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ABSTRACT

The advancement of laboratory based Extreme Ultraviolet (EUV) radiation has escalated

with the desire to use EUV as a source for semiconductor device printing. Laser plasmas

based on a mass-limited target concept, developed within the Laser Plasma Laboratory

demonstrate a much needed versatility for satisfying rigorous source requirements. This

concept produces minimal debris concerns and allows for the attainment of high repetition

rates as well as the accommodation of various laser and target configurations.

This work demonstrates the generation of EUV radiation by creating laser plasmas from

mass-limited targets with indium, tin, and antimony doped droplets. Spectral emission

from the laser plasmas is quantified using a flat-field spectrometer. COWAN code oscillator

strength predications for each of the dopants were convolved with narrow Gaussian functions

creating synthetic spectra for the EUV region between 10 nm - 20 nm. A preliminary

comparison was made between the theoretical spectra and experimental results. From this

comparison, ion stage transitions for each of the hot dense plasmas generated were assessed.
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CHAPTER 1

INTRODUCTION

History has shown that although plentiful in the sun’s rays, the radiation region known

as Extreme Ultraviolet (EUV) has been challenging for science and engineering to explore.

This spectral region, defined from 30 eV (40 nm) to 250 eV (5 nm) as shown in Figure 1.1,

lies between the ultraviolet and x-ray bands and is one of the last regions to be researched

[1]. The main characteristic that distinguishes EUV from longer wavelengths is its short

absorption length (≈ 1µm). EUV photon energies exceed the band gap of almost all material.

In this range, photon energies reach sufficient values to photon-ionize many materials and

photon-electron scattering becomes appreciable. Thus, conventional transmissive optics such

as lenses and windows can not be used in the EUV. Most reflective optics are also untenable

because many materials do not reflect EUV well at normal incidence and grazing angle optics

are only operable at a few degrees. Given that air and many gases also absorb in the EUV,

most experiments must be conducted under vacuum conditions [2].

Despite these limitations, exploration into EUV wavelengths provide mechanisms for

both elemental (C, N, O, etc) and chemical (SiO2, TiSi2) speciation, creating new scien-

tific progress [1]. These include, but are not limited to studies in astronomy such as EUV
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emission in the sun and various celestial matter, as well as technological advancement for

fabrication in the semiconductor industry (attainment of smaller feature sizes on microchips)

and microscopy (study of live cellular organisms).

Figure 1.1: Electromagnetic Spectrum

1.1 Optics for EUV Light

Layered structures where the refractive index alters periodically with depth will reflect

electromagnetic waves at specific wavelengths. This phenomenon is seen in natural crys-

tals that demonstrate Bragg diffraction of x-rays. Soon after x-ray diffraction theory was

developed, it was realized that if these mechanisms could be created artificially, they could

function as Bragg diffractors and serve as valuable experimental instruments [3]. EUV’s

ability to absorb in many materials introduces a need for such structures. Multilayer mirrors

(MLMs) are a new form of reflectors, enabled by the precision deposition and patterning

technology of the microelectronic industry [4]. Their theory adapts the Bragg diffraction
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phenomenon and is based on constructive interference. MLMs consist of two materials, al-

ternating high and low Z (atomic number) layers [5] . Each pair of layers functions such

that incoming EUV radiation is scattered, or redirected without otherwise being altered.

Scattering follows Bragg’s corrected law of refraction given as [1]:

mλ = 2dsinθ

√
1− 4δ̄d2

m2λ2
(1.1)

where θ is the angle between the incident ray and the scattering ray, m is the diffraction

order, d is the layer pair periodicity (d = λ/2) and δ is the bilayer weighted real part of the

refractive index. This principle is illustrated in Figure 1.2.

Substrate 

Capping Layer 
Si 

Mo 

Figure 1.2: Bragg’s Corrected Law of Refraction

The high Z material in the mirror is often thicker than its counterpart and is used to

weaken absorption and provide scattering, while the low Z material is used as a spacer because

3



its absorption coefficient is much lower. Multilayer coatings for reflective optics for EUV

projection lithography systems are typically designed to consist of layers of molybdenum (Z

= 42) and silicon (Z = 14) (Mo/Si) or molybdenum and beryllium (Z = 4) (Mo/Be). The

theoretical peak reflectance of a Mo/Si MLM is 70%, however, this value is subdued because

of diffusion at the layer interfaces. Currently, Mo/Si mirrors with peak reflectances of 67.5%

at 13.4 nm can be routinely achieved [6, 7].

Figure 1.3 is a theoretical simulation of a molybdenum-silicon multilayer optic with a

periodicity of 40, designed using the Center for X-Ray Optics (CXRO) website [8]. The

wavelength of peak reflectivity can be adjusted by varying the layer spacing. The figure

shows a peak at 13.5 nm and has properties similar to those used within the EUV community.

Figure 1.3: Simulated reflectivity of a 40 pair Mo-Si multilayer optic acquired from CXRO
multilayer reflectivity design webpage

[8]
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The introduction of carbon and silicon carbide diffusion barriers, in between the molyb-

denum and silicon layers has aided in the enhancement of reflectivity and the stabilization

of MLM optics [9].

1.2 Applications of EUV Sources

Progress in fabricating multilayer optics has escalated scientific research in both labora-

tory and celestial extreme ultraviolet sources. Applications of laboratory EUV include high

powered sources for nanoscale imaging and printing.

With the need to keep up with Moore’s law and the International Technology Roadmap

for Semiconductors (Figure 1.4), laboratory EUV source development has made one of its

most significant contributions in the semiconductor industry.
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Derived from Rayleigh’s resolution formula, the minimum feature size (MFS) for circuit

printing shown in Equation 1.2 is dependent on the process constant, k1, the numerical

aperture, NA, of the optical system and the exposure wavelength, λ [11].

MFS =
k1λ

NA
(1.2)

The use of an EUV source for lithography considerably decreases the exposure wavelength,

hence reducing the minimum feature size on wafers from 193-248 nm to lower than 16 nm

[12]. Figure 1.5 shows an illustration of multilayered optics being used in the stepper process

for EUV lithography (EUVL). The promising results of EUVL does not come cheap. This
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latest step in the semiconductor industry also proves to be the most complicated, introducing

challenges such as industry specified source requirements, new photoresist development and

new masking techniques.

IF 

Figure 1.5: EUVL Stepper Process using multilayered optics

The physical requirements for an EUV source for use in Beta Stepper Tools as well as

High Volume Manufacturing (HVM) are displayed in Table 1.1 [11]. Beta Tools are similar

to HVM tools in that they have the same optics and require the same processing methods

[11].

The 115 W power requirement has for many years, been the most critical factor, as judged

by the combined representatives of the chip manufacturers. This is because the source output

directly affects the wafer throughput and responsiveness of photoresist during exposure.

Assuming a field size of 25 mm x 25 mm and 89 fields in a wafer with a resist sensitivity of

5.0 mJ/cm2, the energy needed to expose all fields in the wafer is 2.9 J. However, prior to
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Table 1.1: EUV Source Requirements

Requirement Beta 2009 HVM 2011
Wavelength (nm) 13.5 13.5

Throughput (wafers/h) 60 100
EUV Power at IF (W) 30 115
Repetition Rate (kHz) 5 7-10 (no upper limit)
Energy Stability (%) – 0.3
Collector Lifetime (h) – >30000

Etendue (mm2) – <3.3
Max. Solid Angle to Illuminator (sr) – 0.03-0.2

meeting the wafer, the power requirement of the source must first meet illumination, reticle

and projection optics box conditions. Taking into consideration component degradation

factors, it has been expected that 115 W of EUV light will be needed at intermediate focus

(IF), the interface between the EUV source and illumination optics.

Source lifetime and stability are also challenges that have proved to be difficult to over-

come. The estimated 3 year lifetime goal is influenced by several parameters, including

degradation of the primary collector mirror. Stability of the stepper is directly related to

the stability of the EUV source and the source stability is highly influenced by its repetition

rate. Ideal repetition rates are estimated to be approximately 10 kHz [11, 13].

Present day management of these hurdles has allowed EUVL to remain the leading can-

didate for semiconductor manufacturing of technology nodes below the 22 nm range. ASML,

the largest supplier of photolithographic systems in the world, recently demonstrated an EUV

full-field scanner, the ADT (Alpha Demo Tool), used successfully for EUV development prior

to the installation of their pre-production tool. The ADT uses a discharge produced plasma,

120 W tin target source producing an EUV output power of 5.3 W [14]. The system op-
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erates with a numerical aperture (NA) of 0.25 on a field size of 26 mm x 24 mm and was

demonstrated for a 9 month period thus far. [15, 16].

The advancement of multilayer optics has also played a significant role in astronomical

studies. Optical systems, such as Cassegrain telescopes, are used to capture high resolution

images with the aid of Mo-Si multilayered optics [17]. Other applications include High-

Harmonic-Generation based EUV lasers (which are discussed briefly in Chapter 2) and EUV

microscopy. EUV microscopy ranges from biological imaging to specialized imaging for

lithographic purposes such as defect inspection of EUV masks that support the advancement

of EUVL [18].
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CHAPTER 2

EUV SOURCE CONCEPT

Techniques for producing laboratory EUV radiation include continuous sources such as

e-beam devices, pulsed sources (developed from discharge and laser produced plasmas) and

coherent sources based on high harmonic generation lasers or e-beam soft x-ray lasers. The

emphasis of this study is the laser produced plasma source. The advantages and disadvan-

tages of this source and several others are discussed in this chapter.

2.1 Synchrotron Sources

Large cyclic electron accelerators called synchrotrons are the most dependable and impor-

tant sources for EUV and soft x-ray emission. These particle accelerators rely on strong

magnetics fields that allow electrons to travel at relativistic speeds in a curved trajectory

resulting in radiation emission [19]. First generation synchrotron geometries were simple

circular rings under ultra high vacuum pressures (10−9 Torr). Many current synchrotrons

(second generation) involve storage rings of more complex, quasi-polygonal designs. Newer

synchrotron facilities (third generation) have many straight sections that are separated

by a series of ’bending’ magnets (Figure 2.1). As the electrons circulate the storage
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rings, they are diverted by magnetic fields, emitting electromagnetic radiation at each

bending magnet. These beams are then captured and focused to specific wavelengths [20].

Electron 
Gun Linear 

Accelerator 

Booster 
Ring 

Storage 
Ring 

Photon 
Emission 

Figure 2.1: Synchrotron Radiation Facility

Third generation facilities also use insertion devices in the booster ring to significantly

increase the intensity of the emitted radiation as seen in Figure 2.2. These are called wigglers

and undulators. Wigglers have large magnetic fields with strong harmonics extending into

higher photon energies. They operate such that at each bend in the wiggle, a conical beam
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is produced. Each of these is re-collimated with optics to form beam lines. Beam lines are

normally associated with different wavelength and optical properties [21].

Undulators use weaker magnetic fields but produce greater intensities of light

than wigglers. The magnets are arranged such that the light cones overlap and in-

terfere with one another at specified wavelengths. The radiation of choice can be

tuned by changing the gap between the magnets. Undulator radiation provides

high spectral brightness, partial coherence, tunability and narrow bandwidth [22].

Figure 2.2: Radiation techniques at advanced synchrotron facilities (Courtesy of the Aus-
trailian Synchrotron Facility)

[22]

Synchrotron radiation is a desirable source for short wavelength emission, however facili-

ties are large and expensive with a limited number of locations around the world. Therefore

this source is not practical for applications such as microscopy and EUVL. A less costly,

more compact source is sought after.
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2.2 Discharge Sources

Discharge produced plasmas (DPP) have become a popular candidate for EUV emission.

These plasmas are created when a large potential difference is sent across a column of gas,

forcing an electrical breakdown in the gas [20]. The configuration for a discharge produced

plasma source is shown in Figure 2.3. Principal light collectors are nested cylindrical, el-

lipsoidal or Wolter-type grazing incidence mirrors. Systematic DPP source development for

chip manufacturing began with Xenon targets using various concepts, all involving several

types of pinch plasmas.

Figure 2.3: Configuration of a discharge produced plasma
[11]

To produce an intense plasma state, the DPP must be heated and experience a so-

called ”pinch effect” in which a transient linear current goes through the plasma inducing

a magnetic force that confines and compresses the plasma [11, 23]. The design of discharge

plasmas are simple and compact and offer a variety of different electrode geometry configu-

rations making it a convenient source for many applications. The conversion efficiency (CE)
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for this source scheme is simply the ratio of input electrical power to the power of the plasma

source output. Tin based DPPs have reached CEs of 2.5% [11].

A variety of discharge schemes have been investigated as sources for EUV lithography.

However, the challenges faced with incorporating DPP sources into EUV steppers are largely

technical. Resolving these matters will include continued study on the maintenance of high

repetition rates for stability and thermal management mechanisms. DPPs also suffer from

debris as a result of electrode erosion. This drawback is a common challenge among all

plasma sources and leads to damage of collector optics and significant degradation of source

lifetimes [24]. A long source lifetime is a requirement for lithography so debris mitigation

is an important issue that must be addressed. One of the most popular debris mitigation

mechanisms for DPP sources is the so-called ’foil trap’ (shown in Figure 2.4). A foil trap is

a nested set of closely spaced vanes that reduces sputter of optical surfaces. Debris particles

are captured onto the foil linings which are positioned in radial directions with respect to

the source location [25, 26].
 148 C h a p t e r  T h r e e  

3.4 Laser-Plasma Sources 
Laser plasmas have been considered as a source ever since the begin-
nings of EUVL. Early studies at LLNL,102 SNL,103 and UCF104,105 grew 
from laser-plasma studies associated with x-ray generation for x-ray 
projection lithography and microscopy106 and laser fusion. X-ray spec-
tral studies had characterized the emission as a function of wavelength 
and had identified good conversion in the 10- to 20-nm region from 
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FIGURE 3.15 Foil-trap debris fi lter.101 (a) Photo of the structure. (b) The effect 
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Figure 2.4: Foil trap filter for debris mitigation
[25]
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2.3 EUV Lasers and Femtosecond High Harmonic EUV

EUV Lasers and High Harmonic Generation (HHG) allow for the creation of spatially

coherent sources of EUV and Soft X-Ray light. EUV lasers use discharge or laser produced

plasmas as active media to create high energy wavelength light amplification. A simplification

of the capillary discharge plasma operation for coherent EUV is shown in Figure 2.5. Phase

matching of the conversion process is what creates coherent EUV. Although not nearly

as high powered or mature as lasers in the visible or infrared, table-top EUV lasers have

sparked plenty of interest in both the laser development and semiconductor industries with

applications such as nanoscale imaging and ablation as well as table top EUV interferometry.

Currently, EUV lasers have powers of 1-5 µW with sub-femtosecond pulse durations and laser

observed wavelengths as short as 10.9 nm [27].

Ti: Sapphire  
fs pulse input 

Coherent EUV 
pulse output 

Gas filled 
waveguide 

Figure 2.5: Femtosecond laser is focused into a gas filled waveguide to produce coherent
EUV output

2.4 Laser Plasma Source

Like DPPs, Laser Produced Plasma (LPP) EUV sources must accommodate very high

performance requirements to qualify as a conceivable technology in the microchip fabrication
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industry. These sources are created by optical laser-target coupling and therefore one of the

benefits of LPPs is that the laser and associated apparatus do not need to be physically

located near the plasma source or scanner equipment. This is unlike DPPs which require

power systems and cooling mechanisms to be integrated near or at the source location. LPPs

also allow for higher repetition rates (up to several tens of kilohertz), generating higher doses

of stability [28].

Laser plasmas are created by ionizing a target surface as a direct result of focusing a

sufficiently high intensity laser beam onto it. The common configuration for an LPP light

source is shown in Figure 2.6.

Figure 2.6: Configuration of a laser produced plasma
[11]

The hot dense plasma produces both continuum and discrete radiation as a result of the

target material. Its ”fingerprint” is identified by characteristics such as temperature and

density. These traits are determined by target architecture, chemical composition and by

the laser’s attributes. Laser irradiance is defined as:
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I =
E

Aτ

(
W

cm2

)
(2.1)

where E is the beam energy in joules, A is the area of the focused spot size of the beam

in cm2 and τ is its pulse duration in seconds. The intensity plays a key role in generating

optimum plasma characteristics.

Considering the flexibility of laser plasmas, they arguably offer less severe complications

as an integrated lithographic source, particularly bearing in mind the thermal dissipation

matters associated with discharge plasmas [28]. Debris mitigation still becomes a problem

when choosing a viable EUV plasma source. This consequence was recognized by the Laser

Plasma Laboratory from the outset of our involvement in sources for EUVL. A unique method

for creating mass-limited droplet targets was devised. Target configuration for mass-limited

droplets minimizes large debris issues obtained when generating laser plasmas from planar

targets. This documentation is concerned with developing and examining these mass-limited

targets for various material compositions and will be examined thoroughly in subsequent

chapters.
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CHAPTER 3

PHYSICAL PROCESSES IN LASER PLASMAS

Plasmas are considered by many to be the fourth state of matter because they possess

properties unlike those of solids, liquids and gases. Since this thesis presents the development

of hot dense plasmas, this chapter concerns itself with presenting the physics behind these

plasmas. The chapter begins by discussing general plasma conditions and then continues to

describe characteristics of laser plasmas, examining both blackbody radiation (considering

equilibrium effects) and spectral emission as a diagnostic for understanding non-equilibrium

effects. These phenomenons are examined more thoroughly in many texts including [11, 28,

29, 31, 33, 38, 39]

3.0.1 Basic Plasma Physics

To understand the nature of laser plasmas, it is important to understand the physical pro-

cesses behind all plasmas. A plasma is defined as a system of ions and electrons, having a

total neutral charge, which are coupled to each other via their self-consistent electric and

magnetic fields [29]. When not in equilibrium, displaced ions and electrons pull towards each

other from the resulting electric field allowing both electrons and ions to oscillate. However,
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because the ions have a much larger mass than their electron counterparts, they are assumed

to be stationary and the electron oscillations overpower the ions.

The frequency of this electron oscillatory effect is called the electron plasma frequency,

ωp, and is defined as:

ωp =

√
nee2

ε0me

(3.1)

where ne is the electron density, e is the charge of an electron (1.6022 x 10−19 C), ε0 is

the permittivity of vacuum (8.854 x 10−12 F/m) and me is the mass of an electron (9.1094

x 10−31 kg). The nature of oscillating waves within the plasma causes these particles to

interact with the electromagnetic fields which creates a dispersion effect as described by

w2
0 = w2

p + c2k2 (3.2)

where ω0 is the angular frequency of the incident light, c is the speed of light (≈ 3 x 108

m/s) and k is the wave number (2π/λ). From these two equations, the index of refraction

can be derived [30] to be

n(ne, ω0) =
ck

ω0

=

√
1−

w2
p

w2
0

=

√
1− nee2

ε0meω2
o

(3.3)
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When light travels to high electron densities, it should be noted that ωp will approach ω0

and the index of refraction will approach zero. This results in total internal reflection (TIR)

and also the derivation of the critical density defined as:

ncr =
ε0meω

2
0

e2
(3.4)

The critical density is where the index of refraction of a particular optical frequency goes

to zero [30]. For the conditions required here, the laser light does not quite reach the critical

density. The light is progressively absorbed on the sloping density front leading up to the

critical density. This mechanism is known as Inverse Bremsstrahlung Absorption(IBA). IBA

and several other processes such as resonance absorption and Raman scattering take place

around the critical density region. EUV and Soft X-Ray emission also normally occurs around

the critical density region where the highest thermal conduction is experienced. The critical

density for an Nd:YAG laser, as was used for the experiments in this thesis, is ≈1021cm−3.

3.0.2 Laser Plasma Physics

Basic concepts of all plasmas were discussed in the previous section. Laser plasmas, to be

more specific, are produced when high intensity laser beams, which generate large electro-
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magnetic fields, are focused onto a target surface to generate ionization. Laser radiation of

intensities greater than 108 W/cm2 provide large enough electric fields to breakdown target

material. When the focused laser beam hits the target, multi-photon ionization is often

initiated. A hot plasma conversion layer known as a corona is formed on the surface of the

target. The initial ionization processes occurs much faster than the actual pulse duration

of the laser beam so following pulses couple to the corona [11, 28, 31, 32]. This interaction

leads to electron avalanche, a phenomenon where electrons endure high accelerations allow-

ing them to collide with ions in the plasma and form new electrons that experience the same

procedure, hence increasing the electron density of the plasma. The plasma expands normal

to the surface of the target and the laser radiation energy continues to get absorbed. TIR is

experienced when ωp equals ωL (formerly known as ω0) and the laser beam is incident upon

target. Reflected light is unacceptable and is prevented by controlling the slope of the laser.

This is done by using long nanosecond pulsed lasers for plasma generation [33].

3.0.3 Inverse Bremsstrahlung

The most efficient absorption mechanism in laser plasmas is IBA which is also referred to

as collisional absorption. Bremsstrahlung occurs when light is emitted by electrons slowing

down in the vicinity of an ion. Inverse Bremsstrahlung occurs when the electron accelerates

instead. It then avalanches creating additional collisions of oscillating electrons and ions

after the electrons have gained energy from the laser pulse. These collisions result in disorder
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which allows for increased electron energy and play a central role in heating the plasma. The

efficiency of IBA is related to the intensity of the laser radiation. High intensities lead to

saturation of collisional absorption. The IBA absorption coefficient [31] is

kIB = 3.10× 10−7 · lnΛ · Zn
2
e

T
3
2
e

· 1

ω2
L

√
1−

(
ωp
ωL

)2
(3.5)

In the equation, lnΛ is the Coulomb logarithm which is related to the minimum and

maximum impact parameters (defined as shown in Equation 3.6 [34]), Z is the average

charge per ion and Te is the electron temperature.

lnΛ = ln

[
3kBTe4πε0
Z∗e2

√
kBTeε0
e2ne

]
(3.6)

The IBA coefficient shows that collisional absorption is strongest for high electron den-

sities and low temperatures. The fraction of absorbed laser energy [35] after traversing a

distance L is given as

αabs = 1− exp(−kib · L) (3.7)
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L is the laser plasma scale length and is a function of the expansion velocity of the plasma

and the laser pulse duration [29]. To determine if a laser plasma is dominated by IBA, a

specific intensity where IBA is greatly diminished has been identified [36]. This intensity is

defined as

I∗ = 1012 · ZLµf
λ4

(3.8)

where Lµ is the plasma scale length in µm, Z is again the ion charge state, f is the

flux limit and λ is the laser wavelength in µm. When I � I∗, IBA is prevalent and the

plasma remains collisional. However, when I � I∗, the plasma is less collisional and IBA is

weakened.

3.0.4 Thermal Process in Plasmas

Hot dense plasmas have a tendency to push up the threshold of non-linear processes ex-

perienced by plasmas in general. To create EUV and Soft X-Ray emission, particles existing

in the plasma must have very high energies (� 100 eV). Conservation of energy is then

maintained because particle-particle interactions radiate high energies. This phenomenon is

best explained with the consideration of blackbody radiation. The peak photon energy is

related to the temperature of the radiative bodies therefore EUV and Soft X-Ray emissions
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(30- 250 eVs) require very hot radiators. Also, the emission must come from a large number

of particles compressed into a small volume, approaching densities similar to those of solids.

This is how the term ”hot dense plasmas” came to be [29]. These conditions are far from

equilibrium and hence the plasmas endure very short lifetimes. The high temperatures and

therefore high particle velocities cause the plasmas to expand and cool rapidly. The elec-

tron temperatures in these plasmas range from a few eVs to hundreds of eVs and differ for

different plasma geometries (ie. spherical, planar) [11].

For most laboratory plasmas, it is reasonable to assume that there exists a state of local

thermal equilibrium (LTE). This suggests that although the plasmas are not temporally or

spatially uniform, at a local region at any given time, equilibrium exists. At LTE, ion and

electron temperatures are the same. This is due to the high frequency of electron and ion

collisions which allows for sufficiently high energy transfer rates from electron to ions and

vice versa [24].

Plasmas created from nanosecond laser pulses for high Z elements can not generally be

considered to be in LTE. Considerable energy is converted into radiation (line and blackbody

emission) which strongly affects the population of available energy states. This non LTE

regime introduces more physical complications including photoelectric and recombination

process and radiative de-excitation [34].

A plasma is also characterized by its optical thickness [37]
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τ(ω) =

∫
k(ω)dx (3.9)

where k(ω) is the absorption coefficient per cm and x is the coordinate along the line

of sight. Intensity relations corresponding to the blackbody curve signify a plasma which is

optically thick (τ �1) and in equilibrium. If a plasma is optically thin (τ �1), the intensity

is proportional to the plasma thickness and Planck’s Blackbody Radiation Law will not hold.

Instead, optically thin plasmas are examined through free-free, free-bound and bound-bound

emission mechanisms which will be discussed later on in the text. Thermal equilibrium is

rarely achieved in the hot dense short-lived plasmas that are created within the laboratory

and therefore the mechanisms mentioned above will be examined later in this chapter.

3.1 Identifying Plasma Emission Characteristics

As mentioned before, equilibrium requirements are rarely met within laser plasmas.

When the plasma gains thermal energy, the electronic transitions can be divided into three

groups based on the discreteness of the energy spectrum of the initial and final states of

the system. The processes which are bound-bound, free-free and free-bound emission will

be discussed in this section, but again, much more information can be found in the sources

mentioned at the beginning of Chapter 3.

25



3.1.1 Bound-Bound Transitions (Line Emission)

The bound-bound transition correlates to electronic transitions within a particle that occur

from one discrete energy level to another. By virtue of the discrete energy levels, the elec-

tronic transitions result in either emission or absorption of the line spectra [38]. An emission

line is formed when an electron makes a transition from one discrete energy level to a lower

level, releasing a photon of a particular wavelength. Absorption is thus, the opposite process

where an electron transitions to a higher energy level and absorbs a photon. The absorbed

photons are represented as a drop in continuum spectra at the wavelength associated with

the absorption. Line emissions stem from either resonance transitions or transitions between

excited states with resonance having stronger effects. The spectral line emission rate [34, 39]

is

Pζm′→ζm = Nim′~ωζm′→ζmA(ζm′ → ζm) (3.10)

where Nim′A(ζm′ → ζm) is the number of transitions from the upper to the lower state

per second per cm3 and ~ωζm′→ζm is the energy of the emitted photon and the transition

energy (Eζm′ - Eζm). The line shape of the spectra can be influenced by several parameters

including the natural lifetime for the transition from one state to another, the motion of

the emission and the interaction of the particle with other particles and fields within the

plasma. The spectral line emission is the most important radiation process in hot plasmas,
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especially high Z plasmas where the ions are not fully ionized. The simple line structure for

emission line transitions is more useful for low Z plasmas. As the number of bound electrons

is increased (as is the case for high Z plasmas), the bound-bound spectrum becomes more

complicated and emission lines pack closer together. The lines become so tightly spaced that

often their spacing is smaller than their own line width. As a group, they inherit the title

unresolved transition array (UTA) [28, 39]. Assigning characteristic wavelengths to lines

within this region is difficult because there are too many lines to identify single transitions

[35]. Figure 3.1 shows the UTA of a solid tin target plasma in the EUV region.

Figure 3.1: UTA in the EUV region for a solid tin target
[35]
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3.1.2 Free-Free Transitions (Bremsstrahlung Radiation)

Free-free transitions, also known as Bremsstrahlung radiation, occurs when a free elec-

tron moves through the electric field of an ion within a plasma cloud. The electron can

emit a photon, losing all of its kinetic energy but remaining free, or it can gain a photon

and gain even more kinetic energy [38]. The term Bremsstrahlung comes from the German

words ”bremse” meaning brake and ”strahlung” meaning radiation. This term describes

the free-free transition because the transition is made after the electron is deflected within

the field of the ion and begins to slow down, losing some of its kinetic energy to radiation.

Bremsstrahlung transitions result in continuum emission and absorption spectrums and de-

pend on the electron density, electron temperature and ionic charge. The spectral energy

density in terms of energy per volume per wavelength for Bremsstrahlung radiation [31] is

Wλ = 2× 10−27 · Zn2
e

(Te)0.5
· 1

λ2
· exp(− hc

λ · kBTe
) (3.11)

Figure 3.2 is an animation of the bremsstrahlung radiation process. This process is useful

for low Z target plasmas where the ions are fully ionized and little line emission is found.

This is also true for higher Z plasmas where the ions are fully stripped. For high Z plasmas

at low temperatures, the main mechanisms are line emission and bremsstrahlung radiation

which provide low continuous background radiation [39].
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Figure 3.2: Bremsstrahlung radiation resulting in photon emisison

3.1.3 Free-Bound Transitions (Recombination Radiation)

Another means of continuum spectra are free-bound transitions or recombination radia-

tion. This radiation process can only occur above the sharp, so-called ”edges” that refer to

the binding energies of the bound state of the ions [39]. A free-bound transition can result

from absorption of a photon. The electron will gain energy, exceeding that of its binding

energy to the ion, and become free. The additional photon energy becomes kinetic energy of

the free electron. The reverse can happen as well. The free electrons can be captured by the
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ions within the plasma and photons will be emitted. The spectral intensity of recombination

radiation can be represented with respect to Bremsstrahlung radiation [31]

Wr

WB

≈ 2.4 · Z
2EH
kBTe

(3.12)

In this ratio, EH= 13.6 eV, the hydrogen ionization energy. The ratio depicts that

Bremsstrahlung transitions overpower recombination in low Z and/or high temperature plas-

mas.

3.2 Plasma Simulation and Modeling

Characteristics of laser plasma emission is dependent on both laser and target parameters.

To optimize the state of plasma emission, it is helpful to simulate plasma conditions and

spectral expectations. The following section discusses three of these simulation programs

used widely in the Laser Plasma Laboratory. MEDUSA and Vorpal are used to simulate

various plasma attributes such as electron density and electron temperature. The COWAN

code is implemented as a means of calculating atomic structures and spectra of various target

elements.
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3.2.1 Hydrodynamic Plasma Fluid Model

Prior to generating hot-dense plasmas for EUV radiation, the one-dimensional Lagrangian

hydrodynamic code, MED 103, can be used to simulate hydrodynamic expansion of laser

plasmas [35, 34, 40]. MED 103 is a popular and flexible plasma modeling code that was

developed from an original MEDUSA code by Christiansen et. al. [41]. The code allows

for the optimization of plasma conditions by allowing the user to modify parameters such as

laser pulse duration, wavelength, laser intensity, target composition and atomic mass. The

code outputs one-dimensional, 90-cell Lagrangian models that feature information on laser

plasma coupling and expansion mechanisms and electron and radiation transport. Each cell

contains specific information on the plasmas condition with respect to the lifetime of the

plasma. Cell content includes electron and ion densities, plasma temperature, average ion

state and other physical parameters of the plasma.

MED 103 was not used for optimizing the plasmas generated for this thesis. Input for the

code requires an average atomic number for mixed layer targets such as the doped droplets

used for these experiments. Tin doped plasmas, identical to those reproduced in this thesis

were modeled in the PhD thesis of Dr. Chiew-Seng Koay [35]. His results are shown below.

The adjacency of the elements used for this thesis (indium, tin and antimony) will lead to

very similar plasma predictions for indium and antimony doped droplets.

One of the primary benefits of examining the plasma condition with MED 103 is the

ability to determine the laser intensity input for optimum EUV emission. Koay used MED
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103 for the characterization of a tin-doped water target and observed electron temperature

and density as a function of laser intensities ranging from 1 x 1010 - 3 x 1013 W/cm2.

Figure 3.3 is a sample from Koay’s work of input parameters used for this analysis.

Figure 3.3: Input parameters for MED 103 simulations
[35]

Figure 3.4 shows electron temperature and density results reported by Koay. R(µm) is

the distance measured from the target center. It can be observed that the critical density

point (1021cm−3), where IBA takes place, and the maximum electron temperature are located

around the same region.
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Figure 3.4: Electron temperature and density results at peak of laser input
[35]

With these results Koay was able to identify that optimum EUV emission occurs with

electron temperatures between 30 eV and 45 eV as was portrayed by previous models. Fig-

ure 3.5 is a plot of the maximum electron temperature as a function of laser intensity.

Figure 3.5: Electron temperature and density results at peak of laser input
[35]
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To optimize EUV emission conditions from a tin-doped target, laser intensity would be

approximately 1 x 1011 W/cm2. This is also the case for EUV emission from antimony and

indium doped targets.

Vorpal is a GUI-driven hybrid plasma and beam simulation code. The software allows

for textual or CAD input of more complicated geometrical target information. Vorpal simu-

lations are governed using a three-dimensional cartesian grid. Positions relative to the grid

are determined by particle-particle interactions and particle-field interactions [42]. Future

work on the EUV plasmas generated for this thesis include a detailed analysis of plasma

behavior and optimization of EUV emission using Vorpal.

3.2.2 Atomic Structure and Spectra

Plasma spectroscopy is the study of spectral characteristics of emitted radiation that allows

for the understanding of the state of plasmas. Transition probabilities or oscillator strengths

are a means of predicting spectral emission prior to experimentation. Transition probabilities

for indium, tin and antimony ions have been deduced using the COWAN code suites [43] by

Dr. Moza Al-Rabban of Qatar University. These calculations are presented in Chapter 5 of

this thesis along with experimental results of the respective dopant material. In this section,

the theoretical development leading to the transition strength predictions is presented as was

described by R. D Cowan in [43].
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For an isolated, field-free atom with a total angular momentum Ji, there are gi degenerate

quantum states for the Energy Ei where gi is defined as:

gi = 2Ji + 1 (3.13)

The value 2Ji + 1 corresponds to the number of possible values for Mi, the magnetic

quantum number. Aji or the Einstein A-coefficient describes the spontaneous transition

probability per unit time of an electron in a specific excited state, j, making a transition to

any of the gi states of lower energy. This function is given as [20, 43, 44]

Aji =
∑
Mi

aji (3.14)

It is more desirable to define a term for the weighted transition probability then the

Einstein transition probability because it is more symmetric with respect to upper and lower

energy levels. The weighted transition is defined as

gjAji =
∑
Mj

∑
Mi

aji (3.15)

Assuming isotropic excitation and the same number of atoms in each state is of level j,

the intensity of a line emission is calculated to be

I(t) = hcσjigiAjiNj(t) (3.16)
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In this equation, Nj(t) is the number of atoms in the state j and σji is the spectrum line

or wave number which is defined as

σji =
1

λji
=
Ej − Ei
hc

(3.17)

The spontaneous transition probability can also be represented as a function of Einstein’s

absorption coefficient, Bij and stimulated emission coefficient, Bji.

gjAji = 8πhcσ3
jigjBji (3.18)

where

gjBji = giBij (3.19)

From Equation 3.18, it is clear to see that gj is seen to always represent the statistical

weight of the initial level therefore gjAji can simply be represented as gA. The intensity of

the spectral line can then be estimated as

I ∝ gAσ (3.20)
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This intensity approximation was calculated prior to spectral emission experiments for

the various dopant materials discussed in this thesis and played a critical role in spectroscopic

examination of experimental results.

Figure 3.6 shows the weighted transition probabilities (gA) for Sn8+ - Sn13+ calculated

by Al-Rabban [40] using the COWAN code suites. The spectral region is between 130-140

angstroms.
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It is clear that CI affects the spectra originating from 4d–4f and 4p–4d transitions
i.e. with Dn ¼ 0. In the other hand, there is a negligible effect of CI on the 4d–5p
transitions.

ARTICLE IN PRESS

0

0.2x1013

0.4x1013

0.6x1013

0.8x1013

1.0x1013

1.2x1013

1.4x1013

1.6x1013

1.8x1013

2.0x1013

130 131 132 133 134 135 136 137 138 139 140

gA
(s

-1
)

Wavelength (Å)

Sn8+

Fig. 14. The weighted transition probability in (s"1) of Sn8+ in the spectral region between 130 and 140 Å.
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0

0.2x1013

0.4x1013

0.6x1013

0.8x1013

1.0x1013

1.2x1013

1.4x1013

1.6x1013

1.8x1013

2.0x1013

130 131 132 133 134 135 136 137 138 139 140

gA
(s

-1
)

Wavelength (Å)

Sn9+

Fig. 15. The weighted transition probability in (s"1) of Sn9+ in the spectral region between 130 and 140 Å.

M.M. Al-Rabban / Journal of Quantitative Spectroscopy & Radiative Transfer 97 (2006) 278–316 313

For identifying the experimental spectral lines in the region of importance for extreme
ultraviolet (EUV) lithography between 130 and 140 Å for Sn ions, we listed in Tables 4–11 the
most intense lines. In Figs. 12–19, we illustrated the lines in this region.
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M.M. Al-Rabban / Journal of Quantitative Spectroscopy & Radiative Transfer 97 (2006) 278–316314

References

[1] Extreme ultraviolet light sources-state of the art, future developments, and potential applications. Uwe Stamm;
RIKEN review no.50; January, 2003.

ARTICLE IN PRESS

0

0.2x1013

0.4x1013

0.6x1013

0.8x1013

1.0x1013

1.2x1013

1.4x1013

1.6x1013

1.8x1013

2.0x1013

130 131 132 133 134 135 136 137 138 139 140

gA
(s

-1
)

Wavelength (Å)

Sn12+

Fig. 18. The weighted transition probability in (s!1) of Sn12+ in the spectral region between 130 and 140 Å.
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Figure 3.6: Electron temperature and density results at peak of laser input
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CHAPTER 4

EXPERIMENTAL CONFIGURATION

The purpose of this thesis is to take the patented, mass-limited doped droplet generation

technology [45], developed within LPL and demonstrate its capabilities with various dopant

material. LPL has competitively demonstrated much of its efforts in creating a high pow-

ered laser produced plasma EUV source using a tin (Sn) doped water droplet. This thesis

duplicates previous efforts of the Sn-doped droplets and presents new data on laser plasmas

generated from Sn’s neighboring elements, Indium (In) and Antimony (Sb).

4.0.3 Droplet Formation

The mass-limited target is a droplet mechanism that derives from jet-dropper systems found

in ink jet printers [19]. The concept allows for the formation of droplets of approximately

30 µm in diameter, each containing a small amount of target material mixed with a low-Z

material. For the circumstances of this thesis, the low Z material is either deionized water

or methanol depending on the target material solubility requirements.

The liquid is forced through an ink-jet capillary, shown in Figure 4.1, and then droplets

are formed by applying a vibration of a user defined frequency to break the liquid jet stream
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as seen in Figure 4.2. This is done by applying a voltage to a piezocrystal that makes

contact with the liquid. Droplets are also generated at high repetition rates (10 -100 KHz)

which combat satellite generation. The laser beam is externally triggered with a waveform

generator such that the laser pulse and droplets are synchronized in phase. This allows

for the laser beam to hit droplets centrally, minimizing debris and fully ionizing droplet

material [46]. Since the droplet frequencies are much higher than the repetition rate of the

laser, unused droplets are captured in a liquid nitrogen cooled receptacle and a motor driven

chopper is used to eliminate crystal formation of the droplet material that might occur.

Figure 4.1: Ink jet capillary used for droplet formation

Figure 4.2: Piezo-crystal driven droplet formation
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4.0.4 Droplet Dopant Characteristics

The use of Sn to create EUV laser plasmas has a primary application in lithography. Tin’s

EUV spectral emission around 13.5 nm complements the advancement of Mo/Si multilayer

optics as was discussed previously. The mass-limited tin-doped droplets are created by

mixing tin chloride (SnCl2), a white crystalline solid compound [47], with deionized water.

The molar concentration of tin chloride in the aqueous solution is 4.86 mol/liter. Each

droplet contains about 1018 Sn atoms.

The molar concentration and hence the amount of dopant per droplet was preserved when

preparing both indium and antimony solutions. Indium-doped droplets were created by

combining indium chloride (InCl3), a white flakey compound, with deionized water. Indium

chloride is highly soluble in water and gives off a small exothermic reaction. Its mixing timing

was significantly reduced from that of tin chloride making it easier to prepare. However the

solution was thinner then that of its Sn counterpart. This change in viscosity made droplet

creation very unstable in air. Under vacuum, it was observed that droplet generation became

significantly stable when droplets were generated at a specific frequency of approximately

40 KHz.

Antimony-doped droplets were generated using antimony chloride (SbCl3), a colorless,

solid crystal compound. Antimony chloride undergoes hydrolysis with water forming an-

timony oxy-chloride. The thick viscosity of this solution made it impossible to generate

droplets using deionized water. Instead, methanol (CH3OH) was used as a solvent. The
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solution also had a significantly shorter mixing time than the tin-doped water droplets and

droplets were found to be stable in both air and under vacuum conditions. Table 4.1 shows

physical characteristics of the various dopants used to form droplets for this thesis.

Table 4.1: Dopant Characteristics

Atomic Number Name Formula Mol. Weight MP BP Density
◦C ◦C g · cm−3

49 Indium (III) Chloride InCl3 221.176 583 – 4.0
50 Tin (II) Chloride SnCl2 189.615 247.1 623 3.90
51 Antimony (III) Chloride SbCl3 228.118 73.4 220.3 3.14

4.1 LPL Source Development

The EUV sources discussed throughout this thesis were created in the laser plasma lab-

oratory. The laboratory conditions and facilities are presented in the following subsection.

4.1.1 Vacuum Environment

The vacuum chamber used for the studies presented is 75 cm x 52.5 cm with a depth

of 25 cm and a radius of curvature of 72 cm. It has fourteen 7 cm ports separated by an

arc length of 8.5 cm which are used to support electrical and mechanical feedthroughs, laser

input and various plasma diagnostics. A turbo pump with a 42K RPM rotational speed is

attached to the chamber via a 20.32 cm flange. The chamber is capable of pumping down to
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10−5 Torr, allowing for the transmission of EUV and Soft X-Ray radiation. Target position

is determined by the intersection of two low powered 534 nm, green helium-neon laser beams

entering the chamber, such that the intersection can be a 90◦ angle and each of the fourteen

ports is equally separated from the target by an angle of 10.5◦. With respect to the target,

a laser beam enters the chamber at an angle of 42 ◦. Both a flat-field spectrometer and an

EUV energy detector are aligned at angles of 10.5◦ with respect to the source. A picture of

the vacuum chamber is shown in Figure 4.3.

Figure 4.3: Vacuum chamber used for experiments

4.1.2 Solid-State Nd:YAG Laser

The laser used to conduct these experiments is a flash-lamp pumped Nd:YAG system

available from Spectra Physics which is operated at a repetition rate of 100 Hz. The laser
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output wavelength is 1064 nm. The maximum attainable energy is ∼260 mJ with a pulse

duration of 9.5 ns. The beam is focused onto the target using an AR coated gradium lens with

a 30 mm diameter and an effective focal length of 60 mm. The beam waist was measured to

be 26.3 µm using a Spiricon beam profiler after imaging through a 10x microscope objective

lens.

4.1.3 Droplet Target Imaging System

The droplets, which are produced at a frequency of approximately 30-40 KHz to maintain

stability, are imaged through a single plano-convex lens with an effective focal length of 100

mm. A high powered, 625 nm, red LED generated at the same frequency illuminates the

droplets from behind the lens and the magnified image is displayed on a Logitech CCD.

Although aberrations are prevalent, the quality of the image is sufficient to observe droplet

frequency and stability.

4.1.4 Plasma Diagnostics

4.1.4.1 Flat-Field Spectrometer and Microchannel Plate

Spectral data of the target materials were collected and analyzed on a flat-field spec-

trometer (FFS) that images wavelengths from 5-20 nm. The configuration of this particular
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spectrometer is based on the concept of combining a plane diffraction grating with properties

of a concave mirror. The spectrometer uses a variably spaced concave grating with a nominal

1200 lines/mm operating at a grazing incidence angle of 3◦.

This idea is the basis of the Rowland circle configuration, devised by H.A Rowland,

and is a standard for many modern vacuum spectrographs today. The configuration places a

concave grating tangentially on a hypothetical circle whose diameter equals that of the radius

of curvature of the grating. The traditional configuration of a Rowland circle spectrograph

is shown in Figure 4.4. Imaging with a Rowland is accomplished using specialized optics

that introduce scattered light into the system, making the set up less sensitive to EUV

wavelengths [48].

Figure 4.4: Configuration of Rowland circle spectrograph

The main advantage of the FFS is the logical improvement in which the tangential focal

curve is removed from the Rowland configuration and is rendered near linear over a spectrum

of interest. In this case, the spectrum of interest is 5-20 nm. Resolution is maintained or
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even improved with a flat field imaging surface and astigmatism is minimized [49, 50, 51].

The configuration of the FFS is shown in Figure 4.5.

Figure 4.5: Flat field spectrograph configuration

The incidence arm length from the entrance slit to the center of the grating for the

particular FFS set up used is 237 mm. The center of the grating to the image plane length is

235 mm [52]. The geometrical arrangement displaying diffraction properties of this particular

FFS is shown in Figure 4.6.
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Figure 4.6: Diffraction properties of the flat-field spectrometer
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The grating equation,

mλ = σ0[sin(α) + sin(β)] (4.1)

where m is the diffraction order, σ0 is the nominal groove spacing and α and β are the

incidence and diffraction angles respectively [49], was used to calculate the first and second

order of a green alignment beam. This ensured the calibration of the spectrometer for EUV

wavelengths upon the flat detector. Previously, imaging of the first and second order have

shown that the grating efficiency for the second order is significantly lower than that of the

first order and therefore the second order is not normally detected [53].

The spectral resolution of the FFS, which determines the separation between two spectral

peaks that can be detected at the image plane, was measured by Schwanda et al [51].The best

resolving power (λ/∆λ) was determined to be ≈ 1500 which is between 5-6 nm. The absolute

grating efficiency or the amount of incident flux diffracted into the first order normalized

to the incident flux on the grating, was also determined. The measurements displayed in

Figure 4.7 show that the efficiency is nearly constant between 10-20 nm and decreases almost

linearly between the wavelengths of 5-10 nm.

The FFS used in the experiments conducted does not directly image to a charge-coupled

device (CCD). Instead, the imaging plane is attached to a micro-channel plate (MCP) as-

47



Figure 4.7: First order grating efficiency as a function of wavelength
[51]

sembly which is then coupled to the CCD array. A micro-channel plate is a device used

to intensify the photon radiation by multiplication of electrons, similar in function to an

electron multiplier. The MCP is configured with two plates, each having 10 µm diameter

channels arranged in a chevron (V-like) configuration with a 12 ◦ pitch [53]. A schematic of

the micro-channel plate is shown in Figure 4.8.

An incident ray enters a channel and releases an electron via a photoelectric effect from

the wall of the channel. It gains momentum and accelerates across the channel from the

potential difference of -1200 V that is applied to the channel. A secondary emission effect

takes place where the initial electron strikes the wall of the channel and emits more electrons

which in turn continue to hit the channel wall and emit electrons so that at the end of the
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Figure 4.8: Schematic of a micro-channel plate

channel is a cloud of thousands of electrons [54]. The electrons bombard a phosphor screen

which is positively biased at 3000 V. Both the positive and negative bias are fixed for the

case of these experiments, however, they can be modified to alter the gain. The phosphor

screen is fiber-optically coupled to a Photometrics CCD with a square array, 1024 x 1024,

with 24 µm pixels. The arrangement of this configuration is shown in Figure 4.9. The

spectral resolution of the FFS/MCP imaging configuration is limited by the pixel size of the

CCD. The resolution of the image is 0.015 nm/pixel. In view of the fact that the MCP must

maintain a pressure of 10−7 Torr to function, a differential pumping mechanism in between

the vacuum chamber and the FFS has been implemented.
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Figure 4.9: MCP Configuration

4.1.4.2 Flying Circus Energy Meter

Although the purpose of this thesis is to perform spectroscopic analysis of mass-limited

droplet based laser plasmas, the measurement of EUV energy plays an important role in

determining laser to plasma conversion efficiencies. Also coupled to the vacuum chamber

is an instrument known in the EUV source development community as the Flying Circus

(FC). This instrument, illustrated in Figure 4.10, allows for the measurement of absolute

EUV energy at the industry specified 13.5 nm wavelength. Within the FC is a Mo/Si, 25.4

mm, spherical multilayered mirror which is used as a collector and focuses narrow-band EUV

radiation from the source onto a photodiode [55].

The photodiode has a spectral responsivity of 0.24 A/W at 13.5 nm with a radiation-

hardened entrance window [56]. Between the MLM and the photodiode is a 0.5 µm thick
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(a) Application of FC (b) FC coupled to chamber

Figure 4.10: Flying Circus Energy Diagnostic

zirconium filter, calibrated by NIST, that is used as a band pass filter for EUV wavelength

radiation. The filter’s narrowband transmission curve is shown in Figure 4.11

4. METROLOGY

4.1 Standard method for estimating CE 

CE is an important parameter for laser produced plasma sources, determining how efficient laser energy is 

converted to EUV radiation. Before the adapted metrology for high repetition rate EUV source operation is 

described, it is useful to review the CE calculation process3,19. To determine the laser energy an energy-

meter or power-meter is used. The in-band EUV energy is calculated by taking all wavelength dependent 

parameters of the components in the FC into account, together with a reference spectrum. The in-band 

EUV energy is calculated as3
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where S is the collection solid angle of the EUV detection, Ascope is the integrated area under the EUV 

signal waveform displayed on an oscilloscope, Rscope is the impedance of the oscilloscope channel, Tgas( ) is 

the transmission function of the gas in the vacuum chamber, Rmirror( ) is the calibrated mirror reflectivity 

curve, Tfilter( ) is the transmission curve of the filter(s) used to block visible light from entering the AXUV 

detector, diode( ) is the calibrated responsivity curve of the AXUV detector in the FC, IS( ) is the spectrum 

of the EUV source. The constant S is calculated with the mirror diameter for the FC and the source mirror 

distance, since the full aperture of the reflected EUV radiation will be detected by the photodiode. The filter 

transmission and the mirror reflectivity are calibrated at NIST and the characteristics are shown in Fig.7. 
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Fig.7. Transmission of zirconium filter (left); Multilayer reflectivity (right)

We have used a calibrated photodiode that measures a small reflection (4%) of the laser energy at a pellicle 

surface for the laser energy measurement. The laser energy and EUV energy are measured simultaneously 

to calculate the CE of a single EUV plasma generation3. Therefore the CE is calculated as 
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Figure 4.11: Zirconium filter transmission

This EUV energy detector can be cross calibrated with the FFS and used as part of a

standard method for estimating conversion efficiency. The Conversion efficiency (CE) for
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this laser plasma source is a quantitative estimation of how efficiently the laser energy is to

converted to EUV radiation. This ratio is calculated to be

CE =
EBW
Elaser

· 100% (4.2)

where EBW is the inband EUV energy determined as

EBW = KS ·BWcoeff · Ascope (4.3)

In the in-band EUV energy equation, KS is a constant dependent on the impedance of

the oscilloscope, responsivity of the AXUV detector and the collection angle of the EUV

source. BWcoeff is the bandwidth coefficient whose parameters relate to the spectral emis-

sion detected by the FFS and various transmission and reflection properties determined by

vacuum conditions and multilayer optics. Ascope is the integrated area under the EUV signal

waveform as detected by the FC. The in-band EUV energy’s linear dependency on the Ascope

signal makes the flying circus or any energy detector a necessity when determining conver-

sion efficiency requirements for EUVL. This instrumentation was not used for data in this

thesis however tin-doped experiments are expected to reflect similar conversion efficiencies

(≈ 2%) as was documented in the PhD theses of S. George and C.S Koay [20, 35]. A more

detailed breakdown of conversion efficiency has been documented by Schmid et al [57].
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CHAPTER 5

EUV SPECTROSCOPY

As mentioned previously, tin-doped laser plasmas have been thoroughly analyzed by the

EUV Source Development laboratory at CREOL. This section presents recent experimental

results for tin-doped plasmas as well as new spectral data for indium and antimony doped

laser plasmas. The chapter begins by examining two techniques for analyzing the various

spectra. The first is the use of oxygen lines from methanol and water solvents for pixel to

wavelength conversion and the second is the use of COWAN code predictions to identify ion

stage transitions within the spectral content. Experimental results and ion stage predictions

for each doped plasma then follows.

5.1 Oxygen Lines as a Calibration Tool

Water was one of the first source targets for EUVL because of its strong oxygen O5+ (4p-2p)

transition that occurs at 13 nm [58]. With the progress of tin and lithium targets, water

was dropped as a primary candidate for lithography however, its oxygen lines still play a

strong role in quantifying mass-limited targets in the EUV. Since the solvents used for all
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dopants in this thesis were either deionized water or methanol, oxygen emission was used for

the conversion of raw spectral data designated by pixel size, into more feasible wavelength

emission.

The online atomic spectra database from NIST [59] lists all known transitions for a

majority of the elements and the associated line emission intensities. This data was used to

identify wavelengths of the oxygen lines to provide proper pixel to wavelength conversions.

Three strong O5+ lines located at 13 nm, 15 nm and 17.3 nm were used for most of the

calibration in the 5 - 20 nm range that is displayed on the CCD. Figure 5.1 is emission from

water and methanol droplets using the flat-field spectrometer. The strong O5+ lines that are

used for calibration are identified. Other strong O5+ lines and O4+ lines that are presented

in the EUV range are also noted.

Figure 5.1: Oxygen emission from water and methanol spectra in the EUV

54



5.2 Identification of ion stages

Prior to experimentation, theoretical weighted oscillator strengths (gf) versus wavelength

data was computed for indium, tin and antimony using the COWAN codes by Dr Moza Al-

Rabban of Qatar University. Using these computations, the identification of ion stages for

the various target compounds is determined. The theoretical spectra is created by convolving

the oscillator strength values with a gaussian function of narrow width [11, 34, 35, 60].

The convolution method is simplified by looking at a fabricated collection of oscillator

strength values as shown in Figure 5.2. For each wavelength, Xj, an oscillator line strength

is represented by Yj.

Figure 5.2: A fictitious collection of oscillator strength values (gf)

The simulated spectrum is calculated from Equation 5.1.
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spec(λ) =
N∑
j=1

Yj · exp
−(λ−Xj)

2

w2 (5.1)

In the equation, N can be a value in the thousands and w is the width of the Gaus-

sian function. The Gaussian convolution is applied to real data shown in Figure 5.3. The

convolved data is presented in Figure 5.4 [35]. The number of lines, N , is approximately

50. The small number of lines and the large separation show the convolution process quite

clearly. The COWAN calculations used for the identification of ion stages has a larger num-

ber of lines that often crowd among themselves. The Gaussian features are normally not as

intelligible as is demonstrated in Figure 5.4.

Figure 5.3: An example of oscillator strength data from the COWAN codes where N = 50
and the x-axis is wavelength in nanometers

56



Figure 5.4: Gaussian convolution of data from Figure 5.3 using Equation 5.1

The subsequent sections present results from the various laser plasma targets as well as

the identification of the ion stages using this method.

5.3 Spectral Analysis of Tin-doped Laser Plasma

Figure 5.5 is spectra from a tin-doped laser plasma with a laser intensity of 5× 1011 W/cm2.

The peak of the Sn UTA is at 13.5 nm. As have been shown in previous studies, plasma

temperatures are expected to be in the range of 30 - 45 eV at 13.5 nm and electron densities

approximate the critical density (1021cm−3) [11, 20, 35] .

Figure 5.6 is synthetic tin emission spectra created by taking COWAN code predictions

of oscillator strengths of all the transitions for each of the S+7 to Sn+12 ions in the 13 nm

vicinity and performing the discrete numerical convolution method described previously for

a Gaussian function with w= 0.05. In the theoretical spectra shown, the region of intense

emission for tin shifts towards shorter wavelengths as the ionization increases. It has been
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Figure 5.5: Spectra from a mass limited tin-doped laser plasma with a laser intensity of
5× 1011 W/cm2

proven in previous works at LPL that as laser intensity is increased, higher ionizations

dominate [11, 20, 35]. This also appears to be the case in the real spectrum for a tin-doped

laser plasma shown in Figure 5.5. Comparing this result to the theoretical spectra, it is clear

to see that transitions Sn+9 to Sn+11 highly influence the spectra for the laser intensity of

5× 1011 W/cm2.

Using simple ionization modeling, the optimal plasma temperature for the creation of tin

ions in the 13.5 nm vicinity has been predicted. The calculated fractional ion concentration

in a Sn plasma as a function of electron temperature for an electron density of 1021 cm−3

is shown in Figure 5.7 [34, 40, 61, 62]. The prediction shows that optimum production of

13.5 nm UTA occurs at an electron temperature of 30 eV where the Sn+9 - Sn+11 transitions

dominate.
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Figure 5.6: Synthetic spectra from COWAN code predictions of oscillator strengths for all
Sn transitions in the 13 nm region

5.4 Spectral Analysis of Indium-doped Laser Plasma

Although indium and antimony have different chemical properties than that of tin, the law of

periodicity arranges them as neighbors on the periodic table. H.G Moseley’s realization that
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Figure 5.7: Calculated fractional ion population in a Sn plasma as a function of plasma
temperature for an electron density of 1021cm−3

the wavelength of X-Rays emitted by a given element is relative to that element’s atomic

number [63] is verified by looking at the EUV spectral emission of mass-limited indium and

antimony laser plasmas.

Figure 5.8 shows the spectral emission from an indium doped laser plasma. The emission

peaks at 14.5 nm. By looking at the COWAN code predictions for indium ascribed to a

Gaussian function with w = 0.05 as displayed in Figure 5.9 , it can be reasoned that the

ionic transitions of In+8 - In+10 dominate in the EUV.
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Figure 5.8: Spectra from a mass limited indium-doped laser plasma with a laser intensity of
5× 1011 W/cm2

5.5 Spectral Analysis of Antimony-doped Laser Plasma

Figure 5.10 is spectral emission from an antimony doped methanol droplet target. The

radiation in the EUV for antimony peaks at approximately 12.8 nm for the laser input of

5 × 1011 W/cm2. Since the in-band energy extends ±1 nm from the peak radiation, the

O5+ oxygen line used for wavelength to pixel conversion of previous plasmas at 13 nm is

impractical. Instead, antimony was calibrated using the 15 nm and 17.2 nm O5+ lines as

well as an O4+ spectral line existing at 19.3 nm shown in Figure 5.1

Synthetic spectra from the COWAN code predictions for antimony is displayed in Fig-

ure 5.11. The data was ascribed to the same Gaussian function as Sn and In spectra with

w= 0.05. Emission around the peak at 12.8 nm is assumed to be from Sb10+ - Sb12+.
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Figure 5.9: Synthetic spectra from COWAN code predictions of oscillator strengths for all
In transitions in the 13 nm region

Since indium, tin and antimony exist as periodic neighbors, the ionization transitions for

maximum emission in the EUV for the same given laser input is expected to have the same

electron configuration. This is proven by the synthetic spectra developed from the COWAN
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Figure 5.10: Spectra from a mass limited antimony-doped laser plasma with a laser intensity
of 5× 1011 W/cm2

suites for each of the plasmas created and is demonstrated from the experimental results.

Peak emission for indium, tin and antimony initializes at In8+, Sn9+ and Sb10+ respectively.

These transitions all share the electron configuration [Kr] 4d5.
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Figure 5.11: Synthetic spectra from COWAN code predictions of oscillator strengths for all
Sb transitions in the 13 nm region
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CHAPTER 6

SUMMARY AND FUTURE WORK

The Laser Plasma Laboratory within the Townes Laser Institute at CREOL has presented

extensive work on the mass-limited droplet based laser plasma. The target’s feasibility as

a source for EUV lithography is established by its ability to attain high repetition rates as

well as its flexibility in accommodating various laser and target architectures. The concept

of fully ionizing droplets also appeases debris concerns within the EUV source development

community.

The work presented in this document duplicates previous efforts of creating laser plasmas

from a tin-doped water droplet. New laser plasma results from indium and antimony doped

droplets is also presented. Using a flat-field spectrometer as a plasma diagnostic, spectral

emission in the EUV for each of the droplet based plasmas were captured and quantified.

COWAN code oscillator strength predictions for all of the dopant material were convolved

with a Gaussian function to create synthetic spectra. Comparing experimental findings for

the dopant materials with their respective theoretical spectrum allowed for the identification

of ion stages that resulted in maximum EUV emission.
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The versatility of the mass-limited source concept will continue to be a prolonged study

for various dopant material within LPL. Indium and Antimony plasmas have demonstrated

favorable characteristics for sources of Extreme Ultraviolet radiation. Vorpal, the hybrid

plasma and beam simulation code will be integrated into the studies of these plasmas, to

optimize emission in the EUV and Soft X-Ray.

Although the EUV Source development community has made continuous success in the

adaptation of a plasma source for EUVL, there are still many source requirements that are

yet to be met. Future work in the EUV source development lab at LPL will also involve

a continued effort on creating a mass-limited laser plasma source through experimentation

with various laser and target configurations.
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APPENDIX A

Figure 2.2 is courtesy of the Australian Synchrotron Facility Website. Please see below

for granted permission statement.

Dear Reuvani

Do you mean the bending magnet, wiggler and undulator pictures from the fol-

lowing webpage? http://www.synchrotron.org.au/index.php/synchrotron-science/about-

synchrotrons/how-is-synchrotron-light-created

If these are the pictures you mean, you have permission to use them in your masters

thesis, but not for any other purpose.

Please acknowledge that the diagrams are courtesy of the Australian Synchrotron.

Thank you for your interest in the Australian Synchrotron.

Best wishes

Nancy Mills

Nancy Mills — Publications Coordinator — Australian Synchrotron p: (03) 8540

4155 — f: (03) 8540 4200 — m: 0408 336 434 nancy.mills@synchrotron.org.au —

www.synchrotron.org.au 800 Blackburn Road, Clayton, Victoria 3168
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From: info Sent: Saturday, 23 January 2010 9:47 AM To: info Subject: Contact from

website

Hello,

You have received a comment from AS website with information below:

First name: Reuvani

Email Address: reuvani@creol.ucf.edu

Message: Hi, I would like to know if I can have permission to use some of the pictures

from the synchrotron science portion of your website to put in a small section of my master’s

thesis. I am studying laser plasma EUV sources and I would like to use the pictures on

different bending mechanisms for the booster ring portion of the synchrotron to identify

other methods of euv radiation
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