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ABSTRACT 

 
The mathematical operation of correlation is a very simple concept, yet has a very rich history of 

application in a variety of engineering fields. It is essentially nothing but a technique to measure 

if and to what degree two signals match each other. Since this is a very basic and universal task 

in a wide variety of fields such as signal processing, communications, computer vision etc., it has 

been an important tool. The field of pattern recognition often deals with the task of analyzing 

signals or useful information from signals and classifying them into classes. Very often, these 

classes are predetermined, and examples (templates) are available for comparison. This task 

naturally lends itself to the application of correlation as a tool to accomplish this goal. Thus the 

field of Correlation Pattern Recognition has developed over the past few decades as an important 

area of research.  

 

From the signal processing point of view, correlation is nothing but a filtering operation. Thus 

there has been a great deal of work in using concepts from filter theory to develop Correlation 

Filters for pattern recognition. While considerable work has been to done to develop linear 

correlation filters over the years, especially in the field of Automatic Target Recognition, a lot of 

attention has recently been paid to the development of Quadratic Correlation Filters (QCF). 

QCFs offer the advantages of linear filters while optimizing a bank of these simultaneously to 

offer much improved performance.  

 

This dissertation develops efficient QCFs that offer significant savings in storage requirements 

and computational complexity over existing designs. Firstly, an adaptive algorithm is presented 
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that is able to modify the QCF coefficients as new data is observed. Secondly, a transform 

domain implementation of the QCF is presented that has the benefits of lower computational 

complexity and computational requirements while retaining excellent recognition accuracy. 

Finally, a two dimensional QCF is presented that holds the potential to further save on storage 

and computations. The techniques are developed based on the recently proposed Rayleigh 

Quotient Quadratic Correlation Filter (RQQCF) and simulation results are provided on synthetic 

and real datasets. 
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CHAPTER ONE: INTRODUCTION 

 

Pattern recognition refers to the task of examining data for patterns and then classifying these 

patterns into classes or categories. While human beings, and other animals to a lower degree 

have a very powerful and robust pattern recognition system inherently built into them, 

researchers have looked into different ways of building similar systems as a first step to the 

ultimate goal to endow machines with intelligence and the ability to learn. Thus research into 

pattern recognition has become a big area under the broader umbrellas of machine learning and 

artificial intelligence. 

 

Research into pattern recognition has followed three broad approaches – statistical, syntactic and 

neural. The statistical approach is based on characterizing the underlying systems that generate 

the patterns in probabilistic terms, and using decision-theoretic techniques. On the other hand, 

syntactic or structural approaches are based on studying the relationships between features and 

by using grammatical inference and parsing. Finally, neural approaches try to mimic the human 

brain by trying to build highly parallel and interconnected systems based on the human brain. 

The pattern recognition area has matured a lot since its inception and great deal of literature has 

appeared in the form of books and monographs, [1] – [60]. 

 

Correlation pattern recognition has recently emerged as an important sub-area of statistical 

pattern recognition research [61]. As the name suggests, this area of research deals with methods 
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that make use of the mathematical operation of correlation to measure the degree of similarity 

between a stored or created template or reference signal and a new unknown signal. On the other 

hand, it is not to be interpreted as simple matched filtering. A review of the literature in this field 

reveals a plethora of techniques that have been derived by using concepts from several fields 

such as linear algebra, signal processing, estimation theory etc, [62]. Although most of the 

techniques developed have been in the Automatic Target Recognition (ATR) area, they have 

started gaining popularity in other areas, especially Biometrics. 

 

The field of ATR has received considerable attention over the years. The process of detecting 

and classifying objects of interest embedded in background clutter is a challenging task, 

especially since clutter is often the dominant component of Forward Looking Infrared (FLIR), 

Synthetic Aperture Radar (SAR) and Laser Radar (LADAR) images. There are many approaches 

to ATR that have been reported in the literature. Some techniques are based on modeling target 

signatures usually obtained after segmentation of images to extract objects of interest, [63]-[71]. 

Others involve feature extraction to implicitly recognize targets, [72]-[74]. In addition, many 

techniques have been reported that use neural networks, statistical methods, etc., or a 

combination thereof, [75]-[83]. Among methods that do not require segmentation, linear 

correlation filters have been both popular and successful, [84], [85]. These filters are inherently 

shift-invariant, and can be efficiently implemented either digitally or optically. On the other 

hand, multiple linear filters are required to account for wide variations of the target(s). In 

addition, each of the filters is usually synthesized separately leading to the computationally 

expensive and error prone task of searching multiple correlation planes independently. Recently, 
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ATR using Quadratic Correlation Filters (QCFs), received considerable attention, [86], [87]. 

These filters operate directly on image data without requiring segmentation or feature extraction, 

and retain the inherent shift-invariance of linear correlation filters. In addition, they considerably 

simplify the post-processing complexity required when using multiple linear correlation filters. 

The Rayleigh Quotient Quadratic Correlation Filter (RQQCF) technique was recently proposed 

that formulates the class separation metric as a Rayleigh quotient that is optimized by the QCF 

solution, [88], [89], [147]. As a result, the means of the two classes are well separated while 

simultaneously ensuring that the variance of each class is small. Chapter 2 of this dissertation 

gives a brief summary of the RQQCF method. 

 

In the RQQCF method, the filter coefficients are obtained from the eigenvectors of a matrix 

computed from the autocorrelation matrices of targets and clutter. When new data is required to 

be added, these filter coefficients have to be updated which implies that the Eigenvalue 

Decomposition (EVD) has to be repeated. It is desirable to have methods that eliminate the need 

to perform an EVD every time the matrix changes but instead update the EVD adaptively, 

starting from the initial EVD. Although there is no paper in the literature that reports an adaptive 

algorithm specifically for the RQQCF method, there are many contributions that address the 

more general problem of adaptive eigendecomposition. This problem is known by many names, 

among which the most common and popular are “Adaptive Eigenvalue Decomposition”, 

“Subspace Tracking”, ‘Adaptive PCA” and “Adaptive Karhunen-Loeve Transform”. These 

methods find applications in many areas in signal processing, like Spectral Estimation, Source 
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Localization, Pattern Recognition, Wireless Communications, etc. All the algorithms reported, 

generally fall under one of the following four broad categories, [105], [108]: 

• Classical batch EVD/SVD methods like QR algorithm, power iteration and Lanczos 

methods [77], [84], which are modified for adaptive processing, [99], [106], [107], [122]. 

• Rank-one updating algorithms like subspace averaging or reduced power iteration that 

find only some strong Eigenpairs, [109]-[113], [131], [145]. 

• Neural network based techniques that involve Hebbian or anti-hebbian learning, and 

lateral interaction, [96], [100], [101], [103], [117], [129], [130], [137], [138], [140] 

• Methods that approach this as a problem of constrained or unconstrained optimization. 

[94], [95], [97], [98], [102], [104], [114], [115], [121], [123], [124], [133]-[136], [141]-[144],  

Chapter 3 describes an approach that falls under the fourth category, i.e., 

constrained/unconstrained optimization. Among these, the most popular are the gradient-based 

algorithms like gradient descent, steepest descent, conjugate gradient, Newton-Raphson, and 

Recursive Least Squares (RLS). Each optimization method applied to a different objective 

function leads to a new algorithm. 

 

The RQQCF technique operates on spatial domain data. Furthermore, each two-dimensional data 

chip in the spatial domain is converted into a one-dimensional vector by the lexicographical 

ordering of the columns of the chip. This leads to two interrelated issues. Firstly, the spatial 

structure in the two-dimensional chip is lost by converting it into a vector as described above. 
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Secondly, the dimensionality (size) of the system is increased considerably. One way to tackle 

both these issues simultaneously is to synthesize the RQQCF in the transform or frequency 

domain. Transforms capture the spatial correlation in images, and de-correlate the pixels. 

Consequently, if the transforms are appropriately selected, they compact the energy in the image 

in relatively few coefficients. Thus spatial domain data is transformed into an efficient and 

compact representation. Chapter 4 describes a transform domain formulation of the RQQCF and 

illustrates its advantages by sample simulation results on Infrared (IR) data for an ATR 

application. 

 

Chapter 5 introduces the two dimensional (2D) RQQCF. In this approach, the aim is to reduce 

the computational complexity and storage requirements by keeping the dimensions of the target 

and clutter chips small. As opposed to the techniques described in Chapters 4 and 5, these target 

and clutter chips are not converted to vectors by lexicographical ordering of the columns at any 

stage. They are treated as 2D objects and the RQQCF formulation is appropriately changed. 

Sample results for a facial recognition/classification application illustrate the benefits and 

advantages of the proposed technique. Finally, Chapter 6 presents conclusions. 
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CHAPTER TWO: THE RAYLEIGH QUOTIENT QUADRATIC 
CORRELATION FILTER (RQQCF) 

 

As mentioned in the previous chapter, the Rayleigh Quotient Quadratic Correlation Filter 

(RQQCF) technique improves discrimination between classes by explicitly optimizing a class 

separation metric. The metric is a ratio of two quantities – the numerator is the difference 

between the expected values of the filter outputs for the two classes and the denominator is an 

upper bound on the variance of the two classes. This chapter briefly reviews this technique and 

presents some results that can be used for comparison with techniques presented in later 

chapters. 

 

The RQQCF Technique 

 

In the RQQCF technique, the QCF coefficient matrix T is assumed to take the form, 

∑
=

=
n

i

T
ii wwT

1
         (1)  

where, iw
, ni ≤≤1 , form an orthonormal basis set. The objective of the technique is to 

determine these basis functions such that the separation between the two classes, say X and Y, is 

maximized. The output of the QCF to an input vector u is given by 

uTuT=ϕ          (2) 
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The separation between the outputs when the inputs are from the target class, X and the outputs 

when the inputs are from the clutter class Y, is given by 

}{}{}{}{ 21 Y
T

YX
T

X uTuEuTuEEE −=− ϕϕ      (3) 

where, {.}jE is the expectation operator over the jth class, 

Substituting for T from Equation 1 into Equation 3, 
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where xR and yR  are the correlation matrices for targets and clutter respectively.  

An upper bound on the variance of the two classes is given by, 
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The objective is to maximize the ratio, 
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Taking the derivative of Equation 3 with respect to iw , and setting it to zero, we get 

iiiyxyx wwRRRR λ=−+ − )()( 1        (7) 

 

Let, 

)()( 1
yxyx RRRRA −+= −         (8) 

Thus iw  is an eigenvector of A with eigenvalue iλ . It should be noted that )(wJ is in the form of a 

Rayleigh Quotient which is maximized by the dominant eigenvector of A . The remaining n-1 

vectors are chosen from the n-1 eigenvectors of A in order of decreasing eigenvalues. These n 

eigenvectors can now be used to construct the QCF using Equation 2.  

 

In practice, M target and M clutter training sub-images, referred to as chips, are obtained from IR 

imagery. Each chip, having dimensions n x n , is converted into a 1-D vector of dimensions n 

x 1 by concatenating its columns. Target and clutter training sets of size n x M each, are obtained 

by placing the respective vectors in matrices. The n x n autocorrelation matrices of the target and 

clutter sets, xR  and yR are computed, and used to obtain A according to Equation 5. As a result, 

the eigenvalues of A vary from –1 to +1. The dominant eigenvalues for clutter, ciλ  , are close to 

or equal to -1 and those for targets, tiλ , are close to or equal to +1. The RQQCF coefficients, ciw  

and tiw , are mapped to the corresponding eigenvalues. In the original paper, the RQQCF is 
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correlated with an input scene to obtain a correlation surface from which the existence and 

location of the target is deduced. An efficient method to perform the correlation is discussed in 

the original paper, [88]. In this work though, to identify a data point as target or clutter, the sum 

of the absolute value of the k inner products of a data point with ciw  and tiw , pt and pc, are 

calculated. If pt > pc, the data point is identified as a target. Otherwise, it is identified as clutter.  

 

Simulation Results 

 

Some sample simulation results are presented using Infrared (IR) data from Lockheed Martin 

MFC. The dataset consists of several video sequences of tanks and other vehicles on interest in 

various cluttered backgrounds. We have chosen four of these videos – VIDEO 1, VIDEO 2, 

VIDEO 3 and VIDEO 4 to demonstrate some of the results of the RQQCF. Figures 2.1 (a)-(d) 

show sample frames from these videos. 
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Figure 2.1(a) Sample frame from Video 1 
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Figure 2.1(b) Sample frame from Video 2 
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Figure 2.1(c) Sample frame from Video 3 



 13

20 40 60 80 100 120

20

40

60

80

100

120

 

Figure 2.1(d) Sample frame from Video 4 

 

Table 2.1 shows the number of frames in each video and the number of target and clutter chips, 

M, obtained for each video. Target chips are obtained from each frame of a video using ground 

truth data that is available. For clutter, chips are picked from all areas of each frame of the video 

except the area(s) where the target(s) is/are located. While this results in a larger number of 

clutter chips than target chips, for our simulations, the number of clutter chips is chosen to be 

equal to the number of target chips for convenience sake. Note that the size of the autocorrelation 
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matrices depends only on the dimension of the data points and not on the number of data points. 

The size of each chip is 16x16. Figure 2.2 shows the distribution of eigenvalues obtained for the 

RQQCF for VIDEO 1. 

 

Table 2.1 Number of Frames and Number of Target and Clutter chips, M, for each video. 

 VIDEO 1 VIDEO 2 VIDEO 3 VIDEO 4 

Number 
of 

Frames 
388 778 410 300 

Number 
of Target 

and 
Clutter 

Chips, M 

409 763 405 391 
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Figure 2.2 Distribution of eigenvalues corresponding to VIDEO 1 

Figures 2.3 – 2.6 show the responses of representative target and clutter points from VIDEOS 1- 

4 respectively. 
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Figure 2.3(a) VIDEO 1: Response of a representative target vector versus the index of the 

dominant eigenvectors 
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Figure 2.3(b) VIDEO 1: Response of a representative clutter vector versus the index of the 

dominant eigenvectors 
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Figure 2.4(a) VIDEO 2: Response of a representative target vector versus the index of the 

dominant eigenvectors 
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Figure 2.4(b) VIDEO 2: Response of a representative clutter vector versus the index of the 

dominant eigenvectors 
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Figure 2.5(a) VIDEO 3: Response of a representative target vector versus the index of the 

dominant eigenvectors 
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Figure 2.5(b) VIDEO 3: Response of a representative clutter vector versus the index of the 

dominant eigenvectors 
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Figure 2.6(a) VIDEO 4: Response of a representative target vector versus the index of the 

dominant eigenvectors 
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Figure 2.6(b) VIDEO 4: Response of a representative clutter vector versus the index of the 

dominant eigenvectors 

 

Simulation results were performed for varying number of training and testing images. It was 

found that in general, the accuracy of the RQQCF was excellent for different scenarios where the 

training set size was varied. 

 

Figures 2.7 – 2.10 show how the recognition rate, i.e. accuracy (in %) varies as a function of the 

number of training chips, i.e. the size of the training set, for the four videos, VIDEO 1 - 4. The 
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rates shown are averaged over several simulation runs, where the training set is picked from the 

available set randomly each time. 

 

Accuracy versus Training set size (Spatial Domain)
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Figure 2.7 VIDEO 1: Accuracy (%) versus training set size 
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Accuracy versus Training set size (Spatial Domain)
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Figure 2.8 VIDEO 2: Accuracy (%) versus training set size 
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Figure 2.9 VIDEO 3: Accuracy (%) versus training set size 
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Accuracy versus Training set size (Spatial Domain)
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Figure 2.10 VIDEO 4: Accuracy (%) versus training set size 

 

It is seen that the accuracy of the RQQCF is generally excellent, except when the size of the 

training set is close to or lesser than the size (dimension) of the data points themselves. This is to 

be expected because, as the size of the training set drops, the estimates of class statistics become 

poorer.  
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Summary 

 

A brief summary of the Rayleigh Quotient Quadratic Correlation Filter (RQQCF) technique was 

presented. The technique is an elegant way of optimizing a bank of linear filters simultaneously 

to give a single response (correlation) surface from which decisions can be made. It requires no 

explicit segmentation and is very robust in even low contrast images. It has excellent recognition 

performance overall when the number of training and testing images are varied. 
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CHAPTER THREE: AN ADAPTIVE ALGORITHM FOR THE RQQCF 

 

The QCF filter coefficients obtained using the RQQCF technique described in the previous 

chapter, are based on a training set of targets and clutter. The problem arises when the system is 

required to recognize new targets or operate in a new environment. In such cases, the target or 

clutter set has to be updated and in turn, the EVD. Undoubtedly, it is highly desirable to avoid 

solving the EVD problem from scratch again, since it may incur a large amount of computation. 

In this chapter, an adaptive technique called the Optimal Adaptive Eigenvalue Decomposition 

(OAEVD) is proposed that utilizes the old EVD to search for the new EVD. The technique 

avoids matrix inversion and direct EVD, thus providing substantial computational savings. In 

addition, it eliminates the need for storing old target and clutters sets, and allows us to solve only 

for as many eigenvalues and corresponding eigenvectors as desired, for e.g., the most significant 

eigenvalues and corresponding eigenvectors. Computer simulations confirm the effectiveness of 

the proposed technique.  

 

OAEVD - Formulation 

 

The perturbed EVD problem in the RQQCF involves decomposing the time-varying matrix, 

)()( 1
yxyx RRRRA −+= −         (9) 

where, Rx and Ry are the autocorrelation matrices of the target and the clutter sets respectively, 

which change with the addition of new targets or new clutter or both. 
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The first step in our adaptive formulation is to identify a “Cost Function” to be minimized when 

new data is incorporated. According to Equation 9, we choose the following as our “Error 

Signal”: 

)()]([)( jwRRRRje iyxiyx +−−= λ        (10) 

where, )( je  is an M by 1 vector, iλ  and )( jwi  are the ith Eigenvalue and the corresponding 

Eigenvector respectively. So the cost function is )()( jejeT , which is the energy in our error 

signal.    

 

Since there are two variables in the error signal, namely, iλ and )( jwi , a simple way to tackle this 

adaptive problem is to keep one variable constant in one iteration while updating the other, and 

then vice versa, i.e., we use the updated )( jwi , to update iλ  during the same iteration.  

 

Assuming that the changes in iλ  and )( jwi  are small, we derive the Taylor series expansion for 

)1( +je  in terms of )( je  and its partial derivatives with respect to )( jwi  and iλ : 

)(
)(
)()(

)(
)()()1( ,

1 ,

j
j
jejw

jw
jejeje i

i

l
ki

M

k ki

l
ll λ

λ
Δ

∂
∂

+Δ
∂
∂

+=+ ∑
=     (11) 

where, l = 1, …, M.  Writing (11) for l = 1, …, M: 
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)()()(][)()1( 221 jjwSjwSSjeje iiii λλ Δ−Δ−+=+
     (12) 

where, yxyx RRSRRS +=−= 21 ; .  

 

Now, to update iλ , )( jwi  is kept constant. Therefore, Equation 12 becomes 

)()()()1( 2 jjwSjeje ii λΔ−=+        (13) 

 

To update )( jwi , iλ  is kept constant. In this case, Equation 12 becomes 

)(][)()1( 21 jwSSjeje ii Δ−+=+ λ        (14) 

 

In addition, we incorporate another constraint on )( jwiΔ  and iλΔ - they should be proportional 

to the negative gradient of the cost function in the jth iteration, )()( jejeT , with respect to )( jwi  

and iλ , respectively. Therefore,  

)(][)(2
)(

])()([
)( 122 jwSSSjwk

j
jeje

kj ii
T
ii

i

T

ii −−=
∂

∂
−=Δ λ

λ
λ λλ    (15) 

)(][][2
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][)( jeSMU

Mjw
jeje

MUjw j
i

T

ji −=
∂

∂
−=Δ     (16) 
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In Equation 16, 21 SSS iλ−= , and  

1( ) ..... 0
[ ] ..... ..... .....

0 ..... ( )

B

j

BM

j
MU

j

μ

μ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

       (17) 

 

Substituting Equation 15 into Equation 13, we can write  

])(2)(][)(2)([)1()1( jVkjejVkjejeje i
T

i
TT

λλ ++=++     (18) 

This is a quadratic function of 
i

kλ , so the optimum 
i

kλ is given by: 

)()(
)()(

5.0
jVjV
jejV

k T

T

i
−=λ          (19) 

where, 

)(])()([)()( 2122 jwSSjwSjwjwSjV i
T
i

T
iii

T −= λ      (20) 

Substituting Equation 19 into Equation 15, we obtain the update equation for iλΔ . To update 

)( jwi , substitute Equation 16 into Equation 14, we can write,  

321)1()1( AAAjejeT ++=++        (21) 

where,  
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)()(1 jejeA T= ,          (22) 

)(][)(4
2 jqMUjq

M
A j

T−=         (23) 

)(][][][)(4
23 jqMURMUjq

M
A jjj

T=       (24) 

where, )(][)( jeSjq =  and 2][][ SR j = . 

Taking the derivative of Equation 21 with respect to each )( jBlμ , and setting it to zero: 

)(][
2

)(][ 1* jqRMjqMU
jj
−=         (25) 

Substituting Equation 25 into Equation 16, 

)(][)( 1 jqRjw
ji
−−=Δ          (26) 

 

Therefore, the final update equations are: 

)(][)(
)()(
)()(

)( 122 jwSSSjw
jVjV
jejV

j ii
T
iT

T

i −=Δ λλ      (27) 

)(][)( 1 jqRjw ji
−−=Δ          (28) 

The above algorithm avoids the EVD required for the new A matrix, but it still needs the inverse 

of [R], which is of the same dimensionality as the data points. In fact, we notice that the above 
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solution can be obtained equivalently by setting 0)1( =+je  in Equation 13 and Equation 14. 

Thus, this is not a truly iterative solution.  

 

To obtain a truly adaptive solution, direct matrix inversion has to be avoided. To this end, we 

approximate the inverse of matrix [R] by a diagonal matrix containing the reciprocals of [R]’s 

diagonal elements. Additionally, a convergence factor μ is introduced in the update equations to 

ensure reliable convergence.  

Thus the update equations become: 

)(][)(
)()(
)()(

)( 122 jwSSSjw
jVjV
jejV

j ii
T
iT

T

i −=Δ λμλ      (29) 

)(][)( jqBjwi μ−=Δ          (30) 

where, ]][/1[][ RdiagdiagB = . 
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OAEVD - Simulation Results for Synthetic Data 

 

The adaptive algorithm was tested using various 1D and 2D synthetic datasets. Sample results 

each for three of the datasets is presented. The algorithm was found to be successful in extensive 

simulations. 

Dataset 1: Dataset 1 consists of strings of binary digits, 15 bits long. A pattern of 3 bits of the 

form “1 1 1” is considered a target. The target set consists of all 15 bit strings containing a “1 1 

1” with the pattern placed in a different position in each string. All other bits are set to zero. For 

example, “1 1 1 0 0 0 0 0 0 0 0 0 0 0 0”, is a string in the target set. A pattern of 3 bits of the 

form “0 1 0” is considered clutter. The clutter set consists of all 15 bit strings containing a “0 1 

0” with the pattern placed in a different position in each string. All other bits set to zero. For 

example, “0 1 0 0 0 0 0 0 0 0 0 0 0 0 0”, is a string in the clutter set. Thus, we obtain 13 

combinations each for the target and clutter sets. To solve potential rank deficiency problems 

with the dataset, data points corrupted with Gaussian random noise of small magnitude are also 

incorporated into both target and clutter sets. As a result, the target and clutter data sets now have 

dimensionality of 26 x 15. Thus, M, n and k are 26, 15, and 15 respectively The new data point 

to be incorporated is chosen to be a reasonable variation of the strings used in the training set, for 

example, “1 0 0 0 0 0 0 0 0 0 0 0 0 1 1”.  

 

Dataset 2: In Dataset 2, the target set consists of 512 discrete sinusoids each of length 64. Each 

data point is a sinusoid of a different frequency. The frequency of the sinusoids increases from 
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the first data point to the last. The clutter set consists of 512 data points, each of which is a vector 

of random noise having a Gaussian distribution. The first 128 points of the target and clutter set 

are used to form the initial autocorrelation matrices. The remaining points are used as new data 

points. . Thus, M, n and k are 128, 64, and 10 respectively 

 

Dataset 3: For the target set, chips of size 5x5 each containing random noise with a Gaussian 

distribution are generated. A string of the form “1 1 1”, considered a target, is embedded in a 

different position in each chip to obtain different target chips. For the clutter set, another set of 

chips containing random noise with a Gaussian distribution are generated. Thus, we obtain thirty 

target and thirty clutter data points. The first twenty-five data points in each set are used to form 

the initial autocorrelation matrices. The remaining points are used as new data. Figure 3.1 and 

Figure 3.2 show sample target and clutter chips, respectively. As explained in Section 2, these 

two-dimensional chips are converted into one-dimensional vectors, each of dimensions 25x1. 

Thus, M, n and k are 25, 25, and 10 respectively 

 

Figure 3.1 Sample target chip from Dataset3 
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Figure 3.2 Sample clutter chip from Dataset3 

 

For each of the datasets, the matrix A is computed according to Equation 1. The EVD of A is 

performed to obtain the initial iλ ’s and iw ’s. Then, the new data points are added and the 

adaptive algorithm is used to track the changes in the iλ ’s and iw ’s. For the sake of evaluating the 

new algorithm, the iλ̂ ’s and iŵ ’s obtained from the OAEVD algorithm are compared with the 

exact values ieλ ’s and iew ’s obtained by recalculating A, and performing the actual EVD. 

Adaptation is terminated when the change in the eigenvectors from one iteration to the next falls 

below a certain threshold ε. All simulations are performed using MATLAB 7.  

 

Dataset 1: A new data point 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1” is added to the initial set of data points. 

To make iλΔ  reasonably small, the new data point is de-emphasized by introducing a scaling 

factor. In the experiment, it is found that 10-4 is a good scaling factor. The new perturbed target 

autocorrelation matrix is obtained. The OAEVD is used to calculate the iλ̂ ’s and iŵ ’s. All the 15 
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target and clutter eigenpairs are computed. µ and ε used are 0.1 and 1e-15, respectively. The 

result is summarized below. 

iλ = -1.0000, -0.9999, -0.7446, -0.6774, -0.2619, -0.2580, -0.0412, 0.1637, 0.4554, 0.6226, 

0.7150, 0.7668, 0.7918, 1.0000, 1.0000 

ieλ = -1.0000, -0.9999, -0.7529, -0.6874, -0.2794, -0.2755, -0.0601, 0.1452, 0.4403, 0.6109, 

0.7056, 0.7589, 0.7847, 1.0000, 1.0000 

iλ̂ = -1.0000, -0.9999, -0.7529, -0.6874, -0.2794, -0.2755, -0.0601, 0.1452, 0.4403, 0.6109, 

0.7056, 0.7589, 0.7847, 1.0000, 1.0000 

iter = 2, 1, 473, 331, 879, 685, 316, 891, 381, 353, 394, 452, 586, 1, 6 

In the sample result, it was found that the eigenvectors, obtained using the OAEVD algorithm, 

iŵ , were identical to iew .  

 

Dataset 2: One new data point is added to the initial target set of 128 points. The new perturbed 

target autocorrelation matrix is obtained. The OAEVD is used to calculate the iλ̂ ’s and iŵ ’s. Five 

dominant target and clutter eigenpairs are computed. µ and ε used are 0.1 and 1e-25, 

respectively. The result is summarized below. 

 

iλ = -1.0000, -0.9999, -0.9986, -0.9892, -0.8723, 0.5821, 0.6518, 0.6685, 0.7140, 0.7468 
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ieλ = -1.0000, -0.9999, -0. 9983, -0.9892, -0.8711, 0.5806, 0.6510, 0.6663, 0.7123, 0.7453 

iλ̂ = -1.0000, -0.9999, -0.9983, -0.9892, -0.8711, 0.5806, 0.6510, 0.6663, 0.7123, 0.7453 

iter = 1, 5, 2, 51, 29, 562, 426, 459, 730, 579 

 

In the sample result, it was found that the eigenvectors, obtained using the OAEVD algorithm, 

were successfully able to distinguish between target and clutter. Please note that the 

eigenvectors, iw , iŵ & iew  are not given because of space constraints. Figure 3.3 and Figure 3.4 

show plots of the absolute value of the inner product of the new data point that was added, with 

iŵ and iew , respectively. There is a good match between the two plots. 
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Fig 3.3 (Dataset 2) Absolute value of inner product of the new target vector with iŵ versus i, the 

index of the Eigenvectors. The first five Eigenvectors correspond to clutter (eigenvalues close to 

-1) and the next five correspond to target (eigenvalues close to +1). 
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Figure 3.4 (Dataset 2) Absolute value of inner product of the new target vector with iew versus i, 

the index of the Eigenvectors. The first five Eigenvectors correspond to clutter (eigenvalues 

close to -1) and the next five correspond to target (eigenvalues close to +1). 
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Dataset 3: One new data point is added to the initial target set of 25 points. The new perturbed 

target autocorrelation matrix is obtained. The OAEVD is used to calculate the iλ̂ ’s and iŵ ’s. Five 

dominant target and Five dominant clutter eigenpairs are computed. µ and ε used are 0.1 and 1e-

25, respectively. The result is summarized below. 

iλ = -0.9772, -0.9651, -0.8899, -0.8774, -0.8317, 0.8555, 0.9459, 0.9482, 0.9710, 0.9997 

ieλ = -0.9768, -0.9340, -0.8932, -0.8617, -0.6847, 0.8531, 0.9444, 0.9463, 0.9719, 0.9997 

iλ̂ = -0.9768, -0.9340, -0.8932, -0.8619, -0.6745, 0.8530, 0.9444, 0.9463, 0.9719, 0.9997 

iter = 132, 237, 107, 156, 261, 65, 123, 172, 12 

 

In the sample result, it was found that the eigenvectors, obtained using the OAEVD algorithm, 

were successfully able to distinguish between target and clutter. Please note that the 

eigenvectors, iw , iŵ & iew  are not given because of space constraints. Figure 3.5 and Figure 3.6 

show plots of the absolute value of the inner product of the new data point that was added, with 

iŵ and iew , respectively. There is a good match between the two plots. Figure 3.7 and Figure 3.8 

show the corresponding plots for a clutter point randomly selected from the training set.  

                                      



 43

 

Figure 3.5 (Dataset 3) Absolute value of inner product of the new target vector with iŵ versus i, 

the index of the Eigenvectors. The first five Eigenvectors correspond to clutter (eigenvalues 

close to -1) and the next five correspond to target (eigenvalues close to +1). 
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Figure 3.6 (Dataset 3) Absolute value of inner product of the new target vector with iew versus i, 

the index of the Eigenvectors. The first five Eigenvectors correspond to clutter (eigenvalues 

close to -1) and the next five correspond to target (eigenvalues close to +1). 
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Figure 3.7 (Dataset 3) Absolute value of inner product of a clutter vector with iŵ versus i, the 

index of the iŵ ’s. The first five Eigenvectors correspond to clutter (eigenvalues close to -1) and 

the next five correspond to target (eigenvalues close to +1). 
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Figure 3.8 (Dataset 3) Absolute value of inner product of a clutter vector with ieŵ versus i, the 

index of the ieŵ s. The first five Eigenvectors correspond to clutter (eigenvalues close to -1) and 

the next five correspond to target (eigenvalues close to +1). 
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OAEVD - Simulation Results for Infrared (IR) Data 

 

The adaptive algorithm was also tested using some Infrared (IR) data provided by Lockheed 

Martin, MFC. This data consists of an Infrared (IR) video sequence (388 frames, each of size 

126x126) of a target (tank) as a camera approaches it.  Sample frames are shown in Figures 3.9 

& 3.10. 
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Figure 3.9 Sample frame 1 
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Figure 3.10 Sample frame 2 

The idea is to use a certain number of frames as data for the training set, and the remaining 

frames as the new data. 16x16 chips of target and clutter are extracted from these frames. We 

obtain 409 target chips and 16,541 clutter chips. The reason for having a much larger number of 

clutter chips is because we have the freedom of picking anything that is not a target, as clutter. 

Therefore in each frame, we can pick multiple clutter chips compared to a few (sometimes one) 

target chip. Sample target and clutter chips are given in Figures 3.11 & 3.12 respectively. 
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Figure 3.11 A sample target chip       
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Figure 3.12 A sample clutter chip 

Each chip is then converted into a 1D vector (256x1) by placing the columns one below the 

other. The target set and the clutter set are formed, by placing the respective chip vectors as 

columns of a matrix. Thus the dimensions of the target set and the clutter set are 256x409 and 

256x16541 respectively. 

 

Some sample results are presented below. The first 350 data points of the target and clutter sets 

are used to form the initial target and clutter autocorrelation matrices (Rx and Ry) respectively. 

The A matrix is computed according to (1), and the Eigenvalue Decomposition of A is 

performed to obtain the initial set of eigenvalues and eigenvectors. Then, new data point(s) is/are 
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added and the OAEVD is used to track the changes in the eigenvalues and eigenvectors. For the 

sake of evaluating the result, we compare the results of the OAEVD with the results obtained by 

performing the actual EVD on A_hat. In the simulation results, the following notation is used: 

“lambda_orig” - initial eigenvalues 

“W_orig” - initial eigenvectors 

“lambda_hat_acc” – accurate eigenvalues 

“W_hat_acc” - accurate eigenvectors 

“lambda_hat” - eigenvalues obtained from the adaptive algorithm 

 “W_hat” – eigenvectors obtained from the adaptive algorithm 

“iter” stands for the number of iterations. 

Following the method in [88], we only track a few dominant eigenpairs, in this case 12. 

Adaptation is terminated when the change in the eigenvectors from one iteration to the next falls 

below a certain threshold epsilon. μ is the convergence factor as explained in the Formulation. 

All simulations are done using MATLAB 7. 

 

Sample Result 1: 

In Sample Result 1, one new data point (no. 351) is now incorporated into the target set, the new 

(perturbed) target autocorrelation matrix is obtained, and the A matrix is recalculated. The 
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OAEVD algorithm is now applied to calculate the new eigenvalues and eigenvectors 

corresponding to the modified A matrix. 

Initial Target & Clutter sets – 350 points 

Add 1 new target point – no. 351 

Track 6 +ve and 6 –ve Eigenpairs, µ=0.001; epsilon=1e-16; Test point: No. 351 

lambda_orig (initial eigenvalues) = 

-0.9978   -0.9754   -0.9723   -0.9667   -0.9635   -0.9570    0.9923    0.9958    0.9965    0.9979    

0.9989    0.9991 

lambda_hat_acc (obtained by direct eigendecomposition) = 

 -0.9978   -0.9754   -0.9721   -0.9659   -0.9632   -0.9530    0.9924    0.9958    0.9965    0.9979    

0.9989    0.9991 

lambda_hat (obtained from the OAEVD algorithm) = 

-0.9978   -0.9754   -0.9721   -0.9660   -0.9632   -0.9531    0.9924    0.9958    0.9965    0.9979    

0.9989    0.9991 

iter (number of iterations) = 

 2     8    25    11    13    14     3     3     2    26     2     3 

Please note that the Eigenvectors (W_hat, W_hat_acc & W_hat) are not listed because the 

matrices are too large. 
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Sample Result 2: 

In Sample Result 2, five new data points (no. 351-355) are now incorporated into the target set, 

the new (perturbed) target autocorrelation matrix is obtained, and the A matrix is recalculated. 

The OAEVD algorithm is now applied to calculate the new eigenvalues and eigenvectors 

corresponding to the modified A matrix. 

Initial Target & Clutter sets – 350 points 

Add 5 new target points – no. 351-355 

Track 6 +ve and 6 –ve Eigenpairs, µ=0.001; epsilon=1e-16; Test point: No. 351 

lambda_orig (initial eigenvalues) = 

-0.9978   -0.9754   -0.9723   -0.9667   -0.9635   -0.9570    0.9923    0.9958    0.9965    0.9979    

0.9989    0.9991 

lambda_hat_acc (obtained by direct eigendecomposition) = 

 -0.9978   -0.9747   -0.9715   -0.9633   -0.9612   -0.9533    0.9927    0.9958    0.9966    0.9979    

0.9989    0.9991 

lambda_hat (obtained from the OAEVD algorithm) = 

-0.9978   -0.9747   -0.9716   -0.9632   -0.9610   -0.9532    0.9927    0.9958    0.9966    0.9979    

0.9989    0.9991 
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iter (number of iterations) = 

12    19    13    21    13    17     6     2     5     4     2    21 

 

Since the filter coefficients of the RQQCF are obtained from the Eigenvectors of A, it is 

expected that the absolute value of the inner product (response) of a target data point with each 

of the Eigenvectors of A, that correspond to the Eigenvalues close to +1, should be a large 

number compared to the absolute value of the inner product of a clutter data point with the same 

Eigenvectors. Conversely, the inner product of a clutter data point with each of the Eigenvectors 

corresponding to Eigenvalues close to -1, should be a large number compared to the inner 

product of a target point with the same Eigenvectors. 

 

In Figures 3.13 – 3.18, the X-axis is the index of the Eigenvectors. The Y-axis is the absolute 

value of the inner product between a data point and the Eigenvectors. Also, the first six 

Eigenvectors correspond to clutter (eigenvalues close to -1) and the next six correspond to target 

(eigenvalues close to +1). 

 

Figure 3.13 shows a plot of the absolute value of inner product of the 351st target vector (which 

was the new data point that was added) with W_hat & Figure 3.14 shows a plot of the absolute 

value of inner product of the same data point with W_hat_acc.  
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Figure 3.13 Absolute value of inner product of the 351st target vector (which was the new data 

point that was added) with W_hat 

 



 56

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

12

14

16
Response of Target to W  hat acc

 

Figure 3.14 Absolute value of inner product of the same data point with W_hat_acc 

 

Figure 3.15 shows the absolute value of inner product of the 200th clutter vector with W_hat & 

Figure 3.16 shows the absolute value of inner product of the same data point with W_hat_acc. 

Clutter data point 200 was chosen randomly just to illustrate how the response/inner product of a 

clutter data point with the Eigenvectors is different from that of a target data point. 
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Figure 3.15 Absolute value of inner product of the 200th clutter vector with W_hat 
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Figure 3.16 Absolute value of inner product of the same data point with W_hat_acc 

 

As can be seen, the inner product of a target vector with eigenvectors 7 to 12 results in higher 

values overall than the inner product of a target vector with eigenvectors 1 to 6, and reciprocally, 

the inner product of a clutter vector with eigenvectors 1 to 6 results in higher values overall than 

the inner product of a clutter vector with eigenvectors 7 to 12. 

 

In addition, there is a good match between the response using W_hat_acc (obtained from the 

direct Eigendecomposition of the updated A matrix) and  W_hat (obtained from the OAEVD). 
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Figures 3.17 & 3.18 correspond to Sample Result 2. Figure 3.17 shows a plot of the absolute 

value of inner product of the 351st target vector (which was one the new data point that was 

added) with W_hat & Figure 3.18 shows a plot of the absolute value of inner product of the same 

data point with W_hat_acc. 

 

 

Figure 3.17 Absolute value of inner product of the 351st target vector (which was one the new 

data point that was added) with W_hat 
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Figure 3.18 absolute value of inner product of the same data point with W_hat_acc 

 

Summary 

 

A novel algorithm for adaptive ATR based on the RQQCF technique was presented. When a few 

new data points have to be incorporated, the OAEVD algorithm provides substantial 

computational savings when tracking changes in the EVD. This is accomplished by using the old 

Eigenvalues and Eigenvectors to search for the new ones thus eliminating the need to perform 

matrix inversion, and direct EVD. The computational complexity of the Inversion and EVD 
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operations is of the order O(n3) for each operation, where n is the dimensionality of the 

correlation matrices. The computational complexity of the OAEVD is of the order O(n2k), where 

k is the number of eigenpairs to be tracked. The OAEVD algorithm can track any desired 

number of eigenpairs, although in practice only the dominant ones are needed. Additionally, the 

OAEVD algorithm can track them independent of each other, lending itself to parallel 

implementations. Sample results using synthetic and real IR datasets confirm the excellent 

properties of the OAEVD. 
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CHAPTER FOUR: THE TRANSFORM DOMAIN RQQCF (TDRQQCF) 

 

As can be seen from the Chapter 2, the RQQCF technique operates on spatial domain data. 

Furthermore, each two-dimensional data chip in the spatial domain is converted into a one-

dimensional vector by the lexicographical ordering of the columns of the chip. This leads to two 

interrelated issues. Firstly, the spatial structure in the two-dimensional chip is lost by converting 

it into a vector as described above. Secondly, the dimensionality of the system is increased 

considerably. One way to tackle both these issues simultaneously is to synthesize the RQQCF in 

the transform or frequency domain. Transforms capture the spatial correlation in images, and de-

correlate the pixels. Consequently, if the transforms are appropriately selected, they compact the 

energy in the image in relatively few coefficients. Thus spatial domain data is transformed into 

an efficient and compact representation. 

   

Transform Domain Processing 

 

In the transform operation, a block of data is transformed into another representation which 

compacts the energy in the input, in a relatively few coefficients. These coefficients are further 

processed depending on the application, for e.g., in compression, these coefficients are encoded 

using quantization to achieve compression. The transform operation can be viewed as a method 

to obtain a sequence or a block of approximately uncorrelated coefficients from a highly 

correlated input sequence or block by removing the redundancy in the input signal. For images, 
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the transforms are applied to either the entire image or sub-images extracted from the image. 

Since an image or a sub-image is a two-dimensional block of pixels, image transforms are also 

two-dimensional. Generally, all two-dimensional (2D) transforms in use today are separable, i.e., 

the 2D transform is implemented as two one-dimensional transforms, each along a different 

dimension of the input block [148], [149]. A general 2D transform is given as, 

 

[J] = [T] [I] [T]T         (31) 

 

where, [I] is a 2D array of pixel values, [T] is the matrix containing the basis vectors and [J] is 

the transformed matrix. 

 

Transform Efficiency 

 

As mentioned earlier, the application of a 2D transform to a block of pixels results in a reduction 

of correlation and therefore with an appropriate coding scheme for the transform coefficients, 

compression can be achieved. The selection of a transform for a particular application depends to 

a large extent on two things – complexity of processing and energy packing ability. An optimal 

transform in terms of complexity would obviously be one that is very simple to implement. An 

optimal transform, in an energy packing sense, would be the one that would pack the energy in 

the least number of coefficients.  
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Specific transforms for Images 

 

Many transforms have been developed and reported in the literature in the context of image 

compression. Some of these are the Discrete Fourier Transform (DFT), the Discrete Cosine 

Transform (DCT), the Discrete Sine Transform (DST), the Discrete Hadamard Transform 

(DHT), the Karhunen-Loeve transform, also known as the Hotelling transform. It has been found 

that among these, the Karhunen-Loeve transform (KLT) is the most efficient in terms of energy 

compaction. It is optimum in the sense that it packs the most energy in the least number of 

coefficients, it minimizes the total entropy of the image and it completely decorrelates the pixels 

in the image [150]. In spite of this obvious advantage, the KLT has many implementation 

shortcomings, including the fact that its basis functions are dependent on the second order 

statistics and the size of the image. This makes it undesirable for image coding applications in 

general. Among the other transforms listed earlier, the DCT, [90], is found to be the closest to 

the KLT in terms of energy packing efficiency while being image independent. It is also a real 

transform unlike the complex DFT. The DCT is widely used since it has desirable properties as 

well as fast implementations. The DCT used in this work, is defined for an input image A and 

output image B, each of size M x N, as follows, 
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For 0=q , Nq /1=α , and for 11 −≤≤ Nq , Nq /2=α . 

 

Figure 4.1 compares 1-d basis functions for various transforms for a signal of length eight. 

Figure 4.2 shows the 8x8 2-D basis functions of the DCT.  

 

 

Figure 4.1 Comparison of 1-d basis functions for a signal of size N = 8 (from [149]) 
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Figure 4.2 8x8 2-D basis functions of the DCT 
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The TDRQQCF Algorithm 

 

The TDRQQCF technique proceeds as follows: 

1. Each target chip, xC , and clutter chip, yC , is first transformed using the DCT to obtain 

xtC and ytC . It is seen that most of the energy in xtC and ytC  is concentrated in the top 

left corner. In addition, the distribution of energy for targets and clutter differ from each 

other. 

2. Each xtC and ytC  is truncated to an appropriate size and converted to a one-dimensional 

vector by lexicographically ordering the columns. Thus, vectors of reduced 

dimensionality compared to the spatial domain case, are obtained. In addition, these 

vectors are very efficient representations of the spatial domain chips. 

3. The autocorrelation matrices, xtR and ytR  are computed, and used to obtain tA  according 

to Equation 5. We note that since the dimensions of the target and clutter vectors are 

much smaller than in the spatial domain case, the dimensionality of the autocorrelation 

matrices, xtR and ytR , and therefore tA , are correspondingly reduced. 

4. The Eigenvalue Decomposition (EVD) is performed on tA  to obtain the QCF 

coefficients. The QCF coefficients thus obtained are in the DCT domain.  
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Figure 4.3 shows the steps of the TDRQQCF. 

 

Figure 4.3 Steps of the TDRQQQCF 

 

Figure 4.4(a) shows a 16x16 target chip in the spatial domain. Figure 4.4(b) shows the same chip 

after transformation to the DCT domain. Note the concentration of the energy in the chip in a 

very small number of coefficients in the DCT domain. 
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Figure 4.4(a) A sample target chip in the spatial domain 
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Figure 4.4(b) Target chip corresponding to previous figure in the DCT domain 

 

Simulation Results 

 

The TDRQQCF was tested on various Infrared video sequences provided by Lockheed Martin, 

Missile and Fire Control, (LMMFC). Sample results are presented from four video sequences to 

illustrate the performance of the proposed technique. Figure 4.5a - 4.5d show sample frames 

from the different videos. 
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Figure 4.5(a) Sample frame from Video 1 
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Figure 4.5(b) Sample frame from Video 2 
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Figure 4.5(c) Sample frame from Video 3 
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Figure 4.5(d) Sample frame from Video 4 

Table 4.1 shows the number of frames in each video and the number of target and clutter chips, 

M, obtained for each video. Target chips are obtained from each frame of a video using ground 

truth data that is available. For clutter, chips are picked from all areas of each frame of the video 

except the area(s) where the target(s) is/are located. While this results in a larger number of 

clutter chips than target chips, for our simulations, the number of clutter chips is chosen to be 

equal to the number of target chips for convenience sake. Note that the size of the autocorrelation 

matrices depends only on the dimension of the data points and not on the number of data points. 
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Table 4.1 Number of Frames and Number of Target and Clutter chips, M, for each video. 

 VIDEO 1 VIDEO 2 VIDEO 3 VIDEO 4 

Number 
of 

Frames 
388 778 410 300 

Number 
of Target 

and 
Clutter 

Chips, M 

409 763 405 391 

 

 

The size of each chip is 16x16, i.e., n =16 and n=256. Figure 4.6 illustrates the advantage of 

transforming a target chip from VIDEO 1, using the 2D DCT before converting the transformed 

chip into a 1D vector, Figure 4.6b, versus converting the chip into a 1D vector first and then 

applying the 1D DCT, Figure 4.6a.  
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Figure 4.6(a) DCT coefficients obtained by converting a 2D target chip into a 1D vector before 

applying the 1D DCT 
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Figure 4.6(b) DCT coefficients obtained by first transforming the chip using the 2D DCT and 

then converting it to a 1D vector 

 

It can be seen that first transforming the 2D chip results in better energy compaction, leading to 

efficient representation. Figure 4.7a and 4.7b show corresponding plots for a clutter point from 

VIDEO 1. 
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Figure 4.7(a) VIDEO 1: (a) DCT coefficients obtained by converting a 2D clutter chip into a 1D 

vector before applying the 1D DCT 
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Figure 4.7(b) VIDEO 1: DCT coefficients obtained by first transforming the chip using the 2D 

DCT and then converting to a 1D vector 

 

Tables 4.2 to 4.5 show, for IR Videos 1 to 4, respectively, the average energy in sub-images of 

different sizes, retaining the low spatial frequency region, of the transformed 16x16 chips. From 

these tables, 75% to 90% of the energy is concentrated in 25% of the transformed chips. Also, 

the target energy is slightly more compressed in the transform domain. In addition, the energy 

distribution for target chips is different from that for clutter chips. 
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Table 4.2 VIDEO 1: Avg. energy in different transformed and truncated matrices of the target 

and clutter sets. 

Avg. 
Energy 
in → 

8x8 9x9 10x10 11x11 12x12 13x13 14x14 15x15 16x16

Target 
chips 88.5799 91.8736 94.2695 95.8867 97.036 97.8537 98.5065 99.1296 100 

Clutter 
chips 77.0727 79.5609 81.8025 83.8621 85.9592 87.9347 90.4363 93.6521 100 

 

Table 4.3 VIDEO 2: Avg. energy in different transformed and truncated matrices of the target 

and clutter sets. 

Avg. 
Energy 
in → 

8x8 9x9 10x10 11x11 12x12 13x13 14x14 15x15 16x16 

Target 
chips 95.3762 96.409 97.35 97.9219 98.4602 98.8663 99.2888 99.5657 100 

Clutter 
chips 87.2741 89.2236 90.841 92.2614 93.6029 94.8183 96.5067 98.578 100 

 

Table 4.4 VIDEO 3: Avg. energy in different transformed and truncated matrices of the target 

and clutter sets. 

Avg. 
Energy 
in → 

8x8 9x9 10x10 11x11 12x12 13x13 14x14 15x15 16x16

Target 
chips 93.86 95.4257 96.5763 97.443 98.1287 98.6852 99.1279 99.5433 100 

Clutter 
chips 80.3775 83.1199 85.6899 88.1777 90.6858 93.0544 95.2862 97.7443 100 
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Table 4.5 VIDEO 4: Avg. energy in different transformed and truncated matrices of the target 

and clutter sets. 

Avg. 
Energy 
in → 

8x8 9x9 10x10 11x11 12x12 13x13 14x14 15x15 16x16 

Target 
chips 94.4088 96.195 97.6136 98.3129 98.8124 99.1503 99.4638 99.649 100 

Clutter 
chips 87.7344 89.888 91.8235 93.5835 95.1314 96.409 97.5693 98.7895 100 

 

 

At this point, if no truncation is performed, and the original RQQCF technique is applied, the 

same set of eigenvalues as in the case of the spatial domain RQQCF is obtained. For example, 

for Video 1, twelve dominant eigenvalues (six positive and six negative) for both cases are listed 

below, (k = 12). 

iλ (Spatial domain) 

-0.9975   -0.9641   -0.9559   -0.9378   -0.9283   -0.9221    0.9934    0.9938    0.9962    0.9971    

0.9981    0.9985 

iλ (DCT domain) 

-0.9975   -0.9641   -0.9559   -0.9378   -0.9283   -0.9221    0.9934    0.9938    0.9962    0.9971    

0.9981    0.9985 
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Figure 4.8(a) shows the eigenvalue distribution for the spatial domain RQQCF technique while 

Figure 4.8(b) shows the eigenvalue distribution for the TDRQQCF technique when the chips are 

compressed from 16x16 to 8x8. 
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Figure 4.8(a) Distribution of eigenvalues in the spatial domain RQQCF method 
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Figure 4.8(b) Distribution of eigenvalues in the TDRQQCF method for chips compressed to 8x8 
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Sample results are presented for the case when the transformed target and clutter chips, xtC and 

ytC  respectively, are truncated to a 8x8 size. This means that n =8 and n=64. The twelve 

dominant eigenvalues among the 64 are listed below, (k = 12).  

iλ (DCT domain) 

-0.9930   -0.8648   -0.7825   -0.7642   -0.7472   -0.6427    0.9642    0.9722    0.9746    0.9878    

0.9943    0.9952 

 

As explained earlier, to identify a data point as target or clutter, the sum of the absolute values of 

the k inner products of a data point with tiw  and ciw , pt and pc, are calculated. If pt > pc, the data 

point is identified as a target. Otherwise, it is identified as clutter. We will refer to the absolute 

values of these inner products as the ‘response’ of that particular data point. Figures 4.9 – 4.16 

show the response of representative target and clutter vectors plotted against the index of the 

dominant eigenvectors, in both the spatial and the DCT domains. Eigenvectors 1 – 6 are 

dominant eigenvectors for clutter while eigenvectors 7 – 12 are dominant eigenvectors for 

targets. Figures 4.9 and 4.10 correspond to VIDEO 1, Figures 4.11 and 4.12 correspond to 

VIDEO 2, Figures 4.13 and 4.14 correspond to VIDEO 3, and Figures 4.15 and 4.16 correspond 

to VIDEO 4. To explain further, Figure 4.9 shows for VIDEO 1, the absolute value of the inner 

product of representative target and clutter vectors with the eigenvectors corresponding to the 

original dominant eigenvalues (spatial domain), respectively, versus the index of the 

eigenvectors. Figure 4.10 shows for VIDEO 1, the absolute value of the inner product of the 
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same target and clutter vectors with the eigenvectors corresponding to the dominant eigenvalues 

obtained in the DCT domain, respectively, versus the index of the eigenvectors. This is repeated 

for the other three videos in figures 4.11 – 4.16. 
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Figure 4.9(a) VIDEO 1: Response of (a) a representative target vector versus the index of the 

dominant eigenvectors (spatial domain) 
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Figure 4.9(b) VIDEO 1: Response of a representative clutter vector versus the index of the 

dominant eigenvectors (spatial domain) 
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Figure 4.10(a) VIDEO 1: Response of a representative target vector versus the index of the 

dominant eigenvectors derived from the truncated chips (8x8) in the DCT domain 
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Figure 4.10(b) VIDEO 1: Response of a representative clutter vector versus the index of the 

dominant eigenvectors derived from the truncated chips (8x8) in the DCT domain 
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Figure 4.11(a) VIDEO 2: Response of (a) a representative target vector versus the index of the 

dominant eigenvectors (spatial domain) 
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Figure 4.11(b) VIDEO 2: Response of a representative clutter vector versus the index of the 

dominant eigenvectors (spatial domain) 
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Figure 4.12(a) VIDEO 2: Response of a representative target vector versus the index of the 

dominant eigenvectors derived from the truncated chips (8x8) in the DCT domain 
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Figure 4.12(b) VIDEO 2: Response of a representative clutter vector versus the index of the 

dominant eigenvectors derived from the truncated chips (8x8) in the DCT domain 
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Figure 4.13(a) VIDEO 3: Response of (a) a representative target vector versus the index of the 

dominant eigenvectors (spatial domain) 
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Figure 4.13(b) VIDEO 3: Response of a representative clutter vector versus the index of the 

dominant eigenvectors (spatial domain) 
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Figure 4.14(a) VIDEO 2: Response of a representative target vector versus the index of the 

dominant eigenvectors derived from the truncated chips (8x8) in the DCT domain 
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Figure 4.14(b) VIDEO 3: Response of a representative clutter vector versus the index of the 

dominant eigenvectors derived from the truncated chips (8x8) in the DCT domain 
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Figure 4.15(a) VIDEO 4: Response of a representative target vector versus the index of the 

dominant eigenvectors (spatial domain) 
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Figure 4.15(b) VIDEO 4: Response of a representative clutter vector versus the index of the 

dominant eigenvectors (spatial domain) 
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Figure 4.16(a) VIDEO 4: Response of a representative target vector versus the index of the 

dominant eigenvectors derived from the truncated chips (8x8) in the DCT domain 
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Figure 4.16(b) VIDEO 4: Response of a representative clutter vector versus the index of the 

dominant eigenvectors derived from the truncated chips (8x8) in the DCT domain 

 

A close look at the plots reveals the following: i) The magnitude of each of the responses, inner 

products, in the DCT domain is much higher than the corresponding magnitude in the spatial 

domain, ii) The magnitude of (pt - pc ) is also much higher in the DCT domain than in the spatial 

domain. In other words, separation between targets and clutter is also much higher in the DCT 

domain than in the spatial domain. This means that the requirements on the threshold to decide if 

a chip is target or clutter can be relaxed considerably. Although the plots shown are for a few 

randomly chosen data points from the different videos, it was found that the TDRQQCF 
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consistently produces much larger responses and target-clutter separation than the spatial domain 

RQQCF for all data points.  

 

Table 4.6 summarizes the recognition accuracy of the spatial domain RQQCF and the 

TDRQQCF for all the four videos. Each row in the table shows for a particular video, the 

number of target and clutter chips recognized correctly by the RQQCF and the TDRQQCF. 

 

Table 4.6. Recognition accuracy of the spatial domain RQQCF and the TDRQQCF for all the 

four videos. 

  TARGET CLUTTER 

  RQQCF TDRQQCF RQQCF TDRQQCF 

VIDEO 1 409/409 409/409 409/409 409/409 

VIDEO 2 763/763 763/763 763/763 763/763 

VIDEO 3 405/405 405/405 405/405 405/405 

VIDEO 4 390/391 390/391 390/391 390/391 

 

 

It is seen that the TDRQQCF retains the excellent recognition accuracy of the spatial domain 

RQQCF. Also, both the RQQCF and TDRQQCF fail to recognize the same chip in VIDEO 4. 

This particular chip is shown in Figure 4.17. The reason is that this chip looks more like a clutter 
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chip than a target chip. For comparison, a sample representative target chip from the video is 

shown in Figure 4.18. 

 

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

 

Figure 4.17 Misclassified target chip form VIDEO 4 
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Figure 4.18 Sample representative target chip form VIDEO 4 
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The overall reduction in computational and storage requirements of the TDRQQCF over the 

RQQCF is obtained while retaining its recognition accuracy. The RQQCF involves the inversion 

and Eigenvalue Decomposition (EVD) of large matrices. The computational complexity for each 

of these operations is of the order O(n3), where ‘n’ is the dimensionality of the autocorrelation 

matrices. On the other hand, by using the TDRQQCF, where compressed representations are 

used for target and clutter, large savings are obtained. Table 4.7 compares the spatial domain 

RQQCF with the TDRQQCF in terms of storage and computational complexity. 

 

Table 4.7. Storage and computational complexity of the spatial domain RQQCF versus that for 

the TDRQQCF, (* from 91). 

  RQQCF TDRQQCF % of savings using 
TDRQQCF* 

No. of storage locations for 
chips 2 x M x n x n  2 x M x k x k , 

k < n  
75% 

No. of storage locations for 
autocorrelation matrices 2 x n x n  2 x k x k  93.75% 

Complexity of Inversion** O(n3) O(k3) 98%*** 

Complexity of EVD** O(n3) O(k3) 98%*** 

* For M=409, n=256, k=64; ** # of multiplications; ***approximately 
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The computational complexity for the 2j x 2j DCT is approximately 2j x (2j+1- j - 2), 29 - 31. From 

Table 4.7, it can be easily shown that the overall computational complexity including computing 

the DCT and the storage requirements of the TDRQQCF are still much smaller than the spatial 

domain RQQCF. In addition, for the TDRQQCF, the storage and computational savings increase 

as the chip size increases. 

 

In addition to reduced dimensionality, there is another advantage to the TDRQQCF. Often, in 

practice, in applications of techniques such as the RQQCF, one encounters low rank matrices 

which give rise to numerical problems and loss in recognition accuracy. This is because the 

number of data points available for training is very close to or smaller than the dimensionality of 

each data point leading to poor estimates of class statistics. This effect was observed in Figures 

2.7 – 2.10, for the spatial domain RQQCF as the number of training chips was reduced.  

 

On the other hand, TDRQQCF overcomes this problem by reducing the dimensionality of the 

data points. Figures 4.19 – 4.22 show the plots of recognition accuracy (%) versus the training 

set size for VIDEOS 1-4. 
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Figure 4.19 VIDEO 1: Accuracy (%) versus training set size 
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Accuracy versus Training set size (DCT Domain)
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Figure 4.20 VIDEO 2: Accuracy (%) versus training set size 
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Accuracy versus Training set size (DCT Domain)
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Figure 4.21 VIDEO 3: Accuracy (%) versus training set size 
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Accuracy versus Training set size (DCT Domain)
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Figure 4.22 VIDEO 4: Accuracy (%) versus training set size 

 

Comparing Figures 4.19 – 4.22 to Figures 2.7 – 2.10 of the spatial domain RQQCF, we can see 

that the TDRQQCF is able to maintain high recognition accuracy as the number of training chips 

is reduced. 
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Comparison of the TDRQQCF with regularization of the RQQCF in the spatial domain 

 

The TDRQQCF presented in the previous section considerably reduced the computational 

complexity and storage requirements, by compressing the target and clutter data used in 

designing the QCF. In addition, the TDRQQCF approach was able to produce larger responses 

when the filter was correlated with target and clutter images. This was achieved while 

maintaining the excellent recognition accuracy of the original spatial domain RQQCF algorithm. 

The computation of the RQQCF and the TDRQQCF involve the inverse of the term A1 = 

(Rx+Ry) where xR and yR are the sample autocorrelation matrices for targets and clutter 

respectively. It can be conjectured that the TDRQQCF approach is equivalent to regularizing 1A . 

A common regularization approach involves performing the Eigenvalue Decomposition (EVD) 

of 1A , setting some small eigenvalues to zero, and then reconstructing 1A , which is now better 

conditioned. In this section, this regularization approach is investigated, and compared to the 

TDRQQCF. Sample simulation results show that these approaches do not produce the same 

results; in fact, the regularization actually degrades the RQQCF performance while the 

TDRQQCF maintains it.  
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Simulation Results 

 

To regularize 1)( −+ yx RR , we perform the EVD of 1)( −+ yx RR  and set a small number of 

eigenvalues (of small magnitudes) to zero, and then reconstruct. The idea is that this “noise 

removal” procedure will by itself result in larger responses and target-clutter separation. 

 

As the sample results will show, the two techniques are different and produce different results. 

The TDRQQCF produces larger responses and target-clutter separation while maintaining the 

accuracy of the spatial domain RQQCF. In addition, it results in considerable savings in storage 

and computation while also overcoming the problems of small training sets that are often 

encountered in practice. On the other hand, the regularization technique results in smaller 

responses and target-clutter separation and in some cases reduced accuracy. 

 

Figure 4.23 shows a sample frame from the video used for simulations.  
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Figure 4.23 Sample frame from VIDEO 1 

 

Results of original RQQCF formulation in the spatial domain 

lambda_orig (dominant eigenvalues) = -0.9975   -0.9641   -0.9559   -0.9378   -0.9283      -0.9221    

0.9934    0.9938    0.9962    0.9971    0.9981    0.9985 

Figures 4.24(a) and 4.24(b) show the response of target data point and clutter data point 

respectively. As shown in Chapter 2, all target and clutter points were identified correctly. 
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Figure 4.24(a) VIDEO 1: Response of a representative target vector versus the index of the 

dominant eigenvectors (spatial domain) 
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Figure 4.24(b) VIDEO 1: Response of a representative clutter vector versus the index of the 

dominant eigenvectors (spatial domain). (The condition number of A, cond(A)=1.3027e+006) 

 

Results of TDRQQCF for the same data points used in the RQQCF 

lambda_orig (dominant eigenvalues) = -0.9930   -0.8648   -0.7825   -0.7642   -0.7472      -0.6427    

0.9642    0.9722    0.9746    0.9878    0.9943    0.9952 

Figures 4.25(a) and 4.25(b) show the response of target data point and clutter data point 

respectively. As shown in Chapter 4, all target and clutter points were identified correctly. 
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Figure 4.25(a) VIDEO 1: Response of a representative target vector versus the index of the 

dominant eigenvectors derived from the truncated chips (8x8) in the DCT domain. 
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Figure 4.25(b) VIDEO 1: Response of a representative clutter vector versus the index of the 

dominant eigenvectors derived from the truncated chips (8x8) in the DCT domain. (The 

condition number of A, cond(A) = 6.1722e+004) 

 

Comparing the responses in Figures 4.24(a) and 4.25(a), it can be seen that the magnitude of the 

responses in the DCT domain is higher than the spatial domain RQQCF. Similar results are 

observed for clutter points (Figures 4.24(b) and 4.25(b)). The condition number of A has 

decreased. 
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We now compare the previous TDRQQCF result where the transformed 16x16 chips are 

truncated to 8x8 to the case where the transformed chips size is kept the same (16x16) but the 

DCT coefficients outside the top-left 8x8 part of the coefficient matrix are set to zero. 

lambda_orig (dominant eigenvalues) = -0.9930   -0.8648   -0.7825   -0.7642   -0.7472      -0.6427    

0.9642    0.9722    0.9746    0.9878    0.9943    0.9952 

 

Figures 4.26(a) and 4.26(b) show the response of target data point and clutter data point 

respectively. All target and clutter points were identified correctly. These results exactly match 

those in figures 4.25(a) and 4.25(b). The condition number of A is very high (the matrix is close 

to singular). 
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Figure 4.26(a) VIDEO 1: Response of a representative target vector versus the index of the 

dominant eigenvectors derived from the chips (8x8) in the DCT domain with coefficients set to 

zero instead of truncation. 
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Figure 4.26(b) VIDEO 1: Response of a representative clutter vector versus the index of the 

dominant eigenvectors derived from the chips (8x8) in the DCT domain with coefficients set to 

zero instead of truncation. (The condition number of A, cond(A) = Inf) 

 

Results of original RQQCF formulation in the spatial domain with the regularization of A1 

= 1)( −+ yx RR .  The EVD of A1 is performed, the smallest 5 eigenvalues are set to zero, and A1 is 

reconstructed. This ‘regularized’ A1 is used to form the matrix A as in equation 8 of Chapter 2. 

lambda_orig (dominant eigenvalues) = -0.9472   -0.9269   -0.9225   -0.9181   -0.9127      -0.9025    

0.9630    0.9691    0.9701    0.9792    0.9805    0.9850 
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Figures 4.27(a) and 4.27(b) show the response of a target data point and a clutter data point 

respectively. Two of the target and clutter points were identified incorrectly, i.e. they were 

misclassified.  
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Figure 4.27(a) VIDEO 1: Response of a representative target vector versus the index of the 

dominant eigenvectors of the regularized spatial domain RQQCF approach. 
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Figure 4.27(b) VIDEO 1: Response of a representative clutter vector versus the index of the 

dominant eigenvectors of the regularized spatial domain RQQCF approach. (The condition 

number of A, cond(A) = 1.3027e+006) 

In addition to loss of accuracy, the magnitudes of the responses have actually decreased 

compared to the original RQQCF approach. The condition number of A has also increased as 

expected. 

 

It is seen that as more and more eigenvalues are set to zero, the performance of the regularized 

RQQCF worsens. Not only do the magnitude of the responses drop compared to the spatial 

domain RQQCF, but the accuracy of the QCF also drops. 
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Summary 

 

We can conclude that the TDRQQCF and the regularized RQQCF are not the same. They 

produce different results. The regularization procedure, results in smaller responses and target-

clutter separation and in some cases reduced accuracy. The TDRQQCF produces larger 

responses and target-clutter separation while maintaining the accuracy of the spatial domain 

RQQCF. In addition, it results in considerable savings in storage and computation while also 

overcoming the problems of small training sets that are often encountered in practice. 

 

TDRQQCF Summary 

 

A novel Transform Domain Rayleigh Quotient Quadratic Correlation Filter (TDRQQCF) is 

proposed. The improved performance of the TDRQQCF results from compressing the data in the 

transform domain. Consequently, this leads to considerable reduction in computational 

complexity and storage requirements over the spatial domain RQQCF technique while retaining 

excellent recognition accuracy. It is worthwhile to note another advantage of the new technique, 

namely, the TDRQQCF acts as a low pass filter that removes noise. Consequently, the 

separability between targets and clutter improves. In addition, the method overcomes the 

problems of small training sets that are often encountered in practice. One can also argue that 

changes to the QCF coefficients due to new data can now be obtained by direct inversion and EVD 



 122

methods of much reduced computational complexity using the TDRQQCF. This is confirmed by 

extensive simulation results. Sample results are given. 
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CHAPTER FIVE: A TWO DIMENSIONAL RQQCF 

 

In the original RQQCF formulation, the target and clutter chips which are two-dimensional (2D) 

are first converted to a one-dimensional (1D) vector before synthesizing the filter. The 

TDRQQCF as described in the previous section combined the detection/recognition problem 

with compression. In addition, it also alleviated the problem of a relatively small training set. 

The “tolerance” to a small training set is governed by how much compression can be achieved 

without compromising the accuracy of the QCF. In some situations, the training set can be so 

small relative to the dimensions of the data points that even the TDRQQCF may not be an 

effective solution. Consider for example, a face recognition problem using the ORL/ATT 

database. This database contains 10 facial images each of 40 individuals. The size of each image 

is 112x92. It is very easy to see that in this case, there are very few observations – 10, to estimate 

the class autocorrelation matrices (of size 10304x10304) – even with the TDRQQCF approach. 

In the 2D formulation, the aim is to keep these chips as 2D. It is seen that this approach is able to 

successfully address the problem of small training sets. Also, the dimensions of the filter, and 

therefore the storage and computational requirements are much reduced. 

 

The Trace formulation of the 2DRQQCF 

 

The QCF coefficient matrix T is assumed to take the form, 
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where, iw , ni ≤≤1 , form an orthonormal basis set. The objective of the technique is to 

determine these basis functions such that the separation between the two classes, say X and Y, is 

maximized. The output of the QCF to an input image U is given by 

)( TUUtrace T=ϕ          (34) 
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where, {.}jE is the expectation operator over the jth class, and xR and yR are the correlation 

matrices for targets and clutter respectively, which are calculated as follows, 

)( T
Xx UUER =          (36) 

)( T
Yy UUER =          (37) 

Taking the derivative of Equation 35 with respect to iw , we get 

iiiyxyx wwRRRR λ=−+ − )()( 1        (38) 

Let, 
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)()( 1
yxyx RRRRA −+= −         (39) 

Thus iw  is an eigenvector of A with eigenvalue iλ . It should be noted that )(wJ is in the form of 

a Rayleigh Quotient which is maximized by the dominant eigenvector of A .  

 

It can be shown that the trace formulation of the 2DRQQCF as shown above amounts to treating 

each column of a target chip as a target by itself and each column of a clutter chip as clutter. 

Therefore, the response of a chip to the QCF designed using the above formulation is the sum of 

the responses of its columns. 

 

If the output of the 2DRQQCF is defined as )( TUTUtrace=ϕ , the trace formulation amounts to 

treating each row of a target chip as a target by itself and each row of a clutter chip as clutter. 

Therefore, the response of a chip to the QCF designed using the above formulation is the sum of 

the responses of its rows. 

 

Simulation Results 

 

The 2DRQQCF was used in the context of a facial recognition problem. To recognize/classify 

two images or groups of images, we can call one image or group of image as “targets” while the 

the other image or images can be called “clutter”. Thus, we can essentially treat the facial 
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recognition or classification problem as an ATR problem and use the 2DRQQCF as described in 

the previous section.  

 

To demonstrate the performance of the 2DRQQCF, simulation results are presented on the 

ORL/ATT Face Recognition Database. This database contains 10 images each of 40 individuals. 

The 10 images per person are representative of different illumination conditions, different facial 

expressions and facial details. A sample set of faces from the database is shown in Figure 5.1. 

Each image is of size 112x92. 
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Figure 5.1 Sample images from the ORL/ATT Facial Recognition Database 
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Various scenarios were considered where different numbers of images were chosen in the 

training phase to synthesize the 2DRQQCF and the corresponding remainders of images were 

chosen for testing. In addition, the recognition/classification was done between 1) two 

individuals and 2) two groups of individuals. 

 

The training phase for classification of two individuals, say X and Y proceeds as follows: 

1. A certain number of images, say N, are chosen from the M available images each of X 

and Y. 

2. The autocorrelation matrices, xR and yR  are calculated as shown in Equation 36 and 

Equation 37. 

3. The matrix A given in Equation 39 is computed.  

4. The EVD of A is performed to obtain the QCF coefficients. 

In the testing phase,  

1. The M-N test images of each individual are correlated with the QCF coefficients. 

2. The net response of each image to the QCF is calculated. If the net response is positive, 

the test image is recognized or classified as belonging to the target class, say X, else, it is 

classified as belonging to the clutter class, say Y. 
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It is easy to see that a straightforward extension of the procedure outlined above can be used to 

recognize or classify a group of individuals. 

 

Case 1 Distinguishing between two individuals - S1 (target) and S2 (clutter) 

 

(a) All the images for each individual are used for training. These same images are also used for 

testing, i.e. M=N=10. If there are false matches in this case, then we can be sure that the 

accuracy will only worsen if we use different sets of images for training and testing. Figure 5.2 

shows the eigenvalue distribution of A for the above scenario. 
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Figure 5.2 Distribution of eigenvalues for M=N=10  

Figure 5.3 and 5.4 show the response of the 10th image from S1 and the 10th image from S2 to 

the 2DRQCCF. It is clear to see that the image corresponding to Figure 5.3 belongs to S1 while 

the image corresponding to Figure 5.4 belongs to S2. 
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Figure 5.3 Response of point no. 10 from S1 to the 2DRQQCF 
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Figure 5.4 Response of point no. 10 from S2 to the 2DRQQCF 

 

(b) Five images for each individual are used for training. The remaining five images of each are 

used for testing, i.e. M=N=5. Figure 5.5 and 5.6 show the response of the 5th image from S1 and 

the 5th image from S2 to the 2DRQCCF. It is clear to see that the image corresponding to Figure 

5.5 belongs to S1 while the image corresponding to Figure 5.6 belongs to S2. 
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Figure 5.5 Response of point no. 5 from S1 to the 2DRQQCF 



 134

20 40 60 80 100
0

0.5

1

1.5

2

2.5

3 x 104

Index of Eigenvectors

R
es

po
ns

e

 

Figure 5.6 Response of point no. 5 from S2 to the 2DRQQCF 

 

Case 2 Distinguishing between two sets of individuals  

 

T = [S1; S2; S3; S4] (target) and C = [S6; S7; S8; S9] (clutter). Nine images for each individual 

are used for training. The remaining eight images (one of each) are used for testing, i.e. M=40, 

N=36. 
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Figure 5.7 Distribution of eigenvalues for M=40, N=36 
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Figure 5.8 Response of point no. 37 from T to the 2DRQQCF 
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Figure 5.9 Response of point no. 37 from C to the 2DRQQCF 

It was seen that in all the cases listed above, all testing images were successfully recognized. 

 

Summary 

 

A novel 2D formulation of the RQQCF was presented. It was shown that this approach further 

saves on storage requirements and computational complexity when compared to the RQQCF and 



 138

TDRQQCF. Simulation results using a facial recognition database confirmed that additionally, 

the 2DRQQCF has excellent recognition accuracy. 
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CHAPTER SIX: CONCLUSION 

 

Efficient techniques based on the Rayleigh Quotient Quadratic Correlation Filter (RQQCF) 

technique were presented. The first technique, called the Optimal Adaptive Eigenvalue 

Decomposition Technique (OAEVD) was an efficient adaptive technique, in terms of speed and 

computational complexity without sacrificing the accuracy that utilizes the old EVD to search for 

the new EVD. It avoids matrix inversion and direct EVD, thus providing substantial 

computational savings. In addition, the OAEVD adaptively updates any particular set of 

eigenvalues and corresponding eigenvectors of interest. In our application, these are the 

dominant eigenpairs. 

 

Secondly, a Transform Domain Rayleigh Quotient Quadratic Correlation Filter (TDRQQCF) 

was proposed. Using simulation results on Infrared (IR) data, it was shown that the TDRQQCF 

reduces the storage requirements and computational complexity significantly. Additionally, for 

situations where the dimension of the data points is large compared to the number of data points 

available to estimate the autocorrelation matrices of target and clutter, the TDRQQCF provides a 

way to alleviate the problem of rank deficient matrices leading to numerical problems. This is 

achieved by compressing the data and thereby reducing the size of the data points. 

 

Finally, a Two Dimensional RQQCF (2DRQQCF) was presented. By the treating the target and 

clutter chips as 2D objects, as opposed to converting them to vectors by lexicographical ordering 
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of columns, the 2DRQQCF has the potential to further save on computations and storage. Using 

a facial recognition database – the ORL Database, it is shown that the approach also has 

excellent recognition accuracy. It is also extremely useful in cases where the training sets are 

very small, where even the TDRQQCF approach has limitations because of accuracy concerns as 

data is compressed beyond acceptable limits. 

 

Future work includes testing the 2DRQQCF over a large number of images from other databases 

and a more extensive study of its performance. In addition, future work also includes applying 

the techniques described in the previous chapters to other applications such as fingerprint 

recognition. 
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