =
𝜎2 +

𝑉𝑠
2

16

𝑉𝑠
2

4 − (𝜎2 +
𝑉𝑠

2

16)

=
𝜎2 +

𝑃𝑚_𝑤𝑓

4

𝑃𝑚_𝑤𝑓 − (𝜎2 +
𝑃𝑚_𝑤𝑓

4 )

=
𝑃𝐴𝑃𝑅𝑤𝑓/𝑠𝑖𝑔 + 4

3𝑃𝐴𝑃𝑅𝑤𝑓/𝑠𝑖𝑔 − 1
 

휂𝑊𝐹 =
𝜎2 +

𝑉𝑠
2

16

𝑉𝑠
2

4 − (𝜎2 +
𝑉𝑠

2

16)

=
〈𝑃𝑜𝑢𝑡_𝑤𝑓〉

𝑃𝑚_𝑤𝑓 − 〈𝑃𝑜𝑢𝑡_𝑤𝑓〉
=

1

𝑃𝐴𝑃𝑅𝑤𝑓 − 1
;   〈𝑃𝑜𝑢𝑡_𝑤𝑓〉 ≤ 𝑃𝑚𝑤𝑓

/2 
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In the above equations 𝑃𝐴𝑃𝑅𝑤𝑓/𝑠𝑖𝑔 refers to the peak waveform to average signal power ratio 

and 𝑃𝐴𝑃𝑅𝑤𝑓 refers to the peak waveform to average waveform power ratio. These equations 

apply for 𝑃𝐴𝑃𝑅𝑤𝑓 > 4 when the peak to peak signal dynamic range spans the available 

modulation range between 0 volts and 𝑉𝑠/2 volts at the load, and 𝑍𝑟 = 1. The dynamic range is 

determined by 𝑍𝑟, the ratio of source to load impedance. 

Signal based thermodynamic efficiency can be written as; 

휂̃ =
𝜎2

𝑉𝑠
2

4 − (𝜎2 +
𝑉𝑠

2

16)

=
1

3𝑃𝐴𝑃𝑅𝑠𝑖𝑔 − 1
= 휂𝑤𝑓 −

 𝑃𝐴𝑃𝑅𝑤𝑓

6 𝑃𝐴𝑃𝑅𝑤𝑓 − 4
 

휂̃ ≈ 휂𝑤𝑓 −
1

2
;  ≫ 1    𝑓𝑜𝑟 𝑃𝐴𝑃𝑅𝑤𝑓 = 1 

Therefore, if 휂𝑊𝐹, and 𝑃𝐴𝑃𝑅𝑤𝑓 are known then  휂̃ may be calculated. Also it is apparent that 

increasing 휂𝑊𝐹, increases 휂̃. Under these circumstances 휂̃ ≤ 1 2⁄ . 

Now suppose that 𝑍𝑟 ≈ 0, corresponding to the most efficient canonical case for a type 1 

modulator. In this case, the maximum waveform voltage equals the open circuit source voltage, 

𝑉𝑠. The following graphic illustrates the associated signal and waveform statistics. Notice that the 

dynamic portion of the waveform spans the maximum possible modulation range, given 𝑉𝑠. 
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Figure I-1 pdf for Offset Canonical Case 

The relevant relationships follow; 

휂𝑊𝐹 =
𝜎2 +

𝑉𝑠
2

4
𝑉𝑠

2

2

=
2

𝑃𝐴𝑃𝑅𝑤𝑓
 

휂̃ =
𝜎2

𝑉𝑠
2

2

=
1

2 𝑃𝐴𝑃𝑅𝑠𝑖𝑔
 

휂𝑊𝐹

휂̃
= 1 +  𝑃𝐴𝑃𝑅𝑠𝑖𝑔 = 1 +

 𝑃𝐴𝑃𝑅𝑤𝑓/𝑠𝑖𝑔

4
 

휂̃ above is considered as a canonical case.  

General cases where 𝑍𝑟 ≠ 0 can be solved using the following equations; 
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𝑍𝑟 =
𝑍𝑠

𝑍𝐿
 

휂𝑊𝐹 =
〈(�̃�𝐿 + 〈𝑉𝐿〉)

2
〉

〈𝑉𝑠(�̃�𝐿 + 〈𝑉𝐿〉) − 𝑅𝑒{𝑍𝑟}(�̃�𝐿 + 〈𝑉𝐿〉)
2
〉
=

1

〈𝑉𝑠(�̃�𝐿 + 〈𝑉𝐿〉)〉

〈(�̃�𝐿 + 〈𝑉𝐿〉)
2
〉
− 𝑅𝑒{𝑍𝑟}

 

〈𝑉𝐿〉 =
𝑍𝐿𝑉𝑠

〈𝑍𝐿 + 𝑍𝑠 + 𝑍∆〉
=

𝑍𝐿𝑉𝑠
2(𝑍𝐿 + 𝑍𝑠)

= (2 + 2𝑍𝑟)
−1𝑉𝑠 

𝑉𝐿_𝑚𝑎𝑥 =
𝑍𝐿𝑉𝑠

𝑍𝐿 + 𝑍𝑠
= 2〈𝑉𝐿〉 =

𝑉𝑠
1 + 𝑍𝑟

 

∴   휂𝑊𝐹 =
1

𝑉𝑠〈𝑉𝐿〉

(1 + 𝑅𝑒{𝑍𝑟}) 〈(�̃�𝐿 + 〈𝑉𝐿〉)
2
〉
− 𝑅𝑒{𝑍𝑟}

 

When 𝑍𝑟 = 1 then, 

휂𝑊𝐹 =
1

𝑃𝐴𝑃𝑅𝑊𝐹

4 − 1
 

When 𝑍𝑟 = 0; 

휂𝑊𝐹 =
2

 𝑃𝐴𝑃𝑅𝑊𝐹
 

𝑍∆ is a variable impedance which implements the modulation. Its function is illustrated in 

Appendix H.  

Thermodynamic signal efficiency is similarly determined; 
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휂𝑠𝑖𝑔 = 휂̃ =
〈(�̃�𝐿)

2
〉

〈𝑉𝑠(�̃�𝐿 + 〈𝑉𝐿〉) − 𝑅𝑒{𝑍𝑟}(�̃�𝐿 + 〈𝑉𝐿〉)
2
〉
=

1

〈
𝑉𝑠〈𝑉𝐿〉
𝜎2 − 𝑅𝑒{𝑍𝑟} (1 +

〈𝑉𝐿〉2

𝜎2 )〉
 

휂̃ =
1

𝑉𝑠
〈𝑉𝐿〉

𝑃𝐴𝑃𝑅𝑠𝑖𝑔 − 𝑅𝑒{𝑍𝑟}(1 + 𝑃𝐴𝑃𝑅𝑠𝑖𝑔)
 

We can confirm the result by testing the cases 𝑍𝑟 = 0,1. 

휂̃ =
1

〈
𝑉𝑠〈𝑉𝐿〉
𝜎2 〉

=
1

2 𝑃𝐴𝑃𝑅𝑠𝑖𝑔
;    𝑍𝑟 = 0 

휂̃ =
1

〈
𝑉𝑠〈𝑉𝐿〉
𝜎2 − (1 +

〈𝑉𝐿〉2

𝜎2 )〉
=

1

3 𝑃𝐴𝑃𝑅𝑠𝑖𝑔 − 1
; 𝑍𝑟 = 1  

Instantaneous Efficiency 

In addition to proper thermodynamic efficiencies, it is possible to compare instantaneous 

waveform and thermodynamic signal efficiencies discussed in Appendix H. The most general 

form of the instantaneous power ratio 휂𝑖𝑛𝑠𝑡_𝑊𝐹/𝜎2 = 〈
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
〉 is; 

휂𝑖𝑛𝑠𝑡_𝑊𝐹/𝜎2 = 휂̌ = 〈
(�̃�𝐿 + 〈𝑉𝐿〉)

2

𝑉𝑠(�̃�𝐿 + 〈𝑉𝐿〉) − 𝑅𝑒{𝑍𝑟}(�̃�𝐿 + 〈𝑉𝐿〉)
2
〉 =

1

𝑉𝑠
〈𝑉𝐿〉

− 𝑅𝑒{𝑍𝑟}
= lim

𝜎→0
휂𝑊𝐹 

This is the instantaneous waveform efficiency given a required signal variance. We have reduced 

휂𝑖𝑛𝑠𝑡_𝑊𝐹/𝜎2 taking advantage of the correlations between numerator and denominator terms 

where possible.  
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Although the calculation, 휂𝑖𝑛𝑠𝑡_𝑊𝐹/𝜎2, is not directly affected by average signal power, we 

stipulate that in any optimization procedure, the maximum dynamic range is preserved for and 

consumed by the signal. This requires a specific average value 〈𝑉𝐿〉 and maximizes the 

uncertainty for a particular signal distribution. 휂𝑖𝑛𝑠𝑡_𝑊𝐹/𝜎2 is dependent on 〈𝑉𝐿〉. The maximum 

dynamic range  caveat therefore limits a critical ratio as follows; 

〈𝑉𝐿〉 =
𝑉𝑠

2(1 + 𝑍𝑟)
 

It is desirable to minimize 𝑍𝑟 to maximize efficiency. For the case of a single potential 𝑉𝑠, i.e. the 

case of a type one modulator, the maximum symmetric signal swing about the average output 

potential is always �̃�𝑚 = 𝑉𝐿_𝑚𝑎𝑥/2 = 〈𝑉𝐿〉.  Increasing 𝑍𝑟 above zero diminishes the signal 

dynamic range converting this loss to heat in the power source. The quantity  𝑉𝑠/[2(1 + 𝑍𝑟)] is 

always considered as a necessary modulation overhead for a type 1 modulator.  

Increasing 〈𝑉𝐿〉 increases the peak signal swing �̃�𝑚 and therefore always increases the signal 

variance for a specified PAPR. Hence, increasing 휂𝑖𝑛𝑠𝑡_𝑊𝐹/𝜎2 also increases the thermodynamic 

efficiency. A more explicit illustration of this dependency is given in the following equation 

obtained from the prior  휂̃, 휂̌ = 휂𝑖𝑛𝑠𝑡_𝑊𝐹/𝜎2 derivations and their relationship to 〈𝑉𝐿〉; 

휂̃ =
1

𝑉𝑠
〈𝑉𝐿〉

𝑃𝐴𝑃𝑅𝑠𝑖𝑔 + (
1
휂̌

−
𝑉𝑠

〈𝑉𝐿〉
) (𝑃𝐴𝑃𝑅𝑠𝑖𝑔 + 1)
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〈𝑉𝐿〉 is defined in terms of impedances and 𝑉𝑠 above. From the definition 0 ≤ 휂̌/𝜎2 ≤ 1/2. When 

휂̌/𝜎2=1/2, 휂̃ is maximized. At the other extreme, when 휂̌ tends to zero, 
𝑉𝑠

〈𝑉𝐿〉
 tends to infinity and 휂̃ 

also tends to zero. 

Although the prior discussions focus on symmetric signal distributions (for instance Gaussian-

like) , arbitrary distributions may be accommodated by suitable adjustment of the optimal 

operating mean 〈𝑉𝐿〉. In all circumstances however, the available signal dynamic range must 

contemplate maximum use of the span {𝑉𝑠, 0}.  

Source Potential Offset Considerations  

The prior equations are based on circuits which return currents to a zero voltage ground 

potential. If this return potential is not zero then the formulas should be adjusted. In all prior 

equations, we may substitute 𝑉𝑠 = 𝑉𝑠1 − 𝑉𝑠2 where 𝑉𝑠1, 𝑉𝑠2 are the upper and return supply 

potentials, respectively. In such cases, the optimal 〈𝑉𝐿〉 is the average of those supplies when the 

pdf of the signal is symmetric within the span {𝑉𝑠1, 𝑉𝑠2}. Otherwise, the optimal operational 〈𝑉𝐿〉 

is dependent on the mean of the signal pdf over the span {𝑉𝑠1, 𝑉𝑠2}. The offset does not affect the 

maximum waveform power, 𝑃𝑚_𝑤𝑓. However, the maximum signal power is dependent on the 

span {𝑉𝑠1, 𝑉𝑠2} and the average 〈𝑉𝐿〉. The signal power is dependent only on 𝜎 and any additional 

requirement to preserve the integrity of the signal pdf.  
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APPENDIX J:  

COMPARISON OF GAUSSIAN AND CONTINUOUS UNIFORM 

DENSITIES   
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This appendix provides a comparison of the differential entropies for the Gaussian and Uniform 

pdf’s. The calculations reinforce the results from Appendix A where it is shown that the 

Gaussian pdf maximizes Shannon’s entropy for a given variance 𝜎𝐺
2. Also this appendix confirms 

appendix D calculations for the case D=1. There is a particular variance ratio 𝜎𝑢
2 𝜎𝐺

2⁄  for which, 

when exceeded, the uniform density possesses an entropy greater than that of the Gaussian. This 

ratio is calculated. Finally the PAPR is compared for both cases. 

First we begin with a calculation of the Gaussian density in a single dimension  D=1. 

𝐻𝐺 = −∫
1

√2𝜋𝜎𝐺

      𝑒
− 

𝑥2

2𝜎𝐺
2

∞

−∞

 𝑙𝑛 [
1

√2𝜋𝜎𝐺

     𝑒
− 

𝑥2

2𝜎𝐺
2
 ]    𝑑𝑥 

𝐻𝐺 = −
1

√2𝜋𝜎
[𝑙𝑛(𝑒)∫

−𝑥2

2𝜎𝐺
2     𝑒

− 
𝑥2

2𝜎𝐺
2

∞

−∞

   𝑑𝑥 + ∫ − 𝑙𝑛(√2𝜋𝜎𝐺)    𝑒
− 

𝑥2

2𝜎𝐺
2
 

∞

−∞

   𝑑𝑥] 

We now apply the following two definite integral formulas obtained from a CRC table of 

integrals [71].  

∫ 𝑥2𝑛
∞

−∞

  𝑒−𝑎𝑥2
  𝑑𝑥 =

1 ∙ 3 ∙ 5⋯ (2𝑛 − 1)

2𝑛+1 𝑎𝑛
 √

𝜋

𝑎
 

∫ 𝑒−𝑎2𝑥2
  𝑑𝑥 =

1

2𝑎
 Γ (

1

2
) = √

𝜋

2𝑎

∞

−∞

 ,   𝑎 > 0 

The final result is 

𝐻𝐺 =
1

2
𝑙𝑛(𝑒) + 𝑙𝑛(√2𝜋  𝜎𝐺) = 𝑙𝑛(√2𝜋𝑒  𝜎𝐺) 

Now the entropy 𝐻𝑢 is obtained. 
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𝐻𝑢 = −∫
1

𝑢𝑙 − 𝑙𝑙
  

𝑢𝑙

𝑙𝑙

𝑙𝑛 [
1

𝑢 − 𝑙𝑙
]    𝑑𝑥 

Let the uniform density possess symmetry with respect to 𝑥 = 0, the same axis of symmetry for 

a zero offset (zero mean) Gaussian density.  

∴ 𝐻𝑢 = −∫   
1

2𝑢𝑙
 𝑙𝑛[2𝑢𝑙]   𝑑𝑥 = 𝑙𝑛[2𝑢𝑙] 

𝑢𝑙

−𝑢𝑙

 

The variance is obtained from; 

𝜎𝑢
2 = ∫ 𝑥2   

1

2𝑢𝑙
 𝑑𝑥 =

1

3

𝑢𝑙

−𝑢𝑙

 𝑥3
1

2𝑢𝑙
|
−𝑢𝑙

+𝑢𝑙

= 1
3⁄  𝑢𝑙2 

Now we may begin the direct comparison between 𝐻𝐺  and 𝐻𝑢. 

Let 𝜎𝐺
2 = 𝜎𝑢

2. Then; 

𝑢𝑙 = √3𝜎𝐺    𝑓𝑜𝑟      𝜎𝐺
2 = 𝜎𝑢

2  

Therefore; 

𝐻𝐺 = 𝑙𝑛(√2𝜋𝑒  𝜎𝐺) ≅ 𝑙𝑛(4.1327𝜎𝐺) 

𝐻𝑢 = 𝑙𝑛(2√3  𝜎𝐺) ≃ 𝑙𝑛(3.4641) 

 𝐻𝐺  is always greater than 𝐻𝑢 for a given equivalent variance for the two respective densities.  

Suppose we examine the circumstance where   𝐻𝑢 ≥ 𝐻𝐺   and  𝜎𝑢
2 ≠ 𝜎𝐺

2. 

Then, 

𝑙𝑛[2𝑢𝑙] ≥ 𝑙𝑛[√2𝜋𝑒  𝜎𝐺] 
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2𝑢𝑙 ≥ √2𝜋𝑒  𝜎𝐺 

𝑢𝑙 ≥
1

2
√2𝜋𝑒  𝜎𝐺 

𝑢𝑙2

3
≥

𝜋𝑒𝜎𝐺
2

6
 

𝜎𝑢
2

𝜎𝐺
2 ≥ 1.423289 

Therefore, the entropy of a uniformly distributed RV must possess a noticeable increase in 

variance over that of the Gaussian RV to encode an equivalent amount of information. 

It is also instructive to obtain some estimate of the required PAPR for conveying the information 

in each case. In a strict sense, the Gaussian RV requires an infinite PAPR. However it is also 

known that a 𝑃𝐴𝑃𝑅 ≥ 16 is sufficient for all practical communications applications. In the case 

of a continuously uniformly distributed RV we have 

𝑃𝐴𝑃𝑅𝑢 =
𝑢𝑙2

1
3⁄ 𝑢𝑙2

= 3 

Suppose we calculate 𝑢𝑙 for the case where 𝐻𝑢 = 𝐻𝐺. We let 𝜎𝐺
2 = 1 for the comparison 

𝑢𝑙 ≅ 2.066 

To obtain the entropy 𝐻𝐺  the upper limit, 𝑢𝑙𝐺  , for the Gaussian RV must be at least 4. This 

means that roughly 4 times the peak power is required to encode information in the Gaussian RV 

compared to the uniform RV,  whenever 𝐻𝑢 = 𝐻𝐺. Likewise we may calculate 

𝑃𝐴𝑃𝑅𝐺 𝑃𝐴𝑃𝑅𝑢⁄ ≃ 5. 3̅ . 
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The following graphic assists with the prior discussion.   

 

Figure J-1 Comparison of Gaussian and Continuous Uniformly Distributed pdf”s 
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APPENDIX K: 

 ENTROPY RATE AND WORK RATE   
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The reader is referred to prior appendices, A, D, as well as chapter 4 to supplement the following 

analysis. Maximizing the transfer of physical forms of information Entropy per unit time requires 

maximization of work. This may be demonstrated for a joint configuration and momentum phase 

space. The joint entropy is; 

𝐻 = −
1

𝒽𝐷
∫ …∫ …𝜌(𝑞, 𝑝)𝛺𝑙𝑛[𝜌(𝑞, 𝑝)𝛺]

𝑅𝑠

−𝑅𝑠

𝑝

−𝑝

𝑑𝑞1 𝑑𝑝1 …𝑑𝑞𝐷 𝑑𝑝𝐷  

Maximum entropy occurs when configuration and momentum are decoupled based on the joint 

pdf; 

𝜌(𝑞, 𝑝) =

(

 
1

√(2𝜋)𝐷[Λ𝑞]

  𝑒−
1
2
(𝑞𝛼−�̅�𝛼)𝑡 Λ𝑞(𝑞𝛽−�̅�𝛽)

)

 

(

 
1

√(2𝜋)𝐷[Λ𝑝]

  𝑒−
1
2
(𝑝𝛼−�̅�𝛼)𝑡 Λ𝑝

−1(𝑝𝛽−�̅�𝛽)

)

  

( K1. 1 ) 

It is apparent that the joint entropy is that of a scaled Gaussian multivariate and;  

𝐻 = 𝐻𝑞 + 𝐻𝑝 

( K1. 2 ) 

𝐻𝑞 , 𝐻𝑝 are the uncertainties due to independent configuration position and momentum 

respectively. If we wish to maximize the information transfer per unit time we then need to 

ensure the maximum rate of change in the information bearing coordinates {𝑞, 𝑝}. When the 

particle possesses the greatest average kinetic energy it will traverse greater distances per unit 

time. Hence we need only consider the momentum entropy to obtain the maximization we seek.  
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𝐻𝑝 = 𝑙𝑛(√2𝜋𝑒)
2𝐷

+ 𝑙𝑛 (|𝛬𝑝|
𝐷
) 

( K1. 3 ) 

[𝛬𝑝] = [

𝜎𝑝1
2 0… 0

0 𝜎𝑝2
2 … 0

0 0… 𝜎𝑝𝐷
2

] 

( K1. 4 ) 

Therefore maximizing K1.3 we may write; 

𝑚𝑎𝑥{𝑒𝐻𝑝} = 𝑚𝑎𝑥 {(√2𝜋𝑒)
2𝐷

+ (|𝛬𝑝|
𝐷
)} 

( K1. 5 ) 

Recognizing that (√2𝜋𝑒)
2𝐷

is constant and that D is represented exponentially in the 

second term of K1.5, permits a simplification; 

𝑚𝑎𝑥{𝑒𝐻𝑝} = 𝑚𝑎𝑥 {(|𝛬𝑝|
𝐷
)} 

( K1. 6 ) 

Suppose that we represent the covariance in terms of the time variant vector 𝑝 . K1.6 is further 

simplified; 

𝑚𝑎𝑥{|〈𝑝 ∙ 𝑝 〉|} = 𝑚𝑎𝑥 {(|𝛬𝑝|
𝐷
)} 

( K1. 7 ) 
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We now take the maximization with respect to the equivalent energy and work form where mass 

is a constant; 

𝑚𝑎𝑥{〈𝑞 ̇ ∙ 𝑝 ̇〉} = 𝑚𝑎𝑥{〈ℰ̇𝑘〉} 

( K1. 8 ) 

K1.8 and K1.7 are equivalent maximizations when time averages are considered. K1.8 

essentially converts the kinetic energy inherent in the covariance definition of 𝛬𝑝 to a power. It 

defines a rate of work which maximizes the rate of change of the information variables  

{𝑞 , 𝑝 }. This is confirmed by comparison with a form of the capacity equation given in chapter 5; 

𝐶𝛼 = 𝐶𝑞_𝛼 + 𝐶𝑝_𝛼 

𝐶𝛼 =
𝑃𝑚𝛼

2〈ℰ𝑘𝛼
〉𝑃𝐴𝐸𝑅𝛼

(𝑙𝑛 [
([〈𝑞

𝑥𝛼

2 〉 + �̃�𝑞𝑛𝛼

2 ])

�̃�𝑞𝑛𝛼

2
] + 𝑙𝑛 [

([〈(𝑝𝑥𝛼
)
2
〉 + �̃�𝑝𝑛𝛼

2 ])

�̃�𝑝𝑛𝛼

2
]) 

( K1. 9 ) 

𝐶 ≤ ∑ 𝑓𝑠_𝛼 (𝑙𝑛 [
(𝑚2〈�̇⃗�𝛼 ∙ �̇⃗�𝛼〉𝑒𝑓𝑓_𝛼)

�̃�𝑝𝑛_𝛼
2

+ 1])

𝐷

𝛼=1

 

( K1. 10 ) 

The variances of K1.9 are per unit time and 〈�̇⃗�𝛼 ∙ �̇⃗�𝛼〉𝑒𝑓𝑓_𝛼 in K1.10, define an effective work rate 

in the 𝛼𝑡ℎ dimension for the encoded particle. Increasing 〈�̇⃗�𝛼 ∙ �̇⃗�𝛼〉𝑒𝑓𝑓_𝛼 increases capacity. 

Although this argument is specific to the Gaussian RV case, it extends to any RV due to the 

arguments of chapter 5 which establish pseudo capacity as a function of PAPR and entropy ratios 
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compared to the Gaussian case. If we wish to increase the entropy of any RV we must increase 

𝑃𝑚𝑎𝑥 for a given 〈�̇⃗�𝛼 ∙ �̇⃗�𝛼〉𝑒𝑓𝑓_𝛼. Conversely, if a fixed PAPR is specified, increasing 〈�̇⃗�𝛼 ∙

�̇⃗�𝛼〉𝑒𝑓𝑓_𝛼 increases 𝑃𝑚𝑎𝑥 by definition and phase space volume increases with a corresponding 

increase in uncertainty.  
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APPENDIX L:  

OPTIMIZED EFFICIENCY FOR AN 802.11a 16 QAM CASE  
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This appendix highlights aspects of the calculations and measurements involved with the 

optimization of a zero offset implementation of an 802.11a signal possessing a PAPR~12𝑑𝐵. 

The testing apparatus schematic is illustrated in the following figure . 

 

Figure L-1 Testing Apparatus Schematic 

An analog multiplexer selects up to  = 8 domains using a 3 bit domain control. Half of the 

domains are positive and half are negative for zero offset cases. A 9 bit modulation control maps 

the information into a resistance via the 𝑍∆control. A variable voltage divider is formed using the 



348 

 

source resistance, effective 𝑍∆ value and the load resistance. The 9 bit control 𝑍∆ interpolates 

desired modulation trajectories over a domain determined by the 𝑖𝑡ℎ switched power source. The 

controller is an ARM based processor from Texas Instruments and the other analog integrated 

circuits can be obtained from Analog Devices. A C++ program and MATLAB were used to 

calculate the important quantities and evaluate measurements.  

A custom C++ GUI indicates many of the metrics discussed in the main text and a table records 

efficiencies as well as weighting factors. Results of calculations and measurements for 4,6,8 

domain optimizations follow. 

 

Figure L-2 Potentiometer GUI 1  
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Table L-1 Thermodynamic Efficiency and λ per Domain (4 Domains) 

Domain Optimized 

Efficiency 

λ 

(optimized) 

  Measured 

Efficiency 

λ 

(effective) 

Domain 1 56.13% 0.161   53.4% 0.130 

Domain 2 55.23% 0.340   50.78% 0.373 

Domain 3 55.41% 0.334   53.6% 0.352 

Domain 4 55.35% 0.164   53.63% 0.143 

 55.46% (total)    52.53% (total)  

 

 

Figure L-3 Potentiometer GUI 2 



350 

 

Table L-2 Thermodynamic Efficiency and λ per Domain (6 Domains) 

Domain  Optimized 

Efficiency 

λ 

(optimized) 

  Measured 

Efficiency 

λ 

(effective) 

Domain 1 62.53% 0.104   59.9% 0.077 

Domain 2 74.88% 0.222   73.2% 0.210 

Domain 3  61.50% 0.174   59.0% 0.207 

Domain 4  61.72% 0.177    60.1% 0.196 

Domain 5  75.70% 0.211    73.5% 0.212 

Domain 6  61.30% 0.109    59.4% 0.096 

 67.6% (total)    65.42% (total)  

 

 

Figure L-4 Potentiometer GUI 3  
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Table L - 3 Thermodynamic Efficiency and λ per Domain (8 Domains) 

Domain Optimized 

Efficiency 

λ 

(optimized) 

  MeasuredEfficiency λ 

(effective) 

Domain 1 66.93% 0.072   64.5% 0.047 

Domain 2 79.37% 0.169   77.5% 0.157 

Domain 3    80.10% 0.152     79.1% 0.153 

Domain 4  62.97% 0.108    61.5% 0.133 

Domain 5   63.73% 0.104     61.38% 0.116 

Domain 6   80.13% 0.151     78.1% 0.167 

Domain 7   79.46% 0.170     77.2% 0.165 

Domain 8   66.25% 0.069     64.5% 0.058 

 74.39% 
(total) 

   72.4% (total)  
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