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ABSTRACT

The field of evolutionary computation is inspired by the achievements of natural evolution,

in which there is no final objective. Yet the pursuit of objectives is ubiquitous in simulated

evolution because evolutionary algorithms that can consistently achieve established bench-

marks are lauded as successful, thus reinforcing this paradigm. A significant problem is

that such objective approaches assume that intermediate stepping stones will increasingly

resemble the final objective when in fact they often do not. The consequence is that while

solutions may exist, searching for such objectives may not discover them. This problem

with objectives is demonstrated through an experiment in this dissertation that compares

how images discovered serendipitously during interactive evolution in an online system called

Picbreeder cannot be rediscovered when they become the final objective of the very same

algorithm that originally evolved them. This negative result demonstrates that pursuing an

objective limits evolution by selecting offspring only based on the final objective. Further-

more, even when high fitness is achieved, the experimental results suggest that the resulting

solutions are typically brittle, piecewise representations that only perform well by exploit-

ing idiosyncratic features in the target. In response to this problem, the dissertation next

highlights the importance of leveraging human insight during search as an alternative to

articulating explicit objectives. In particular, a new approach called novelty-assisted inter-

active evolutionary computation (NA-IEC) combines human intuition with a method called

novelty search for the first time to facilitate the serendipitous discovery of agent behaviors.

iii



In this approach, the human user directs evolution by selecting what is interesting from

the on-screen population of behaviors. However, unlike in typical IEC, the user can then

request that the next generation be filled with novel descendants, as opposed to only the

direct descendants of typical IEC. The result of such an approach, unconstrained by a priori

objectives, is that it traverses key stepping stones that ultimately accumulate meaningful

domain knowledge.

To establishes this new evolutionary approach based on the serendipitous discovery of key

stepping stones during evolution, this dissertation consists of four key contributions: (1) The

first contribution establishes the deleterious effects of a priori objectives on evolution. The

second (2) introduces the NA-IEC approach as an alternative to traditional objective-based

approaches. The third (3) is a proof-of-concept that demonstrates how combining human

insight with novelty search finds solutions significantly faster and at lower genomic complex-

ities than fully-automated processes, including pure novelty search, suggesting an important

role for human users in the search for solutions. Finally, (4) the NA-IEC approach is applied

in a challenge domain wherein leveraging human intuition and domain knowledge accelerates

the evolution of solutions for the nontrivial octopus-arm control task. The culmination of

these contributions demonstrates the importance of incorporating human insights into sim-

ulated evolution as a means to discovering better solutions more rapidly than traditional

approaches.
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CHAPTER 1
INTRODUCTION

The field of evolutionary computation (EC), inspired by the products of natural evolution,

promises to deliver solutions to complex design and control problems. Such evolutionary

algorithms (EAs) traditionally find results by shaping a population of candidate solutions

over generations based on their performance with respect to an objective. The capability of

a particular EA is then evaluated for the speed (i.e. average number of evaluations) within

which it finds solutions to benchmark problems (De Jong, 2002; Eiben and Smith, 2003; Fogel,

2006; Goldberg, 1989; Mitchell, 1997). New algorithms are lauded if they can consistently

solve benchmarks faster than established methods. But what if this measurement of an

algorithm’s success is distracting us from the larger potential for discovery within EC?

Consider instead natural evolution, a system capable of discovering a rich and diverse pop-

ulation of powerful designs. Interestingly, in contrast to the usual measure of success in EC,

nature does not repeatedly evolve the same organism over and over again in different lineages.

Rather, natural evolution is a process with no final objective, and every organism, successful

or unsuccessful, is a discovery on the road to nowhere in particular (Dawkins, 1986). Thus,

if evolution succeeds in rich discoveries in the absence of any final objective, then how can

EC emulate nature’s never-ending ratcheting process to evolve its own meaningful artifacts?

To address this question, this dissertation investigates the potential of abandoning the reign-

ing objective-driven paradigm in favor of serendipitous discoveries made by humans. This
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approach is inspired in part by the success of the Picbreeder online service (Secretan et al.,

2011, 2008), in which a community of users collaboratively evolve a diverse and growing

phylogeny of meaningful images.

Picbreeder is an online system that allows users to interactively evolve images from scratch

(i.e. from a set of random starter images) or by branching from other users’ published im-

ages. Results from over 8,000 evolved Picbreeder images1 suggest that the stepping stones

that lead to major discoveries do not resemble or hint at the innovations to come. That

is, users choose such stepping stones (i.e. intermediate images) as parents because they are

interesting in their own right, rather than because they compare well to an a priori objective.

In fact, new users are encouraged to select what they find interesting without an expectation

of what they will find, and they often achieve appealing results in a relatively small number

of generations (Secretan et al., 2011). Experience with Picbreeder shows how quickly mean-

ingful images like a skull, a butterfly, and a car can be found, i.e. in only 74, 90, and 106

cumulative generations respectively. Furthermore, successful images evolved in Picbreeder,

which employs the NeuroEvolution of Augmenting Topologies (NEAT) approach (Stanley

and Miikkulainen, 2002, 2004) as its EA, exhibit good underlying representations. In par-

ticular, they are represented compactly and support continued elaboration upon established

themes. For example, figure 1.1a illustrates how the image known as Butterfly sparked a

family of winged creatures (i.e. not just more butterflies), while the Spooky Face, an en-

tirely separate lineage, led to the family of faces shown in figure 1.1b. What is it about the

1As of May 2012 there were over 8,000 published images on the Picbreeder site.
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(a) Winged Creatures (b) Family of Faces

Figure 1.1: Successful images have good representations. The collection of winged
creatures in (a) emerged from elaborations on the Butterfly. Similarly, the family of faces in
(b) emerged from the Spooky Face. These examples reflect the advantages of discovering a
good underlying representation.

mode of evolution in Picbreeder that makes the serendipitous discovery of significant images

common?

The significance of this question is explored by the first contribution in this dissertation,

wherein the deleterious effects of objectives on search are demonstrated by an experiment in

which images evolved in Picbreeder become the objective for the very same algorithm that

discovered them. In this way, evolution can be run under the same parameters as existed for

the original discovery, yet now toward a target image that is known to exist in the space of

images. The results demonstrate that NEAT cannot re-evolve many of the very same images

it once discovered. Even when the target image is simple enough to be reproduced, the effect

is superficial because the underlying representation is a piecewise construction that is up to

three times more complex than the original image. The paradox here is that although NEAT

3
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can discover meaningful images serendipitously, it cannot evolve the very same images when

they are the explicit objective. Thus such images are only found effectively when they are

not the objective.

The aim of this work is to translate the serendipitous phenomenon seen in Picbreeder to

support the evolution of principled agent behaviors (i.e. not just pictures). The hope is that

human evaluators will recognize what is interesting in a particular domain and that their

selections (unconstrained by any final objective) will lead to meaningful behaviors. Addi-

tionally, the new evolutionary approach goes beyond simply putting a human in the loop. It

also tracks what behaviors have already been evaluated and iteratively generates a collection

of novel behaviors from the ones previously considered interesting by the user. By interleav-

ing human-driven interactive evolution (Takagi, 2001) with such novelty search (Lehman

and Stanley, 2008, 2011), two techniques which have never been combined before, a new

approach called novelty-assisted interactive evolutionary computation (NA-IEC) improves

evolution by presenting the human evaluator with a broad set of possible stepping stones,

thus inspiring new ideas, and producing better behaviors in a small number of evaluations.

The main hypothesis is that interleaving novelty search with human selection improves evo-

lutionary results over automated approaches. This hypothesis is initially validated by a

proof-of-concept in which the NA-IEC approach is compared to the best current approach in

the deceptive maze domain introduced by Lehman and Stanley (2008, 2011). The expectation

is that human intuitions should direct the evolution of the maze navigation behavior more

4



effectively than a completely automated search. In total there are four main contributions

of this work: (1) It establishes the problem with objectives; (2) motivated by this problem,

it introduces the NA-IEC approach; (3) NA-IEC is then validated by the proof-of-concept

in the deceptive maze domain; and finally (4) in a challenge domain.

This fourth and final contribution delivers a major application in which kinematic controllers

are evolved for a nontrivial task domain, i.e. a simulated octopus arm (Engel et al., 2006;

Yekutieli et al., 2005). This culminating experiment extends previous work in an octopus arm

domain in which arm controllers were evolved through objective-based evolution (Woolley

and Stanley, 2010). While this preliminary work succeeded in evolving arm controllers,

this experiment now explores whether leveraging human insights about the domain can

evolve control behaviors faster than an approach that maximizes the fitness measure without

achieving an intelligent representation of the environment (Gomez and Miikkulainen, 1997).

By evolving controllers interactively with interleaved novelty search, i.e. with NA-IEC, the

hope is that the human evaluator’s ability to see what is interesting in the context of a

particular task domain will direct the search toward meaningful behaviors and avoid the

deleterious effects of pursuing objectives alone.

The next chapter discusses relevant aspects of EC, including traditional approaches for mit-

igating deception as well as modern approaches such as novelty search and interactive evolu-

tionary systems like Picbreeder. Chapter 3 then presents an experiment that demonstrates

the problem with objectives. Next, the NA-IEC approach is presented in detail (Chapter 4),

5



followed by a proof-of-concept that evolves navigation behaviors for the deceptive maze do-

main by Lehman and Stanley (2008, 2011) in Chapter 5. An objective-based experiment

with another task domain, the octopus arm domain, is introduced in Chapter 6. Then

in Chapter 7, the NA-IEC approach is applied to the octopus arm domain as a challenge

problem, the results of which confirm the importance of allowing human intuition to direct

evolution. Finally, the dissertation concludes with a discussion of how non-objective and

serendipitous approaches may impact EC as a whole (Chapter 8) and ends with the overall

conclusions (Chapter 9).
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CHAPTER 2
BACKGROUND

This chapter reviews foundational work in evolutionary computation that motivates and un-

derlies the new evolutionary approach introduced in this dissertation, including traditional

fitness-based approaches and non-objective methods like novelty search and interactive evo-

lutionary computation.

2.1 Evolutionary Computation

In evolutionary computation (EC), it is traditional to evolve the population iteratively by

evaluating its members with respect to the objective (De Jong, 2002; Eiben and Smith,

2003; Fogel, 2006; Goldberg, 1989). While initial populations are often largely unfit with

respect to the objective, some individuals are generally more fit than others. Inspired by

the Darwinian principle of natural selection (Goldberg, 1989), the variation in the fitness

of individuals provides a gradient to guide the search. In this way, EC explores multiple

candidate solutions in parallel, thereby providing hope that it may avoid the trap of local

optima by more fully exploring the search space.

Since its introduction, EC has developed into a number of branches and sub-communities

that all follow this general framework, i.e. a cycle of evaluation, selection, and mutation
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is applied repeatedly to shape a population with respect to an objective (De Jong, 2002;

Eiben and Smith, 2003). Some established branches include: genetic algorithms (Fogel,

1998; Goldberg, 1989; Holland, 1975), genetic programming (Koza, 1992, 1998), evolution-

ary programing (Saravanan and Fogel, 1995; Sinha et al., 2003; Yao et al., 1999), and neu-

roevolution (Gomez et al., 2006; Stanley and Miikkulainen, 2002, 2004). In each of these,

the direction of the search, albeit stochastic, is governed by the evaluation and selection

of individual candidates with regard to a fitness metric. As an example, to learn a strat-

egy for playing chess, a co-evolutionary system may define fitness as the number of games

won against other individuals in the current population (Mitchell, 1997). In this way, indi-

viduals that achieve significantly higher fitness scores become more likely to be selected for

reproduction. Such an approach, which is ubiquitous in EC and even familiar in machine

learning (Sutton and Barto, 1998), is predicated on the assumption that higher objective

performance indicates approaching a solution.

Genetic algorithm (GA) approaches (Fogel, 1998; Goldberg, 1989; Holland, 1975) optimize

strings of numbers that represent parameters in a problem domain. In a simple GA (Gold-

berg, 1989), the solution to be evolved is a string of binary values that represent the pa-

rameters of a black-box system. Evolution begins with an initial population of randomly

generated bit-strings. The fitness of each individual is then determined by applying the bit-

string within the black-box and evaluating the results with regard to the objective. Next,

individual candidates are selected for reproduction. For example, they might be selected in

a roulette-style fashion wherein the fitness determines the probability of selection. In this
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way, strings with higher fitness are more active in the mating pool and thus contribute more

offspring to the next generation. Selected strings in the mating pool are ultimately paired

stochastically and crossed over. Mutation operations based on random variation are also

applied to provide additional diversity. The new population typically becomes the next gen-

eration and the process is repeated until a halting criterion is met. In this way, the optimal

alleles may be discovered because the objective function rewards the discovery of partial

solutions (exploitation) while stochastic selection and random mutations yield diversity (ex-

ploration).

A subset of EC, called neuroevolution, evolves the configuration of an artificial neural net-

work (ANN) for a given task or environment (Yao et al., 1999). ANNs can be thought of as a

little brain-like controllers that map sensory information from input nodes to output nodes,

resulting in a particular behavior. ANNs may also contain hidden nodes and recurrent con-

nections to express complex nonlinear behaviors. In many neuroevolution approaches the

structure of the network is fixed and the connection weights are evolved to optimize the agent

for a given objective (Gomez and Miikkulainen, 1999; Saravanan and Fogel, 1995). The par-

ticular approach to neuroevolution in the experiments in this dissertation is NeuroEvolution

of Augmenting Topologies (NEAT), introduced by Stanley and Miikkulainen (2002, 2004).

Unlike the fixed-structure approaches, the premise behind NEAT is that lower-dimensional

networks can be optimized before attempting to optimize more complex networks. In this

way, NEAT evolves both the connection weights and the ANN structure simultaneously by

starting with a population of minimal topology networks (figure 2.1a) and then introduces

9



(a) Minimal Topology (b) Add Node Mutation (c) Add Connection Mutation

Figure 2.1: NEAT complexification operations. A key principle in the NEAT ap-
proach (Stanley and Miikkulainen, 2002, 2004) is that the topology of the network does not
need to be known a priori. Rather, populations of networks increase in complexity from
minimal topologies (a) through structural mutations that split existing connections to add
new hidden nodes (b) or add connections between nodes that are not already linked (c).

additional structure during evolution, which is called complexification, through the add node

and the add connection mutations (figure 2.1b and 2.1c, respectively). Additionally, when

the topology of a network changes there is frequently a negative impact on fitness. To protect

such structural innovations until they can be optimized, the NEAT approach partitions the

population into groups of similar network topologies calledspecies to ensure that only simi-

lar structures directly compete against each other for survival. Thus by evolving networks

from minimal topologies and complexifying them gradually, NEAT does not require that the

topology of the network be known a priori.

Other EC approaches follow the same basic evolutionary computing paradigm of selection

and reproduction (De Jong, 2002; Eiben and Smith, 2003; Fogel, 2006; Gomez et al., 2006;

Koza, 1992; Yao et al., 1999). Thus, while the stochastic elements of EC (i.e. selection and

mutation) provide the ability to escape local optima and the population of individuals allows

multiple candidate solutions to be explored in parallel, the general approach to EC remains
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a directed search that is subject to deception, which means that the gradient of increasing

fitness may not ultimately lead to the global optimum. The next section discusses approaches

to mitigating such deception.

2.2 Approaches to Mitigating Deception

Formal research into deception explores what causes evolutionary algorithms (EAs) to fail

and how to mitigate such failures (Goldberg, 1989; Whitley, 1991). For the purpose of this

work, we are interested in the case in which pursuing what appears to be a reasonable objec-

tive produces an unreasonable objective function. Thus an intuitive definition of deception,

as stated by Lehman and Stanley (2011), is: “A deceptive objective function will deceive

search by actively pointing the wrong way.”

The fitness function can point the wrong way because not only must the fitness function

reward the objective, but it must also reward the intermediate solutions (i.e. the stepping

stones) that lead to the objective. One example of such deception is in the mountain car

task (Boyan and Moore, 1995; Sutton and Barto, 1998), in which a car must drive up a

steep slope to the goal (figure 2.2). This domain is deceptive by design because the car is

underpowered and cannot reach the goal by simply driving forward. Rather, the controller

must generate additional momentum by first accelerating backward up the hill behind it.

Without such prior knowledge we might assign fitness based on reducing the distance to the
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G o a l  

S t a r t  

Figure 2.2: Mountain car. This deceptive task requires the controller first to accelerate
backward (i.e. become more unfit) before attempting to climb the hill toward the goal (Boyan
and Moore, 1995; Sutton and Barto, 1998).

goal, yielding an objective function that prunes out of the search the intermediate solutions

(i.e. those that accelerate backwards) needed to reach the global objective.

While there will never be one best method for conquering deception (Wolpert and Macready,

1995), several approaches have been introduced to mitigate it. The most common approaches

focus on avoiding the premature convergence of the population to a single solution or type

of solution. Speciation techniques, inspired by the niching of organisms in nature, are the

most common such approach to diversity maintenance (Goldberg and Richardson, 1987;

Mahfoud, 1995; Ryan, 1994; Stanley and Miikkulainen, 2004). By creating subpopulations

and applying e.g. explicit fitness sharing (Goldberg and Richardson, 1987), individuals only

compete within their local niche, i.e. species. Speciation has been shown to to protect inno-

vation (Sigrist and Sommer, 1999) by ensuring that “highly fit species cannot crowd smaller

species out of the population before they have a chance to reach their potential” (Stanley

and Miikkulainen, 2002).
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In cases in which the objective is too complex to approach directly, task decomposition (Colom-

betti and Dorigo, 1992; Lin, 1993; Perkins and Hayes, 1996; Singh, 1992) or incremental

evolution (Elman, 1991; Gomez and Miikkulainen, 1997; Knowles et al., 2001; Mahfoud,

1995; van de Panne and Lamouret, 1995) are often applied to reward the evolution of in-

termediate goals and make learning tractable. In task decomposition the complex task is

broken into subtasks that can be learned separately and then combined to achieve the fi-

nal solution; in incremental evolution a single system learns through a succession of tasks

that are increasingly demanding. For example, Gomez and Miikkulainen applied delta cod-

ing (Mathias and Whitley, 1993; Whitley et al., 1991) to evolve complex behaviors for the

predator-prey (Gomez and Miikkulainen, 1997) and double-pole balancing (Gomez and Mi-

ikkulainen, 1999) domains by starting from simple tasks and gradually making the task more

challenging. The trick is that following a local search, as in delta coding, requires knowledge

of the path to the final goal.

Another approach to mitigating deception is to score individuals in the population over

multiple and possibly conflicting objectives through multi-objective evolutionary algorithms

(MOEAs; Coello et al., 2007; Deb, 2001). In this way, unique solutions are more distinctly

identifiable because they optimize the domain objectives to different degrees and thus exist

at different points in the search space. Such an approach is desirable when a monolithic

fitness function could make different solutions appear equivalent when in fact they should

not compete directly. Rather, by evaluating how solutions score over the set of objectives, a

population of candidate solutions emerges that have at least one exemplary quality, i.e. they

13



are on the Parato front (Deb et al., 2002; Horn et al., 1994; Veldhuizen and Lamont, 2000).

In this way, two solutions that approach the problem differently are not compared directly.

This insight was demonstrated by Knowles et al. (2001) wherein a single-objective opti-

mization problem was decomposed into a multi-objective optimization problem and resulted

in a less deceptive search space. Despite this advantage, MOEAs are still vulnerable to

deception (Ando and Suzuki, 2006; Brockhoff et al., 2007; Deb, 1999).

Despite extensive research, deception remains a significant problem in the field of EC (Gold-

berg and Richardson, 1987; Liepins and Vose, 1990; Pelikan and Goldberg, 2001). The prob-

lem is that EAs ultimately respond to the selection pressures created by the fitness function.

The challenge is to determine how to reward the intermediate steps that are required to reach

the goal. Since search landscapes are induced by objective (e.g. fitness) functions, what ap-

pears to be a reasonable heuristic may actually prevent the objective from being reached

because the objective function does not reward the stepping stones in the search space that

ultimately lead to the desired objective. Thus any similarity metric that guides the search

toward an objective is potentially a false compass to the optimal solution (Stanley, 2010).

In this spirit, Lehman and Stanley (2008, 2011) introduced the idea of abandoning objectives

as a search heuristic in deceptive domains, electing instead to reward individuals only for

novel behaviors. The next section reviews novelty search and some domains where it has

been applied successfully.
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2.3 Novelty Search

A fundamental dilemma with traditional approaches to EC is that crafting an effective fitness

function is akin to understanding the fitness landscape or knowing the stepping stones a pri-

ori (Ficici and Pollack, 1998; Zaera et al., 1996). Such a requirement becomes increasingly

difficult as objectives become more ambitious because the intermediate steps to the solution

are less likely to be known (Ficici and Pollack, 1998). As an alternative, Lehman and Stanley

(2008, 2011) demonstrated that searching without regard to the objective, i.e. searching only

for novel behavior, is more effective at discovering solutions in some deceptive domains than

rewarding objective performance.

Novelty search works with EAs by replacing the fitness function with a novelty metric. The

novelty metric is a measure of the uniqueness of an individual’s behavior at a given task.

Instead of rewarding performance, novelty search rewards individuals in the population for

finding new ways to complete the evaluation task, thus creating a constant pressure to do

something new (Lehman and Stanley, 2011).

Because novelty search operates in behavior space, it is important first to characterize the

space of unique behaviors in a way that is meaningful to the domain. The novelty search

algorithm then computes the sparseness in the behavior space as the average distance to the

k-nearest neighbors (Cover and Thomas, 1991) around that behavior. The sparseness ρ of
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behavior x is given by

ρ(x) =
1

k

k∑
i=0

dist(x, µi), (2.1)

where µi is the ith-nearest neighbor of x with respect to the distance function dist(x, µ). In

this way, if the average distance is large, then the candidate solution is considered to be in

a sparse area of the behavior space, thus making it more likely to be selected by the EA.

Optionally, as in coevolution (De Jong, 2004), an archive of past behaviors may serve to avoid

backtracking through the behavior space. If the novelty metric is sufficiently high for a new

individual (i.e. above some minimal threshold ρmin), then the individual may be recorded

in the permanent archive to provide a comprehensive sample of where the search has been,

thereby increasing the pressure to discover new ways of behaving in the domain (Lehman

and Stanley, 2008, 2011).

Characterizing behaviors so that they can be compared is the most challenging aspect of

novelty search. In the deceptive maze experiment introduced by Lehman and Stanley (2008),

which is an experimental domain in this dissertation, the behavior of a maze navigation robot

was defined as its final position. In this way, the novelty metric rewards controllers that end

at new locations in the maze. At first, the collection of behaviors may include robots that

do nothing, get stuck in corners, run in circles, and so forth. However, at some point, the

collection of simple behaviors becomes saturated and the pressure to do something new

increases, i.e. evolution favors mutations that take the navigator to new places in the maze.
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(a) Medium Map (b) Objective-based (c) Novelty Search

(d) Hard Map (e) Objective-based (f) Novelty Search

Figure 2.3: Deceptive maze experiment (Lehman and Stanley, 2008, 2011). The
task is to evolve controller ANNs that navigate a particular map, e.g. the medium map (a)
and the hard map (d). The cul-de-sacs, which are not known a priori, represent local optima
in the search space. The final position of each robot in a typical run is marked as a point
on the map in (b), (c), (e), and (f). The results in (b) and (e) show how the EA guided by
fitness is attracted to and deceived by the cul-de-sacs in each map; the results in (c) and (f)
show how the very same EA guided by novelty is more evenly distributed.

Figure 2.3 depicts behaviors (represented as the final point visited by an individual) dis-

covered during typical runs conducted in the Medium Map (figure 2.3a) and the Hard Map

(figure 2.3d) from Lehman and Stanley (2008, 2011). From these illustrations it is clear

that the objective-based search, which rewards reducing the distance to the goal, finds the

the cul-de-sacs in both maps deceiving (figures 2.3b and 2.3e). In contrast, the results from

novelty search (figures 2.3c and 2.3f), which rewards ending somewhere new, are more evenly

distributed because they are not deceived (Lehman and Stanley, 2008, 2011).
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Novelty search was also successfully applied to evolving controllers for a simulated three-

dimensional biped robot. While the objective was to walk as far as possible within a given

time limit, novelty search found solutions that were qualitatively and quantitatively better by

searching the space of biped gaits (i.e. measured as the biped’s center of mass at one-second

intervals) without regard to the objective (Lehman and Stanley, 2011).

Another deceptive domain where novelty search was shown to be effective is the artificial ant

problem (Koza, 1992). In this domain, a simulated ant, driven by a genetic program (GP)

tree, follows a trail in an attempt to collect as much food as possible. The gaps in the trail

require the agent to infer what to do when there are missing steps in the trail. In this

domain the ant behaviors are defined by the amount of food collected at evenly spaced times

during an evaluation, thus allowing novelty search to differentiate behaviors that ultimately

collect the same amount of food by different means (Lehman and Stanley, 2010a).

When applied in the context of adaptive neural networks, i.e. neuromodulated plastic-

ity (Soltoggio, 2008), novelty search escapes the deceptive trap of learning to learn (Risi

et al., 2011, 2009). In the T-maze domain (Blynel and Floreano, 2003; Soltoggio et al.,

2008), the behavior characterization is based on the amount of reward collected (i.e. high,

low, or none) and whether or not the agent crashed in each of 200 trials. In cases where

learning was required at a few key points during a trial, novelty search achieved adaptive solu-

tions despite the high-dimensional behavior space, while traditional fitness-based approaches

evolved static solutions that satisfied the majority of situations during a trial.
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In cases where abandoning the objective completely may be unnecessarily radical, novelty has

been applied as an objective in a Pareto-based multi-objective evolutionary algorithm (Coello

et al., 2007; Deb, 2001). The idea behind such an approach is that while efforts to optimize

fitness (i.e. the traditional objective) are deceived by a multi-modal landscape, the ability to

pursue novelty can direct the search into new areas that can attain higher fitness (Graening

et al., 2010; Mouret, 2011).

While the idea of selecting anything novel may appear to be an undesirable exhaustive search,

searching in the space of behaviors is often tractable because many points in the space of pos-

sible genomes collapse to a single behavior. Furthermore, when applied in conjunction with

complexifying algorithms like NEAT (Lehman and Stanley, 2008, 2010b) and GP (Lehman

and Stanley, 2010a), simple behaviors become associated with minimal representations, and

only mutations that increase the size of the genome and lead to novel behaviors are explored

further. Therefore, this approach, operating without regard to an objective, moves into com-

plex spaces in a meaningful way because new behaviors are those that could not be expressed

at lower levels of complexity (Ventrella, 1994a, 1995), i.e. complexity is rewarded when it is

warranted.

Experimental results with novelty search demonstrate that it often finds solutions in de-

ceptive domains more frequently, more quickly, and at lower genomic complexities than an

equivalent objective-based approach. However, experience has also shown that novelty search

becomes lost in unrestricted domains (Lehman and Stanley, 2010b). In such domains there
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is an opportunity to leverage human knowledge rather than exhaustively exploring the space

of all possible solutions. For example, in the space of all possible images, humans recognize

the importance of symmetry in pictures and are able to relate structural innovations with

objects in the real world. Thus the next section provides relevant background on the field of

human-led evolution, followed by a description of Picbreeder, a domain in which a commu-

nity of users interactively evolves a collection of meaningful images without having a formal,

unified objective.

2.4 Interactive Evolutionary Computation

In interactive evolutionary computation (IEC) the traditional objective-function is replaced

by a user who performs selection (Takagi, 2001). IEC is effective in creative domains (Romero

and Machado, 2008), including the evolution of images (Hart, 2007; Machado and Cardoso,

2002; Sims, 1993; World, 1996), animations (Draves, 2005; Sims, 1997; Ventrella, 1994b,

1995), structures (Dawkins, 1989; Sims, 1991; Smith, 1991), and music (Biles, 1994; Hoover

et al., 2011; Johanson and Poli, 1998; Nelson, 1993; Tokui and Iba, 2000). In such creative

domains the term fitness is subjective because what people experience as pleasing or in-

teresting is based on individual preferences. Thus when what is good, bad, meaningful, or

strange is too broad and complex to encode into a traditional objective function, interactive

evolution can provide a means for making significant discoveries in evolutionary systems.
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Like traditional EAs, IEC systems also typically begin from a random initial population

that evolves over generations by selecting, mating and mutating members. However, IEC

differs from traditional automated EAs in that a human user is now responsible for the

evaluation and selection of promising candidate solutions. While this change typically leads

to smaller population sizes and higher mutation rates, the most profound implication is that

evolution is no longer bound to a rigid expression of what is fit and unfit. In fact, the

human evaluator’s breadth of experience makes it likely that his or her selection criteria

will change over the course of evolution. Such an ability to make serendipitous discoveries,

i.e. identify and pursue important artifacts as they emerge, is the primary motivation for the

new evolutionary approach introduced in this dissertation.

To interface with the human evaluator, the majority of IEC systems are modeled after

the original Blind Watchmaker Biomorphs application by Dawkins (1986, 1989). In this

approach the user is presented with a panel of individuals (e.g. 3×4) from which the parents

of the next generation are selected. The IEC system then mates, recombines, and mutates

the genetic material of the parents to create the next generation, which is then presented to

the user. This process is repeated at the user’s direction until the user is satisfied.

The results of Dawkins’ original nine-gene Biomorphs (Dawkins, 1986) demonstrate that

selecting for phenotypic effects, i.e. selecting for how genes are expressed, leads to meaningful

discoveries. This work was furthered by Sims (1991), who interactively evolved variable-

length expressions for lifelike three-dimensional plant structures. In both cases, the insight is
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that knowing the underlying genetic encoding is not important. Rather, selecting meaningful

phenotype attributes that emerge during evolution does lead to significant results in the vast

space of what is possible.

Despite the benefits of having a human in the loop, such IEC systems are limited by user

fatigue. According to Takagi (2001), typical IEC processes only last 10–20 generations per

session. The problem is that the vast majority of significant discoveries exist beyond the reach

of a single-user session. One response, which has become known as collaborative interactive

evolution (CIE; Szumlanski et al., 2006), is to leverage the efforts of many users.

Sims addressed the issue of user fatigue in the Genetic Images (Sims, 1993) exhibit and the

Galapagos (Sims, 1997) exhibit by allowing museum patrons to make selections. In this way,

evolution was able to aggregate the evaluations of many visitors. Since the proliferation of the

world-wide-web, online CIE systems like Pfeiffer (Langdon, 2005) and Electric Sheep (Draves,

2005) have emerged to allow users to vote remotely for their favorite artifacts. In each of

these systems, individual candidate that receive votes are allowed to to stay in the breeding

population longer, i.e. votes are a form of subjective fitness. However, such systems rely

on consensus, which often only achieves mediocre results because users express competing

preferences. In contrast, one CIE system that avoids such aggregation, and which inspired the

approach presented later, is the Picbreeder project (Secretan et al., 2011, 2008), introduced

next.
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2.5 Picbreeder: Collaborative Interactive Evolution of Images

Another effectively non-objective search is in Picbreeder (http://picbreeder.org) (Secretan

et al., 2011, 2008), which is studied in the next chapter to evaluate how representations

are affected by objective and non-objective evolutionary searches, and is revisited later as

the inspiration for the new evolutionary approach introduced by this work. Picbreeder is a

distributed community of users that interactively evolve pictures by selecting images that are

appealing. Picbreeder is a CIE system because users on Picbreeder collaborate by continuing

to evolve images previously evolved by other users. The collection of images generated by

Picbreeder is significant because it demonstrates how a group of individuals working without

a formal unified objective can discover attractive and interesting areas in the vast desert of

all possible images; some such images are shown in figure 2.4. Additionally, the quality of

such a serendipitous approach to evolution is evident in the diverse phylogeny of images that

have emerged, the compactness of their representations, and the speed (i.e. low number of

generations) with which meaningful images are discovered. A crucial aspect of this result, for

the purposes of this dissertation, is that the system as a whole has no unified a priori objective

or objectives. While individual users may sometimes (and sometimes not) arrive with their

own objectives, the combination of all users branching off each other is not working towards

any unified objective in particular. This fact will turn out critical to the representations that

ultimately evolve.
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(a) Parrot (b) Dolphin (c) Apple (d) Sunset (e) Car (f) Mystic (g) Wizard

Figure 2.4: Images evolved on Picbreeder. These images were interactively evolved
by a community of human users with no explicit objective. They demonstrate the system’s
ability to discover interesting and meaningful images.

Users evolve images in Picbreeder by selecting ones that appeal to them from among a set of

15 candidates to produce a new generation. As this process is repeated, the individual images

in the population evolve to satisfy the user. Once satisfied, the user can publish his or her

image to the Picbreeder site. Sharing their work with the community then allows others to

continue evolving already-published images to form new and more intricate designs (Secretan

et al., 2008), which is called branching.

Each image in Picbreeder is indirectly encoded by a variant of a neural network called a

compositional pattern-producing network (CPPN; Stanley, 2007). The idea behind CPPNs

is that geometric patterns can be encoded by a composition of functions that are chosen

to represent common regularities. For example, composing the Gaussian function, which is

symmetric, with any other function results in a symmetric pattern. The internal structure

of a CPPN is represented as a weighted network, similar to an ANN, that denotes which

functions are composed and in what order. The appeal of this encoding is that it can repre-

sent a pattern with regularities such as symmetry, repetition, and repetition with variation
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Figure 2.5: CPPN encoding. (a) The CPPN takes arguments x and y, which are
coordinates in a two-dimensional space, and d, the distance from (x, y) to the image center.
When all the coordinates are drawn with an intensity corresponding to the output of the
CPPN, the result is a spatial pattern, which can be viewed as a phenotype whose genotype
is the CPPN. (b) Internally, the CPPN is a graph that determines which functions are
connected. As in an ANN, the connections are weighted such that the output of a function
is multiplied by the weight of its outgoing connection. The CPPN in (b) actually produces
the pattern in (a).

through a network of simple functions that can be evolved by existing methods for evolving

ANNs.

Images are rendered from CPPNs in Picbreeder by querying the network as the function

CPPN(x, y, d) to obtain the grayscale value of the pixel located at (x, y) in the image (fig-

ure 2.5). The extra input d is the distance from the center to the (x, y) location being

queried, which gives the CPPN a sense of radial symmetry that provides a bias towards

appealing images (Secretan et al., 2011). Because CPPNs are a composition of continuous

functions in a geometric space they provide a compact representation of the image at any

resolution.
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Picbreeder evolves images by evolving the underlying CPPN as if it were an ANN. That way,

the NEAT approach (Stanley and Miikkulainen, 2002, 2004) can facilitate the evolutionary

step between generations. Following the idea that the network structure can be evolved

through complexification, Picbreeder begins with an initial population of images that are

simple patterns represented by networks with just five connections and one hidden node.

As the underlying networks add complexity (i.e. new nodes and connections), features and

structures emerge in the resulting images that could not be expressed by the simpler CPPNs.

When interesting or meaningful changes occur, the user selects the images that will reproduce

to form the next generation. In this way, users can rapidly move from simple patterns towards

a higher-dimensional space by rewarding regularities and structures that have meaning to

them.

Figure 2.6 illustrates how images are interactively evolved in Picbreeder. From an initial

population (figure 2.6a), the human user can select one or more images to become the

parent(s) for the next generation; the example in figure 2.6 is based on selecting one image.

Because Picbreeder employs NEAT as its underlying EA, mutations that add structure to

the CPPN may also occur, thus allowing the resulting image to increase the complexity of its

expressed structure. One such mutation is clearly visible in figure 2.6b, and selecting it yields

the population in figure 2.6c. This process of evaluation, selection, and mutation continues at

the will of the user. To overcome the potential for fatigue in IEC applications (Takagi, 2001),

Picbreeder allows the user to save, publish, or abandon evolution at any time. Published

images then become available for other users to continue evolving at the Picbreeder website.
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The significance of this example is that every image in Picbreeder ultimately derives from

an initial population like the one in figure 2.6a.

In this way, interactive evolution can discover meaningful images in the space of all possible

images. Additionally, the number and diversity of compact image representations discovered

in Picbreeder suggests that evolving images based on what humans see as interesting actually

encodes meaningful structure that in turn leads to serendipitous discoveries. Exploring this

process more deeply, the next chapter demonstrates how the mode of evolution affects the

representation of the solution and argues for the potential power of serendipitous discovery

in evolutionary computation.
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Generation 1:
Randomly-
generated images
from minimal
CPPN topologies.

(a) Users make selections from an initial population of images

Parent
Generation 2:
Mutations that add
genes cause images
to gain structure.

(b) Subsequent populations are based on the parent image(s)

Parent Generation 3:
As meaningful
structures emerge,
interesting images
are discovered.

(c) The process is repeated at the user’s direction

Figure 2.6: Breeding images from scratch. The sequence illustrates the interactive
evolution of images in Picbreeder (Secretan et al., 2011, 2008). (a) Starting from scratch
creates an initial population of random images from minimal CPPN topologies. Images
selected by the user (highlighted) become the parent(s) of the next generation. (b) The
new population is created by mutating the parent (highlighted and shown at left), which
may yield additional structure in the image. (c) This process of evaluation, selection, and
mutation repeats until the user either publishes an image to the Picbreeder website for others
to continue its evolution, saves the current evolution, or abandons the effort. This sequence
is significant because every image in Picbreeder (e.g. the images in figure 2.4) ultimately
began in this way, i.e. from scratch.
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CHAPTER 3
THE PROBLEM WITH OBJECTIVES

Evolutionary algorithms (EAs) are often tested on benchmarks to assess their ability to

reach a particular objective in the search space. Popular types of benchmarks include

optimization (De Jong, 2002), function approximation (Whiteson and Stone, 2006), and

control (such as in neuroevolution; Floreano et al., 2008). Reinforcing the field’s focus on

objective-targeted optimization, theoretical analyses often focus on the probability that EAs

will converge to the objective (Droste et al., 2002; Eiben and Smith, 2003; Mühlenbein and

Manning, 1999). A fundamental assumption behind this objective-focused paradigm in evo-

lutionary computation (EC) is that the value of EAs lies in their ability to reach objectives

that we set for them a priori. Paired with this assumption is the idea that when an evolu-

tionary algorithm consistently fails to reach its intended objective, then it is not suited for

the task. Yet what if this central assumption is wrong? What if consistently reaching the ob-

jective could actually obfuscate a deeper underlying pathology, while consistently failing to

reach the objective ultimately bears little on the ability of the EA to produce impressive re-

sults in general? While perhaps paradoxical, these questions highlight a delicate uncertainty

in EC about its relationship to natural evolution, wherein many remarkable phenotypes were

discovered even though none of them were explicitly expressed as a priori objectives for the

process. Is it possible that we are judging our algorithms wrongly?
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To gain a fresh perspective on this question, this chapter, which is based on work published

in the Genetic and Evolutionary Computation Conference, GECCO’11 (Woolley and Stan-

ley, 2011), takes an unusual experimental approach: The objective of the EA is to re-evolve

images that were already evolved in Picbreeder (Secretan et al., 2011, 2008). Such an ex-

perimental approach yields a unique perspective because these images were not specified as

objectives when Picbreeder was first introduced, but in this work they become objectives

for the very same algorithm and representation already inside Picbreeder. That way, even

if the EA fails to reproduce its own original results, the conclusion that the algorithm or

representation is insufficient to produce the objective is precluded, because the algorithm did

already produce the objective, only it was originally discovered serendipitously before it was

chosen as a benchmark objective. Through this experiment, we will discover that just the

act of setting an objective triggers a chain of unintended consequences that confound the

usual conclusions drawn from such benchmarks.

In particular, the main result disclosed in in this chapter is that the algorithm inside

Picbreeder, NeuroEvolution of Augmenting Topologies (NEAT; Stanley and Miikkulainen,

2002, 2004) and the representation inside Picbreeder, compositional pattern-producing net-

works (CPPNs; Stanley, 2007), consistently fail to reproduce the results that they already

produced. For the simpler images, the failure is in the quality of the solution, yielding

much larger representations than necessary; for the more complex images, the failure is in

obtaining the solution at all.
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However, the most revealing focus of the analysis is on why these failures occur so universally.

Because NEAT in fact already discovered the targets, we are forced towards deeper insight

into the phenomenon of failure than simply blaming NEAT, as would be customary. In fact,

it turns out that it is the very practice of making the images objectives that ultimately causes

them not to be rediscovered properly. Not only does evaluating fitness against an objective

potentially push it in the wrong direction through deception, but even when it still manages

to right itself, the result is often a destructive effect on representation that has received little

attention before this study.

This insight is sobering because the vast majority of empirical experiments in EC assess

their results based on benchmarks with a priori objectives (De Jong, 2002; Goldberg, 1989;

Koza, 1992; Saravanan and Fogel, 1995; Stanley and Miikkulainen, 2002; Whiteson and

Stone, 2006) and theory often focuses on whether targets can be reached (Droste et al.,

2002; Mühlenbein and Manning, 1999). Thus the major implication is that a change in

thinking may be warranted about how EAs should be judged. Furthermore, on the positive

side, the analysis hints at the kinds of situations that ultimately encourage efficient and

elegant representations to evolve. As the discussion so far implies, these ideal situations

are precisely when there is no specified objective (as in Picbreeder), suggesting that the

way we traditionally use these algorithms may not be allowing them to exhibit their full

potential. Thus this chapter aims to establish the importance of abandoning the pursuit of

specific objectives, which is the reigning paradigm in EC, and instead motivates interactive
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approaches wherein the human intuitions direct evolution toward meaningful discoveries that

were not known to exist a priori, i.e. serendipitous search.

3.1 Motivation

While the idea of searching without an objective may at first seem unusual, even a brief

experience with Picbreeder shows that a serendipitous excursion through interesting parts of

the search space does not require any specific objective. On the way, stepping stones and key

innovations that appear interesting in their own right are discovered that can be elaborated

later (perhaps by another user) to reach ambitious ends, even when the intermediate steps

do not resemble the ultimate destination.

Furthermore, practical experience with Picbreeder has shown the futility of setting out to

evolve a particular type of image, e.g. a flower or a butterfly (Secretan et al., 2011, 2008). In

contrast, novice users that are encouraged to evolve patterns without an a priori expectation

frequently find appealing images within 10 to 30 generations (often after branching from im-

ages evolved by other users that do not resemble the newer result). It turns out that evolving

images in this way works because it tends to reward structures that become stepping stones

to other meaningful images even if the stepping stones do not resemble their descendants.

An example of this phenomenon is the lineage of images in figure 3.1 that ultimately led

to the Skull, a seminal Picbreeder image. Its predecessors, which resemble e.g. a crescent,
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gen 12 gen 20 gen 36 gen 49 gen 74

Figure 3.1: Stepping stones to the Skull. This linage illustrates the progression of
seemingly unrelated images that led to a seminal Picbreeder image in just 74 generations.
As a metaphor for solving ambitious problems, such an example demonstrates the importance
of preserving stepping stones even if they do not resemble an a priori objective.

a donut, and a dish, do not hint at the significant discovery to come, yet were nevertheless

essential to reaching it. Users involved in this lineage thus selected these images for their

own appeal rather than because they were searching explicitly for a skull. As a metaphor for

finding solutions to ambitious problems, the value of such important intermediate steps often

cannot be known in objective-driven search when they are first discovered because essential

innovations do not necessarily resemble the given objective.

The hypothesis of the experiment in this chapter is that an objective-based search will

construct a piecewise solution that fails to embody key regularities in the problem domain

because the fitness function only rewards incremental improvements that resemble the objec-

tive, which is highly restrictive. By favoring short-term gains rather than developing a broad

variety of innovations, early decisions about how to construct the underlying representation

of solutions will fail to capture the key organizational concepts in the problem domain.

The experiment described next makes these considerations concrete by showing in practice

how setting an objective distorts the search and corrupts the representation, even with the
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very same algorithm and representation with which the targets were originally discovered.

The key lesson will be that how something is discovered matters, and discovery through

objective optimization is often the wrong way to do it. This lesson is the key motivation for

a new evolutionary approach, wherein human intuitions will direct the search in the hope of

discovering solutions that have good underlying representations.

3.2 Image Evolution Experiment

The aim of this experiment is to investigate how pursuing a singular objective impacts

the underlying representation of the solution. To achieve this aim, a population of image-

generating CPPNs (i.e. with inputs x, y, and d, as in Picbreeder) is evolved towards one

of the six target images (which span a range of different complexities) in figure 3.21. It is

important to note that each target image was originally evolved by a human user or chain

of users on Picbreeder. Thus the task of evolving CPPNs toward these objectives should be

feasible because the targets are known to exist in the space of solutions and were previously

evolved.

To ensure that a direct comparison can be made between the representation of solutions

evolved serendipitously and those evolved as objectives, the automated evolution described

in this section has the same operational parameters as Picbreeder wherever possible. The

1While some Picbreeder CPPNs also generate color images, the image chosen as targets are all grayscale.
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(a) Simple (b) Crescent (c) Eye (d) Warp (e) Butterfly (f) Skull

Figure 3.2: Target images. Each image was originally evolved by human users in
Picbreeder. The difficulty of re-evolving toward these images with the same algorithm and
representation demonstrates that how something is discovered matters.

key difference is that in interactive evolution, a human user selects the individuals that will

become the parents of the next generation. Thus this experiment adds an evaluation and

selection process to replace the human evaluator.

To automate the selection process, the fitness of each evolved candidate image is calculated

based on how closely it matches the target image. In effect, the target images become the

objective and thereby serve as metaphors for objectives of different levels of complexity.

To compare two images and calculate fitness, each is defined by a feature set that includes

the grayscale and gradient value for each pixel. The candidate image, scaled to match the

normalized target image, is then compared by calculating the degree of difference (Ralescu,

2003) between corresponding features. The degree of difference, d(c, t), between a particular

candidate feature c and the corresponding target feature t is defined as

d(c, t) = 1− e−α|c−t|, (3.1)

where α = 5 is a modulation parameter. From this equation, images can be described

by their feature sets, wherein elements in the candidate feature set, C = {c1, . . . , cn}, can
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be compared against the target feature set, T = {t1, . . . , tn}. Thus the error between the

candidate and the target feature sets, err(C, T ), is calculated as

err(C, T ) =
1

n

n∑
i=1

d(ci, ti), (3.2)

which is the average degree of difference across feature sets C and T , where n is the total

number of features. Finally, the fitness of the candidate, f(C), is assigned as

f(C) = 1− err(C, T )2, (3.3)

such that taking the mean-squared error (MSE) generalizes large errors and emphasizes the

importance of details.

Inevitably the fitness function in this experiment will be scrutinized for its effectiveness.

Some will ask whether a better such function for comparing images could have been chosen.

However, it will turn out that ultimately the problem is that no image comparison, no matter

how good, can really reward stepping stone images because stepping stones to the target

do not resemble the target itself. Thus the problem here is significantly deeper than simply

finding a better image-matching heuristic. Nevertheless, to validate the fitness function as a

reasonable search heuristic, a preliminary experiment evolves a population of CPPNs towards

a randomly-generated image with five connections and one hidden node, i.e. the Simple target

image in figure 3.2a. The validation experiment differs from the main experiment in that the

correct solution topology for the CPPN is given (i.e. it is taken from the previously-evolved
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target), and only the connection weights must be evolved (unlike in normal NEAT wherein

both weights and structure evolve together). Thus evolution must match the target image by

tuning the five connection weights. The results of this preliminary validation of the fitness

function showed that the solution threshold (explained below) was reached by 19 of 20 runs

in 353± 687 (median = 135) generations on average. In this way, the validation experiment

demonstrates that the fitness function is a reasonable method for comparing images in the

population to the target image.

3.3 Experimental Results

The key question is what happens when NEAT attempts to re-evolve images that were

already evolved by Picbreeder users. Such a question is relevant to the need for a new

evolutionary approach because it demonstrates the deleterious effects of setting objectives.

For consistency, a run is considered successful if the fitness score is greater than 0.75 (out of

1.0 maximum). This threshold corresponds to an average error of 5.75% between the source

feature set and the target feature set and was verified as reasonable by a qualitative review

of the resulting images above this threshold.

To show the contrast between images re-evolved as objectives as opposed to discoveries made

on Picbreeder, table 3.1 compares the objective-based results against the statistics of the

target images when they were originally evolved. The names that refer to the different targets
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Table 3.1: Image evolution results. The number of runs (out of 20) that reached the
solution threshold, the number of generations required to reach a solution, and the CPPN
solution complexity (i.e. the number of functions and connections) are shown. Values are
averaged over runs that achieved the solution threshold. For comparison, the same results
for the original discoveries of each target in Picbreeder are shown in parenthesis.

Target Solved Generations Functions Connections
Simple 14 3,774±5,902 (1) 19.5±2.7 (6) 23.4±4.2 (5)
Crescent 11 3,500±3,298 (12) 20.3±3.2 (7) 26.4±4.4 (7)
Eye 1 4,840 (12) 18 (10) 24 (16)
Warp 0 - (5) - (9) - (12)
Butterfly 0 - (90) - (25) - (75)
Skull 0 - (74) - (23) - (57)

in this chapter are given in figure 3.2. Of runs evolving to the Simple target, 14 of 20 reached

the solution threshold in 3, 774±5, 902 (median = 965) generations on average (recall that the

simple target is from generation 1). Of these, the objective-based solutions were significantly

larger (19.5±2.7 functions and 23.4±4.2 connections) than the original Picbreeder discovery

(6 functions and 5 connections). Similarly, for runs evolving toward the Crescent, 11 of 20

reached the solution threshold in 3, 500±3, 298 (median = 2, 320) generations (as opposed to

only 12 generations for the original discovery of the Crescent). Of these, the representation

was again significantly bloated (20.3 ± 3.2 functions and 26.4 ± 4.4 connections) compared

to the target evolved in Picbreeder (7 functions and 7 connections). When evolving toward

the Eye, only one of 20 runs reached the solution threshold. This particular run reached the

solution criterion at generation 4,840 (as opposed to 12 generations to find the original in

Picbreeder). Furthermore, the resulting solution is once again more complex (18 functions

and 24 connections) than the target (10 functions and 16 connections).
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Beyond these simpler images, at a certain level of complexity it becomes too hard to come

even close to hitting the targets: All attempts to recreate the Warp, the Butterfly, and the

Skull failed to produce comparable solutions.

A set of champions from the 20 attempts to reach each of the six targets are shown in

figure 3.3. To present the results on a single page and to provide a comprehensive sampling

of the typical results of evolving to each target, figure 3.3 shows the final result from the ten

odd-numbered runs for each target (out of 20 for each). The even runs (not shown) generally

follow a similar pattern. The size of the CPPNs of these champions are also shown. In cases

labeled as failed, the run could not meet the solution criteria even after 30,000 generations.

These pictorial results give a qualitative sense of how difficult it is for NEAT to reach the

targets it once evolved previously under different conditions. Based on these results, the

next section discusses the destructive impact of objective-based search on representation.

3.4 Implications

The experimental results document nothing less than the systematic failure of the objective-

driven search. It could not come close to reproducing most of the images. On the other hand,

although it could reasonably reproduce the simplest two images (i.e. Simple and Crescent),

the re-evolved solutions in those cases contain two to four times more structure than the

CPPNs of the original discoveries. Taken together, these dismal results signify a serious
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Simple Run 1 Run 3 Run 5 Run 7 Run 9 Run 11 Run 13 Run 15 Run 17 Run 19
6f, 5c 19f, 27c 18f, 25c 19f, 22c 17f, 23c 18f, 26c 19f, 23c 16f, 24c 20f, 23c 16f, 20c 25f, 20c
1 gen failed failed 3,570 gen 440 gen 1,200 gen failed 1,090 gen failed 840 gen 9,320 gen

Crescent Run 1 Run 3 Run 5 Run 7 Run 9 Run 11 Run 13 Run 15 Run 17 Run 19
7f, 7c 18f, 24c 19f, 23c 20f, 26c 17f, 22c 20f, 27c 24f, 26c 20f, 33c 19f, 24c 20f, 24c 12f, 17c
12 gen failed 1,300 gen failed failed 9,270 gen 10,760 gen failed 3,380 gen 1,580 gen 1,830 gen

Eye Run 1 Run 3 Run 5 Run 7 Run 9 Run 11 Run 13 Run 15 Run 17 Run 19
10f, 16c 22f, 24c 18f, 18c 19f, 20c 22f, 21c 24f, 30c 18f, 24c 17f, 18c 18f, 15c 16f, 21c 22f, 23c
12 gen failed failed failed failed failed 4,840 gen failed failed failed failed

Warp Run 1 Run 3 Run 5 Run 7 Run 9 Run 11 Run 13 Run 15 Run 17 Run 19
9f, 12c 18f, 17c 18f, 22c 24f, 23c 19f, 20c 19f, 24c 22f, 20c 20f, 21c 22f, 26c 14f, 17c 17f, 18c
5 gen failed failed failed failed failed failed failed failed failed failed

Butterfly Run 1 Run 3 Run 5 Run 7 Run 9 Run 11 Run 13 Run 15 Run 17 Run 19
25f, 75c 22f, 27c 21f, 27c 22f, 25c 20f, 28c 18f, 23c 21f, 27c 27f, 34c 22f, 25c 24f, 29c 20f, 28c
90 gen failed failed failed failed failed failed failed failed failed failed

Skull Run 1 Run 3 Run 5 Run 7 Run 9 Run 11 Run 13 Run 15 Run 17 Run 19
23f, 57c 20f, 24c 20f, 29c 19f, 24c 22f, 28c 21f, 28c 16f, 22c 21f, 27c 23f, 29c 18f, 25c 25f, 28c
74 gen failed failed failed failed failed failed failed failed failed failed

Figure 3.3: Image evolution results. Results from the ten odd-numbered runs to each
target are shown (as they were evaluated, at 128× 128 pixels). The even runs, not shown to
satisfy space constraints, generally follow a similar pattern. The CPPN complexity, i.e. the
number of functions and connections, is shown for each image along with the generation when
the solution threshold was reached. Runs for which no solution was reached are labeled failed.
This pictorial perspective demonstrates the difficulty that NEAT has reaching targets that
it previously evolved. Even when reasonable reproductions are achieved, their CPPNs are
significantly more complex than the the original discoveries. Thus the implication is that
evolving toward an objective creates a barrier to discovery by assuming that the stepping
stones resemble the final objective.
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underlying pathology; because we know that the target images were evolved in the first

place, it should have been possible to reproduce them and to reproduce them efficiently.

The key question is whether these results extend beyond the confines of this particular study

to imply something about objective-based search in general. The aim of this section is to

argue that they do. However, a natural reaction to such poor performance is to dismiss it by

pinning it to specific shortcomings of the algorithm and representation or the experimental

setup. Yet the unusual experimental setup, in which targets were chosen that were already

evolved by the same algorithm and representation, makes it difficult to dismiss the results

so easily.

The first objection to drawing general implications is that something might be wrong with

NEAT or CPPNs that could be rectified in a different setup. However, it is difficult e.g. to

argue that evolving CPPNs with NEAT is somehow ill-equipped to evolve skulls when the

Skull has only ever been evolved by NEAT and CPPNs. Not only that, but the Skull was

originally discovered in only 74 cumulative generations with a population of 15 on Picbreeder,

which makes it hard to argue coherently that it is “difficult” for NEAT to discover. Yet

30,000 generations was not sufficient to rediscover it when it was the objective. Furthermore,

although there may be better algorithms, NEAT generally has a good record in a variety

of domains (Stanley and Miikkulainen, 2002, 2004; Whiteson and Stone, 2006), diminishing

the possible argument that it is a kind of straw man chosen for its weaknesses.
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The other potential objection is to the experimental setup. Perhaps equations 3.1–3.3 could

somehow better compute image similarity. Yet this objection depends on the assumption

that the basic challenge in evolving to a target is to formalize a good similarity metric, which

turns out not the be the real problem. To see why, observe the stepping stones in figure 3.4

that led to the discovery of the original Eye in just 12 generations (recall that the only

successful rediscovery of the eye out of 20 attempts took 4,840 generations). The problem

is that the early stepping stones, such as in the first seven generations or so, look nothing

like the final eye at all. Given this observation, a “better” image-comparison metric would

be even worse for this task because it would penalize the essential stepping stones (which

do not look like the Eye) severely. Only in retrospect can we see why the stepping stones

in figure 3.4 might lead to an eye. The user who originally found them chose them for their

own appeal, not because they resemble the final published product. In fact, we can see the

destructive effect of a “good” comparison metric (and see that the metric in equation 3.3

is actually good) in figure 3.5, which shows stepping stones in the sole 4,840-generation

rediscovery of an Eye-like image. These stepping stones do resemble the final image, which

is exactly why it takes so long to find it: Looking similar is exactly the wrong heuristic for

identifying the most natural stepping stones.

In fact, the fallacy of the experimental-design objection exposes a fundamental flaw with

objective-driven search in general: There is no a priori reason to believe that a metric that

measures distance to the objective in any domain has a useful relationship to the essential

stepping stones. The better the fitness function describes the objective, the more deceptive it
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gen 1 gen 2 gen 3 gen 5 gen 7 gen 9 gen 10 gen 12

Figure 3.4: Stepping stones of non-objective image evolution. This sequence shows
evolution guided by a single user with no explicit objective. The first image (gen 1) was
selected from the initial population and progressed as shown to produce the published image
(gen 12) known as the Eye, which emerged after 12 generations and is represented by a
network of 10 functions and 16 connections. This example shows why the final objective is
a poor heuristic for identifying stepping stones that lead to itself.

gen 39 gen 60 gen 128 gen 590 gen 2,201 gen 2,492 gen 3,429 gen 29,193

Figure 3.5: Evolving to an objective. The depicted sequence shows significant stepping
stones reached by following the fitness gradient toward the Eye objective in figure 3.2c.
Contrasting these stepping stones with those from the original discovery (figure 3.4) shows
why resemblance to the target is not the right heuristic for identifying stepping stones for
this problem.

may nevertheless be, which means that effort to better formalize the objective is misguided.

The more ambitious and complicated the objective, the more profound this gap will be (as

with the Warp, the Butterfly, and the Skull).

Yet while the more sensational result is the failure to reproduce the more complicated images,

perhaps most sinister is what happens with the simpler images. They show that even the

appearance of success is not genuine success. For example, although the Crescent superficially

appears to have been rediscovered consistently (figure 3.3), in every case the CPPN is at

least twice as complex as the original representation (and usually three times more complex).
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The same is true for the Simple objective. Thus, even if the objective is reached because

the problem is simple enough, a price will still be paid in the form of poor representation.

The reason for this representational inefficiency is that objective-based search by its nature

encourages a piecewise solution because it rewards small changes in parts of the solution that

increase its resemblance to the objective, as can be seen in the unhealthy (yet successful)

progression in figure 3.5. Each such small change requires adding a small amount of new

structure to the representation to capture that piece. The result is a hodgepodge of functions

that produce the correct pattern but in an inefficient way, which is why it takes thousands

of generations to do what should take only a dozen. The kind of holistic optimization

that would have been ideal is impossible when the stepping stones that optimize the global

structure do not resemble the final objective, as in figure 3.4.

In the short run, while we are only interested in immediate solutions to simple problems,

this representational pathology may not matter, but in the long run, when we may want

evolution to continue indefinitely or to build upon its past results, it will ultimately obstruct

progress in the field. For that reason, the pathological effect of objectives on representation

even when search succeeds, which has received little attention, merits significant further

study. Many positive reported results may be unwittingly subject to this pathology, which

is only uncovered in this study because the objectives were already evolved under different

conditions.
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This last point leads to a final important insight: How something is evolved matters. The

mode of evolution impacts both the search and the representation, even when successful. Yet

almost all our experiments are objectively driven. While the study in this chapter focuses

on images, the same principles apply to more practical domains as well, such as evolving

controllers. For example, how do we know that the most natural stepping stones to a pole-

balancing robot, which is a common benchmark (Gomez and Miikkulainen, 1997; Stanley

and Miikkulainen, 2002), are actually increasingly better at balancing a pole? In fact, the

objective paradigm is so dominant that even considering the alternatives appears potentially

radical. Yet we should not forget that the ultimate inspiration for our field is in nature, where

evolution produced such marvels as photosynthesis, the flight of birds, and the human brain.

Yet none of these discoveries were set as a priori objectives for the search. Instead, they

are serendipitous discoveries on the road to nowhere in particular. Picbreeder (Secretan

et al., 2011, 2008) is similar; while its users stop at serendipitous waypoints on the road

ahead, the system as a whole has no overriding purpose against which it is measured.2 Is it

a coincidence that its representations are so compact and its discoveries so rapid? Novelty

search (Lehman and Stanley, 2008, 2011) is another example of a search process without

an explicit a priori objective. Thus interactive evolutionary processes like Picbreeder and

non-objective automated algorithms like novelty search emerge as possible alternatives to

the current objective-driven paradigm that are deserving of further investigation, which

2It is also interesting to note that users that come to Picbreeder with specific a priori objectives in mind
often find the system frustrating (Secretan et al., 2011). Trying to re-evolve the skull from scratch (even as a
human), which is virtually impossible, illustrates why discoveries on Picbreeder cannot simply be attributed
to an uncanny (e.g. human) objective understanding of the search space.
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motivates the idea in this dissertation. In light of the results in this study, it is important to

begin asking whether EC is inadvertently distorting a critical aspect of its original inspiration

and thereby losing an essential ingredient: Nature has no final objective.

To conclude the discussion, while the discovery of e.g. the Skull could be dismissed by noting

that NEAT only discovered it once but has shown no propensity to produce the same result

again, perhaps our usual meaning of “result” is misguided. Perhaps the result in Picbreeder

is not an individual image, or even a set of specific images, but rather the fact that it

consistently produces interesting images in general (figure 2.4). We could dismiss the Skull,

but should we dismiss the Skull, the Car, the Dolphin, the Snake, the faces, the butterflies,

the Apple, the Octopus, the insects, the Pig, the planets, the Tiger, the Sunset, the Candle,

the Eye, the Penguin, etc. (Secretan et al., 2011)? At what point do we accept that an

EA is valuable not for its ability to produce a particular artifact that we want, but rather

to consistently produce artifacts in general? In other words, is the traditional approach to

evaluating evolutionary algorithms based on their ability to consistently achieve a particular

objective flawed? After all, nature, the original inspiration for our field, has never discovered

the very same organism in different lineages, yet its profusion of unparalleled discoveries

remains no less potent as a clue to what is possible. What service then do we do to our

understanding of evolutionary algorithms by judging them for their ability to repeat the

same trick many times over? Is that really evolution’s greatest trick, or is it a distraction

from the real engine of evolution, which is creative discovery? Once, after all, is enough for

nature.
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3.5 Conclusion

The aim of this chapter was to provide a unique perspective on both the downside of ob-

jectives and the cost to our field of judging EAs only for their ability to repeat the same

achievement multiple times. While evolving without an objective is presently uncommon,

such an approach allows fundamental principles (such as bilateral symmetry) to be discov-

ered that may serve as stepping stones to interesting areas in the search space, which often

could not have been reached by following a similarity metric. Experience with Picbreeder

demonstrates the power of serendipitous discovery and highlights the importance of reward-

ing stepping stones for what they contribute in their own right. In this context, it may

make more sense to judge EAs on their ability to produce a diversity of discoveries rather

than on the probability of reaching the same objective over and over again. Motivated by

these considerations and drawing on the innate ability of humans to identify what is in-

teresting, the new evolutionary approach introduced in the next chapter opens the door to

the serendipitous discovery of behaviors. Like Picbreeder, this new approach supports non-

objective exploration through interactive evolution, but unlike Picbreeder, it also provides

a broader perspective to the user by building the next population presented to the user by

first searching for novel behaviors around the points that the human user found interesting.

In this way, augmenting interactive evolution with novelty search will create a synergistic

system in which human intuition can help to identify innovations from a diverse collection

of phenotypic behaviors.
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CHAPTER 4
APPROACH: NOVELTY-ASSISTED

INTERACTIVE EVOLUTIONARY COMPUTATION

Given the deleterious effects of a priori objectives on what simulated evolution can discover,

this chapter motivates and introduces a new evolutionary approach that that combines for

the first time the intuitive ability of human users to identify what is interesting and im-

portant in a domain, i.e. interactive evolutionary computation (IEC), with a stepping stone

generator based on a short-term novelty search to create a synergistic effect that expedites

the evolution of controller solutions. The hope is that this approach will deliver meaningful

representations of behaviors that can be extended and elaborated in much the same way that

Picbreeder allowed a community of users to create a diverse phylogeny of images. Under this

new approach, called novelty-assisted interactive evolutionary computation (NA-IEC), a hu-

man user is asked to select individuals from a population of candidate behaviors. Variations

of the user-selected behaviors then become seeds for a larger background population wherein

novelty search is applied to find sufficiently novel individuals to fill the next on-screen IEC

population. At that point, the novel individuals become the next IEC generation and control

is returned to the user. In addition to such interleaved novelty searches, the NA-IEC frame-

work also allows the user to apply a traditional IEC step operation or perform a fitness-based

optimization.
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4.1 Motivation

The motivation for this new approach is based on several results in recent years that have

hinted at the limitations of traditional objective functions, wherein the more a candidate

resembles the objective, the higher its fitness. Whether the objective is to evolve a particular

behavior like balancing a pole (Gruau et al., 1996; Stanley and Miikkulainen, 2002) or a

particular morphology like a French flag via a developmental system (Miller, 2004), such

objective-based evolution is the dominant approach across a wide breadth of domains and

methods.

An early hint that such an approach to fitness may be flawed was from experiments with the

novelty search algorithm (Lehman and Stanley, 2008), which rewards novel behaviors instead

of rewarding objective performance. Recall from Section 2.3 that novelty search significantly

outperformed objective-based fitness in a deceptive maze-navigation domain (Lehman and

Stanley, 2008, 2011), showing counter-intuitively that in some deceptive cases it is possi-

ble that having no specific objective may work better than rewarding progress toward the

objective.

In novelty search (Graening et al., 2010; Lehman and Stanley, 2008, 2010a,b, 2011; Mouret,

2011; Risi et al., 2011, 2009), the way the search space is explored places no restrictions on

what behaviors can emerge. Such an approach may appear akin to an exhaustive search of

the behavior space; however the pressure to be novel provides an efficient way of identifying
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which genetic mutations produce innovative behaviors. As an example, when a particular

mutation results in a number of distinct behaviors, novelty search inherently identifies this

new area of the search space as interesting. Then, as the pressure to be novel in this new

space increases, the hope is that another mutation will occur that opens another interesting

area of the behavior space. The unique aspect of searching for novelty is that the selection

criteria is constantly changing. Further, strings of innovations that repeatedly lead to novel

behaviors are establishing concepts that can be extended and elaborated by subsequent mu-

tations. Thus evolving along the gradient of novelty is more apt to incorporate fundamental

knowledge about the domain into the genome (Lehman and Stanley, 2011).

Yet novelty search is not the only clue that something is amiss with fitness. Chapter 3

provided another hint, wherein attempts were made to re-evolve images that were previously

evolved interactively by human users on the Picbreeder online service (Secretan et al., 2011).

The strange result was that none of the more interesting images, such as the Butterfly and

the Skull, could be re-evolved by the very same evolutionary algorithm when they are made

the automated objective. In other words, even though a set of users together evolved a

picture of a Skull in only 74 generations, 20 automated attempts of 30,000 generations each

were unable to reproduce the result. Remarkably, Picbreeder is full of images that were

evolved by users in just a few dozen generations and with no specific objectives, yet each is

nearly impossible to reproduce when they are made objectives.
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Another intriguing result from Chapter 3 is that when simple images are re-evolved, their

underlying representation is at least three times larger than the original image evolved by

human user in Picbreeder, suggesting that fitness-based selection all but guarantees that

the resulting representation will be a piecewise construction of the a priori objective, if it

can be reached at all. Such experimental results suggest that how something is evolved has

an effect on the resulting representation. In particular, searching for an a priori objective

is usually deceptive because stepping stones that do capture important concepts often do

not resemble the objective. To illustrate this point, figure 4.1 shows a number of significant

discoveries in Picbreeder for which a key stepping stone was very different from the resulting

image. The plethora of such examples in Picbreeder shows that serendipitous discoveries are

not accidental, nor are they uncommon.

In one particular account, Stanley (2010) relates that the he branched the Alien Face (fig-

ure 4.1b-left) expecting to evolve more alien faces. Instead, what he saw was that the eyes

descended to become like the wheels of a car (figure 4.1b-right), an unexpected innovation

that he recognized as significant. The point is, if Stanley had intended to evolve a car, then

he would not have chosen to branch from the Alien Face, nor would he have thought to evolve

the Alien Face along the way. From this experience emerged the paradoxical insight that

the only way to find images like the Teapot, the Car, the Skull, the Butterfly, the Planet,

the Lamp, and many others is by not looking for them. Such experiences from Picbreeder

suggests that humans are uniquely adept at identifying promising stepping stones, even if

their ultimate destination is entirely unclear (Woolley and Stanley, 2011).
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(a) Stepping stone to the Teapot (b) Stepping stone to the Car

(c) Stepping stone to the Skull (d) Stepping stone to the Butterfly

(e) Stepping stone to Jupiter (f) Stepping stone to the Lamp

Figure 4.1: Stepping stones in Picbreeder rarely resemble the final product. Some
examples include: the Egg Wearing a Hat yielded the Teapot (a), the Alien Face yielded the
Car (b), the Dish yielded the Skull (c), Face to Face yielded the Butterfly (d), the G yielded
a Jupiter-like planet (e), and an eye yielded the Lamp (f). Nearly every interesting image in
Picbreeder emerged as the result of such a serendipitous discovery.

While the results from Picbreeder and novelty search are intriguing, their interpretation has

also been controversial. Although they suggest that searches not driven by explicit objectives

might sometimes offer more potential than those that are, they seem to offer few alternatives

other than searching only for novelty or leaving the search entirely to human guidance.

However, work with novelty search has shown that it may become lost in especially large

spaces (Kistemaker and Whiteson, 2011; Lehman and Stanley, 2010b), and Takagi (2001)

warns that interactive evolutionary computation (IEC) is limited by human fatigue. With
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such limitations for alternative approaches, the news that traditional objectives offer little

hope is not especially encouraging.

One potential response is to hybridize an objective-based search with a search for novelty,

as in Novelty-Based Multiobjectivization (Mouret, 2011). Yet while this idea undoubtedly

works in some cases, in others the reintroduction of the objective, even partially, only disad-

vantages the search. After all, as recent critiques of objective-based search have pointed out,

the fundamental problem with objectives is that they often penalize essential intermediate

stepping stones that lead to the objective because those stepping stones do not resemble the

objective (Ficici and Pollack, 1998; Lehman and Stanley, 2008, 2011; Woolley and Stanley,

2011), and reintroducing a deceptive objective back into the search consequently reintro-

duces the deleterious effects of such objective-based search. Such concerns do not imply

that objectives are never useful, or that hybrid objective/non-objective approaches cannot

help; rather they open the door to the possibility that more can be done to emphasize the

discovery of essential stepping stones.

Thus the aim of the NA-IEC approach is to translate Picbreeder’s ability to serendipitously

discover interesting areas in the space of evolvable images to support the evolution of prin-

cipled agent behaviors. The intuition is that human users will similarly recognize principled

controller policies in the initial generations and later in the search that will establish what is

important in the domain and lead to robust solutions. However, because the discoveries of

Picbreeder are also the result of many minds with many divergent interests (Stanley, 2010),
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as a replacement for a community of users laying stepping stones for each other, the NA-IEC

approach interleaves short-term novelty searches with such interactive evolution to provide

innovative stepping stones from which serendipitous discoveries can lead to robust solutions.

The hope is that these two techniques, which have never been combined before, will work to-

gether to achieve innovative discoveries that could not be made with a priori objectives. The

goal is to discover robust agent behaviors by abandoning the fitness gradient and leveraging

human intuitions about the domain, bootstrapped with novelty-driven exploration.

By allowing a human evaluator to explore the space of agent behaviors without regard to an

objective, and by augmenting the traditional IEC approach such that the next population

is generated by a short-term novelty search, the human evaluator is presented with a broad

view of where the evolutionary search can go from its current position. To illustrate this

idea, figure 4.2 shows two Picbreeder populations as a metaphor for what will ultimately be

animations of agent behavior in the final implementation (Chapter 7). Figure 4.2a shows

a typical population reproduced from the Skull, where variations are the result of random

mutations. Figure 4.2b, which is also derived from the Skull, shows a collection of diverse yet

still interesting images that were discovered within the vicinity of the Skull. This example

illustrates how interleaving IEC with novelty search can potentially enhance the human-led

evolution by providing a summary of the novel artifacts nearby.

In practice, this ability to quickly generate novel stepping stones is important because the

populations of animated candidate behaviors must be evaluated individually, which is a
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(a) Random mutations of the Skull (b) Novel candidate images beyond the Skull

Figure 4.2: Mockup of a novelty-assisted Picbreeder search. A typical population
of candidate images branched from the Skull (a) exhibits random mutation alone, giving
the human evaluator little opportunity to consider genuinely innovative mutations. Instead,
(b) shows a mockup of what running novelty search for just a few generations between
user selections might provide. In this way, the human evaluator is presented with a set of
agnostic stepping stones in the current search area from which they may identify meaningful
innovations and follow the gradient of interestingness toward a principled solution that could
not have been known to exist a priori.

burdensome task compared to the quick glance required for Picbreeder. Additionally, this

approach also provides the human user with a breadth of stepping stones that they would

never have created on their own, thus substituting for the key feature in Picbreeder that

enables the proliferation of serendipitous discoveries, i.e. the ability to branch from another

user’s published image. The next section provides a detailed description of the NA-IEC

approach and subsequent framework.
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4.2 Novelty-Assisted IEC Framework

The main idea behind the NA-IEC approach is that the ability of humans to identify promis-

ing stepping stones is naturally complemented by the ability of novelty search to generate

sets of potential stepping stones. In other words, novelty search can mitigate the main weak-

ness of IEC, i.e. that humans grow tired quickly (Takagi, 2001), by offloading most of the

exploratory work. This way, novelty search becomes a kind of stepping-stone scavenger that

is interleaved with human evaluations that determine which stepping stones are the most

promising. Furthermore, neither the human nor the novelty search are guided by any ex-

plicit objective, thereby also mitigating the threat of reintroducing deception. Furthermore,

in this approach, instead of forcing a human experimenter to articulate through a fitness

function exactly what should be rewarded in a complex domain, the human can instead

leverage highly-nuanced implicit hunches that all of us have about what is promising. The

result is a powerful synergy between two promising non-objective processes that reintroduces

to novelty search a sense of control (i.e. from the human) without reintroducing an explicit

objective.

In addition to the ability of humans to recognize key stepping stones (i.e. interesting be-

haviors), users familiar with EC are also likely to have some sense about what direction

evolution ought to go next. In other words, while individual modes of evolution have limita-

tions overall, each is effective under the right conditions. Why then lock ourselves into any

one such approach? Thus the NA-IEC framework described here allows the user to specify
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the mode of evolution that they feel is most appropriate at each step during evolution; the

three evolutionary modes provided are: a traditional IEC step, a short-term novelty search,

and an objective-based optimization operation.

In this way, the user can apply short-term evolutionary operations where appropriate, even

changing the mode of evolution during the course of the search, to reach a satisfactory

(or just interesting) solution. The ability of a human user to apply powerful automated

approaches like objective-based search (De Jong, 2002; Eiben and Smith, 2003; Fogel, 2006;

Goldberg, 1989) and novelty search (Lehman and Stanley, 2008, 2011) in short bursts and

when appropriate is a key contribution of the NA-IEC approach. The primary hypothesis is

that letting the user make a relatively small number of critical selections during evolution,

and leaving the remainder of search to automated approaches seeded by those user selections,

can significantly augment the pace of evolution and the quality of its discoveries.

Figure 4.3 shows the main interface for the system, where the user can choose among the Step,

Novelty, and Optimize operations. Choosing the Step operation creates a new generation

of offspring through the recombination and mutation of the selected candidate behaviors.

This classic approach to IEC is simple and computationally inexpensive, i.e. it only creates

a handful of new candidates.

Choosing the Novelty operation causes evolution to explore the space of agent behaviors

without regard to an objective and then present the human evaluator with a broad view

of where the evolutionary search can go from its current position. To accomplish this aim,
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(a) Maze Domain (b) Octopus Arm Domain

Figure 4.3: Screenshot of the NA-IEC user interface. The user interface for the NA-
IEC framework consists of the Evolution Controls, the Evolution Options, and the Evaluation
Population. Candidate solutions are represented in the maze domain (a) by a gradient
trail that shown the robot’s behavior, and as animations in the octopus arm domain (b).
Selected candidates are shown with a green border and solutions are highlighted with a white
background. Unlike traditional IEC applications, the user can select one of three evolution
modes at each step: Step, Novelty, or Optimize. The Publish button saves the results of a
completed run for later analysis. In the future it may be connected to the Internet.

the next IEC population is generated by seeding a larger population with variations of

the user-selected candidate behaviors and then running novelty search in the background

to find novel individuals (in comparison to what has been encountered previously in the

search) based on the sparseness measure ρ(x) from equation 2.1 and the threshold ρmin.

The underlying evolutionary algorithm is NEAT (Stanley and Miikkulainen, 2002, 2004),

which is often the base algorithm under novelty search (Lehman and Stanley, 2008, 2011).
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Furthermore, to ensure that novelty is measured with respect to the entire search completed

so far, all individuals encountered during both traditional IEC steps and interleaved novelty

searches throughout an NA-IEC session are measured for their novelty and entered into the

permeant archive if their novelty score is greater than the threshold ρmin.

The novelty search runs until at least n new individuals are added to the evaluation popu-

lation (although it is possible that more than n such novel candidates may be found when

the larger population is first created), where n is the size of an on-screen IEC population.

At that point, the collected novel individuals become the next IEC generation and control is

returned to the user. By convention, the n novel individuals are sorted by their novelty score

before the NEAT-based speciation adjustment to place the most novel candidate behaviors

on the first visible page of the on-screen IEC population. While the Novelty operation is

significantly more computationally expensive than the Step operation, it provides the human

user with a breadth of stepping stones that would have been time-consuming or impossible

to discover on his or her own under the narrow view of a traditional single IEC step, which

only presents the user with a handful of direct one-generation descendants. In a sense, the

set of stepping stones returned to the user by novelty search is like the set of images evolved

by other users from which a visitor to Picbreeder can branch: In both cases, someone or

something else has put in effort to collect a set of interesting jumping-off points and present

them to the user.
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By augmenting the human-led interactive search with interleaved novelty searches, a small

population can be constructed that contains a set of novel stepping stones around the

currently-selected candidates. In the event that evolution cannot fill the next generation

with a sufficient number of new archive members in a reasonable amount of time, the eval-

uation threshold can be decreased incrementally to allow the search to conclude quickly.

This approach does not imply that the set of novel agent behaviors presented to the evaluator

will be good at a potential task. What is important is that they are behaviorally diverse;

it is the human evaluator who will direct the search by recognizing what is promising for

a given domain. The goal is to promote innovation through serendipitous discovery, and

presenting the various directions that the search can take leverages the human evaluator’s

inherent ability to recognize what is important or interesting in a particular domain.

Finally, because objective-based optimization is likely the best option for perfecting well-

formed behaviors already discovered, the user is also given the option to request seeding a

traditional objective-based search with currently-selected individuals. The objective-based

search then runs until a specified solution criterion is met or until the user requests it to

terminate, at which point the most fit individuals discovered so far will update the on-screen

IEC generation. Providing this traditional option allows users to optimize candidates that

are near an objective attractor that the user would prefer to approach automatically once

it is within striking distance, i.e. once the search is no longer deceptive and the primary

discovery is already made.
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In summary, three types of search will be available: a traditional interactive evolution where

human selections become the parents for the next generation, a traditional fitness-based

approach where competitive selection is based on performance, and an interleaved novelty

search (i.e. the NA-IEC approach) where human selections seed a short-term novelty search

that builds the next IEC generation as a collection of novel behaviors starting from what the

human user identified as interesting. The user will be free to change the mode of evolution

between generations, thus allowing evolution to proceed in the capacity best suited for the

current task. In this way, the human user may begin a NA-IEC session by exploring the

space of behaviors agnostically. After an interesting behavior is established, the mode of

evolution may be changed to optimize it. As a proof-of-concept for this new evolutionary

approach, the next chapter revisits the deceptive maze domain (Lehman and Stanley, 2008,

2011) and compares NA-IEC to pure novelty search and traditional fitness-based search.
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CHAPTER 5
PROOF-OF-CONCEPT: MAZE NAVIGATION

The purpose of the experiment in this chapter is to establish for the first time the effec-

tiveness of the novelty-assisted interactive evolutionary computation (NA-IEC) approach by

comparing it to pure novelty search and objective-based search in evolving neurocontrollers

for robots in the deceptive mazes of Lehman and Stanley (2011). Interestingly, while nov-

elty search was previously shown significantly more effective than objective-based search in

this domain (Lehman and Stanley, 2011), the experimental results here show that NA-IEC

outperforms novelty search by a multiple of three to four times, yielding by far the fastest so-

lution on these deceptive problems. Furthermore, NA-IEC is also three times faster in clock

time, even with the human in the loop, suggesting that perhaps the effort spent crafting

objectives functions, which are often deceptive anyway, would be better spent in obtaining

a small number of suggestions from a human evaluator during the search process itself. The

details of the deceptive maze domain are presented next.

5.1 Deceptive Maze Domain

The deceptive maze domain introduced by Lehman and Stanley (2008, 2011) is the obvious

choice as a proving ground for the NA-IEC framework because it is well established as a
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(a) Medium Map (b) Hard Map

Figure 5.1: Maze navigation maps (Lehman and Stanley, 2008, 2011). The de-
ceptive maze domain is a metaphor for search and is not a path-planning problem. Rather,
the aim is to evolve a neural network that drives a robot through the maze; walls represent
barriers to search and the cul-de-sacs represent local-optima that can deceive objective-based
search.

deceptive benchmark in which novelty search has already been shown to be effective. In this

way, the same fitness function and behavior characterization can be applied, thus isolating

any performance differences to the individual evolutionary approach.

In the deceptive maze domain a simulated robot must navigate through a maze (figure 5.1)

without a priori knowledge of the maze layout. Rather, the agents that act within the

maze have a sensor package with six rangefinders that detect the walls and four pie-slice

sensors that signal the direction to the goal (figure 5.2a). An example of an agent in the

maze is shown in figure 5.2b. Each robot’s navigation behavior, encoded as an artificial

neural network (ANN), maps sensor inputs to actions, i.e. turn rate (left/right) and velocity

(forward/backward), as shown in figure 5.2c. Under this construction, navigators must evolve

a control policy that traverses the maze based on sensory input.
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Figure 5.2: Maze navigation robot (Lehman and Stanley, 2008, 2011). The sensor
package (a) includes six rangefinders that detect walls and four pie-slice sensors that signal
the general direction to the goal, e.g. the agent in the maze (b). The navigation behavior,
encoded as an ANN (c), maps sensor inputs to actions, i.e. turn rate (left/right) and velocity
(forward/backward). Under this construction, navigators cannot see the whole maze and
must evolve a control policy that traverses the maze based on sensory input.

The medium and hard maps in figure 5.1 are deceptive by design because the maps contain

cul-de-sacs that represent local optima in the search space. If fitness is assigned based

on reducing the distance to the goal, then the objective function prunes out of the search

the deceptive intermediate solutions (i.e. those that move away from the goal location)

needed to reach the global objective. While an alternative objective function that rewards

specific intermediate solutions is conceivable, the point of this domain is to explore the

effect of objective fitness when the precise stepping stones are not known, which is the

typical predicament in most domains of interest. In such cases, as in the objective function

here, performance is generally rewarded for its proximity to the target behavior. Thus

evolution driven by proximity to the goal often converges to a cul-de-sac from which the goal

is inaccessible.
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5.2 Maze Navigation Experiment

The aim of this experiment is to compare the NA-IEC approach against pure novelty search

and fitness-based search directly, thus the experiment is conducted in the deceptive maze do-

main introduced by Lehman and Stanley (2008, 2011) and described in the previous section.

In the deceptive maze domain, the goal is to evolve a navigation behavior that drives a robot

from the start to the finish of the medium maze or the hard maze shown in figure 5.1, which

are constructed with several cul-de-sacs that create local optima in the fitness landscape.

Interestingly, these local optima are so deceptive that Lehman and Stanley (2008, 2011)

found that novelty search significantly outperforms objective-based search in both mazes.

The question here is, can NA-IEC do even better?

To compare performance, each approach is evaluated over 30 runs on the medium and hard

maps. While novelty search and fitness-based search are both automated algorithms, the

NA-IEC approach requires a human evaluator. To accomplish the NA-IEC portion of this

experiment, six users (not the author) were recruited who were familiar with novelty search

and EAs. These users were introduced to the NA-IEC framework and each asked to evolve

five solutions to the medium map and five solutions to the hard map. The aim is to char-

acterize the performance that can be reasonably expected from a practitioner in EC when

evolving with NA-IEC. Users were permitted to restart if they felt that evolution had become

stuck. However, all evaluations before such restarts were recorded as a part of the same run.
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Inevitably, some will argue that such human guided runs have an unfair advantage because

the user can see the path through the maze. To address this concern, an additional fitness-

based experiment, inspired by Risi and Stanley (2011) is conducted. In this additional

experiment the primary deceptive element of the maze navigation domain, i.e. the attraction

of agents to cul-de-sacs, is removed. In this alternative reward scheme, candidates are

rewarded for progressing along a path that actually leads to the goal. Figure 5.3 shows the

waypoints (which are invisible to the agent) in the medium and hard maps. In this waypoint-

directed version of the experiment, the fitness function f is defined such that agents are

rewarded for each waypoint crossed (including the goal), they also receive a partial reward

for approaching the next waypoint:

f = n+ (1− d), (5.1)

where n is the number of waypoints reached and d is the distance to the next waypoint

(proportional to distance between waypoint wi and wi−1, in the range [0, . . . , 1]).

In all variations of this experiment, as in Lehman and Stanley (2008, 2011), the ANN con-

trollers are evolved by the NeuroEvolution of Augmenting Topologies (NEAT) approach

introduced by Stanley and Miikkulainen (2002, 2004), which was reviewed in Section 2.1. As

applied to maze navigation policies, evolution begins with a population of simple behaviors

that are represented by fully-connected networks with 22 connections, no hidden nodes, and

the inputs/outputs in figure 5.2c. As the underlying networks add complexity (i.e. new nodes

and connections), features and nuances emerge in the resulting behaviors that could not be
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Figure 5.3: Maze navigation waypoints. To compare how much advantage is gained
from knowing the path to the goal, waypoints (which are not seen by the agent) are provided
for the medium and hard maps. In this way, deception is removed by allowing a traditional
fitness-based search to reward solutions that discover stepping stones that are on the path
to the goal.

expressed by the simpler ANNs. Finally, it is important to note that these experiments,

some of which resemble the experiments of Lehman and Stanley (2008, 2011), were re-run

to ensure a fair comparison and to validate this implementation. A detailed description of

the experimental parameters can be found in the Appendix.

5.3 Experimental Results

As with the original experiment by Lehman and Stanley (2008, 2011), a navigation behavior

that finishes within five units of the goal location is considered successful. The main result

is that NEAT with NA-IEC discovers such solutions in significantly fewer evaluations than

both NEAT with novelty search and fitness-based NEAT on the medium and hard maps.

Furthermore, despite the expense of waiting on the human to evaluate a panel of candidate
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solutions, NA-IEC also consumes less clock time in search, suggesting that the value of

the user’s direction easily offsets the delay of waiting for human input. Another result is

that NA-IEC produces solutions with significantly fewer hidden nodes than both novelty

search and fitness-based search, further suggesting the importance of allowing a human

evaluator to make key decisions about the direction of evolution. While some may dismiss

such improvements based on the human evaluator’s ability to see the path through the maze,

results from the waypoint-directed search, a non-deceptive fitness-based experiment, are on

par with NEAT with novelty search, which is still well below the performance of NEAT

with NA-IEC. The implication is that NEAT with NA-IEC not only exposes key stepping

stones, but also provides evolution with subtle insights about the domain that are not easily

incorporated into a traditional fitness function a priori.

On the medium map (table 5.1a), users directing NEAT with NA-IEC found 30 solutions

in an average of 6,729 (sd = 8, 068) evaluations. These results are significantly (p < 10−6;

Student’s t-test) faster than NEAT with novelty search (22,116 evaluations, sd = 10, 157),

fitness-based NEAT (55,066 evaluations sd = 47, 339), and waypoint-directed NEAT (22,594

evaluations sd = 11, 982), each averaged over 30 runs (figure 5.4a). Furthermore, users

solved the medium map in an average of 294 (sd = 359) seconds, which is 2.8 times faster

than novelty search, 9.1 times faster than fitness-based search, and 2.0 times faster than the

waypoint-directed search (figure 5.5a). While solutions from novelty search, fitness-based,

and waypoint-directed search have on average 3.2 (sd = 1.9) hidden nodes, 2.9 (sd = 1.65)

hidden nodes, and 3.0 (sd = 1.8) hidden nodes respectively, solutions produced by NA-IEC
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are significantly simpler, averaging just 0.23 (sd = 0.5) hidden nodes per solution (p < 10−10;

Student’s t-test).

On the hard map (table 5.1b), the NA-IEC approach evolved 30 successful navigators in

an average of 7,481 (sd = 6, 610) evaluations, which is a significant (p < 10−5; Student’s

t-test) improvement over not only NEAT with novelty search alone (33,320 evaluations,

sd = 20, 949), but also over the non-deceptive (i.e. waypoint-directed) version of fitness-

based NEAT (26,954 evaluations, sd = 18, 464), each averaged over 30 runs. In the case of

fitness-based NEAT, as in Lehman and Stanley (2008, 2011), no comparison could be made

because only four of 30 runs evolved solutions for the hard map. Solution rates for the hard

map are shown in figure 5.4b. In addition to evolving successful navigators for the hard map

in fewer evaluations, NA-IEC did so on average in just 402 (sd = 374) seconds, which is 3.5

times faster than NEAT with novelty search and 2.5 times faster than the waypoint-directed

search (figure 5.5b). Regarding complexity, solutions from novelty search have on average

3.3 (sd = 1.8) hidden nodes and solutions from the non-deceptive search have an average of

3.5 (sd = 2.0) hidden nodes, while those evolved by NA-IEC are significantly smaller with

0.5 (sd = 1.01) hidden nodes (p < 10−8; Student’s t-test).

Typical patterns of exploration for each approach in the medium and hard maps are shown

in figure 5.6, which compares the distribution of all ending points visited during a typical

run. As Lehman and Stanley (2008, 2011) discovered previously, the traditional fitness-

based approach is attracted to the cul-de-sacs in the maze (figures 5.6a and 5.6b), while

69



Table 5.1: Maze navigation results. The NEAT with NA-IEC approach found solutions
to the medium (a) and hard (b) maps in fewer evaluations, with lower complexity (i.e. fewer
hidden nodes), and in less time overall than both NEAT with novelty search and fitness-
based NEAT. Interestingly, the NA-IEC approach also outperformed a waypoint-directed
search that explicitly rewarded agents for progressing along the solution path, thus making
it difficult to say that the improvements by NA-IEC are simply the result of the human
evaluators ability to see the path through the maze. Such results suggest there is a significant
amount of information in this domain that can be leveraged by allowing human insight to
guide search.

(a) Medium Map

Evolution Mode Evaluations Connections Hidden Nodes Run Time (sec)
NA-IEC 6, 729± 8, 068 22.5± 1.4 0.2± 0.5 294± 358
Novelty 22, 116± 10, 156 28.4± 2.8 3.2± 1.9 835± 443
Fitness 55, 066± 47, 339 23.3± 2.3 2.9± 1.6 2, 683± 2, 619

Directed 22, 593± 11, 982 26.8± 2.5 3.0± 1.8 597± 506

(b) Hard Map

Evolution Mode Evaluations Connections Hidden Nodes Run Time (sec)
NA-IEC 7, 481± 6, 610 22.6± 2.3 0.5± 1.0 402± 374
Novelty 33, 320± 20, 949 28.8± 2.8 3.3± 1.8 1, 396± 1, 058
Fitness − − − −

Directed 26, 954± 18, 464 26.8± 2.2 3.5± 2.0 1, 005± 1, 081

selecting for behavioral novelty allows NEAT to explore the space of possible behaviors

more evenly (figures 5.6c and 5.6d). Such search distributions are the result of selection

pressure; thus when the objective-function rewards agents for following the solution path

(figures 5.6e and 5.6f) the cul-de-sacs no longer deceive evolution. Interestingly, when the

points visited during NA-IEC are plotted in this way (figures 5.6g and 5.6h), the signatures of

the human selector becomes evident. As expected, the first of these is that there are far fewer

points in the cul-de-sacs than in both novelty search and even the waypoint-directed search,

demonstrating the intolerance of the human user for behaviors that explore these spaces.
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Figure 5.4: Evaluations required to find solutions. The number of evaluations re-
quired by NEAT with NA-IEC, NEAT with novelty search, fitness-based NEAT (pure), and
waypoint-directed NEAT to find solutions are shown for the medium (a) and hard (b) maps.
The average number of evaluations to reach a solution is marked by a line while the boxed re-
gions extend out to one and two standard-deviations; the distribution of the individual data
points is also shown. As in work by Lehman and Stanley (2008, 2011), fitness-based NEAT
is generally deceived in the hard map and is unlikely to produce solutions. The main result
is that the NA-IEC approach consistently finds solutions for the medium and hard maps in
significantly fewer evaluations than not only novelty search and fitness-based search, but is
also faster than fitness when the path through the maze is known. Such results suggest that
the human user’s ability to recognize and select important characteristics as they emerge is
directing evolution in a meaningful way.

The second signature is that there are frequently tight groupings of points at key junctions

in the map, indicating that the user is probing these areas of the search space for a behavior

that can turn a corner and enter a new chamber of the maze. Such observations demonstrate

how the human evaluator is contributing his or her insights to the search. Furthermore, it

is interesting how these human effects are so readily visible in the points plotted.

Finally, it is also important to analyze the behavior of the human users, especially in light of

the human susceptibility to fatigue in IEC (Takagi, 2001). During the NA-IEC runs on the

medium map, users made an average of 30.1 (sd = 40.5) choices, applying the Step function
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Figure 5.5: Wall-clock time required to find solutions. The actual time required for
different approaches to find solutions are shown for the medium (a) and hard (b) maps. The
average number of seconds to reach a solution is marked by a line while the boxed regions
extend out to one and two standard-deviations; the distribution of the individual data points
is also shown. Surprisingly, the NA-IEC approach finds solutions for the medium and hard
maps significantly faster, even with a human in the loop. This result suggests that the human
evaluator’s time may be better spent looking for solutions serendipitously during evolution
instead of spent crafting an appropriate fitness function.

29.8% of the time, the Novelty function 47.8% of the time, and the Optimize function

22.4% of the time. Similarly, solution were found for the hard map with an average of

32.0 (sd = 23.5) human choices, of which 29.2% were Step functions, 58.9% were Novelty

functions, and 11.9% were Optimize functions. These statistics demonstrate that Novelty is

the preferred operation at most times, and that out of thousands of evaluations, only a few

dozen user selections can dramatically reduce the overall cost of a run.
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Figure 5.6: Distribution of final points visited. Each maze shows the final position
for all candidates in a typical run. The density of points shows how NEAT with NA-IEC,
NEAT with novelty search, and fitness-based NEAT behave in the deceptive maze domain.
As in Lehman and Stanley (2008, 2011), fitness-based search is attracted to the cul-de-sacs,
while the points visited by novelty search are more evenly distributed throughout the maze.
For the NA-IEC runs, the human user’s influence is clearly visible, i.e. there are significantly
fewer points in the major cul-de-sacs and tight groupings of points around key junctions.
Such characteristics reveal how human selections are impacting evolution.
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5.4 Implications

In the deceptive maze domain, humans make a good team with novelty search and objective

optimization, which helps to finish the job. In both mazes, users choose Novelty to generate

the next set of choices significantly more frequently than the other options. The stepping-

stone generator of novelty search provides a desirable menu of possibilities to the human user,

ultimately exceeding the performance of novelty search alone by several times.1 Nevertheless,

a natural question is whether such results are somehow specific to the maze domain. Perhaps

humans harbor a particularly keen insight into the most promising robot behavior in mazes,

but would lack such insight in other domains.

For example, one hypothesis might be that humans in effect know the right path through the

maze because they can see the whole maze. Yet this interpretation is not entirely accurate.

The correct path through the maze is not equivalent to the correct path through the search

space. While some behaviors seem clearly dead ends (such as being caught in the most

obvious cul-de-sac in the hard maze), others are less obvious. It is not necessarily the case

that just because one behavior drives the robot farther down the correct path that it must

be a more promising stepping stone. Some such behaviors are themselves dead ends that

cannot push farther. Also, humans perceive more subtle and nuanced indicators that are

also important, such as path smoothness or unnecessary loops in the robot trajectory. A

behavior in which the robot doubles back on itself and then turns back onto the correct path

1The results in this chapter also exceed the reported performance of novelty–fitness multi-objective hy-
brids (Mouret, 2011).
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may be just as ominous as being stuck in a dead end. Humans intuitively understand these

kinds of dangers, yet to articulate them in an objective function would be quite challenging,

and would almost certainly take more time than simply guiding the search away from them,

whether they are easy to formalize or not.

In this sense, while only future empirical results can settle this issue, there is reason to

believe that humans would carry similarly critical insights into other domains. For example,

in a biped-walking task (Lehman and Stanley, 2011; Reil and Husbands, 2002; van de Panne

and Lamouret, 1995), humans can see that certain kinds of leg oscillations are promising

even if the robot falls down. Yet to describe exactly what makes them promising in a fitness

function is likely prohibitive. The human’s overhead view, and hence knowledge of the

mazes, should be viewed metaphorically as like any intuitive understanding of the shape of

a particular behavior space. Just as we can see in the maze that certain passageways must

precede other passageways, so we can see in a biped robot that oscillations and balance must

precede walking. While it is possible that the intuitive insight into some domains is less than

in the maze domain, the highly significant advantage provided by such insight in the maze

domain suggests that even if the advantage were less elsewhere, it could still be significant.

NA-IEC also may be important for more than just optimization. In some spaces, such as

in morphological evolution or with sophisticated encodings, we may be more interested in

what is possible than in achieving a particular end result. The apparent synergy that results

from humans combined with novelty search could be leveraged in the future to show us more
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about such spaces than trying to solve specific problems. With all the limitations recently

shown for objective-based search, NA-IEC provides an alternative without relinquishing our

desire to have some say in the process, which is what the traditional fitness function usually

facilitates anyway.

Finally, perhaps for some the involvement of a human will be unpalatable, violating a desire

for total automation in machine learning. Yet the human must be involved somewhere.

After all, human researchers at the very least define the traditional fitness function for

their experiments. That is one reason NA-IEC was tested with humans with experience in

EC. Perhaps our effort and knowledge as researchers would be better applied by providing a

modest set of hints to evolution that draw on our rich intuitive understanding of the domain,

rather than through trying to articulate at the start of evolution an ad hoc formalization of

what kind of behavior should necessarily precede what. Humans in this study only spent up

to ten minutes to make a few dozen selections among thousands of evaluations, much of which

was automated by novelty search. It is arguable that these few minutes represent time better

spent than the time-consuming guesswork usually invested in crafting an objective function.

In any case, if our aim is to produce the very best results, as opposed to simply showing that

an automated process can achieve a particular benchmark, then what we ultimately discover

should matter more than how we get there.
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5.5 Conclusion

This chapter presented the proof-of-concept experiment for the NA-IEC approach (Chap-

ter 4), wherein the intuitive ability of human users to identify promising stepping stones

is augmented by an agnostic stepping stone generator (i.e. novelty search) seeded with the

behaviors selected by the user. In this way, evolution proceeds unconstrained by a priori ob-

jectives, but still traverses key stepping stones that are meaningful to the human evaluator.

The result was a powerful synergy that allowed human users to realize what was important

for a given domain during evolution. Furthermore, such serendipitous exploration found

solutions in fewer evaluations, at lower genomic complexities, and in significantly less time

overall than not only novelty search and fitness-based search alone, but also outperformed

a waypoint directed search, suggesting that human direction in NA-IEC eases the need to

craft domain-specific fitness functions. Thus the experiment validates the key contribution

of the NA-IEC approach, i.e. that it accelerates the rate and quality of evolution by lever-

aging human-level domain knowledge without burdening the user with the responsibility of

evaluating every candidate created during evolution.

The next chapter introduces the octopus arm challenge domain by first approaching it

through traditional objective-driven search. The NA-IEC approach is then applied to this

domain in Chapter 7. If successful, the results of such a culminating experiment would

solidify the importance of allowing human intuition to direct evolution.
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CHAPTER 6
A HIGH-DIMENSIONAL CONTROL DOMAIN

This chapter presents a traditional objective-driven experiment in the octopus arm domain,

a well recognized machine learning domain that is challenging due its high-dimensional state-

action space. The original purpose of this work, which is published in the 11th International

Conference on Parallel Problem Solving from Nature, PPSN–XI (Woolley and Stanley, 2010),

was to demonstrate how an indirectly-encoded neurocontroller for a simulated octopus arm

leverages regularities and domain geometry to capture underlying motion principles and

sidestep the superficial trap of dimensionality that overwhelms traditional machine learning

approaches. However, while the objective-based experiment presented here successfully an-

swers the problem of dimensionality, the hypothesis in this dissertation is that the results

could be better, i.e. the evolved controller solutions suffer from the presence of the objective

function. Thus this advanced approach to evolving control behaviors sets the stage for a

culminating experiment in the next chapter that compares objective-based solutions against

solutions discovered serendipitously by the NA-IEC approach presented in Chapter 4. The

hope is that the non-objective approach, guided by the human evaluator’s insights and ex-

periences, will discover arm control behaviors in fewer evaluations.

To understand the need for an indirectly encoded controller, note that traditional approaches

in evolutionary computation and machine learning often associate the number of dimensions

in the state and action space with problem difficulty (Floreano et al., 2008; Kaelbling et al.,
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1996; Sutton and Barto, 1998; Yao, 1999). Yet the complexity of problems should not be

determined by the dimensionality of such representations, which are a superficial proxy

for the underlying conceptual problem. Instead, the problem complexity should correlate

with the underlying principle to be discovered. The argument behind the octopus arm

experiment in this chapter is that indirect encoding, which means describing the solution

as a pattern through a compressed representation (Bongard and Pfeifer, 2003; Hornby and

Pollack, 2002; Stanley et al., 2009; Stanley and Miikkulainen, 2003), is the essential ingredient

that will allow traditional learning approaches to transcend the superficial aspects of problem

dimensionality.

To make this point, the simulated octopus arm is approximated as a two-dimensional struc-

ture of interconnected muscles that must act together to create a coordinated behavior. Thus

it induces a high-dimensional state space and action space (i.e. because each muscle in each

arm segment can be articulated independently).

The details of the original octopus arm experiment (Engel et al., 2006) are interesting because

they set a new standard for high-dimensional control that this study pushed even further.

The 10-segment arm had a state space with 88 dimensions (i.e. position and velocity for each

vertex) that map to the six discrete actions shown in figure 6.1. Engel et al. (2006) chose

these six actions to reduce the otherwise prohibitively large action space created by so many

muscles. However, the aim of the work in this chapter is to learn from the full unprocessed
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Figure 6.1: Octopus arm actions. While there are theoretically many other combinations
of muscle contractions possible, Engel et al. (2006) limited their model to these six to make
the domain tractable. Line thickness indicates the strength of the contractive force applied.

action space. Furthermore, unlike any system before, the learned controller is asked to scale

to even larger arms without further learning.

The octopus arm problem is thus an ideal domain for demonstrating the ability of indirect

encoding to transcend such superficial dimensionalities. After all, the underlying kinematic

control principle is similar regardless of the precise number of segments (i.e. muscles and sen-

sory inputs), suggesting that an approach that is sensitive to its particular dimensionality

is missing something fundamental. This assertion is evident if we consider how the contrac-

tive patterns shown in figure 6.1 can be applied to support arms with more segments. To

demonstrate this point, an indirect encoding called Hypercube-based NeuroEvolution of Aug-

menting Topologies (HyperNEAT) in this chapter evolves a description of how the weights of

a neurocontroller relate to each other across the domain geometry irrespective of the arm’s

precise physical dimensionality (D’Ambrosio and Stanley, 2007; Gauci and Stanley, 2007,

2010; Stanley et al., 2009). This approach means that the HyperNEAT controller actually

learns to articulate all the muscles independently without the need to partition the action
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space up front. Furthermore, as should be the case in learning such problems, the indirect

encoding learns controller solutions in equivalent time regardless of the number of segments

in the arm, and when transferred without further training, solutions evolved on smaller arms

retain the fundamental motion model because they simply extend the general kinematic

concepts discovered at the original size.

While this work clearly demonstrates the importance of indirect encoding in complex control

domains, the experiments are ultimately guided by the fitness function and are consequently

subject the deleterious effects described in Chapter 3. In this case, the seemingly successful

results may nevertheless be flawed because evolution followed the objective-gradient and

failed to establish genuine kinematic principles. Thus, the purpose of this chapter is to

introduce the challenge domain in which the NA-IEC approach will be applied to demonstrate

later (in the next chapter) how serendipitous discovery via a human-led search can produce

better solutions more quickly (i.e. in fewer evaluations) than traditional objective-based

approaches. The details of the simulated octopus arm domain are presented next.

6.1 Simulated Octopus Arm

The simulation domain in this work, based on Yekutieli et al. (2005), models the kinemat-

ics and dynamics of a two-dimensional muscular hydrostat, which is the mechanism of the

octopus arm (Kier and Smith, 1985), as a chain of quadrilateral polygons with fixed area
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connected to a fixed base. The model constructs arms based on length (l), width (w), taper

(t), mass (m), and number of segments (n). At the vertex of each quadrilateral is a point

mass shared by adjacent segments. The dorsal, or upper, and ventral, or lower, edges of each

segment represent longitudinal muscles while the vertical edges between sections represent

transverse muscles. The muscles, modeled as spring-joints, are contracted by increasing the

spring constant and relaxed by reducing the spring constant.

The fixed size and incompressible nature of the arm are the key features that enable the

dynamic motion of the muscular hydrostat. These attributes are modeled by adjusting

each segment’s internal pressure: as external forces act to compress a segment, pressure

increases; conversely, as forces stretch and expand the segment, internal pressure decreases.

Thus segments change shape to restore the equilibrium between surface tension and internal

pressure. Figure 6.1 shows the six basic actions utilized in Engel et al. (2006) as examples

of the model’s motion effects. However, in this work, the neurocontroller has independent

control of all 3n muscles in the arm, creating a high-dimensional action space.

Because these experiments involve moving towards a perceived object, unlike Engel et al.

(2006), the arm state is defined by sensor inputs that allow the controller to infer the position

of each segment relative to the target. Range sensors along the arm provide cues about

target position. Each sensor at each segment produces 36 radial distance measurements

across the range [−π . . . π] (figure 6.2a), allowing the target to be seen by multiple beams

simultaneously, especially as the sensor approaches the target or as sensor resolution is
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Figure 6.2: Target perception and placement. The arm controller perceives the target
through range sensors (a) placed at each segment along the arm; the combined effect is
shown (b) with non-detecting beams removed for clarity. The training targets in this work (c)
are positioned beyond the reach of the simple actions in figure 6.1.

increased. Thus the 36n total beams create a high-dimensional input space. Figure 6.2b

illustrates the arm’s view of the target with the non-detecting beams removed for clarity.

This adaptation of the octopus arm domain (Woolley and Stanley, 2010) has a state-space

with 36n inputs and and action-space with 3n outputs, an arbitrarily complex construction

meant to overwhelm traditional machine learning methods. The point is that there are

clear geometric relationships that, if preserved, allow the learning approach to focus on the

conceptual problem without becoming distracted by the size of the unprocessed state and

action space. The next section presents a description of HyperNEAT, the indirect encoding

that makes it possible to evolve such high-dimensional controllers without the need to shield

the learner from the true dimensionality of the space.
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6.2 Hypercube-based NeuroEvolution of Augmenting Topologies

Neuroevolution can produce solutions for a broad array of control tasks (Floreano et al.,

2008; Stanley and Miikkulainen, 2002, 2004; Yao, 1999). Many such methods are based on

direct encodings, which means each piece of structure in the phenotype is encoded by a single

gene that is an independent parameter. The ability to tune each parameter independently

has kept traditional neural network learning approaches like backpropagation (Rumelhart

et al., 1986) and neuroevolution (Stanley and Miikkulainen, 2002; Yao, 1999) from incor-

porating the domain geometry into the representation. However, as these approaches are

applied to high-dimensional domains (e.g. the octopus arm), tuning hundreds of connections

independently becomes an intractable task. The problem with direct encoding is that the

discovery of repeating motifs is expensive and improbable, a problem that becomes obvious

when clear and meaningful relationships exist in the problem domain. Therefore, indirect en-

codings (Bongard and Pfeifer, 2003; Hornby and Pollack, 2002; Stanley et al., 2009; Stanley

and Miikkulainen, 2003) have become a growing area of interest in evolutionary computation.

One such indirect encoding designed explicitly for neural networks is the Hypercube-based

NeuroEvolution of Augmenting Topologies (HyperNEAT; Gauci and Stanley, 2007; Stanley

et al., 2009) approach. Rather than expressing link weights as distinct and independent

parameters in the genome, HyperNEAT allows them to vary across the phenotype in a regular

pattern. The pattern of connection weights is described by an encoding called a compositional
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pattern producing network (CPPN; Stanley, 2007), which is evolved by NEAT (Stanley and

Miikkulainen, 2002, 2004).

Recall that images evolved in Picbreeder (Secretan et al., 2011, 2008) were also represented

by CPPNs. In HyperNEAT, the CPPN is extended to encode the pattern of connection

weights across a neural network. Just as a CPPN with the inputs x and y can paint an

intensity pattern over a two-dimensional space, a CPPN with the inputs x1, y1, x2 and y2

can paint a pattern across a four-dimensional hypercube. In this way, the point (x1, y1, x2, y2)

in the hypercube effectively encodes the weight of a connection between the two-dimensional

points (x1, y1) and (x2, y2). Thus an ANN can be constructed wherein each of its nodes has a

position in a geometric space and whose connection weights are thereby set by querying the

four-dimensional CPPN with the position of each connection’s endpoints (figure 6.3). This

fact is significant because connection weights are computed with knowledge of the domain

geometry.

As a rule of thumb, nodes are placed in a geometric space called the substrate to reflect

the geometry of the domain, i.e. the state (Clune et al., 2009; Gauci and Stanley, 2010;

Stanley et al., 2009). For example, a visual field can be laid out in two dimensions such that

nodes that receive input from adjacent locations in the image are literally adjacent in the

network geometry (Gauci and Stanley, 2007). In this way, HyperNEAT preserves knowledge

of the domain geometry that is then exploited by the the CPPN to encode regularities like

adjacency and symmetry; such regularities are invisible to traditional encodings that tune
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Figure 6.3: Encoding the connectivity pattern. The four-dimensional CPPN encodes
the connectivity pattern of the substrate through an evolved network of geometric functions.
The substrate ANN is generated by querying the CPPN for the value of each potential
connection from (x1, y1) to (x2, y2). In this way, CPPNs capture patterns and regularities in
domain geometry.

each parameter independently. This capability is exploited in the scaleable arm control

architecture introduced next.

6.3 Scaleable Arm Control Architecture

The octopus arm control architecture presented here leverages the ability of HyperNEAT to

encode regularities in the domain geometry and bypass superficial complexity. The archi-

tecture shown in figure 6.4 closely couples sensing to acting. The input layer accepts sensor

data directly from the range finder sensors at each segment and the output layer provides the

contractive response for each muscle. Finally, a hidden layer is provided to support nonlinear

operation required by the gravity and buoyancy effects acting on the arm.
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To represent the sensor array described above, the controller must interpret 36 rangefinder

inputs per segment. The arm model is composed of segments that have a necessary order

and relationship to the other segments in the arm, i.e. segment 1 connects to segment 2,

segment 2 connects to segment 3, etc. Thus, the perception layer is constructed as a two-

dimensional sheet with θ as one axis and the arm’s proximal-distal (PD) geometry as the

other (figure 6.4, layer A).

To represent the action space, the substrate provides an output for each of the 3n mus-

cles in the arm. To take advantage of HyperNEAT’s ability to leverage domain geometry,

the proximal-distal axis of the sensor layer is mirrored by the output (contractive) layer.

Furthermore, note in figure 6.1 how the dorsal and ventral muscles act together to form

coordinated reaching behaviors. This configuration suggests aligning the dorsal, transverse,

and ventral muscles along the proximal-distal axis (figure 6.4, layer C).

By viewing the substrate architecture as a feedforward network spanning from the sensor

input layer (A), to the hidden layer (B), to the contractive output layer (C), a CPPN

with inputs (x1, y1, x2, y2) and outputs (AB, BC) provides a complete encoding of the

phenotype. Figure 6.4a illustrates how each of the 7,488 link weights in an eight-segment

controller (left) are set by a single CPPN. The hope is that the principle that underlies

moving a hydrostat is regular across the segments of the arm and therefore can be captured

by the CPPN.
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Figure 6.4: Scalable neurocontroller architecture. The eight-segment substrate (a)
can be scaled to a 16-segment substrate (b) without further training. The substrate at any
resolution contains a two-dimensional input layer A that corresponds to the arm’s sensory
input, a two-dimensional hidden layer B, and a two-dimensional output layer C that controls
the musculature. To query connections between A and B, the proximal-distal (PD) axis
is the x1 input and θ is the y1 input. To query connections between B and C, the x1

input is also PD, and DTV (Dorsal-Transverse-Ventral) is the y2 input. Because the CPPN
encodes kinematic principles, resampling with the node positions in (b) can produce a similar
contractive pattern and arm pose (shown above).

By constructing the controller architecture (i.e. the substrate) to reflect the domain geometry

(figure 6.4a), larger arm controllers are generated without further evolution by requerying

the same CPPN at higher-resolutions (figure 6.4b). This approach works because adding

segments to the arm is analogous to increasing the resolution of the hydrostat model. The

CPPN, which encodes a continuous description of the arm’s behavior policy, provides similar

contractive patterns when applied to an arm with a different number of segments. The next

section presents how CPPNs are evolved for this arm controller architecture.
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6.4 Scaleable Arm Controller Experiment

The first aim of the experiment is to investigate the ability of indirect encoding to facilitate

learning to control a hydrostat with dozens of degrees of freedom that are not restricted or

pruned in any way. The second aim is to test the ability of an evolved CPPN to generate

controllers for higher resolution arms without further training. From there, the goal of the

challenge problem will be to improve upon the consistency and quality of the results learned

by HyperNEAT through traditional objective-based search applied in this chapter.

The fitness function is designed to select controller behaviors that approach targets quickly.

The simulator records the distance between the tip of the arm and the target at each timestep

and calculates the average distance over a trial with a single target as:

davg =
tmax∑
t=0

dt
tmax

, (6.1)

where dt is the distance from the tip of the arm to the target surface at time t and tmax is

the maximum number of timesteps in the trial. Individuals in the population are evaluated

in six trials against six training targets (figure 6.2c) that are beyond the reach of the simple

movements shown in figure 6.1. Because the goal is to reduce the average distance, fitness

for a single trial can be expressed as:

ftrial = d0 − d2
avg, (6.2)

where d0 is the initial distance and squaring davg emphasizes early innovations that move

towards the target by providing larger rewards for small improvements. Negative fitness
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values are set to zero and arms that succeed in touching the target with the tip earn a 25%

bonus.

To validate that eight-segment solutions can scale, their evolved CPPNs are then requeried

to generate controllers for arms with 10, 12, 14, 16, 18, and 20 segments with no further

training. It is important to note that these dimensionalities are indeed high because they im-

pact the necessary dimensionality of the corresponding neurocontroller, i.e. an eight-segment

controller must set 7,488 connection weights while a 20-segment controller must set 46,800.

Also, results cannot be compared directly to controllers trained by Engel et al. (2006) be-

cause they seek a single target blindly while those evolved here can actively touch targets at

multiple locations based on sensory inputs.

6.5 Experimental Results

Figure 6.5 shows training performance over generations when controllers are separately

evolved (i.e. not scaled) for arms with 8, 10, 12, 14, and 16 segments. Twenty runs were com-

pleted at each resolution. Remarkably, the number of degrees-of-freedom has no significant

effect on the training curve, suggesting that indirect encoding really is making it possible to

focus on learning the underlying principle independent of dimensionality.
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Across all variants, CPPNs with an average of only 10.1 connections (stdev = 2.3) encode

substrates with between 7,488 (8 segments) and 29,952 connections (16 segments), demon-

strating the considerable compression of the indirect encoding.

The main scaling result (figure 6.6) is that the evolved contractive patterns transfer well

from controllers trained on eight segments to arms with an increasing number of segments

with no additional training. In the figure, the distance from the arm tip to the target

surface is graphed over timesteps, demonstrating that controllers maintain the ability to

approach targets as the physical structure scales; on average, even the 20-segment (worst)

case approaches within 0.084 (±0.05 at 95% confidence) units of the target surface. It is

important to note that the qualitative behavior of the arm at all scales in figure 6.6 is the

same (i.e. they all still approach the target) although the speed of movement slows gradually

and emergent physical characteristics begin to render the original solution less effective.

The sequence shown in figure 6.7 demonstrates a typical scaled reaching behavior. The

contractive pattern shown was evolved as an eight-segment arm and applied to a 16-segment

arm with no further training.
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evolves neurocontrollers for arms with 8, 10, 12, 14 and 16 segments in equivalent time
because the CPPN discovers the underlying kinematic patterns. Measurements are averaged
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Figure 6.6: Scaling result: arms scale without further evolution. The distance
from the target surface at each time-step is shown, demonstrating that the ability to move
towards the target is preserved as controllers are scaled to support arms with additional
segments. Measurements are averaged over 20 runs.

Figure 6.7: Typical reaching motion of a scaled hydrostat. This 16-segment con-
troller is scaled directly from an eight-segment arm solution and illustrates how contracting
the transverse muscles allows the arm to extend beyond its relaxed length. For videos of
more such evolved and scaled behaviors see http://eplex.cs.ucf.edu/octopusArm.
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6.6 Solving the Octopus Arm Faster

The original insight behind applying HyperNEAT to this domain is that finding solutions to

problems in control should be about discovering an underlying principle and not about the

number of dimensions in the action or state representation. Traditional approaches (Stanley

and Miikkulainen, 2002, 2004; Sutton and Barto, 1998) map state information to effectors

as if each is an independent dimension when in fact they are related. This traditional view

of the problem domain ties complexity to the dimensionality of the physical domain, thus

obfuscating the underlying concept. The octopus arm model is a good platform to showcase

this idea because it can include an increasing number of segments. Some of the common

ways that traditional approaches measure problem complexity are listed in table 6.1, all of

which increase in scale with the number of arm segments.

Table 6.1: Measures of problem complexity. Traditional approaches are distracted
by superficial dimensionality when they ignore fundamental relationships in the domain.
Is problem complexity the number of dimensions in the state/action space? Is problem
complexity the number of connections in the ANN controller? Failing to preserve key aspects
of the domain geometry unnecessarily increases the difficulty of finding solutions.

Segments (x, y, x′, y′) Sensors Muscles ANN Connections
8 72 288 24 7,488
10 88 360 30 11,700
12 104 432 36 16,848
14 120 504 42 22,932
16 136 576 48 29,952
18 152 648 54 37,908
20 168 720 60 46,800
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However, the experimental results demonstrate how an indirect encoding can evolve con-

trollers for arms with 8, 10, 12, 14, and 16 segments in equivalent time, thus showing that

the physical structure’s dimensionality is a false measure of the domain complexity. By

exploring the space of kinematic principles, the indirect encoding approach bypasses the in-

creasing dimensionality of the physical structure. Similarly, the scaling results demonstrate

that solutions evolved specifically for the eight-segment arm model captured fundamental

kinematic strategies that apply directly to arms with additional segments.

For many problems, complexity is independent of the number of dimensions. The challenge is

to transcend the distraction of superficial dimensionality by preserving meaningful relation-

ships, e.g. geometric principles like order, orientation, and proximity. In this way, indirect

encoding becomes and important consideration of any problem in which stat or action di-

mensionality may be misleading, or for learning scalable control policies. Whether it is a

multi-segment arm, a robot hand that can add more fingers, or a centipede with a variable

number of legs, indirect encoding shifts the problem away from the precise configuration

towards the underlying principle, thereby opening up such problems to machine learning.

However,despite the successes in these experiments, the qualitative results nevertheless hide

the subtle cost of objective-based evolution. While this traditional approach seems reason-

able, the work in Chapter 3 shows the importance of establishing fundamental concepts early

on. Just as the solutions to the Simple and Crescent image targets (figure 3.3) ultimately

proved overly complex and inelegant compared to the original serendipitously discovered
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image, so may the evolved controllers in this chapter ultimately prove to be inefficiently

represented by the CPPN when compared to what may be discovered by NA-IEC. The hope

is that a human-directed search, interleaved with short-term novelty searches, can similarly

evolve arm control behaviors more efficiently than traditional automated approaches. Thus

the next chapter presents details of the culminating experiment wherein the ability of Hy-

perNEAT with NA-IEC to evolve arm control behaviors is compared to HyperNEAT with

novelty search and fitness-based HyperNEAT.
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CHAPTER 7
CHALLENGE PROBLEM:

SERENDIPITOUS DISCOVERY OF CONTROL BEHAVIORS

This chapter presents the culminating experiment wherein the benefits of serendipitous dis-

covery are demonstrated in a high-dimensional control domain, i.e. the octopus arm domain.

The novelty-assisted interactive evolutionary computation (NA-IEC) approach presented in

Chapter 4 yielded significantly better results than novelty search alone in the deceptive maze

domain by Lehman and Stanley (2008). Now the question becomes, how does human insight

affect search when the proverbial “path to the goal” is not evident? The hope is that evolv-

ing octopus arm controllers in the NA-IEC framework will leverage highly-nuanced human

intuitions to identify significant stepping stones during evolution, rather than articulating

them explicitly a priori in a formal optimization function. The result is the discovery of prin-

cipled controllers in fewer evaluations than both a traditional objective-based search and a

non-objective search based on novelty.

7.1 Motivation

Up to this point, the capabilities of the NA-IEC approach have been demonstrated in the

deceptive maze domain introduced by Lehman and Stanley (2008, 2011), a domain designed

to confound traditional fitness-based approaches. Consequently, some may argue that the
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human user is providing an unfair advantage over both novelty search and traditional fitness-

based search. In fact, this dissertation argues that the advantage of NA-IEC over automated

EAs is that a human evaluator is indeed basing his selections on additional information. In-

terestingly, during this process, the human user does not know what information or behaviors

he or she is looking for until one appears serendipitously, i.e. during evolution. In this way,

the abilities of the human user to identify what behaviors are interesting and meaningful in

a given domain as they emerge becomes a part of evolution and precludes the need to artic-

ulate and formalize sophisticated objective functions a priori. Thus the aim of this chapter

is to apply the NA-IEC approach in a complex control domain where the set of solutions is

not known nor are the stepping stones that lead to such solutions. The hypothesis is that, as

in the maze domain, a human evaluator selecting candidates based on their expressed phe-

notypic behaviors will discover solutions more quickly than both traditional fitness-based

search and novelty-search.

Recall that in the original octopus arm competition at the 2009 International Conference on

Machine Learning (ICML 2009), the challenge required learners to map the 88-dimensional

state space to the 32-dimensional action space such that the arm would learn to touch a single

target with speed and efficiency. Interestingly, all participants opted to simplify the action

space by mapping the state space to six pre-coordinated actions, a decision that was necessary

to make the task tractable. In contrast, the experiments here and in the previous chapter

evolve control behaviors without simplifying the action space a priori, i.e. the controller ANN

sets each muscle independently. While this challenge domain was inspired by the original
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octopus arm competition at ICML 2009, the implementations are different and cannot be

compared. Furthermore, the domain in this chapter is a variant (i.e. changed to support

more realistic kinematic behaviors) of the simulated octopus arm domain presented in the

previous chapter and thus cannot be compared directly to the previous chapter either.

As shown in Chapter 6, the original octopus arm domain from ICML 2009 was adapted so

that the the target is visible, yielding a more challenging version of the task, which is to evolve

a control behavior that can touch targets at arbitrary locations. This work demonstrated the

ability of an indirect encoding to sidestep the superficial trap of dimensionality by focusing

on evolving kinematic patterns for the arm independently of the number of segments. In fact,

the experiment was so successful that the evolved controllers provided reasonable solutions

when scaled up to larger arms without further training.

Although successful, evidence suggests that the pursuit of objectives creates deleterious

effects, even when the objective function is satisfied (Chapter 3). Yet we regularly accept the

solutions that emerge from such objective-driven searches as optimal because they achieve

the objective, and may even do so consistently. Furthermore, some may still argue that

the interpretation of the image evolution experiment (Section 3.2) and the maze navigation

experiment (Section 5.2), are unfounded by blaming the results on a naive fitness function;

the experiment in this chapter aims to dispel such doubts because the fitness-function in

equation 6.2 was designed to provide a logical search gradient that rewards approaching

the target and also encourages speed, i.e. it is a reasonable search heuristic and not a straw
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man. Therefore, the hypothesis of this experiment is that the human evaluator will recognize

behavioral nuances, as in the maze domain, that lead to solutions more quickly even in a

complex control domain where the “path to the goal” is unclear.

7.2 Octopus Arm NA-IEC Experiment

The intent of this experiment, as in the proof-of-concept (Chapter 5), is to compare the

differences between solutions evolved by the NA-IEC approach, an automated novelty search,

and a traditional objective-based search. The experimental domain is the simulated octopus

arm environment detailed in Chapter 6, wherein each evaluation consisted of six trials that

attempted to touch training targets at different locations. The same approach to evaluation

is applied for all runs in this work.

Due to changes in the arm model to make it more stable and realistic, the six training targets

were repositioned to be within reach of the arm, but still beyond the reach of the simple arm

positions introduced by Engel et al. (2006). The new target positions, which are applied in

all runs, are shown relative to the arm in figure 7.1a and listed in figure 7.1b.

As in the previous chapter, the octopus arm controllers are encoded such that they have

knowledge of the domain geometry, i.e. they are encoded with a variant of the Hypercube-

based NeuroEvolution of Augmenting Topologies (HyperNEAT) approach introduced by Stan-
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(a) Training Targets

Target (x, y) Radius
1 (0.40, 0.80) 0.1
2 (0.80, 0.60) 0.1
3 (1.00, 0.35) 0.1
4 (1.00,−0.35) 0.1
5 (0.80,−0.60) 0.1
6 (0.40,−0.80) 0.1

(b) Target Coordinates

Figure 7.1: Training targets. Following changes that improved the stability and kine-
matics of the octopus arm model in Chapter 6, the training targets were repositioned to be
reachable, but not by the simple actions shown (a). With the arm base positioned at the
origin, the location of the training targets is given by the table (b).

ley et al. (2009). In this chapter, the controller implementations are extended to include a

link expression output (LEO) component. HyperNEAT-LEO is an extension of HyperNEAT

introduced by Verbancsics and Stanley (2011) in which the ANN’s expressed connectivity

pattern (i.e. which connections are expressed) is evolved independently from the pattern of

connection weights. The HyperNEAT-LEO-based controller configuration (Appendix A.3)

is applied in all versions of the experiment.

7.2.1 Fitness Function

To evaluate fitness in the traditional objective-based runs and the NA-IEC optimization

operation, this experiment includes the objective function introduced in Chapter 6. Recall
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that fitness is assigned as a function of the average distance, davg, from the arm tip to

the target (equation 6.1) during each trial. In this way, the difference between the arm’s

initial distance and the average distance (equation 6.2) rewards controllers for approaching

the target during a trial. Furthermore, squaring davg emphasizes the fitness assigned to

behaviors that begin moving toward the target. As in the original experiment, any negative

fitness values are set to zero and touching the target generates a 25% bonus.

7.2.2 Novelty Metric

In contrast to the objective-based experiment in Chapter 6, a behavior characterization for

the octopus arm domain is now required to support the fully automated novelty search runs

and the NA-IEC short-term novelty search operation. Although this experimentis the first

time novelty search has been applied in the octopus arm domain, previous work with novelty

search by Lehman and Stanley (2011) has shown that, in most cases, it is reasonable to

characterize a motion trajectory simply by its end-point. While some behaviors that reach

the same point in different ways will be conflated, this approach emphasizes the discovery

of behaviors that move into new positions. While the aim of this experiment is to discover

control behaviors that approach a set of six training targets, each trial is independent because

the arm position is reset to the initial position. Consequently, the overall controller behavior

can be effectively characterized as six independent reaching motions, which are recorded as
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the final position of the arm at the end of each trial. In this experiment, the final position

(x, y, θ) is the Cartesian coordinate (x, y) at the tip of the arm, along with θ, the angle of

the centerline at the tip of the arm.

For consistency, the behavior space is defined with respect to the target. Hence a relative

position (∆x,∆y,∆θ) is computed for each trial such that

(∆x,∆y,∆θ) = (xt − x, yt − y, θt − θ), (7.1)

where (xt, yt) is the position of the target and θt is the angle from the arm tip to the target,

θt = tan−1 yt − y
xt − x

. (7.2)

Thus the resulting coordinate (∆x,∆y,∆θ) is the behavior characterization for a single trial

wherein the target behavior is effectively located at the center of the space. Finally, com-

bining such characterizations for each of the six trials results in an 18-dimensional behavior

space. In this way, arm controllers that move toward the training targets are distinct (i.e. in

a different region of the behavior space) from those that are repelled by targets or from

those that only approach a single target. Thus the difference between two distinct candidate

behaviors, a and b, is computed as the Euclidian distance dist(a, b) from one to the other in

the behavior space such that

dist(a, b) =

√√√√ n∑
i=1

(bi − ai)2, (7.3)

where ai and bi are corresponding dimension in the n-dimensional behaviors being compared.
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To score the novelty for a candidate α, this experiment computes the sparseness ρ(α) by

equation 2.1, wherein the average distance to the k-nearest neighbors (Bentley, 1975; Cover

and Thomas, 1991) provides a measure of how novel that behavior is compared to those seen

previously. In this way, an individual that breaks into a sparse area of the behavior space is

rewarded for being novel.

The novelty parameters for this experiment include the k-nearest neighbor value of 15 and

a novelty threshold, ρmin, starting at 3.0. The ρmin value is then adjusted after every 2,500

evaluations, either by being increased by 20% (if more than four members enter the archive)

or reduced by 5% (in the case that no new behaviors were added to the archive).

7.2.3 Human Evaluator Interface

As in the maze navigation experiment from Section 5.2, the human evaluator is presented

with an onscreen population of candidate behaviors. From here the human user can select

those candidates that they feel will be stepping stones to more interesting behaviors. The

user then elects one of three evolutionary operations: (1) a traditional IEC step, (2) a short-

term novelty search, or (3) an optimization search. The key difference in this experiment is

that candidate controllers are evaluated as animated behaviors, which makes human fatigue

a significant issue.
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During initial development of the system, it became evident that evaluating a population

of twelve candidates performing six trials each was too difficult. An attempt was made

to keep the trials synchronized, but the task was still cumbersome. Another alternative

was to evaluate behaviors individually, but the evaluation of just twelve candidates took

ten minutes. In addition to the effort required to evaluate the onscreen population, the

time required to generate the next population interrupted the human evaluator’s train of

thought. Although the NA-IEC approach does filter out common behaviors (i.e. solutions

that are below the novelty threshold), the user must still to evaluate a significant number of

candidates.

Therefore, to assist the human evaluator and ease fatigue, the NA-IEC framework provides

the option of superimposing the path of the arm tip during all trials (figure 7.2a) and/or

the behavior characterization (figure 7.2b) over the animation. In this way, such depictions

provide a visual summary of a behavior, thus allowing the human evaluator to rapidly identify

promising candidates before deciding which solutions to inspect more closely. The impact of

this approach is evident in figure 7.2, wherein an innovation that led to a solution is made

apparent by the behavior summary that is superimposed over the animated behavior.

The power of the NA-IEC approach lies in the ability of a human evaluator to detect im-

portant discoveries as they emerge and without regard to fitness. The idea is that a domain

expert working with NA-IEC can help to direct the search more effectively than an auto-

mated approach alone. To fill the role of the domain expert in this experiment, I take the
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(a) Arm Tip Trajectory (b) Behavior Characterization

Figure 7.2: Summarizing arm reaching behaviors. To reduce fatigue, a summary
of the arm behavior can be overlaid to help identify promising candidates: the arm tip
trajectory (a) during all trials provides an indication of how the arm responds to targets at
different positions while the behavior characterization (b), which is used by novelty search,
connects the position of the arm tip at the end of each trial. The user can also view both
simultaneously (not shown). Summarizing the overall behavior in this way reduces fatigue
by drawing attention to significant discoveries—one such innovation is highlighted in the
population shown.

role of the human evaluator. Thus this experiment provides initial evidence for how such a

coupling of human and automated search can perform. An important goal for future work

will be to perform a full study with multiple human users, as was performed in the maze

domain in Chapter 5. The experimental results are presented next.
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7.3 Experimental Results

In this experiment, a controller that touches all six targets is considered a solution and is

awarded the maximum fitness score. The main result is that the NA-IEC approach found

solutions in significantly fewer evaluations than both the fitness-based runs and the runs

guided purely by the novelty metric. Interestingly, fitness-based search found solutions con-

sistently in this domain while pure novelty search did not, suggesting that this is one domain

where novelty search suffers from an intractably large set of possible behaviors to discover.

However, that human insight combined with novelty search outperforms fitness alone sug-

gests both that human insight is in fact providing evolution with valuable clues about what

is important, and that novelty search is still useful in such a domain if it can be guided

occasionally to promising areas through human intuition.

Figure 7.3 compares the training performance over evaluations for the NA-IEC approach,

the fitness-based search, and the novelty search in the octopus arm domain, averaged over 20

runs. The user-directed evolution with NA-IEC discovered solutions in an average of 3,165

(sd = 2, 424) evaluations. These results are significantly (p < 10−8; Student’s t-test) faster

than fitness-based evolution (8,860 evaluations, sd = 2, 300).

Unlike in the previous experiments, the complexity of the solutions discovered in this domain

during the human-led NA-IEC sessions were more complex (21.8 connections, sd = 3.6) than

those discovered by fitness-based evolution (18.3 connections, sd = 2.9), suggesting that
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Figure 7.3: Comparing evolutionary learning rates in the octopus arm domain.
The average maximum fitness over evaluations for HyperNEAT with NA-IEC, fitness-based
HyperNEAT, and HyperNEAT with novelty search is shown. The main result is that runs
led by the human evaluator discovered solutions significantly faster than fitness-based runs,
while runs guided by novelty search failed to evolve solutions (results are averaged over 20
runs). These results demonstrate the advantage of NA-IEC over automated approaches. In
NA-IEC, the human user directs evolution by selecting key innovations during evolution.

the representation of solutions discovered through NA-IEC is not necessarily always more

compact. However, it is still possible that the representation is better organized, i.e. such

that further evolution to perform additional tasks would work better starting from NA-IEC

solutions. This hypothesis requires further research to investigate.

Analysis of the NA-IEC usage metrics shows that the human evaluator made an average of

28.9 (sd = 18.9) choices, applying the Step operation 10% of the time, the Novelty operation

46% of the time, and the Optimize operation 44% of the time. Interestingly, the time at which

particular operations were applied reveals that the user began his searches with the Novelty

operation and concluded by tuning his discoveries with the Optimize operation (figure 7.4).
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Figure 7.4: NA-IEC operation usage analysis. The NA-IEC user interface allows
the human evaluator to select the mode of evolution, i.e. traditional IEC step, short-term
novelty search, or fitness-based optimization. Plotting the mixture of operations as evolution
progresses shows that the user favored the Novelty operation early in evolution, but then
choose the Optimize operation increasingly more often as evolution progressed. In this way,
the human evaluator can began by searching agnostically for a solution and then tuned what
he discovered for a specific task.

7.4 Implications

The experimental results in this chapter establish several implications that result from al-

lowing a human evaluator to direct evolution. One implication, as in the maze navigation

experiment in Chapter 5, is that human users can take in a rich view of the behavior space

and apply a deep understanding of what is meaningful in a given context. Another implica-

tion is that naive fitness and novelty functions become useful because the human evaluator

is more able to detect and avoid deception in the domain. Furthermore, human insights

detected not only promising candidate solutions, but also directed the mode of evolution

by electing to execute a traditional IEC step, a short-term novelty search, or fitness-based
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optimization depending on the effect that the user felt would benefit evolution most at a

given time.

While IEC approaches have been applied primarily in domains like art and music where the

selection criteria is subjective or difficult to define, the experiment in this chapter demon-

strates that leveraging the breadth of human experience can aid the design and discovery of

controller solutions. Additionally, these results point to a deficiency with objective functions

that is frequently overlooked: that strict mathematical constructs are unlikely to detect and

reward subtle aspects of the domain. For example, automated EAs are frequently applied in

challenging domains like biped walking and candidates are scored by an overly simple metric

like distance traveled. While a well-formed walker would score well by such a metric, the

misconception is that this same metric also establishes the intermediate solutions needed

to create a successful biped walker. Evidence from Chapter 3 argues that this assumption

is incorrect. But what metric would be better? In contrast to the established paradigm,

work with NA-IEC demonstrates that a human user can detect significant discoveries dur-

ing evolution, thus precluding the need to craft a more intricate fitness function. In fact,

the ability of the human user to see and understand the domain provides experience and

knoledge that would be difficult or impossible to formalize. Remarkably, all of this insight

is gained from the evaluation of the expressed phenotype behaviors and without knowledge

of the underlying implementation or representation.
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Under the guidance of the human evaluator, short-term evolutionary operations can now

employ simple fitness functions and novelty metrics that might not succeed on their own.

Although the automated runs based on novelty search failed to produce solutions for the

octopus arm domain, the very same novelty configuration was implemented in the NA-IEC

framework. Normally, the failure to evolve solutions would invite criticism of the behavior

characterization, the experimental parameters, and perhaps even the idea of searching for

novelty at all. Interestingly, usage metrics from the NA-IEC runs show that the short-

term novelty search operation played a pivotal role in the discovery of solutions. In fact,

the Novelty operation was applied almost exclusively at the beginning of evolution, while

optimization was applied only after the general form of the solution was established. Thus

by allowing human insight about what is meaningful to guide the direction of evolution,

simple fitness and novelty metrics that would normally be subject to deception when used

alone become effective under the direction of a human evaluator.

Another advantage that the NA-IEC approach has over traditional evolutionary approaches

is that the human evaluator can change the mode of evolution to create the desired effect

given the state of evolution. Under a traditional fitness-based search evolution follows, al-

beit stochastically, the fitness gradient. Similarly, a pure novelty search can only reward

novel behaviors. Efforts in Novelty-Based Multiobjectivization (Mouret, 2011), wherein one

objective is the fitness function and the other is the novelty metric, attempted to provide a

construct that could follow an objective gradient while avoiding local optima by simultane-

ously rewarding novelty. While this approach may work in some cases, the desired effect is

110



more inherent in the NA-IEC approach because not only does the human evaluator bring a

perspective on what is reasonable in the domain, but he or she also possesses a sense of how

evolution is progressing as a whole.

Thus far NA-IEC has been demonstrated in two domains that have clear and definite objec-

tives. However, the NA-IEC approach was inspired by the success of Picbreeder (Secretan

et al., 2011, 2008), wherein surprising and meaningful artifacts were discovered that no one

knew existed—yet they were discovered. Furthermore, users continue to evolve interesting

and meaningful images in Picbreeder without having a specified objective. Following this

inspiration, the hope for the NA-IEC approach is not that it will displace or outperform

automated evolutionary methods, but that it will lead to the discovery of agent behaviors in

unbounded domains that are as intriguing as the images that emerged serendipitously from

Picbreeder.

7.5 Conclusion

The experiment presented in this chapter compared the performance of the NA-IEC approach

(Chapter 4) to a traditional fitness-based search and a pure novelty search in a challenge

domain (i.e. the octopus arm domain). The main result was that NA-IEC, guided by human

insight, evolved solutions in fewer evaluations than a fitness-driven approach that was pre-

viously successful. While the performance increase can be attributed to human insight, the
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influence of the user went beyond recognizing important stepping stones as they emerged

by also providing insight about how to direct the mode of evolution. Furthermore, although

novelty search alone did not discover solutions consistently, a human user applied the very

same novelty metric during NA-IEC runs as a means of discovering meaningful reaching

behaviors. Once the general form of the solution was established, the user employed tradi-

tional fitness-based optimization to tune their discoveries. The implication is that combining

the rich experiences of a human evaluator with automated tools creates a synergistic effect

wherein the limitations of the user (Takagi, 2001) are offset by the ability of automated tools

to generate novel stepping stones or optimize well-formed solutions. In return, the perspec-

tive of the human evaluator protects fitness-based approaches from the effects of deception

and keeps novelty search from becoming lost in the space of what is possible. The next chap-

ter presents a discussion of the contributions of the NA-IEC approach and its implications

for field of EC.
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CHAPTER 8
DISCUSSION

Natural evolution has no final objective, yet from it emerged serendipitous innovations like

hemoglobin, flight, sonar, the eye, and the human brain. It is remarkable that each is built

upon other innovations that are interesting in their own right. Such is the ratcheting process

of evolution, in which stepping stones are laid agnostically, without regard to any global

objective. In this way, innovations that have a meaningful purpose, function, or behavior

become the foundation for future innovations. Through this ongoing process of stepping

stones built upon stepping stones, a great diversity of innovations were discovered (Dawkins,

1986) that continue to inspire the greatest of our engineering ambitions.

In contrast, the reigning paradigm in evolutionary computation (EC) evolves solutions for

a particular engineering requirement or control task. Under this approach, the evolutionary

algorithm searches for solutions that satisfy the objective function (e.g. approaching a target

while minimizing time, energy, or cost). When evolutionary algorithms (EAs) fail to solve

complex tasks, the traditional view is that the task is too demanding and that the poor

performance of all of the individuals traps the evolutionary search in a deceptive region of

the solution space (Gomez and Miikkulainen, 1997). Yet the deeper issue is that fruitful

regions are difficult to discover because the objective gradient does not reward the stepping

stones necessary to reach such areas. Supporting this argument, Chapter 3 exposed the

deleterious effects of setting objectives. The reason for this problem, as in nature, is that the

113



stepping stones necessary to reach ambitious ends do not resemble the final result; only in

hindsight do we see the value of any particular stepping stone. Thus when search is guided by

an objective function, the results (even those with high fitness) are piecewise constructions

that fail to capture fundamental knowledge about the domain.

Projects like Picbreeder give some insight into how fruitful regions can be discovered without

knowing of their existence a priori. The trick is that searching for what is interesting,

i.e. searching without expectations, unlocks the ability to make serendipitous discoveries.

In this way, fruitful areas are discovered because the innovations that led there encoded

meaningful information about the domain. From these well-formed stepping stones, just a

few mutations can elaborate on an established theme to create new innovations.

Such insights provoke deep consideration into how the EC community should approach fu-

ture problems. This consideration is not a call to abandon optimization. Rather, the field

needs to incorporate both non-objective and objective-based techniques into the proverbial

toolbox. Experience with Picbreeder demonstrated the power of serendipitous search to find

meaningful images in the vast and desolate space of possible images. In fact, many of the

artifacts discovered in Picbreeder far surpass what was expected to emerge. Such insights

suggest that we have been limiting ourselves in our endeavors because we cannot articulate

the appropriate path to an ambitious goal without knowing (at least in general) the solution

a priori. Thus the argument here is that serendipitous approaches, traditionally reserved

for aesthetic domains like art and music, can also benefit evolving agent behaviors without
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regard to any final objective. Perhaps what emerges will also surpass what was thought

possible for a given control domain.

If serendipitous search does indeed provide a means of discovering fruitful regions of agent

behaviors, then the field of EC may be able to simulate the powerful ratcheting process in

natural evolution to break through the glass celling imposed by the objective-function and

create significant solutions to the problems that have eluded us.

The novelty-assisted interactive evolutionary computation (NA-IEC) approach presented in

Chapter 4 establishes such an interactive framework for evolving agent behaviors, thus al-

lowing evolution to escape the constraints of the fitness gradient. However, simply allowing

a human evaluator to explore the space of behaviors is a cumbersome task. Rather, to reach

ambitious goals, the single-user IEC system (operating with interleaved novelty search) pro-

vides inspiration about what is possible by generating the on-screen IEC population from

a short-term novelty search. In this way, the user is presented with a diverse collection

of behaviors that are based on what they previously considered interesting. Such an ap-

proach, operating without regard to any explicit objective or fitness-function, provides the

opportunity for serendipitous discovery. The premise is that successive selections of what

is interesting (based on highly-nuanced human intuitions) will discover effective behaviors

with meaningful representations more quickly than the traditional objective-based approach

in EC.
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Such assertions were initially demonstrated in Chapter 5 as a proof-of-concept in the de-

ceptive maze domain (Lehman and Stanley, 2008, 2011), wherein the NA-IEC approach

described in Chapter 4 not only provided the user with an initial population of various maze

navigation behaviors, but continued to suggest alternative navigation behaviors based on

what the user previously identified as important. In this way, interleaving short-term nov-

elty searches with human selection events produced successful navigation behaviors in fewer

evaluations than novelty search alone because novelty search, despite being better than fit-

ness for the maze problem, is a broad-beam search of the the behavior space. That is not

to say that humans know how to evolve maze navigation policies better than novelty search.

In fact, the same task would be much more difficult under a traditional IEC approach.

Thus the power of NA-IEC is that search is directed in part by human domain knowledge

while innovations are generated by novelty search; it is their unification that makes NA-IEC

effective.

Applying NA-IEC to evolve controllers for the octopus arm is a good follow-on experiment

because the “path” to the solution is not obvious. In such a dynamic domain there are

many arm behaviors that achieve high fitness, some of which were found by the objective-

based search in Chapter 6. The fact that the EA did produce solutions with high-fitness

scores only obfuscates the idea that better paths to the solution do exist, but what are they

and how do we find them? The image evolution experiment in Chapter 3 provided insight

into the deleterious effects of searching for a priori objectives on solutions, even when the
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solution criteria is met. Confirming again the benefit of a human in the loop, NA-IEC indeed

discovers working arms faster than the fitness-based (or novelty-based) approach alone.

As a general lesson for EC, this work emphasizes the importance of departing the objective

gradient, at least temporarily, to allow human domain knowledge to establish meaningful

principles early in evolution. In this way, the NA-IEC approach evolves controllers based on

what the human evaluator found interesting and not on a performance metric. Consequently,

when agent behaviors are evolved under the NA-IEC approach, the resulting solutions actu-

ally contain good representations of the problem domain because they are shaped by what

the user considers relevant for the task. Furthermore, when such principles are encoded in a

meaningful way, future mutations are likely to change and elaborate the established princi-

ples in a coherent way, thus leading evolution more quickly into the fruitful regions that are

difficult for fitness-based approaches to discover.
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CHAPTER 9
CONCLUSIONS

The purpose of this dissertation was to establish the foundational concepts that motivate

the need for serendipitous discovery in the field of evolutionary computation (Chapter 3), to

introduce a new mode of evolutionary search called novelty-assisted interactive evolutionary

computation (NA-IEC), and to establish the capabilities of this new evolutionary approach by

demonstrating how it improves the discovery of solutions. The capabilities of serendipitous

discovery are established by two experiments, the proof-of-concept (Chapter 5) and the

culminating experiment (Chapter 7), which compared the NA-IEC approach to pure novelty

search and objective-based search.

The premise of this work is that evolutionary algorithms that are guided by an objective

function have a negative effect on the resulting solutions—even when the objective is reached.

The first contribution (1) is a unique experiment presented in Chapter 3 in which images

evolved through serendipitous walks through the space of images become the explicit objec-

tive of the same algorithm that discovered them. The reported result is that objective-based

evolution cannot re-evolve the images that it once discovered. Evolution failed to recreate

most images at all, and even when it did recreate them, the failure was in the piecewise rep-

resentation of the original image. These results call into question the credibility of pursuing

a priori objectives in search overall.
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The power of serendipitous discovery in Picbreeder, along with results from novelty search,

inspired the second contribution (2), the NA-IEC approach presented in Chapter 4. In this

approach, a human evaluator selects behaviors that are interesting or meaningful for a given

domain without regard to a fitness-gradient. Additionally, combining interactive evolution

with novelty search creates a synergistic effect in which evolution is directed by what the

human sees as interesting, while an interleaved novelty search explores the area around the

user’s selection(s). In this way, the on-screen population contains a collection of innovative

behaviors that are sufficiently novel, and if they are interesting to the human evaluator, may

inspire the discovery of agent behaviors that could not have been known or specified a priori.

The third contribution (3) of this dissertation is a proof-of-concept that demonstrates how

the NA-IEC approach leverages human insights and domain knowledge to evolve solutions

faster than a traditional automated search. In fact, the NA-IEC approach even outperformed

a waypoint-directed search, demonstrating that human evaluators are contributing insights

that are beyond simply knowing the path that to the goal. The fourth and final contribution

(4) is the culminating experiment in which control behaviors are evolved serendipitously in

a non-trivial task domain, i.e. the octopus arm. In this experiment, the stepping stones

required to evolve a solution are not obvious, yet human insights again enabled evolving

solutions faster than automated approaches.
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Conclusion

The significance of this work is that it demonstrated the deleterious effects of evolving toward

an objective and presented a new mode of evolution capable of abandoning the objective

gradient. Instead, it favors following the path of interesting behaviors (as perceived by

humans) toward the discovery of meaningful controller solutions.
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APPENDIX: PARAMETERS

This appendix presents the experimental parameters applied in this dissertation, each of

which were based either on the NeuroEvolution of Augmenting Topologies (NEAT) approach

introduced by Stanley and Miikkulainen (2002, 2004) or the Hypercube-based NeuroEvo-

lution of Augmenting Topologies (HyperNEAT) approach introduced by D’Ambrosio and

Stanley (2007); Gauci and Stanley (2007, 2010); Stanley et al. (2009). Recall that Hyper-

NEAT only differs from original NEAT in the set of activation functions that are available.

Thus this section first describes the evolutionary parameters for NEAT and HyperNEAT

and then specifies the parameter values that were applied, either globally or specifically, in

the experiments.

Population Size: The number of individual candidate solutions (i.e. individual hypothesis)

maintained at any given time.

Generational Replacement Strategy: The evaluation and selection of individuals in

population Pi result in the creation of new population Pi+1.

Steady-State Replacement Strategy: The least-fit (or the least-novel) individual is re-

moved from the population to be replaced by a new individual.

Max Number of Evaluations: A halting criteria for the evolutionary search. Under a

steady state replacement strategy, the number of evaluations is equal to the size of the
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initial random population plus the number of replacement events. Under a generational

replacement strategy, the maximum number of evaluations is calculated as the number

of generations elapsed multiplied the population size.

Survival Rate: The percentage of the population which survives and reproduces between

each generation—this parameter is not active under steady-state replacement.

Add Node Probability: The probability that new node will be added by splitting an

existing connection within the ANN.

Add Link Probability: The probability that a new connection will be added linking two

nodes that were not connected previously.

Remove Link Probability: The probability that a connection will be removed; a possible

consequence of such a mutation is that any orphaned nodes will be pruned as well.

Connection weights are mutated as a means of training the network, wherein evolution retains

favorable mutations and eliminates degenerate ones.

Weight Mutation Rate: The probability that a connection weight will be mutated.

Weight Mutation StDev: The magnitude of a weight mutation.

Min Connection Weight: The minimum connection weight.

Max Connection Weight: The maximum connection weight.
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Due to the various ANN structures that emerge under NEAT, recombination is only permit-

ted between compatible individuals. Compatibility is determined evaluating the number of

excess genes, the number of disjoint genes, and the difference between common connection

weights—the significance of which is adjusted by the following compatibility coefficients:

Excess Gene Coefficient: Denoted as c1, this parameter influences the effect of having

excess genes on the compatibility of two networks.

Disjoint Gene Coefficient: Denoted as c2, this parameter influences the effect of having

disjoint genes on the compatibility of two networks.

Excess Gene Coefficient: Denoted as c3, this parameter influences the effect of connection

strength differences on the compatibility of two networks.

Compatibility Threshold: Denoted as ct, this parameter sets the level of difference at

which two networks are no longer considered compatible, i.e. they belong to different

species.

Truncation Selection Strategy: Specifies that the most fit (or most novel) individuals

be selected to reproduce while the rest are eliminated.

Roulette Selection Strategy: Specifies that individuals be selected to reproduce with

the probability of being selected proportional to the individuals spectated fitness value
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(i.e. the individuals raw fitness score divided by the number of individuals in the same

species).

Elitism: Specifies if the most fit (or most novel) individual should be copied into the next

generation without mutation.

Min Elitism Specie Size: Specifies the minimum number of individuals that must exist in

a species for elitism to occur. Note that the use of elitism under a generational replace-

ment strategy reduces the number of individuals that can be selected for reproduction

and recombination.

Initial Topology: Specifies the the number of hidden nodes.

Recurrency: Sets wether recurrent connections will be allowed or disallowed in the network.

All of the experiments presented in this dissertation were conducted using an adaptation of

the Another NEAT Java Implementation (ANJI) package (James and Tucker, 2005–2010)

augmented to support steady-state evolution, interactive evolution, and selection based on

either the fitness score or the novelty score. Additionally, the ANJI package was extended

to implement HyperNEAT, which includes the ability to evolve the CPPNs that indirectly

encode larger networks. The following parameters were applied universally in all experiments:

The speciation parameters were c1 = 1.0, c2 = 1.0, c3 = 0.3, and ct = 0.2. The survival rate

was 20% with the roulette selection strategy and elitism (minimum species size = 1) options

were enabled. The chance of adding a new connection was 10%, while the chance of loosing a
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Table A.1: Parameter settings in NEAT-based experiments.

Parameter Image Evolution Maze Navigation OctopusArm 1 OctopusArm 2
Population Size 150 250 100 100

Replacement Strategy Generational Steady-State Generational Steady-State
Max # of Evaluations 4,500,000 250,000 100,000 50,000
Add Node Probability 7% 5% 5% 5%
Weight Mutation Rate 20% 10% 75% 75%

Weight Mutation StDev 1.0 0.8 1.5 1.5
Min Connection Weight −3.0 −5.0 −5.0 −5.0
Max Connection Weight 3.0 5.0 5.0 5.0

Initial Topology 1 hidden 0 hidden 0 hidden 0 hidden
Recurrency disallowed allowed disallowed disallowed

connection was 1%. For the experiments where NEAT evolved CPPNs, the available CPPN

activation functions were sine, cosine, Gaussian, identity, and sigmoid. These parameters

were based on the established parameters for NEAT (Stanley and Miikkulainen, 2002) and

were found robust to moderate variation. Table A.1 presents the remaining evolutionary

parameters for the experiments in this dissertation.

A.1 NA-IEC Implementation Parameters

While NEAT is the underlying EA for the NA-IEC implementation in this dissertation,

NA-IEC run follow some different configuration details. First, in NA-IEC the minimum

on-screen population size was at least 12, and no more than 144. Next, during the fitness-

based optimization and short-term novelty operations, the background search population
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was expanded to 250 and then run for up to 500 evaluations. For the Step and Optimize

operators, users expected to see similar behaviors with moderate variation, thus the weight

mutation rate is 10% and the weight mutation power is within 0.1 standard deviations of

the current weight.

A.2 Novelty Metric Parameters

The parameters specific to novelty were applied by all experiments and were based on the

original deceptive maze navigation experiment (Lehman and Stanley, 2008, 2011). They

include the nearest neighbors value (k = 15) and the novelty threshold, ρmin, which begins

at 3.0 and is adjusted after every 2,500 evaluations.

A.3 HyperNEAT with LEO

In all versions of the experiment, controllers for the octopus arm are run under a variant

of the HyperNEAT approach introduced by Stanley et al. (2009). Under the traditional

implementation of HyperNEAT (including the implementation in Chapter 6), connections

in the ANN were not expressed if their connection weight was less than 0.2. The original

hope was that particular ANN encoding would suppress patterns of unnecessary connections
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within the resulting ANN. However, in practice HyperNEAT tends to express most every

connection, electing instead to adjust the weights across the entire ANN. Thus, a 10 segment

arm controller with a fully connected substrate has 11,700 connections; such fully-connected

configurations tend to saturate signals and obscure subtle behaviors.

As an alternative, Verbancsics and Stanley (2011) extended HyperNEAT to include a link

expression output (LEO) component. In this way, HyperNEAT-LEO is able to evolve the

ANN’s expressed connectivity pattern (i.e. which connections are expressed) independently

from the pattern of connection weights. To accomplish this, the original CPPN that maps

the four-dimensional point (x1, y1, x2, y2) to a connection weight w, is extended to include

an additional output-node (the link expression output) that specifies if the connection at

(x1, y1, x2, y2) should be expressed with the weight w. By convention, the LEO node acti-

vation function is a step-function with an output in the range [−1, . . . , 1] and connections

are expressed if LEO > 0. Given the geometric properties of the octopus arm domain, the

underlying neuroevolutionary algorithm in Chapter 7 is HyperNEAT-LEO because of its

ability to express patterns for both link expression and connections with weights.

A.4 Domain Implementation Details

Picbreeder Image Evolution Like ANJI, Picbreeder is written in Java so the code could

be combined to support the automated evolution of images previously discovered by
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users in Picbreeder (Secretan et al., 2008). Target images were rendered from the

published CPPN chromosome at a resolution of 128×128 pixels, with each pixel having

an 8-bit grayscale value. The gradient value of the image was then computed using

the Java Advanced Imaging API (JAI). Next, the set of 16,384 grayscale pixel values

and the set of 16,384 gradient values were combined to form the target feature set.

Following the same process for a candidate CPPN evolved by NEAT, a corresponding

candidate feature set is generated such that the degree of difference (Ralescu, 2003)

can be measured for each of the 32,768 corresponding features. Finally, the fitness of a

candidate image is computed from the mean squared error between the target feature

set and the candidate feature set.

Deceptive Maze Navigation Domain: In order to run with ANJI, which is written Java,

the maze navigation domain was recreated in Java based on the original source code

released by Lehman and Stanley (2008) at http://eplex.cs.ucf.edu/software/

NoveltySearchC++.zip. The domain implementation was validated as an equivalent

implementation.

Octopus Arm Domain: The physical modeling environment for the octopus arm simula-

tor is based on the Phys2D engine by Galss (2006–2008) at www.cokeandcode.com.
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