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ABSTRACT 

Medical Image Analysis has emerged as an important field in the computer vision 

community. In this thesis, two important issues in medical imaging are addressed and a solution 

for each is derived and synergistically combined as one coherent system. Firstly, a novel 

approach is proposed for High Resolution Volume (HRV) construction by combining different 

frequency components at multiple levels, which are separated by using a multi-resolution 

pyramid structure. Current clinical imaging protocols make use of multiple orthogonal low 

resolution scans to measure the size of the tumor. The highly anisotropic data result in difficulty 

and even errors in tumor assessment. In previous approaches, simple interpolation has been used 

to construct HRVs from multiple low resolution volumes (LRVs), which fail when large inter-

plane spacing is present. In our approach, Laplacian pyramids containing band-pass contents are 

first computed from registered LRVs. The Laplacian images are expanded in their low resolution 

axes separately and then fused at each level. A Gaussian pyramid is recovered from the fused 

Laplacian pyramid, where a volume at the bottom level of the Gaussian pyramid is the 

constructed HRV. The effectiveness of the proposed approach is validated by using simulated 

images. The method has also been applied to real clinical data and promising experimental 

results are demonstrated. 

Secondly, a new knowledge-based framework to automatically quantify the volume of 

enhancing tissue in brain MR images is proposed. Our approach provides an objective and 

consistent way to evaluate disease progression and assess the treatment plan. In our approach, 

enhanced regions are first located by comparing the difference between the aligned set of pre- 
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and post-contrast T1 MR images. Since some normal tissues may also become enhanced by the 

administration of Gd-DTPA, using the intensity difference alone may not be able to distinguish 

normal tissue from the tumor. Thus, we propose a new knowledge-based method employing 

knowledge of anatomical structures from a probabilistic brain atlas and the prior distribution of 

brain tumor to identify the real enhancing tissue. Our approach has two main advantages. i) The 

results are invariant to the image contrast change due to the usage of the probabilistic 

knowledge-based framework. ii) Using the segmented regions instead of independent pixels 

facilitates an approach that is much less sensitive to small registration errors and image noise. 

The obtained results are compared to the ground truth for validation and it is shown that the 

proposed method can achieve accurate and consistent measurements. 
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CHAPTER ONE: INTRODUCTION 

Medical Image Analysis 

Medical Image Analysis has become a large community within the computer vision 

world. Extracting knowledge from medical images brings forth difficulty and interesting new 

problems such as dealing with noise, artifacts, and partial volume effects in images [1]. 

Analyzing these images manually can be difficult and time consuming, especially when 

attempting to quantify structures within the image. In particular, neuroimaging plays an 

important role in the evaluation of patients with brain neoplasms. Often, MRI is the modality of 

choice in this setting, and its usage is most important in establishing the initial diagnosis in these 

patients. Additionally, MRI is invaluable to the assessment of therapeutic response and post-

treatment follow up. Standard MR examinations typically include pre- and post-contrast T1-

weighted sequences as well as other imaging sequences such as proton-density, FLAIR, and T2-

weighted images. An example of a T1 post contrast MR image is shown in Figure 1. 

Central nervous system (CNS) neoplasms can exhibit a varied appearance. Most of these 

“enhance” following the administration of MR contrast agent, and only enhancing neoplasms 

will be included in the scope of this thesis. In such cases, a reduction in the volume of enhancing 

tissue concomitant with therapy is often regarded as a positive response, and vice versa.  

Unfortunately, direct computation of enhancing volume is currently time consuming, 

labor intensive, and may be imprecise. It requires the manual tracing and segmentation of areas 

of enhancement typically extending over multiple images. Because of the direct computation of 

enhancing tissue volume can be impractical for usage in clinical practice, substitute methods are 
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utilized. One such substitute is the method of performing bi-directional measurements wherein 

long and short-axis enhancing margins are recorded, which is the most commonly used method 

by radiologists in clinical routines. However, the practice of providing bi-directional 

measurements for tumor follow-up has significant limitations. First, tumors may possess 

characteristics that decrease the usefulness of such measurements. For example, some tumors 

may contain large proportions of cystic or necrotic material with only a relatively small 

peripheral component of viable enhancing tumor. Bi-directional measurements which include the 

necrotic or cystic portion may not accurately assess the volume of tumor present.  

Furthermore, in order to lessen the mass effect of these neoplasms, necrotic or cystic 

components may be evacuated surgically. In this situation, the viable portion of the tumor 

remains unaltered, yet bi-directional measurements change giving a false picture of 

improvement. Secondly, tumors may be irregular in shape creating ambiguity as to where 

measurements should be taken and selecting sites for measurement can be subjective. 

Significantly different measurements may be given for the same tumor by different radiologists. 

Thirdly, tumors may be multi-focal and the measurement of individual foci can become arbitrary 

and difficult to report. These factors may decrease the correlation between bi-directional 

measurements and tumor volume. In addition, performing bi-directional measurements can be 

tedious, and the necessity of reviewing previous scans in order to understand how the neoplasm 

was measured in the past is time-consuming for physicians.  

Although faster MR scanners with high resolution in all dimensions are being equipped 

in some hospitals, the images captured in the past cannot be reproduced using the new machines. 

The low resolution significantly limits the precision of tumor measurement, where large variance 
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between scans from different orientations is known to occur. It may even consequently affect the 

evaluation of the tumor treatment plan. 

Problem Statement 

Magnetic Resonance Imaging (MRI), which has become the main imaging modality used 

for brain tumor assessment, provides an excellent view of the internal structures of the brain in a 

non-invasive manner. The development of ultra fast acquisition techniques has made the 

application of MRI in clinical use even more convenient. However, increased image resolution 

shares a direct trade off with (expensive) image acquisition time. While in-plane resolution of 

these scans is normally high, distance between slices is often large, rendering low inter-slice 

resolution. Even when time is not an issue, most scanners are by design incapable of sampling 

with high resolution in the inter-slice direction. In practice, the inter-slice spacing is commonly 4 

to even 16 times of the in-plane spacing. 

 

Figure 1: T1 post-contrast MR image with large enhancing tissue present 

Our work is motivated by the observation that current clinical imaging protocols make 

use of multiple low resolution volumes (LRVs) to measure the size of brain neoplasms as shown 
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in Figure 2. This limits the precision of tumor measurement, where significant variance between 

scans from different orientations is known to occur. Furthermore, a large inter-slice distance 

degrades the volume measurement accuracy and it may consequently affect the evaluation of the 

tumor treatment plan. Our work deals with improving the accuracy of tumor measurement by 

constructing volumetric MR images with high resolution in each direction from three orthogonal 

scans known as the axial, sagittal, and coronal orientations. With a high resolution volume 

(HRV) constructed from the LRVs, tumor measurement can be reported in a much more 

effective and accurate manner. 

Magnetic Resonance (MR) imaging is commonly used to visualize enhancing tissue for 

diagnosis. Initially, a T1 MR image is captured, then, Gd-DTPA (Gadolinium) contrast is 

administered to the subject and another T1 image (referred to as the T1E in this paper) is 

captured to show enhanced tissue. There are many ways in which the brain neoplasms are 

treated. However, it is difficult to measure the success of any particular method in an objective 

and consistent way. Accurate and reproducible quantification of these pathologies can greatly 

assist doctors in treatment planning and evaluating the response to therapy. 

After the T1 pre-contrast (T1) image is captured, Gd-DTPA (Gadolinium) contrast is 

administered to the subject and another T1 image (referred to as the T1E in this paper) is 

captured to show enhanced tissue. Determination of enhancing tissues requires accurate 

delineation of tumor boundaries. The pre- and post-contrast T1 MR images are the primary 

visual cue to assisting radiologists in building a treatment plan. Currently, enhancing tissue is 

measured using bi-directional (longitudinal and horizontal) measurements taken separately in 2D 

slices. Doctors use these enhancing tissue measurements in the T1E as an indication to the size
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Figure 2: Example of low resolution imaging. Sample slices are extracted from LRVs scanned in the axial 

view (1st row), sagittal view (2nd row), and coronal view (3rd row). It can be seen that each scan has a 

high in-plane resolution, but a very low out-of-plane resolution. 

of the tumor. It is time-intensive and tedious to manually calculate the volume. It is also common 

to find large variance among intra- and inter-operator interpretation of tumor delineation, 

yielding results which are often not reproducible [1]. This can greatly affect the evaluation of 
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treatment plans. Thus, an automated system for quantifying the brain neoplasm volume would 

allow physicians to better assess the efficacy of treatment and save physicians valuable time. 

System Overview 

To achieve our goal, there are two main technical challenges to be addressed. One is to 

improve the measurement accuracy by reducing the influence of the large inter-slice distance in 

the low resolution scans. The other main challenge is to accurately label the enhancing tissues by 

differentiating them from normal tissue. In this section, we present a novel multi-resolution 

algorithm for constructing a HRV from rigidly aligned LRVs of a single patient. The LRVs are 

first compactly represented by using Laplacian pyramids, which are fused after expanding the 

Laplacian images at each level to the same size as the other Laplacians at that level. 

A Gaussian pyramid is then recovered from the fused Laplacian pyramid and the volume 

obtained at the bottom level is the constructed HRV. The multi-resolution pyramid structure 

separates different frequency components at each level of the pyramid. In this way, the 

combination of different LRVs is carried out in coarse-to-fine fashion which deals with the 

challenges of large inter-slice spacing. The proposed method is applied to facilitate improved 

consistency and accuracy in tumor measurement. 

After constructing the HRV, a new probabilistic framework is proposed to automatically 

determine the true enhancing tissue by considering the anatomical knowledge from an aligned 

probabilistic brain atlas and the prior distribution of tumor in the brain. The false enhancing 

tissues can be successfully removed and the true enhancing regions are then correctly measured. 

We validate the method by using both simulated and real clinical brain MR images containing 

enhanced tumor. 
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In the proposed framework, identification of enhancing tissue from MR brain images is a 

key operation, which is a very challenging task due to two factors. One is that the intensity 

representation of the data may not allow a clear delimitation of the different tissue types present 

in an MRI, because of partial volume effect, image noise and intensity non-uniformities caused 

by magnetic field inhomogeneities. The other more important factor is that besides the enhancing 

tissue to be assessed, some other normal tissues will also be enhanced due to the administration 

of Gd-DTPA. This means that the enhancing tissue cannot be identified using only the image 

information. These difficult problems will be solved in the proposed framework using novel 

computer vision techniques. 

Organization of the Thesis 

 This section describes the layout and organization of the thesis. In chapter two, a review 

of related literature is presented to show recent works in volume reconstruction and tumor 

measurement methods. Chapter three explains a framework for reconstructing a high resolution 

volume from multiple orthogonal low resolution views. Then, in chapter four, a new knowledge 

based tumor measurement system is presented. Finally, in chapter five, a summary of the 

contributions in this thesis are discussed including a section on future work. 
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CHAPTER TWO: LITERATURE REVIEW 

With the advent of computer technology and recent advances in computer vision, 

researchers have been able to achieve considerable progress in Medical Image applications. In 

this chapter, a literature review of related work is presented. Previous works in volume 

reconstruction are presented in the next section, followed by a discussion on past and current 

tumor measurement methods. 

Volume Reconstruction 

Only a few works have been reported on the reconstruction of a HRV from multiple 

LRVs. Tamez-Pena et al. [9] studied the problem of MRI isotropic resolution reconstruction 

from two orthogonal scans. In their work, two LRVs are rigidly aligned first, and then a HRV is 

interpolated from them.  

Recently, Rousseau et al. [10] and Jiang et al. [11] achieved high resolution fetal brain 

MRI imaging by interpolating non-rigidly aligned LRVs. However, these works have only 

addressed the cases where the ratio of in-plane to inter-slice spacing was small. But in practice, 

much larger spacing is often found in clinical routines. A large inter-slice distance may cause 

interpolation techniques to fail and the constructed image could be significantly blurred with 

visible artifacts introduced. 

Tumor Measurement Methods 

Previous efforts for brain tumor measurement have taken many forms, but have remained 

largely experimental work. In [18] and [19] for example, fuzzy rules were applied to make initial 
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classification decisions, and then clustering was used to classify the remaining pixels. Liu et al. 

[4] proposed to register the T1E and T1 images to reveal the enhancing regions by finding their 

differences. However, they have difficulty in distinguishing false positives from true enhancing 

tissues, since some normal tissues, such as the choroid plexus and superior sagittal sinus regions, 

are often enhanced by the administration of Gd-DTPA. Besides using local image information, 

incorporation of a priori knowledge has been proven to be able to make more intelligent and 

robust classification and segmentation systems.  

More explicit knowledge has been used in the form of frames [20] or tissue models as in 

[21] and [22]. Clark et al. [2], for example, developed a system by combining knowledge based 

techniques and multispectral analysis (in the form of unsupervised fuzzy clustering) to extract 

tumor from transaxial MR images over a period of time during which the tumor is treated. 

However, the system only processes 2D slices, which does not exploit the benefits of 3D 

imaging. In addition, the expert knowledge used in the system is limited to the image contrast of 

tumor. However, the labeling may not be precise since other parts of the image, such as the 

choroid plexus and dura mater, can be found in the same intensity range, making them 

indistinguishable. Additionally, when MR images are scanned, several parameters can affect the 

intensities of tissues, which may produce different intensities for the same tissue and make it 

difficult to specify a tissue using an exact intensity value. Other knowledge like global position 

within the brain and position relative to neighboring brain structures is not considered in the 

system. To further exploit a priori knowledge, atlas-based segmentation techniques have been 

developed.  
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Due to the relatively invariant structures in the brain, an atlas can be constructed for the 

whole brain. In the atlas based methods, segmentation of the image is converted to performing a 

non-rigid registration of the image to a labeled atlas. The image is segmented by the labels 

associated with the atlas mapped according to the resulting non-rigid transformation [32]. 

Together with local image feature based segmentation methods, atlas based segmentation 

techniques have been used for automated segmentation of brain tumor. Kikinis et al. [15,30,31] 

developed a system for automatic brain tumor segmentation by iteratively assigning labels to 

tissue types using statistical classification and registering a digital anatomic atlas to the patient 

data. A pre-segmented image is used in their work as the atlas. However, these simple atlases 

may not be able to deal with the variance between different subjects and the accuracy of 

segmentation could be affected.  

The advanced use of spatial information to aid in classification is facilitated by the 

construction of the probabilistic atlas [3,28,29]. In this type of atlas, information regarding the 

statistical properties of anatomical structures is stored in a space in which coordinates have 

anatomical meaning as opposed to the somewhat arbitrary coordinates in a raw image, which are 

dependent on the position, orientation, and shape of a subject’s head in the MR scanner. Bullitt 

and Gerig et al. [3,26,27] applied a probabilistic atlas to brain tumor segmentation. Their method 

relies on the information provided by the (non-enhancing) T1 and T2 image channels, the use of 

a registered probabilistic brain atlas as a spatial prior, and the use of shape prior. Besides the 

tumor, edema can also be extracted using their method. However, the use of a probabilistic atlas 

built from brains of healthy people [7] may lead to underestimation of the volume of tumor in 

that the deformation caused by presence of tumor is not encoded in the atlas and some part of the 
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tumor might be mislabeled as normal brain structures. The samples of normal tissues are first 

obtained by finding regions with high probability above a certain confidence level. Statistical 

properties of the normal tissues are then computed using these samples to detect tumors. 

However, tumor tissue and edema could be included in the drawn samples, which may cause the 

algorithm to fail. Furthermore, the approach is based on the assumption that all of the normal 

tissues can be represented using the obtained samples, which may not always be the case. 

Efforts have been made to model the deformation of atlases caused by the presence of 

large space-occupying tumors. Besides the work of Prastawa et al. [23], Cuadra et al. [24] 

proposed a method for atlas-based segmentation of pathological MR brain images using a model 

of lesion growth. The brain atlas deformation is compensated based on a priori model of lesion 

growth that assumes radial expansion of the lesion from its starting point. The common steps of 

these algorithms can be described as such: First, an affine registration brings the atlas and the 

patient into global correspondences. The pose and scale difference is handled in this step. Then, a 

synthetic tumor is put into the brain atlas, which provides a template for the lesion. The last step 

is the non-deformation of the seeded atlas. Some methods have been developed for modeling the 

non-rigid deformation of atlas with the presence of tumor [23-25]. After the deformation 

compensation, the accuracy of segmentation should be improved. 

However, several difficulties exist in this kind of deformed atlas based tumor 

segmentation system. In order to compute the deformation of brain atlas, an estimate or pre-

segmentation of the tumor (and edema) is needed, which makes automatic segmentation an 

extremely challenging task. The difficulty might be solved by iterating the tumor segmentation 

and atlas deformation process but it is very inefficient. In addition, the non-rigid deformation of 
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brain atlas is highly computationally complex with a lot of parameters to be well tuned. It is 

necessary for the whole brain to be segmented in order to precisely extract the tumor. Another 

major difficulty that would prohibit this kind of method from being used in clinical practice is 

that those methods can only handle single tumor cases. For multi-foci tumor patient cases, which 

are often observed, the deformation of atlas caused by presence of tumor becomes intractable to 

model and compute. 

To deal with the above mentioned problems, in this paper, we propose a new framework 

to quantify enhancing brain tissue by utilizing T1 and T1E MR image characteristics combined 

with prior medical knowledge. Our method follows from the fact that radiologists determine the 

enhancing tissue by analyzing both T1 and T1E images and by applying their expert medical 

knowledge at the same time. The brain atlas is used to remove false enhancing in the ventricles 

and in other regions, such as the dura sinus, where tumor is not normally found. Here, a system 

to automatically measure the positive enhancements is presented and validated. In the following 

chapter, a novel method for high resolution volume construction is presented to increase the 

accuracy of tumor measurement. 
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 CHAPTER THREE: IMPROVING ANISOTROPIC RESOLUTION 

Low resolution imagery is a common limitation in clinical practice as described in the 

previous chapters. In the following sections, a novel method for improving low resolution MR 

images is presented. After a registration phase, a multi-resolution pyramid structure is 

implemented to separate the different frequency components of the image at each level of the 

pyramid. In this way, the combination of different LRVs is carried out in coarse-to-fine fashion 

which deals with the challenges of large inter-slice spacing. Thus, the proposed method 

facilitates improved consistency and accuracy in measurement of enhanced tissue. 

Registration 

To effectively utilize the information contained in each low resolution scan, the LRVs are 

fused to produce a single HRV. In order to combine the LRVs for constructing HRV, orthogonal 

MRI scans are first registered so that corresponding locations in each volume may be correctly 

aligned. We first align the three LRVs using a two-pass registration algorithm. Then the 

registered volumes are fused with a new pyramid reconstruction algorithm. We start with the 

acquisition of a three orthogonal 3D MR volume set from a single subject. Before the images can 

be merged, they must be registered so they can share the same coordinate space. Registration is 

an important step to align the orthogonal MRI scans so that corresponding locations in each 

volume can share the same coordinate space. 

A lot of research has been done in the area of medical image registration as described in 

[12]. Due to the low resolution, however, it is not trivial to register the orthogonally scanned 

volumes. We thus propose a two-pass strategy to align the LRVs. In the first pass, initial 
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registration is obtained by selecting one of the views (axial view selected in our work) as the 

reference and registering the other two low resolution volumes to it. After registration, a HRV is 

constructed using the proposed construction method, which will be presented in the following 

section. In the second pass, all of the three LRVs are registered to the constructed HRV to 

achieve a more accurate registration. Finally, the HRV is constructed again from the aligned 

LRVs by using our multi-resolution construction method. 

In our work, brain MR images are investigated. So it is reasonable to assume there should 

not be deformations between the LRVs of a single subject under the same machine. However, a 

small amount of translation and rotation can be expected due to involuntary motion from the 

patient. Thus, a rigid transformation based registration is well suited to correct these differences. 

The images are aligned when the mutual information between the images is maximized, which 

can be achieved by adjusting the transformation parameters iteratively along the gradient ascent 

direction of the error metric. The registration method was implemented using the Insight ToolKit 

(ITK) [13]. 

Since a change in contrast between the views is quite possible, contrast adjustment is 

applied before the construction phase. Again, one of the views is selected as the reference view 

and the contrast of the other two views are adjusted by minimizing the mean square error at the 

intersection points. 
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Figure 3: Laplacian pyramids are computed for axial, sagittal, and coronal views (from left to right). The 

top level images in the three views have the same size and can be combined directly. 

 

Figure 4: Fusing the Laplacian images at each level and computing the fused Gaussian pyramid from the 

fused Laplacian pyramid. 
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Fusion and Gaussian Pyramids 

 

Figure 5: (a) A slice from the simulated input LRV in the axial view. Slices from the HRVs constructed 

using (b) Gaussian interpolation and (c) the proposed multi-resolution construction, respectively. (d) Slice 

from the ground truth. 

 

 

Figure 6: 2 dimensional visualization of the spacing between known data points 
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Due to the large out-of-plane distance, constructing a HRV using interpolation techniques 

can lead to low quality images. Figure 5(b) shows a slice of the reconstructed volume using 

Gaussian kernel based interpolation, which is significantly blurred as compared to the ground 

truth. The problem is caused by the large inter-slice distance in the LRVs, which is illustrated in 

2D as shown in Figure 6. The known in-plane high resolution columns and rows from two 

orthogonal scans are displayed in blue and red colors, respectively. The intensity values of the 

pixels inside the region need to be interpolated using the known red and blue pixels intensities. 

For example, the intensity of pixel p  can be obtained by linear combination of the values of the 

four known pixels as shown in Figure 6 where the intensities of pixels far away from the high 

resolution planes are difficult to interpolate. Thus, results from direct interpolation are usually 

not good. If more known pixels are involved in the interpolation, the reconstructed image may 

become over-smoothed and blurred. More sophisticated techniques, like spline or kernel based 

interpolation, can be applied, but these methods have the similar difficulties. The result shown in 

Figure 5(b) is obtained by using the Gaussian interpolation, which is significantly blurred. 

To deal with this problem, a new multi-resolution algorithm using pyramid structure is 

proposed in this paper. The main idea is to reduce the number of unknown pixels at each level so 

the pixel intensities can be easily computed. By using the pyramid structure, this is nicely 

handled without explicitly selecting any neighborhood. The proposed structure is presented the 

next section. 

Multi-Resolution Construction 

Recall that each LRV has an axis along which the resolution is much lower than in the 

plane perpendicular to that axis. This large inter-slice distance is problematic for direct intensity 
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interpolation schemes. Instead of constructing the HRV in one step, we propose a multi-

resolution method to increase the resolution of the volume gradually by fusing the LRVs at 

different levels of the pyramid until the required resolution is achieved. A Gaussian pyramid for 

each LRV is first computed [14], which consists of set of volumes , where 

 is the original volume and  

}1,...,1,0|{ −= nlGl

0G

)( 1−= ll GREDUCEG . (1) 

The  operation is defined as Gaussian filtering followed by down-sampling by a factor 

of 2. At each level, however, we only apply a  operation to each high resolution 

plane until the volumes at the top level of all the Gaussian pyramids have the same dimensions 

as shown in 

REDUCE

REDUCED2

Figure 3. With the Gaussian pyramid, a Laplacian pyramid can be easily computed 

by subtracting the expanded higher level Gaussian image from the current level image, 

nnlll GLandGEXPANDGL =−= + )( 1 . (2) 

The operation  is defined as up-sampling the image by a factor of 2 followed by 

Gaussian filtering in 2D. The top level Gaussian image and the Laplacian pyramid are saved. A 

Laplacian pyramid essentially consists of multiple edge-like copies of original image with 

different levels of blurring. At the top level of Laplacian pyramid, each LRV is reduced to an 

isotropic volume, where each dimension has the same low resolution as shown in the top left side 

of 

EXPAND

Figure 3. This produces a 3D Gaussian pyramid for each LRV. At the same time, a 3D 

Laplacian pyramid is also computed for each LRV by applying the operation. 

The Laplacian pyramids are fused separately by taking average at each level as shown in 

Figure 4. Since the Laplacian images at lower levels in each pyramid have different sizes, a 
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EXPANDD1  operation is used to expand these images along the low resolution axis, so that all 

the Laplacian images from the same level will have equal size. With the fused Laplacian 

pyramid, we can easily compute the fused Gaussian pyramid according to 

nnlll LGandGEXPANDLG =+= + )( 1 . (3) 

At this point, the LRVs can be easily fused by taking their average at each voxel. The fused 

volume is expanded using the  operation, where the size of each dimension is 

doubled as shown in the right side of 

EXPANDD3

Figure 4. The higher resolution Gaussian image is then 

obtained by adding the Laplacian image back into the expanded image as in (3). 

The image obtained at the bottom level of the Gaussian pyramid is the final constructed 

HRV, which is obtained by combining the three orthogonal scans through all the levels. The 

proposed new multi-resolution construction method provides a natural way to fuse the LRVs at 

different levels. There is no explicit interpolation needed. Thus, it effectively solves the difficulty 

of the direct interpolation based methods as we mentioned earlier. 
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Summary of the Reconstruction Algorithm 

The proposed multi-resolution construction algorithm is summarized in the figure below: 

ALGORITHM: Reconstruction of High Resolution Volume 

INPUT: Three LRVs scanned orthogonally in the axial, sagittal, and coronal orientations. 

- Align the LRVs using rigid registration. 

- Adjust image contrast of the aligned LRVs. 

- Compute Gaussian and Laplacian pyramids of the LRVs using (1) and (2). 

- Fuse the top level Laplacian images by taking the average. 

WHILE{The bottom level of the pyramids is not achieved} DO 

- Move down to next level of the pyramids. 

- Expand the reconstructed Gaussian image from previous level in 3D to the current level. 

- Expand the Laplacian images along the low resolution axis so that they have the same 

       size and combine them by taking the average. 

- Fuse the Laplacian images by taking average. 

- Compute the Gaussian image at this level of the Gaussian pyramid using (3). 

ENDWHILE 

OUTPUT: The constructed HRV (Bottom level image of the Gaussian pyramid). 

Figure 7: Reconstruction algorithm. 

Volume Measurement 

The reason why the proposed method is able to solve the problem caused by large inter-

slice distance and outperforms other direct interpolation based methods can be two-fold. Firstly, 
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the image information fusion is done at multiple levels in a coarse-to-fine fashion. In the 

proposed approach, image resolution becomes higher and higher from top to bottom levels in the 

pyramid, but the Gaussian filter remains the same. The effect is equivalent to varying filter 

bandwidth without changing the image resolution. At a higher level, the Gaussian filter has 

larger bandwidth, while it decreases as we move down to a lower level. So, the bandwidth is 

adaptively changing during the construction process. In addition, the step-by-step expansion 

makes the reconstruction continuous and smooth, which prevents interpolation artifacts from 

occurring. 

Secondly, the Laplacian pyramid used in our method can be viewed as the output of a set 

of band pass filters applied to the original image. Thus, LRVs are in fact decomposed into 

multiple frequency components and fused separately at each level. Adding these fused Laplacian 

images into the expanded volumes for recovering Gaussian pyramid can enhance the image 

sharpness. So, our method is able to get better results. This is not the case in other direct 

interpolation based methods where parameters must be explicitly set. Therefore, although 

Gaussian filtering is used in the  operation of computing the pyramids, our method is 

quite different from the Gaussian kernel based interpolation. 

EXPAND

Results 

In this section, we first validate the method by using artificially created low resolution 

data from high resolution volumes. Then, we demonstrate an application on real clinical brain 

MR images containing tumor. 
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(a) 

 

       (b) 

Figure 8: (a) The plot of PSNR values of the constructed HRVs using direct Gaussian interpolation and 

our multi-resolution method against the ground truth. (b) Tumor volume difference to the ground truth for 

the constructed HRVs (blue) and the LRVs in each view. 
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Figure 9: HRV construction results using (1st Row) cubic spline interpolation and (2nd row) the proposed 

multi-resolution method for real clinical data shown. The slices were selected far from the high resolution 

planes in the original LRVs. 

Simulated Data Sets 

The proposed method was first validated using simulated data. Ten sets of MR volumes 

containing brain tumors were used in the validation [15]. The dimensions of each volume are 

256x256x124 with voxel size of 0.9375x0.9375x1.5mm 3 . LRVs were extracted from the high 

resolution data in the axial, sagittal, and coronal orientations. In each view, the high resolution 

planes are not altered, but the out-of-plane resolution is decreased by a factor of 4, i.e., a high 

resolution plane is sampled every four slices from the original high resolution volume. To 

simulate real data, the sampled volumes are also randomly rotated 5 to 15 degrees along each 

axis similar to what may be found in practice. 
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We first evaluate the quality of the reconstructed HRV by comparing it against the 

ground truth (the original high resolution volume). The peak signal-to-noise ratio (PSNR) is used 

for quality assessment. For comparison, we also include a HRV obtained by using direct 

Gaussian interpolation from the three LRVs in our evaluation. The validation results are shown 

in Figure 8(a). It can be seen that the HRVs reconstructed using the proposed approach have very 

high PSNR values and these values are much higher than those of the direct interpolation 

approach. 

One of the main motivations of our work is to improve the measurement precision of 

brain tumors, so the validation is also conducted on tumor measurement. For objectivity and 

consistency, the measurement was performed by using a user-guided segmentation tool 

implemented in ITK-SNAP [16] with parameter values and initialization fixed equally for all 

images. Figure 8(b) shows the differences between the ground truth and the tumor measurement 

results of the constructed HRV as well as the three LRVs. In most cases, the measurement based 

on the constructed HRVs is very close to the ground truth. More over, it is clear that the 

measurement based on the LRVs has large variance, which results in ambiguity for tumor 

assessment and diagnosis. 

Application to Clinical Data 

Our method was also tested on 8 clinical MRI datasets, where each LRV consists of 30 

high resolution planes with 512x512 pixels. The in-plane resolution is 0.45 x 0.45mm , while 

the ratio between in-plane and inter-plane spacing is very large (1:16). Other interpolation 

algorithms perform very poorly on these datasets. For example, cubic spline was used and the 

results are shown in the first row of 

2

Figure 9. It can be seen that the images are very blurring 
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with obvious artifacts. However, we are able to construct HRVs with much higher quality using 

the proposed multi-resolution method. Sample slices from our constructed HRV are shown in the 

second row of Figure 9. The large inter-slice distance results in some blurring because so much 

information has been lost during the imaging sampling process. Compared to the original LRVs 

shown in Figure 5, radiologists confirm that the reconstructed HRVs provide a more accurate 

and consistent way for measuring tumor tissue size. In the following chapter, a novel approach 

for knowledge based measurement of enhancing tissue is described. 
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CHAPTER FOUR: KNOWLEDGE BASED MEASUREMENT 

 In the previous chapter, we described a method for the construction of a HRV from 

orthogonal low resolution volumes. Here, we present a novel framework for the quantification of 

enhancing tissue volume in brain MR scans. A registration and segmentation phase is given, 

followed by a section which describes a new knowledge based decision method based on a 

probabilistic model. Finally, results for multiple cases are presented and analyzed. 

Registration of Pre- and Post-Contrast MR Images 

 

Figure 10: Example of registration before and after 

The proposed scheme begins with processing the acquired T1 and T1E 3D MR volume 

sets from a single subject. All of the enhancing regions are detected by comparing the T1 and 

T1E images. The two image channels are aligned to each other and segmentation is performed on 

 26



the T1E channel. The mean shift segmentation algorithm [6] is used to divide the image into 

small regions according to local intensity distribution.  

Using the regions created by the T1E segmentation, the mean intensity difference of each 

region is compared between the T1E and T1 images. Regions with the low differences are 

discarded and only enhanced regions remain. Registration is necessary to align the T1 and T1E 

MR images so that corresponding locations in each image can be directly compared. Explanatory 

reviews of medical image registration are presented in [1] and [17]. 

A small amount of translation, rotation, and shear are possible between the two scans of a 

subject, because they are captured at different times. Thus, an affine transformation based 

registration is well suited to correct these differences. A distance metric which utilizes a mutual 

information based scheme by [5] is used. The combination of these two has been shown to have 

high robustness in multi-modality image registration. The images are well aligned when the 

mutual information between the images is maximized, which can be achieved by adjusting the 

transformation parameters iteratively along the gradient ascent direction. Thus, the 

transformation parameter, , is determined by, *α

)(maxarg* αα
α

I= . (4) 

The mutual information )(αI  is estimated as, 

∑=
rf rpfp

rfprfpI
,

2 )()(
),(log),()(α , (5) 

where  and f r  are the intensities of the floating image  and the reference image , 

respectively. An example of the registration of pre- and post-contrast MR slices is shown in 

F R

Figure 10. 
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Segmentation of Brain MR Images 

 

Figure 11: Example of mean shift segmentation and initial detection of enhancing regions. 

Segmentation of images has been widely exploited in many problems, but is still an 

active area of research [2,4,6]. In our work, we note that the tumor is often arbitrarily shaped so 

no assumptions are made about its form. The segmentation method used for automatic tumor 

delineation should respond well to arbitrary shapes and accurately separate the regions. The non-

parametric mean shift segmentation method [6] was used in our system and the results are shown 

in the middle of the figure above. 

Mean shift estimates the density gradient in a search window of bandwidth  and 

iteratively shifts toward the maximum increase in the density gradient. This process is repeated 

for an arbitrary set of points and the end points for each (modes) define the clusters for which 

remaining pixels are assigned to. The main parameter for the mean shift segmentation is the 

search bandwidth. Optimal bandwidth selection for the mean shift procedure is based on the 

method described in 

h

[6].  
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The estimate of the pdf is given by, 

∑
∈

−=
)(

)(1^
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id
x
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f , (6) 

then, differentiating the pdf estimate, we find, 

∑
∈
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where  is the uniform kernel. From here we can find the mean shift vector given by,  K

∑
∈

−=
)(

)(1

xhi Sx
i

x
h xx

n
M , (8) 

where  is the number of samples in  with bandwidth h . xn S

Determination Enhancing Tissue 

After image segmentation, the mean of each region from the T1E image is compared to 

the T1 image (see Figure 11). This process reveals the regions which are brighter (enhanced) in 

the T1E, but not in the T1. Note that in the posterior right side of Figure 11 right, a cyst that was 

bright in both the T1 and T1E is correctly marked as non-enhancing tissue. If only the intensity 

values were used in the T1E, the cyst as well as other regions would be indistinguishable from 

the enhancing tissue.  

A threshold learned by prior training on previous subjects is used to eliminate non-

enhancing regions and the enhancing regions are detected. However, this does not fully isolate 

true enhancement from other non-tumor enhancements as we can see in Figure 11 right. A robust 

post-processing method subsequent to the segmentation is necessary to achieve accurate results. 
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Expert Anatomical Knowledge 

 

Figure 12: Probabilistic Brain Atlas from the International Consortium for Brain Mapping (ICBM). (left) 

The single subject T1 template, (middle) the corresponding CSF, and (right) non-CSF probability map. 

It is commonly observed that not only the tumor, but other tissues can be enhanced by the 

administration of Gd-DTPA, as shown in Figure 11 right. In the ventricles, for example, there 

will normally be enhancing due to the choroid plexus that should not be included in tumor 

labeling. In fact, several other parts of the brain included in the cerebral spinal fluid (CSF) are 

often enhanced by the contrast, such as the superior sagittal sinus region where blood can 

become enhanced. Also contained within the CSF, the vertical linear region in the middle of 

axial slices, i.e. the falx cerebri, can also become enhanced.  

These negative detections cannot be excluded from the detection results using only the 

intensity information from the MR images. When viewing the T1 and T1E MR images, however, 

radiologists are able to interpret whether true enhancing tissue exists by utilizing their expert 

knowledge concomitant with the intensity information of the images. The expert knowledge 

consists of two parts, the anatomical knowledge of the brain structures and the prior knowledge 

of distribution probability of tumor in the brain. In other words, the expert knowledge can help to 
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answer two questions: What is the anatomical structure? And, what is the likelihood of observing 

enhancing tissue in this structure?  

In order to remove the false enhancement from the initial detection results, we propose a 

new knowledge based method. The anatomical knowledge used in our method is modeled 

through a probabilistic brain atlas. By aligning the atlas to the subject, the tissue type at each 

location in the subject's brain can be predicted as shown in Figure 12. The prior knowledge of 

observing tumor in a specific structure is also given in a probabilistic form, obtained from 

radiologist's summaries of hundreds of cases. 

Probabilistic Model 

The probability that a pixel belongs to true enhancing tissue is given by )( trueep s = , 

which can be simplified to say , where  is the pixel location in the region . Using the 

prior knowledge, the probability  can be computed as a marginal probability distribution. 

For convenience, we start by computing the probability that a pixel (or voxel) corresponds to 

enhancing tissue, determined by, 

)( sep s S

)( sep

∑
∈

=
Tt

ssss tptepep )()|()( , (9) 

where  is the tissue type at location . The anatomical structure information  is provided 

by the atlas, and  is the likelihood of observing enhancing tissue inside the tissue 

type . In our work, three tissue types are obtained from the atlas, which includes CSF, gray 

matter, and white matter. Since the gray matter and white matter have similar likelihoods, they 

st s )( stp

)|( ss tep

st
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are combined and denoted as CSF . So the tissue type set T  is defined as },{ CSFCSF  and we 

have, 

, (10) )()|()()|()( CSFtpCSFtepCSFtpCSFtepep sssssss ==+===

where non-CSF regions have low probability to be CSF. 

Since our probabilistic decision method is applied to the image after region segmentation, 

the mean probability of each enhanced region is used to determine whether the region is true 

enhancing tissue. This approach has two advantages. Firstly, using the segmented regions instead 

of independent pixels makes the method much less sensitive to small registration errors. 

Secondly, it helps preserve regions where voxels of the tumor are close to or protruding into high 

probability CSF regions.  

For a specified possibly enhancing tissue region }|{ SseE sS ∈= , where  denotes the 

set of all the voxels in the region, 

S

∑∑∑
∈ ∈∈

==
Ss Tt

sss
Ss

ss tptepepEp )()|()()( . (11) 

The probabilistic brain atlas provided by ICBM [7] was used in our work. The averages 

of 452 subject’s T1-weighted scans were combined to produce a probabilistic value for each 

tissue type to occur at each voxel. In order for the atlas probabilities to be applied to the subject 

data, the atlas must be registered to the subject data. A T1 template previously aligned to the 

atlas is provided together with the atlas. Thus, the atlas can be aligned with the subject's image 

by registering the template image.  

The subject's pre-contrast T1 image is used in registration to prevent errors in the system 

due to the enhancements of the T1E image. Since a global transformation will not provide an 
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accurate registration to the subject due to the deformation that the tumor and edema may have 

caused, a non-rigid registration procedure based on a level sets framework [8] is used to bring 

the image of the subject and the brain atlas into local alignment (see Figure 13 middle). The 

likelihoods of observing enhancing tissue in  and CSF CSF  are set to 0.05 and 0.95, 

respectively. It was discovered through experiments that the likelihood parameters were not 

sensitive to their values and varying them by 03.0±  did not have distinguishable effects. 

Results 

 

Figure 13: (left) Initial detection of enhanced regions shown in red. (middle) The T1 template associated 

with the atlas non-rigidly registered to the subject image. (right). The final detected enhancing tissue 

determined using our knowledge-based method. 

 
Our method was tested on MR images consisting of 512 x 512 pixels with pixel spacing 

0.45 x 0.45mm  data with a field of view of 23.0cm at a resolution of a 320 x 224 and was 

reconstructed as 512 x 512 pixel images. Slices in the volume had thickness between 4.0-5.0mm 

2 2
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Table 1: Enhancing tissue validation for 7 experiments using the ground truth provided by radiologists. 

 
 
 

 

Figure 14: (left) The post-contrast T1E slice, (middle) initial detection of enhancing tissue with dura falx 

wrongly included (near the bottom of the image), (right) and after atlas is applied, the false enhancement 

is removed. 

 

and 2.0-2.5mm inter-plane spacing. Software was developed in the open source form based in 

part on the National Library of Medicine Insight Toolkit (ITK) [13]. Validation is presented 

using standard performance metrics. For validation, the enhancing tissue labeling results were 

compared to the ground truth which was manually calculated by radiologists. Percentage of 

overlapping, false positive rate, and false negative rate are computed. 

Figure 14 demonstrates the ability of the atlas to assist in removing false enhancement. 

Note in Figure 15 how the enhancing tissue region near the border of the CSF region is not 
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eliminated because the regions are measured for their enhancement as opposed to a pixel by 

 

Figure 15: The results of the enhancing tissue labeling in consecutive MR slices in the axial view. Row 1 

shows three consecutive T1 slices. Row 2 shows initial detection of enhancing tissue in the corresponding 

T1E images. Row 3 shows the final labeling of enhancing tissue after applying a knowledge-based 

decision. 
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pixel comparison. The atlas has a skull stripped version to improve registration and a mask is 

created from the subject's brain to remove extra-cranial regions from the results. Due to the large 

inter-slice spacing commonly used in practice, we found no advantage in using 3D segmentation. 

In fact, processing time can be reduced significantly by segmenting in the 2D plane without a 

reduction in accuracy. However, our method can be directly extended to 3D for segmenting 

higher resolution cases. 

The quantitative validation results of the volumetric analysis are shown in Table 1. 

Precision is computed as the number of pixels (or voxels) in the labeled tumor that overlaps with 

the ground truth divided by the size of ground truth. False positive includes the percentage of 

labeled pixels which were incorrectly marked as tumor. False negative is defined as the 

percentage of pixels not labeled, but present in the ground truth. Overall, it can be seen that the 

system slightly underestimated the size of the tumor consistently, but the percentage of 

overlapping is very high. Particularly, when used for evaluating tumor treatment plan, the 

proposed automatic measurement method can provide objective and consistent information for 

doctors to make decision. 
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CHAPTER FIVE: CONCLUSIONS AND FUTURE WORK 

Summary 

In this thesis we presented a synergistic system composed of two main functions. Firstly, 

we presented a novel method to enhance image resolution by using a multi-resolution pyramid 

structure to combine orthogonally scanned LRVs. Different frequency components are separated 

at each level of the pyramid and fused separately. Combination of different LRVs in this coarse-

to-fine fashion solves the problem caused by large inter-slice spacing. The proposed method is 

applied to improving consistency and accuracy of tumor measurement. We validate the method 

by using both simulated and clinical brain MR images containing tumor and promising 

experimental results have been demonstrated. The proposed method provides doctors a better 

way to accurately determine tumor size and they could benefit immediately from this work. 

In the second portion of this thesis we presented a new knowledge based framework to 

determine enhancing brain tissue volume. While most previous methods require manual removal 

of non-tumor segmentations and would fail to provide reliable results where false enhancement 

exists, our method provides an automatic and consistent way to measure enhancing brain tissue 

by utilizing the knowledge of anatomical structures and prior distribution of tumor. Radiologists 

currently rely on crude bi-directional measurements that can not accurately detect changes in size 

of tumor due to the irregular shape of brain tumors. Our method measures the enhancing tissue in 

both T1 and T1E MR images and has been validated using several data sets with excellent 

results. Using this method, tumor volume can be measured over time to assess the efficacy of 

treatment and assist in treatment planning.  
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Future Work 

In our future work, we will investigate extending the proposed method to measure the 

volume of edema surrounding the tumor. In spite of the previous works discussed, a widely 

accepted enhancing tissue volume tracking system has not been implemented, and could provide 

immediate clinical assistance to the medical field. 
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