
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2013 

Time And Space Efficient Techniques For Facial Recognition Time And Space Efficient Techniques For Facial Recognition 

Waleed Alrasheed 
University of Central Florida 

 Part of the Electrical and Electronics Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Alrasheed, Waleed, "Time And Space Efficient Techniques For Facial Recognition" (2013). Electronic 
Theses and Dissertations, 2004-2019. 3008. 
https://stars.library.ucf.edu/etd/3008 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/270?utm_source=stars.library.ucf.edu%2Fetd%2F3008&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/3008?utm_source=stars.library.ucf.edu%2Fetd%2F3008&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


TIME AND SPACE EFFICIENT TECHNIQUES FOR FACIAL RECOGNITION

by

WALEED ALRASHEED
B.S. King Saud University, 1999

M.S. University of Central Florida, 2008

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

in the Department of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Fall Term
2013

Major Professor: Wasfy B. Mikhael



c© 2013 Waleed Alrasheed

ii



ABSTRACT

In recent years, there has been an increasing interest in face recognition. As a result, many new fa-

cial recognition techniques have been introduced. Recent developments in the field of face recog-

nition have led to an increase in the number of available face recognition commercial products.

However, Face recognition techniques are currently constrained by three main factors: recogni-

tion accuracy, computational complexity, and storage requirements. The problem is that most of

the current face recognition techniques succeed in improving one or two of these factors at the

expense of the others.

In this dissertation, four novel face recognition techniques that improve the storage and computa-

tional requirements of face recognition systems are presented and analyzed.

Three of the four novel face recognition techniques to be introduced, namely, Quantized/truncated

Transform Domain (QTD), Frequency Domain Thresholding and Quantization (FD-TQ), and Nor-

malized Transform Domain (NTD). All the three techniques utilize the Two-dimensional Discrete

Cosine Transform (DCT-II), which reduces the dimensionality of facial feature images, thereby

reducing the computational complexity. The fourth novel face recognition technique is introduced,

namely, the Normalized Histogram Intensity (NHI). It is based on utilizing the pixel intensity his-

togram of poses’ subimages, which reduces the computational complexity and the needed storage

requirements.

Various simulation experiments using MATLAB were conducted to test the proposed methods.

For the purpose of benchmarking the performance of the proposed methods, the simulation experi-

ments were performed using current state-of-the-art face recognition techniques, namely, Two Di-

mensional Principal Component Analysis (2DPCA), Two-Directional Two-Dimensional Principal

Component Analysis ((2D)2PCA), and Transform Domain Two Dimensional Principal Component
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Analysis (TD2DPCA). The experiments were applied to the ORL, Yale, and FERET databases.

The experimental results for the proposed techniques confirm that the use of any of the four novel

techniques examined in this study results in a significant reduction in computational complexity

and storage requirements compared to the state-of-the-art techniques without sacrificing the recog-

nition accuracy.
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CHAPTER 1: INTRODUCTION

Face recognition is a daily activity that humans, and even most animals, do smoothly and quickly

most of the time. Due to software and hardware improvements in computers and Integrated Cir-

cuits, there is an increased interest in automated face image recognition that mimics humans’ face

recognition skill. Applications of automated face image recognition include: biometric research,

security systems, authentication processes, automated surveillance systems, human-computer in-

terfaces. Several commercial face recognition systems have been implemented such as FaceIt,

Viisage [1], Cognitec [2], and Facekey [3].

Face recognition is considered to be one type of biometric indicators. Biometric indicators may

fit into one of two categories: physiological appearance or behavioral attitude. Both signature

recognition and voice recognition are considered behavioral biometric measures. Physiological

appearance biometrics, on the other hand, include iris recognition, fingerprint recognition, De-

oxyribonucleic Acid (DNA) analysis, and face recognition [4]. However, each biometric indicator

is used to fulfill certain application requirements. For example, the need for identifying people led

the United States (US) law enforcement in the beginning of the last century to start using finger-

print recognition. Later, fingerprint recognition was developed to be fully automated; nowadays,

US passport control officers use an automated fingerprint recognition system to authenticate all the

arriving travelers. Nevertheless, two or more biometrics could be used together to achieve a certain

level of recognition accuracy.
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1.1 Face Recognition

Recently, there has been an increasing interest in face recognition from researchers in the areas of

computer vision, biometrics, and pattern recognition [5–8]. Our amazing capability to recognize

people and the need for that human activity everyday has motivated researchers from different

fields to have a common interest in developing face recognition techniques. Also, the use of face

recognition technologies is required in a large number of security and commercial applications.

Face recognition scenarios can be classified into two types: face verification (or authentication)

and face identification (or recognition) [9]. Face verification (”Am I who I say I am?”) is a one-

to-one match that compares a query face image against a template face image when someone’s

identity is being claimed. Face identification (”Who am I?”) is a one-to-many matching process

that compares a query face image against all the template images in a face database to determine

the identity of the query face. The identification of the test image is done by locating the image in

the database which has the closest similarity to the test image [10]. The unknown face image that

needs to be identified is called a test image. Thus, the procedure of preparing the test image for a

certain algorithm is called the ”testing mode procedure. The face database images are called the

trained images. Therefore, the procedure of preparing the training images for a certain algorithm

is called the ”training mode procedure.

In this dissertation, all the experiments are conducted in the face identification scenario.

2



1.2 Problem

Recently, there has been an increased interest in facial recognition techniques. The success of these

techniques is determined by three main factors: recognition accuracy, computational complexity

and storage requirements. However, a major problem with most of the existing facial algorithms

techniques is one or two of these factors can be improved only at the expense of the other(s).

Principal Component Analysis (PCA) was used in facial recognition by Turk and Pentland [11,12].

PCA starts with transforming the feature images matrices from two dimensional (2D) to one di-

mensional (1D). Then, all of the 1D feature images matrices are catenated into the image covari-

ance matrix. Thus, the size of the covariance matrix increases as the number of the training images

increase. Since the PCA algorithm is based on computing the eigenvectors of the large covari-

ance matrix, the computational complexity of the PCA is high. Therefore, as the PCA succeeds in

achieving high recognition accuracy with low storage requirements, the PCA approach requires a

high computational complexity.

To solve this weakness, several algorithms have been introduced. One of the successful algorithms

is the Two-Dimensional Principal Component Analysis (2DPCA) [13]. It succeeds in reducing the

computational complexity by reducing the covariance matrix to be a square matrix with a size equal

to the width of the images. Thus, the computation of the eigenvectors of the covariance matrix is

made less complex in the 2DPCA than in the PCA. In addition to having reduced the computational

complexity compared with the PCA, the 2DPCA algorithm yields higher recognition accuracy [13].

Nevertheless, the storage requirements for the implementation of the 2DPCA is even greater than

those of the PCA.

3



To overcome this drawback, another algorithm called the Two-Directional Two-Dimensional Prin-

cipal Component Analysis ((2D)2PCA) was developed [14]. It is based on the fact that while the

2DPCA works on either row or column direction, the (2D)2PCA works in both directions at the

same time. (2D)2PCA has reduced storage requirements compare to the 2DPCA while maintaining

the improved recognition accuracy. Unfortunately, (2D)2PCAs achievements are at the expense of

increased computational complexity compared to the 2DPCA.

1.3 Contributions of Our Research

The main contributions of our research can be summarized as follows:

• In this work, we introduce a new facial recognition technique which we call the Quan-

tized/truncated Transform Domain technique (QTD) [15], suitable particularly for large

databases. The algorithm has attractive properties with respect to storage requirements

and computational complexity in both the training and testing modes. QTD uses the Two-

dimensional Discrete Cosine Transform (DCT-II) [16], then truncates the significant DCT

coefficients and quantizes those coefficients based on their average energy. The experimen-

tal results confirm a significant reduction in the storage and computational requirements and

retaining of a high recognition accuracy rate.

• In this dissertation, we introduce a new facial recognition technique which we call Frequency

Domain Thresholding and Quantization (FD-TQ) [17]. The algorithm has attractive proper-

ties with respect to storage requirements and computational complexity in both the training

and testing modes, which make the technique particularly suitable for large databases. The

new algorithm is applied to ORL, Yale and FERET databases. The experimental results con-

firm a significant reduction in the storage and computational requirements compared with

4



other recently reported techniques, without sacrificing the recognition accuracy.

• A facial recognition technique employing Subimages Normalized Histogram Intensity (NHI)

[18] is presented in this work. The algorithm has attractive properties with respect to storage

requirements and computational complexity in both the training and testing modes, which

make the technique particularly suitable for large databases. The new algorithm is applied to

ORL, Yale and FERET databases. The experimental results confirm the significant reduction

in the storage and computational requirements compared with recently reported techniques,

without sacrificing the recognition accuracy.

• In this work, we introduce a new facial recognition technique which we call the Normal-

ized Transform Domain technique (NTD) [19], suitable particularly for large databases. The

algorithm has attractive properties with respect to storage requirements and computational

complexity in both the training and testing modes. NTD uses the Two-dimensional Discrete

Cosine Transform (DCT-II) [16], then truncates the significant DCT coefficients and nor-

malized those coefficients to get 8-bit representation of the DCT. The experimental results

confirm a significant reduction in the storage and computational requirements and retaining

of a high recognition accuracy rate.

1.4 Organization of This Dissertation

This dissertation consists of five chapters:

• Chapter 2 reviews relevant appearance-based face recognition algorithms. This chapter

provides background on the state-of-the-art algorithms selected for use in this dissertation.

• Chapter 3 introduces the Quantized/truncated Transform algorithm (QTD). The different

experiments applied to the proposed method are discussed in this chapter. Also, the ex-
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perimental results for the QTD are compared to the results for existing face recognition

algorithms.

• Chapter 4 introduces the Frequency Domain Thresholding and Quantization algorithm (FD-

TQ). The different experiments applied to the proposed method are discussed in this chapter.

Also, the experimental results for the FD-QT are compared to the results for existing face

recognition algorithms.

• Chapter 5 introduces the Normalized Histogram Intensity algorithm (NHI). The different

experiments applied to the proposed method are discussed in this chapter. Also, the exper-

imental results for the NHI are compared to the results for existing face recognition algo-

rithms.

• Chapter 6 introduces the Normalized Transform Domain algorithm (NTD). The different

experiments applied to the proposed method are discussed in this chapter. Also, the ex-

perimental results for the NTD are compared to the results for existing face recognition

algorithms.

• Chapter 7 summarizes the important points made in this dissertation and indicates future

research directions.
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CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

In this chapter a background is provided on appearance-based face recognition to provide con-

text for our study. Descriptions include the training and testing modes procedures for most of

them. Also, the strengths and the weaknesses of each algorithm are discussed briefly. The relevant

appearance-based algorithms are: (i) Principal Component Analysis (PCA), (ii) Two-dimensional

Principal component analysis (2DPCA), (iii) Two-directional Two-dimensional Principal Compo-

nent Analysis (2D2PCA), (iv) Transform Domain Two-dimensional Principal Component Analysis

(TD2DPCA). The results from simulation experiments of these algorithms are used in this disser-

tation as benchmarks to evaluate the performance of our proposed algorithms.

2.2 Principal Component Analysis

Principal Component Analysis (PCA) is a statistical method that has a key advantage: data di-

mensionality reduction. PCA is based on Karhumen-Loeve Transformation (KLT) [20, 21]. Since

1991, when Pentland and Turk proposed using PCA, namely, the eigenfaces algorithm, for face

recognition [11, 12], and PCA have turned out to be the algorithm most studied and used in image

recognition. Thus, the success of the PCA algorithm has resulted in using it as a base for many

techniques, such as [22–30].

PCA starts with transforming the feature images matrices from two dimensions (2D) to one dimen-

sion (1D). Then, all 1D feature images matrices are catenated into an image covariance matrix. As

the number of training images increases, so does the size of the covariance matrix. Since the PCA
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algorithm is based on computing the eigenvectors of the covariance matrix, the computational

complexity of the PCA is high. Therefore, though the PCA succeeds in achieving high recogni-

tion accuracy with low storage requirements, the PCA algorithm requires a high computational

complexity.

2.3 Two-dimensional Principal Component Analysis

The Two-Dimensional Principal Component Analysis (2DPCA) algorithm was introduced to re-

duce the computational complexity of the PCA. The 2DPCA algorithm represents the images and

their covariance matrix. This results in a considerable reduction in the number of coefficients re-

quired to represent the images. Thus, the success of the 2DPCA algorithm has resulted in using

it as a base for many techniques, such as [31–43]. The algorithm is described in the following

section.

2.3.1 Training Mode

In the training mode, the features of the database are extracted and stored as described by steps 1

through 4.

Step 1: The covariance matrix S for N training images is calculated as follows.

S =
1

N

N∑

i=1

(Ai − A)T (Ai − A) (2.1)

Where A is the mean matrix of all the training images.

Step 2: A set of k eigenvectors, V= [V1, V2 ... Vk], of size n corresponding to the largest k eigen-

values is obtained for S.
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Step 3: The projections of the training images on the set of the dominant eigenvectors V are calcu-

lated, yielding the projected feature vectors Yj,i.

Yj,i = AiVj (2.2)

where j = 1, 2, ..., k and i = 1, 2, ..., N

Step 4: The feature matrices of the training images Bi (i = 1 to N) are calculated

Bi = [Y1,i, Y2,i, ...Yk,i] (2.3)

and the Bi matrices are stored.

2.3.2 Testing Mode

In the testing mode a facial image At is presented to the system to be identified. The following

steps are followed.

Step 1: The projection of the test image on the set of the dominant eigenvectors V is calculated,

yielding the projected feature vectors Yj,t.

Yj,t = AtVj (2.4)

where j = 1, 2, ...k

Step 2: The feature matrix Bt for the testing image is calculated.

Bt = [Y1,t, Y2,t, ...Yk,t] (2.5)
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Step 3: Distance measures, such as the Euclidean distances, between the feature matrix of the

testing image and the feature matrices of the training images are measured. The minimum distance

represents the image to be identified.

2.4 Two-directional Two-dimensional Principle Component Analysis

The Two-directional Two-dimensional Principle Component Analysis ((2D)2PCA) algorithm was

introduced to improve on the storage requirements of the 2DPCA. According to [14], 2DPCA

works only in one direction (row direction) of the images to compute the covariance matrix S.

(2D)2PCA, however, works in two directions (row and column directions) to form two covariance

matrices: (i) row direction covarianve matrix, Sr, and (ii) column direction covariance matrix, Sc.

Consequently, the computational complexity of the (2D)2PCA algorithm is much greater than its

of the 2DPCA algorithm. However, the training and testing modes procedures for the (2D)2PCA

algorithm are illustrated below.

2.4.1 Training Mode

In the training mode, the features of the database are extracted and stored as described by steps 1

through 5.

Step 1: The row direction covariance matrix Sr for N training images is calculated as follows.

Sr =
1

N

N∑

i=1

(Ai − A)T (Ai − A) (2.6)

Where A is the mean matrix of all the training images.
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Step 2: The column direction covariance matrix Sr for N training images is calculated as follows.

Sc =
1

N

N∑

i=1

(Ai − A)(Ai − A)T (2.7)

Where A is the mean matrix of all the training images.

Step 3: Two sets, Vr and Vc, of the k dominant eigenvectors, of sizes n and m respectively, for

both covariance matrices Sr and Sc , are obtained, Where Vr = [Vr1, Vr2, ..., Vrk] and Vc =

[Vc1, Vc2, ..., Vck].

Step 4: Vr and Vc are used for feature extraction for every training image Ai, yielding the projected

feature vectors Yj,i.

Yj,i = V T
c AiVj (2.8)

where j = 1, 2, ..., k and i = 1, 2, ..., N.

Step 5: The feature matrices of the training images Bi (i = 1 to N) are calculated as follows.

Bi = [Y1,i, Y2,i, ...Yk,i] (2.9)

The Bi matrices are stored. It important to note that the size of the feature matrix Bi of each

training image Ai is k x k. Thus, the storage requirements of the (2D)2PCA algorithm are smaller

than those of the 2DPCA Algorithm.

2.4.2 Testing Mode

In the testing mode a facial image At is presented to the system to be identified. The following

steps are followed.

11



Step 1: The projection of the test image on the Vr and Vc is calculated, yielding the projected

feature vectors Yj,t.

Yj,t = V T
c AtVj (2.10)

where j = 1, 2, ...k.

Step 2: The feature matrix Bt for the testing image is calculated

Bt = [Y1,t, Y2,t, ...Yk,t] (2.11)

Step 3: Distance measures, such as the Euclidean distances, between the feature matrix of the

testing image and the feature matrices of the training images are measured. The minimum distance

represents the image to be identified.

2.5 Transform Domain Two-Dimensional Principal Component Analysis

The Transform Domain Two-Dimensional Principal Component Analysis (TD2DPCA) algorithm

was introduced to reduce the computational complexity of the 2DPCA. The TD2DPCA algorithm

represents the images and their covariance matrix in the Transform domain, where energy is com-

pacted into a small number of coefficients. This results in a considerable reduction in the number of

coefficients required to represent the images [44, 45]. The algorithm is described in the following

section.
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2.5.1 Training Mode

In the training mode, the features of the database are extracted and stored as described by steps 1

through 5 below.

Step 1: A suitable transform (Tr), such as DCT-II, is applied to each m x n image Ai of the training

images, yielding Ti (i = 1 to N).

Ti = Tr{Ai − A} (2.12)

where A is the mean matrix of all the training images.

Step 2: A transform is chosen such that the significant coefficients of Ti are contained in a subma-

trix, T ′
i (upper left part of Ti) of dimension n′xn′. T ′

i is then used to replace Ai in our algorithm.

Step 3: The covariance matrix S for N training images is calculated as follows.

S =
1

N

N∑

i=1

(T
′

i )
T (T

′

i ) (2.13)

Step 4: A set of k eigenvectors, V= [V1, V2 ... Vk], of size n′ , corresponding to the largest k

eigenvalues, is obtained for S.

Step 5: The feature matrices of the training images Bi (i = 1 to N) are calculated as follows.

Bi = [Y1,i, Y2,i, ...Yk,i] (2.14)

where Yj,i = T
′
iVj and j = 1, 2, ...k.

And the Bi matrices are stored.
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2.5.2 Testing Mode

In the testing mode a facial image At is presented to the system to be identified. The following

steps are taken.

Step 1: The same transform used in the training mode is applied to At, which yield Tt.

Step 2: The submatrix T ′
t containing the significant coefficients is obtained (dimension n′ x n′ .)

Step 3: The feature matrix Bt for the testing image is calculated

Bt = [Y1,t, Y2,t, ...Yk,t] (2.15)

where Yj,t = T
′
tVj and j = 1, 2, ...k.

Step 4: Distance measures, such as the Euclidean distances, between the feature matrix of the

testing image and the feature matrices of the training images are measured. The minimum distance

represents the image to be identified.
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CHAPTER 3: QUANTIZED/TRUNCATED TRANSFORM DOMAIN

TECHNIQUE (QTD)

3.1 Introduction

The proposed algorithm depends on representing the images in the transform domain. Mainly,

the energy in facial images is concentrated in low spatial frequencies. In addition, a criterion is

proposed to decide which coefficients to retain in the low spatial frequency ranges. Combining

these two simple, but effective, constraints lead to considerable reduction in number of coefficients

required to represent the images. Consequently, the computational and storage requirements are

simplified, while excellent recognition accuracy is obtained, as will be shown later. The algorithm

is described in the following section.

3.2 The QTD Algorithm

The following subsections illustrate step-by-step the procedures of the QTD algorithm in both the

training and the testing modes.

3.2.1 Training Mode

In the training mode, the features of the database are extracted and stored as described by steps 1

through 4, Figure 3.1.

Step 1: A suitable transform (Tr), such as DCT-II, is applied to each mxn image Ai of the training
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images, yielding Ti(i = 1 to N).

Ti = Tr{Ai} (3.1)

Step 2: The mean energy per pixel, Mi, of the transformed image,Ti, is calculated, where Ti,pq is

its pq element.

Mi =
1

m

1

n

m∑

p=1

n∑

q=1

T 2
i,pq (3.2)

Step 3: A transform is chosen such that the significant coefficients of Ti are contained in a subma-

trix, T ′
i , (upper left part of Ti) of dimension n′xn′. T ′

i is then used to replace Ai in the algorithm.

Step 4: All the elements of the submatrix T ′
i , T ′

i,jk (j = 1 to n′ and k = 1 to n′), which have an

energy less than Mi are set to zero, yielding the feature matrix Bi, where Bi,jk is its jk element.

Bi,jk =





T ′
i,jk when T

′2
i,jk ≥Mi

0 elsewhere

(3.3)

3.2.2 Testing Mode

In the testing mode, a facial test image, At, is presented to the system to be identified. The follow-

ing steps are taken, Figure 3.2.

Step 1: The same transform used in the training mode is applied to At, which yields Tt.

Tt = Tr{At} (3.4)

Step 2: The mean energy per pixel, Mt, of the transformed image,Tt is calculated, where Tt,pq, is
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its pq element.

Mt =
1

m

1

n

m∑

p=1

n∑

q=1

T 2
t,pq (3.5)

Step 3: The submatrix T ′
t , dimension n′xn′, containing the significant coefficients, is obtained.

Step 4: All the elements of the submatrix T ′
t , T ′

t,jk (j = 1 to n′ and k = 1 to n′), which have an

energy less than Mt are set to zero, yielding the feature matrix Bt, where Bt,jk is its jk element.

Bt,jk =





T ′
t,jk when T

′2
t,jk ≥Mt

0 elsewhere

(3.6)

Step 5: Distance measures, such as the Euclidean distance, between the feature matrix of the testing

image and the feature matrices of the training images are computed. The image in the training

database corresponding to the minimum distance defines the image to be identified.
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Input the training images, Ai (i = 1 to N), 
Ai is mxn pixels.

Compute the DCT Transform, Ti, of Ai

Ti = Tr{Ai}

Compute the mean energy per pixel, Mi, of each Ti

Mi =
1

m

1

n

m�

p=1

n�

q=1

T 2
i,pq

The submatrix T
�
i  (upper left part of Ti),

of dimension n�xn�, is used to replace Ai in the algorithm.

All the elements of the submatrixT
�
i , which have an energy less 

than Mi, are set to zero, yielding the feature matrix Bi.

Bi,jk =

�
T �

i,jk when T
�2
i,jk ≥ Mi

0 elsewhere

where Bi,jk is it's jkelement, 
and the Bi matrices are stored.

Figure 3.1: QTD Training mode flow-chart.
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Unknown facial image, At, is presented to the system. 
At is mxn pixels.

Compute the DCT Transform, Tt, of At.
Tt = Tr{At}

Compute the mean energy per pixel, Mt, of Tt

Mt =
1

m

1

n

m�

p=1

n�

q=1

T 2
t,pq

The Submatrix T
�
t (upper left part of Tt),

of dimension n�xn�, is used to replace At in the algorithm.

All the elements of the submatrix T
�
t, which have an energy less 

than Mt are set to zero, yielding the feature matrix Bt.

Bt,jk =

�
T �

t,jk when T
�2
t,jk ≥ Mt

0 elsewhere

where Bt,jk is its jk element, 

Compute the Euclidean distance between the feature matrix of the 
unknown image Bt  and the feature matrices of the training images Bi 

(i=1 to N). The image in the training database corresponding to the 
minimum distance defines the image to be identified.

Figure 3.2: QTD Testing mode flow-chart.
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3.3 Experimental Results

The QTD technique was tested using the ORL and Yale databases [46, 47]. The ORL database

consists of 40 individuals, with ten images for each individual in various poses and with various

facial expressions, Figure 3.3. The Yale database consists of 15 individuals, with 11 images for

each individual in various poses and with various facial expressions, Figure 3.4. The part FERET

database consists of 400 grayscale images for 200 individuals, individual in 2 different frontal

poses, fa and fb, Figure 3.5.

Face recognitin esults were compared with those of existing techniques, namely, the 2DPCA, the

(2D)2PCA and the TD2DPCA. The procedures for the compared techniques were taken from [13,

14, 44], while the procedures for the QTD technique are presented in section 3.2.

20



Figure 3.3: Sample of different images of one person in the ORL database.
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Figure 3.4: Sample of different images of one person in the Yale database.
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Figure 3.5: Sample of the (fa) and (fb) images of 5 individuals in the FERET database.
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3.3.1 Experimental Results Using ORL Database

Two experiments, I and II, were been applied to the ORL database, in which all the images are

grayscale with 112 x 92 pixels each. In Experiment I, the first five images per individual were used

for training, and the remaining 200 images are used for testing. For both the feature image and

the covariance matrix [13, 14, 44], the dimensions that give maximum recognition accuracy were

selected. Thus, the recognition accuracy values in Table 3.1 are the maximum achievable for all

compared algorithms. Results are listed in Tables 3.1 and 3.2.

In Experiment II, one image per individual was used for training, and the remaining 360 images

are used for testing. The dimensions of feature image and covariance matrix [13, 14, 44] are the

same as those used in Experiment I. Results are listed in Table 3.1.
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Table 3.1: Recognition accuracy in Experiments I and II for ORL database using

the proposed technique (QTD) and existing algorithms (2DPCA, (2D)2PCA, and

TD2DPCA).

Recognition accuracy for

Experiment I*

Recognition accuracy for

Experiment II**

QTD

(proposed)
94.00% 71.10%

2DPCA 93.00% 71.68%

(2D)2PCA 92.50% 71.68%

TD2DPCA 93.50% 71.10%

* Training with the first 5 poses per individual, and testing with the remaining poses.

** Training with the first pose per individual, and testing with the remaining poses.
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Table 3.2: Storage requirements and computational complexity in Experiments I and

II for ORL database using the proposed technique (QTD) and existing algorithms

(2DPCA, (2D)2PCA, and TD2DPCA).

Dim. of

feature

matrix

per image

Number of multiplications

for

Storage

require-

ments

training mode testing mode

QTD

(proposed)
13x13 159,804 xN* 159,804 169 xN*

2DPCA 112x7 1,020,096 xN* 72,128 784 xN*

(2D)2PCA 10x10 2,214,256 xN* 112,240 100 xN*

TD2DPCA 15x12 181,335 xN* 177,960 180 xN*

* N is the number of the training images, with N=200 in Experiment I and N=40 in Experiment II.
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Table 3.1 shows that the proposed algorithm yields good recognition accuracy compared with the

2DPCA, (2D)2PCA and TD2DPCA methods.

Table 3.2 illustrates the computational requirements in the training and testing modes in terms

of the number of multiplications. The QTD reduces the computational requirements the training

mode. However, the storage requirements for the (2D)2PCA algorithm, in terms of the dimensions

of the feature matrix, are lower compared with the QTD algorithm.

3.3.2 Experimental Results Using Yale Database

Two experiments, III and IV, were applied to the Yale database, in which all the images are

grayscale with 243x320 pixels each. In Experiment III, the first five images per individual were

used for training, and the remaining 90 images were used for testing. For both the feature image

and the covariance matrix [13, 14, 44], the dimensions that give maximum recognition accuracy

were selected. Thus, the recognition accuracy values in Table 3.3 are the maximum achievable for

all compared algorithms. Results are listed in Tables 3.3 and 3.4.

In Experiment IV, one image per individual was used for training and the remaining 150 images

were used for testing. The dimensions of feature image and covariance matrix [13,14,44] were the

same as those used in Experiment III. Results are listed in Table 3.4.
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Table 3.3: Recognition accuracy in Experiments III and IV for Yale database using

the proposed technique (QTD) and existing algorithms (2DPCA, (2D)2PCA, and

TD2DPCA).

Recognition accuracy for

Experiment III*

Recognition accuracy for

Experiment IV**

QTD

(proposed)
97.78% 62.00%

2DPCA 97.78% 62.70%

(2D)2PCA 91.1% 56.70%

TD2DPCA 97.78% 59.30%

* Training with the first 5 poses per individual, and testing with the remaining poses.

** Training with the first pose per individual, and testing with the remaining poses.
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Table 3.4: Storage requirements and computational complexity in Experiments III

and IV for Yale database using the proposed technique (QTD) and existing algorithms

(2DPCA, (2D)2PCA, and TD2DPCA).

Dim. of

feature

matrix

per image

Number of multiplications

for

Storage

require-

ments

training mode testing mode

QTD

(proposed)
10x10 879,660 xN* 879,660 100 xN*

2DPCA 320x9 19,595,520 xN* 699,840 2,880 xN*

(2D)2PCA 16x16 45,104,960 xN* 1,326,080 256 xN*

TD2DPCA 15x11 1,244,250 xN* 1,240,875 165 xN*

* N is the number of the training images, with N=75 in Experiment III and N=15 in Experiment IV.
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Table 3.3 shows that the proposed algorithm yields good recognition accuracy compared with the

2DPCA, (2D)2PCA and TD2DPCA methods.

Table 3.4 illustrates the computational requirements in the training and testing modes in terms of

the number of multiplications. The QTD reduces the computational requirements in both the train-

ing mode and the testing mode. Furthermore, it is worthwhile to note that the storage requirements

for the QTD, in terms of the dimensions of the feature matrix, are also reduced by 40% compared

with the algorithm which performed most closely to QTD, namely TD2DPCA.

3.3.3 Experimental Results Using FERET Database

Experiment V was conducted using part of the FERET database, in which all the images are

grayscale with 384 x 256 pixels each. In Experiment V, one image (fa) per individual was used for

training, and one image (fb) per individual was used for testing. The images of the first 200 indi-

viduals of the FERET database were used for Experiment V. The dimensions of both the feature

image and the covariance matrix [13, 14, 44] that yielded the highest recognition accuracy were

selected. Thus, the recognition accuracy values in Table 3.5 are the maximum achievable for all

compared algorithms. Results are listed in Tables 3.5 and 3.6.
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Table 3.5: Recognition accuracy in Experiment V for FERET database using

the proposed technique (QTD) and existing algorithms (2DPCA, (2D)2PCA, and

TD2DPCA).

Recognition accuracy*

QTD (proposed) 94.00%

2DPCA 90.00%

(2D)2PCA 91.50%

TD2DPCA 92.50%

* Training with one pose per individual, and testing with another one pose per individual.
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Table 3.6: Storage requirements and computational complexity in Experiment V

for FERET database using the proposed technique (QTD) and existing algorithms

(2DPCA, (2D)2PCA, and TD2DPCA).

Dim. of

feature

matrix

per image

Number of multiplications

for

Storage

require-

ments

(in bits)
training mode testing mode

QTD

(proposed)
5x5 596,224 xN* 596,224 25 xN*

2DPCA 256x4 38,141,952 xN* 393,216 1,024 xN*

(2D)2PCA 8x8 63,725,568 xN* 811,008 64 xN*

TD2DPCA 15x5 1,536,660 xN* 1,533,285 75 xN*

* N is the number of the training images, with N=200.
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Table 3.5 shows that the proposed algorithm yields good recognition accuracy compared with the

2DPCA, (2D)2PCA and TD2DPCA methods.

Table 3.6 illustrates the computational requirements in the training and testing modes in terms of

the number of multiplications. The QTD reduces the computational requirements in both the train-

ing mode and the testing mode. Furthermore, it is worthwhile to note that the storage requirements

for the QTD, in terms of the dimensions of the feature matrix, are also reduced by a factor of 2.5

compared with the algorithm which performed most closely to QTD, namely (2D)2PCA.

3.4 Conclusion

Recently, several facial recognition methods with high recognition accuracy have been reported.

In this dissertation, a new algorithm, namely QTD, has been presented. Our study of QTD shows

that it reduces both the storage requirements and the computational complexity in comparison with

other recently reported methods, while maintaining high recognition accuracy. Thus, experimental

results confirm the excellent properties of the proposed technique.
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CHAPTER 4: FREQUENCY DOMAIN THRESHOLDING AND

QUANTIZATION ALGORITHM (FD-TQ)

4.1 Introduction

With the Frequency Domain Thresholding and Quantization Algorithm (FD-TQ), first, images are

transformed to a domain that concentrates the energy in the low spatial frequencies region. In this

dissertation, the Two-dimensional Discrete Cosine Transform (DCT-II) was used for this task. In

addition, a criterion is proposed to quantize the coefficients to only 256 levels. Combining these

two simple, but effective, operations leads to a considerable reduction in the number of coefficients

required to represent the images. Consequently, the computational and storage requirements are

simplified, while excellent recognition accuracy is achieved, as will be shown later. The algorithm

is described in the following section.

4.2 The FD-TQ Algorithm

The following subsections illustrate step-by-step the procedures of the FD-TQ algorithm in both

training and testing modes.

4.2.1 Training Mode

In the training mode, the features of the database are extracted and stored as described by steps 1

through 6, Figure 4.1.

Step 1: A suitable transform (Tr), such as DCT-II, is applied to each mxn image Ai of the training
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images, yielding Ti(i = 1 to N).

Ti = Tr{Ai} (4.1)

Step 2: A transform is chosen such that the significant coefficients of Ti are contained in a subma-

trix, T ′
i , (upper left part of Ti) of dimensions n′xn′. T ′

i is then used to replace Ai in the algorithm.

Step 3: The value of the DC component of the submatrix, T ′
i , T

′
i,11 (j = 1 and k = 1), is set to zero.

Step 4: The upper boundary threshold, αu, and the lower boundary threshold, αl, are calculated as

follows:

αu = µi + 3σi (4.2)

αl = µi − 3σi (4.3)

Where µi is the mean of the values of all elements in all the submatrices, T ′
i , in the training

images, and αi is the standard deviation for the values of all elements in all the submatrices, T ′
i , in

the training images.

Step 5: The threshold matrix, Tit, is computed, where its jk element, Tit,jk, is given by:

Tit,jk =





αu when T ′
i,jk ≥ αu

αl when T ′
i,jk ≤ αl

T ′
i,jk else

(4.4)

It is worthwhile to note that clipping the extreme values improves the accuracy of representing the

majority of the data in Step 6.
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Step 6: The threshold matrix, Tit, is normalized such that all its elements fall between 0 and 1.

Then the elements are multiplied by 255 and linearly quantized to get the 8-bit representation of

the normalized submatrix, Tit. This yields the feature matrix, Bi, where its jk element, Bi,jk, is

given by:

Bi,jk = floor(255 ∗ Tit,jk) (4.5)

4.2.2 Testing Mode

In the testing mode, a facial test image, At, is presented to the system to be identified. The follow-

ing steps are followed, Figure 4.2.

Step 1: The same transform used in the training mode is applied to At which yields Tt.

Step 2: The submatrix, T ′
t , of dimensions n′xn′, containing the significant coefficients is obtained,

as described in the training mode procedure.

Step 3: The value of the DC component of the submatrix, T ′
t , T

′
t,11 (j = 1 and k = 1), is set to

zero.

Step 4: The threshold matrix, Ttt, is computed, where its jk element, Ttt,jk, is given by:

Ttt,jk =





αu when T ′
t,jk ≥ αu

αl when T ′
t,jk ≤ αl

T ′
t,jk else

(4.6)

Step 5: The threshold matrix, Ttt, is normalized such that all its elements fall between 0 and 1.
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Then the elements are multiplied by 255 and linearly quantized to get the 8-bit representation of

the normalized submatrix, Ttt. This yields the feature matrix, Bt, where its jk element, Bt,jk, is

given by:

Bt,jk = floor(255 ∗ Ttt,jk) (4.7)

Step 6: Distance measures, such as the Euclidean distance, between the feature matrix of the testing

image and the feature matrices of the training images are computed. The image in the training

database corresponding to the minimum distance defines the image to be identified.
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Input the training images, Ai (i = 1 to N), 
Ai is mxn pixels.

Compute the DCT Transform Ti of Ai

Ti = Tr{Ai}

The submatrix T
�
i  (upper left part of Ti),

of dimension n�xn�, is used to replace Ai in the algorithm.

Set the value of the DC component of the submatrix T
�
i to zero.

Compute The upper boundary threshold,αu, and the lower 
boundary threshold, αl.

αu = µi + 3σi

αl = µi − 3σi

Compute The threshold matrix, Tit, where its jk element, Tit,jk, is 
given by:

Tit,jk =





αu when T �
i,jk ≥ αu

αl when T �
i,jk ≤ αl

T �
i,jk else

Normalize the threshold matrix Tit such that all its elements fall 
between 0 and 1. Then its elements are

multiplied by 255 and linearly quantized, yielding the feature matrix Bt.
 

Bi,jk = floor(255 ∗ Tit,jk)

where Bi,jk is it's jk element,
and the Bi matrices are stored.

Figure 4.1: FD-TQ Training mode flow-chart.
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Compute the DCT Transform Tt of At.
Tt = Tr{At}

The submatrix T
�
t (upper left part of Tt),

of dimension n�xn�, is used to replace At in the algorithm.

Set the value of the DC component of the submatrix T
�
t to zero.

Compute The threshold matrix Ttt, where its jk element Ttt,jk is 
given by:

Ttt,jk =





αu when T �
t,jk ≥ αu

αl when T �
t,jk ≤ αl

T �
t,jk else

Compute the Euclidean distance between the feature matrix of the 
unknown image Bt and the feature matrices of the training images Bi 

(i=1 to N). The image in the training database corresponding to the 
minimum distance defines the image to be identified.

Unknown facial image, At, is presented to the system. 
At is mxn pixels.

Normalize the threshold matrix Ttt such that all its elements fall 
between 0 and 1. Then its elements are

multiplied by 255 and linearly quantized, yielding the feature matrix Bt.

 Bt,jk = floor(255 ∗ Ttt,jk)

where Bt,jk is it's jk element,

Figure 4.2: FD-TQ Testing mode flow-chart.
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4.3 Experimental Results

The FD-TQ technique was tested using the ORL, the Yale and part of the FERET databases [46–

48]. The ORL database consists of 40 individuals, with ten images for each individual in various

poses and with various facial expressions, Figure 3.3. The Yale database consists of 15 individuals,

with 11 images for each individual in various poses and with various facial expressions, Figure

3.4. The part FERET database consists of 400 grayscale images for 200 individuals, individual in

2 different frontal poses, fa and fb, Figure 3.5.

Face recognition results of the FD-TQ technique were compared with those of existing techniques,

namely, the 2DPCA, the (2D)2PCA and the TD2DPCA. The procedures for the compared tech-

niques were taken from [13, 14, 44], while the procedures for the FD-TQ technique are presented

in section 4.2.

4.3.1 Experimental Results Using ORL Database

Two experiments, I and II, were conducted using the ORL database, in which all the images are

grayscale with 112 x 92 pixels each. In Experiment I, the first five images per individual were

used for training, and the remaining 200 images were used for testing. The dimensions of both the

feature images and the covariance matrix [13,14,44] that yielded the highest recognition accuracy

were selected. Thus, the recognition accuracy values in Table 4.1 are the maximum achievable for

all the compared algorithms. Results are listed in Tables 4.1 and 4.2.

In Experiment II, the first image per individual was used for training, and the remaining 360 images

were used for testing. The dimensions of the feature images and the covariance matrix [13, 14, 44]

were the same as those used in Experiment I. Results are listed in Table 4.1.
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Table 4.1: Recognition accuracy in Experiments I and II for ORL database using

the proposed technique (FD-TQ) and existing algorithms (2DPCA, (2D)2PCA, and

TD2DPCA).

Recognition accuracy for

Experiment I*

Recognition accuracy for

Experiment II**

FD-TQ

(proposed)
92.00% 72.78%

2DPCA 93.00% 71.68%

(2D)2PCA 92.50% 71.68%

TD2DPCA 93.50% 71.10%

* Training with the first 5 poses per individual, and testing with the remaining poses.

** Training with the first pose per individual, and testing with the remaining poses.
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Table 4.2: Storage requirements and computational complexity in Experiments I and

II for ORL database using the proposed technique (FD-TQ) and existing algorithms

(2DPCA, (2D)2PCA, and TD2DPCA).

Dim. of

feature

matrix

per image

Number of multiplications

for

Storage

require-

ments

(in bits)
training mode testing mode

FD-TQ

(proposed)
5x5 53,845 xN* 53,845 200 xN*

2DPCA 112x7 1,020,096 xN* 72,128 25,088**xN*

(2D)2PCA 10x10 2,214,256 xN* 112,240 3,200**xN*

TD2DPCA 15x12 181,335 xN* 177,960 5,760**xN*

* N is the number of the training images, with N=200 in Experiment I and N=40 in Experiment II.

** 32-bit is typically needed to represent the data in this technique.
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Table 4.1 shows that the proposed algorithm yields good recognition accuracy compared with the

2DPCA, (2D)2PCA and TD2DPCA methods.

Table 4.2 illustrates the computational requirements in the training and testing modes in terms

of the number of multiplications. The FD-TQ reduces the computational requirements in both

the training mode and the testing mode. Furthermore, it is worthwhile to note that the storage

requirements for the FD-TQ, in terms of the dimensions of the feature matrix, are also reduced

by a factor of 16 compared with the algorithm which performed most closely to FD-TQ, namely

(2D)2PCA.

4.3.2 Experimental Results Using Yale Database

Two experiments, III and IV, were performed using the Yale database, in which all the images are

grayscale with 243x320 pixels each. In Experiment III, the first five images per individual were

used for training, and the remaining 90 images were used for testing. The dimensions of both the

feature images and the covariance matrix [13,14,44] that yielded the highest recognition accuracy

were selected. Thus, the recognition accuracy values in Table 4.3 are the maximum achievable for

all the compared algorithms. Results are listed in Tables 4.3 and 4.4.

In Experiment IV, the first image per individual was used for training and the remaining 150 images

were used for testing. The dimensions of the feature images and the covariance matrix [13, 14, 44]

were the same as those used in Experiment III. Results are listed in Table 4.3.
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Table 4.3: Recognition accuracy in Experiments III and IV for Yale database using

the proposed technique (FD-TQ) and existing algorithms (2DPCA, (2D)2PCA, and

TD2DPCA).

Recognition accuracy for

Experiment III*

Recognition accuracy for

Experiment IV**

FD-TQ

(proposed)
97.78% 61.33%

2DPCA 97.78% 62.70%

(2D)2PCA 91.10% 56.70%

TD2DPCA 97.78% 59.30%

* Training with the first 5 poses per individual, and testing with the remaining poses.

** Training with the first pose per individual, and testing with the remaining poses.
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Table 4.4: Storage requirements and computational complexity in Experiments III and

IV for Yale database using the proposed technique (FD-TQ) and existing algorithms

(2DPCA, (2D)2PCA, and TD2DPCA).

Dim. of

feature

matrix

per image

Number of multiplications

for

Storage

require-

ments

(in bits)
training mode testing mode

FD-TQ

(proposed)
12x12 968,256 xN* 968,256 1,152 xN*

2DPCA 320x9 19,595,520 xN* 699,840 92,160**xN*

(2D)2PCA 16x16 45,104,960 xN* 1,326,080 8,192**xN*

TD2DPCA 15x11 1,244,250 xN* 1,240,875 5,280**xN*

* N is the number of the training images, with N=75 in Experiment III and N=15 in Experiment IV.

** 32-bit is typically needed to represent the data in this technique.
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Table 4.3 shows that the proposed algorithm yields good recognition accuracy compared with the

2DPCA, (2D)2PCA and TD2DPCA methods.

Table 4.4 illustrates the computational requirements in the training and testing modes in terms

of the number of multiplications. The FD-TQ reduces the computational requirements in both

the training mode and the testing mode. Furthermore, it is worthwhile to note that the storage

requirements for the FD-TQ, in terms of the dimensions of the feature matrix, are also reduced

by a factor of 4.5 compared with the algorithm which performed most closely to FD-TQ, namely

TD2DPCA.

4.3.3 Experimental Results Using FERET Database

Experiment V was conducted using part of the FERET database, in which all the images are

grayscale with 384 x 256 pixels each. In Experiment V, one image (fa) per individual was used for

training, and one image (fb) per individual was used for testing. The images of the first 200 indi-

viduals of the FERET database were used for Experiment V. The dimensions of both the feature

image and the covariance matrix [13, 14, 44] that yielded the highest recognition accuracy were

selected. Thus, the recognition accuracy values in Table 4.5 are the maximum achievable for all

compared algorithms. Results are listed in Tables 4.5 and 4.6.
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Table 4.5: Recognition accuracy in Experiment V for FERET database using the

proposed technique (FD-TQ) and existing algorithms (2DPCA, (2D)2PCA, and

TD2DPCA).

Recognition accuracy*

FD-TQ (proposed) 93.00%

2DPCA 90.00%

(2D)2PCA 91.50%

TD2DPCA 92.50%

* Training with one pose per individual, and testing with another one pose per individual.
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Table 4.6: Storage requirements and computational complexity in Experiment V

for FERET database using the proposed technique (FD-TQ) and existing algorithms

(2DPCA, (2D)2PCA, and TD2DPCA).

Dim. of

feature

matrix

per image

Number of multiplications

for

Storage

require-

ments

(in bits)
training mode testing mode

FD-TQ

(proposed)
5x5 497,945 xN* 497,945 200 xN*

2DPCA 256x4 38,141,952 xN* 393,216 32,768**xN*

(2D)2PCA 8x8 63,725,568 xN* 811,008 2,048**xN*

TD2DPCA 15x5 1,536,660 xN* 1,533,285 2,400**xN*

* N is the number of the training images, with N=200.

** 32-bit is typically needed to represent the data in this technique.
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Table 4.5 shows that the proposed algorithm yields good recognition accuracy compared with the

2DPCA, (2D)2PCA and TD2DPCA methods.

Table 4.6 illustrates the computational requirements in the training and testing modes in terms

of the number of multiplications. The FD-TQ reduces the computational requirements in both

the training mode and the testing mode. Furthermore, it is worthwhile to note that the storage

requirements for the FD-TQ, in terms of the dimensions of the feature matrix, are also reduced

by a factor of 10 compared with the algorithm which performed most closely to FD-TQ, namely

(2D)2PCA.

4.4 Conclusion

Recently, several facial recognition methods with high recognition accuracy have been reported.

In this dissertation, a new algorithm, namely FD-TQ, is presented. Our study of FD-TQ shows that

it reduces both the storage requirements and the computational complexity in comparison with the

recently reported methods, while maintaining the achieved recognition accuracy. Experimental

results confirm the excellent properties of the proposed technique.
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CHAPTER 5: NORMALIZED HISTOGRAM INTENSITY ALGORITHM

(NHI)

5.1 Introduction

An image histogram is a statistical calculation that provides counts of pixels with a particular range

of amplitude values. In other words, an image histogram represents the frequency of the occurrence

of the intensity values in an image. The histogram provides useful information to many image

processing applications, such as those that deal with image enhancement [49–52]. Furthermore,

the histogram statistical information have been utilized in many face recognition techniques, such

as [53–58].

In this chapter, a facial recognition technique employing Subimages Normalized Histogram Inten-

sity (NHI) is presented. This NHI algorithm calculates histogram intensity of poses’ subimages,

follow by quantization of the histogram intensity coefficients to only 256 levels, thereby reduc-

ing the storage requirements of the NHI algorithm. The algorithm has attractive properties with

respect to storage requirements and computational complexity in both the training and testing

modes, which makes the technique particularly suitable for large databases.

For this study, the new algorithm is applied to the ORL, Yale and FERET databases. The ex-

perimental results confirm a significant reduction in the storage and computational requirements

compared with other recently reported techniques, without any sacrifices necessary in terms of

recognition accuracy, as will be shown later. The algorithm is described in the following section.
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5.2 The NHI Algorithm

The following subsections illustrate step-by-step the procedures of the NHI algorithm in both train-

ing and testing modes.

5.2.1 Training Mode

In the training mode, the features of the database are extracted and stored as described by steps 1

through 4, Figure 5.1.

Step 1: Each mxn image Ai of the N training images is divided into bxb sub-matrix blocks, yield-

ing image sub-matrix, Aijk, where jk represents the sub-matrix block location. A block size of

32x32 is used in this study.

Step 2: Histogram intensity is computed for each bxb sub-matrix blocks, Aijk, of the training im-

ages. Using a certain number of histogram levels ( 6 histogram levels are used in this study) yields

histogram sub-matrix Hijk where jk represents the sub-matrix block location.

Step 3: All histogram intensity sub-matrices Hijk are combined, yielding the histogram intensity

matrix Hi (i = 1 to N ).

Step 4: The histogram intensity matrix, Hi, is normalized such that all its elements fall between 0

and 1. Then the elements are multiplied by 255 and linearly quantized to get the 8-bit representation

of the normalized histogram intensity matrix Hi. This yields the feature matrix, Bi, where its jk

element, Bi,jk, is given by:

Bi,jk = floor(255 ∗Hi,jk) (5.1)
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5.2.2 Testing Mode

In the testing mode, a facial test image, At, is presented to the system to be identified. The follow-

ing steps are followed, Figure 5.2.

Step 1: An mxn image At is divided into bxb sub-matrix blocks, yielding image sub-matrix Atjk,

where jk represents the sub-matrix block location. As described in the training procedure, a block

size of 32x32 will be used.

Step 2: Histogram intensity is computed for each bxb sub-matrix block Atjk of the test image. Us-

ing a certain number of histogram levels (6 histogram levels are used in this work) yields histogram

sub-matrix Htjk, where jk represents the sub-matrix block location.

Step 3: All histogram intensity sub-matricesHtjk are combined yielding histogram intensity matrix

Ht.

Step 4: The histogram intensity matrix Ht is normalized such that all its elements fall between 0

and 1. Then the elements are multiplied by 255 and linearly quantized to get an 8-bit representation

of the normalized histogram intensity matrix Ht. This yields the feature matrix Bt, where its jk

element Bi,jk is given by:

Bt,jk = floor(255 ∗Ht,jk) (5.2)

Step 5: Distance measures, such as the Euclidean distance, between the feature matrix of the testing

image and the feature matrices of the training images are computed. The image in the training

database corresponding to the minimum distance defines the image to be identified.
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Input the training images Ai (i = 1 to N ). 
Ai is mxn pixels.

Divide each image Ai of the N  training images into bxb sub-matrix 
blocks, yielding image sub-matrix, Ai,jk. 

A block size of 32x32 is used.

Compute the histogram intensity sub-matrix Hi,jk for each image 

sub-matrix Ai,jk of the trained images. 
Six histogram levels are used.

Combine the histogram intensity sub-matrices Hi,jk  to yield the 
histogram Intensity matrix Hi (i = 1 to N ).

Normalize the histogram intensity matrix Hi such that all its 
elements fall between 0 and 1. Then its elements are

multiplied by 255 and linearly quantized, yielding the feature matrix Bi. 

Bi,jk = floor(255 ∗ Hi,jk)

where Bi,jk is it's jk element,
and the Bi matrices are stored.

Figure 5.1: NHI Training mode flow-chart.
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Unknown facial image, At, is presented to the system. 
At is mxn pixels.

Divide the unknown image At into bxb sub-matrix blocks, 
yielding image sub-matrix, At,jk. 

A block size of 32x32 is used.

Compute the histogram intensity sub-matrix Ht,jk for each image 

sub-matrix At,jk of the trained images. 
Six histogram levels are used.

Combine the histogram intensity sub-matrices Ht,jk to yield the 
histogram Intensity matrix Ht.

Normalize the histogram intensity matrix Ht  such that all its 
elements fall between 0 and 1. Then its elements are

multiplied by 255 and linearly quantized, yielding the feature matrix Bt. 

Bt,jk = floor(255 ∗ Ht,jk)

where Bt,jk is it's jk element,

Compute the Euclidean distance between the feature matrix of the 
unknown image Bt and the feature matrices of the training images Bi 

(i=1 to N). The image in the training database corresponding to the 
minimum distance defines the image to be identified.

Figure 5.2: NHI Testing mode flow-chart.
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5.3 Experimental Results

The NHI technique was tested using the ORL, the Yale and part of the FERET databases [46–48].

The ORL database consists of 40 individuals, with ten images for each individual in various poses

and with various facial expressions, Figure 3.3. The Yale database consists of 15 individuals, with

11 images for each individual in various poses and with various facial expressions, Figure 3.4. The

part of the FERET database consists of 400 grayscale images for 200 individuals, with individual

in 2 different frontal poses, fa and fb, Figure 3.5.

Face recognition results of the NHI technique were compared with those of existing techniques,

namely, the 2DPCA, (2D)2PCA, and TD2DPCA. The procedures for the compared techniques

were taken from [13, 14, 44], while the procedures for the NHI technique are presented in section

6.2.

5.3.1 Experimental Results Using ORL Database

Two experiments, I and II, were conducted using the ORL database, in which all the images are

grayscale with 112 x 92 pixels each. In Experiment I, the first five images per individual were

used for training, and the remaining 200 images were used for testing. The dimensions of both the

feature images and the covariance matrix [13,14,44] that yielded the highest recognition accuracy

were selected. Thus, the recognition accuracy values in Table 5.1 are the maximum achievable for

all the compared algorithms. Results are listed in Tables 5.1 and 5.2.

In Experiment II, the first image per individual was used for training, and the remaining 360 images

were used for testing. The dimensions of the feature images and the covariance matrix [13, 14, 44]

were the same as those used in Experiment I. Results are listed in Table 5.1.
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Table 5.1: Recognition accuracy in Experiments I and II for ORL database using

the proposed technique (NHI) and existing algorithms (2DPCA, (2D)2PCA, and

TD2DPCA).

Recognition accuracy for

Experiment I*

Recognition accuracy for

Experiment II**

NHI

(proposed)
95.50% 72.22%

2DPCA 93.00% 71.68%

(2D)2PCA 92.50% 71.68%

TD2DPCA 93.50% 71.10%

* Training with the first 5 poses per individual, and testing with the remaining poses.

** Training with the first pose per individual, and testing with the remaining poses.
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Table 5.2: Storage requirements and computational complexity in Experiments I and

II for ORL database using the proposed technique (NHI) and existing algorithms

(2DPCA, (2D)2PCA, and TD2DPCA).

Dim. of

feature

matrix

per image

Number of multiplications

for

Storage

require-

ments

(in bits)
training mode testing mode

NHI

(proposed)
24x3 72 xN* 72 576 xN*

2DPCA 112x7 1,020,096 xN* 72,128 25,088**xN*

(2D)2PCA 10x10 2,214,256 xN* 112,240 3,200**xN*

TD2DPCA 15x12 181,335 xN* 177,960 5,760**xN*

* N is the number of the training images, with N=200 in Experiment I and N=40 in Experiment II.

** 32-bit is typically needed to represent the data in this technique.
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Table 5.1 shows that the proposed algorithm yields good recognition accuracy compared with the

2DPCA, (2D)2PCA and TD2DPCA methods.

Table 5.2 illustrates the computational requirements in the training and testing modes in terms of

the number of multiplications. The NHI reduces the computational requirements in both the train-

ing mode and the testing mode. Furthermore, it is worthwhile to note that the storage requirements

for the NHI, in terms of the dimensions of the feature matrix, are also reduced by a factor of 5

compared with the algorithm which performed most closely to NHI, namely (2D)2PCA.

5.3.2 Experimental Results Using Yale Database

Two experiments, III and IV, were performed using the Yale database, in which all the images are

grayscale with 243x320 pixels each. In Experiment III, the first five images per individual were

used for training, and the remaining 90 images were used for testing. The dimensions of both the

feature images and the covariance matrix [13,14,44] that yielded the highest recognition accuracy

were selected. Thus, the recognition accuracy values in Table 5.3 are the maximum achievable for

all the compared algorithms. Results are listed in Tables 5.3 and 5.4.

In Experiment IV, the first image per individual was used for training and the remaining 150 images

were used for testing. The dimensions of the feature images and the covariance matrix [13, 14, 44]

were the same as those used in Experiment III. Results are listed in Table 5.3.
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Table 5.3: Recognition accuracy in Experiments III and IV for Yale database using

the proposed technique (NHI) and existing algorithms (2DPCA, (2D)2PCA, and

TD2DPCA).

Recognition accuracy for

Experiment III*

Recognition accuracy for

Experiment IV**

NHI

(proposed)
94.44% 59.33%

2DPCA 97.78% 62.70%

(2D)2PCA 91.10% 56.70%

TD2DPCA 97.78% 59.30%

* Training with the first 5 poses per individual, and testing with the remaining poses.

** Training with the first pose per individual, and testing with the remaining poses.
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Table 5.4: Storage requirements and computational complexity in Experiments III

and IV for Yale database using the proposed technique (NHI) and existing algorithms

(2DPCA, (2D)2PCA, and TD2DPCA).

Dim. of

feature

matrix

per image

Number of multiplications

for

Storage

require-

ments

(in bits)
training mode testing mode

NHI

(proposed)
48x10 480 xN* 480 3,840 xN*

2DPCA 320x9 19,595,520 xN* 699,840 92,160**xN*

(2D)2PCA 16x16 45,104,960 xN* 1,326,080 8,192**xN*

TD2DPCA 15x11 1,244,250 xN* 1,240,875 5,280**xN*

* N is the number of the training images, with N=75 in Experiment III and N=15 in Experiment IV.

** 32-bit is typically needed to represent the data in this technique.
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Table 5.3 shows that the proposed algorithm yields good recognition accuracy compared with the

2DPCA, (2D)2PCA and TD2DPCA methods.

Table 5.4 illustrates the computational requirements in the training and testing modes in terms of

the number of multiplications. The NHI reduces the computational requirements in both the train-

ing mode and the testing mode. Furthermore, it is worthwhile to note that the storage requirements

for the NHI, in terms of the dimensions of the feature matrix, are also reduced by 27% compared

with the algorithm which performed most closely to NHI, namely TD2DPCA.

5.3.3 Experimental Results Using FERET Database

Experiment V was conducted using part of the FERET database, in which all the images are

grayscale with 384 x 256 pixels each. In Experiment V, one image (fa) per individual was used for

training, and one image (fb) per individual was used for testing. The images of the first 200 indi-

viduals of the FERET database were used for Experiment V. The dimensions of both the feature

image and the covariance matrix [13, 14, 44] that yielded the highest recognition accuracy were

selected. Thus, the recognition accuracy values in Table 5.5 are the maximum achievable for all

compared algorithms. Results are listed in Tables 5.5 and 5.6.
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Table 5.5: Recognition accuracy in Experiment V for FERET database using

the proposed technique (NHI) and existing algorithms (2DPCA, (2D)2PCA, and

TD2DPCA).

Recognition accuracy*

NHI (proposed) 95.00%

2DPCA 90.00%

(2D)2PCA 91.50%

TD2DPCA 92.50%

* Training with one pose per individual, and testing with another one pose per individual.
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Table 5.6: Storage requirements and computational complexity in Experiment V

for FERET database using the proposed technique (NHI) and existing algorithms

(2DPCA, (2D)2PCA, and TD2DPCA).

Dim. of

feature

matrix

per image

Number of multiplications

for

Storage

require-

ments

(in bits)
training mode testing mode

NHI

(proposed)
72x8 576 xN* 576 4,608 xN*

2DPCA 256x4 38,141,952 xN* 393,216 32,768**xN*

(2D)2PCA 8x8 63,725,568 xN* 811,008 2,048**xN*

TD2DPCA 15x5 1,536,660 xN* 1,533,285 2,400**xN*

* N is the number of the training images, with N=200.

** 32-bit is typically needed to represent the data in this technique.
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Table 5.5 shows that the proposed algorithm yields good recognition accuracy compared with the

2DPCA, (2D)2PCA and TD2DPCA methods.

Table 5.6 illustrates the computational requirements in the training and testing modes in terms

of the number of multiplications. The NHI reduces the computational requirements in both the

training mode and the testing mode. However, the storage requirements for the TD2DPCA and

(2D)2PCA algorithms, in terms of the dimensions of the feature matrix, are lower compared with

the NHI algorithm.

5.4 Conclusion

Recently, several facial recognition methods with high recognition accuracy have been investi-

gated. In this dissertation, a new facial recognition algorithm, namely NHI, is introduced. Our

study of NHI shows that both the storage requirements and the computational complexity required

for facial recognition calculations were reduced compared with results from other methods recently

investigated, while maintaining the achieved recognition accuracy. Experimental results, therefore,

confirm the excellent properties of the proposed technique.
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CHAPTER 6: NORMALIZED TRANSFORM DOMAIN ALGORITHM

(NTD)

6.1 Introduction

In this chapter, a facial recognition algorithm employing Normalized Transform Domain (NTD) is

presented. This NTD algorithm transforms the training and test images to a domain that concen-

trates the energy in the low spatial frequencies region. In this dissertation, the Two-dimensional

Discrete Cosine Transform (DCT-II) [16] was used for this task. In addition, a criterion is pro-

posed to normalize the coefficients to only 256 levels. Combining these two simple, but effective,

operations leads to a considerable reduction in the number of coefficients required to represent the

images.

For this study, the new algorithm is applied to the ORL, Yale, and FERET databases. The ex-

perimental results confirm a significant reduction in the storage and computational requirements

compared with other recently reported techniques, without any sacrifices necessary in terms of

recognition accuracy, as will be shown later. The algorithm is described in the following section.
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6.2 The NTD Algorithm

The following subsections illustrate step-by-step the procedures of the NTD algorithm in both

training and testing modes.

6.2.1 Training Mode

In the training mode, the features of the database are extracted and stored as described by steps 1

through 3, Figure 6.1.

Step 1: A suitable transform (Tr), such as DCT-II, is applied to each mxn image Ai of the training

images, yielding Ti(i = 1 to N).

Ti = Tr{Ai} (6.1)

Step 2: A transform is chosen such that the significant coefficients of Ti are contained in a subma-

trix T ′
i (upper left part of Ti) of dimensions n′xn′. T ′

i is then used to replace Ai in the algorithm.

Step 3: The submatrix T ′
i is normalized such that all its elements fall between 0 and 1. Then

the elements are multiplied by 255 and linearly quantized to get the 8-bit representation of the

normalized submatrix T ′
i . This yields the feature matrix Bi, where its jk element, Bi,jk, is given

by:

Bi,jk = floor(255 ∗ T ′
i,jk) (6.2)

6.2.2 Testing Mode

In the testing mode, a facial test image, At, is presented to the system to be identified. The follow-

ing steps are followed, Figure 6.2.
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Step 1: The same transform used in the training mode is applied to At which yields Tt.

Step 2: The submatrix T ′
t of dimensions n′xn′, containing the significant coefficients is obtained,

as described in the training mode procedure.

Step 3: The submatrix T ′
t is normalized such that all its elements fall between 0 and 1. Then

the elements are multiplied by 255 and linearly quantized to get the 8-bit representation of the

normalized submatrix T ′
t . This yields the feature matrix Bt, where its jk element, Bt,jk, is given

by:

Bt,jk = floor(255 ∗ T ′
t,jk) (6.3)

Step 4: Distance measures, such as the Euclidean distance, between the feature matrix of the testing

image and the feature matrices of the training images are computed. The image in the training

database corresponding to the minimum distance defines the image to be identified.
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Input the training images, Ai (i = 1 to N), 
Ai is mxn pixels.

Compute the DCT Transform, Ti, of Ai

Ti = Tr{Ai}

The submatrix T
�
i  (upper left part of Ti), of 

dimension n�xn�, is used to replace Ai in the algorithm.

Normalize the submatrix T
�
i  such that all its elements fall between 0 

and 1. Then its elements are multiplied by 255 and linearly quantized, 
yielding the feature matrix Bi.

Bi,jk = floor(255 ∗ T �
i,jk) 

where Bi,jk is it's jk element,
and the Bi matrices are stored.

Figure 6.1: NTD Training mode flow-chart.
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The submatrix T
�
t (upper left part of Tt), of 

dimension n�xn�, is used to replace At in the algorithm.

Normalize the submatrix T
�
t such that all its elements fall between 0 

and 1. Then its elements are multiplied by 255 and linearly quantized, 
yielding the feature matrix Bt.

Bt,jk = floor(255 ∗ T �
t,jk)

where Bt,jk is it's jk element.

Unknown facial image, At, is presented to the system. 
At is mxn pixels.

Compute the DCT Transform, Tt, of At.
Tt = Tr{At}

Compute the Euclidean distance between the feature matrix of the 
unknown image Bt  and the feature matrices of the training images Bi 

(i=1 to N). The image in the training database corresponding to the 
minimum distance defines the image to be identified.

Figure 6.2: NTD Testing mode flow-chart.
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6.3 Experimental Results

The NTD technique was tested using the ORL, Yale and part of FERET databases [46–48]. The

ORL database consists of 40 individuals, with ten images for each individual in various poses and

with various facial expressions, Figure 3.3. The Yale database consists of 15 individuals, with 11

images for each individual in various poses and with various facial expressions, Figure 3.4. The

part of the FERET database consists of 400 grayscale images for 200 individuals, with individual

in 2 different frontal poses, fa and fb, Figure 3.5.

Face recognition results of the NTD technique were compared with those of existing techniques,

namely, the 2DPCA, (2D)2PCA, and TD2DPCA. The procedures for the compared techniques

were taken from [13, 14, 44], while the procedures for the NTD technique are presented in section

6.2.

6.3.1 Experimental Results Using ORL Database

Two experiments, I and II, were conducted using the ORL database, in which all the images are

grayscale with 112 x 92 pixels each. In Experiment I, the first five images per individual were

used for training, and the remaining 200 images were used for testing. The dimensions of both the

feature images and the covariance matrix [13,14,44] that yielded the highest recognition accuracy

were selected. Thus, the recognition accuracy values in Table 6.1 are the maximum achievable for

all the compared algorithms. Results are listed in Tables 6.1 and 6.2.

In Experiment II, the first image per individual was used for training, and the remaining 360 images

were used for testing. The dimensions of the feature images and the covariance matrix [13, 14, 44]

were the same as those used in Experiment I. Results are listed in Table 6.1.
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Table 6.1: Recognition accuracy in Experiments I and II for ORL database using

the proposed technique (NTD) and existing algorithms (2DPCA, (2D)2PCA, and

TD2DPCA).

Recognition accuracy for

Experiment I*

Recognition accuracy for

Experiment II**

NTD

(proposed)
93.50% 71.39%

2DPCA 93.00% 71.68%

(2D)2PCA 92.50% 71.68%

TD2DPCA 93.50% 71.10%

* Training with the first 5 poses per individual, and testing with the remaining poses.

** Training with the first pose per individual, and testing with the remaining poses.
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Table 6.2: Storage requirements and computational complexity in Experiments I and

II for ORL database using the proposed technique (NTD) and existing algorithms

(2DPCA, (2D)2PCA, and TD2DPCA).

Dim. of

feature

matrix

per image

Number of multiplications

for

Storage

require-

ments

(in bits)
training mode testing mode

NTD

(proposed)
5x5 53,845 xN* 53,845 200 xN*

2DPCA 112x7 1,020,096 xN* 72,128 25,088**xN*

(2D)2PCA 10x10 2,214,256 xN* 112,240 3,200**xN*

TD2DPCA 15x12 181,335 xN* 177,960 5,760**xN*

* N is the number of the training images, with N=200 in Experiment I and N=40 in Experiment II.

** 32-bit is typically needed to represent the data in this technique.
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Table 6.1 shows that the proposed algorithm yields good recognition accuracy compared with the

2DPCA, (2D)2PCA and TD2DPCA methods.

Table 6.2 illustrates the computational requirements in the training and testing modes in terms of

the number of multiplications. The NTD reduces the computational requirements in both the train-

ing mode and the testing mode. Furthermore, it is worthwhile to note that the storage requirements

for the NTD, in terms of the dimensions of the feature matrix, are also reduced by a factor of 16

compared with the algorithm which performed most closely to NTD, namely (2D)2PCA.

6.3.2 Experimental Results Using Yale Database

Two experiments, III and IV, were performed using the Yale database, in which all the images are

grayscale with 243x320 pixels each. In Experiment III, the first five images per individual were

used for training, and the remaining 90 images were used for testing. The dimensions of both the

feature images and the covariance matrix [13,14,44] that yielded the highest recognition accuracy

were selected. Thus, the recognition accuracy values in Table 6.3 are the maximum achievable for

all the compared algorithms. Results are listed in Tables 6.3 and 6.4.

In Experiment IV, the first image per individual was used for training and the remaining 150 images

were used for testing. The dimensions of the feature images and the covariance matrix [13, 14, 44]

were the same as those used in Experiment III. Results are listed in Table 5.3.
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Table 6.3: Recognition accuracy in Experiments III and IV for Yale database using

the proposed technique (NTD) and existing algorithms (2DPCA, (2D)2PCA, and

TD2DPCA).

Recognition accuracy for

Experiment III*

Recognition accuracy for

Experiment IV**

NTD

(proposed)
96.67% 63.33%

2DPCA 97.78% 62.70%

(2D)2PCA 91.10% 56.70%

TD2DPCA 97.78% 59.30%

* Training with the first 5 poses per individual, and testing with the remaining poses.

** Training with the first pose per individual, and testing with the remaining poses.
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Table 6.4: Storage requirements and computational complexity in Experiments III

and IV for Yale database using the proposed technique (NTD) and existing algorithms

(2DPCA, (2D)2PCA, and TD2DPCA).

Dim. of

feature

matrix

per image

Number of multiplications

for

Storage

require-

ments

(in bits)
training mode testing mode

NTD

(proposed)
10x10 809,700 xN* 809,700 800 xN*

2DPCA 320x9 19,595,520 xN* 699,840 92,160**xN*

(2D)2PCA 16x16 45,104,960 xN* 1,326,080 8,192**xN*

TD2DPCA 15x11 1,244,250 xN* 1,240,875 5,280**xN*

* N is the number of the training images, with N=75 in Experiment III and N=15 in Experiment IV.

** 32-bit is typically needed to represent the data in this technique.
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Table 6.3 shows that the proposed algorithm yields good recognition accuracy compared with the

2DPCA, (2D)2PCA and TD2DPCA methods.

Table 6.4 illustrates the computational requirements in the training and testing modes in terms of

the number of multiplications. The NTD reduces the computational requirements in both the train-

ing mode and the testing mode. Furthermore, it is worthwhile to note that the storage requirements

for the NTD, in terms of the dimensions of the feature matrix, are also reduced by a factor of 6

compared with the algorithm which performed most closely to NTD, namely TD2DPCA.

6.3.3 Experimental Results Using FERET Database

Experiment V was conducted using part of the FERET database, in which all the images are

grayscale with 384 x 256 pixels each. In Experiment V, one image (fa) per individual was used for

training, and one image (fb) per individual was used for testing. The images of the first 200 indi-

viduals of the FERET database were used for Experiment V. The dimensions of both the feature

image and the covariance matrix [13, 14, 44] that yielded the highest recognition accuracy were

selected. Thus, the recognition accuracy values in Table 6.5 are the maximum achievable for all

compared algorithms. Results are listed in Tables 6.5 and 6.6.
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Table 6.5: Recognition accuracy in Experiment V for FERET database using

the proposed technique (NTD) and existing algorithms (2DPCA, (2D)2PCA, and

TD2DPCA).

Recognition accuracy*

NTD (proposed) 93.00%

2DPCA 90.00%

(2D)2PCA 91.50%

TD2DPCA 92.50%

* Training with one pose per individual, and testing with another one pose per individual.
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Table 6.6: Storage requirements and computational complexity in Experiment V

for FERET database using the proposed technique (NTD) and existing algorithms

(2DPCA, (2D)2PCA, and TD2DPCA).

Dim. of

feature

matrix

per image

Number of multiplications

for

Storage

require-

ments

(in bits)
training mode testing mode

NTD

(proposed)
5x5 497,945 xN* 497,945 200 xN*

2DPCA 256x4 38,141,952 xN* 393,216 32,768**xN*

(2D)2PCA 8x8 63,725,568 xN* 811,008 2,048**xN*

TD2DPCA 15x5 1,536,660 xN* 1,533,285 2,400**xN*

* N is the number of the training images, with N=200.

** 32-bit is typically needed to represent the data in this technique.
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Table 6.5 shows that the proposed algorithm yields good recognition accuracy compared with the

2DPCA, (2D)2PCA and TD2DPCA methods.

Table 6.6 illustrates the computational requirements in the training and testing modes in terms of

the number of multiplications.The NTD reduces the computational requirements in both the train-

ing mode and the testing mode. Furthermore, it is worthwhile to note that the storage requirements

for the NTD, in terms of the dimensions of the feature matrix, are also reduced by a factor of 10

compared with the algorithm which performed most closely to NTD, namely (2D)2PCA.

6.4 Conclusion

Recently, several facial recognition methods with high recognition accuracy have been investi-

gated. In this dissertation, a new facial recognition algorithm, namely NTD, is introduced. Our

study of NTD shows that it reduces both the storage requirements and the computational complex-

ity required for facial recognition calculations in comparison with the recently reported methods,

while maintaining the achieved recognition accuracy. Experimental results, therefore, confirm the

excellent properties of the proposed technique.
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CHAPTER 7: SUMMARY AND FUTURE WORK

7.1 Summary

The performance of any face image recognition algorithm is commonly measured by looking at

three characteristics: (i) the recognition accuracy achieved, (ii) the storage requirements needed,

and (iii) the computational complexity involved. The problem with most existing face recogni-

tion algorithms is the focus on achieving a higher recognition accuracy while de-emphasizing the

increase of the algorithm’s computational complexity and/or storage requirements.

Our proposed algorithms, QTD, FD-TQ, NHI, and NTD, focus on simplifying the computational

complexity and reducing the storage requirements of the face recognition algorithm without sacri-

ficing the level of recognition accuracy achieved by the existing algorithms.

To measure the performance of our proposed algorithms, experiments were performed on the pro-

posed algorithms and on the state-of-the-art algorithms, namely, 2DPCA, (2D)2PCA, and TD2DPCA.

The experiments were conducted on the famous face recognition databases, namely, ORL, Yale,

and FERET.

In effect, the results confirm that our proposed algorithms reduce the computational complexity

and the storage requirements compared to the existing algorithms. Also, the results show that our

proposed algorithms maintained the recognition accuracy of the compared algorithms.

Finally, the reduction in both computational complexity and storage requirements of our proposed

algorithms demonstrates their suitability for use with large databases.
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7.2 Future Work

In this section, a number of ideas for new face recognition algorithms will be discussed to provide

direction for future research.

• The usage of the transform domain, such as DCT, in face recognition showed an advantage

towards reducing the storage requirements of the facial recognition system. On the other

hand, utilizing statistical information of the image, such as pixel intensity histogram, demon-

strated an advantage towards reducing the computational complexity of the facial recognition

system. Because of that, we would like to investigate combining both the DCT transform

and the histogram distribution in a face recognition technique.

• Utlizing Vector Quantization (VQ) techniques [59] in a face recognition algorithm could add

advantages in term of reducing algorithm’s storage requirements and needed computational

operations. A good example of this is shown in [60]. Therefore, we believe that combining

vector quantization techniques with one of our proposed algorithms could improve perfor-

mance of the algorithm.

• Throughout our experiments, the noise effect on the performance of our proposed algorithm

was not considered. We would like to investigate the impact of adding noise to the training

images on the performance of our proposed algorithms.

• A multicriteria approach may be useful for face recognition. Using a proper voting scheme

to manage the decision of the multicriteria approach could achieve 100% recognition accu-

racy. An example of the performance of multicriteria is in [61]. However, we would like

to investigate suitable ways to use the multicriteria approach in face recognition without

sacrificing in term of computational complexity and storage requirements.

81



• Continue publishing and presenting our contributions at international refereed conferences

and submitting paper(s) to refereed journals.
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APPENDIX : SOURCE CODE OF DEVELOPED ALGORITHMS
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% The code for QTD algorithm

%

% Written By:waleed@knights.ucf.edu

% ORL Database

clear all

close all

clc

G=40; % number of persons

H=5; % number of poses per person for training

CM=zeros(G*H,2);

temp3=0;

NTR1=zeros(G*H,1);

iter1=0;

% Training Mode

for i= 1:G

for j=1:H

iter1=iter1+1;

xs=imread(strcat(’/s’,int2str(i),’/’, int2str(j)),’pgm’);

xi(:,:,iter1)=xs;

x=double(xs);

xd=dct2(x);

I(:,:,iter1)=x;

Tid(:,:,iter1)=xd;

CM(iter1,:)=[iter1,i];

end

end

tfmin=5;
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tfmax=20;

recog=zeros(tfmax-tfmin+1,4);

for tf=tfmin:tfmax

clear Vi1;

clear Vtd1;

clear Dd1;

temp3=0;

NTR1=zeros(G*H,1);

i=1;j=1;k=1;L=1;

for i=1:iter1

xtemp1=Tid(:,:,i);

xtemp=xtemp1(1:tf,1:tf);

xtemphalfenr=mean(mean(xtemp1.ˆ2)); % half power of Vi1

for ii=1:tf

for jj=1:tf

if xtemp(ii,jj)ˆ2 <= xtemphalfenr

xtemp(ii,jj)= zeros;

end

end

end

Vi1(:,:,i)=xtemp;

clear xtemp

end

correct1=0;

wrong1=0;

iter2=0;

ST=H+1;
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EN=10;

for i= 1:G

for j=ST:EN

iter2=iter2+1;

NTR=zeros(iter1,1);

xta=imread(strcat(’/s’,int2str(i),’/’, int2str(j)),’pgm’);

xtar(:,:,iter2)=xta;

xt=double(xta);

It(:,:,iter2)=xt;

Tt=dct2(xt);

Ttd(:,:,iter2)=Tt;

Vt1=Tt(1:tf,1:tf);

Vt1halfenr=mean(mean(Tt.ˆ2)); % half power of Vt1

for ii=1:tf

for jj=1:tf

if Vt1(ii,jj)ˆ2 <= Vt1halfenr

Vt1(ii,jj)= zeros;

end

end

end

for L=1:iter1

D1=Vi1(:,:,L)-Vt1;

Dd1(:,:,L)=D1;

for k=1:tf

temp3= temp3+norm(D1(:,k));

NT1=temp3;

end
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NTR1(L)=NT1;

temp3=0;

end

[Si1,Hi1] = min(NTR1);

NTRF1(:,:,iter2)=NTR1;

if CM(Hi1,2) == i

correct1=correct1+1;

resc1(correct1,:)=[iter2,Hi1,Si1];

else

wrong1=wrong1+1;

res1(wrong1,:)=[iter2,Hi1,Si1];

NTRFF1(:,:,wrong1)=NTR1;

end

end

end

recog(tf-tfmin+1,1)=tf;

recog(tf-tfmin+1,2)=correct1;

recog(tf-tfmin+1,3)=wrong1;

recog(tf-tfmin+1,4)=correct1*100/(wrong1+correct1);

end

ymin=min(min(recog(:,4))-1);

ymax=max(max(recog(:,4))+0.5);

titlestr = [’ORL Database Varying the No. Of columns’,...

’ Of Test & Train Poses Matrix With ’,int2str(iter1) ,...

’ Training & ’,int2str(iter2), ’ Testing’];

figure

plot(recog(:,1),recog(:,4),’-ro’,’LineWidth’,2,...
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’MarkerEdgeColor’,’k’,...

’MarkerFaceColor’,’g’,...

’MarkerSize’,10)

axis([tfmin tf ymin ymax])

title(titlestr)

xlabel(’No. Of columns Of Pose Matrix’)

ylabel(’% of Accuracy’)

hleg1 = legend(’QTD’);

set(hleg1,’Location’,’south’)

grid on

clear Ttd;
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% The code for FD-TQ algorithm

%

% Written By:waleed@knights.ucf.edu

% Yale Database

clear all

close all

clc

load Yale

G=15; % number of persons

Ht=11; % total number per person in the database

H=1; % number of poses per person for training

train=[1:5];

testing=[6:11];

% Training Mode

tfmin=12;

tfmax=12;

for tf=tfmin:tfmax

Tidm=mean2(Tid(1:tf,1:tf,1:G,1:5));

Tidstd=std2(Tid(1:tf,1:tf,1:G,1:5));

%Tidmax=max(max(max

msteps=[Tidstd,sqrt(2)*Tidstd,2*Tidstd,3*Tidstd,4*Tidstd,...

5*Tidstd,6*Tidstd, 7*Tidstd];

iter3=0;

% recog=zeros(tfmax-tfmin+1,4);

for step=msteps

xmax=step+Tidm;

xmin=-1*step+Tidm;
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for i=1:G

for j= 1:11

xd=Tid(:,:,i,j);

xn= (xd-xmin)./(xmax-xmin);

for k=1:numel(xn)

if xn(k) > 1

xn(k)= 1;

elseif xn(k) < 0

xn(k)=0;

end

end

xq=floor(xn.*255);

Tiq(:,:,i,j)=xq;

clear xn xq

end

end

iter3=iter3+1;

clear Vi1;

clear Vtd1;

clear Dd1;

temp3=0;

NTR1=zeros(G*H,3);

i=1;j=1;k=1;L=1;

iter1=0;

for i=1:G

for j=train

xtemp1=Tiq(:,:,i,j);
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xtemp=xtemp1(1:tf,1:tf);

iter1=iter1+1;

Vi1(:,:,i,j)=xtemp;

clear xtemp

end

end

% Testing Mode

correct1=0;

wrong1=0;

iter2=0;

for i= 1:G

for j=testing

iter2=iter2+1;

xtemp2=Tiq(:,:,i,j);

Vt1=xtemp2(1:tf,1:tf);

clear xtemp2

L=0;

for m=1:G

for n= train

D1=Vi1(:,:,m,n)-Vt1;

L=L+1;

Dd1(:,:,L)=D1;

for k=1:tf

temp3= temp3+norm(D1(:,k));

NT1=temp3;

end

NTR1(L,1)=NT1;NTR1(L,2)=m;NTR1(L,3)=n;
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temp3=0;

end

end

[Si1,Hi1] = min(NTR1(:,1));

NTRF1(:,:,iter2)=NTR1;

if NTR1(Hi1,2) == i

correct1=correct1+1;

resc1(correct1,:)=[iter2,Hi1,Si1,NTR1(Hi1,2),NTR1(Hi1,3)];

else

wrong1=wrong1+1;

res1(wrong1,:)=[iter2,Hi1,Si1,NTR1(Hi1,2), NTR1(Hi1,3)];

NTRFF1(:,:,wrong1)=NTR1;

end

end

end

recog(iter3,1)=xmax;

recog(iter3,2)=correct1;

recog(iter3,3)=wrong1;

recog(iter3,4)=correct1*100/(wrong1+correct1);

end

ymin=min(min(recog(:,4))-1);

% ymin=80;

ymax=max(max(recog(:,4))+0.5);

titlestr = [’Yale Normalized and Quant Vo. of coulmns of pose ’,...

’matrix = ’, int2str(tf),’Varying quantiazation limit’,...

’ Of Test & Train ’,int2str(iter1) ,...
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’ Training & ’,int2str(iter2), ’ Testing’];

figure;

plot(recog(:,1),recog(:,4),’-ro’,’LineWidth’,2,...

’MarkerEdgeColor’,’k’,...

’MarkerFaceColor’,’g’,...

’MarkerSize’,10)

axis([100 xmax ymin ymax])

title(titlestr)

xlabel(’No. of columns of pose Matrix’)

ylabel(’% of Accuracy’)

hleg1 = legend(’FD-TQ’);

set(hleg1,’Location’,’south’)

grid on

end
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% The code for NHI algorithm

%

% Written By:waleed@knights.ucf.edu

% FERET Database

clear all

close all

clc

G=200; % number of persons

Ht=2; % total number per person in the database

train=[1];

testing=[2];

[z1,testp]=size(testing);

[z2,trainp]=size(train);

% Training Mode

clear Vi1;

clear Vtd1;

clear Dd1;

temp3=0;

i=1;j=1;k=1;L=1;

bit=4;

blk=8;

while (blk < 33)

for lev = 6:6

clear wrong1 correct1 Vi1 Dd1

correct1=0;

wrong1=0;

iter2=0;
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iter1=0;

for i=1:G

for j=train

iter1=iter1+1;

xs=double(imread(strcat(’/Users/waleed/Pictures/fa_new/’,...

int2str(i),’_’, int2str(j), ’.tif’),’tiff’));

xd=histbitform(xs,blk,lev,bit);

I(:,:,i,j)=xs;

Vi1(:,:,i,j)=xd;

clear xd xs

end

end

[m,tf]=size(Vi1(:,:,1,1));

% Testing Mode

for i= 1:G

for j=testing

iter2=iter2+1;

xd=double(imread(strcat(’/fa_new/’,...

int2str(i),’_’, int2str(j), ’.tif’),’tiff’));

Vt1=histbitform(xd,blk,lev,bit);

I(:,:,i,j)=xd;

clear xd xs

L=0;

for m=1:G

for n= train

D1=Vi1(:,:,m,n)-Vt1;

L=L+1;
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Dd1(:,:,L)=D1;

for k=1:tf

temp3= temp3+norm(D1(:,k));

NT1=temp3;

end

NTR1(L,1)=NT1;NTR1(L,2)=m;NTR1(L,3)=n;

temp3=0;

end

end

[Si1,Hi1] = min(NTR1(:,1));

NTRF1(:,:,iter2)=NTR1;

if NTR1(Hi1,2) == i

correct1=correct1+1;

resc1(correct1,:)=[iter2,Hi1,Si1,NTR1(Hi1,2),NTR1(Hi1,3)];

else

wrong1=wrong1+1;

res1(wrong1,:)=[iter2,Hi1,Si1,NTR1(Hi1,2),NTR1(Hi1,3)];

NTRFF1(:,:,wrong1)=NTR1;

end

end

end

recog(lev,1,blk)=lev;

recog(lev,2,blk)=correct1;

recog(lev,3,blk)=wrong1;

recog(lev,4,blk)=correct1*100/(wrong1+correct1);

end

blk=blk*2;
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end

%ymin=min(min(recog(:,4))-1);

ymin=80;

%ymax=max(max(recog(:,4,blk))+0.5);

ymax=98;

xmax=lev+1;

titlestr = [int2str(bit),’ bit Histogram on FERET with ’,...

’Varying Block size And Levels’,...

’ while Training with ’,int2str(trainp) ,...

’ Pose & Testing with ’,int2str(testp), ’ Pose’];

%figure;

set(0,’DefaultAxesColorOrder’,[0 0 0],...

’DefaultAxesLineStyleOrder’,’-|--|:|-.’)

plot(recog(:,1,32),recog(:,4,8),...

recog(:,1,32),recog(:,4,16),recog(:,1,32),recog(:,4,32))

axis([0 xmax ymin ymax])

title(titlestr)

xlabel(’No. of Levels that been used in the Hisogram’)

ylabel(’% of Accuracy’)

hleg1 = legend(’NHI with block size = 8’,...

’NHI with block size = 16’,...

’NHI with block size = 32’);

set(hleg1,’Location’,’south’)

grid on

hold on
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% This function used in NHI Algorithm

%

% Written By:waleed@knights.ucf.edu

function Y = histbitform(M,blk,lev,bit)

bits=2ˆbit-1;

bs=[blk blk];% block size

szM=size(M);

nb = floor(szM ./ bs);

eb = rem(szM,bs);

e1=eb(1);

e2=eb(2);

if e1 == 0

e1=[];

end

if e2 == 0

e2=[];

end

C = mat2cell(M,[repmat(bs(1),1,nb(1)) e1], ...

[repmat(bs(2),1,nb(2)) e2]);

C2 = cellfun(@(x) histlevelsum(x(:),lev), C, ’un’, 0);

C3= cell2mat(C2);

%Y= floor(bits*C3);

Y = floor(bits*C3/(blkˆ2));
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% This function used in NHI Algorithm

%

% Written By:waleed@knights.ucf.edu

function T = histlevelsum(I,lev)

hm=[];

step=ceil(256/lev);

for i= 0: lev-1

hlst=sum(sum(histc(I, i*step:(i+1)*step-1)));

hm=[hm; hlst];

end

T=hm;
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% The code for NTD algorithm

%

% Written By:waleed@knights.ucf.edu

% ORL Database

clear all

close all

clc

G=40; % number of persons

H=5 ; % number of poses per person for training

[xsrow xscol]=size(imread(strcat(’/s’,...

int2str(1),’/’, int2str(1)),’pgm’));

dctmxtrow=dctmtx(xsrow);

dctmxtcol=dctmtx(xscol)’;

dctmxtrow20=dctmxtrow(1:20,:);

dctmxtcol20=dctmxtcol(:,1:20);

CM=zeros(G*H,2);

temp3=0;

NTR1=zeros(G*H,1);

iter1=0;

% Training Mode

for i= 1:G

for j=1:H

iter1=iter1+1;

xs=double(imread(strcat(’/s’,...

int2str(i),’/’, int2str(j)),’pgm’));

xi(:,:,iter1)=xs;

xd1=dctmxtrow20*xs;
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xd=xd1*dctmxtcol20;

Tid(:,:,iter1)=xd;

CM(iter1,:)=[iter1,i];

end

end

tfmin=2;

tfmax=20;

recog=zeros(tfmax-tfmin+1,4);

for bit= 6:1:8 %16000: 1000: 24000

clear Ttd recog

for tf=tfmin:tfmax

clear Vi1n;

clear Vtd1;

clear Dd1;

temp3=0;

NTR1=zeros(G*H,1);

i=1;j=1;k=1;L=1;

for i=1:iter1

xtemp1=Tid(:,:,i);

xtemp=xtemp1(1:tf,1:tf);

xtempn=((xtemp)./(max(max(xtemp))-min(min(xtemp))))+.35;

if xtempn(1,1) >= 1

xtempn(1,1) = 1;

end

Vi1n(:,:,i)=floor(xtempn.*(2ˆbit-1));

clear xtempn xtemp

end
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correct1=0;

wrong1=0;

iter2=0;

% Testing Mode

ST=H+1;

EN=10;

for i= 1:G

for j=ST:EN

iter2=iter2+1;

NTR=zeros(iter1,1);

xta= double(imread(strcat(’/Users/waleed/Pictures/att_faces/s’,...

int2str(i),’/’, int2str(j)),’pgm’));

xtar(:,:,iter2)=xta;

xt=double(xta);

It(:,:,iter2)=xt;

Tt1=dctmxtrow20*xt;

Tt=Tt1*dctmxtcol20;

Ttd(:,:,iter2)=Tt;

Vt1=Tt(1:tf,1:tf);

deft=max(max(Vt1))-min(min(Vt1));

Vt1n=((Vt1)./deft)+.35;

if Vt1n(1,1) > 1

Vt1n(1,1) = 1;

end

Vt1n=floor(Vt1n.*(2ˆbit-1));

for L=1:iter1

D1=Vi1n(:,:,L)-Vt1n;
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Dd1(:,:,L)=D1;

for k=1:tf

temp3= temp3+norm(D1(:,k));

NT1=temp3;

end

NTR1(L)=NT1;

temp3=0;

end

[Si1,Hi1] = min(NTR1);

NTRF1(:,:,iter2)=NTR1;

if CM(Hi1,2) == i

correct1=correct1+1;

resc1(correct1,:)=[iter2,Hi1,Si1];

else

wrong1=wrong1+1;

res1(wrong1,:)=[iter2,Hi1,Si1];

NTRFF1(:,:,wrong1)=NTR1;

end

end

end

recog(tf-tfmin+1,1)=tf;

recog(tf-tfmin+1,2)=correct1;

recog(tf-tfmin+1,3)=wrong1;

recog(tf-tfmin+1,4)=correct1*100/(wrong1+correct1);

end

ymin=min(min(recog(:,4))-1);

ymax=max(max(recog(:,4))+0.5);
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titlestr = [’Varying the No. Of columns’,...

’ Of Test & Train Poses Matrix with ’,...

int2str(bit),’ bits using ORL Database With ’,...

int2str(iter1),’ Training & ’,int2str(iter2), ’ Testing’];

figure

plot(recog(:,1),recog(:,4),’-ro’,’LineWidth’,2,...

’MarkerEdgeColor’,’k’,...

’MarkerFaceColor’,’g’,...

’MarkerSize’,10)

axis([tfmin tf ymin ymax])

title(titlestr)

xlabel(’No. Of columns Of Pose Matrix’)

ylabel(’% of Accuracy’)

hleg1 = legend(’NTD’);

set(hleg1,’Location’,’south’)

grid on

end
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