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ABSTRACT

The goal of this thesis is to develop a multi-body dynamics model of autorotation with the

objective of studying its application in energy harvesting. A rotor undergoing autorotation

is termed an Autogyro. In the autorotation mode, the rotor is unpowered and its interaction

with the wind causes an upward thrust force. The theory of an autorotating rotorcraft

was originally studied for achieving safe flight at low speeds and later used for safe descent

of helicopters under engine failure. The concept can potentially be used as a means to

collect high-altitude wind energy. Autorotation is inherently a dynamic process and requires

detailed models for characterization.

Existing models of autorotation assume steady operating conditions with constant angu-

lar velocity of the rotor. The models provide spatially averaged aerodynamic forces and

torques. While these steady-autorotation models are used to create a basis for the dynamic

model developed in this thesis, the latter uses a Lagrangian formulation to determine the

equations of motion. The aerodynamic effects on the blades that produce thrust forces, in-

plane torques, and out-of-plane torques, are modeled as non-conservative forces within the

Lagrangian framework. To incorporate the instantaneous aerodynamic forces, the above-

mentioned spatial averaging is removed. The resulting model is causal and consists of a

system of differential equations. To investigate the dynamics under energy-harvesting oper-

ation, an additional in-plane regenerative torque is added to simulate the effect of a generator.

The aerodynamic effects of this regenerative braking is incorporated into the model. In ad-

dition, the dynamic model relaxes assumptions of small flapping angles, and the periodic

flapping behavior of the blades are naturally generated by the dynamics instead of assuming

Fourier expansions. The dynamic model enables the study of transients due to change in

operating conditions or external influences such as wind speeds. It also helps gain insight
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into force and torque fluctuations.

Model verification is conducted to ensure that the dynamic model produces similar steady-

operating conditions as those reported in prior works. In addition, the behavior of autorota-

tion under energy harvesting is evaluated. The thesis also explores the viability of achieving

sufficient lift while extracting energy from prevailing winds. A range of regenerative torques

are applied to determine the optimal energy state. Finally, a complete high-altitude energy

harvesting system is modeled by incorporating a tether utilizing a catenary model. Overall,

the thesis lends support to the hypothesis that a tethered autogyro can support its weight

while harvesting energy from strong wind-fields, when augmented with appropriate control

systems.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

With depleting resources and an unsustainable growth of energy demands, researchers look

towards new methods to supplement the world energy demands. High altitude wind data

shows there is constant and abundant levels of kinetic energy available, that is not restricted

by geographical locations. Studies done of wind power at altitudes of 7-16km show an

abundance of power at least an order of magnitude higher than global demand [7, 8]. Data

mining efforts, shown in Fig.1.1, prove that widespread, consistent wind patterns exist at

high altitudes with maximum wind speeds occurring around 10km. The three locations

Atlanta (GA), Buffalo (NY), and Great Falls (MT) in Fig.1.1 were chosen to span a wide

range of surface wind speeds. For instance, Atlanta belongs to Class 1 in Fig.1.2(a), Great

Falls belongs to Class 3-4, and Buffalo belongs to Class 4-5. The following observations

can be made: (1) In spite of significant variability in surface wind speeds, the wind speed

variation with altitude and the magnitudes of the average maximum wind speeds are similar

at all three locations; (2) Average wind speeds increase steadily with altitude, up to ≈ 10

km.

Wind power at lower altitudes has different spatial characteristics. A report done by the

National Renewable Energy Laboratory (NREL) [9] shows wide variability of wind distri-

butions and states that wind energy extraction is only viable for wind power classes of 3

and above, Fig.1.2. On the other hand, high altitudes show consistency throughout regions

that can be attributed to the existence of jet streams and global climate phenomena. Due

to these jet streams total available wind energy can be roughly 100 times the global energy

demand [7].
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Figure 1.1: Wind velocities at different cities. White line represents average (a) Wind speeds
at Atlanta, GA (b) Wind speeds at Buffalo, NY (c) Wind speeds at Great Falls, MT
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To quantify the overall amount of power a thorough analysis of Buffalo, NY is performed.

It is important to consider the variation of density with altitude, therefore, wind power

density at different altitudes can be estimated using the relation: Pden = 0.5 ρV 3, where ρ

and V are the density and the velocity of wind, respectively. Due to similarities in velocity

profiles across locations, the variation of wind power with altitude was investigated using the

data for Buffalo, NY. The results are shown in Fig.1.3. Figure 1.3(a) shows the probability

distribution of wind speed above a certain value at different altitudes and Fig.1.3(b) plots

the wind power from the raw data in Fig.1.2(b). Note that although the wind speed can be

significant at altitudes of 15km and higher, the wind power available diminishes sharply due

to atmospheric rarefaction (at 10km, ρ ≈ 0.41kg/m3; at sea level ρ ≈ 1.22kg/m3 ). Figure

1.3(c) shows a comparison of probability distributions of wind power densities at altitudes

in the range 1 − 12 km. Clearly the abundance of wind power is enormous but adds the

challenge of achieving lift and collecting energy simultaneously.

Altitude (km)

0 5 10 15 20 25 30
0

8

16

24

28

W
in

d
 S

p
ee

d
 A

b
o
v
e 

(m
/s

)  0

 0.2

 0.4

 0.6

 0.8

 1.0

P
ro

b
ab

il
it

y

Altitude (km)

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30  35

P
o

w
er

 D
en

si
ty

 (
k

W
/m

2
)

Power Density (kW/m2)

 0

 0.2

 0.4

 0.6

 0.8

 1

P
ro

b
ab

il
it

y

~1~0 2 4 6 8 10

12 km7 km

 5 km
3 km2 km

1km

(a) (b) (c)

Figure 1.3: High-altitude wind power estimation for Buffalo (NY) shows a trend that can
be observed across different locations in the US.

1.2 Autorotation

A number of designs have been proposed for AWE extraction. A review of these existing

designs can be found in [10]. The review confirms that current research has exclusively con-
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sidered tethered AWE devices for relatively low altitudes, ≤ 1km. However, to substantially

benefit from high energy densities, one must extend the altitude of operation, preferably to

≥ 5km, where an important challenge is posed by the tether. Without a tether, the AWE

device would drift in the wind. But in its presence, the tether itself would significantly add

to the total weight. Mechanical transmission of power through tether tension is also imprac-

tical for high altitudes, due to excessive lag. Moreover, the tether remains a deterrent on

the grounds of aviation safety. Research done on hot air balloons, [11], has indicated that

although a lighter-than-air (LTA) device such as hot air/helium balloon with retrofitted wind

turbine(s) may seem pragmatic for simultaneous lift and power generation, its main draw-

back is the lack of maneuverability. The authors in [12, 13] also investigated wind energy

harvesting using tethered airfoils where the tether tension is used to mechanically transmit

power to the ground. It was concluded from these studies that while a tethered airfoil may

be suitable as an AWE device for low altitudes, there are challenges of harvesting energy

from high altitudes. In comparison, autorotation appears to have a number of advantages.

The principle of autorotation can be considered as a generalization of the helicopter. While

a helicopter generates vertical thrust by accelerating air in the downward direction, autoro-

tation is achieved by placing a freely turning rotor inclined to a wind field. The result is

a rotation and an upward thrust, as shown in Fig.1.4. A rotor undergoing autorotation is

termed an autogyro. Traditionally, autorotation has been investigated to build gyrocopters

[14, 15], or in the context of safe landing of helicopters in case of engine failure, [16], but

has not been investigated for wind energy extraction. The blades of an autogyro are free

to spin about their common axis, and each blade is additionally free to rotate (flap) about

a hinge at its root normal to the spin axis, Fig.1.4(b). The rationale behind investigating

the autogyro mechanism is the following: If a rotor-craft can switch between powered flight

and autorotation modes, then it can selectively harvest energy when a strong wind field is

4



present.
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Figure 1.4: (a) Forces on an Autogyro (b) View from plane a− a′

The theory of autorotation can be traced back to the work published in [17]. BEM (Blade

Element Momentum) approach was used to model aerodynamic forces, [18]. Several works

followed [17] to further improve the theoretical basis of autorotation. In particular, in

[6], blades with varying pitch were considered to validate against experimental data from

Pitcairn-Cierva Autogyro [14, 4, 15]. The work also incorporated a detailed analysis of the

forces in the retreating half (see Fig.3.1(a), (d)), where the blade velocities are reversed. A

variant of the autogyro, known as the gyroplane, was studied in [19]. A gyroplane has an

even number of blades; the opposite blades are rigidly connected and are allowed to feather,

i.e., freely rotate about their span axis. Although the gyroplane is structurally different from

the autogyro, both have additional DOFs compared to wind turbines and results in [19] in-

dicate that they have similar overall lift-coefficients and lift/drag ratios. Other extensions

include modeling the effect of twisting of blades in [20], and refinement of the analysis of the

retreating half for larger angles of attack and higher speeds in [21].
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1.3 Thesis Organization

This thesis represents an extension of the work done in [22] by employing refined theories

of autorotation presented in [6] and utilizing Lagrangian mechanics with modern numerical

tools to create a dynamic model. Chapter 2 is split into two sections: 1) airborne wind

energy systems are reviewed and 2) a review of autorotation and the autogyro is provided.

Chapter 3 reviews the work of [6] and provides a basis for autorotation modeling. The model

is verified with [6] and used to study the effects of flapping on thrust. Chapter 4 develops

the dynamic model of autorotation for energy harvesting. Verification is done by comparing

steady-state solutions with [6]. Chapter 5 studies the feasibility of extracting energy while

maintaining sufficient lift. An analysis is performed to determine the behavior of the system

with the introduction of a generator load utilizing the two theories presented in this paper.

Then the maximum generator load that can be applied for optimal energy extraction is

determined. Chapter 6 examines a tethered autogyro employing a catenary model. The

model allows for determining equilibrium positions of the autogyro while extracting energy

and sustaining the added weight of the tether. Finally, chapter 7 reviews the overall outcome

of this research and discusses future work.
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CHAPTER 2: LITERATURE REVIEW

Research into Airborne Wind Energy Systems (AWES) started in the mid seventies but

within the last decade it has attracted further research. Due to an increase in global warm-

ing and a depletion of natural resources, alternative energy solutions are seriously being

considered. Leaders of the European Union have placed an objective to reduce greenhouse

gas emissions by a minimum of 80% below 1990 levels by 2050 [23]. In the U.S., the Depart-

ment of Energy has proposed offloading 20% of energy demand onto wind by 2030 [24]. Total

power production in the US is a little over 1 TW per year. According to [25], the United

States approximately consumes 3,832 TWh of energy per year. The current production of

wind energy, according to [2], is approximately 65,879 MWh, Fig.2.1. Therefore, wind energy

accounts for only 6.6% of U.S. total energy production. Calculated available wind power at

high altitude ranges from 400 TW to 1800 TW [26], which far exceeds global demand. How-

ever, disagreements exist on how much power can be extracted without causing significant

effect on the climate. The authors in [26] and [27] disagree on the maximum power that can

be extracted. While [26] claim that 18 TW of power can be safely produced, the authors in

[27] show a different outcome where only 7.5 TW can be gathered and going beyond that

may have serious repercussions such as global climate change.
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b)

Figure 2.1: U.S. Wind Power Capacity. Reproduced from [2]

Many variations of AWE’s have already been suggested and researched. In section 2.1 a

review of these systems are provided. A more rigorous review of AWES and companies

pursuing them are presented in [3]. Although Skywindpower [28] built prototypes based on

autorotation, the theoretical understanding of autorotation under energy harvesting were not

explored. This research looks further into energy extraction via autorotation and attempts

to provide a detailed model characterizing the system.
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2.1 Current State of AWES

Airborne wind energy systems can be broken down into two designs shown in Fig.2.2. The

first being ground based energy extraction where a device such as a kite provides the nec-

essary force to rotate/move a generator. The second design houses a generator on-board

the airborne device. Generally, most designs employ a tether to either use as a mechanism

to transmit force or electricity. The implications of each design are review in the following

sections.

Generator

Electrical Power

Wind Velocity

Generator

Mechanical Power

Wind Velocity

(a) (b)

Figure 2.2: (a) Ground based extraction (b) Airborne extraction. Reproduced from [3]

2.1.1 Ground Based Energy Extraction

Ground based energy extraction relies on a kite or airfoil to turn a generator on the ground.

By placing the generator on the ground is a significant weight weight reduction occurs.
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Ground based generator designs with a moving base and a fixed base have been proposed.

The systems use a two-phase cycle composed of a generation phase and recovery phase

Fig.2.3.

Rope unwind

Mechanical Power

Wind Velocity

Rope rewind

Wind Velocity

Aircraft in

cross wind

Change in aerodynamic

characteristic to reduce

resistance

(a) (b)

Figure 2.3: (a) Generation Phase (b) Recovery Phase. Reproduced from [3]

The generation phase occurs when the airfoil or kite experiences a crosswind which provides

the traction required to turn or move the base depending on the design. For the recovery

phase the tether is drawn back and the angle-of-attack or the effective resistance of the airfoil

is lowered in order to get net-positive energy. Control of these kites/airfoils are performed

through ropes or actuators as shown in Fig.2.4.
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Power Rope

Power/Control Ropes

On-board

Actuators

Wind Velocity

Ampyx Power 

KU Leuven Kitemill

Control Pod

Wind Velocity

Skysails

Kitepower

SwissKitePower

Wind Velocity

Kitegen Stem Kitenergy

SwissKitePower Kitegen

Carousel NTS Energie

e-Kite

Wind Velocity

Windlift Enerkite

SwissKitePower

(a) (b) (c) (d)

Figure 2.4: Examples of tether control systems. Reproduced from [3]

In [29, 30, 31, 32] the authors have studied these kite based designs and also proposed a new

Laddermill, multi-kite, type device. However, the issue with these devices is they cannot be

used for high altitudes ≥ 5km, which is the focus of this paper, because of the increased

lag experienced from a longer tether. In addition, for stationary ground generators the

two phase cycle creates long discontinuous power times requiring batteries or capacitors for

storing energy. A way to alleviate this issue is by introducing a moving base. The moving

base allows for continuous power production as shown in Fig.2.5.

Wind Velocity

Wind Velocity

Wind Velocity

(a) (b) (c)

Figure 2.5: Moving base designs. Reproduced from [3]
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2.1.2 On-board Energy Extraction

Another design for AWES involves extracting wind energy on-board the device and sending

it down via a tether. Most designs use a turbine to turn a generator in order to produce

power with the exception of a proposed design that would take advantage of the Magnus

effect [33, 34] . The differences in each design lie in how lift is achieved, shown in Fig.2.6.

In Fig.2.6a and 2.6, both devices use a dual lift system where initially the lift is carried

out by turbines similar to a quad-rotor until the system has reached its working altitude

at which point the device acts as a regular airfoil achieving lift from wind flow [35, 36, 37].

Makani Power Inc., recently acquired by Google, is focused on building a 600kW eight turbine

prototype [38]. A second popular design currently being pursued by Altaeros Energies is a

lighter than air aerostat shown in Fig.2.6(c). The device itself houses a generator on-board

but simplifies the difficulty of lift by making the system lighter than air thereby achieving

lift via buoyancy. The final design initially pursued by SkywindPower [28] is a quadrotor

design that relies on autorotation.
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(a) (b)

(c) (d)

Figure 2.6: (a) Aerofoil (b) Laddermill (c) Balloon (d) Autorotation. Reproduced from [3]

Autorotation relies on wind flow through a rotor to generate lift. Autorotation has been

shown by Juan de la Cierva to be an effective and simplistic way to generate lift through a

spinning rotor. Even though crosswind has been shown to be more effective in drawing more

power the autogiro, as de la Cierva coined it, is more easily controlled and does not rely on

high tether tension, which may not be feasible at very high altitudes. Unlike SkywindPower

that looked at altitudes around 5km this thesis analyzes the possibility of altitudes up to
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10km. This adds more weight and complexity due to the dynamics of the tether. Therefore,

it is important to consider the literature in order to characterize and determine the feasibility

of utilizing autorotation for energy harvesting.

2.2 Autorotation and Autogyro Dynamics

Although the autogyro and helicopter may appear similar the two are inherently different.

In fact, a lot of autorotation work led to the development of helicopters. Helicopters rely on

airflow down through the rotor where as autorotation depends on air flow upwards through

the rotor, Fig.2.7. Leishman [4] provides an in-dept look at the technical history and devel-

opment of the autogyro. In addition, Leishman shows that research on autogyros virtually

halted after helicopters came into development. Only recently has the work on autogyros

and gyroplanes resurfaced.

Lift

Weight

Thrust from

propeller

net drag

from rotor

and airframe

resultant

force on

rotor Lift

Weight

Rotor

thrust
net drag

from rotor

and airframe

propulsion

from rotor

(a) (b)

Figure 2.7: (a) Autogyro: Inflow upwards through the rotor disk (b) Helicopter: Inflow
downward through the rotor disk. Reproduced from [4]

A considerable amount of theoretical and experimental work was completed by Glauert,

Wheatley, Lock and Bailey around the 1930’s [17, 39, 40, 6, 19, 41, 42]. Juan de la Cierva

would be the first to build and test the autogyro and pave the way for the future of gyroplanes

[43, 44, 45, 46]. Autorotation can be thought of as a self-sustained rotation of a rotor with

net shaft torque Q = 0. This implies the energy required to turn the rotor must come from
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the relative airstream. The rotor torque ratio Q/Qh where Qh is the torque required to hover

can be defined as

Q

Qh

=
Vc
vh

+
vi
vh

(2.1)

where Vc is the climb velocity, νi is the induced velocity, and νh is the induced velocity at

hover. Early experimental studies show that classical momentum theory does not apply

for the region −2 ≤ Vc
Vh
≤ 0 [5], shown in Fig.2.8. Thus, autorotation cannot directly

rely on momentum theory as it consistently lies in this region. Therefore, [17] developed

an initial model that used a combination of momentum theory, blade element theory, and

an empirical formulation for induced velocity. This model was further improved through

experimental data presented in [19]. A thorough review of the autorotation model from [6]

is completed in section 3.

Figure 2.8: Momentum Theory Curve. Reproduced from [5]

A significant sticking point before the autogyro could sustain level flight is the issue of

asymmetric lift. During normal hover, the relative velocities in the forward and reverse half
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regions, shown in Fig.2.9a, are the same. However, when the aircraft moves forward the

relative velocities in the forward and reverse half regions differ causing unequal lift, Fig.2.9b.

To resolve this issue Juan de la Cierva introduced a hinge that would allow each blade to

flap as it rotated. This effectively balances out the forces by reducing lift in the forward half

and increasing lift in the reverse half as the blade rotates through the two regions. Balancing

occurs because as a blade experiences higher wind velocities the blade rises causing a decrease

in lift. The opposite occurs in the reverse flow region. As relative wind velocities decrease,

the blade falls thereby increasing dynamic pressure and lift. Additionally, if the rotor disk

is turning counterclockwise the disk has a tendency to tilt laterally to the right. This

phenomenon occurs because as the blade crosses ψ = 0◦ it has a higher lift vector than at

ψ = 180◦ causing the rotor disk to tilt. However, with the introduction of blade flapping

Coriolis forces come into play. Since angular momentum must be conserved, as the blade

flaps the radius of gyration changes which causes a stress to be introduced at the blade root.

To prevent catastrophic failure of the blade a set of lead-lag hinges were added to balance

out the in-plane centrifugal forces that arise from adding the flapping degree-of-freedom.
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Figure 2.9: Asymmetric Lift Dilemma. Adapted from [4]
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As a rotor goes through autorotation it experiences variable wind speed along the blade-span

affecting aerodynamic blade torque. The distribution of blade torque is shown in Fig.2.10.

Since the inward section of the blade experiences higher angles-of-attack, the driving force is

higher than that of drag, causing a net-positive torque. Towards the end of the blade-span,

the higher relative velocities decrease the angle-of-attack causing a decrease in the driving

force and an increase of the drag force, Fig.2.10. This effectively causes a net-negative torque

slowing down the blade. Between these two regions lies the point of ideal autorotation where

the torque Q = 0. As a blade spins faster, the neutral autorotation point moves inward

toward the blade-root.

At section y
1

Net positive in-plane force

(delivers power to rotor)

At section y
2

Net negative in-plane force

(consumes power)

Driving force Driving force

Thrust force Thrust force

Upflow Upflow
Relative Wind Relative Wind

Ωy
1

Ωy
2

dD
dD

y
1

y
2

Accelerating torque

Decelerating torqueSection in

autorotational

equilibrium

Ω

dL dL

NOTE: Angles exaggerated for clarity

Figure 2.10: Blade torque distribution in steady-state autorotation. Reproduced from [4]
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Another challenge in achieving safe flight in rotorcrafts, is limiting the sectional blade angle-

of-attack. The angle-of-attack, unlike an airplane, changes along the blade length. Since

rotation is purely determined by aerodynamic forces, the angle-of-attack must remain within

certain boundaries to maintain stable flight. Angle-of-attack α is defined as α = ϕ+θ where

θ is the blade pitch and ϕ is the inflow ratio defined as

ϕ =
Upflow velocity

In-plane velocity
= arctan

(
|Vc + νi|

Ωr

)
(2.2)

Wimperis [47] developed a graphical method to show these critical angles, Fig.2.11. The

diagram in 2.11 shows the drag-lift ratio Cd/Cl vs the angle-of-attack. Points A,B, and C

are on the line of ideal autorotation or

Cd − ϕCl = 0 → Cd
Cl

= ϕ = α− θ (2.3)

Any points behind this line causes accelerating torque where anything past that line consumes

energy thereby causing decelerating torque. At point D a maximum angle-of-attack is reached

where anything past this point causes rotor rpm to quickly decay [4].
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Figure 2.11: Blade Stall Wimperis Diagram. Reproduced from [4]

The resultant force coefficient defined as

Cr =

√
L2 +D2

1
2
ρV 2
∞A

(2.4)

is an important characteristic of the autogyro. Experimental data in Fig.2.12 shows that for

angles-of-attack greater than 30 degrees the resultant force coefficient Cr is approximately

1.25. The drag coefficient, CD, of a circular disk with a flow normal to its surface has a value

of CD = 1.11. Therefore, at high enough angles of attack, a disk in an autorotative state

acts as a bluff body [4]. Using this phenomenon, it is possible to create a direct relationship

to the descent velocity Vd of an autorotative craft.
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Figure 2.12: Coefficient of resultant force. Reproduced from [4]

The formulation for descent rate is derived in [48]. It is shown that the descent rate Vd of a

vertically falling autogyro is

Vd = 25.94
W

A
(ft/s) (2.5)

where W is the weight of the craft and A the disk area. Tests done in [49, 50] were used to

find the rate of descent with respect to forward speed during gliding flight and are shown

in Fig.2.13. The rate of descent Vd reaches a minimum around Vf/vh = 2 and increases

thereafter due to increased drag.
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Figure 2.13: Nondimensional descent rate vs nondimensional forward speed in autorotational
gliding flight. Reproduced from [4]

With the advent of the flapping hinge and lead-lag hinge, the gyroplane was finally able

to sustain level flight. However, around the 1950’s helicopters came into the forefront and

gyroplanes were given less importance. Only recently have gyroplanes gained increased

interest leading to advanced dynamic models of rotors and airflow [51, 52, 53, 54, 55].

2.3 Summary

Although there exists many designs for AWEs, autorotation based energy extraction remains

relatively unexplored from a theory perspective. Autorotation has been shown to be a safe

way to enable low-speed flight and allow for safe landings under engine failure because of

its natural conversion of potential energy to lift [16, 56]. Even though lighter-than-air or
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aerostat devices appear alluring at first glance, a review of the technology shows difficulty

in not only maneuverability but having to rely on high tether tension to stay in place. By

utilizing a more maneuverable system that can control the magnitude and direction of its

lift the reliance on tether tension can be minimized.

Clearly the autogyro provides a unique way of achieving lift that can be implemented to

harvest energy. Expanding on the literature, it is possible to develop a new autogyro model

focused on energy extraction. This model predicts the behavior of an autogyro under regen-

erative torque and calculate the approximate energy that can be collected.
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CHAPTER 3: MODEL OF STEADY AUTOROTATION

The first models of steady autorotation were developed by Glauert and Wheatley in the

early 1930s, [17, 6]. These models provided a basis of autorotation theory and introduced

the Blade Element Momentum method. The Blade Element Momentum (BEM) method is

the foundation of autorotation theory. The theory discretizes a rotor blade to thin strips,

the forces are analyzed at each strip and integrated through the blade-span. The forces are

then averaged over one full rotation. The BEM approach in [6] derives the thrust T and

rotor torque Q for a rotor at an angle of incidence α translating at a speed V. An inertially

fixed rotor in a wind field with wind velocity V is assumed for which the same analysis is

applicable - see Fig.1.4(a). The analysis assumes that the flapping angle of each blade, β, is

a periodic function of the blade’s angular position ψ(ψ̇ = Ω), which naturally leads to the

use of a Fourier series [17, 6, 39, 40]. For multi-blade systems the flapping angle of each

blade is assumed phase-shifted in ψ from the other blades, Fig.3.1. Sign convention and

variables are defined in Fig.3.1.
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Figure 3.1: Blade element views: (a) Along spin axis, (b) Flapping motion, (c) Cross-
sectional view, (d) Reversed Velocity Region

At steady autorotation, blade motion is taken to be identically cyclic at each rotation,

therefore, the motion can be expressed as a Fourier series of the form

β = a0 − a1 cosψ − b1 sinψ − a2 cos 2ψ − b2 sin 2ψ... (3.1)

where a0, a1, b1, a2, b2 are Fourier coefficients to be determined. The coefficient expressions

are listed in section B and detailed derivations are provided in [6]. To quantify the overall
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rotor speed, the tip speed ratio and inflow ratio,

µ =
V cosα

ΩR
, λ =

V sinα− ν
ΩR

(3.2)

are introduced where ν is the downward induced velocity from the rotor blades. Using the

same analogy as airfoil theory, the induced velocity can be expressed as

ν =
T

2πR2ρV ′
, V ′

2
= (V sinα− ν)2 + V 2 cos2 α (3.3)

which can consolidate to

tanα =
λ

µ
+

1
2
CT

µ(λ2 + µ2)1/2
, CT =

T

ρΩ2πR4
(3.4)

The wind velocity is broken down into three directions UT , UP , and UR. Where UT is parallel

to the rotor disk and perpendicular to the center of rotation and blade span. UP is defined

as parallel to the center of rotation and perpendicular to UT , and, finally, UR is parallel to

the blade and perpendicular to UT . Referring to Fig.3.1(a,b) and to [6] the velocities can be

expressed as

UT = Ωr + µΩR sinψ, UR = µΩR cosψ + λΩR sin β

UP = λΩR cos β − rdB
dt
− µΩR sin β cosψ (3.5)

Also note that for small angles of attack UT = U cosϕ = U and UP = U sinϕ = Uϕ. For

the reversed flow region shown in Fig.3.1(a) only a small portion of the blade creates lift and

the remaining section is in stall. That region is from B · R to the point UT is equal to 0 or

approximately −µR sinψ. Variable B represents a fractional term to account for blade-tip

losses. Finally, the lift-coefficient is taken to be the same as an airfoil, CL = aαr where a is
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the lift-curve slope and αr is the angle of attack of the wing at distance r from the flapping

hinge. In [6] the blade pitch, θ, is taken to be linearly varying, therefore αr = θ0 + r
R
θ1 + ϕ

where θ0 is the initial pitch and θ1 is the slope of the varying pitch.

Now that the fundamental characteristic equations have been laid down the thrust (T) can

be analyzed. The thrust is broken down into the reverse (blade-retreating) and forward

(blade-advancing) flow regions and is computed as follows

T =
b

2π

∫ 2π

0

dψ

∫ BR

0

1

2
ρcU2CLdr =

b

2π

∫ 2π

0

dψ

∫ RB

0

1

2
ρcaU2

(
θ0 +

r

R
θ1 + ϕ

)
dr

+
b

2π

∫ 2π

π

[∫ BR

−µR sinψ

1

2
ρcaU2

(
θ0 +

r

R
θ1 + ϕ

)
dr +

∫ −µR sinψ

0

1

2
ρcaU2

(
−θ0 −

r

R
θ1 − ϕ

)
dr

]
dψ

=
1

2
bcρaΩ2R3

{
1

2
λ

(
B2 +

1

2
µ2

)
+ θ0

(
1

3
B3 +

1

2
µ2B − 4

9π
µ3

)
+ θ1

(
1

4
B4 +

1

4
µ2B2 − 1

32
µ4

)
+

1

4
µ2b2B +

1

8
µ3a1

}
(3.6)

where c is the blade chord length, θ is the blade pitch, and λ is the axial speed ratio. A

further look at thrust is done in section 3.2. Using Eqs.3.4 and 3.6 it is possible to obtain

a non-dimensionalized thrust equation. Utilizing CT , the author in [6] shows that the lift

coefficient CLr can be defined as

CLr =
2CT cosα3

µ2
(3.7)

The author also derives the lift-drag ratio by analyzing the energy loss from dissipation and

thrust generation. The energy loss integral in [6] is then used to derive

Dr

Lr
=
σδ
(
1 + 3µ2 + 3

8
µ4
)

8µCT
+

1/2CT

µ (µ2 + λ2)1/2
(3.8)
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The aerodynamic forces on a blade creates a moment that is given by

MT =

∫ BR

0

1

2
ρcU2CLrdr =

∫ BR

0

1

2
ρca

{(
θ0 +

r

R
θ1

)
U2
T + UTUP

}
rdr

− 2

∫ −µR sinψ

0

1

2
ρca

{(
θ0 +

r

R
θ1

)
U2
T + UTUP

}
rdP (3.9)

where the second half of the equation only comes into consideration from [π, 2π]. As the wind

flows through the rotor disk it experiences a torque. For b blades, the average aerodynamic

torque is

Qe =
b

2π

∫ 2π

0

dψ

∫ BR

0

1

2
ρcU2φCLrdr −

b

2π

∫ 2π

0

dψ

∫ R

0

1

2
ρcU2δrdr

=
bρcΩ2R4a

2
λ2

(
1

2
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4
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)
+ λ

(
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9π
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4
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32
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)
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(
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8
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16
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)
(3.10)

where for steady autorotation Qe = 0.

The tip-speed ratio, an equilibrium point of the system, µ, Eq.3.2, must be known be-

forehand, making this model inherently difficult to use. In this application, only the wind

velocity V and generator torque Qe are known. The proposed dynamic model removes this

constraint and allows the system equations to reach its own equilibrium, at which point the

steady-state tip-speed µ can be extracted. The model developed by [6] is used to create

a basis for comparison to test the dynamic model of autorotation presented in chapter 4.

To establish the validity of the code, a simulation was run to compare the results of the

theoretical and experimental data presented in [6].
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3.1 Initial Validation Results

Three main performance variables: rotor lift coefficient (CLr), thrust coefficient (CT ), and the

flapping and coning coefficients (a0, a1, a2, b1, b2) are used to validate this model. To create

a basis for comparison, the constants defined in [6] are listed in table 3.1 and appendix

C.1 are utilized. An important assumption was made in [6] that effectively neglected the

blade weight, specifically the term Mw

IΩ2 greatly effecting the equation a0 found in appendix

B. The blade weight is neglected because the rotational speed is sufficiently high such that

the moment due to the blade weight is effectively negligible. This oversight was found

through thorough inspection of the equations and simulations. Another caveat is from how

the procedure was set to calculate the Fourier coefficients. The non-dimensional values of

µ & λ (Eq.3.2) are lumped parameters that are inputs to all the functions. Due to this

lumped parameter, the value of Ω is unknown and thus must be calculated along the way.

Variables Ω and a0 must be solved simultaneously, which was originally avoided in [6] through

approximation. An iterative method is proposed to show that with sufficiently high wind

speeds V , where V and Ω are proportional, the results from [6] can be reproduced but with

the constraint of high rotational speed removed; as that is something this application of

autorotation cannot assume.

Table 3.1: Simulation parameters from [6]

Parameter Value Description
θ0 0.0384 Blade pitch at root (rad)
θ1 1.256× 10−4 Slope of blade pitch (rad/in)
ρ 0.00210 Air density (slugs/ft3)

In this validation, the assumption of high rotational speed is retained, therefore the blade

moment Mw is neglected by and the simulation results are compared with those presented in

[6]. The results in Fig.3.2 show that the simulation was correctly developed to the standards
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presented in [6]. Moving forward, the assumption of high rotational speed Ω is removed and

Mw is reincorporated. This requires a change in the solving procedure since the approx-

imation no longer holds and all the values must now be solved simultaneously. The new

approach uses a numerical iteration technique as follows:

(a) Provide a tip-speed ratio µ and Generator Torque Qe

(b) Guess initial values for α, Ω, and λ

(c) While ∆α and ∆Ω are greater than ε loop through steps d-k.

(d) Substitute in the physical constants and µ into the flapping coefficients and obtain

a0, a1, a2, b1, b2

(e) Set Qe on Eq.3.10 to retrieve λ

(f) Utilize λ and µ to calculate CT with Eq.3.12

(g) Using Eq.3.4 calculate α

(h) Next calculate the lift-drag ratio Dr

Lr
using Eq.3.8

(i) Calculate lift-coefficient CLr using Eq.3.7

(j) Using the lift-drag ratio Eq.3.8 and lift-coefficient Eq.3.7 calculate CDr

(k) To find the required wind velocity for steady autorotation, set the lift-force to the weight

W and use the following equation

Vη =

√
W

1
2
ρπR2CLT

(3.11)
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Figure 3.2: (a) Flapping and Coning Coefficients (b) Thrust Coefficient (c) Lift Coefficient
(d) Flapping and Coning Coefficients from [6] (e) Thrust Coefficient from [6] (f) Lift Coeffi-
cient from [6]

As a note the BEM method is not valid for climb velocity ratios of −2 ≤ Vc
Vh
≤ 0 [16].

Simulations past ≥ 0.5 do not provide meaningful results as momentum theory is no longer

valid in this region because of turbulent airflow depicted in Fig.3.5. The initial simulation

uses extremely high wind speeds of (∼ 500 ft/s) to show that the iterative model converges

to the model presented in [6]. Proceeding forward, a simulation with wind speeds of (∼ 70
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ft/s) is completed, which is more realistic to what an autogyro will experience in an energy

harvesting application.

0.1 0.2 0.3 0.4 0.5

−1

0

1

2

3

4

5

6

7

8

C
o

n
in

g
 a

n
d

 "
a

p
p

in
g

 

co
e

#
ci

e
n

ts
, d

e
g

.

 

 

0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6

7

8
x 10−3

T
h

ru
st

 c
o

e
#

ci
e

n
t

 

 

C
T

C
T

W

0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
o

to
r 

L
if

t 
C

o
e

#
ci

e
n

t

 

 

CL
T

CL
T

W

0.1 0.2 0.3 0.4 0.5

−1

0

1

2

3

4

5

6

7

8

Tip−speed ratio

C
o

n
in

g
 a

n
d

 "
a

p
p

in
g

 

co
e

#
ci

e
n

ts
, d

e
g

.

 

 

0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6

7

8
x 10−3

Tip−speed ratio

T
h

ru
st

 c
o

e
#

ci
e

n
t

 

 

C
T

C
T

W

0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Tip−speed ratio

R
o

to
r 

L
if

t 
C

o
e

#
ci

e
n

t

 

 

CL
T

CL
T

W

a
0

a
1

a
2

b
1

b
2

a
0

a
1

a
2

b
1

b
2

(a)

(b)

Figure 3.3: (a) Iterative method with V=500 ft/s (b) Iterative method with V=70 ft/s

The results show that at lower wind speeds of around (∼ 70ft/s) the Fourier coefficients

diverge from the standard model developed in [6]. However, the thrust and lift coefficients

CT and CLr , respectively, are not greatly affected. With the verification of the model char-

acteristics of an autogyro at different equilibria µ are analyzed.
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In Fig.3.4 the lift coefficient, drag coefficient and required wind speed to maintain lift are

shown for different tip-speeds. The required wind speed is shown for zero regenerative torque

or generator load. The minimal wind speed required to maintain flight is around 13m/s or

∼ 42ft/s at a tip-speed of 0.08. At this region drag is also at its maximum. Closer to a

tip-speed of 0.09 the lift coefficient is at its maximum, which is a region that requires more

energy to sustain. Shown in chapter 4 these tip-speeds are unlikely to be reached as most

simulation results lie around µ ≈ .11.
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3.2 Thrust Coefficient

With the verification of the simulation model, a visual look into how flapping blades affect

autorotation is studied. This is accomplished by analyzing the thrust coefficient of a single

blade at every point as it rotates from 0 − 2π and compare it to autorotation that occurs

without flapping. The thrust coefficient is defined as CT , T
ρΩ2πR4 , therefore the thrust T

becomes

CT =
1

2
σa

{
1

2
λ

(
B2 +

1

2
µ2

)
+ θ0

(
1

3
B3 +

1

2
µ2B − 4

9π
µ3

)
+ θ1

(
1

4
B4 +

1

4
µ2B2 − 1

32
µ4

)
+

1

4
µ2b2B +

1

8
µ3a1

}
(3.12)

where σ = bc
πR

.
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By setting the Fourier coefficients (a0, a1, a2, b1, b2) to zero, the flapping component of Eq.3.12

is effectively removed. Fig.3.6 shows a comparison of flapping versus no flapping at different

equilibria or tip-speed ratios. With no flapping in Figs.3.6d,e,f, the forward thrust region

shows higher thrust coefficients. This thrust imbalance is important to combat in order

to achieve level flight and flapping is a simple and effective way of achieving that. With

flapping, Figs.3.6a,b,c, the thrust coefficients even out as regions of the forward half show

decreased life and regions of the reverse half show increased lift. Note that as tip-speed

decreases the two regions balance out because the rotational speed is much higher than the

forward wind velocity. This occurs because the local wind velocities experienced by the

blades become virtually the same. Juan de la Cierva used a hinge to achieve flapping but

todays gyroplanes use a teeter-toter system with composite material blades. This achieves

the same result with simpler,lighter mechanics. The aeroelastic behavior of these blades are

modeled in [51]. Now with a thorough understanding of the steady-state characteristics of

autorotation, an analysis of dynamic autorotation can be developed.
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CHAPTER 4: AUTOROTATION DYNAMIC MODEL

The phenomenon of autorotation is inherently dynamic because of it’s complex interaction

between the air and the falling rotor. Allowing the rotor blades to flap adds additional

degrees of freedom, complicating the dynamics further. Although [6] analyzes the flapping

at steady state, everything leading up to steady state is unknown. Even at steady-state the

torque and thrust fluctuations are not modeled. By studying the interaction of a four-bladed

autogyro in a static wind field, Fig.4.1, insights can be made with respect to the transient

behavior. For simplicity and to compare the final steady-state solutions with [6] the radius

of the hub (rh = 0) is neglected. Also the twisted blade design used in [6] is removed and

instead a uniform blade is used to simplify several equations.
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Figure 4.1: Dynamic Model: (a) Complete Autogyro System (b) Effect of Rotation on Blade
1

Lagrangian dynamics are used to model the autogyro shown in Fig.4.1. The kinetic energy

(T ) and the potential energy (V ) terms are first derived to yield the Lagrangian L = T −V .

The angles ψi and βi, where i = 1, 2, 3, 4, represent the generalized coordinates of rotation
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and flapping, respectively, of each blade as shown in Fig.4.1. The angle ψi represents the

rotation of the blade along the plane x− y parallel to the hub. The angle of inclination, βi,

of a blade is measured from the x− y plane of the body fixed axis. The total kinetic energy

of the system can be described as the sum of the rotational and translation energy terms of

the four blades. For one blade the kinetic energy is

Ti =
1

2
mb~̇rai · ~̇rai +

1

2
~ωri · ~HGi

, ~̇rai = ~̇ri + ~ωri × ~ri (4.1)

where ~̇rai represents the velocity vector relative to the body fixed axis from the center of

rotation to the center of the blade. The hub radius is ignored, therefore, the velocity vector

equates to the time rate of change of the position vector from the center of rotation to the

center of the blade.

The absolute position vector ~rai , angular speed ~ωri , and momentum ~HGi
are

~rai =
R

2
cos βi cosψîı +

R

2
cos βi sinψî +

R

2
sin βik̂ (4.2)

~ωri = ψ̇i sin βîı + β̇î + ψ̇i cos βik̂ (4.3)

~HGi
= Ixxψ̇i sin βîı + Iyyβ̇î + Izzψ̇i cos βik̂ (4.4)

where the inertias Ixx, Iyy, and Izz of the blade are approximated as a cuboid, Appendix A.

Therefore taking the derivative of Eq.4.2 and substituting Eqs.4.2,4.3, and 4.4 into Eq.4.1,
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the kinetic energy of a single blade is

Ti =
R2

8
mbβ̇i

2
+
R2

2
mbψ̇i

2
cos2 βi +

Ixx
2
ψ̇i

2
sin2 βi +

Iyy
2
β̇i

2
+
Izz
2
ψ̇i

2
cos2 βi (4.5)

and the potential energy is

Vi =
R

2
mbg cos βi (4.6)

Considering only blade 1, the Lagrangian formulation becomes

d

dt

(
∂L

∂ψ̇1

)
− ∂L

∂ψ1

= Qψ1 (4.7)

d

dt

(
∂L

∂β̇1

)
− ∂L

∂β1

= Qβ1 (4.8)

After differentiating and simplifying the equation of motion of blade 1 for rotation is

[
(R2mb + Izz) cos2 β1 + Ixx sin2 β1

]
ψ̈ +

[
Ixx − Izz −R2mb

]
ψ̇β̇1 sin 2β1 = Qψ1 (4.9)

and the equation of motion for flapping is

[
R2

4
mb + Iyy

]
β̈1 −

1

2

[
Ixx − Izz −R2mb

]
ψ̇2 sin 2β1 +

R

2
mbg cos β1 = Qβ1 (4.10)

where Qψ1 and Qβ1 are non-conservative aerodynamic forces causing blade rotation and

flapping, respectively. Note that all blades have the same angular rotation velocity and

acceleration along the x − y plane, therefore, ψ̇1 = ψ̇2 = ψ̇3 = ψ̇4 and ψ̈1 = ψ̈2 = ψ̈3 = ψ̈4

therefore the index i is removed for these variables.

In the steady state model the flapping angle, βi, is assumed to be small because the cen-
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tripetal accelerations are much higher than the blade weight. The motion of the blades is

unknown under unsteady dynamics, therefore the approximations originally made in [6] must

be removed in the tangential wind speed UT and perpendicular wind speed UP . This leads

to the expressions

UT = Ωr + µΩR sinψi, UP = λΩR cos βi − rβ̇i − µΩRβi cosψi sin βi (4.11)

To determine Qψ1 and Qβ1 on blade 1 the forces are broken down with respect to the blade

fixed axis. Two main forces are generated from the incoming wind. The first, FT , is perpen-

dicular to the blade span and parallel to the rotor disk. The second, FP , is perpendicular to

the blade span and to FT shown in Fig.4.1b.

Driving force

U
P

Relative Wind

dD

dL

φ

φ

φ

U
T

Note: Angles exaggerated for clarity

dLcosφ

dDsinφ
r

dr

dLsinφ

dDcosφ

Ω

(a) (b)

Figure 4.2: (a) Blade section forces (b) In-plane forces

The forces are derived from the components of lift L and drag D, Fig.4.2. The aerodynamic
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forces a distance r from the blade root along the blade are

dFT = dL sinϕ− dD cosϕ, dFP = dL cosϕ+ dD sinϕ (4.12)

where ϕ is the angle of attack of the resultant velocity at a blade element with respect to

the body fixed axis. Since UT is much larger than UP , Fig.4.1b, ϕ is assumed to be small.

Therefore, the work done by the forces over a small displacement is dWT = (Lϕr− dDr)dψ

and dWP = dLrdβ, where dL = 1
2
ρcU2CLdr and dD = 1

2
ρcU2δdr. Accounting for the reverse

velocity region and the methods in [6] the generalized forces can then be expressed as

Qψ1 =


BR∫
0

a
[
UTUP θ0 + U2

p

]
rdr −

R∫
0

δU2
T rdr 0 ≤ ψ ≤ 2π

−2
−µR sinψ∫

0

a
[
UTUP θ0 + U2

p

]
rdr + 2

−µR sinψ∫
0

δU2
T rdr π ≤ ψ ≤ 2π

(4.13)

Qβ1 =


BR∫
0

a [U2
T θ0 + UpUT ] rdr 0 ≤ ψ ≤ 2π

−2
−µR sinψ∫

0

a [U2
T θ0 + UpUT ] rdr π ≤ ψ ≤ 2π

(4.14)

The blades are assumed rigid and integrated along the blade length. This yields the equations

of Qψ and Qβ found in appendix D. Qψ and Qβ are dependent on the inflow ratio λ. The

value of λ is determined by combining Eqs.3.2,3.3 and solving for lambda. This results in

the polynomial

λ4 +
(
µ2 − λ2

c

)
λ2 + λcCT

(
µ2 + λ2

)1/2 − λ2
cµ

2 − 1

4
C2
T (4.15)

where λc = V sinα
ΩR

. Eq.4.15 is solved numerically.
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The complete system equations are

[
(R2mb + Izz)(cos2 β1 + Ixx sin2 β1 + cos2 β2 + Ixx sin2 β2 + cos2 β3 + Ixx sin2 β3

+ cos2 β4 + Ixx sin2 β4)
]
ψ̈ +

[
Ixx − Izz −R2mb

] [
ψ̇β̇1 sin 2β1 + ψ̇β̇2 sin 2β2

+ψ̇β̇3 sin 2β3 + ψ̇β̇4 sin 2β4

]
= Qψ1 +Qψ2 +Qψ3 +Qψ4 (4.16)

[
R2

4
mb + Iyy

]
β̈1 −

1

2

[
Ixx − Izz −R2mb

]
ψ̇2 sin 2β1 +

R

2
mbg cos β1 = Qβ1 (4.17)

[
R2

4
mb + Iyy

]
β̈2 −

1

2

[
Ixx − Izz −R2mb

]
ψ̇2 sin 2β2 +

R

2
mbg cos β2 = Qβ2 (4.18)

[
R2

4
mb + Iyy

]
β̈3 −

1

2

[
Ixx − Izz −R2mb

]
ψ̇2 sin 2β3 +

R

2
mbg cos β3 = Qβ3 (4.19)

[
R2

4
mb + Iyy

]
β̈4 −

1

2

[
Ixx − Izz −R2mb

]
ψ̇2 sin 2β4 +

R

2
mbg cos β4 = Qβ4 (4.20)

The system is broken down into coupled first-order equations and then solved using numerical

integration techniques.

4.1 Model Validation

To validate the method, the model needs to converge to the steady state values predicted

by the static analysis done in [6]. Since the model contains four blades each blade must be

represented by its own equations of motion. In state-space this equates to a total of ten
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coupled first order differential equations. The parameters shown in table 4.1 and appendix

C.1 are utilized to simulate the results of the dynamic model and show that convergence is

attained.

Table 4.1: Dynamic simulation parameters

Parameter Value Description
θ0 0.0698 Blade pitch (rad)
ρ 0.000801352 Air density (slugs/ft3)
mb

3I1
R2 Mass of one blade (slugs)

th .12c Thickness of airfoil
Izz mb

12(c2+R2)
Moment of inertia of blade around z

Ixx
mblade

12(t2h+c2)
Moment of inertia of blade around x

Iyy
mblade

12(t2h+R2)
Moment of inertia of blade around y

Initially, the steady state rotational speed of the dynamic model versus the prediction made

using [6] is compared. The dynamic model and the steady-state model converge to a similar

rotational speed with approximately 1% difference depicted in Fig.4.3 . The discrepancy of

the two models can possibly be attributed to approximations made by [6] that were removed

in the dynamic model. The approximations that were removed include the small angle

approximation and the Fourier series approximation of cyclic blade flapping.
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Figure 4.3: (a) Dynamic Torque (b) Rotational Speed

Also note that the torque Fig.4.3a approaches zero as the system approaches steady-state,

which is consistent with [6]. The torque Qe at steady-autorotation should be zero because

the aerodynamic forces causing positive and negative torque balance out where negative

torque is due to parasitic drag. In section 5 the effect on torque from adding a generator

load is examined.

The thrust converges to a value predicted from [6] shown in Fig.4.3b. The total steady-state

thrust is not uniform because each blade has it’s own harmonic thrust that cancel out as

the system reaches steady state. The different harmonic thrust variations can be seen as one

blade rotates through 0 − 2π in Fig.4.4d. A closer in-depth analysis shows that the total

thrust has a harmonic of its own. This is of course insignificant at steady state conditions

but may be important at unsteady conditions do the introduction of lateral forces.
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Figure 4.4: (a) Total Thrust (b) Individual Blade Thrusts

The steady-state flapping angle stays between 0.5− 1.5 degrees, which further supports the

small angle approximation made in [6]. At steady state, the dynamic model shows cyclic

flapping achieving a fixed frequency and amplitude as shown in Fig.4.5.
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From analyzing the motion of blade flapping, two main frequencies were found confirming
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the original assumption made in [6], Fig.4.6. The first harmonic is approximately around

4 Hz and the second harmonic around 8 Hz. This relates to multiples of the rotational

speed divided by 2π or the first and second natural frequencies of the system. Although two

frequencies exit the second harmonic is significantly smaller and can potentially be neglected.
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Figure 4.6: (a) Frequency of flapping angle (b) Frequency of flapping angular velocity

Going further an analysis of the autogyro in a changing wind field is simulated. At 300

seconds after the system has reached steady-state the wind velocity is dropped from 70 m/s

to 60 m/s. The results are shown in Fig.4.7. The dashed lines represent the steady-state

solutions from the model developed in section 3. The results show that the system does

not experience any adverse affects but merely approaches steady-state at a lower rotational

speed and thrust. The rotational torque Qe becomes negative at the transition time and

slowly approaches Qe = 0 as predicted from the steady autorotation models.
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Figure 4.7: (a) Torque Qe (b) Rotational Speed (c) Flapping of blade 1 (d) Thrust

The difficulty of using the model in [6] is the requirement of knowing the equilibria µ or

tip-speed ratio. This ratio should naturally form from the initial wind velocity V and torque

Qe. To grasp the general operating condition this system would be experiencing, a range

of wind velocities were run through the dynamic model to review the possible steady-state

equilibria. The results are presented in Fig.4.8a and is found that for most wind velocities

the tip-speed lies around µ = .11. This implies that although the lower tip-speeds may be

possible operating points, they may not necessarily be stable equilibria. Similarly, the thrust

of blade 1 is examined as the wind velocity and torque are changed, Fig.4.8b. The results

show the variation of thrust the blade experiences as the blade flaps. With higher wind
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speeds the thrust increases but experiences much higher variations. As torque increases the

thrust decreases as expected.
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CHAPTER 5: ENERGY HARVESTING

The purpose of this research is to determine the feasibility of using an autogyro for energy

extraction while maintaining sufficient lift. When a generator torque is introduced into

a freely rotating autogyro a clear slowdown of the rotor rotational speed should occur.

This slowdown should cause blade flapping angles to increase because of a lower centripetal

acceleration.

Using the steady-autorotation model developed in section 3 and the dynamic model devel-

oped in section 4, the predicted behavior of the system under a generator load is compared.

The application of a generator load is modeled as a parasitic torque thus a torque is sub-

tracted from the RHS of Eq.4.9. Due to how the the method in [6] is developed the process

of adding a parasitic torque is more complex. This is because the torque is taken as 0 and

the equation is used to back-calculate the inflow ratio. That implies the addition of the

torque will be a “correction” to the inflow Eq.3.10. This results in the difficulty of having

to solve Ω and λ simultaneously. The problem is approached through numerical iteration,

described in section 3, and the final results are presented in Fig.5.1.
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Figure 5.1: (a) Rotational Speed, (b) Thrust, (c) Flapping angle (d) Flapping angular
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For the first < 300 seconds the autogyro is simulated with zero torque and allowed to

reach steady-state at which point a 500 ft-lb torque is applied. As intuition predicted, the

thrust and speed decrease when a torque is applied. From Fig.5.1, both models clearly have

agreement on the rotational speed and thrust. The effect of applying a torque has minimal

effect on the transient behavior because of the high inertia of the system. Therefore, chaotic

behaviors are effectively nullified. Since both models show good agreement, the steady-
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autorotation model in [6] is used to analyze the overall lift CLT
, drag CDR

, and required

wind speed at 0 ft/lb and 500 ft/lb torques. From Fig.5.2c, the minimum wind velocity

required at the operating angle of α = 30◦ with a weight of 3000 lbf is 20 m/s, where the

expected wind speed at an altitude of 7 km is 21 m/s.
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Figure 5.2: (a) Lift Coefficient (b) Drag Coefficient (c) Wind velocity required to maintain
level flight

It’s possible to surmise from Fig.5.1 that a craft of about 3250 lbf and below is required to

maintain level flight and extract energy with the conditions and parameters imposed from

Table 4.1. Since the blade weights are ∼ 2 lbf there is easily enough room to add a generator

to the system and still maintain flight. As predicted, Fig.5.1c shows the blade flapping

increasing due to the slower rotational speed and thus lower centrifugal force. Finally, the

overall thrust variation along the path of the blade is analyzed before and after the generator

torque is applied, Fig.5.3. A slight shift in thrust occurs from the reverse half towards the

forward half as a result of the slowdown of the rotational speed. As explained in section 3,

the faster the rotor spins the less significant forward wind velocity becomes, Fig.2.9.
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Figure 5.3: Thrust Coefficient: (a) No generator torque (b) 500 ft-lb generator torque

Conditions needed to maintain flight and extract energy for a range of torques is determined.

The analysis utilized the system described in [6] with the system parameters presented in

Table 3.1; the results are shown in Fig.5.4. Around 500 ft-lb the system would be extracting

approximately 15kW of power. Initially, this seems low but persistent winds at high altitudes

may allow for higher overall power generation. Further analysis and experimentation is

required to understand the outcome.
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By analyzing a range of wind velocities V and generator torques (Qe), an optimal power

generation region can be determined. Fig.5.5 shows the ideal values of V and Qe for gener-

ating the maximum amount of power. To account for the probability distributions of V at

an attitude of 7 km a Weibull distribution is used. The Weibull distribution takes the form

P (V ) =

(
k

c

)(v
c

)(k−1)

e−( v
c )

k

(5.1)

where k = 3 and V = 70. The potential power output is then the steady-state predicted

power output multiplied by the probability distribution. The simulation weight of the au-

togyro is 3000 lbf, therefore the predicted lift must be ≥ 3000. Thus any point producing

lift T cosα < 3000, is set to 0 as this is not a potential operating point. Due to the Weibull

distribution, 70 ft/s is the most probable wind speed, therefore the power generation will be

maximal around this region. From Fig.5.5, a breaking torque 1200 ft/lb can be applied, how-

ever, a decrease in wind speed will cause the system to move to the region of lift lower than

it’s weight. Therefore, breaking torques ranging between 400-800 ft/lb are more conservative
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and safer torques to apply as it leaves more room for wind speed variations.
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CHAPTER 6: OPTIMIZATION

To get a sense of the optimal operating height of an autogyro with an attached tether, a

statics problem is solved. The goal is to determine the thrust (T ) and angle of attack (α)

that will provide the highest energy extraction while maintaining sufficient lift to hold up

its own weight plus the weight of the tether. This will yield an optimal equilibrium point

(x∗, y∗) of the autogyro. For simplicity, only a 2-D case is considered, Fig.6.1(a).
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Figure 6.1: Tethered Autogyro

The shape of the tether is approximated as a catenary. The catenary shape is modeled as a

hyperbolic function represented by

ye = b

[
cosh

(
xe − q
b

)
− cosh

(q
b

)]
(6.1)
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where q and a define the shape of the tether [13]. Note that the tension is tangential at any

point on the tether and not necessarily uniform, therefore, from [13] the following relations

are used

lt = b

(
sinh

(
ye − q
b

)
− sinh

(
−q
b

))
tan η0 = sinh

(
−q
b

)
=
Ry

Rx

tan ηl = sinh

(
xe − q
b

)
=
Fcy
Fcx

(6.2)

where lt is the length of the tether and xe is the x-position of the free endpoint of the tether.

First, the system static equations are setup. Considering only the autogyro in Fig.6.1(b),

the forces are summed in the x and y directions and equated to zero.

0 = T sinα− Fc sin ηl

0 = T cosα− Fc cos ηl −mag (6.3)

where Fc is the tension at the top of the tether and eta1 is the angle made by the tether

with the vertical. Similarly, the static equations for the entire system are

0 = T sinα−R cos η0

0 = T cosα−R sin η0 −mtg −mag (6.4)

where R is the tension at the bottom of the tether and eta0 is the angle made by the tether

with the horizontal. From [6], given tip-speeds have unique solutions for thrust T and angle-

of-attack α. This implies that using equations 6.3 and 6.4 the tensions Fc and R and the

56



angles ηl and η0 can be found. From substitution the expressions for ηl and η0 are

tan η0 =
T cosα− (ma +mt)g

T sinα

tan ηl =
T cosα−mag

T sinα
(6.5)

where ma and mt are the mass of the autogyro and tether, respectively. Using the expressions

in 6.2 and Fc, R, ηl, and η0 the expressions for the constants q and b are

b =
lt

tan ηl − tan η0

, q = b arcsinh (− tan η0) (6.6)

where lt is the length of the tether. Finally, the equilibrium point xe can be extracted with

xe = b arcsinh (tan ηl) + q (6.7)

Using the calculated constants, the equilibrium point xe, and Eq.6.1 the final equilibrium

position (xe, ye) of the autogyro can be calculated.

6.1 Simulation

With the developed method, a range of tip-speeds, torques, and wind velocities were analyzed

to understand the conditions required for energy extraction. For the simulation, the working

altitude of the autogyro is set to 7 km or ∼ 23000 ft with a tether length lt of 25000 ft. The

tether is made of 11 AWG wires 2.3 mm in diameter with a Kevlar K-49 layer that has a

thickness of 6 mm. This gives a tether weight of 86 lb/km or a total weight of ∼ 655 lbf for

a 7 km tether. All other parameters used are listed in appendix C.1 and table 4.1 with the

exception of the air density, which at an altitude of 7 km is ρ = 0.0012408 slug/ft3.
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Figure 6.2: Tethered Autogyro (rotor disk size exaggerated for clarity of angle of attack)

The initial simulation using an autogyro weight of 3000 lbf shows extremely shallow angles

with very high tether tension ranging from 3000-3600 lbf, Fig.6.2. Since a uniform wind

distribution is used at all heights, this shallow angle is unrealistic because the autogyro

would not be experiencing the same high wind velocities at low altitudes. Therefore, the

autogyro must maintain sufficient height to take advantage of the high wind fields. It stands

to reason that a multi-rotor craft similar to a quad-rotor would be the next logical step

because not only do multi-rotor systems provide more lift there are inherent backups if there

is a failure of a rotor. Therefore, picking a quadrotor system the weight each rotor would be

required to lift is reduced by a quarter to 750 lbf.
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With the reduction in weight an interesting phenomenon occurs for equilibrium points in

Fig.6.3a. As the tip-speed is decreased the autogyro moves upward until hitting a critical

point around µ = .2 where the autogyro again starts to settle to a lower altitude. Fig.6.3b

shows the max power generated as torque is varied from 0 to 1000 ft-lb. As generator load

is increased the equilibrium point drops approximately 1000 ft but still maintains sufficient

lift. From this work it is possible to conclude that collecting energy via autorotation is

theoretically feasible and merits further research and experimental study.
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CHAPTER 7: CONCLUSION

This thesis shows that persistent and pervasive winds at high-altitudes provides motivation

for looking into self-levitating energy extraction devices. Autorotation was shown to be a

possible means of high-altitude wind energy extraction. Initially, a review of the current

steady-state model of autorotation was presented in [6]. After proving the model was devel-

oped correctly and to show the need for flapping, the thrust coefficient CT was plotted as a

blade rotates from 0−2π in Fig.3.6. To fill in the gaps of the steady-state model, specifically

to understand the effect of a disturbance, a dynamic model was developed. In doing so the

necessity, to know the equilibrium tip-speed ratio µ beforehand was removed. The model

was validated by comparing the steady-state values of the dynamic model to the predicted

values using the model in [6]. After verifying the dynamic model, a generator torque was

introduced to understand how the system will react. The system was found to remain sta-

ble and reach a new equilibrium point. Finally, an optimal angle-of-attack for maximizing

energy extraction while maintaining sufficient lift was presented.

7.1 Further Research

The dynamic model presented in this thesis uses an inertial frame on the fixed point of

rotation and thus does not consider a spatially translating autogyro. A way to alleviate

this issue is by using the ground as the inertial frame of reference. By using a new position

vector from the inertial frame to the center of rotation plus the position vector to the center

of mass of each blade from the center of rotation, the new translational kinetic energy of the

system can be derived, Fig.7.1. The addition of this motion requires adjustments to the non-

conservative aerodynamic forces because the relative wind-velocities a blade will experience
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will depend on position. For a four blade system the coupled equations of motion will jump

from 10 first-order coupled differential equations to 16 coupled differential equations.

Other enhancements to the model include eliminating the approximation of the wing as a

cuboid and considering real airfoils with known inertias and better lift coefficients. Also,

incorporating the hub into the dynamics is an important aspect to study as it affects the

blade moments. Even though explicitly stated in [6] that the hub radius effects are negligible,

a thorough review must be done in order to be certain. Since the blades that are considered

in this thesis are relatively long, other aspects such as dynamic inflow as described in [52]

and blade bending and torsion that affect flight stability should be considered [51].
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A big concern with using an autogyro is the question of sufficient lift. A relatively simple

way to alleviate this issue is by using a multi-rotor configuration such as a quadrotor, Fig.7.2.
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Extensive literature on multi-rotor dynamics and control can be leveraged. The benefit of

using a quadrotor setup with flapping blades is the reduction of blade size. The smaller

configuration will allow for better maneuverability and agility in the presence of variable

wind fields. A generator on a quadrotor setup could serve a dual purpose of collecting

energy and controlling rotational speeds. While a normal powered quadrotor uses motors to

achieve uniform rotational speeds, an autogyro in a crosswind can use a generator to achieve

the same effect for rotors experiencing different wind speeds by controlling the generator

load. In the event of rotor failure the autogyro can still take advantage of autorotation to

land safely, which is an important aspect for flight safety.
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The difficult aspect of using a quadrotor relies on deriving the necessary equations of motion.

Although, dynamics of powered quadrotors have been thoroughly researched, incorporating

the dynamics of blade flapping add significant levels of complexity. However, deriving com-

plete and accurate dynamic models are the first steps to developing a control system. The

complexity of this system makes control difficult and merits further research.

63



APPENDIX A: CUBOID
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APPENDIX B: FOURIER COEFFICEINTS
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APPENDIX C: PARAMETERS
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Table C.1: General Simulation Parameters

Parameter Value Description
V 70 Wind Velocity (ft/s)
Wd 3000 Total weight of autogyro (lbs.)
Qe 0-1000 Generator Torque (lb.ft)
b 4 Number of blades
R 22.5 Blade radius (ft)
I1 334 Inertia about flapping hinge slug.ft2

c 1.833 Blade chord (ft)
K 0.5 Ratio of ν and ν1

B
R− 1

2
c

R
Non-dimensional Constant

a 5.85 Lift curve slope
σ Bc

πR
Rotor solidity

δ 0.0120 Mean airfoil drag coefficient

γ cρaR4

I
mass constant
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APPENDIX D: COMPLETE GENERALIZED FORCES
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Torque Forward Flow Region
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+ψ̇2λ2µ2 cos (β)2
)

sin (ψ)2
)
R4
)
a cos (β)

)
ρ (D.2)

Flapping Moment Forward Flow Region

Qβ1 = −1/24
((

4B3ψ̇µ sin (ψ) + 3B4ψ̇
)
R4β̇ −

(
3B4ψ̇2θ0 − 4

(
ψ̇2µ cos (ψ) sin (β)

−2ψ̇2µθ0 sin (ψ)− ψ̇2λ cos (β)
)
B3 + 6

(
ψ̇2µ2θ0 sin (ψ)2 −

(
ψ̇2µ2 cos (ψ) sin (β)

−ψ̇2λµ cos (β)
)

sin (ψ)
)
B2
)
R4
)
acρ cos (β) (D.3)
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Flapping Moment Reverse Flow Region

Qβ2 = −1/12
(
ψ̇R4β̇µ4 sin (ψ)4 +

(
ψ̇2µ4θ0 sin (ψ)4 − 2

(
ψ̇2µ4 cos (ψ) sin (β)

−ψ̇2λµ3 cos (β)
)

sin (ψ)3
)
R4
)
acρ cos (β) (D.4)

Thrust Forward Flow Region

T1 = −1/12
((

3B2ψ̇µ sin (ψ) + 2B3ψ̇
)
R3β̇ −

(
2B3ψ̇2θ0 − 3

(
ψ̇2µ cos (ψ) sin (β)

−2ψ̇2µθ0 sin (ψ)− ψ̇2λ cos (β)
)
B2 + 6

(
ψ̇2µ2θ0 sin (ψ)2 −

(
ψ̇2µ2 cos (ψ) sin (β)

−ψ̇2λµ cos (β)
)

sin (ψ)
)
B
)
R3
)
acρ (D.5)

Thrust Reverse Flow Region

T2 = 1/6
(
ψ̇R3β̇µ3 sin (ψ)3 +

(
2ψ̇2µ3θ0 sin (ψ)3 − 3

(
ψ̇2µ3 cos (ψ) sin (β)

−ψ̇2λµ2 cos (β)
)

sin (ψ)2
)
R3
)
acρ (D.6)
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