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ABSTRACT 

Our work is closely connected with the problem of splitting of separatrices (breaking of 

homoclinic orbits) in a singularly perturbed model describing gravity water waves on a 

surface of finite depth.  The singularly perturbed model is a family of singularly 

perturbed fourth-order nonlinear ordinary differential equations, parametrized by an 

external parameter (in addition to the small parameter of the perturbations).  It is 

known that in general separatrices will not survive a singular perturbation.  However, it 

was proven by Tovbis and Pelinovsky that there is a discrete set of exceptional values of 

the external parameter for which separatrices do survive the perturbation.  Since our 

family of equations can be written in the Hamiltonian form, the question is whether or 

not survival of separatrices implies integrability of the corresponding equation.  The 

complete integrability of the system is examined from two viewpoints: 1) the existence 

of a second first integral in involution (Liouville integrability), and 2) the existence of 

single-valued, meromorphic solutions (complex analytic integrability).  In the latter 

case, a singular point analysis is done using the technique given by Ablowitz, Ramani, 
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and Segur (the ARS algorithm) to determine whether the system is of Painlevé-type (P-

type), lacking movable critical points.  The system is shown by the algorithm to fail to 

be of P-type, a strong indication of nonintegrability.  
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1  INTRODUCTION 

The problem of splitting of separatrices (breaking of homoclinic orbits) in a singularly 

perturbed model describing gravity water waves on a surface of finite depth has recently 

been studied by Tovbis and Pelinovsky [10].  They study the conditions for the 

existence of homoclinic orbits in the fourth-order equation 

                 
2

2 2 2(1 ) 2
iv
v z v z v z v z v z v z v z  

           
 (1) 

in the limit 0  where ,    .  Their work was motivated by the relation of this 

equation to a travelling wave reduction of the fifth-order partial differential equation 

 
2

3 2 0,
15t xxxxx xxx x x xx xxx

r r br rr r r rr       (2) 

which arises as a weakly nonlinear long-wave approximation to the gravity-capillary 

water-wave problem [2].    

Equation 1 is a family of singularly perturbed nonlinear ordinary differential equations 

(ODEs), parametrized by the external parameter  (in addition to the small parameter 
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of the perturbations ).  It is known that, generally speaking, separatrices will not 

survive a singular perturbation.  In [10], it was proved in regard to Equation 1 that the 

separatrices survive the perturbation only on a discrete set of exceptional curves () in 

the parameter space.  The first five of these curves are shown in Figure 1. 
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Figure 1 Five Curves () Where Separatrices Survive Perturbation 

Equation 1 arises from the second-order nonlinear equation 

 2y y y    (3) 
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that undergoes a singular perturbation 

      
22 2 2 21 2

iv
y y y y yy y   

           
 (4) 

and the change of variables 

   2 ( )v z y x ,  x z c  , (5) 

where c   is arbitrary. 

A phase plot of solutions of the unperturbed equation (Equation 3) in the vicinity of the 

origin for different initial conditions is shown in Figure 2. The homoclinic solution, given 

by  

   2

1

3
cosh

2 2

x
y x 

       
 (6) 

is plotted in bold on the figure. 
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Figure 2 Phase Plot of Unperturbed Equation 

Equation 3 can be transformed to the Hamiltonian form.  If we let 

 ,   q y p y  , (7) 

and 

 
2 2 3

,
2 2 3

p q q
H     (8) 
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then 

 2,   .
H H

p q q q q p
p q

        
 

   (9) 

The Hamiltonian is a first integral of the system, and the system is completely 

integrable. 

A couple of questions can now be asked regarding the singularly perturbed model 

(Equation 1): 

1) Is there a Hamiltonian for the perturbed system?  It will be shown that the 

perturbed system does have a Hamiltonian representation. 

2) Does survival of the separatrices imply integrability?  In other words, are there 

any parameter curves  for which the complete integrability of the system 

survives the perturbation, and if so, do these values relate to the results proven 

in the aforementioned research?  It will be shown that the perturbed system does 

not possess the Painlevé property, which is a strong indication that the perturbed 

system is not integrable. 
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In this thesis, the results of research regarding these questions will be presented.  The 

Hamiltonian for the perturbed system is derived in Section 2.  In Section 3, the concept 

of Liouville integrability and the unsuccessful search for a second integral for the 

perturbed system by various methods is discussed.  The notion of complex analytic 

integrability is introduced in Section 4, and the singular point analysis technique 

introduced by Ablowitz, Ramani, and Segur (the ARS algorithm) [1] is presented and 

applied to the perturbed equation showing that the system is not of Painlevé-type. 
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2  HAMILTONIAN OF PERTURBED EQUATION 

In this section the Hamiltonian for Equation 1 will be developed along with the 

associated Lagrangian and Hamilton-Jacobi equations.  The primary reference used for 

the following material is Gelfand and Fomin [3] (with some changes of notation for 

convenience). 

We desire to express the perturbed system in canonical form, with canonical variables 

1 1
, , , , ,

n n
q q p p   and Hamiltonian  1 1

, , , , , ,
n n

H H z q q p p    such that Hamilton’s 

equations 

  ,    ,    1, ,i i

i i

dq dpH H
i n

dz p dz q

 
  

 
  (10) 

are satisfied. 

A first integral for Equation 1 can be derived by multiplying the equation by v   and 

integrating, as follows: 

    22 2 22 (1 ) 0
iv

v v v vv v v v  
                   

 (11) 
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      22 2 22 1  
iv

v v v vv v v v v v v dz C  
                        (12) 

      2
3 2 2

2 221 1
1 .

3 2 2 2

v v
v v v v v v C


             (13) 

Assuming the Hamiltonian to be the negative of this conserved quantity C, a set of 

generalized coordinates 
1
, ,

n
q q  and associated momenta 

1
, ,

n
p p  must be defined 

which satisfy Hamilton’s equations.  Letting 

 

 2

1 1

2 2

,     1 2 ,

            ,   ,

q v p v v vv

q v p v

       

  

 (14) 

 the Hamiltonian is then 

   

 

3 2 2 2

1 1 2 1 1 2 2

3 2 2 2
21 1 2 1 2

2 1 2 1 2

3 2 2 2
2 2 21 1 2

1 2 2 1 2

3 2 2 2 2

1
   = 1 2

3 2 2 2 2

1
   = 1

3 2 2 2

q q q p q p q
H C

q q q p p
p p p q p

q q q
p p p q p




 


 

 
       

       

      

 (15) 

 Verifying the canonical equations, we have 
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22 2 2 2 2

1 1 2
1

.
H

q q p v v v
q

   
       


 (16) 

Using Equation 1, this can be written 

 

     

  

22

1

2

1

1 2 2

    1 2 .

ivH
v v vv v

q

d
v v vv p

dz

  

 

        


        

 (17) 

Continuing, we have 

 
2 1

1

H
p q

p

  


, (18) 

 
2 2

2

H
q v p

q

     


, (19) 

and 

 

 

   

2

1 2 1 2
2

2 2

2

1 2

    1 2 1 2

    .

H
p p q p

p

v v vv v vv

v q

 

   


   



          

  

 (20) 
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Thus, Equation 1 has the Hamiltonian given by Equations 14 and 15, and this 

Hamiltonian is a first integral of the perturbed system. 

The associated Lagrangian can now be computed as follows: 

 
      

    

      

1 1 2 2
3 2 2

2 2 22

2 22

3 2 2
2 2 22

1 1
  1

3 2 2 2
      1 2

1 1
  1 .

3 2 2 2

L H p q p q

v v
v v v v v v

v v v v v v v

v v
v v v v v v


 

 


 

    

           

        

          

 (21) 

This Lagrangian is expressed in terms of the generalized coordinates and their 

derivatives as: 

     
3 2 2

2 22 21 1
1 1 1 1 2 2

1 1
1 .

3 2 2 2

q q
L q q q q q q


            (22) 

This Lagrangian does not explicitly depend on the independent variable z, consistent 

with the Hamiltonian being a first integral of the system. 

The Euler-Lagrange equation for the Lagrangian given above is 

 
2 3

2 3
0

v v v v

d d d
L L L L

dz dz dz
      . (23) 
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In this case, 

  
22

v
L v v v     , (24) 

  22 1
v
L vv v v 

       , (25) 

 
v
L v

 , (26) 

 
v
L v

 , (27) 

and 

            

   

2 3

2 3

2 22 2 2

22 2 2

0

 2 2 1

 2 (1 ) ,

v v v v

iv iv iv

iv

d d d
L L L L

dz dz dz
v v v v vv v v v v

v vv v v v v

    

  

     

            
           

 (28) 

which is Equation 1. 

The Hamilton-Jacobi equation associated with the Hamiltonian (Equation 15) is 

 

 

1 2
1 2

2 23 2 2 2
21 1 2

1

1 2 2 2

0 , , ,

1
  1 .

3 2 2 2

S S S
H q q

z q q

q q qS S S S S
q

z q q q q


 

           
                              

 (29) 
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Since the Lagrangian does not depend on the independent variable, this can be written 

as 

  
2 23 2 2 2

21 1 2
1

1 2 2 2

1
1 ,

3 2 2 2

q q q S S S S
q

q q q q


  

                            
 (30) 

where  is a constant. 

  



13 

 

3  LIOUVILLE INTEGRABILITY OF PERTURBED EQUATION 

The integrability of a dynamical system does not have a unique, conclusive 

mathematical definition.  The evolution of the concept of integrability and various 

proposed definitions are discussed in [4]-[9], among others.  In this section, the concept 

of Liouville integrability is defined, and the search for a second constant of motion for 

the perturbed system is discussed. 

3.1  Liouville Integrability 

A Hamiltonian system with sufficiently many integrals of motion can be integrated by 

“quadratures”; that is, its solutions can be obtained by a finite number of algebraic 

operations and evaluation of integrals of given functions.  This form of integrability is 

expressed in the theorem proved by Bour and Liouville, stated here for a time-

independent Hamiltonian following the modern formulation given by Perelomov [8]. 
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Theorem: Let   2 ,n p q  be the phase space of a Hamiltonian system with the 

standard Poisson bracket and with Hamiltonian  ,H p q .  Suppose that the system has n 

integrals of motion 
1

, ,
n

F H F   in involution, i.e. 

 
1

, 0. 
n

j jk k
j k

i i i i i

F FF F
F F

q p p q

              (31) 

If the functions 
1
, ,

n
F F  are independent on the set 

     2, : , , 1, ,n

a j j
M p q F p q a j n     , (32) 

then the solutions of Hamilton’s equations 

 j

j

H
p

q


 


 ,   j

j

H
q

p





 , (33) 

lying in Ma can be obtained by quadratures. 
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3.2  Search for Second Integral of Motion for Perturbed Equation 

In Section 2 it was shown that the perturbed model (Equation 1) has a Hamiltonian 

which is an integral of motion.  Thus, for the system to be Liouville integrable as 

defined above, one additional integral of motion is needed. 

The search for a second integral of motion associated with Equation 1 did not yield a 

positive result.  Multiple approaches were investigated, including: 

3) Using a canonical transformation to “simplify” the Hamiltonian. 

4) Using Noether’s theorem. 

5) Using Whittaker’s method. 

3.2.1  Canonical Transformations 

A canonical transformation is a transformation 

    1 1 1 1
, , , , , , ,    , , , , , , ,

i i n n i i n n
Q Q z q q p p P P z q q p p      (34) 

which preserves the canonical form of Hamilton’s equations, i.e. 
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* *

,    ,    1, , ,i i

i i

dQ dPH H
i n

dx P dx Q

 
  

 
  (35) 

where  *

1 1
, , , , ,

n n
H Q Q P P   is some new function. 

A generating function can be used to create a canonical transformation.  For example, 

let  1 1
, , , , ,

n n
q q P P    be a generating function, then setting 

 *,    Q ,   
i i

i i

p H H
q P

 
  

 
 (36) 

will result in a canonical transformation.  Similar equations apply for generating 

functions of the form  1 1
, , , , ,

n n
q q Q Q   ,  1 1

, , , , ,
n n

Q Q p p   , and 

 1 1
, , , , ,

n n
p p P P   . 

In searching for an integral of motion, a canonical transformation can be used to cause 

the new Hamiltonian to depend only on the new generalized momenta: 

    1 1 1
, , , , , , , .

n n n
H q q p p H P P    (37) 
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The new generalized momenta are the integrals of motion, as Hamilton’s equations 

reduce to: 

 0,    1, , ,
i

i

H
P i n

Q


   


   (38) 

  1
, , .

i i n
i

H
Q f P P

P


 


   (39) 

Alternatively, a canonical transformation can be used to make the Hamilton-Jacobi 

equation separable [9], i.e. 

    1 1 1
1

, , , , , , ,
n

n n k k n
k

S q q P P S q P P


    (40) 

where S is a generating function and 
1
, ,

n
P P  are the new generalized momenta.  Then 

from the canonical transformation relation 

  1
, , ,

k k k n
k

p S q P P
q





  (41) 
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each pk is a function of only one qk.  If the motion is periodic in each of the qk, then 

action variables can be formed, with their associated angle-variable conjugates as 

follows: 

 
1

1
( , , , ) ,

2
k

k k k n k

C

I p q P P dq


    (42) 

  1
1

, , , ,
n

k m m n
mk

S
S q I I

I





 

    (43) 

and the Hamiltonian 
1

( , , )
n

H I I   yields the canonical equations 

  1
, , 0,

k n
k

I H I I

   


   (44) 

    1 1
, , , , ,

k n k n
k

H I I I I
I

 
  


    (45) 

where 
k

 is the “frequency” associated with each degree of freedom. 

As an example transformation to be applied to the Hamiltonian (Equation 15) of the 

perturbed system, let 
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  1 1 1 1 1 2 1 2 3 2 2
, , , , , ,

n n
q q P P k q P k q P k q P      (46) 

then 

 
1 1 1 2 2 2 3 2

1 2

,    ,p k P k P p k P
q q

 
    

 
 (47) 

 
1 1 1 2 2 1 3 2

1 2

,    .Q k q Q k q k q
P P

 
    

 
 (48) 

Solving the Q1, Q2, equations for q1, q2, we have 

 1 2
1 2 2 1

1 3 1

1
,    .

Q k
q q Q Q

k k k

       
 (49) 

Plugging these into the Hamiltonian, we obtain 

 

 

2

2
2 13 2 2

1* 21 1
1 3 1 2 2 3 23 2 2

1 1 3
2

2 2 2 23
3 2 1 2

1

3 2 2

1
       1 .

2

k
Q Q

kQ Q
H k k PP k k P

k k k

k
k P Q P

k



 

     
     

  

 (50) 

Setting 
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  2

2 3

1
1

2
k k   (51) 

eliminates two terms from the new Hamiltonian, but no real progress has been made as 

other terms have been created (compared to the original Hamiltonian). 

3.2.2  Noether’s Theorem 

Consider the variational problem of finding necessary conditions for an extremal of the 

functional 

  1 1 1
, , , , , , , ,  ,

n n n
J q q L z q q q q dz          (52) 

where the Lagrangian L depends on n continuously differentiable functions

   1
, ,

n
y z y z .

  
Noether’s theorem [3] states that if the functional

 
is invariant under 

the family of transformations 

    * *

1 1 1 1
, , , , , , ; ,     , , , , , , ; ,

n n i i n n
z z q q q q q z q q q q            (53) 
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(where the functions are differentiable with respect to  and the value 0   leads to the 

identity transformation), then 

 
1 1

i i

n n

q i i q
i i

L L q L const  
 

        
   (54) 

along each extremal of the functional, where 

  
 1 1

1 1 0

, , , , , , ;
, , , , , , ,n n

n n

z q q q q
z q q q q






 

 
  


 

   (55) 

  
 1 1

1 1 0

, , , , , , ;
, , , , , , .i n n

i n n

z q q q q
z q q q q






 

 
  


 

   (56) 

With regard to the Lagrangian of the perturbed system (Equation 22), note that it has 

no dependence on the independent variable z.  Thus the transformation 

 * *,     ,
i i

z z q q    (57) 

is invariant, which leads to 

 
1

,
i

n

i q
i

L q L const


   (58) 
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which verifies that the Hamiltonian is a constant of motion.  However, the Lagrangian 

involves all of the generalized momenta and their derivatives, and no other invariant 

transformation was found. 

3.2.3  Whittaker’s Method 

The technique known as Whittaker’s method and described by Goriely [4] involves the 

direct use of the Poisson bracket condition in the Liouville integrability theorem above.  

In this approach the second integral of motion I is assumed to have a certain form, for 

instance, polynomial in p and q up to some order.  In the case of a Hamiltonian H which 

does not depend on the independent variable, the condition , 0I H      leads to a system 

of equations generated by collecting the coefficients of terms with the same power.  If 

the system of equations have a non-trivial solution in which the resulting expression for 

I is independent of H, then I represents a second integral of motion. 

This method was applied to the perturbed system for the case 0  , with the second 

integral of motion assumed to have the form 
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( ) 3

1 2 1 2
, , , 0

 ,
i j k l

i j k l

ikjl
i j k l

I K q q p p
   



   (59) 

where 
ijkl
K  are coefficients.  The Poisson bracket expression is then 

 

   
     
 

2

1

2 2 2 2 3

0001 2 0002 2 2 0003 2 2 0010 1 2 0011 1 2 2 2 1

2 2 4 2 2 2 3 2

0012 1 2 2 2 1 2 0020 1 1 1 2 0021 1 1 2 1 2 2 1

2 2 2 2

0030 1 1 1 2 01

0 ,

2 3

2 2 2

3

i i i i i

I H I H
I H

q p p q

K q K q p K q p K q p K q p p q p

K q p p q p p K q p p p K q p p p p q p

K q p p p K

 

  





            

       

       

  



   
   
 
 

2 2 2

00 1 2 1 2 0101 1 2 2 1 2 2

2 3 3 2 2 2 2

0102 1 2 2 1 2 2 2 0110 1 2 2 2 1 1 2 1 1 2

2 3 2 2 2 2

0111 1 2 2 2 2 1 2 1 2 1 1 2 2 1

2 2 3 2 2

0120 1 2 1 2 1 2 1 1 2 1 1 2

2 2

2 2

2

2 2 2 2

p p q p K p p p q p q

K p p p q p q p K q q q p p p p q p p

K q q p q p p p p p q p p q p

K q q p q p p p p p q p p K

 

  

 

 

     

        

     

       
 
   

     

0200 2 1 2 2 1 2 2

2 2 3

0201 2 1 2 2 2 1 2 2 2

2 2 2 2 2 2 2 2

0210 1 2 2 2 2 1 2 1 2 1 2 1 2 0300 2 1 2 2 1 2 2

2 3 3 2

1000 2 1001 2 1 2 1002 2 1 2 2 1010 1 2 1 1 2

2

1011 1 2

2

2 2 4

2 2 4 3 2

2

q p q p q q p

K q p p q p q q p q

K q q q p q p q p p q q p p K q p q p q q p

K p K p q q K p q q p K p p q q p

K p p





 



 

   

       

       

    
   
 
 

3 3 2 3 2

1 1 2 1 2 1 1020 1 2 1 1 1 1 2

2 2 2 2 2 2

1100 2 2 1 1 1 2 1 2 1101 2 2 1 1 2 1 2 1 2 1 2

3 2 2 2

1110 2 1 2 1 2 1 2 2 1 1 1 1 2 1 1 2

2 2

1200 2 2 1 2 1 1 2 2 1 2 2

2 2

2 2

2

2 2 4

q q p q q p K p p q p q p p

K q p q p q p q p K q p q p p q p q p q q

K q p p q q q q p q p q p p q p p

K q p q q p q q p q q p

 

 

 

     

        

     

      
   

2 2

2000 1 2 2001 1 2 1 2

4 2 2 2 2 3 2

2010 1 1 2 1 1 2 2100 1 2 2 1 1 1 2 1 2 3000 1 2

2 2

2 2 2 3 .

K q p K q p q q

K q p p q q p K q q p q p q p q p K q p 

 

       
(60) 

Collecting like terms results in the following set of equations: 

 0011 3000 0011 1002

0011 0200 0011 0200

1
3         All other 0

2     2 .

ijkl
K K K K K

K K K K


  

 
 (61) 
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Setting K0011 to unity and plugging the resulting coefficients back into the Poisson 

bracket expression yields the Hamiltonian.  Thus, there is no integral of motion (other 

than the Hamiltonian) of the form given by Equation 59. 

In general, the success in using canonical transformations or Noether’s theorem to find a 

first integral is limited by the insight or luck of the searcher in finding symmetry to 

exploit; on the other hand, Whittaker’s approach is a direct method but only applies to 

first integrals of specific forms and is computationally cumbersome.  In light of the 

failure to find a second integral of motion to satisfy the necessary condition for Liouville 

integrability by these methods, the system was then approached from the viewpoint of 

complex analytic integrability using Painlevé analysis as described in the next section. 
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4  COMPLEX ANALYTIC INTEGRABILITY 

OF PERTURBED EQUATION 

The notion of complex analytic integrability involves the analysis of the behavior of a 

dynamical system in the complex plane of the independent variable.  In this context, the 

general solution of a system may exhibit singularities where it ceases to be analytic.  

These singularities may be poles, essential singularities, or branch points (algebraic or 

logarithmic).  In addition, in the case of a nonlinear ODE, these singularities may be 

movable, i.e. dependent on the constants of integration, and therefore on the initial 

conditions of the system.  The presence of movable critical points (essential singularities 

or branch points) is, in general, not compatible with the existence of single-valued, 

meromorphic solutions to the system.  The existence of these solutions, in turn, is a 

strong indicator of the integrability of the system in a literal sense.  As a result, testing 

for integrability in the complex analytic sense has focused on methods to determine 

whether the solutions of a dynamical system possess movable critical points.  In this 

section the Painlevé method of singular point analysis for ordinary differential equations 
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as embodied by the ARS algorithm [1] will be described and applied to the perturbed 

equation.  

4.1  The Painlevé Property 

The contributions of Sofya Kovalevskaya, Paul Painlevé, and others to the historical 

development of the Painlevé method, as well as the description of the ARS algorithm 

are given by [5], [7], and [9].  In the following the notation will generally conform to [7]. 

A family of solutions of an ODE is said to have the strong Painlevé property (strong P-

property) if it has no movable critical points (i.e. branch points or essential singularities 

whose location in the complex plane depend on the constants of integration of the 

ODE).  In this case the only movable singularities are ordinary poles, and the solution 

in the neighborhood of a singularity z0 can be expressed as a Laurent expansion with the 

leading term proportional to 

  0 0
, ,
p

z z z z


    (62) 
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where p is a positive integer. 

A family of solutions of an ODE is said to have the weak Painlevé property (weak P-

property) if its only movable critical points are movable algebraic branch points and the 

general solution in the neighborhood of a movable singularity z0 can be expressed as a 

Laurent expansion with the leading term proportional to 

  
1/

0 0
, ,
n

z z z z


    (63) 

where n is a natural number. 

An ODE is of strong (weak) Painlevé type (P-type) if all of its solutions have the strong 

(weak) P-property. 

4.2  The ARS Algorithm 

The ODE to undergo singular point analysis is assumed to be of the form 

 
1

1
; , , ,

n n

n n

d w dw d w
F z w

dzdz dz





      
 , (64) 
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or equivalently, 

  1 2
; , , , ,i

i n

dw
F z w w w

dz
     i = 1,2,…,n, (65) 

where F (or each Fi) is analytic in z and rational in its other arguments.  The solution 

of Equation 64 or 65 is expanded as a Laurent series in a sufficiently small neighborhood 

of an arbitrary movable singular point z0.  The algorithm then consists of three steps: 

1) Find the dominant behavior. 

2) Find the resonances. 

3) Find the constants of integration.  

4.2.1  Finding the Dominant Behavior - Algorithm 

It is assumed that the dominant behavior of w(z) in a sufficiently small neighborhood of 

an arbitrary movable singularity z0 is algebraic, i.e. 

    0

q
w z a z z   as 0

z z , (66) 



29 

 

where   0q  .  Substituting Equation 66 into Equation 64, all values of q are found 

such that two or more ODE terms’ exponents are equal and more negative than all 

others (thus these terms are dominant and the others can be ignored as 
0

z z ).  For 

each qualifying value of q found above the corresponding value of a is computed causing 

the dominant terms to balance.  Conclusions are then drawn from the leading order 

behavior as follows: 

1) If all of the values of q are negative integers, then further steps of the algorithm 

are used to determine if the ODE exhibits the strong P-property. 

2) If any of the values of q are irrational or complex numbers, then the ODE is not 

of P-type. 

3) If any of the values of q is not a negative integer, but is instead a rational 

number, then from the dominant behavior (Equation 66) of w(z) near z0 the 

solution will have a movable algebraic branch point, possibly associated with the 

weak P-property. 
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For cases 1 and 3, for each value of q, Equation 66 may represent the first term of a 

Laurent series valid in a deleted neighborhood of z0, and the Laurent series solution 

takes the form 

      0 0
0

m
q

m
m

w z z z a z z




    (67) 

in a sufficiently small deleted neighborhood of z0. 

4.2.2  Finding the Dominant Behavior – Application to Perturbed Equation 

Under the assumption that the dominant behavior in a sufficiently small neighborhood 

of an arbitrary movable singularity
0
z is algebraic (i.e.    0

, 0qv z a z z     ), then 

for Equation 1 we have 
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Referring to the five terms (in powers of  ) on the right side of Equation 68 as term 1, 

2, 3, 4, and 5, respectively, we desire to find (q,a) pairs for which the exponent of  for 

two of the terms are equal and are more negative than the other terms.  The exponent 

of   for each term is plotted for negative values of q in Figure 3. 

 

 

Figure 3 Equation Term Exponents vs. Value of q 
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Two cases will now be considered, 1) 0,   and 2) 0.   

For the case 0,   the only value of q where two lines cross below the others is -2, and 

in this case the balancing leading order terms are terms 2 and 4, for an appropriate 

value of a.  To determine the value of a, we have 

       2 2 2 2 2 42 1 1 2 3 0,q qa q q a q aq q q q           (69) 

which for q=-2 yields 

   
15

.
2

a


  (70) 

As outlined in the previous section, since q is a negative integer for the sole allowed 

(q,a) pair, then  
2

0

15

2
z z




  may be the first term of a Laurent series in a deleted 

neighborhood of z0. 

For the case 0,   the only value of q where two lines cross below the others is -4, and 

in this case the balancing leading order terms are terms 1 and 4, for an appropriate 

value of a. To determine the value of a, we have 
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    2 2 41 2 3 0,q qa aq q q q        (71) 

which for q=-4 yields 

   840.a   (72) 

For this case, since q is again a negative integer for the sole allowed (q,a) pair, then 

 
4

0
840 z z


  may be the first term of a Laurent series in a deleted neighborhood of z0. 

In both cases, to determine if this is an indication of the strong P-property, the 

resonances must next be examined. 

4.2.3  Finding the Resonances - Algorithm 

In Equation 67, z0 is the position of the singularity and is an arbitrary constant.  If  

1n   of the coefficients am are also arbitrary, then these are the n constants of 

integration of the nth-order ODE (Equation 64), and Equation 67 is the general solution 

in the deleted neighborhood.  The powers of 0
z z  at which the arbitrary constants 

appear are called resonances or Kovalevskaya exponents. 
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To find the resonances, for each (q,a) pair found above, a simplified equation is 

constructed retaining only the leading terms of the original ODE.  The equation 

   q q rw z a    ,   0
0z z    , (73) 

is substituted into the simplified equation, which to leading orders in   reduces to 

    
ˆ

0
0

q
Q r z z   ,  q̂ q r n    (74) 

If the highest derivative of the original equation is a leading term, q̂ q r n   and 

 Q r  is a polynomial of order n.  If not, q̂ q r n   , and the order of the polynomial 

equals the order of the highest derivative among the leading terms.  The roots of  Q r

determine the resonances, and conclusions are drawn from the nature of the roots in 

accordance with the following: 

1) One root is always -1, representing the arbitrariness of z0. 

2) If the value of a associated with q was found to be arbitrary in the leading order 

analysis, then another root is 0. 
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3) Any root r with   0r   can be ignored because it violates the hypothesis that 

q  is the dominant term in the expansion near z0. 

4) Any irrational or complex root r with   0r   indicates a movable branch point 

at z=z0, and the solutions are not of P-type. 

5) Any rational root 
p

r
q

  with   0r   and with q as in the denominator of 

dominant behavior indicates in general a movable branch point which may be 

associated with the weak P-property. 

6) If for every (q,a) found in the leading order analysis, all the roots of  Q r  (except 

-1 and possibly 0) are positive integers, then there are no algebraic branch points, 

and the final step of the algorithm is needed to check for logarithmic branch 

points. 

For the Laurent series expansion (Equation 67) to be the general solution of the ODE 

(Equation 64),  Q r  must have n-1 non-negative distinct roots of real rational numbers 

including integers.  If for every allowed (q,a) pair found in the leading order analysis, 
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 Q r  has fewer than n-1 such roots, then none of the local solutions is general, 

suggesting that Equation 66 is missing an essential part of the solution. 

4.2.4  Finding the Resonances – Application to Perturbed Equation 

Recall from the previous section that to find the resonance values, we substitute 

   q q rv z a     (75) 

(where  0
0z z    ) into the original ODE omitting all but the leading order 

terms, to obtain an equation to leading order in B of the form 

   ˆ 0qQ r    (76) 

where the roots of  Q r determine the resonance values.  Thus, for the case 0   we 

have 
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For 
15

2,
2

q a


       
, this expression simplifies to 

    4 3 2 6 214 56 49 120 0.rr r r r O         (78) 

Thus the resonances are the roots of the polynomial 

   4 3 214 56 49 120,Q r r r r r      (79) 

which are 
7 11

1,  8,  
2 2

r i  . 

For the case 0   we have 

 
       

    

2
2 4

4

1 2 3

          1 2 3 0.

iv q q r q

q r

v v a aq q q q

q r q r q r q r

  

 

 

 

      

        
 (80) 

For  4, 840q a  , this expression simplifies to 

    4 3 2 8 222 179 638 840 0.rr r r r O         (81) 

Therefore the resonances are the roots of the polynomial 

   4 3 222 179 638 840,Q r r r r r      (82) 
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which are 
11 159

1,  12,  
2 2

r i  . 

In both cases ( 0 or 0)    the polynomial has complex roots.  Thus it can be 

concluded at this point, without proceeding to the final step of the ARS algorithm, that 

Equation 1 does not possess the Painlevé property, indicating the presence of movable 

branch points. 

As previously discussed, the presence of movable branch points is a strong indication 

that the system is not integrable in a complex analytic sense, lacking single-valued, 

meromorphic solutions. 
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