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ABSTRACT

In today’s network-dependent society, cyber attacks with network worms have be-

come the predominant threat to confidentiality, integrity, and availability of network

computing resources. Despite ongoing research efforts, there is still no comprehensive

network-security solution aimed at controling large-scale worm propagation.

The aim of this work is fivefold: (1) Developing an accurate combinatorial model

of worm propagation that can facilitate the analysis of worm control strategies, (2)

Building an accurate epidemiological model for the propagation of a worm employing

local strategies, (3) Devising distributed architecture and algorithms for detection of

worm scanning activities, (4) Designing effective control strategies against the worm,

and (5) Simulation of the developed models and strategies on large, scale-free graphs

representing real-world communication networks.

The proposed pair-approximation model uses the information about the network

structure—order, size, degree distribution, and transitivity. The empirical study of

propagation on large scale-free graphs is in agreement with the theoretical analysis of

the proposed pair-approximation model. We, then, describe a natural generalization

of the classical cops-and-robbers game—a combinatorial model of worm propagation
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and control. With the help of this game on graphs, we show that the problem of

containing the worm is NP-hard. Six novel near-optimal control strategies are devised:

combination of static and dynamic immunization, reactive dynamic and invariant

dynamic immunization, soft quarantining, predictive traffic-blocking, and contact-

tracing. The analysis of the predictive dynamic traffic-blocking, employing only local

information, shows that the worm can be contained so that 40% of the network

nodes are not affected. Finally, we develop the Detection via Distributed Blackholes

architecture and algorithm which reflect the propagation strategy used by the worm

and the salient properties of the network. Our distributed detection algorithm can

detect the worm scanning activity when only 1.5% of the network has been affected

by the propagation. The proposed models and algorithms are analyzed with an

individual-based simulation of worm propagation on realistic scale-free topologies.
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CHAPTER 1

INTRODUCTION

In today’s network-dependent society, cyber attacks have become the predominant

threat to confidentiality, integrity, and availability of network computing resources.

Due to the convergence of features, such as Internet’s globally-distributed nature,

mass-production of personal computers, and rapid software development, malicious

activities remain an ever-increasing problem. Recent cyber attacks have inflicted

considerable damage in terms of unsolicited consumption of network bandwidth, de-

graded corporate productivity (as a result of nonfunctional networks with thousands

of computers), and compromised integrity of valuable data. The existing local, au-

tomated measures such as anti-virus software, firewalls, and intrusion detection sys-

tems, although essential, do not provide complete protection from cyber attacks. As

the vital sectors of the critical infrastructure—defense, energy, telecommunications,

transportation, finance, emergency services, and governmental services—have been

integrated via the Internet, the disruption of its functionality can have serious polit-

ical, financial, and tactical consequences.
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Cyber attacks employ malicious mobile-code (MMC )—a program designed to

propagate copies of itself to computers on a network by exploiting some vulnera-

bility (i.e., weakness in design or implementation of software) to perform a malicious

action. One can classify MMCs into three broad categories based on the extent to

which human intervention is required for their propagation [Nac99], namely: au-

tonomous, human-dependent, and hybrid. Furthermore, MMCs may be grouped into

three classes based on their actions: Trojan horses, computer viruses, and network

worms. A Trojan horse is a program that is given (fraudulently) the same name as a

legitimate piece of software, but, when executed, it performs a malicious act. A com-

puter virus is an MMC that modifies resident programs to perform malicious actions.

Like a Trojan horse, a computer virus requires human intervention to propagate on

a network.

A network worm is a stand-alone program that propagates autonomously by send-

ing copies of itself to other computers on the network. Despite increasing efforts

and expenditure on cyber-security, the problem of network worms is worsening every

year [Ins04]. Due to the short time required for their propagation, in the range from

a few milliseconds (for a local host) to a second (for a remote host) [Wea02], worms

can inflict considerable damage to networks. For instance, the versions of CodeRed

Worm infected 150,000 computer systems in 14 hours [Cen01a]. The damage in-

flicted by Nimda [Cen01b] to 86,000 computer systems, has been estimated to $13

2



billion [Ins04]. The Sapphire Worm (SQL Slammer) spread across different networks

around the world overnight [MPS03].

Recent studies [LN04] have found the topology on which the worm propagates

to be significantly different from the underlining network infrastructure. This is

particularly true for network worms that scan the Internet IP space uniformly at

random, and therefore can communicate with any computer on the network. Although

the introduction of the Internet has arguably made the assumption of sparseness

(of the propagation topology) no longer valid, the idea of locality, especially in the

case of analytical modeling of local propagation strategies [Wea02] (seen with worms

such as Code Red II and Nimda) is still applicable. Moreover, as argued by some

authors [WPS03b], [SGJ01], for a worm to propagate in the larger IPv6 address

space, it will have to use local propagation strategies.

1.1 Problem Statement

The global impact that worms have on today’s network-dependent society demands

understanding not only of the worm propagation dynamics but also of the feasibility

for worm detection and control. Advances in distributed and mobile sensor technolo-

gies have made it possible to deploy sensor networks and mobile agents in different

environments. To make use of these emerging technologies in network security, it is

3



crucial to design algorithms that take input from sensors and provide coordination

among autonomous agents that control the malicious propagation on a network.

This thesis addresses five problems: (1) Developing an accurate combinatorial

model of worm propagation that can facilitate the analysis of worm quarantining.

We use the term quarantining to denote containment of the worm (i.e., all copies of

the MMC) in a set of computers from where propagation to the rest of the network

is impossible due to the presence of agents performing security measures. We assume

that every computer on the network has the vulnerability exploited by the worm,

and that the agents are informed of the worm’s presence and propagation strategy by

some overlay network of intrusion-detection sensors. Our model of propagation and

quarantining is a natural generalization of the classical cops-and-robbers game. We

use a variant of the generalized cops-and-robbers game to study the complexity of

controlling a worm by quarantining. (2) Building an accurate epidemiological model

for the propagation of a worm and the damage inflicted on the network. Our pair-

approximation model uses the information about the graph structure—order, size,

degree distribution, and clustering coefficient (transitivity). Modeling the propaga-

tion of network worms is used here to gain quantitative understanding of the vulner-

abilities of large real-world networks—expressed in terms of the number of infectious

and removed (disabled) nodes. (3) Devising distributed architecture and algorithms

for detection of worm scanning activities. Our Detection via Distributed Blackholes

4



(DDBH ) architecture and algorithm reflects both, the propagation strategy used by

the attacking worm and the salient properties of the underlying scale-free network,

and, in turn, assists in predicting the course of a worm, so as to allocate resources

needed by the control strategies. (4) Designing effective control strategies against the

propagating worm. Our control strategies—predictive dynamic traffic-blocking and

contact-tracing—can be used by the members (agents) of the DDBH architecture

to plan and coordinate the activities of the autonomous agents performing security

measures; and (5) Simulation of the developed models and strategies on large, scale-

free graphs representing real–world communication networks. Our individual-based

simulation of worm propagation and control strategies on scale-free graphs is a first

attempt to simulate worm’s propagation on realistic topologies.

Organization of the Thesis: In Chapter 2, an adequate model of the propaga-

tion medium—a scale-free random graph—is described. Two models of the Internet

are defined, Macroscopic Internet graph and Microscopic Internet graph, which are

later used for simulation purposes. Chapter 3 presents a prototype of a worm and

formalization of existing propagation strategies. In Chapter 4, we define a natural

generalization of the cops-and-robbers game, and study a cops-and-robbers model of

worm propagation and quarantining. In Chapter 5, after presenting a classification

of existing models of propagation, we describe the pair-approximation epidemiologi-

cal model that uses information about the network structure along with simulation

5



results. Chapter 6 provides a classification of existing control strategies and a de-

scription of four novel, worm control strategies. Finally, in Chapter 7 the distributed

detection mechanism—Detection via Distributed Blackholes—is presented and cou-

pled with a control strategy called contact-tracing.
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CHAPTER 2

MODELS OF REAL-WORLD NETWORKS

2.1 Introduction

A worm propagates on a network by traversing the communication links. Due to the

diversity of exploited vulnerabilities, network worms can propagate on a physical or

a logical (virtual) network. For instance, the Internet is a representative of a physical

network, while the World Wide Web (WWW) and an e-mail network are virtual

networks build on top of a physical network. In either case the network is modeled

as a graph G = (V, E). Recent empirical studies of the Internet, the WWW, and

various e-mail networks have shown statistical similarities between these and other

networks, as diverse as the network of phone-calls, power network, citation (also called

scientific collaboration) network, movie-actor collaboration network, and the network

of sexual contacts. The extent to which these, so-called, scale-free networks pervade,

influence, and condition our network-dependent society, have prompted the study

of scale-free random graphs. Analyses of these random graphs can be employed to
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design or transform a network in a way that a given purpose, such as effective control

strategies against a worm, could be reached in an efficient way.

The three salient properties of the scale-free networks are: (1) scale-free degree

distribution, (2) large clustering coefficient, and (3) small average distance. Let V (G)

be the set of nodes, E (G) the set of edges, n denote the number of nodes and m, the

number of edges of graph G.

Degree distribution: The degree distribution gives the probability that a node u,

chosen uniformly at random from V (G), is of degree d. Empirical studies of real-world

networks have demonstrated that the degree distribution falls in the class of so-called

scale-free (power-law) probability distributions, such that P (d (u) = d) ∼ d−f [Mit04].

Here, f is the exponent of the scale-free degree distribution.

Clustering coefficient and transitivity: Given a graph G = (V,E) and a node

u ∈ V of degree d (u), the clustering coefficient Cu of node u is defined as the ratio

between the total number of edges incident on all pairs of neighbors of u and the

number of edges in a clique formed by the neighbors of u. The clustering coefficient

of G, denoted by C (G) is the average of clustering coefficients over all nodes. The

clustering coefficient of G has values in the range 0 ≤ C (G) ≤ 1. There is yet another

measure of clustering in graphs, called transitivity [NSW02]. Transitivity is the ratio

8



between the number of triangles and the total number of paths of length three.

Average distance: Average distance of G is the mean over all shortest distances

between any connected nodes.

Here, we first define Internet graphs and webgraphs. After brief review of results

concerning the three salient properties for classical random graphs, “small-worlds,”

and scale-free random graph processes, we define and study the degree-correlation of

the Barabasi-Albert model.

2.2 Internet Graphs

A physical network is a collection of interconnected computers, each with its distinct

IP address. It can be represented by a connected, undirected graph G = (V, E), with

the nodes as computers and the edges as the (physical) communication links (e.g.,

wire, optical cable). Since G is connected, communication between any arbitrary

pair of nodes u and v, takes place through a u, v-path in G. The largest physical

network—the Internet—can be modeled on two levels: microscopic and macroscopic.

In the Microscopic Internet graph, nodes stand for routers and hosts, while edges rep-

resent communication links. The Macroscopic Internet graph can be thought of as a

9



contraction of the Microscopic Internet graph: here, each node represents an Internet

Autonomous System (which incorporates a number of routers). To simplify the anal-

ysis, parallel edges and loops (having negligible influence in modeling propagation)

are deleted from the Macroscopic Internet graph. Two nodes in the Macroscopic In-

ternet graph are adjacent if there is at least one pair of routers (belonging to different

autonomous systems) that can communicate. Note that both, the Microscopic and

the Macroscopic Internet graphs are undirected.

Faloutsos et al. [FFF99] studied particular instances of Internet graphs, and con-

cluded that the degree distribution follows a power-law. In the Microscopic Internet

graph, the exponent of the power-law f had value of 2.48, while in the Macroscopic

Internet graph, the exponent ranged between f = 2.15 and f = 2.2 (studies were per-

formed between 1997 and the end of 1998). Govindan and Tangmunarunkit [GT00]

mapped the connectivity of nearly 150,000 router interfaces, confirming the power-

law exponent of f = 2.3. The studies of Yook et al. [YJB02] conducted between 1997

and 1999 showed that the Macroscopic Internet graph has clustering coefficient in the

range from 0.18 to 0.3 and average distance between 3.70 and 3.77.
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2.3 Webgraph

The webgraph, representing the WWW, is a directed graph in which nodes represent

web pages and directed edges are drawn to indicate the hyperlink relations (the

referred URL for a web page is the head and the originating web pages is the tail of

the directed edge). As a digraph, the webgraph is characterized by the distribution

of in-degrees and the distribution of out-degrees. The sheer order and size of the

webgraph implies empirical study only of its subgraphs. Albert et al. [AJB99] in the

study of the subgraph on roughly 326,000 vertices, found the exponent of the in-degree

distribution to be f = 2.45 and that of the out-degree distribution to be f = 2.1;

Kumar et al. [KRR99] obtained exponent f = 2.38 for the in-degree distribution

and f = 2.1 for the out-degree distribution of a subgraph on 40 million vertices.

The clustering coefficient of the webgraph (or its subgraphs) cannot be measured

unless the direction of the edges is ignored, since this property is only defined for

undirected graphs. Measurement performed by Albert et al. [AJB99] demonstrated

further that the average distance is 11.2, while subsequent measurements done by

Broder et al. [BKM00] found that the average distance in a subgraph on 200 million

vertices to be 16. Broader et al. also presented a fascinating representation of the

WWW’s macroscopic structure—a bow-tie—composed of three sets: a core, i.e., a

strongly-connected component (SCC) composed of mutually-connected nodes, and

two sets, IN and OUT, composed of nodes that can only reach (or can only be

11



reached) from the nodes in the core. Dill et al. [DKM02] discovered that the Web

graph exhibits fractal properties, i.e., the bow-tie structure appears also on a smaller

scale.

2.4 The Salient Characteristics

Reviewing all results from random graph theory is not in the scope of this thesis.

Instead, we choose to present results relevant to the three salient characteristic—

degree–distribution, clustering coefficient, and average distance—for three classes

of random graphs: (1) Erdos–Renyi (classical) random graphs, (2) Watts–Strogatz

”small worlds,” and (3) Scale–free random graph processes.

2.4.1 Classical Random Graphs

Erdos and Renyi [ER59] employed powerful tools from probability theory to ob-

tain, now classical, results for the space Gn,m of all labeled graphs on the set of

nodes V = {1, 2, . . . , n} with m edges. The total number of graphs in this space

equals




n (n− 1)/2

m


. The space Gn,m can be turned into probability space by

assigning equal probability to every realization in Gn,m. An alternative definition
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was given by Gilbert [Gil56]: Given an array of i.i.d. Bernoulli random variables

{Xij : 1 ≤ i < j ≤ n}, with P (Xij = 1) = p and P (Xij = 0) = 1− p, let Gn,p be the

random graph on V = {1, 2, . . . , n} in which two nodes i and j are adjacent if and

only if Xij = 1. Informally, an edge in the space Gn,p is drawn between any two nodes

with probability p. Similarly to Gn,m, the probability p is a function of n. By taking

m = pn, one obtains equivalent models.

Theorem 2.4.1. [Bol85]. Let Nk be the number of vertices of degree k in Gn,p with

p = c/n, c > 0 a constant. Then for k = 0, 1, . . .

P

(
(1− ε)

cke−c

k!
≤ Nk

k
≤ (1 + ε)

cke−c

k!

)
→ 1,

as n →∞.

In other words, Theorem 2.4.1 states that for constant p, the degree distribution of

Gn,p is approximated by the distribution of the sequence of n i.i.d. Bernoulli random

variables with probability p and mean pn.

The diameter of the classical random graphs was studied by Bollobas [Bol85]

and Chung and Lu [CL01], among others. A general conclusion is that for a given

probability p, if pn/log n →∞ and log n/log (pn) →∞, then the diameter of Gn,p is

asymptotic to log n/log (pn). The average distance can be obtained by the following
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heuristic argument: the number of nodes at distance l from a randomly chosen node

grows slower than d
l
= (pn)l. Taking n = (pn)l, we get l = log n/log (pn) [AB02].

Since every edge is chosen independently from the others, the probability that two

randomly chosen neighbors of a given node are adjacent is p. Thus, the clustering

coefficient C (Gn,p) = p.

2.4.2 Watts-Strogatz “Small Worlds”

The importance of Watts and Strogatz’s model [WS98] lies in the fact that it started

a series of mathematical studies of random graphs (other than Erdos-Renyi) defined

by simple rules. The first stage of this model is: start with a k-regular graph G of

order n, in which: (i) all nodes form a cycle and (ii) two nodes are adjacent if their

distance in the cycle on n nodes is no greater than k/2. The clustering coefficient

of this graph is
3 (k − 2)

4 (k − 1)
, which goes to

3

4
in the limit of large k. If n = ks, the

diameter of G is s, while the average distance is asymptotically s/2 as n → ∞. In

the second stage, each edge is deleted independently with probability p, and then all

edges are added back at random to obtain the Watts-Strogatz graph.

Watts and Strogatz observed that even for small values of p in the range from 0 to

0.005, the average distance drops down to O (log n), while the clustering coefficient

remains around
3

4
. Barrat and Weigt [BW00] obtained (although not rigorously) an
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expression for the degree distribution of Watts-Strogatz model, which resembles the

degree distribution for Erdos-Renyi random graphs. The lack of scale-free degree

distribution is the principal reason for discarding “small worlds” as a model of real-

world networks.

2.4.3 Scale-free Random Graph Processes

The existing models of scale-free random graphs could be divided into two classes: (1)

random graph processes and (2) configuration models. The aim of random graph pro-

cesses is to explain the origin of scale-free degree distribution by running a stochastic

graph process with simple rules. On the other hand, configuration models consider

the probability space of random graphs on the given scale-free degree sequence.

Molloy and Reed [MR95] were the first to determine the condition for emergence

of a giant component in a random graph with a given degree distribution. Their

approach was later used by Aiello et al. [ACL00] to study the probability space of

graphs with a fixed scale-free degree sequence. Generating functions were used in

a similar setting by Newman et al. [NSW02] to derive results about the average

distance and the size of the giant component. In the following sections, we present a

brief survey of random graph processes and rigorous results from their analysis.
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The most basic random graph process that results in scale-free behavior of the

generated graph was given by Barabasi-Albert [BA99]: “... starting with a small

number (m0) of vertices, at every time step we add a new vertex with m (< m0)

edges that link the new vertex to m different vertices already present in the system.

To incorporate preferential attachment, we assume that the probability Π that a new

vertex will be connected to a vertex i depends on the connectivity ki of that vertex, so

that Π (ki) = ki/
∑

kj. After t steps the model leads to a random network with t+m0

vertices and mt edges.” Thus Barabasi-Albert model allows addition of nodes, one at

a time, linked to earlier nodes chosen with probabilities depending on their popularity

(a function of the node’s degree and additional parameters such as attractiveness or

fitness). This idea matches the principle of “the rich gets richer,” and has become

popular as preferential attachment rule [BA99, KR01, DF02].

The informal description of the BA model has two major flaws: (1) The process

cannot be started if m0 = 1 and the initial node is isolated, and (2) the choice of

the graph induced on the first m0 nodes determines the outcome of the process: if

m = 1, and the initial m0 nodes compose a tree, the outcome of the process is also a

tree; however, if the first m0 nodes compose a forest, the resulting graph would also

be disconnected.

To remedy the situation, this random graph process can be inductively defined as

follows:
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Basis: G1 = (V1, E1), with V1 = {1} and E1 = {(1, 1)}, i.e., the initial graph is

composed of one node, labeled 1, and one loop.

Induction step: Given Gt−1, obtain Gt = (Vt, Et), Vt = Vt−1 ∪ {t}, Et =

Et−1 ∪ {(t, u1) , . . . , (t, um)}, where each uj, 1 ≤ j ≤ m is chosen from Vt−1 with

probability proportional to its degree, i.e.

P ((t, j) ∈ Et) =
d (j)

t−1∑
i=1

d (i)

,

and 1 ≤ i ≤ (t− 1).

Another equivalent definition of this random graph process is given in [BR04,

BO04], which allows analysis via its static description—linearized chord diagram

(LCD) [Sto99]. Consider a fixed sequence of nodes v1, v2, . . .. The process (Gt
1)t≥0 is

inductively defined by:

Basis: G1
1 is composed of one vertex and one loop.

Induction step: Given Gt−1
1 , Gt

1 is obtained by adding a vertex vt together with

a single edge between vt and vi, where i is randomly chosen with probability:

P (i = s) =





dGt−1
1

(vs)

2t− 1
, 1 ≤ s ≤ (t− 1)

1

2t− 1
, s = t.
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If the number of added edges, m, from vt, is greater than one, the process ( Gt
m )t≥0

is obtained by running ( Gt
1 )t≥0 on the sequence v′1, v

′
2, . . .; that is, form a graph Gt

m

from the graph Gmt
1 by identifying the nodes v′1, v

′
2, . . . v

′
m to form v1, identifying

v′m+1, v
′
m+2, . . . v

′
2m to form v2, and so forth.

This definition allows the dynamic graph process to be analyzed via its static

description—linearized chord diagram (LCD): The linearized chord diagrams (LCD),

with n chords, consist of 2n distinct points on the x–axis paired off by semi–circular

chords, each chord having one left and one right endpoint. A graph can be obtained

from an LCD as follows: starting from the left, identify all endpoints up to and

including the first right endpoint reached from node 1. The rest of the nodes are

obtained by repeating this process. Finally, the chords from the LCD represent edges

in the obtained graph.

Remark 2.4.1. Note that the random graphs, obtained by applying any of the equiv-

alent definitions of the random graph process, are undirected. However, they have

natural representation as directed graphs: an undirected edge (i, j) assumes direction

from i to j if i > j.
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Bollobas and Riordan [BR04] analyzed this random graph process and obtained

that for fixed m ≥ 1, ε > 0, and α =
2m (m + 1)

(k + m) (k + m + 1) (k + m + 2)
with proba-

bility tending to 1 as n → ∞, (1− ε) α ≤ Nk

n
≤ (1 + ε) α for every k in the range

0 ≤ k ≤ n1/15, Gn
m is connected and has a diameter (1− ε) log n/log log n ≤ D (Gn

m) ≤

(1 + ε) log n/log log n, and that the clustering coefficient of Gn
m is

m− 1

8

(log n)2

n
.

Buckley and Osthus [BO04] studied a modification of the preferential attachment

by using the approach in [BR04] and obtained that for fixed m ≥ 1, a ≥ 1, ε > 0

and α = ( a + 1 ) ( am + a ) !




k + am− 1

am− 1




k!

( k + am + a + 2 ) !
, (1− ε) α ≤ Nk

n
≤

(1 + ε) α, k in the range 0 ≤ k ≤ n1/100(a+1). Chung and Lu [CL01] and Cooper

and Frieze [CF03] analyzed the preferential rule where nodes and/or edges can be

inserted and deleted from the outcome of ( Gt
1 )t≥0. The expected degree sequence in

both models is scale-free.

The preferential attachment rule and its variations [BA99, KR01, DF02] are not

the only mechanism resulting in scale-free degree distribution. Kumar et al. [KRR00]

determined another mechanism that not only generates power-law, but also explains

the appearance of dense bipartite subgraphs in the Web graph. The basic idea is

that a new web page is often made by copying an old one, and then changing some

of the links. This model is parameterized by a copy factor p ∈ (0, 1) and a constant

out-degree m ≥ 1. At each time step, one vertex is added with m out–going edges.
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Generation of out-going edges is a two-stage process: In the first stage, a node—

called prototype—is chosen uniformly at random from the existing (old) nodes. In

the second stage, the destination (node) of the i-th outgoing edge is chosen as follows:

with probability p, the destination is chosen uniformly at random from the old node,

and with the remaining probability the out-going edge is taken to be the destination

of the i-th outgoing edge of the prototype. For a fixed k > 0 they obtained that

P (d (u) = k) = Θ
(
k−

2−p
1−p

)
.

Dorogovtsev and Mendes [DFS00] and Bollobas [Bol03] analyzed a model in which,

at every time step, a node is added and attached to the end vertices of an edge

chosen uniformly at random. Since the node sampling based on their degrees could

be performed by first choosing an edge uniformly at random and then selecting an

end node uniformly at random, this mechanism is equivalent with the preferential

attachment rule.

2.5 Degree-correlation of a Scale-free Random Graph

Recent empirical studies of technological and social networks [New89, PVV01] demon-

strated correlation among the degrees of adjacent nodes—called degree-correlation.
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Here, we define and study the degree-correlation for scale-free random graph pro-

cesses. The methodology we use is similar to that employed in [BR04, BO04]. Our

result confirms that node-degrees in the Barabasi-Albert model are not correlated (as

stated in [New89]).

The Pearson correlation coefficient, r, is a real number, in the range [-1, 1], that

expresses the quality of the least squares fitting to a given set of data points (xi, yi),

1 ≤ i ≤ n. There are two evident problems: (1) how to choose which of the degrees

in a pair of adjacent nodes to represent xi and yi, and (2) the correlation coefficient

should asymptotically hold for any graph generated by the random graph process.

Here, it is more convenient to use the correlation coefficient, r, for two random

variables X and Y , written as:

r =
cov (X, Y )

σXσY

,

where cov (X, Y ) = E [(X, Y )] − E [X] E [Y ], and (X,Y ) represents the joint proba-

bility distribution of the random variable X and Y .

Given a random graph Gn
m generated by the random graph process ( Gt

m )t≥0,

consider the two-stage experiment: (1) choose an edge e = (u, v) from Gn
m indepen-

dently at random, (2) choose one node, say u, incident with e. Let d (u) be the
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value of X, and d (v) be the value of Y . The probability distribution of the random

variable X can be easily derived. Let the number of d-degree nodes be Nd. Since

each edge results in two possibilities for successful events, one can obtain the follow-

ing: P (X = d) =
dP (Z = d)∑

k

dP (Z = k)
, where P (Z = d) is the probability distribution of

the random variable representing the degree of a node chosen uniformly at random.

Clearly, X and Y have the same probability distribution. The Pearson correlation

coefficient can be calculated as:

r =

∑
d,d′

dd′ (P (X = d, Y = d′)− P (X = d) P (X = d′))

∑
d

d2P (X = d)−
[∑

d

dP (X = d)

]2 .

To make use of this formulation, we need to derive an expression for P (X = d, Y = d′).

2.5.1 Joint Probability Distribution

Here, we derive an expression for the joint probability distribution P (X = d, Y = d′)

(or with shorter notation P (d, d′)) for degrees of adjacent nodes, writing #n
m (d, d′)

for the number of adjacent pairs of nodes with in-degrees d and d′, i.e. with total

degree of (m + d) and (m + d′). We note that for uncorrelated scale-free graphs the
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joint probability distribution P (d, d′), has the following form:

P (d, d′) = P (d) P (d′) ,

while for correlated scale-free graphs P (d, d′) has a more complex form, given by

Theorem 2.5.1.

Theorem 2.5.1. Let m = 1 and (Gn
1 )n≥0 be the random graph process defined in

Section 2.4.3. Let

αd,d′ =
4 (d′ − 1)

d (d + 1) (d + d′) (d + d′ + 1) (d + d′ + 2)
+

12 (d′ − 1)

d (d + d′ − 1) (d + d′) (d + d′ + 1) (d + d′ + 2)
,

and let ε > 0 be fixed. Then with probability tending to 1 as n →∞ we have

(1− ε) αd,d′ ≤ #n
1 (d, d′)

n2
≤ (1 + ε) αd,d′

for every 0 ≤ d ≤ d′ ≤ n1/5.

Proof. It turns out that we only need to calculate the expectation #n
m (d, d′); the

concentration result is then given by applying the Azuma-Hoeffding inequality. The
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strategy of the proof is as follows: It is enough to consider the case when m = 1;

the result for general m follows, as mentioned. First, we derive explicitly the joint

distribution of Dk and Dk′ , where Dk (resp. Dk′) is the sum of the first k (resp. k′)

degrees, assuming k′ > k. Bollobás and Riordan [BR04] already proved that Dk is

concentrated about a certain value. We combine these results to obtain approximately

the joint probability (dGn
1
(vk+1) = d + 1, dGn

1
(vk′+1) = d′ + 1). Summing over k and

k′ gives the desired result.

Consider first the event {Dk − 2k = s}, where 0 ≤ s ≤ n − k. This is the event

that the last n − k nodes of Gn
1 send exactly s edges to the first k nodes. This cor-

responds to a LCD in which the kth right endpoint is 2k + s2k + s. We shall split

the this LCD into left partial LCD L, induced on {1, . . . , 2k + s}, and a right partial

LCD R, induced on {2k + s + 1, . . . , 2n}. Similarly, we arrive at the partial LCDs

L′ and R′, generated by the event {Dk′ − 2k′ = s′}, where 0 ≤ s′ ≤ n− k′. Suppose

that the left partial LCDs L and L′ share j common left unpaired endpoints, where

0 ≤ j ≤ min (s, s′). Consider the event {Dk− k = s,Dk′ − k′ = s′|j}, the correspond-

ing left partial LCD has exactly

Ψ
(2n− 2k′ − s′)!
(2n− 2k′ − 2s′)!

(2k′ − 2k − s + j)!

(2k′ − 2k − 2s + 2j)!
(2n− 2k − 2s− s′ + j − 3)!!
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extensions to a full n-pairing. The term Ψ denotes a rather unilluminating expression

that simplifies to ss′ − j.

This extension of the left partial LCD corresponds to a graph with dk+1 = d + 1

and dk′+1 = d′+1 if and only if 2k +s+d+1 and 2k′+s′+d′+1 are right endpoints,

and each of the 2k + s + 1, . . . , 2k + s + d, 2k′ + s′ + 1, . . . , 2k′ + s′ + d′ is a left

endpoint. Note that the element paired with 2k + s + d + 1 must be either one of the

s unpaired elements in L or one of the 2k + s + 1, . . . , 2k + s + d, and that s + d− 1

pairs start before 2k + s + d + 1 and end after this point. In order for vk+1 and vk′+1

to be adjacent, it is easy to conclude that 2k′ + s′ + d′ + 1 must only be paired with

one of the unpaired 2k + s + 1, . . . , 2k + s + d, and that s′ + d′ − 1 pairs start before

2k′+s′+d′+1and end after this point. Since we also have to consider the number j of

overlapping unpaired endpoints in the left partial LCDs L and L′, we arrive at three

cases: (1) 2k + s + d + 1 chooses among j overlapping left endpoints, 2k′ + s′ + d′ + 1

chooses among d unpaired left endpoints immediately preceding 2k + s + d + 1, (2)

2k + s + d + 1 chooses among s− j non-overlapping left endpoints, 2k′ + s′ + d′ + 1

makes the same choice as in the previous case, and (3) Each of 2k + s + d + 1 and

2k′ + s′ + d′ + 1 chooses one left endpoint from 2k + s + 1, . . . , 2k + s + d. Such left

partial LCD has exactly
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Υ
(2n− 2k′ − s′ − d′ − 1)!

(2n− 2k′ − 2s′ − 2d′ − 1)!

(2k′ − 2k − s− d + j − 1)!

(2k′ − 2k − 2s− d + 2j − 1)!
·

· (2n− 2k − 2s− s′ − d− d′ + j − 1)!

(2n− 2k − 2s− s′ − 2d− d′ + j − 1)!
(2n− 2k − 2s− s′ − 2d− d′ + j − 4)!!

extensions to a full n-pairing. The term Υ denotes a rather unilluminating expres-

sion that simplifies to d (d + s− 1). Let M =
⌊
n4/5/ log n

⌋
, let k = k (n) (resp.

k′ = k′ (n)) be any function satisfying M ≤ k (n) ≤ n − M , and let d = d (n) and

d′ = d′ (n) be any two functions satisfying 0 ≤ d′ (n) ≤ d (n) ≤ n1/5. One may obtain:

P (dk+1 = d, dk′+1 = d′|Dk − k = s,Dk′ − k′ = s′, j) =

(1 + o (1))




2
(√

n−
√

k
)2

2
(
n−

√
kn

)




2d′+1 
2

(
k′ + k − 2

√
kn + j

)

2k′ − 2
√

kn + j




d+1

=

(1 + o (1))

(
1−

√
k

n

)2d′+1 (
1−

√
k

n
+ 1−

√
k′

n

)d+1

.

Thus, we arrive at:
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E [#n
1 (d, d′)] ∼

n−M∑
k′=M

n−M∑
k=M

(
1−

√
k

n

)2d′+1 (
1−

√
k

n
+ 1−

√
k′

n

)d+1

= n2
1∫
0

[
1∫
0

(1−√κ)
2d′+1 (

1−√κ + 1−√κ′
)d+1

dκ

]
dκ′,

where κ = k/n and κ′ = k′/n. The inner integral yields:

1∫
0

(1−√κ)
2d′+1 (

1−√κ + 1−√κ′
)d+1

dκ =

(
1−√κ′

)d

(3 + 5d′ + 2d′2)




(
1−√κ′

)
(3 + 2d′) 2F1

(
2 + 2d′, −d, 3 + 2d′, − 1

1−√κ′

)
+

+ (2 + 2d′) 2F1

(
3 + 2d′, −d, 4 + 2d′, − 1

1−√κ′

)




,
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Integration over κ′ gives:

E [#n
1 ( d, d′ )]/n2 ∼

(6 + 4d′) Γ (−2− d) Γ (3 + 2d′) (1 + d) 2F1 (−2− d, 2 + 2d′, 3 + 2d′,−1)

(3 + 10d′) Γ (−d)

−(12 + 8d′) Γ (−2− d) Γ (3 + 2d′) (2 + d) (1 + d′) 2F1 (−1− d, 3 + 2d′, 4 + 2d′,−1)

(3 + 10d′) Γ (−d)

−(4 + 4d′) Γ (−1− d) Γ (4 + 2d′) 2F1 (3 + 2d′,−1− d, 4 + 2d′,−1)

(3 + 2d′) Γ (−d)
.

Now, by using the Kummer’s formula, the theorem follows.

2.6 Summary

In this chapter, we first define the notions of Macroscopic Internet graph, Microscopic

Internet graph, and webgraph. We then briefly survey the empirical results about

the properties of large real-world networks. Results about the three salient proper-

ties of the scale-free networks: scale-free degree distribution, clustering coefficient,

and average distance are reviewed for three classes of random graphs—Erdos-Renyi,
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Watts-Strogatz small worlds, and scale-free random graph processes. Finally, we

define the notion of degree-correlation, and give a rigorous mathematical result for

the degree-correlation of Barabasi-Albert scale-free graphs. The analysis of degree-

correlation uses linearized chord diagrams which provide static description of the

dynamic Barabasi-Albert model. Finally, we point out that the degree-correlation is

a salient-characteristic of scale-free random graphs, and should, therefore, be used in

the analysis of stochastic processes (e.g. worm propagation) on such random graphs.
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CHAPTER 3

WORM PROPAGATION STRATEGIES

3.1 Introduction

In the period from 1979 to 1981 researchers at Xerox PARC built and experimented

with worms that were designed to do useful work on the network [SH82]. How-

ever, their successor—the infamous Internet worm (released on November 2, 1988)—

marked network worms as malicious programs. Analyses [Cen01a, Cen01b] of the

recent network worms showed that these intelligent software agents did not perform

significant destructive actions (e.g., deleting files, transferring password files, etc.),

but propagated quickly across and overwhelmed the networks [Wea02], [SGJ01].

A worm propagates by sending a copy of AMMC to a vulnerable host on the net-

work, detected through scanning and probing. First, port scanning determines (by em-

ploying a piece of software called scan) whether or not a host is reachable over the net-

work. A scan request is sent to a specific port of a host (e.g., ICMP ECHO REQUEST

can be sent using the ping utility). A second request, called probe, is then used to
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detect the services and operating systems running on the host (based on a specific

replay to the request) [MSK01]. The size of an AMMC is relatively small (less than

a hundred KB), and the scan and probe pieces are negligibly small (a kilobyte and

a dozen bytes, respectively) [SPW02]. The code of Sapphire Worm, for example,

consisted of only 376 bytes [MPS03]. Thus, the only immediately observable effect of

an attack on a network is an increase in the routing-related requests [COP01], as the

worm keeps probing different hosts.

Network worms are known to employ malicious actions such as: falsifying address-

ing information, attack to multiple computers, and simultaneous attacks on a single

computer. Unauthorized access on a computer can be gained by falsifying addressing

information (through sending a request with a forged authorized IP address) in order

to bypass a security device (e.g., a firewall). Attack to multiple hosts is employed

to inflict damage to a network in a shorter time. Simultaneous attacks on a single

host (e.g., denial-of-service attack) tie up the resources of a computer or a network

meant to be used for legitimate purposes. Therefore, if maximum destruction is the

intruder’s goal, network worms are a cost-effective way to significantly interrupt the

functions of the information infrastructure.
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3.2 Worms as Multi-agent Systems

According to Nazaro et al. [NAW01], malicious mobile-code of a network worm en-

compasses five (overlapping) components: reconnaissance, specific-attack, command-

interface, communications, intelligence, and unused-attack. The reconnaissance com-

ponent comprises the propagation strategy used to identify vulnerable computers.

The specific-attack component is composed of methods that a network worm uses to

gain entry on a computer. For instance, a buffer overflow is a method by which the

attacker inserts a set of commands in the system program code, thus, masquerading as

the operating system. The command-interface component allows for controlling the

corrupted computers (e.g., a backdoor is a feature of a program that enables control-

ling (accessing) that program without using direct call [PP03]). Sharing information

about vulnerable computers is established through the communication component,

while storing information about corrupted computers is maintained by the intelligence

component. Methods in the unused-attack component employ other vulnerabilities

than those in the specific-attack component.

The ability of each copy of the worm to initiate and perform an action without hu-

man intervention, naturally lends the autonomous MMCs to be studied as intelligent

agents. An agent is a conceptual entity (e.g., program, robot) involved in analyzing,

structuring, and implementing the processing of a complex problem [Att00]. Franklin
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and Graesser’s agent-taxonomy includes viruses as a type of software agents [Bra97].

A software agent is a program that is capable of initiating an action, has goals and

plans to achieve them, communicates with other agents, and responds to events in

the environment [Bra97]. The ability to communicate with other agents allows for de-

velopment of multi-agent systems, in which each agent works on a piece of a complex

problem [Woo99].

Moreover, a network worm is an example of a multi-agent system: The propagation

of a worm and its survival as a system on the network depend on how each copy of the

worm chooses the next node to attack. The copies of the worm are distributed, and

have to coordinate with each other, often through messages or pre-defined actions

(e.g., all worm copies may be pre-programmed to attack one node at a specific time),

in order to inflict more damage to the network.

3.3 Classification of Propagation Strategies

In order to propagate, the worm may use one or a combination of the following propa-

gation strategies: random, local-subnet, topological, hitlist, and permutation [Wea02].

To model defense strategies, we assume that there are security agents deployed on

the network. The network on which the worm propagates is modeled by a graph

G. At any time step t > 0, each node in G is either occupied or unoccupied by a
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copy of the worm or a security agent. The node occupied by the worm will be called

compromised, while the node occupied by a security agent will be called guarded. As

the goal of the worm is to maximize the number of compromised nodes, we assume

that there can be at most one copy of the worm per compromised node. On a given

graph G, representing the network, typically a worm originates at some node y, and

propagates according to the steps shown in Figure 3.1.

Algorithm Worm propagation on a network

1: A copy of AMMC (worm) is placed on node y
2: The worm selects a target node x
3: The worm sends out scan and probe to node x and looks for the response
4: if the response shows that a security agent resides on x then
5: go to Step 2 (i.e., select another node to compromise)
6: else if the response shows that at x there is neither a security agent nor a worm

then
7: go to Step 11 (i.e., compromise node x)
8: else if the response shows that a robber already resides on x then
9: go to Step 2, (i.e., select another node to compromise)

10: end if
11: The worm sends a copy of itself and sends the replica to node x (i.e., compromises

node x )

Figure 3.1: Worm propagation on a graph G

Let at time t, a (copy of) worm reside on node u, and at time (t + 1), the worm

chooses uniformly at random a node v from a set of target nodes (targets). In random

selection, the set of target nodes includes all nodes, except node u. In local-subnet

selection, only nodes adjacent to u comprise the set of target nodes. For the topological
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selection, the targets are in the set of nodes with specified topological properties (in

relation to node u), denoted by F (u). In the hitlist selection strategy, the worm

on node u is given a set of targets, called hitlist, all of which must ultimately be

compromised. In this strategy, after node v has been compromised by node u, the

set of targets is evenly divided between the two copies of the worm—one residing on

node u, the other on node v. Eventually when the worm’s share of targets becomes

empty through repeated partitioning of the original hitlist, the local copy of the worm

switches to random selection. Finally, in the permutation selection strategy, the copy

of the worm on node u is given only its first target—node v. Then the next target

from node v is node (v + 1), and so on. In all cases, when the number of unsuccessful

attacks is goes over some threshold ε, the propagation terminates.

A formal description for the propagation with the random-target selection strategy

for the worm residing on node u is given in Figure 3.2. Line 1 initializes Yt+1, the set of

compromised nodes by the local copy of the worm up to time (t + 1), with Yt, the set

of compromised nodes by the local copy of the worm to time t. The target (node v) is

selected on Line 2. A shortest u− v propagation path, P , in the graph is determined

in Line 3. Lines 4 through 10 determine if the node v can be compromised. Line 5

calls a procedure that sends a replica of the worm to node v along the propagation

path P . Line 11 returns the set of nodes compromised by the worm on node u up to

time (t + 1).
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Algorithm Random propagation

Input:

u, node on which a copy of the worm resides
w, node from where this copy was sent to node u
t + 1, current time
Yt, set of nodes compromised by this worm up to time t
success, indicates if at time t a node has been compromised
counter, number of targets that have not been compromised

Output:

Yt+1, set of nodes compromised by this worm robber up to time (t + 1)

1: Yt+1 ← Yt

2: choose a node v from V (G)− {u} uniformly at random
3: P ← a shortest u, v-path
4: if node v is not compromised then
5: send worm(v,u,t + 2,∅, true) //along path P
6: Yt+1 ← Yt+1 ∪ {v}
7: success ← true
8: else
9: counter ← counter + 1

10: end if
11: return Yt+1

Figure 3.2: Random propagation strategy

To obtain the formal description of the local-subnet strategy, Line 2 in Figure 3.2

would be substituted with the following:

choose node v only from among nodes adjacent to node u uniformly at random
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Likewise, we would get the procedure for topological strategy (for a predefined

topologically related set of nodes to u), if Line 2 in Figure 3.2 is substituted with:

choose a node v from set F (u) uniformly at random

Let H denote the set of targets (hitlist) in the hitlist strategy. The set H temp

stores the initial hitlist, as it is needed in the random strategy when set H becomes

empty. We obtain the hitlist strategy, Line 2 in Figure 3.2 should be changed to the

following block:

if |Yt| = 0 then
H temp ← H

end if
if H 6= ∅ then

choose a node v from H − {u} uniformly at random
H ← first half of H − {u, v}

else
choose a node v from V (G)− ({u} ∪H temp) uniformly at random

end if

Finally, one obtains the permutation selection strategy if Line 2 in Figure 3.2 is

substituted with:
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if success = true and counter < τ then
choose a node v ← v + 1

else if success = false and counter < τ then
choose a node v from V (G)− {u} uniformly at random

else
stop

end if

3.4 Examples of Worms

Every worm has its unique characteristics in terms of the propagation strategy it

employs to spread on the network and the payload it carries. This section provides a

description of four worms that caused considerable disruption of Internet services—

the variants of the Code Red, Nimda, Slammer, and the Blaster worm.

3.4.1 Variants of Code Red

Code Red started its malicious propagation on July 19, 2001 by exploiting a buffer flow

vulnerability in Microsoft IIS server. The Code Red worm propagates as follows: The

worm attempts to connect to TCP port 80 on a randomly chosen host assuming that

a web server will be found. Upon a successful connection to port 80, the attacking

host sends a crafted HTTP GET request to the victim, attempting to exploit the

buffer overflow in the indexing service, after which a copy of the worm is sent. If

the exploit is successful, the worm copy begins executing on the victim host. The IP
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addresses scanned by the Code Red are determined based on the random propagation

strategy described in Figure 3.2, above.

Code Red II, a variant of its predecessor Code Red, also exploits the buffer over-

flow vulnerability in Microsoft IIS indexing service. It started propagating on August

6, 2001. The Code Red II worm causes system level compromise and leaves a back-

door on certain machines running Windows 2000, while vulnerable Windows NT 4.0

systems could experience a disruption of the IIS service. The IP addresses scanned

by the Code Red II are determined in a probabilistic manner using the local-subnet

strategy : (1) a random IP addresses with the same first byte as the compromised

host is scanned with probability
1

2
, (2) a random IP addresses with the same first

two bytes as the infected host is scanned with probability
3

8
, and (3) a random IP

addresses in the entire IP space is scanned with probability
1

8
. Thus, Code Red II

uses local–subnet scanning. The Trojan horse, installed when the worm is executed,

runs every time a user logs in the compromised system, and increases the impact of

this worm. As a result of scanning activities, bandwidth denial-of-service has been

observed near groups of compromised hosts [Cen01a].
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3.4.2 Nimda

The Nimda worm was first seen on September 25, 2001. This worm propagates by

multiple mechanisms: from client to client via email, from client to client via open

network shares, from web server to client via browsing of compromised web sites, from

client to web server via active scanning for (and exploitation of) various Microsoft

IIS directory traversal vulnerabilities, and from client to web server via scanning for

the back doors left behind by the Code Red II. The payload modifies web documents

and certain executable files found on the systems it compromised, and attempts re-

sending the compromising e-mail message every 10 days. The compromised host

(client) attempts to transfer a copy of the Nimda worm via tftp (69/UDP) to any IIS

server that it scans and finds to be vulnerable. The selection of potential target IP

addresses is according to the local-subnet strategy [Cen01b]: an address with the same

first two octets is chosen with probability
1

2
, an address with the same first octet is

chosen with probability
1

4
, while a random address is chosen from the entire IP space

with probability
1

4
.
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3.4.3 Slammer

The SQL Slammer worm (also known as Sapphire worm) started propagating on

January, 25, 2003 by exploiting a vulnerability in the Resolution Service of Microsoft

SQL Server 2000 [MPS03]. The vulnerability allows for the execution of arbitrary

code on the SQL Server host due to a stack buffer overflow. The worm creates packets

of 376-bytes and sends them on port 1434/UDP of IP addresses chosen according to

the random propagation strategy. The propagation of this malicious code has caused

varied levels of network degradation across the Internet due to the intensive scanning

activities.

3.4.4 Blaster

The propagation of the Blaster worm was initiated on August 11, 2003. It exploits

a vulnerability in Microsoft’s DCOM RPC interface. Upon successful execution, the

worm attempts to retrieve a copy of the file msblast.exe from the attacking host,

after successful retrieval runs it, and begins scanning for other vulnerable hosts. To

propagate, this worm uses a TCP session to port 135, 139, and 445. The IP address

is chosen according to the local-subnet propagation strategy [Cen03]: an address

with the same first two octets is chosen with probability
2

5
(the third octet is also
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determined from the attacking host according to the permutation propagation strat-

egy), while a random IP address is chosen with probability
3

5
. The payload of this

worm includes the ability to launch a TCP SYN flood denial-of-service attack against

windowsupdate.com.

3.5 Summary

In Section 3.2, we describe the structure of a network worm including five (overlap-

ping) components: reconnaissance, specific-attack, command-interface, communica-

tions, intelligence, and unused-attack. Due to the worms’ ability to initiate and per-

form an action without human intervention, we point out that worms can be studied

as multi-agent systems. Algorithmic description of five worm propagation strategies:

random, local-subnet, topological, hitlist, and permutation is provided in Section 3.3.

Local propagation strategies—-local-subnet, topological, and permutation—used by

worms presented in Section 3.4 are of particular interest as they strongly depend on

the graph structure on which the stochastic propagation process takes place. Under-

standing the propagation mechanism of a network worm is essential for developing

accurate model of propagation.
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CHAPTER 4

GRAPH-THEORETIC MODEL OF WORM

PROPAGATION AND QUARANTINING

4.1 Introduction

The network on which a worm propagates is a collection of interconnected computers,

each with a distinct IP address. Such a network can be represented by a simple, con-

nected, undirected graph G, with the nodes as computers and edges as communication

links (e.g., wire, optical cable). The worm is created with the idea to compromise the

entire network in the shortest time. A copy of the worm can be viewed as a robber

placed on a node in G. One must always assume that each robber will propagate

copies of itself to all adjacent nodes, whenever it can. Due to cost constraints, it is

assumed that only a few copies of the security agents are available. Since at any time

only a few sensors alarm the agents, it is reasonable to suppose that only a portion

of the available agents are deployed. Agents can be thought of as cops that, once

43



deployed on certain nodes, traverse the graph along the edges. While the robbers do

not know the cops’ position, the cops know the positions and the propagation strat-

egy of the robbers. Thus, quarantining worm’s propagation is an application of the

cops-and-robbers game defined in Section 4.3. We believe this game is of fundamen-

tal interest in network security as it offers a graph-theoretic framework for studying

quarantining strategies.

The chapter is organized as follows: In Section 4.2, we first describe the classical

cops-and-robbers game played on a graph, then, present a classification scheme for

existing cops-and-robbers games, and, finally, devise a generalization of the classical

cops-and-robbers game. In Section 4.3 we present a new results pertaining to the

model for quarantining network worms—a class of cops-and-robbers games where the

cops have information about the position and strategy of the robbers.

4.2 Classification Scheme for Cops-and-Robbers Games

The classical cops-and-robbers game is played on a simple, connected graph G =

(V, E), on n nodes, with c cops and a robber moving in discrete time steps i =

0, 1, . . . , t. To start the game first each of the c cops chooses a node of G, and then

the robber is placed on a node of G. Thus, at any time step i ≥ 0, each node is

either occupied or unoccupied by a player. The node occupied by the robber will
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be called compromised, while the node occupied by cop will be called guarded. For

an arbitrary pair of nodes u and v in V (G), a u, v-path will be called guarded if it

contains a guarded node. Unoccupied nodes to which all paths from the compromised

node are guarded will be called defended. Unoccupied nodes that are not defended

will be called exposed. Let at any given time i, Xi denote the set of guarded nodes,

Yi the set containing the compromised nodes, Zi the set of defended nodes, and Fi

the set of exposed nodes, where Xi ∪ Yi ∪ Zi ∪ Fi = V (G). The cops and the robber

then move alternately, with the cops moving first. A move for the cops consists of

each cop either remaining at the same node or sliding along an edge to an adjacent

node. A move for the robber is defined analogously. The game is played with perfect

information, so that the cops and the robber always know each other’s position. The

cops win if, after a finite number of moves, one of them can capture the robber. We say

that the robber is captured if there is a cop on the compromised node. The robber

wins if it can avoid this situation forever. A capturing sequence is the sequence

X = {X0, X1, . . . , Xt} such that Yt ⊆ Xt. A capturing sequence X will be called

monotone if the corresponding sequence Z = {Z0, Z1, . . . , Zt} satisfies Zi ⊆ Zi+1,

0 ≤ i ≤ (t− 1). Note that when the robber has been captured, all nodes, except for

the guarded, are defended, i.e., Ft = ∅.

Variants of the classical cops-and-robbers game have been applied as models in

computer science, operations research, game theory, and control theory. For instance,
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these games have been used to model sequential program execution [KP86], planning

robot’s actions in scenarios of search and rescue [GLL99], and interception of missiles

[BO98]. Note that the terms cops-and-robbers, pursuit-evasion, and hunter-and-

rabbit are used somewhat synonymously. We adopt the term cops-and-robbers as

it emphasizes the application of this game to network security.

In this section, we present a classification of existing cops-and-robbers games based

on two parameters: Λc, cops’ information about robber’s position, and Λr, robber’s

information about the cops’ position. Thus, we represent each of the four possible

classes of cops-and-robbers games by a tuple 〈G, Λc, Λr〉. The parameters Λc and Λr

take values 0 or 1, indicating, respectively, no information or complete information.

We also discuss the existing variants (within each class) based on two constraints: (1)

restriction as to when the robber is allowed to make a move and (2) restrictions on

the moves of the cops. The robber that moves only before immediate capture will be

called inert ; without this restriction, the robber will be considered agile. Cops are

restricted to choose a move from a given subset of the available actions: (A) enter

the graph on an arbitrary node, (B) slide along a path with at most sc edges, or (C)

leave the graph. A cop (respectively, a robber) will be said to move with speed sc

(respectively, sr) if it can traverse a path with at most sc (respectively, sr) edges per

time step.
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Three questions are of particular interest when studying cops-and-robbers games:

(1) the structure of the graphs on which a given number c of cops suffice for capture,

(2) the minimum number of cops to capture the robber on a given graph G, i.e., the

cop-number, c (G), and (3) the monotonicity of capturing sequence with c (G) cops

on a given graph G.

Notation: Let d (u, v) denote the distance between two arbitrary nodes u and

v, and N (u) the set of nodes adjacent to u. When G is a Cartesian product of the

graphs Gj, j = 1, . . . , k, V (G) is the Cartesian product of V ( Gj ), 1 ≤ j ≤ k; two

nodes u = (u1, . . . , uk) and v = (v1, . . . , vk) are adjacent in the Cartesian product G

if and only if uj 6= vj for precisely one j (1 ≤ j ≤ k) and, for this j, (uj, vj) is an edge

in E (Gj).

4.2.1 Games with Complete Information

In the class of 〈G, 1, 1〉 games, the players have complete information about each

others’ position. Two variants belonging to the class 〈G, 1, 1〉 have been studied,

wherein: (1) an agile robber moves with unit speed and each cop of unit speed is

restricted to choosing action (B) and (2) the inert robber moves with unbounded

speed, while cops are restricted in their moves to actions (A) and (C).
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4.2.1.1 Agile Robber of Unit Speed, Cops of Unit Speed

First, we survey the results related to the game where an agile robber moves with

unit speed and each of the c cops is restricted to only sliding along an edge to an

adjacent node. Here, cops have additional knowledge of the robber’s strategy. Quilliot

[Qui85], Nowakowski and Winkler [NW83] independently determined that on the

class of dismantlable graphs one cop can capture the robber. Moreover, Hahn and

MacGillivray [HM04] presented a characterization of directed graphs on which c cops

can capture the robber. Here, we give the relevant definitions:

Definition 4.2.1. Given a graph G, suppose u and v are two nodes such that N (u)∪

{u} ⊆ N (v). The operation of deleting u from G is called a folding of G, and we say

that u folds unto v.

Definition 4.2.2. A graph is called dismantlable if there is a sequence of folds that

reduces G to a single node.

If G is dismantlable, Algorithm 1 builds a tree T which provides the strategy for

the cop. Let Xi = {x}, Yi = {y}. Consider the time step (t− 1) just before the robber

is captured on such a dismantlable graph G. Since at time step t, N (y)∪{y} ⊆ N (x),

the cop captures the robber by moving on y. Otherwise, the cop moves to the node

x′, adjacent to x in T , closest to y. To avoid the cop, the robber always moves to
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Algorithm 1 Tree obtained by dismantling
Input:

G, dismantlable graph

Output:
T , tree obtained from dismantling

1: V (T ) ← ∅, E (T ) ← ∅
2: while |V (G)| 6= 1 do
3: M ← ∅
4: while there are unmarked u, v ∈ V (G)

such that N (u) ∪ {u} ⊆ N (v) do
5: mark u
6: V (T ) ← V (T ) ∪ {u, v}
7: E (T ) ← E (T ) ∪ {(u, v)}
8: M ← M ∪ {u, v}
9: end while

10: G ← G−M
11: end while

an adjacent node y′, furthest from x′. The strategies employed by the cop and the

robber are formally described by Algorithm 2.

Maamoun and Meyniel [MM87] proved that one cop can capture the robber (which

is not allowed to indefinitely occupy a node) when G is a Cartesian product of two

trees T1 and T2. Given the guarded node x = (x1, x2) and the compromised node

y = (y1, y2) in V ( G ), let d (x1, y1) denote the distance between the cop and the

robber in T1, and d (x2, y2) the distance between the cop and the robber in T2. The

cop moves in G to an adjacent node x′ = (x′1, x′2)that minimizes the sum d (x′1, y1) +

d (x′2, y2).The robber moves in G to an adjacent node y′ = y′ = (y′1, y
′
2)that maximizes
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Algorithm 2 Strategies on a dismantlable graph
Input:
G, dismantlable graph
i, time step
T, output from algorithm 1
Xi = {x} , guarded node at i
Yi = {y} , compromised node at i
Output:

Xi+1, guarded node at i + 1
Yi+1, compromised node at i + 1

1: i ← i + 1
// cop’s strategy //

2: if y ∈ N (x) then
3: Xi ← {y}
4: else
5: find a node x′ ∈ N (x) in T , closest to y
6: Xi ← {x′}
7: end if

// robber’s strategy //
8: find a node y′ ∈ N (y) such that d (y′, x′) = max {d (u, x′) : u ∈ N (y)}

// ties are broken arbitrarily //
9: Yi ← {y′}

d (x′1, y
′
1)+d (x′2, y

′
2). We provide a formal description of cop’s and robber’s strategies

in Algorithm 3.

The retraction strategy can be used when two cops are in play (i.e., when c = 2).

To clarify the idea, we give the following definition:

Definition 4.2.3. Given a graph G and a sub-graph H of G, the mapping ϕ :

V (G) → V (H) is called a retraction from G into H, if:

(i) (ϕ (u) , ϕ (v)) ∈ E (H) or ϕ (u) = ϕ (v) whenever (u, v) ∈ E (G) and
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Algorithm 3 Strategies on Cartesian product of two trees
Input:

T1, T2, trees
G, Cartesian product of T1 and T2

i, time step
Xi = {(x1, x2)} , guarded node x = (x1, x2) at i
Yi = {(y1, y2)} , compromised node y = (y1, y2) at i

Output:

Xi+1, guarded node x′ = (x′1, x
′
2) at i + 1

Yi+1, compromised node y′ = (y′1, y
′
2)at i + 1

1: i ← i + 1
2: d1 ← d (x1, y1)
3: d2 ← d (x2, y2)

// cop’s strategy //
4: if N (y) ⊆ N (x) then
5: // robber is captured //
6: else
7: find node x′ ∈ N (x) such that d (x′1, y1) + d (x′2, y2) is minimized
8: Xi ← {(x′1, x′2)}
9: end if

// robber’s strategy //
10: find node y′ ∈ N (y) such that d (x′1, y

′
1) + d (x′2, y

′
2) is maximized

11: d1 ← d (x1, y
′
1)

12: d2 ← d (x2, y
′
2)

13: Yi ← {(y′1, y′2)}
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(ii) ϕ (u) = u for each u ∈ V (H).

Given a shortest path P between two arbitrary nodes u and v, one such mapping

from V (G) to V (P ) takes ϕ (w) to be the unique node z ∈ V (P ), such that d (u, z) =

min {d (u,w) , d (u, v)} (i.e., every node w ∈ V (G), d (u,w) ≥ d (u, v), is mapped into

node v) [2]. The image ϕ ( y ) of the compromised node y on the shortest u, v-

path P can be thought of as occupied by an imaginary robber. Since every path is

dismantlable, a single cop can capture the imaginary robber moving along P . The

cop then makes the same moves as the imaginary robber. The role of the second cop

is to force the robber to move on G. It follows from the definition of retraction that

the robber will be captured by the first cop once it decides to enter P .

Here, we give a characterization of graphs on which two cops are necessary and

sufficient to capture the robber:

Theorem 4.2.1. Two cops can capture a robber on a graph G that is not dismantlable

but contains a shortest u, v-path P such that each component of G−P is dismantlable.

Proof. Necessary condition: It follows from the fact that G is not dismantlable and

the result from [24]; therefore, more than one cop is necessary for capture.

Sufficient condition: The cops are placed on the given shortest u, v-path P . The

robber uses the strategy in Algorithm 2 to avoid the moving onto P . The cops capture

the robber in two phases. In the first phase, the cops capture the imaginary robber on
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P (see Algorithm 2). Without loss of generality, let G− P have one component, G′.

In the second phase, the first cop mimics the moves of the imaginary robber, while

the second cop moves according to the strategy in Algorithm 1 on G′. Eventually,

the robber will have to enter the path P when it is captured by the first cop.

Given a graph G that satisfies the conditions of Theorem 4.2.1, Algorithm 4 gives

the strategy for the two cops and the moves for the robber.

Algorithm 4 Retraction strategy
Input:

G, graph satisfying conditions of Theorem 4.2.1
ϕ, retraction to a given shortest u, v-path P
i, time step
Xi = {x1, x2} ,guarded nodes at i
Yi = {y} , compromised node at i

Output:

Xi+1, guarded nodes at i + 1
Yi+1, compromised node at i + 1

1: i ← i + 1
// cops’ strategy //

2: if ϕ (y) 6= x1 then
3: find a node x′1 ∈ N (x1) ∩ V (P ), such that d (x′1, ϕ (y)) < d (x1, ϕ (y))
4: x′2 ← x′1
5: else
6: x′1 ← ϕ (y)
7: x′2 ← Algorithm 2 on G′ component of G− P , y ∈ V (G′)
8: end if
9: Xi ← {x′1, x′2}

// robber’s strategy //
10: y′ ← Algorithm 2 on P based on retraction
11: Yi ← {y′} ϕ
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Let H be a graph and u be a node of H, such that H − u has no isolated nodes.

Using the retraction strategy, Andrea [And86] showed that for any graph G that is

not a minor of H, c (G) ≤ |E (H − u)|. An immediate consequence of this result is

that for a planar graph for which K5 and K3,3 are excluded as minors, c (G) ≤ 3.

Aigner and Fromme [AF84] obtained the same result without using the theory of

graph minors.

The shadow strategy is used to obtain bounds and exact results for the cop-number

when the game is played on a graph G—a Cartesian product of given graphs Gj,

1 ≤ j ≤ k. We review some definitions:

Definition 4.2.4. A projection of G onto Gj is the map πGj
: V (G) → V (Gj)

defined as πGj
((u1, . . . , uk)) = uj. A player is said to move in Gj if its projection

onto the other (k − 1) factors remains unchanged.

Capturing the projection of the robber on y = (y1, . . . , yk) means placing a cop

on (u1, . . . , yj, . . . , uk). A cop is said to shadow the robber on Gj if at any time step

its projection onto Gj is the same as the robber’s. Using this strategy, Maamoun and

Meyniel [MM87] showed that the cop-number for the Cartesian product on k trees

is b(k + 1) /2c: If each cop cj, 1 ≤ j ≤ k, moves in the Cartesian product of T2j−1

and T2j according to Algorithm 3, it will capture the projection of the robber after

finite number of steps (provided, the robber is not allowed to remain on one node

indefinitely). Each cop cj, then shadows the projection of the robber. Eventually, the
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robber will not have an exposed node to move to. Neufeld and Nowakowski [NN93],

[NN98], in addition, obtained bounds for the cop-number of Cartesian, categorical,

and strong products of trees and cycles. Bounds for the cop-number of graphs with

large girth and Gayley graphs can be found in [Fra87].

Goldstein and Reingold [GR95] proved that for any reflexive, finite, undirected

graph G and a fixed integer K ≥ 2, there is a polynomial-time backtracking algorithm

that determines whether c (G) = K. On the other hand, they also proved that when

K is a parameter, it is EXPTIME-complete to decide whether K cops can win from

a given initial position on such a graph. The complexity of the game without giving

the initial position has not yet been determined.

4.2.1.2 Inert Robber of Unbounded Speed, Cops only Jump

In the 〈G, 1, 1〉 game defined by Seymour and Thomas [ST93], the inert robber moves

with unbounded speed (note that the robber cannot move through a guarded node).

Robbers have additional knowledge about the strategy of the cops. The cops may

choose only between actions (A) and (C), i.e., they are restricted to leave and enter

the graph (intuitively, the cops must only jump).

On a tree T , two cops suffice to capture the robber: initially, the cops are on some

node x, and the robber on node y. Cops move in two alternating phases: In the first
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phase, the first cop leaves the graph (this will not cause the inert robber to move).

The first cop then enters the game at node y. The robber, with unbounded speed,

can move to any node (say u) in the component G′ of G − x that contains y (note

that the second cop prevents the robber to move to a defended node). In the next

phase, the second cop jumps to u. These two alternating phases are iterated until the

robber is captured on a leaf node.

Let y be the compromised node at time step i. The set of compromised nodes at

step (i + 1) before the cops “see” the robber can be formally described as: Yi+1 =

(V (G)−Xi+1)∪{u ∈ V (G)−Xi+1 : there is a path from y to u, whose nodes (except

y) belong to V (G)−Xi+1}.

Seymour and Thomas [ST93] showed that for every graph G on which c cops suffice

to capture the robber, there is a monotone capturing sequence X. They proved the

monotonicity property by showing that if for a given number of cops the robber has

an escape strategy, then there is a collection of sets of nodes that offer a resort to

the robber (in the sense that there always exists the possibility for the robber to

move from any set of nodes to another one independently of the location of the cops):

Given the set of guarded nodes Xi at time step i, a component of G − Xi will be

called an Xi-flap. The Xi-flap that contains the compromised node will be called a

compromised Xi-flap. We denote the compromised flap by Yi. At time step (i + 1),

either Xi+1 ⊆ Xi or Xi ⊆ Xi+1. The robber chooses (if possible) an Xi+1-flap,
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denoted by Yi+1, such that either Yi+1 ⊆ Yi or Yi ⊆ Yi+1. Notice that the robber

does not have a choice if Yi ⊆ Xi+1. Therefore, if none of the Xi+1-flaps intersects

Yi, the cops have captured the robber. Otherwise the robber chooses from among all

Xi+1-flaps intersecting Yi, the one that will become compromised at time step (i + 1).

Tree-decomposition of the graph G offers one way of formalizing this idea:

Definition 4.2.5. A tree-decomposition of the graph G consists of a tree T , and a

collection X = { Xu : u ∈ V ( T ) } of subsets of V ( G ), where:

(1)
⋃

u ∈ V (T )

Xu = V (G)

(2) every edge of G has both ends in some set Xu, and

(3) for every three nodes u, v, w of V ( T ), with v lying on the u, w-path,

Xu ∩Xw ⊆ Xv

The width of a tree-decomposition is max {|Xu| : u ∈ V (T )} − 1. The tree-width of

G is the minimum width of any tree-decompositions of G.

The decomposition of G that realizes the tree-width provides the capturing strat-

egy for the cops—the number of cops necessary to corner the robber on a node equals

the tree-width of G. One extra cop is then placed on the compromised node to capture

the robber; therefore:
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Theorem 4.2.2. [ST93] The cop-number for the cops-and-robber game with complete

information, where the inert robber has additional information about cops’ strategy,

is equal to the tree-width plus one.

This result provides information about the structure of the graphs having a large

cop-number. Every planar graph is a minor of a large enough square grid. Since every

n × n grid has tree-width n, it is expected that the cop-number for a planar graph

will be large.

As determining the tree-width of a given graph G is an NP-hard problem, the

problem of determining the cop-number for this variant of the game played on G is

also NP-hard.

4.2.2 Games with Complete Information about Cops’ Posi-

tions

In the class of 〈G, 0, 1〉 games, the robber has complete information about cops’

positions. In this section, we discuss results from four existing games of this class,

where: (1) the inert robber moves with speed sr, cops’ moves are restricted to (A) and

(C), (2) the agile robber moves with unbounded speed, cops move under restrictions

(A) and (C), (3) the agile robber moves with unbounded speed, cops move under
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restriction (A), (B) with unit speed, and (C), and (4) the agile robber moves with

unbounded speed; cops move with unit speed under restriction (B). It is interesting

to note that the strategies for capturing an agile robber, presented in this section,

can be used to establish upper bounds on the cop-number in the games presented in

Subsection 4.2.1.1

4.2.2.1 Inert Robber of Speed sr, Cops Only Jump

In the game studied by Dendris et al. [DKT97], the inert robber moves with speed sr

just before a cop occupies the compromised node. Similarly to the variant of 〈G, 1, 1〉

games described in [ST93], the cops are constrained to leave the game and enter the

graph on an arbitrary node. Notice that here the cops do not have information about

the robber’s position. The absence of information for the cops can be described in

terms of the set of (possibly) compromised nodes that need to be inspected by the

cops. If Yi is the set of (possibly) compromised nodes at step i, we have: Yi+1 =

(Yi −Xi+1)∪ {u ∈ V (G)−Xi+1 : there is a path of length at most sr, from a node v

in Yi ∩ (Xi+1 −Xi) to u, whose nodes (except v) belong to V (G) −Xi+1}. Dendris

et al. [DKT97] proved that the cop-number for this variant when sr = 1 is equal to

the width of the graph plus one.

Definition 4.2.6. A layout of a graph G is the n-tuple (ordering) L = ( u1, . . . , un).
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The width of a node u with respect to a layout L is the number of nodes which

are adjacent to and precede u in the layout.

The width of a layout L is the maximum width of any node in G. The width of

G is the minimum width of any layout of G.

Since the width of a graph G is equal to the largest minimum degree of any sub-

graph of G (the minimum degree is taken with respect to the sub-graph), there is a

polynomial-time algorithm to compute it.

The width strategy used by the cops is described as follows: Given a graph G

consider the layout L = ( u1, . . . , un) that realizes the width of G. Initially, one cop

is placed on node u1. The following inductive steps are then taken: (i) cop is placed

on node uj, (ii) cops that are on nodes preceding but not adjacent to uj leave the

game (notice that this does not cause the inert robber to move), (iii) cops are placed

on the nodes preceding and adjacent to uj (notice, this prevents the robber from

enlarging the set of (possibly) compromised nodes). Clearly, the robber is forced to

move further in the layout. Note that the width strategy ignores the whereabouts of

the robber and uses a number of cops that equals the width of G plus one. Algorithm

5 provides a description of the width strategy.

For the case when the inert robber moves with a given speed sr, Dendris et al.

[DKT97] proved that the cop-number of a given graph G is equal to the tree-width

plus one. This result was obtained from the characterization of the tree-width in
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Algorithm 5 Width strategy
Input:

G, graph
L = ( u1, . . . , un) , layout of G that realizes the width
i, time step
j, rightmost guarded node in L
Xi = {x1, . . . , xc} , guarded nodes at i

Output:

Xi+1, guarded nodes at i + 1

1: i ← i + 1
2: if there exists a node x ∈ Xi such that

L (x) < j and (x, uj) /∈ E (G) then
3: Xi+1 ← Xi − {x}
4: else if there exists a node x ∈ N (uj)−Xi such that L (x) < j and (x, uj) ∈ E (G)

then
5: Xi+1 ← Xi ∪ {x}
6: else
7: j ← j + 1
8: Xi+1 ← Xi ∪ {uj}
9: end if

terms of the length of the longest cordless cycle of G by using sr-elimination ordering

of G:

Definition 4.2.7. An sr-elimination ordering of the nodes in a graph G, denoted by

Π = (u1, . . . , un), specifies the order in which nodes are deleted to obtain a sequence

of graphs (G1, . . . , Gn+1).

Given an elimination ordering Π = (u1, . . . , un) and an integer sr, the graphs

generated during an sr-elimination ordering of the nodes in V (G) according to Π are
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recursively defined to be: G1 is the same as G; the set of nodes for Gi+1 is V (Gi+1) =

V (Gi) − {ui}, and the set of edges is the set of pairs of nodes u, v ∈ V (Gi+1) for

which there is a u, v-path in G of length at least sr such that all its nodes (except u

and v) are among u1, . . . , ui. Note that Gn+1 is the empty graph.

Definition 4.2.8. The sr-dimension of ui with respect to Π is defined to be the degree

of ui in Gi. The sr-dimension of Π is defined to be the maximum sr-dimension of

any node with respect to Π. The sr-dimension of G is the maximum s-dimension of

any elimination ordering of G.

The cops use the elimination-dimension strategy to capture the robber: Given

a graph G and an ordering Π = (u1, . . . , un) of the nodes in V ( G ), first, a cop is

deployed on un. Inductively, suppose that cops monotonically inspected the graph

induced by the nodes in uj, . . . , un. One cop remains on uj, the rest of the cops, to

the right of uj, leave the game (this will not cause the inert robber to move). Then,

a cop is placed on each preceding node from which there is a path to uj of length

at least sr. Since the robber is inert, it is forced to move forward in the ordering Π.

Therefore, the minimum number of cops necessary to corner the robber on a node

is equal to the sr-elimination dimension of G. Finally, one extra cop is needed to

capture the robber. Algorithm 6 formalizes the elimination dimension strategy.

For the case where the inert robber moves with unbounded speed on a graph G, the

cop-number of G is again equal to the tree-width plus one. Here, the equality of the
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Algorithm 6 Elimination dimension strategy
Input:

G, graph
Π = (u1, . . . , un) , ordering of G that
realizes the sr elimination dimension
i, time step
j, leftmost guarded node in Π
Xi = {x1, . . . , xc} , guarded nodes at i

Output:

Xi+1, guarded nodes at i + 1

1: i ← i + 1
2: if there exists a node x ∈ Xi such that L (x) > j then
3: Xi+1 ← Xi − {x}
4: else if there exists a node x such that L (x) < j and d (x, uj) ≤ sr then
5: Xi+1 ← Xi ∪ {x}
6: else
7: j ← j + 1
8: Xi+1 ← Xi ∪ {uj}
9: end if

tree-width of G and its elimination dimension can be employed again: Since, for any

graph, the elimination dimension is equal to its 1-elimination dimension, Algorithm

6 can also provide the strategy for the cops, when the robber moves with unbounded

speed. Note that the cop-number for the game with complete information coincides

with the cop-number for the game with information about cop’s positions, when the

robber is inert. This relates the restriction of when the robber is allowed to move with

the effect of information that cops have about the opponent’s positions and strategy.
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4.2.2.2 Agile Robber with Unbounded Speed, Cops Only Jump

When the robber is agile and the cops are restricted to only leave or enter the graph

on an arbitrary node, one arrives at the second 〈G, 0, 1〉 variant (known as node-

search [KP86]). If Yi is the set of (possibly) compromised nodes at step i, the set of

(possibly) compromised nodes at step (i + 1) for this game can be formally described

as: Yi+1 = (Yi −Xi+1)∪{u ∈ V (G)−Xi+1 : there is a path from a node v in Yi to u,

whose nodes (except v) belong to V (G)−Xi+1}. Intuitively, for the cops, the robber

can be on any of the nodes in Yi. For this variant, Dendris et al. [DKT97] proved, by

using the results from [16] and [20], that the cop-number is equal to the path-width

plus one. We present some relevant definitions:

Definition 4.2.9. A path-decomposition of the graph G consists of a path P , and a

collection X = X = {Xu : u ∈ V (P )} of subsets of V ( G ), where:

(1)
⋃

u ∈ V (P )

Xu = V (G)

(2) every edge of G has both ends in some set Xu, and

(3) for every three nodes u, v, w of V (P ), with v lying on the u, w-subpath,

Xu ∩Xw ⊆ Xv

The width of a path-decomposition is max {|Xu| : u ∈ V (P )}− 1. The path-width

of G is the minimum width of any tree-decompositions of G.
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The number of cops necessary to corner the robber on a node equals the path-

width of G. An additional cop is then placed on the compromised node to capture

the robber. Since for any graph G, its node-separation number and path-width are

equal [15], the cops can use node-separation strategy to capture the robber.

Definition 4.2.10. An edge uv is said to cross a gap j, 1 ≤ j < n, in a given

layout L of G, if node u precedes and node v succeeds j in L. The node-separation

number of a layout L is the maximum among the number of edges that cross any

gap. The node-separation number of G is the minimum node-separation number of

any layout.

The node-separation strategy is described as follows: Given a graph G, consider

a layout L = (u1, . . . , un) that realizes the node-separation number. We proceed

inductively: Initially, the number of nodes that the cops occupy (starting from the

first node in the n-tuple) is equal to the node-separation number. Suppose that the

cops occupy a cutset between the nodes to the left and right of the gap between uj

and uj+1. By the definition of node-separation number, one of the guarded nodes that

precede this gap is not adjacent to any node that succeeds the gap. This cop does

not guard any path to the defended nodes, so it can jump (leave and enter the game)

on node uj+2. The guarded nodes now form a cutset for the nodes that precede and

succeed the gap between uj+1 and uj+2. Formal description of the node-separation

strategy is given in Algorithm 7.
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Algorithm 7 Node-separation strategy
Input:

G, graph
L = (u1, . . . , un) , linear ordering of graph G that realizes the node-separation number
j, rightmost guarded node in L
Xi = {x1, . . . , xc} , guarded nodes at i

Output:

Xi+1, guarded nodes at i + 1

1: i ← i + 1
2: find a node x ∈ Xi such that L (x) < j and for every u ∈ N (x), L (x) ≤ j
3: Xi+1 ← Xi − {x}
4: Xi+1 ← Xi − {v} (L (v) = j + 1)
5: j ← j + 1

4.2.2.3 Agile Robber of Unbounded Speed, Unrestricted Cops

In the third variant, called mixed-search, defined by Bienstock and Seymour [BS91],

an agile robber moves with unbounded speed. The cops can either slide to an adjacent

node, enter the graph on an arbitrary node, or leave the game. Given a graph G, let

H be the graph obtained from G by replacing each edge with two parallel edges. A

monotone capturing sequence for c cops in H can be obtained from such capturing

sequence with equal number of cops in G, under the restrictions of the second variant.
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4.2.2.4 Agile Robber of Unbounded Speed, Cops Restricted to Jump

Only After Sliding

In the fourth variant the agile robber moves with unbounded speed. Here, the cops

move with unit speed under the restriction (A) and (B). Note that the cop can

leave the game only if it has traversed at least one edge. This game, originally

known as edge-search game, was defined by Breisch (see [Par76]). If Yi is the set of

(possibly) compromised nodes at step i, the set of (possibly) compromised nodes at

step (i + 1) for this game can be formally described as: Yi+1 = (Yi −Xi+1) ∪ {u ∈

V (G)−Xi+1 : there is a path from a node v in Yi to u, whose nodes (except v) belong

to V (G) − Xi+1}}. Megiddo et al. [MHG88] shows that the problem of computing

the cop-number for this variant is NP-hard. LaPaugh [LaP93] proves that if c cops

can capture the robber, then there is a monotone capturing sequence X. This result

implies the NP-completeness of the corresponding decision problem.

Results related to monotonicity can easily be obtained by using the definition of

a crusade [BS91]. For clarification, we present the definition:

Definition 4.2.11. A crusade in a graph G, is a sequence (W0,W1, . . . , Wt) of subsets

of E (G), such that W0 = ∅, Wt = E (G), and |Wi −Wi−1| ≤ 1 for 0 ≤ i ≤ t.

Let δ ( Wi ) denote the set of nodes which are incident with an edge in Wi and

also with an edge in E (G)−Wi. The crusade is said to use c cops if δ (Wi) ≤ k for
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0 ≤ i ≤ t. By using simple arguments (from sub-modularity of δ), one can prove that

there is a c-crusade if and only if there is a progressive c-crusade for which Wi ⊆ Wi+1,

0 ≤ i ≤ (t− 1). Now, given a graph G, let H be the 2-expansion of G (obtained by

replacing each edge with two edges in series). A monotone capturing sequence for c

cops in H can be obtained from such capturing sequence with equal number of cops

in G, under the restrictions of the second variant.

A concept equivalent to a crusade, called expansion on a graph was used by

Thilikos and Stamatiou [ST00] to prove monotonicity results for the inert robber

with unbounded speed for the edge-search and mixed-search games.

4.2.3 Games with no Information about Players’ Positions

and Strategies

In the class of 〈G, 0, 0〉 games, each player has no information about the opponent’s

position. We will discuss results from the game studied by Spirakis et al. [STA95]

which draw ideas from the interception game defined in [AKL79]. Here, the cops are

divided into two groups: waiting and searching. During the waiting phase, each of

the cw waiting cops performs a random walk starting from the same node until it has

visited all of G. Clearly, the waiting cops will be distributed in expected time of order

O (n3 log cw), and from then on will remain stationary on the nodes where they ended
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the cw independent random walks. If there is a set Y of nodes in which the robber

can move freely (i.e. a set does not contain a waiting cop) the expected time that

the remaining (c− cw) cops can capture the robber after at least n random walks is

min

{(
n

c − cw

)3

log n,

(
n log cw

cw

)3
}

. Adler et al. [ARS02] studied the 0-visibility

randomized cops-and-robbers games, and proved that one cop suffices to capture

the robber on a general graph in time O (n log n); however, continuous methods are

employed to prove their results. Isler et al. [IKK04] shows that two cops suffice

to capture the robber in the 1-visibility randomized cops-and-robbers in time O (n5)

(here, a cop performs a random walk until it sees the robber at distance one) by using

the methods for dismantlable graphs (as in the game with complete information about

opponents’ strategies). For the 2-visibility randomized cops-and-robbers, there is a

class of random bipartite graphs for which the number of cops required for capture is

unbounded.

4.2.4 Games with Complete Information about Robbers’ Po-

sitions and Strategies

In the class of 〈G, 1, 0〉 games, the cops have complete information about the rob-

bers, while the robbers have no information about the position of the cops. To our

knowledge, there is no variant of the cops-and-robbers game that belongs to this class.
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Figure 4.1, below, shows the classification of existing cops-and-robbers games. Figure

4.2 summarizes the results on the three questions of particular interest mentioned in

the beginning of Section 4.2.

 Generalization
Cops-and-Robbers

< G , 1 , 1 > < G, 0 , 1 > < G, 1 , 0 > < G, 0 , 0 >

Agile robber, sr = 1
Cops of unit speed

Inert robber, unbounded
Cops only jump

Inert robber, sr

Cops only jump

Agile robber, unbounded
Cops only jump

Agile robber, unbounded
Cops unrestricted

Agile robber, unbounded
Cops of unit speed, jump

Quarantining
Cops-and-Robbers game

k-visibility randomized
Cops-and-Robbers game

Figure 4.1: Classification of cops-and-robbers games
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4.2.5 Generalization of the Classical Cops-and-Robbers Game

The game is played at discrete time steps i = 0 , 1, . . . , t. Given a simple, connected

graph G = (V,E) on n nodes, a group of c cops of speed sc try to capture r p-

propagating robbers of speed sr. Note that a player (cop or robber) with speed s

can traverse a path with at most s edges per time step. To start the game, at time

step i = 0, each of the c cops chooses a label in V (G) ∪ {0}, after which the robber

is placed on a node of G. A cop can be out of the graph when the game starts, as

it is allowed to choose label 0. The cops and the robber then move alternately, with

the cops moving first. A move for the cops consists of choosing one of the available

actions: (A) enter the graph on an arbitrary node, (B) slide along a path with at

most sc edges, or (C) leave the graph. A move for the p-propagating robber consists

of choosing p exposed nodes at distance no greater than sr, placing a copy of itself

on each of the chosen nodes, and then sliding along an unguarded path (of length no

greater than sr) to an exposed node. Thus, depending on the value of p, the number

of robbers can increase with time. We assume that at any time there is only one

robber per compromised node. The definitions of compromised, guarded, exposed,

and defended nodes are analogous to those for the classical cops-and-robbers game.

We say that the robbers are captured if there is a cop on every compromised

node. Cops win if, after a finite number of moves, they can capture the robbers.
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The robbers win if they can avoid this situation forever. A capturing sequence is the

sequence X = {X0, X1, . . . , Xt} such that Yt ⊆ Xt. A capturing sequence X is called

monotone if the corresponding sequence Z = {Z0, Z1, . . . , Zt} satisfies Zi ⊆ Zi+1,

0 ≤ i ≤ (t− 1). Note that when p = 0, sr = 1, and sc = 1, with cops restricted to

action (B), we arrive at the classical cops-and-robbers game. The classification of the

cops-and-robbers games presented in Figure 4.1 assumes p = 0.

Game 
Class of 
graphs 

Cop-number 
(bounds) Monotonicity Complexity 

Dismantlable 1 Yes P 
Cartesian 

product of k 
trees 

( ) 2/1+k  Yes P 

Planar ≤ 3 Open P 
Agile robber, sr = 1 
Cops slide on edges 

General  Open 
EXPTIME-complete: 

K parameter, 
Initial positions 

Inert robber, unbounded 
Cops only jump 

General tw(G) + 1 Open NP-hard 

Inert robber, sr 
Cops only jump 

General tw(G) + 1 Open NP-hard 

Agile robber, unbounded 
Cops only jump 

General pw(G) + 1 Open NP-hard 

Agile robber, unbounded 
Cops unrestricted 

General pw(G’) + 1 Yes NP-hard 

Agile robber, unbounded 
Cops jump after sliding 

General  Yes NP-hard 

Quarantining 
Cops-and-robbers game 

General  Yes NP-hard [in this paper] 

 

Figure 4.2: Summary of bounds on the cop-number and complexity results for seven
variants of cops-and-robbers games
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4.3 Cops-and-Robbers Game for Quarantining Network

Worms

Here, we define a variant of the generalized cops-and-robbers game that can serve

as a model for quarantining the propagation of a network worm. We prove that

determining cops’ deployment that defends maximum number of nodes is NP-hard.

Our variant of the generalized cops-and-robbers game can formally be defined as

follows: Given a graph G and an initial node y (where the first robber is placed), c

cops try to quarantine a ∆-propagating robber of unit speed (∆ denotes the maximum

degree of G). The cops are restricted to actions (A) entering the graph and (C)

leaving the graph. The ∆-propagating robber of unit speed sends copies of itself to

all adjacent nodes without information about cops’ positions (note that the robber

cannot move from its present position, since a new robber is placed on every adjacent

exposed node). The cops do not occupy any nodes of the graph up to time step q

when they become aware of the robbers’ position. To start the game, all cops choose

label 0, as to remain out of the graph, after which the robber chooses node y. The

robbers move up to time step q, after which the players move alternately, starting

with the cops. In a realistic scenario, at any given time step, only pc of the available

cops can be placed on exposed nodes of G. For simplicity, we assume that c = kpc,

where k is a positive integer.
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The objective of the cops is to quarantine the robbers. The robbers are quarantined

if there is no robber that can propagate copies of itself to exposed nodes due to

presence of cops. The optimization parameter is the number of defended nodes.

After the cops have been deployed, they can use the strategies for the game described

in Section 4.2.2.4 to capture the robbers.

The formal definition of the optimization problem QUARANTINING OF ROB-

BERS is given below:

QUARANTINING OF ROBBERS

INSTANCE: Graph G, node y ∈ V (G) (where the first robber is placed), num-

ber of available cops c ∈ Z+, number of cops pc ∈ Z+ deployed per move, and time

q ∈ Z+ when the cops become aware of the robber(s).

PROBLEM: Find a collection of subsets {V1, V2, . . . , Vk}, Vj ⊆ V (G), |Vj| ≤ pc,

Vj ∩ Vj′ = ∅, 1 ≤ j 6= j′ ≤ k, where for every node v ∈ Vj, d (y, v) = q + j − 1, such

that |Zk| is maximized.

The corresponding decision problem is formulated as follows:

QUARANTINING OF ROBBERS
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INSTANCE: Graph G, node y ∈ V (G) (where the first robber is placed), num-

ber of available cops c ∈ Z+, number of cops pc ∈ Z+ deployed per move, and time

q ∈ Z+ when the cops become aware of the robber(s), integer K.

QUESTION: Find a collection of subsets {V1, V2, . . . , Vk}, Vj ⊆ V (G), |Vj| ≤ pc,

Vj ∩ Vj′ = ∅, 1 ≤ j 6= j′ ≤ k, where for every node v ∈ Vj, d (y, v) = q + j − 1, such

that |Zk| ≤ K?

On a rooted tree (T, y) there is a canonical partial order ≤T, y defined as follows:

for any two nodes u and v, u ≤T, y v holds if node u lies on the unique path from

the root y to node v in T . It is easy to see that the relation ≤T, y is a partial order,

i.e., it is reflexive, transitive, and anti-symmetric. A minimal element (respectively,

maximal element) is a u ∈ T such that there is no v ∈ T with v ≤T, y u (respectively,

u ≤T, y v). The root is the least element of (T, y) and the leaves are the maximal

elements of (T, y), with respect to the partial order ≤T, y. If u ≤T, y v holds, then u is

called a predecessor of v, while v is a successor of u.

Suppose we are given a rooted tree (T, y),for each u ∈ T a size s (u) ∈ Z+, a

value ϑ (u) ∈ Z+, and an integer knapsack capacity B ≥ max {s (u) : u ∈ V (T )}.

Let us say that a subset V ′ ⊆ V (T ) is closed under predecessor if v ∈ V ′ and (u, v)

is a directed edge in T imply that u ∈ V ′. In the tree-partially ordered knapsack

problem we wish to find a subset V ′ ⊆ V (T ) which is closed under predecessor,
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such that
∑

u ∈ V ′
s (u) ≤ B and

∑
u ∈ V ′

ϑ (u) is maximized. This problem is known to be

NP-complete, even for the case when s (u) = ϑ (u) [GJ99].

We prove that the decision problem QUARANTINING OF ROBBERS on trees is

NP-complete by restricting it to a modification of the tree-partially ordered knapsack

problem on in-trees : Given an in-tree T , where all edges are directed towards the

root, let l : V (T ) → {0, . . . , |V (T )| − 1} be a function assigning to each node a label

greater than the labels of its successors, such that l (y) = 0. Given an instance of the

tree-partially ordered knapsack and a function l, we wish to find a subset V ′ ⊆ V (T )

which is closed under predecessor, such that
∑

u ∈ V ′
s (u) ≤ B,

∑
u ∈ V ′

ϑ (u) is maximized,

and the labels of the maximal elements in V ′, with respect to ≤T, y, are distinct.

Observe that, if the function l assigns labels according to the bread-first search of the

tree T starting at the root y (and ignoring the direction of the edges), we arrive at

the tree-partially ordered knapsack.

Let us now consider the restriction of the QUARANTINING OF ROBBERS on

trees:

RESTRICTED QUARANTINING OF ROBBERS

INSTANCE: Tree T , node y ∈ V (T ) (where the first robber is placed), number

of available cops c ∈ Z+, p = 1 (one cop deployed per move), cops become aware of

the robber(s) at q = 1, and integer K.
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QUESTION: Is there a collection of sets {V1, V2, . . . , Vc}, Vj ⊆ V (T ), |Vj| ≤ 1,

Vj ∩ Vj′ = ∅, 1 ≤ j 6= j′ ≤ c, where for every node v ∈ Vj, d (y, v) = j, such that

|Zk| ≤ K?

Lemma 4.3.1. RESTRICTED QUARANTINING OF ROBBERS is NP-complete.

Proof. Given an instance of the modified tree-partially ordered knapsack on an in-tree

T where for each u ∈ T , s (u) = ϑ (u), we construct a corresponding instance of the

RESTRICTED QUARANTINING OF ROBBERS as follows: Construct a tree T ′ on

which the game is played from the tree T of the partial order ≤T, y by subdividing

every directed edge (u, v) exactly l (v) − l (u) − 1 times. This construction can be

carried in polynomial time. Exactly ϑ (u) − 1 nodes—predecessors—are added for

every node u ∈ T , and each of them is then connected to u by a directed edge. We

will denote the nodes of T as green, and the added nodes as red. Let the number of

available cops be B, and the number of defended nodes to be tested is given by K.

First, suppose the desired solution of the modified tree-partially ordered knapsack

exists, i.e., there is a subset V ′ ⊆ V (T ) which is closed under predecessor, such that

∑
u ∈ V ′

s (u) = B,
∑

u ∈ V ′
ϑ (u) = K, and the labels of the maximal elements (with respect

to ≤T, y) in V ′ are distinct. From the latter, no more than one cop is placed per level

in the tree T ′, only on green nodes. Consider the sequence of levels on which the cops

are placed based on the solution of the modified tree-partially ordered knapsack: the
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ith cop in the sequence can be pushed up to its successor on the ith level in T ′. This

node is one of the red successors before the first green successor. If this were not the

case, we would obtain another knapsack solution of bigger value, and thus arrive at

a contradiction. Moreover, the number of defended nodes is no less than K.

Now suppose that for a given tree T ′, rooted at node y, we can find a collection

of sets {V1, V2, . . . , Vc}, Vj ⊆ V (T ), |Vj| ≤ 1, Vj ∩ Vj′ = ∅, 1 ≤ j 6= j′ ≤ c, where for

every node v ∈ Vj, d (y, v) = j, such that |Zk| ≤ K. The nodes that are packed in

the knapsack are exactly the green ones that are in the sub-trees rooted in nodes of

the collection {V1, V2, . . . , Vc}. Consider the sequence of levels on which the cops are

placed: the ith cop in the sequence can then be pushed down to the first green an-

cestors in T ′. The arrangement obtained with this procedure gives a desired solution

to the tree-partially ordered knapsack of size no more than B and of value at least

K.

Theorem 4.3.2. The QUARANTINING OF ROBBERS (decision version) is an

NP-complete problem.

Proof. The theorem follows from the restriction of QUARANTINING OF ROBBERS

to trees and Lemma 4.3.1.
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4.4 Summary

As current network-security solutions (e.g., anti-virus software, firewalls, network

intrusion-detection systems) offer local protection only from known cyber attacks,

devising automated algorithms for quarantining (containing) the propagation of net-

work worms is important for enhancing network security. Cops-and-robbers games

offer a framework for devising such algorithms that take into account the character-

istics of the graph on which the propagation takes place. Our contribution here is

fourfold: (i) a natural generalization of the classical cops-and-robbers game, (ii) a

classification of the existing cops-and-robbers games based on two parameters—the

information that the two sets of players (cops against robbers) have about each others’

position and strategy, (iii) a survey of old results for existing variants of the cops-and-

robbers games, and a few new results, and (iv) a new variant of the cops-and-robbers

game—a model for quarantining the propagation of cyber attacks. The new variant

of the cops-and-robbers game is used to show that the problem of quarantining a

network worm is NP–hard.
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CHAPTER 5

MODEL OF WORM PROPAGATION ON

SCALE-FREE GRAPHS

5.1 Introduction

A worm propagates by employing (local) propagation strategies on various real-world

networks, e.g., the Internet, World Wide Web and e-mail networks. Despite ongoing

research efforts, there is still no clear understanding of how the underlying scale-free

network topology may affect the dynamics of worm spreading when local propaga-

tion strategies are employed. Due to the strong analogy between network worms

and infectious diseases, epidemiological models have been widely used in modeling

propagation. Explicit simulation of worm propagation is, yet, another powerful tool

as it allows the effects of the network structure to be considered. Between the ex-

tremes of epidemiological approach on a complete graph and individual-based simula-

tion on scale-free networks, it is possible to divide the nodes into groups with similar
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characteristics—e.g., degree—and derive a set of equations describing the propagation

dynamics. Thus, the network structure can be captured by stratifying the population.

Our contribution here is an epidemiological model of worm propagation that makes

use of information about the underlying network structure—order, size, degree distri-

bution, and clustering coefficient (transitivity). We compare the results of the model

with an individual-based simulation of worm propagation on scale-free Internet graphs

obtained from the Oregon Route View project [Pro]. We point out that, although the

introduction of the Internet has arguably made the assumption of sparseness no longer

valid, the idea of locality (especially in the case of analytical modeling of localized

propagation strategies) is still applicable, and, therefore, used in our model.

The chapter is organized as follows: In Section 5.2, we present a comprehen-

sive survey and classification of the existing propagation models. The derivation of

a pair-approximation Susceptible-Infectious-Susceptible and Susceptible-Infectious-

Removed model for worm propagation on scale-free graphs is presented in Section

5.3. Finally, to test the accuracy of our approach, in Section 5.4 we present a com-

parative empirical study including the numerical solution of the pair-approximation

model, the mean-field model, the model of propagation on Erdös-Renyi graphs, and

the results of the individual-based simulation.

81



5.2 Existing Models of Propagation

Due to the strong analogy between network worms and infectious diseases, epidemio-

logical models have been widely used in modeling worm’s propagation. Since a worm

propagates along the edges of a network, we will use graph-theoretic terms to de-

scribe the existing epidemiological models of propagation. Epidemiological models

are based on two simplifications [Het00]: (1) At any given time t, each node can be

in one of finite number of states, e.g., susceptible, quarantined-susceptible, removed-

susceptible, infectious, quarantined-infectious, removed-infectious, and detected. The

choice of which states to include in a model depends on the characteristics of the par-

ticular worm being analyzed and the purpose of the model; and (2) Translation of

the worm transmission mechanism into a probability (rate) of infection. In a similar

way, transitions between other states of the model are described by simple proba-

bilities (rates). Epidemiological models can be analyzed analytically or by means of

simulation.

The propagation takes place on a graph G with n nodes and m edges. Let S (t) de-

note the number of susceptible nodes at time t, Qs (t), be the number of quarantined-

susceptible nodes, Rs (t), the number of removed-susceptible nodes, I (t) the number

of infectious nodes, Q (t) the number of quarantined-infectious, and R (t) denote the

number of removed nodes. The fraction of nodes in a particular state is represented
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by the lower case letter. Let β denote the rate at which susceptible nodes are infected.

Most models of propagation assume β is constant, averaging out the differences in

processor speed, network bandwidth, and location of the infectious node. The existing

models also assume that a node cannot be infected multiple times.

Two cases can be modeled based on whether or not control strategies that affect

the propagation of the worm are present on the network. The case when control

strategies are not in effect is modeled by the Susceptible-Infectious model, while the

case when control strategies are present can be modeled by the Susceptible-Infectious-

Susceptible or the Susceptible-Infectious-Removed epidemiological model and their

variations.

Susceptible-Infectious (SI) model: In this class of models, once a susceptible

node becomes infectious, it does not change its state. These models can be used

in the study of the worst-case propagation, when automated and human counter-

measures are not available. Let the average degree of an infectious node be d, and

the fraction of infectious nodes at time t be i (t). The expected number of susceptible

neighbors that can be infected by a given infectious node is d (1− i (t)). Since there

are I (t) infectious nodes, the total rate of newly-infected nodes is βd (1− i (t)) i (t).

The general SI model is described by the differential equation (5.2.1):
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di (t)

dt
= βd (1− i (t)) i (t) , (5.2.1)

with boundary conditions: i (0) =
I (0)

n
> 0 and for all t ≥ 0, i (t) + s (t) = 1.

The solution of equation (5.2.1) for the fraction of infectious nodes is the logistic

curve: i (t) =
i (0) eβ ′t

1− i (0) + i (0) eβ ′t , where β′ = βd. The S-shaped curve describing

the fraction of infectious nodes has three regions: (1) slow start, when only few nodes

are infected at every time step, (2) exponential growth, when the number of newly-

infected nodes grows exponentially, and (3) equilibrium state, when the number of

infectious nodes assumes some value around which it fluctuates steadily.

If the worm propagates on the complete graph on n nodes, Kn, where d = (n− 1),

the model (5.2.1) can asymptotically be written as:

di (t)

dt
= β (1− i (t)) I (t) , (5.2.2)

with boundary conditions: i (0) =
I (0)

n
> 0 and for all t ≥ 0, i (t) + s (t) = 1.

One then has that i (t) =
i (0) eβ (n−1)t

1− i (0) + i (0) eβ (n−1)t
. Staniford et al. [SPW02] applied

model (5.2.2) to fit the data collected by the Chemical Abstracts Services from the

propagation of Code Red Worm [Cen01a], and estimated the rate β for Code Red to be
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1.8. However, they used the number of scanned nodes, which is much larger than the

number of infectious nodes, thus, leading to erroneous conclusions. Weaver [Wea02]

and Wagner et al. [WDP03] used this model to study four localized propagation

strategies: hitlist, topological, permutation, and local-subnet, although we note that

the complete graph as underlying topology is inappropriate for studying such localized

strategies.

In Erdös-Renyi random graphs with edge-density p, the expected degree of a node

is p (n− 1). The propagation on these graphs can be described as:

di (t)

dt
= βp (n− 1) (1− i (t)) i (t) , (5.2.3)

with solution: i (t) =
i (0) eβ p(n−1)t

1− i (0) + i (0) eβp (n−1)t
.

Susceptible-Infectious-Susceptible (SIS) model: In this class of models, an

infectious node recovers with some probability, and thus it becomes susceptible again.

These models can be used in the study of worm’s propagation when some computers

are temporarily turned off but are not patched (e.g., the case of Code Red I worm).

Let the average degree of an infected node be d, and the rate with which infectious

node recovers be γ. The rate of newly-infected nodes is proportional to the expected

fraction of susceptible neighbors, the number of infected nodes, and the probability β.
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The rate at which infectious nodes recover is proportional to the number of infectious

nodes and γ. The differential equations (5.2.4) describes the general SIS model:

di (t)

dt
= βd (1− i (t)) i (t)− γi (t) , (5.2.4)

with boundary conditions i (0) =
I (0)

n
, and for all t ≥ 0, i (t) + s (t) = 1. From

equation (5.2.4),
di (t)

dt
< 0 if and only if s (t) <

γ

βd
= δ. Thus, the worm “dies

out” if the initial fraction of susceptible nodes is below the epidemic threshold
γ

β d
.

The solution of (5.2.4) gives a functional form for the fraction of infectious nodes:

i (t) =
(1− δ) i (0)

i (0) + (1− δ − i (0)) e− (β′−γ)t
, where β′ = βd. If the worm propagates on

the complete graph on n nodes, Kn, where d = (n− 1), the model (5.2.4) can asymp-

totically be written as [Sol90]:

di (t)

dt
= β (1− i (t)) I (t)− γi (t) , (5.2.5)

with solution i (t) =
(1− δ) i (0)

i (0) + (1− δ − i (0)) e− (β(n−1)−γ)t
.

Solomon studied a modification of model (5.2.5) where the rate γ is a weighted

average of the rate γ1 (describing computers not running anti-virus software), for
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the fraction of infectious nodes, and the rate γ2 (describing computers running the

most recent version of anti-virus software), for the fraction of susceptible nodes, i.e.,

γ = γ1i (t) + γ2 (1− i (t)). With this modification Solomon found that the necessary

effectiveness of the anti-virus software (described by the probability γ) should be 0.5

in order to stop the propagation before it achieves exponential growth.

Kephart et al. [KW91, Kep94] employed model (5.2.4) to study the effects of

three topologies on the propagation of viruses : Erdös-Renyi random graphs, regular

lattices of degree eight, and hierarchically-clustered random graphs. For the Erdös-

Renyi random graphs with d ≥ 5, simulation results coincide with the predictions of

the model. The simulation study of propagation on 100–by–100 lattice demonstrates

quadratic growth, in contrast with the exponential growth characteristics for the com-

plete graph and Erdös–Renyi graphs. The hierarchically-clustered random graphs are

generated as follows: given a rooted tree of height h, in which every node has a degree

(d + 1) (i.e., it has d successors), the nodes of the graph are the leaves of the tree.

Two nodes, u and v, are made adjacent with probability P (h (w)) proportional to

the height of node w—the first common ancestor of nodes u and v. In his simulation,

Kephart used P (h (w)) = αph(w), where parameter p is used to control the degree of

localization (when p tends to 0, the graph is composed of isolated nodes, while when

p approaches 1, the topology of the hierarchically-clustered random graph is asymp-

totically that of the Erdös-Renyi random graphs). Here, the propagation exhibits
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sub-exponential growth. Further simulation studies conducted by Kephart [Kep94]

shows that sparsely-connected (random) graphs inhibit the propagation.

Previous models are limited in their accuracy due to their simplistic treatment

of timing factors, such as infection delay—the length of time between the instant of

worm’s arrival at a node and the instant when this node becomes infectious to its

neighbors. Model (5.2.4) could be altered to incorporate the infectious delay, ε, as

follows [WW03]:

di (t)

dt
= βde−γε (1− i (t)) i (t− ε)− γi (t) , (5.2.6)

where i (t− ε) = 0 for t < ε. At time t ≥ ε, the fraction of infectious nodes is

the same as the fraction of infectious nodes at time (t− ε), since all nodes infected

between (t− ε) and t are delayed. The term e−γε accounts for the transfer of a

node from infectious to susceptible state during the delay period. Equation (5.2.6)

belongs to the class of non-linear delayed differential equations, which can be solved

under the assumption i (t− ε) = i (t). Wang et al. [WW03] support their analytical

solution with simulation similar to that of Kephart and White [KW91], and show

that the epidemic threshold depends not only on the average degree, but also on the

infection delay. In addition, Kim et al. [KRD04] performed a simulation study of
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the propagation on a subgraph of the Internet, using a constant delay equal to the

average round-trip time obtained from real-life traffic.

Pastor-Satorras et al. [PV02] modified model (5.2.4) to study the effects of the

scale-free Barabasi-Albert topology on the propagation with probability of recovery

γ = 1. Since a scale-free degree distribution is not concentrated around its mean

value, the model must include differential equation for every group of nodes of degree

k:

dik (t)

dt
= βk (1− ik (t)) Θ

(
{ ik( t) }∆

k = δ

)
− ik (t) , (5.2.7)

where Θ
(
{ ik( t) }∆

k = δ

)
describes the probability that a susceptible node of degree

k is adjacent to an infectious node. For a scale-free network, the probability that

an edge is incident on a node of degree k is kP (k)
/
d. The average probability that

an edge is incident on an infectious node is then Θ (t) =
1

d

∆∑
k=δ

kP (k) ik (t). The

conclusion of this model is that scale-free topologies do not have epidemic threshold.

The authors also argued that the cut-off in the scale-free distribution forces a non-zero

epidemic threshold. We point out that the result of this study is limited to scale-free

topologies without degree-correlations. Contrary to this result, the simulation study
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of Eguiluz and Klemm [EK02b] demonstrates that in the so-called structured scale-

free networks, where adjacent nodes share large number of common neighbors, there

exists a non-zero threshold even in the limit of large n.

While the results of the presented studies are valuable, a model in which node

that has recovered and is no longer susceptible could better approximate the realistic

propagation of a worm when human counter-measures are in place.

Susceptible-Infectious-Removed (SIR) model and its variations: In this

class of models, an infectious node can be removed (i.e., it can no longer spread the

worm). This model can be used to study the effects of software patching and traffic

blocking on the propagation. At any time t, a node can be susceptible, infectious, or

removed. Let γ be the rate with which infectious nodes are removed. Using analogous

arguments as in the previous section, the general SIR model can be written as:

di (t)

dt
= βd (1− i (t)) i (t)− γi (t) ,

dr (t)

dt
= γi (t) ,

(5.2.8)

with initial conditions: i (0) =
I (0)

n
≥ 0, r (0) =

R (0)

n
≥ 0, and for all t ≥ 0, i (t) +

s (t)+r (t) = 1. The epidemic threshold for SIR models is analogous to the one in SIS

models. Zou et al. [ZGT02] used a modification of the system (5.2.8) to determine the
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effect of human counter-measures (on removing both susceptible and infectious nodes)

and the decreasing rate β (t). This so-called two-factor model assumes complete graph

as underlying topology, and a constant fraction of the removed-infectious nodes at

any time t:

di (t)

dt
= β (t) (1− r (t)− rs (t)− i (t)) i (t)− dr (t)

dt
,

dr (t)

dt
= γi (t) ,

drs (t)

dt
= µ (1− r (t)− rs (t)− i (t)) (r (t) + i (t)) ,

β (t) = β (0) (1− i (t))η .

(5.2.9)

It is, however, unclear how the parameters have been chosen in order to fit the data

from the Code Red I worm propagation.

Boguna et al. [BPV03] studied the SIR model, with the probability γ = 1, on scale-

free topologies. Using the notation introduced in previous sub-section, the model can

be formulated as follows:
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dik (t)

dt
= βk (1− ik (t)) Θ

(
{ik (t)}∆

k= δ

)
− ik (t) ,

drk (t)

dt
= γik (t) ,

(5.2.10)

which can be solved if one assumes that i (0) is very small in the beginning of the

propagation, to obtain an epidemic threshold with value
E [d (v)]

E
[
d (v)2]− E [d (v)]

. Since

for the power-law degree distribution with exponent 2 < f < 3, E
[
d (v)2] → ∞,

an epidemic threshold does not exist, in striking contrast with the classical SIR.

Pastor-Satorras and Vespignani [PV02] conducted simulation study to investigate

the effects of node-immunization (i.e. node-removal) on the propagation, before the

worm is introduced in the network. They demonstrated that random immunization is

inefficient in slowing down the propagation; however, immunization targeted at nodes

of highest degrees can significantly inhibit the growth of propagation. While the latter

result seems interesting, the authors argue that detecting nodes of high degrees in

scale-free networks is a difficult problem. We first note that Θ
(
{ ik (t) }∆

k=δ

)
is a

non-increasing function, since an infectious node would have an increasing portion

of recovered nodes in its neighborhood, which limits the propagation. Therefore,

an accurate model of propagation should also include correlations between states of

nodes which arise from the random propagation process.
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Similarly, the simulation study of Wanget al. [WKE00] examines the effects of im-

munization of nodes on the propagation on two topologies: rooted trees and clustered

networks (composed of cliques inter-connected with small number of edges). The sim-

ulation’s parameter is the propagation fan out—number of nodes to which the worm

can send replicas at each time step. The time needed for the worm to propagate from

one node to another is assumed to be one time tick. The first set of simulation is

conducted on networks where no immunized nodes exist to determine the number of

times a node is re-infected (called re-infection count). Two types of immunization are

simulated—random and selective. Random immunization performs better on rooted

trees as there is only one path between any two nodes; thus, it is possible to cut off an

entire sub-tree of the network, which is not the case with the clustered network. In the

analysis of the selective immunization in rooted trees, nodes with highest re-infection

counts are chosen (note, these nodes coincide with nodes with largest degrees). In

the case of clustered networks, two strategies are used: first based on the re-infection

count, and second on the weighted sum of the inter-cluster and inner-cluster degrees

for every node. The first strategy is able to contain the propagation, but results in

a higher propagation rate. The second could slow down the propagation rate, but is

unable to contain the propagation.

The principal disadvantage of the studies in [WKE00] and [PV02] is that im-

munization is static, i.e., a fraction of nodes is immunized before the worm starts
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propagating. In reality, the counter-measures should be dynamic in nature to play

important role in slowing down the propagation of the worm.

Susceptible-Infectious-Detected-Removed (SIDR) model: This model was

analyzed by Williamson et al. [WL03] in order to determine the effectiveness of the

behavior-blocking approach called virus throttling [Wil02]. Virus throttling is an

automatic mechanism for slowing a worm’s propagation. Here, a node can be in

one of the four states: susceptible, infectious, detected (in which the virus has been

detected and cannot actively spread further), and removed. The model assumes com-

plete graph as underlying topology. The model involves two stages: in the first stage,

prior to the release of the virus signature, nodes progress from susceptible to infec-

tious state at some rate β. In the second stage, after some time from the start of

the propagation, the virus is detected with some probability γ. Two quantities are

studied: the number of infectious nodes and the duration of propagation. The model

incorporates virus throttling by dividing the nodes into two groups—throttled and

un-throttled. If a throttled node is infected, it does not spread the virus, and imme-

diately enters the detected state. The result shows that when more than half of the

nodes have throttles, even a delayed distribution of the worm signature will result in

a small outbreak.
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Susceptible-Infectious-Removed-Susceptible (SIRS) model: Wang et al. [WW03]

used a modification of SIS model (5.2.4) to study the node’s vigilance against infec-

tion: Once an infectious node is removed, it remains in this state for a length of time

ν, called vigilance period, after which the removed node becomes susceptible again.

Here, the susceptibility of a node is modeled via a parameter φ that takes values be-

tween 0 (indicating complete susceptibility) and 1 (indicating immunity). The model

is described by the non-linear delay differential equation (5.2.11):

di (t)

dt
= βd


1− i (t)−

t∫

t−ν

i (t)


 i (t)− γi (t) (5.2.11)

whose solution shows that the number of infectious nodes decreases as the vigilance

period increases. It is worth noting the node’s vigilance has no impact on the epi-

demic threshold.

Compartmental epidemiological models: Compartmental epidemiological

models can are used with stratified population. The topology in this models is the

macroscopic Internet graph, where every node represents a dense region—Autonomous

System (AS). These models can be used to study intra-AS propagation, with the as-

sumption that within an AS (with nj nodes) the worm propagates as on a complete

graph Knj
. The infectious attempts can then be modeled as being external or internal
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to an AS. If the macroscopic Internet graph has k nodes, the SI compartmental model

can be written as:

dij (t)

dt
=

[
k∑

l =1

β
nl

N
il (t)

]
(1− ij (t)) , (5.2.12)

where 1 ≤ j ≤ k. Here, the parameter N denotes the total number of IP addresses.

Serazzi et al. [SZ04] used model (5.2.12) to derive equations for the bandwidth con-

sumption at each node. For the SIR compartmental model, Liljenstam et al. [LNB03]

obtained:

dij (t)

dt
=

[
k∑

l =1

β
nl

N
il (t)

]
(1− ij (t))− γij,

drj (t)

dt
= γij (t) ,

(5.2.13)

where 1 ≤ j ≤ k. Liljenstam et al. [LNB03] used model (5.2.13) to study the destabi-

lizing effects of worm propagation on the network infrastructure, since the compart-

mental approach allows for inclusion of limited details about communication proto-

cols. In this simulation study, the scan traffic is modeled by using a combination of

the average scan rate, individual infection rates, and size of address space for each AS.
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Discrete-time approximation models: Chen et al. [CGK03] developed a de-

terministic approximation model of propagation on a complete graph Kn. If σ is the

average scanning rate, with the assumption that the total number of nodes is 232, the

average number of newly–infected nodes at step (t + 1) is (S (t)− I (t))
[
1− (1− 1/232)

σ I(t)
]
.

If the probability of removal is γ, in the next time step γI (t) nodes will become sus-

ceptible. Thus, the propagation can be described by a system of recurrences for the

number of infectious and susceptible nodes.

5.3 Pair-approximation Model on Scale-free Networks

The existing epidemiological models on scale-free graphs [PV02, ZGT02] do not ex-

plicitly give the system of differential equations for the propagation dynamics. The

comparative studies include either simulation of worm’s propagation on a macroscopic

level or a system of differential equation for propagation on Erdös-Renyi and regu-

lar graphs. Thus, in all models described in Section 5.2, it is not evident how the

scale-free topology might affect the propagation.

Here, we develop a realistic model of worm propagation by using the salient fea-

tures of the underlying scale-free graphs (models of real-world networks). Cast in

the Susceptible-Infectious framework, our model can be used to study the worst-case

propagation and determine the optimal time for undertaking preventive action. On
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the other hand, cast in the Susceptible-Infectious-Removed framework, this model

can be used in the study of near-optimal control strategies against network worms.

Our model of worm’s propagation belongs to the class of pair-approximation net-

work models. The benefit of this class of models is that it incorporates the spatial

structure that the existing epidemiological models of propagation ignore. A survey

of pair-approximation models is given by Rand [Ran99]. In the pair-approximation

model, the variables are the fractions of pairs of nodes in certain states. Usually,

these equations contain higher-order correlations (e.g., triples of nodes in certain

states) which are approximated by the lower-order correlations. For most part, previ-

ous work on pair-approximation models describes processes on regular-lattices. Our

model extends the work by Earnes and Keeling [EK02a] (for triangle-free networks)

and Bauch [Bau02] (for dynamic partnerships), and makes pair-approximation appli-

cable to various scale-free topologies.

Next, we present the derivation of the system of differential equations describing

the propagation in the Susceptible-Infectious-Susceptible (SIS) framework. Let N (u)

is the neighborhood of a node u, pt (iu) is the probability that, at time t, node u is

infectious, and pt (su, iv) is the joint probability that two adjacent nodes u and v are

susceptible and infectious, respectively. The time evolution of the state of a single

node in the SIS epidemic process can be written in the following form:
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dpt (iu)

dt
= β

∑
v∈N(u)

pt (su, iv)− γpt (iu) ,

pt (su) + pt (iu) = 1.

(5.3.1)

One can also develop an equation for the time evolution of pt (su, iv) which in

turn involves higher-order correlations. The SIS epidemiological model neglects the

higher-order correlations with the assumption that (su, iv) = pt (su) pt (iv). In our

approach, pt (iu) and pt (su, iv) are kept as variables of interests while the higher-

order correlations are expressed in terms of these variables. The time evolution of

pt (su, iv) can be derived by using the Kolmogorov forward equation:

dpt (su, iv)

dt
= − (β + γ) pt (su, iv)− β

∑
w∈N(u)−v

pt (iw, su, iv)

+ β
∑

w∈N(v)−u

pt (su, sv, iw) + γpt (iu, iv) .

(5.3.2)

Let Λa be the set of integers representing degrees of nodes adjacent to nodes of degree

a, and [ab] be the number of edges incident on nodes of degrees a and b. To avoid

lengthy derivations for every pair of nodes in different states, we will use X, Y , and

Z to denote a node-state (i.e., susceptible and infectious). Given a node u of degree

a and a node v of degree b, define
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pt (Xa, Y ) =
1

a

∑
d(u)=a,d(v)∈Λa

pt (xu, yv)

and

pt (Xa, Yb, Z) =
1

[ab]

∑
d(u)=a,d(v)=b,d(w)∈Λb

pt (xu, yv, zw).

Notice that pt (Xa, Y ) =
∑

k∈Λa

Pt (Xa, Yk) and pt (Xa, Yb, Z) =
∑

k∈Λb

pt (Xa, Yb, Zk).

Furthermore, let E [ Xa ] denote the expected number of nodes of degree a in state X,

E [XaYb] the expected number of pairs of nodes of degree a, in state X, adjacent to

nodes of degree b, in state Y , and E [XaYbZc] denote the expected number of triples

where a node of degree b, in state Y , is adjacent to a node of degree a and a node of

degree c, in state X and Z, respectively. By multiplying equation (5.3.1) with na, the

number of nodes of degree a in the graph G, one can obtain the following equation:

dE [Ia]

dt
= β

∑

k∈Λa

E [SaIk]− γ E [Ia] , (5.3.3)

where E [Sa] + E [Sb] = na. Similarly, one can transform equation (5.3.2) to obtain:

dE [SaIb]

dt
= − (β + γ) E [SaIb]− β

∑

k ∈Λa

E [IkSaIb] + β
∑

k ∈ Λb

E [SaSbIk] + γE [IaIb] .

(5.3.4)
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In epidemiological models any change in the state of a node is dependent on

the states of its neighbors [Kee99, Ran99], as susceptible node with many infectious

neighbors is likely to become infectious. Given a node u of degree a in state X, let

Qu (Y |X) denote the number of its neighbors of degree b that are in state Y . The

expected value of Qu (Y |X) over all nodes of degree a in state X is then Qu (Y |X),

calculated as

Qu (Y |X) =
[XaYb]

[Xa]
+ error (Qu (Y |X)).

Assuming that the error is multinomial (supported by the individual-based simula-

tion in Section 5.4), one can obtain the following result for the triples [XaYbZc] (for

simplicity, the symbol of expectation is neglected):

[XaYbZc] =
∑

u:d(u)=b

Qu (Xa|Yb)Qu (Zc|Yb) =

=
∑

u:d(u)=b

(
[XaYb]

[Yb]
+ error (Qu (Xa|Yb))

)(
[YbZc]

[Yb]
+ error (Qu (Zc|Yb))

)
=

=
[XaYb] [YbZc]

[Yb]
+

∑
u:d(u)=b

error (Q (Xa|Yb)) error (Q (Zc|Yb)) =

=
b− 1

b

[XaYb] [YbZc]

[Yb]
.
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Let ϕabc denote the transitivity among nodes of degree a, b, and c, i.e., the ratio of

the number of triangles to the number of connected triples whose nodes are of degree

a, b, and c. To approximate the third moment [XaYbZc], one has to use the definition

of multiplicative moments of two variables (derived from much simpler form for reg-

ular lattice in [Kee99, Ran99]):

cor (Xa, Zc) =
nanc

[ac]

[XaZc]

[Xa] [Zc]

Finally, since the transitivity ϕabc gives the probability that three nodes of degrees

a, b, and c form a triangle in G, the approximation for the number of triples [XaYbZc]

can be written as:

[XaYbZc] =
b− 1

b

[XaYb] [YbZc]

[Yb]

(
(1− ϕabc) + ϕabc

nanc

[ac]

[XaZc]

[Xa] [Zc]

)
. (5.3.5)

Similarly, one can derive formulae for the other second moments and appropriate

approximation of the third moments to obtain the following pair-approximation for

the SIS framework:
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d [Ia]

dt
= β

∑
k∈Λa

[SaIk]− γ [Ia] ,

d [Sa]

dt
= γ [Ia]− β

∑
k∈Λa

[SaIk],

d [SaSb]

dt
= −β

(
∑

k∈Λa

[IkSaSb] +
∑

k∈Λb

[SaSbIk]

)
+ γ ([SaIb] + [IaSb])

d [SaIb]

dt
= − (β + γ) [SaIb]− β

(
∑

k∈Λa

[IkSaIb]−
∑

k∈Λb

[SaSbIk]

)
+ γ [IaIb] ,

d [IaIb]

dt
= β

(
[SaIb] + [IaSb] +

∑
k∈Λa

[IkSaIb] +
∑

k∈Λb

[IaSbIk]

)
− 2γ [IaIb] .

(5.3.6)

Now, the system of differential equations (5.3.6) can be numerically solved by using

the approximation given in equation (5.3.5). Note that our model differs from the

one presented in [EK02a] and [Bau02] since we take into consideration the transitivity

ϕabc, which turns out to have a significant effect on the outcome of the model.

Model (5.3.6) can be altered to obtain the system of differential equations (5.3.7),

describing the dynamics of propagation in the SIR framework:

103



d [Ia]

dt
= β

∑
k∈Λa

[SaIk]− γ [Ia] ,

d [Sa]

dt
= −β

∑
k∈Λa

[SaIk],

d [Ra]

dt
= γ [Ia] ,

d [SaSb]

dt
= −β

(
∑

k∈Λa

[IkSaSb] +
∑

k∈Λb

[SaSbIk]

)
,

d [SaIb]

dt
= − (β + γ) [SaIb]− β

(
∑

k∈Λa

[IkSaIb]−
∑

k∈Λb

[SaSbIk]

)
,

d [SaRb]

dt
= −β

∑
k∈Λa

[IkSaRb] + γ [SaIb] ,

d [IaIb]

dt
= β

(
[SaIb] + [IaSb] +

∑
k∈Λa

[IkSaIb] +
∑

k∈Λb

[IaSbIk]

)
− 2γ [IaIb] ,

d [IaRb]

dt
= β

∑
k∈Λa

[IkSaRb] + γ ([IaIb]− [IaRb]) .

(5.3.7)
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5.3.1 Calculating R0 for the SIR Model on a Scale-free Ran-

dom Graph

Recent studies [PV02, BPV03] show that there is no epidemic threshold on scale-

free graphs in large limit of their order, provided 2 < f < 3. While this result

entails that scale-free networks are tolerant to random damages, it also renders these

networks a medium on which effective control of propagation would be difficult to

achieve. Here, we show that finite uncorrelated scale-free graphs exhibit epidemic

threshold—a function of the maximum degree. The implications of our result is the

first analytical explanation that the removal of nodes of highest degrees can inhibit

the propagation.

The basic reproductive ratio R0 is defined as the average number of secondary

infectious nodes produced by an average infectious node in a totally susceptible popu-

lation [AM92]. When R0 is greater than 1 a network worm (or a disease) can invade

and increase within such population, whereas when R0 is less than 1 any invasion

is doomed to deterministic extinction (although stochastic effects can make a differ-

ence, especially close to the R0 boundary). Hence, R0 is an epidemic threshold—a
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fundamental quantity in epidemiology and control of epidemics. In practice R0 is

calculated from the initial growth rate of an infinitesimal infection in an otherwise

susceptible population [Kee99]. Thus, using the first equation in model (5.2.8), one

may obtain that R0 =
βd

γ
.

Earnes and Keeling [EK02a] already observed that R0 for model (5.3.7) is given

by:

R0 =
β (λ− 1)

γ
, (5.3.8)

where λ is the dominant eigenvalue of the matrix C whose entries cab are given by:

cab =
[ab] (b− 1)

b[b]
. (5.3.9)

The matrix C is therefore a useful means of quantifying the connectedness of the

graph on which propagation takes place.

Mihail and Papadimitriou [MP02] showed that the largest eigenvalues of a power

law graph with exponent f has power law distribution if the exponent f of the power

law graph satisfies f > 3, and, thus, verified the conjecture in Faloutsos et al. [FFF99].

Chung et al. [CLV03] studied the spectrum distribution of random graphs with given

expected degrees, and proved that (under certain mild conditions) the eigenvalues of

the (normalized) Laplacian of a random power-law graph follow the semicircle law,
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whereas the spectrum of the adjacency matrix of a power-law graph obeys the power

law.

In this section, we analyze the spectrum of matrix C defined by equation (5.3.9)

in order to determine R0 for a propagation on a given scale-free random graph. We

start by stating two lemmas.

Lemma 5.3.1. If An×n is nonsingular, and if c and d are n× 1 vectors, then:

∣∣A + cdT
∣∣ = |A| (1 + dT A−1c

)
.

Proof. Write A + cdT = A
(
I + A−1cdT

)
. Observe that




I 0

dT 1







I + A−1cdT A−1c

0 1







I 0

−dT 1


 =




I c

0 1 + dT A−1c


 .

Simple application of product-rules for determinants yields the result.
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Lemma 5.3.2. If An×n is of the form

A =




1 + α1

α1

1 1 · · · 1

1
1 + α2

α2

1 · · · 1

1 1
1 + α3

α3

· · · 1

...
...

...
. . .

...

1 1 1 · · · 1 + αn

αn




,

then

|A| =
1 +

n∑
i=1

αi

n∏
i=1

αi

.

Proof. Write A = D + eeT , where D is a diagonal n×n matrix with entries di,i =
1

αi

,

and e is a one-vector. Direct application of Lemma 1 gives:

|A| = |D|
∣∣I + eT D−1e

∣∣ =

1 +
n∑

i=1

αi

n∏
i=1

αi

.

Our main result is:

Theorem 5.3.3. The reproduction ratio R0 for epidemics (propagation) on an un-

correlated scale-free graph with n nodes and degree distribution P (d (v) = k) ∼ k−f
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and maximum degree ∆ is:

R0 =
β (λ− 1)

γ
,

where

λ =

∣∣∣∣
∆3−f

3− f
− ∆2−f

2− f
− 23−f

3− f
+

22−f

2− f

∣∣∣∣ .

Proof. Given a scale-free degree distribution P (d (v) = k) = k−f of a graph G on n

nodes, the expected number of nodes of degree a is [a] = na−f , while the expected

number of nodes of degree b is [b] = nb−f . The number of edges incident on nodes of

degree a and b could be calculated as [ab] = n
n∑

k=1

k1−fP (a, b), where P (a, b) is the

probability that an edge chosen uniformly at random from G is incident on nodes of

degree a and b. By substituting these quantities, obtained from the scale-free graph

G, in equation (5.3.9), one obtains the following expression for the elements of the

matrix C:

cab =

(b− 1) P (a, b) n
n∑

k=1

k1−f

nb1−f
= d (b− 1) bf−1P (a, b) . (5.3.10)

In general, for a finite graph G with maximum degree ∆, C is a ∆ × ∆-matrix.

We also note that the unlike the adjacency matrix of G, the modified contact matrix
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C is not symmetrical, and has the following form:

C = d




0 2f−1P (1, 2) 2 · 3f−1P (1, 3) · · · (i− 1) if−1P (1, i) · · ·

0 2f−1P (2, 2) 2 · 3f−1P (2, 3) · · · (i− 1) if−1P (2, i) · · ·

0 2f−1P (3, 2) 2 · 3f−1P (3, 3) · · · (i− 1) if−1P (3, i) · · ·
...

...
...

. . .
...

0 2f−1P (i, 2) 2 · 3f−1P (i, 3) · · · (i− 1) if−1P (i, i) · · ·
...

...
...

...
. . .




(5.3.11)
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The characteristic polynomial of C is of the form:

p∆ (λ) =

d
∆

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 2f−1P (1, 2) 2 · 3f−1P (1, 3) · · · (i− 1) if−1P (1, i) · · ·

0 2f−1P (2, 2)− λ 2 · 3f−1P (2, 3) · · · (i− 1) if−1P (2, i) · · ·

0 2f−1P (3, 2) 2 · 3f−1P (3, 3)− λ · · · (i− 1) if−1P (3, i) · · ·
...

...
...

. . .
...

0 2f−1P (i, 2) 2 · 3f−1P (i, 3) · · · (i− 1) if−1P (i, i)− λ · · ·
...

...
...

...
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

−λd
∆

(∆!)f

∆

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P (2, 2)− λ

2f−1
P (2, 3) · · · P (2, i) · · ·

P (3, 2) P (3, 3)− λ

2 · 3f−1
· · · P (3, i) · · ·

...
...

. . .
...

P (i, 2) P (i, 3) · · · P (i, i)− λ

(i− 1) if−1
· · ·

...
...

...
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(5.3.12)

For scale-free graphs without degree-correlation, the joint probability distribution

could be written, without loss of generality, as P (a, b) =
abP (a) P (b)

d
∆

, where P (a)

stands for P (a) = P (d (v) = a). The characteristic polynomial given in equation

(5.3.12) obtains the following form:
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p∆ (λ) = −λ (∆!)2−f

∆d∆

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− λ

21−f
1 · · · 1 · · ·

1 1− λ

2 · 31−f
· · · 1 · · ·

...
...

. . .
...

1 1 · · · 1− λ

(i− 1) i1−f
· · ·

...
...

...
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(5.3.13)

Closer inspection of the matrix on the right-hand side of equation (5.3.13) shows that,

for a fixed ∆, it has the same form as the matrix in Lemma 1. Using Lemma 2, it is

clear that the characteristic polynomial can be further simplified to get:

p∆ (λ) =

(
−λ

d

)∆
(∆!)2−f

∆

[
1− 1

λ

∆∑
k=2

(k − 1) k1−f

]

∆∏
k=2

(k − 1) k1−f

=

= (−1)∆

(
λ

d

)∆ [
1− 1

λ

∆∑
k=2

(k − 1) k1−f

]
= 0.

(5.3.14)

From equation (5.3.14), for a fixed ∆, the dominant eigenvalue is given by:

λ =

∣∣∣∣∣∣

∆∫

2

(k − 1) k1−fdk

∣∣∣∣∣∣
,

i. e.,
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λ =

∣∣∣∣
∆3−f

3− f
− ∆2−f

2− f
− 23−f

3− f
+

22−f

2− f

∣∣∣∣ .

5.4 Pair-approximation Model vs. Individual-based

Simulation

In this section, we test the accuracy of the pair-approximation model (5.3.6) by com-

paring its numerical solution to results from: (1) the individual-based simulation of

the worm propagation on a Macroscopic Internet graph (on n nodes and average de-

gree d), and (2) the standard SIS model (which ignores correlation) on two topologies:

the complete graph on n nodes (model (5.2.5)) and the Erdös-Renyi graph on n nodes

and average degree d (model (5.2.4)).

The empirical study is conducted on Macroscopic Internet graphs, defined in Chap-

ter 2, Section 2.2. To obtain the Macroscopic Internet graphs, we used the data for

inter-connectedness of the Internet on the Autonomous System level collected by the

University of Oregon Route View Project [Pro] and made available by NLANR (Na-

tional Laboratory of Applied Network Research). We considered snapshots of the
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Internet of various order and size, shown in Figure 5.1. The pre-processing step con-

sists of determining parameters for model (5.3.6): for given degrees a, b, and c, the

number of adjacent nodes of degree a and b, the set Λa, and the transitivity ϕabc are

determined.

Date Order Size

08.11.1997 3015 5156
02.04.1998 3522 6324
03.07.1998 3797 6936
02.10.1998 4180 7768
14.01.1999 4517 8376
02.04.1999 4885 9276
02.07.1999 5357 10328
02.10.1999 5861 11313
02.01.2000 6474 12572
03.04.2000 7246 14629
02.07.2000 7956 15943
02.10.2000 8836 17823
02.01.2001 9048 18172
16.03.2001 10515 21455

Figure 5.1: Macroscopic Internet graphs used in simulations

Next, we developed an individual-based simulation of the stochastic propagation

process on a Macroscopic Internet graph. The individual-based simulation has two

advantages: First, the propagation process and the underlying topology can be con-

trolled to simulate different scenarios. Second, this simulation provides very precise
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and detailed information about the propagation dynamics without biases which might

be present in real data [Moo03]. The individual-based simulation combines Monte

Carlo simulation of events, taking place at given rates, with an event-scheduler that

determines the order in which events happen on a given graph (medium for propaga-

tion) and, thereby, affect the states of the nodes. The scheduler is implemented as a

priority queue. There are two types of events that can take place in the Susceptible-

Infectious-Susceptible model: infection and curing. If a node u is infectious, it at-

tempts infection of each of its neighbors at rate β. There is also the event that node u

is cured, and, thus, become susceptible, at rate γ. Let node u be cured at time t, and

be re-infected at time t+dt. Any infection generated by the node u in the time inter-

val [t, t + dt) is discarded by the scheduler. The event of node u attempting infection

of an already infectious neighbor v at time t is also discarded by the scheduler.

We simulated worm propagation in the Susceptible-Infectious framework in order

to determine the time the worm takes to infect all nodes of a given graph G. Simula-

tions were performed on ten Macroscopic Internet graphs (the results for five graphs,

identified by the top entry in the left-most column appear in Figure 5.2). To deter-

mine how choice of the initial node influences the propagation, we first determined

the labels of three nodes with smallest degrees and three nodes with highest degree,

shown in the first and second column of each table in Figure 5.2. The rest of the

entries show the average time over 100 simulations for the worm to propagate on all
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nodes by starting from a pre-specified initial node and spreading with infectious rate

β. The general results of the experiments can be summarized as follows:

1. The time to propagate to all nodes decreases with the increase of the degree of

the initial node.

As an infectious node of higher degree has bigger pool of susceptible nodes, it

gives the worm the possibility to establish a considerable fraction of infectious

nodes in the early stages of the propagation. On average, the propagation to all

nodes of G initiated from a node of maximum degree takes time by 5% shorter

compared to the propagation that starts from a node of minimum degree.

2. The time to propagate to all nodes increases with the increase of the order of

the graph.

As discussed in Chapter 2, the diameter of two graphs G1 and G2, |V (G1) | <

|V (G2) |, whose degree distributions follow the same scale-free distribution, are

such that D (G1) < D (G2). Therefore, on a graph with greater diameter the

worm takes longer time to infect all nodes.
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3. The time to propagate to all nodes does not strictly decreases with the increase

of the infectious rate β.

In other words, there is a value of the infectious rate β at which the function

t (β) has a local minimum, as shown in Figure 5.3. According to the simulation

results shown in Figure 5.2, the value of β = 1.5 seems to be invariant and

depends only on the exponent of the scale-free degree distribution of the graph

G. The reason for such behavior is that, at the local minimum, rapidly-building

correlations between the states of adjacent nodes hinder the propagation by low-

ering the number of available susceptible nodes. This observation is of particular

interest as it provide the means to “control” the propagation of a fast-spreading

worm by reducing its rate to the threshold value.

Figures 5.4 and 5.5 below, show the number of infectious nodes as a function of

time, comparing the three deterministic models with two results of the stochastic

individual-based simulation. Neither the mean-field model nor the Erdös-Renyi (or

a d-regular graph on n nodes) satisfactorily predicts the level of propagation (i.e.,

the number of infectious nodes at a given time). The second-order Runge-Kutta

numerical solution of the proposed pair-approximation model (5.3.5), (5.3.6) with

results of the second pre-processing task as input, performs matches the results of the

individual based simulation.
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The model on d-regular graphs underestimates the equilibrium level because it

does not include the nodes of high degrees (i.e., the core of the scale-free graph). The

mean-field model consistently over-estimates the number of infectious nodes because

the correlations and graph structure, that may inhibit propagation, are ignored. In

contrast, our pair-approximation model includes both nodes of various degrees and

correlations between states of nodes, and gives an accurate representation of the

stochastic propagation process.

Remark 5.4.1. Two algorithms were compared to numerically solve the system of or-

dinary differential equations with boundary conditions—Euler’s method and Runge-

Kutta method. In both cases, due to the complexness of the system, for small values

of the time change dt we saw emergence of attractors. For small values of dt, such as

0.001 used in the simulation, even the Euler’s method produces good results.

With the help of the individual-based simulation one can also study the distribu-

tion of infectious nodes based on degrees. A typical example of this distribution is

shown in Figure 5.6. The results show that the number of infectious nodes rapidly

increases when a node of higher degree is infected.
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5.5 Summary

Developing an accurate model for the worm propagation is of critical importance not

only for understanding better the worm’s behavior but also for devising techniques

to contain such cyber attacks. The existing studies include either simulation of worm

propagation on a macroscopic level or a system of differential equation for propagation

on Erdös-Renyi and regular graphs, as pointed in the survey. Moreover, in all exist-

ing models of worm propagation, it is not evident how the network structure might

affect the dynamics of the stochastic propagation process. Our contribution here was

twofold: (1) a model of propagation on a scale-free graph G which takes as input the

number of nodes, number of edges, number of edges incident on nodes of certain de-

grees, and transitivity of the graph G, and (2) implementation of an individual-based

simulation for worm propagation that can be cast in different epidemiological frame-

works. The accuracy of the model was tested by comparing the numerical solution of

the pair-approximation model to the results from the individual-based simulation on

scale-free Macroscopic Internet graphs. The results show excellent agreement between

the results from the model and the individual-based simulation. Due to its accuracy,

this model (incorporating graph-theoretic invariants) has a great potential to be used

in developing realistic techniques for propagation control.
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0.2 0.5 0.9 1.5 1.8

min degree node
1 14 18.0693 7.77851 4.62873 3.11892 3.48948
2 13 17.766 7.68768 4.60186 3.12606 3.33325
3 15 17.5662 7.47541 4.61656 3.13278 3.30167

max degree node
590 4 16.4317 7.08121 4.28161 2.95023 3.22838
524 7 16.1565 6.90071 4.35007 2.87707 3.30877
355 6 16.4247 7.27244 4.46792 3.01278 3.26648

beta
AS graph 08.11.1997

0.2 0.5 0.9 1.5 1.8

min degree node
1 47 18.3675 7.89627 4.74167 3.20504 3.55996
2 17 18.0627 7.91097 4.6643 3.19542 3.46717
3 22 18.4302 7.76855 4.69197 3.14913 3.33457

max degree node
590 5 17.158 7.73703 4.45511 3.01981 3.34582
524 12 16.9676 7.37089 4.50048 2.96612 3.39495
355 10 17.2982 7.48106 4.5871 3.10994 3.2987

AS graph 02.10.1998
beta

 
0.2 0.5 0.9 1.5 1.8

min degree node
1 63 18.3734 7.98559 4.81368 3.24062 3.42445
2 19 18.5593 8.17793 4.70665 3.19895 3.48956
3 15 18.5207 7.93869 4.74685 3.18794 3.343

max degree node
1193 2 17.4871 7.43152 4.44526 2.98155 3.39874

674 10 17.6827 7.58919 4.57659 3.11 3.41901
588 7 17.5386 7.70924 4.63347 3.10909 3.38447

AS graph 02.07.1999
beta

120



min degree node

1 15 19.8676 8.42701 5.11502 3.42114 3.71483
2 18 20.1391 8.62913 5.15767 3.41545 3.56204
3 23 19.4788 8.44671 5.05909 3.3409 3.5603

max degree node
1772 2 18.9615 8.0676 4.97258 3.29313 3.48871

961 9 19.2357 8.28964 4.90184 3.33247 3.49154
802 7 18.9133 8.24647 4.96538 3.34996 3.47815

AS graph 02.07.2000 beta
0.2 0.5 0.9 1.5 1.8

min degree node

1 44 21.0673 8.91663 5.35035 3.57629 3.76316
2 37 21.385 8.90863 5.35318 3.47916 3.74718
3 34 20.6299 8.93965 5.33861 3.54236 3.64725

max degree node
2277 2 20.1728 8.44475 4.98278 3.37857 3.58247
1231 13 20.3132 8.67817 5.248 3.46303 3.62322

899 15 20.4644 8.87768 5.2025 3.42517 3.69419

betaAS graph 16.03.2001
0.2 0.5 0.9 1.5 1.8

Figure 5.2: Time to propagate to all nodes of a Macroscopic Internet graph for five
different values of the parameter β.
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ββlocal min

βlocal max

Figure 5.3: Time to infect all nodes as a function of the rate β is not a strictly
decreasing function
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Models of Propagation
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Figure 5.4: Susceptible-Infectious-Susceptible models of propagation—numerical so-
lution of pair-approximation model, individual-based simulation of propagation on an
Internet graph n = 3015 and m = 5156, propagation on complete graph n = 3015,
propagation on Erdos-Renyi random graphs with d = 3.4202; parameters of propaga-
tion β = 1.8, γ = 0.05
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Models of Propagation
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Figure 5.5: Susceptible-Infectious-Susceptible models of propagation—numerical so-
lution of pair-approximation model, individual-based simulation of propagation on an
Internet graph n = 10515 and m = 21455, propagation on complete graph n = 10515,
propagation on Erdos-Renyi random graphs with d = 4.0808; parameters of propaga-
tion β = 0.9, γ = 0.02
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Figure 5.6: Distribution of number of infectious nodes pre degree on Macroscopic
Internet graph from 02.07.1999; β = 1.5, γ = 0.1 (t1 shown with bars, t2 with line)
(a)time moments, t1 = 1.00536 and t2 = 0.28634, (b) time moments, t1 = 0.28634
and t2 = 0.42069, (c)time moments, t1 = 0.932814 and t2 = 0.47181
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CHAPTER 6

CONTROL STRATEGIES ON SCALE-FREE

GRAPHS

6.1 Introduction

Despite the recent surge of research in control of worm propagation, currently, there

is no effective defense system against such cyber attacks. The existing automated

network-security solutions (e.g., anti-virus software, firewalls, and intrusion detection

systems) and human-dependent counter-measures (e.g., software-patching, traffic-

blocking) have been deemed inadequate for effective control of worms [Ins04, WPS03a,

WPS03b]. Therefore, devising new control strategies is a first step towards a com-

prehensive network-security solution.

Recent studies [NL04] of control strategies have found the topology on which the

worm propagates, from a node to its neighbors, to be significantly different from the

underlining network infrastructure (e.g., the Internet). This is true only for network
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worms that scan the IP space uniformly at random, and therefore can communicate

with any host on the network. Although the introduction of the Internet has arguably

made the assumption of sparseness (of the propagation topology) no longer valid, the

idea of locality, especially in the case of analytical modeling of localized propagation

strategies (see Chapter 3) is still applicable, and, therefore, used in developing novel

control strategies.

Our contribution here is twofold: (1) a classification of existing control strategies

(with a discussion of their advantages and disadvantages). As propagation and control

strategies are tightly coupled with a particular detection mechanism, the review of

control strategies also encompasses the existing detection mechanism, and (2) analysis

of five control strategies. Like in Chapter 5, we use the epidemiological approach with

information about the network structure.

6.2 Determinants of Propagation and Control

Due to the strong analogy between network worms and infectious diseases, epidemi-

ological models have been widely used in modeling not only worm’s propagation, but

also detection and control strategies. Traditional epidemiology has identified three

factors determining the outcome of an infection [Het00]: the size of the susceptible

population, the length of the infectious period, and the rate of infections. Like with
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diseases, there are two potential approaches to mitigate cyber attacks with network

worms: prevention, that includes technologies for reducing the size of the suscepti-

ble population, and control, that consists of strategies for reducing any of the three

factors determining the outcome of the propagation.

As system design and implementation is prone to human (logic) errors, we be-

lieve that any prevention technique, by itself, cannot suffice in countering network

worms. Control strategies, implemented in existing anti-virus solutions, are capable

of: (1) reducing the size of the susceptible population (by immunizing, e.g., patching

a portion of the susceptible), (2) shrinking the infectious period (by eliminating the

worm copies), and (3) limiting the infection rate (by disabling communications). The

time from detection of a vulnerability to the design, implementation, and testing of

its patch is long (expressed in terms of days). Moreover, as the process of deploying

patches, in many cases, is not automated, this strategy, although essential, cannot

provide timely control. Control strategies that lower the infectious period require the

worm signature—string of bytes in the traffic that pass through a network link—to

be known. In absence of a patch or worm signature, quarantining mechanisms can

prevent the worm from propagating by disabling communication directed from a host,

suspected to be or detected as, compromised.

There are three quarantining mechanisms that act towards reducing the size of

the susceptible population or limiting the infection rate by disabling communication:
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(1) content-filtering, (2) address–blacklisting, and (3) traffic-blocking (from a subset

of ports). In content-filtering, which requires a database of worm signatures, the

control system drops only the packets containing one of these signatures. In address-

blacklisting, which involves a list of hosts that have been suspected or identified as

compromised, the control system drops all packets coming from these hosts. In the

third alternative, the responders of the control system disable all or a portion of

the traffic (from a subset of ports) coming from a host that has been suspected or

identified as compromised. If traffic-blocking is applied to all ports, we will say that

the host has been disconnected.

6.3 Classification of Control Strategies

Implementation of control strategies involves deployment of an agent-based control

system composed of sensors, aggregators, and responders. Sensors are programs

designed for detecting an anomaly (in network traffic or host behavior), indicating

that worm propagation has started. Aggregators communicate with the sensors to

gather information about the global characteristics of the propagation and plan fur-

ther actions, e.g., alarming certain responders. Finally, responders, through two-way

communication with aggregators and sensors, initiate a pre-specified control strategy.
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The responders may be implemented as a non-replicating agent or as a self-replicating

agent (called good worm).

Although the deployment of an agent-based control system imposes many prac-

tical challenges, such as: design of communication protocol specific to the system,

integration with the existing intrusion-detection systems, and insuring the system’s

robustness to attack, the effectiveness of a control strategy could still be analyzed by

means of models and simulation.

Remark 6.3.1. We distinguish between control mechanisms and control strategies. A

control strategy specifies when and which of the responders are activated. A control

mechanism specifies how the responders act towards hindering the propagation, i.e.,

it specifies how a given control strategy is implemented. We will discuss two types of

control strategies—quarantining and immunization.

Worms propagate via network communications in a similar way as a virus spreads

among people. Since network communications can be modeled by a graph, in which

nodes represent hosts and edges are communication lines, we will use graph–theoretic

terms to describe the existing epidemiological models of control: The propagation

takes place on a graph G = (V,E) with n nodes and m edges. Let td denote the time

when the control system has detected the worm, tr refer to the reaction time of the

system, i.e., the time needed for all responders to activate the control mechanism,

and tq denote the time during which a control strategy is applied on susceptible nodes.
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Depending on whether all responders of the control system become active at once

or only a fraction of responders is activated to counter the propagation, control strate-

gies can be static or dynamic. In static quarantining strategies, all responders are

activated at once, at time moment td + tr. More specifically, for address–blacklisting

(respectively, traffic-blocking), if a node u is detected as infectious at time td (u), the

quarantining system drops all packets (respectively, packets from a subset of ports)

coming from node u after time td (u) + tr. Static quarantining strategies require

global distribution of information about the worm presence. Hence, they may impose

unnecessary disruption of normal network functions, as the propagation may be coun-

tered when only a portion of the responders are active. In dynamic quarantining, the

quarantining system makes a decision about how many and which responders to be

activated based on the local information about the propagation of the worm. While

in static immunization, the given portion of the susceptible nodes is immunized (i.e.,

removed) at only one time moment, in dynamic immunization, the decision of which

and how many nodes should be immunized depends on the dynamics of the propaga-

tion. Clearly, dynamic control strategies are time-dependent and may change based

on the amount and quality of available information.

Let S (t) denote the number of susceptible nodes at time t, Qs (t) the number

of quarantined-susceptible nodes, Rs (t) the number of removed-susceptible nodes,

I (t) the number of infectious nodes, Id (t) the number of detected infectious nodes,
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Iu (t) the number of undetected infectious nodes, Q (t) the number of quarantined-

infectious, and R (t) denote the number of removed nodes. Let β denote the rate with

which an infectious node infects its adjacent susceptible nodes.

First, we describe the simplest epidemiological model—the Susceptible-Infectious—

that can be used in the study of the worst-case propagation, i.e., when control strate-

gies are not available. In this class of models, once a susceptible node becomes

infectious, it does not change its state. Let the average degree of an infectious

node be d, and the fraction of infectious nodes at time t be i (t). The expected

number of susceptible neighbors that can be infected by a given infectious node is

d (1− i (t)). Since there are I (t) infectious nodes, the total rate of newly-infected

nodes is βd (1− i (t)) i (t). This model is described by the differential equation (6.3.1):

di (t)

dt
= βd (1− i (t)) i (t) , (6.3.1)

with boundary conditions: i (0) =
I (0)

n
> 0 and for all t ≥ 0, i (t) + s (t) = 1. The

solution of equation (6.3.1) for the fraction of infectious nodes is the logistic curve:

i (t) =
i (0) eβ ′t

1− i (0) + i (0) eβ ′t , where β′ = βd.

133



6.3.1 Models of Static Control Strategies

Static control strategies change the structure of the graph on which the worm prop-

agates. Let VIu be the set of undetected infectious nodes, VId
the set of detected

infectious nodes, and VRs be the set of removed susceptible nodes. From time td + tr

onward, (1) in the static content-filtering the propagation of the worm is from in-

fectious nodes in VIu ∪ VId
on the graph G − VRs , (2) in address-blacklisting, the

propagation of the worm is from infectious nodes in VId
on the graph G− VRs , while

the worm continues propagating as unconstrained on the graph G from infectious

nodes in VIu , and (3) in traffic-blocking, there is only propagation from infectious

nodes in VIu on the graph G − VRs . Note that the conditions of traffic-blocking are

equivalent to those of static immunization.

6.3.1.1 Static Immunization

Pastor-Satorras et al. [PV02] conducted simulation study to investigate the effects

of immunizing nodes before the start of propagation. If VRs is the set of removed

(immunized) nodes, the worm propagates on the graph G− VRs . The study demon-

strated that static immunization, when VRs consists of nodes chosen at random, is

inefficient in slowing down the propagation; however, when VRs consists of nodes of
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highest degrees, static immunization can significantly inhibit the propagation. While

the latter result seems interesting, the authors argue that detecting nodes of high

degrees in scale-free networks is a difficult problem.

Similarly, the simulation study of Wang et al. [WKE00] examines the effects of

immunization on two topologies: rooted trees and clustered networks (composed of

cliques inter-connected with small number of edges). The parameter of their sim-

ulation is the propagation fan out—number of nodes to which the worm can send

replicas at each time step. The time needed for the worm to propagate from one

node to another is assumed to be one time tick. The first set of simulation is con-

ducted on networks without immunization to determine the number of times a node

is re–infected (called re-infection count). Two types of immunization are simulated—

random and selective. Random immunization performs better on rooted trees as

there is only one path between any two nodes; thus, it is possible to cut off an entire

sub-tree of the network, which is not the case with the clustered network. For the

case selective traffic-blocking in rooted trees, VRs is composed of nodes with highest

re-infection counts (note, these nodes coincide with nodes with largest degrees). In

the case of clustered networks, two strategies are used: in the first, nodes in VRs are

chosen based on the re-infection count, while in the second, nodes of VRs from among

those with highest weighted sum of the inter–cluster and inner-cluster degrees. The

first strategy was able to contain the propagation, but results in a higher propagation
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rate. The second could slow down the propagation rate, but was unable to contain

the propagation.

The principal disadvantage of the studies in [WKE00] and [PV02] is that a fraction

of nodes is removed before the worm starts propagating—an unrealistic assumption

in itself. Another interesting open question is the effects of the longer propagation,

resulting from the static immunization, on the functionality of the network.

6.3.1.2 Static Traffic-blocking

To overcome the problem of static immunization, Williamson et al. [WL03] analyzed a

modification of the Susceptible-Infectious-Detected-Removed (SIDR) model. The aim

of the study was to determine the effectiveness of the traffic-blocking approach called

virus throttling [Wil02]. Virus throttling is an automatic mechanism for slowing

a worm’s propagation by limiting the rate of traffic. The model incorporates virus

throttling by dividing the nodes into two groups—throttled and un-throttled. Here,

an un-throttled node can be in one of the four states: susceptible, infectious, detected

(in which the virus has been detected and cannot actively spread), and removed. Let

p be the portion of throttled nodes. The model assumes complete graph as underlying

topology, and involves two stages: in the first stage, prior to the release of the virus

signature, nodes progress from susceptible to infectious state at rate β, according to
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the model (6.3.1). In the second stage, after some time td when the worm is detected

(i.e., the worm signature is available), the throttled nodes are removed, so only the

un-throttled infectious nodes (whose fraction is iu (t)) can spread the worm:

diu (t)

dt
= βd (1− p) s (t) i (t) ,

di (t)

dt
= βds (t) i (t) , t < td,

di (t)

dt
=

diu (t)

dt
= βd (1− p) s (t) iu (t) , t ≥ td.

(6.3.2)

The study shows that when more than half of the nodes are throttled, even a late

signature (i.e., when td is relatively large) will result in a small outbreak.

It is clear that the effects of the traffic-blocking are determined by its deployment

(i.e., the choice of nodes on which it is applied). If p is the portion of nodes that

have traffic-blocking mechanism, the number of infectious nodes with traffic-blocking

mechanism is pI (t), and the probability with which they infect susceptible nodes is

β′ < β. Thus, the number of infectious nodes can be described by the Susceptible–

Infectious model given by:
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di (t)

dt
= [β′p + β (1− p)] d (1− i (t)) i (t) , (6.3.3)

with initial conditions same as for the model (6.3.1). Wong et al. [WWS04] performed

a simulation study of model (6.3.2) on a complete graph, and showed that traffic-

blocking at the backbone routers is effective. Traffic-blocking at edge routers is helpful

for worm using random propagation strategy, but does little to suppress worms using

local propagation strategies. Moreover, individual host-based traffic-blocking results

in slight linear slowdown of the worm, regardless of the propagation strategy. The

study used 23-day traffic traces from an edge router in the period of the Blaster worm.

To avoid installation of traffic-blocking on individual host, Chen and Tang [CT04]

proposed a distributed anti-worm architecture (DAW) deployed at edge routers. Here,

the agents (responders) use temporal and spatial rate-limiting algorithms based on the

connection-failure rate: the temporal rate-limiting insures that packets are dropped

from a host that has exceeded the normal connection-failure rate, while the spatial

rate-limiting insures that packets are dropped from a sub-network that has exceeded

its normal connection rate. Their simulation study shows that that temporal rate-

limiting can slow down the propagation from minutes to days, while the spatial rate-

limiting limits the number of infectious nodes to only 5% of the entire susceptible
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population (the number of sub-networks is 10,000 with average of 10 susceptible per

sub-network).

6.3.1.3 Static Content-filtering and Address-blacklisting

Moore et al. [MVS03] conduct simulations to analyze the effects of static content-

filtering and address-blacklisting. The study is focused on three factors: reaction

time, tr, containment strategy, and deployment scenarios (not universal, but at some

pre-selected nodes). The filter is placed on the shortest path between two nodes

in the macroscopic Internet graph. Here, an approach is considered successful if

it limits infection to 1% of the nodes within the 24 hour period. The conclusion

of the simulation is that if the containment system is unable to activate filtering

mechanisms within minutes of the start of propagation, the system will not be effective

(with content-filtering performing better than address-blacklisting). Both approaches

have the same weakness—it is unrealistic to think of a global blacklisting or content-

filtering engine.

Compartmental epidemiological models are used for stratified population. The

topology in these models is the macroscopic Internet graph, where every node repre-

sents a dense region—Autonomous System (AS). These models can be used to study

intra-AS propagation, with the assumption that within an AS (with nj nodes) the
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worm propagates as on a complete graph Knj
. The infectious attempts can then be

modeled as being external or internal to an AS. If the macroscopic Internet graph has

n nodes, the SI compartmental model can be written as:

dij (t)

dt
=

[
n∑

k=1

β
nk

N
ik (t)

]
(1− ij (t)) , (6.3.4)

where, 1 ≤ j ≤ n and the parameter N denotes the total number of IP addresses.

Serazzi et al. [SZ04] used model (6.3.4) to derive equations for the bandwidth con-

sumption at each node. Nicole and Liljenstam [NL04] performed a study of static

content-filtering and address-blacklisting, with results identical to those in Moore et

al. [MVS03]. For the SIR compartmental model, Liljenstam et al. [LNB03] obtained:

dij (t)

dt
=

[
n∑

k=1

β
nk

N
ik (t)

]
(1− ij (t)) ,

drj (t)

dt
= γij (t) ,

(6.3.5)

where, 1 ≤ j ≤ n. With model (6.3.5), Liljenstam et al. [LNB03] studied the destabi-

lizing effects of worm propagation on the network infrastructure, since the compart-

mental approach allows for inclusion of limited details about communication proto-

cols. In this simulation study, the scan traffic is model by using a combination of the
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average scan rate, individual infection rates, and size of address space for each AS.

This framework is further used to devise and study a detection mechanism based on

ICMP unreachable messages (called ICMP-T3 messages) [BGB02], [BB03]. Simu-

lations show that Code Red could have been detected by using ICMP–T3 messages

when it had infected 0.2% of the susceptible nodes, while monitoring only 217 inactive

nodes (i.e., two Class B networks that are not assigned); on the other hand, with

218 monitored nodes (i.e., four Class B networks), Slammer could have been detected

when only 0.01% of the susceptible nodes were infected. Chen and Ranka [CR04]

proposed a similar architecture in which ICMP–T3 messages are combined with TCP

RESET packets to detect a worm employing random propagation strategy. However,

in their approach, active nodes are also monitored.

6.3.2 Models of Dynamic Control Strategies

Dynamic control strategies are time-dependent and may change based on the amount

and quality of available information. Variations of the traditional Susceptible-Infectious

and Susceptible-Infectious-Removed models have been used to model several dynamic

control strategies, reviewed in the next sub-sections.
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6.3.2.1 Susceptible-Infectious Models of Dynamic Control Strategies

Nicole and Liljenstam [LN04] studied three control strategies carried out by self-

replicating responders which spread at approximately the same rate as the worm. The

problem of having a propagating worm and self-replicating agents (i.e., good worm)

in a susceptible population can be analyzed by the Susceptible-Infectious models of

two competing diseases. Here, a node can be “infected” by either a worm or a self-

replicating agent. Let qs (t) be the fraction of susceptible nodes infected (and, thus,

quarantined) by the agent. If the self-replicating agent is endowed with a patch and

the ability to discern only susceptible nodes, the model of dynamic immunization, on

a graph with average degree d, can be described as follows:

ds (t)

dt
= −βds (t) (i (t) + qs (t)) ,

di (t)

dt
= βds (t) i (t) ,

dqs (t)

dt
= βds (t) qs (t) ,

(6.3.6)

with boundary conditions s (0) =
n− I (0)−Qs (0)

n
≥ 0, i (0) =

I (0)

n
≥ 0, qs (0) =

Qs (0)

n
≥ 0, i (t) + qs (t) + s (t) = 1.
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A self-replicating agent that can also detect an infectious node and blocks its

traffic imposes interaction with the worm. Note that this control strategy combines

dynamic immunization with dynamic traffic-blocking. The increased capabilities of

the agent can be described by model (6.3.6) in which the second equation is changed

as:

di (t)

dt
= βd (s (t)− qs (t)) i (t) . (6.3.7)

Finally, the authors assume that the agent, which can also eliminate infectious

nodes, spreads at greater rate than the worm, formulated as:

di (t)

dt
= βds (t) i (t)− kβdi (t) qs (t) , (6.3.8)

where k > 1.

At any time moment t, the rate of propagation is proportional to the total number

of infectious nodes i (t) + qs (t). Since, both types of infectious nodes send a great

number of scans, these quarantining mechanisms may impair the functionality of the

network with the increased traffic. Analysis of model (6.3.7) showed that the peak rate
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of propagation is at least one third of the initial susceptible population—magnitude

undesirable for real networks.

Furthermore, Nicole and Liljenstam [NL04] compared static and dynamic mech-

anisms. The dynamic mechanism that employs a patch is as good as the content-

filtering provided some boundary conditions for the fraction of nodes included in the

content-filtering infrastructure, while static content-filtering installed on the 30 most

connected Autonomous Systems can outperform the dynamic mechanisms modeled

by (6.3.6) – (6.3.8).

If a patch becomes available at time td and it is distributed at rate γ, the dynamics

of immunization can be modeled by:

di (t)

dt
= βds (t) i (t) , t < td,

di (t)

dt
= βds (t) i (t)− γi (t) , t ≥ td,

ds (t)

dt
= −γs (t) .

(6.3.9)

Wong et al. [WWS04] studied the case when dynamic patching is combined with

static traffic-blocking deployed on a portion of p nodes in a complete graph:
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di (t)

dt
= βs (t) I (t) , t < td,

di (t)

dt
= [β′p + β (1− p)] s (t) I (t)− γi (t) , t ≥ td,

ds (t)

dt
= −γs (t) .

(6.3.10)

The simulation of the model on a 1000-node scale-free graph shows that 80% of

nodes are infected at the end of simulation without static traffic blocking, while when

20% are blocked (removed), 72% of the nodes become infectious.

In the field of worm detection, Zou et al. [ZGT03a] used model (6.3.1) on a com-

plete graph to analyze a trend-detection mechanism based on the traffic-anomaly cre-

ated by worms. The detection system is composed of distributed ingress and egress

sensors for worm activity: when the monitoring system receives a surge of illegitimate

scans, a Kalman filter is activated to estimate the parameter β. Since in the early

stage the propagation exhibits exponential growth with constant, positive rate, the

model can be described by I (t) = (1 + βndt) I (t− 1). The authors derived a bias-

correction formula for estimation of the number of infectious nodes at time t, I (t),

from the number of observed infectious nodes Id (t): Let σ be the average number

of scans sent by an infectious node. After time interval dt , the expected number of
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scans observed by k monitors is βkI (t) σdt/232 (assuming the Internet is a complete

graph), while the probability that any of the I (t)−Id (t) infectious nodes are observed

is 1− (1− k/232)
σ dt

. The worm is detected when the estimate of β starts oscillating

around a positive constant value. Yet, it is not evident how the topology might af-

fect Zou et al.’s detection mechanism. The study of Gu et al. [GSQ05] shows that

the trend-detection mechanism faces challenges when a small number of monitored

addresses (25,600 instead of 220) is used.

Chen et al. [CGK03] developed a deterministic approximation of model (6.3.1)

for propagation on a complete graph Kn: If σ is the average scanning rate, with

the assumption that the total number of nodes is 232, the average number of newly–

infected nodes at step (t + 1) is (S (t)− I (t))
[
1− (1− 1/232)

σ I(t)
]
. If the rate of

removal is γ, in the next time step γI (t) nodes will become infectious. Thus, the

propagation can be described by a system of recurrences for the number of infectious

and susceptible nodes. This model can be used to determine the size of the monitored

space necessary for early detection of worms.

The assumption is that the worm typically scans some unassigned IP addresses

or unused ports on assigned IP addresses. If there are k (inactive) monitored nodes,

then the probability that one of them will be hit by a scan by time t is P (t) =

1 − (1− k/232)
σ I(t) − 1

. The authors conclude that when more than 218 nodes are

monitored, the system effectively detects and stops the propagation. Similarly, Wu
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et al. [WVG04] develop detection architecture based on sensors monitoring the

traffic at entry points for a sub–network and traffic going to unused addresses. The

threshold detection algorithm is based on the number of newly–infected nodes, called

victim number : An alarm is raised when continuous anomalies (i.e., increases in the

number of newly–infected hosts) are observed over a period of tr time steps. The

parameter tr determines the sensitivity of the system to false alarms (the larger tr,

the greater probability that an actual attack will be detected, but also the time to

react decreases; the smaller tr, the greater the probability that a false alarm will be

issued). This framework is validated by a simulation of Code Red worm attack, where

the attack was detected when only 4% of susceptible nodes were infected, with 216

monitored nodes.

The study of Gu et al. [GSQ05] shows that the victim–number algorithm can de-

tect worm, employing random propagation strategy, even when the monitored network

is of small size—25,600 nodes. However, the victim–number algorithm is ineffective in

detection of worms that employ localized propagation strategies. Gu et al. [GSQ05]

use the discrete approximation to model another detection mechanism: sliding win-

dow is kept for previous network traffic, and two general items are tracked—(1) for

each port witnessed in the traffic, the address of the destination and scanning source

(both from the monitored network) are recorded, (2) a counter, incremented each time

a scan originates from a source that has previously received a scan on the same port.
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Thus, at each time, the address of a possible victim and the number of scans sent from

that address are available. The algorithm is implemented using three Bloom filters

(two for destination addresses at times (t− 1) and t, and one for source addresses at

time t). If the number of scans deviates from what is established as normal (during

the training of the system), an alarm is raised and the host on that address is treated

as a victim. This detection algorithm, unlike the victim–number algorithm, relies

on active hosts (not only unassigned IP addresses) and can be used for detection of

worms using localized propagation strategies.

6.3.2.2 Susceptible-Infectious-Removed Models of Dynamic Control Strate-

gies

In this class of models, an infectious node can no longer spread the worm as a result

of traffic-blocking or immunization. Here, at any time t, a node can be susceptible,

infectious, or removed. Let γ be the rate at which infectious nodes are removed.

Using analogous arguments as in the Susceptible-Infectious model, the general SIR

model can be written as:
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di (t)

dt
= βd (1− i (t)) i (t)− γi (t) ,

dr (t)

dt
= γi (t) ,

(6.3.11)

with boundary conditions i (0) =
I (0)

n
> 0, r (0) =

R (0)

n
≥ 0, s (t)+ i (t)+ r (t) = 1.

From the first equation in model (6.3.11), above,
di (t)

dt
< 0 if and only if s (t) >

γ

βd
.

Thus, if s (t) >
γ

βd
, the fraction of infectious nodes decays exponentially.

Zou et al. [ZGT02] used a modification of the system (6.3.11) to determine the

effect of a decreasing rate β (t) and removal of susceptible and infectious nodes. This

so-called two-factor model assumes complete graph as underlying topology, and a

constant fraction of the removed-infectious nodes at any time t:

di (t)

dt
= β (t) (1− r (t)− rs (t)− i (t)) i (t)− dr (t)

dt
,

dr (t)

dt
= γi (t) ,

drs (t)

dt
= µ (1− r (t)− rs (t)− i (t)) (i (t) + r (t)) ,

β (t) = β (0) (1− i (t))η .

(6.3.12)
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It is unclear, however, how the parameters have been chosen in order to fit the data

from the Code Red I worm propagation.

In another study, Zou et al. [ZGT03b], used model (6.3.11) to study soft-quarantining

(here, quarantining means traffic-blocking). Every node (susceptible or infectious)

can be quarantined individually when the worm detection mechanism raises alarm.

The quarantine on a node is released after a quarantine time tq, even if the node

may be infectious. Let µi be the quarantine rate of an infectious node, and µs be

the quarantine rate of a susceptible node. The probability that an infectious node is

quarantined is pi =
µitq

1 + µitq
, while the probability that a susceptible node is quaran-

tined is ps =
µstq

1 + µstq
. By assuming that changes of R (t) and I (t) are small during

time tq, one can find that the rate of infecting nodes is β (1− pi) (1− ps). Zou et

al. extended this model to include the case when only quarantined infectious nodes

can be removed. The simulation study of the effect of the large quarantine time tq

concluded that the worm propagates faster compared to the prediction of the model.

It should be noted that such a mechanism would be difficult to implement since it

depends on every node being able to quarantine itself.

Boguna et al. [BPV03] studied dynamic immunization on scale-free topologies, via

model (6.3.11) with γ = 1. Since a scale-free degree distribution is not concentrated

around its mean value, the model must include differential equation for every group
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of nodes of degree k. Let Θ
(
{ik (t)}∆

k=δ

)
describes the probability that a susceptible

node of degree k is adjacent to an infectious node. For a scale-free network, the prob-

ability that an edge is incident on a node of degree k is kP (k)
/
d. The average proba-

bility that an edge is incident on an infectious node is then, Θ (t) =
1

d

∆∑
k=δ

kP (k) ik (t).

The model can then be formulated as follows:

dik (t)

dt
= βk (1− ik (t)) Θ

(
{ik (t)}∆

k=δ

)
,

drk (t)

dt
= −ik (t) .

(6.3.13)

which can be solved if one assumes that i (0) is very small in the beginning of the

propagation. In general, it is difficult to use model (6.3.13) in analyzing dynamic

immunization since it does not provide an explicit set of differential equations that

could be solved numerically.

6.4 Novel Near-optimal Dynamic Control Strategies

If a worm signature is not available, the control of propagation can be achieved in

two ways: first, by reducing transmission from an infectious to each susceptible node

(i.e., quarantining), and, second, by limiting the number of susceptible nodes (i.e.,
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by immunizing nodes through patch distribution). Although there is some work

on isolating infectious nodes [LN04], [MVS03] through static content-filtering and

address-blacklisting, much of the literature focuses on the second option and con-

siders the design of immunization strategies. The problem of identifying the optimal

control strategy, that combined immunization with quarantining, has not yet received

attention.

In this section, we study five novel control strategies: (1) combination of static and

dynamic immunization, (2) reactive dynamic immunization, (3) invariable dynamic

immunization, (4) optimal soft-quarantining, and (5) predictive dynamic traffic-blocking.

We use variations of the SIR model, described by equation (11), to study the effects

of the first three control strategies, whereas, in the analysis of the predictive dynamic

immunization, we employ individual–based simulation. The optimization parameter

is the loss to the population, expressed through the number of removed susceptible

nodes.

6.4.1 Combination of Static and Dynamic Immunization

The control strategy that combines static and dynamic immunization operates by

immunizing (i.e., removing) a portion of the susceptible nodes, prior to the beginning

of the propagation. Let this portion be denoted by p (note that, r (0) = p). The
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system of differential equations describing the dynamics of propagation (via I (t))

and the dynamics of control (via R (t)) is:

ds (t)

dt
= −βds (t) i (t) ,

di (t)

dt
= βds (t) i (t)− γi (t) ,

dr (t)

dt
= γi (t) ,

(6.4.1)

with boundary conditions s (0) =
S (0)

n
− p ≥ 0, i (0) =

I (0)

n
> 0, r (0) = p > 0,

s (0) + i (0) + r (0) = 1.

Realistic deployment of this control strategy requires patching of susceptible nodes

(once vulnerability is detected, but before the propagation starts) and a self-replicating

agent that could block the traffic from infectious nodes (detected via the worm sig-

nature).
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6.4.2 Reactive Dynamic Immunization

In this variation of dynamic immunization, a portion of susceptible nodes proportional

to the number of infectious nodes is removed, at rate µ, during the propagation. Re-

alistic deployment of this strategy would require a self-replicating agent that patches

susceptible nodes and blocks the traffic of infectious nodes. The model is then given

by:

ds (t)

dt
= −βds (t) i (t)− µi (t) ,

di (t)

dt
= βds (t) i (t)− γi (t) ,

dr (t)

dt
= (µ + γ) i (t) .

(6.4.2)

Reactive dynamic immunization will have the same effects as the combination of

static and dynamic immunization when the fraction p of susceptible nodes removed

before the propagation starts equals 1 − γ
(
βd + µ

)

βd (γ + µ)
. It is interesting to study the

relationship between the rates µ and γ, and its effect on the total number of infectious

and removed nodes at the end of the propagation, as shown in Section 6.5.
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6.4.3 Invariable Dynamic Immunization

The limited ability of the quarantining system to distribute patches can be modeled by

a constant rate of immunizing susceptible nodes. The system of differential equations

is similar to model (6.4.2), and can be formally written as:

ds (t)

dt
= −βds (t) i (t)− µ,

di (t)

dt
= βds (t) i (t)− γi (t) ,

dr (t)

dt
= γi (t) + µ.

(6.4.3)

We note that for system (6.4.3) there is no closed–form solution for the total number

of removed nodes at the end of the propagation.

6.4.4 Optimal Soft-quarantining

The effectiveness of a control policy, modeled by the SIR, is usually measured in terms

of its ability to reduce the average number of new infections produced by an infectious

node (during its infectious period) if placed in a population of susceptible nodes. This

quantity, known as the basic reproductive ratio R0, can be expressed as the ratio β/γ,
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when the network is a complete graph. It is well known [AM92] from epidemiological

studies that when R0 > 1, the number of infections will grow, whereas if R0 < 1, the

new infections, on average, will decline and major epidemics cannot occur. Therefore,

any control policy aims at reducing the value of R0 below one. There are, however,

further potential requirements for a control policy—for instance, spatial containment

of the propagation, reduction of the propagation duration, minimization of overall

losses to the population, or a combination of these requirements. Interesting, and,

yet not investigated are strategies that minimize losses to the population.

Our soft quarantining control strategy is a combination of two parts: (1) dynamic

immunization of infectious nodes when detected, and (2) dynamic quarantining of

nodes whose history (e.g., recent established connections) suggests an enhanced risk

for getting infected. Both immunized and quarantined nodes will be considered re-

moved. This strategy prevents further transmission from infectious nodes, but may

also result in removal of some susceptible nodes. This leads to a trade-off: increased

levels of control result in a greater reduction in transmission, but also in an increase

in the number of removed susceptible nodes. As mentioned in Section 6.3.2.2, soft

quarantining with duration tq has already been studied by Zou [ZGT03b]. Here, we

focus on the optimal level of a control strategy that combined quarantining and im-

munization, when tq → ∞, in order to minimize the overall losses to the population

expressed through the number of removed nodes.
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We consider the SIR model, where removed nodes arise from: (1) quarantining

of detected infectious nodes at rate γ, and (2) quarantining, at rate c, of nodes

that has not yet been identified as infectious but whose history shows that they are

at greater risk of getting infected. Implementation of quarantining policy (2) will

remove a fraction f of nodes at risk from a given infectious nodes; since increases

levels of control (i.e., larger c) may require greater fraction of susceptible nodes to be

removed, we assume that f is a function of c. In turn, this will result in probability

β ( 1 − f (c) ) s (t) of finding a susceptible node that has not been quarantined. The

model on a graph, whose average degree is d, can be written as:

ds (t)

dt
= −βd (1− f (c)) s (t) i (t)− cds (t) i (t) ,

di (t)

dt
= βd (1− f (c)) s (t) i (t)− γi (t) ,

dr (t)

dt
= cds (t) i (t) + γi (t) .

(6.4.4)

The general results about the SIR model 6.4.4 are [AM92]:

1. An epidemic can occur only when R0 =
β (1− f (c)) d

γ
> 1,

2. Function S (t) is monotonically decreasing, R (t) is monotonically decreasing,

and I (t) is unimodal (has one maximum),
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3. The epidemic eventually dies out, with some proportion of susceptible remain-

ing, given by:

s (t) = e(s(t)−1)R0 , t →∞.

Let the number of nodes quarantined during an infectious period of an infectious

node be denoted by p = c/γ. The final fraction of the removed nodes can be de-

termined by dividing the first by the second equation from the system (6.4.4) and

integrating over I, to obtain:

R0 (S (∞)− S (0))− n ln
S (∞)

S (0)
= (−R0 − p) (I (∞)− I (0)) . (6.4.5)

Further, by employing the final relationship from model (6.4.4), one can get:

ln
n−R (∞)− I (∞)

n− I (0)
= R0

I (0)−R (∞)− I (∞)

n
+ (R0 + p)

I (∞)− I (0)

n
,

or equivalently:

r (t) = 1− (1− i (0)) e−R0 r(t)−p i(0), t →∞. (6.4.6)

Since the fraction of removed nodes that are expected to turn into infectious (and

could spread the worm in case they were not quarantined) is
R0

R0 + p
, the final fraction
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of infectious quarantined nodes can be expressed as:

r (t)− rs (t) =
R0

R0 + p
(r (t)− i (0)) + i (0) , t →∞. (6.4.7)

Theorem 6.4.1. The total fraction of removed nodes, at the end of propagation,

decreases with the increase of the control parameter c, if β
df (c)

dc
>

i (0)

r (t)
.

Proof. The function r (t), t →∞ depends on c, through f (c) and p = c/γ. Therefore,

we investigate how r (t), t → ∞, changes in respect to the increase of c. To locate

the minimum, we look at the conditions under which
dr (t)

dc
< 0. By differentiating

(6.4.6) with respect to c, one obtains:

dr (t)

dc
=

r (t)

γ
(1− i (0)) e−R0 r(t)−pi(0)

[
i (0)

r (t)
− β

df (c)

dc

]
. (6.4.8)

The sign of
dr (t)

dc
is determined by the last multiplicand of the right–hand side

in equation (6.4.8). It follows that
dr (t)

dc
< 0, if and only if β

df (c)

dc
>

i (0)

r (t)
.

To conclude: (1) the analysis of model (6.4.4) shows that the amount of losses

in the population are determined by the function f (c), expressing the fraction of

removed nodes that are at risk from an infectious node. This is directly quantified
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through the change of the basic reproductive ratio R0 =
β (1− f (c)) d

γ
, and (2) the

first derivative
df (c)

dc
, of the function f (c), determines whether or not an increase in

the value of c will cause a decrease in the final fraction of removed nodes r (t)—as

stated by Theorem 6.4.1.

6.4.5 Predictive Dynamic Traffic-blocking

In realistic deployment, the previous three control strategies require a patch, for im-

munization of susceptible nodes, and the worm signature, for elimination of the worm

on the infectious nodes. The predictive dynamic traffic-blocking could be applied

when neither patch nor worm signature is available. This control strategy employs

information about the size and the behavior (anomalous or normal) of the nodes in

a local neighborhood. The predictive dynamic traffic-blocking could be thought of

as a realization of the optimal control strategy analyzed in Section 6.4.4. Based on

the available information, the predictive strategy assesses the risk for a node to be-

come infectious. The risk for a node to become infectious is described as a function

of probability of becoming infectious and the consequence of being infectious. The

probability for a node to become infectious is determined by the number of infectious

nodes in the local neighborhood of the node. The consequence of being infectious
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is determined by the degree of the node—the higher the degree, the greater the ef-

fect of propagation from that node. Before presenting the detailed description of the

predictive dynamic traffic-blocking, we give some definitions:

Definition 6.4.1. For a node u and an integer l, the local neighborhood of u, denoted

by N (u), is composed of all nodes whose distance from u is no greater than l, i.e.

N (u) = {v : d (u, v) ≤ l} .

Note that P ( u ) = N (u) =
l⋃

j=1

Nj (u), where the jth–neighborhood Nj (u) =

{v : d (u, v) = j}. The set of infectious nodes in Nj (u) will be denoted by N i
j (u).

Definition 6.4.2. The susceptibility of a node u, denoted by η (u), is the weighted

sum of the cardinalities of all neighborhoods Nj (u), 1 ≤ j ≤ l, i.e.,

η (u) =
l∑

j=1

1

j
|Nj (u)|.

Definition 6.4.3. Given a node u, let
l⋃

j=1

N i
j (u) be the set of infectious nodes in

N (u). The risk of u becoming infectious, denoted by ρ (u), is the weighted sum

ρ (u) =
d (u)

n

l∑
j=1

1

j

∣∣N i
j (u)

∣∣

l∑
j=1

1

j
|Nj (u)|

.
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Addition of one infectious node in N (u) say at distance k, 1 ≤ k ≤ l, increases

the risk by

d (u)

n

1

k
l∑

j=1

1

j
|Nj (u)|

. (6.4.9)

Remark 6.4.1. Note that

l∑
j=1

1

j

∣∣N i
j (u)

∣∣

l∑
j=1

1

j
|Nj (u)|

represents the probability for the node u to

become infectious, while
d (u)

n
, the ratio of the degree of u to the total number of

nodes, expresses the consequence of node u being infectious.

The predictive dynamic traffic blocking is described as follows: Let τ be a given

threshold, c be the number of susceptible nodes on which the strategy is applied,

and ϑ be a counter of new infectious nodes. Predictive dynamic traffic-blocking is a

greedy algorithm that selects c susceptible nodes with highest risk of being infected,

once the counter ϑ exceeds the value of τ . Whenever an infectious node v is detected,

the risk of every susceptible node u in P (v) is updated, by using equation (6.4.9).

The algorithm is formally given in Figure 6.1, below.

One can think of different factors, representing the consequence of infection, that

could be included in the function ρ (u): the type of the node—host, gateway, server,

or router, the amount of traffic that passes through it, or a combination of these. In

Section 6.5, we point out that even without traffic data, the function ρ (u) specified
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Algorithm Predictive Dynamic Control

Input:

G, graph
l, integer
c, number of susceptible nodes to be removed
VI , set of infected node

Output:

VRs , list of susceptible nodes

1: for every node u ∈ V (G)− VI do
2: calculate ρ (u)
3: L ← L ∪ {(u, ρ (u))}
4: end for
5: sort L in decreasing order of ρ (u)
6: return the first c elements of L

Figure 6.1: Greedy algorithm for predictive dynamic control

in terms of graph–theoretic characteristic (i.e., the degree of node u) performs well.

For the empirical analysis, we will use local neighborhood with l = 2 that models

limited information about the network environment.

6.5 Analysis of the Proposed Control Strategies

In this section, we present the comparative analysis of four near-optimal control

strategies described in Section ?? on two types of graphs of same order: (1) Internet

graphs and (2) Barabasi–Albert scale-free graphs.
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We combined the individual-based simulation of the stochastic propagation pro-

cess with simulation of the control strategy. Such simulation provides very precise

and detailed information about the dynamics of the control strategy. The scheduler

(of the simulation) is implemented as a priority queue (just like in Section 5.4). The

system is composed of nodes that can be either susceptible, infectious, or removed.

There are two types of events that can take place: infection and removal. If a node u is

infectious, it attempts infection of each of its neighbors at rate β. Node u is removed,

in the SIR model, at rate at rate γ. Let node u be removed at time t. Any infection

generated by node u in the time period after t is discarded by the scheduler. The

event of node u attempting infection of an infectious or a removed neighbor neighbor

v at time t is also discarded by the scheduler. The removal process (carried at rate

µ, on susceptible nodes) could be thought of as another birth process that affects the

state of the nodes. Thus, the same rules apply as in the previously described cases.

Simulations were carried on the Macroscopic Internet graphs shown in Figure 5.1

and on topologies generated by the Barabasi-Albert model of same order as the graphs

in Figure 5.1. With the help of the individual-based simulation, we are able to answer

the following question regarding each control strategy described in Section 6.4:

1. The maximum number of infectious nodes (averaged over 5000 simulations),

2. The necessary number of immunizations (node-removals) to contain the propa-

gation,
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3. The time te required for containment (averaged over 5000 simulations).

4. The number of susceptible nodes at time te

It is interesting to point out that the analysis of the third problem does not only

involve the average time required for containment, but also the tail of the distribution

of infectious nodes over time. Distributions, in which, at a large time moment, the

number of infectious nodes is small, (i.e., distributions with longer tails) can have

considerable impact on worm propagation and control. This effect is particularly

strong for distributions whose tail include nodes of higher degrees, as concluded in

Chapter 5. Here, for a given control strategy, the fraction of susceptible nodes at the

end of propagation (at time moment te) is used as a measure of its effectiveness.

Two sets of experiments were performed for each graph and each control strategy:

in the first set, the propagation was initiated at a node of minimum degree, while

in the second set, the propagation was initiated at a node of maximum degree. The

latter is of particular importance, because it can be use to estimate the effectiveness

of a control strategy when the worm has the biggest probability to a wide-spread

propagation in shortest time. Moreover, in each set of experiment, for given set of

simulation parameters (β, γ, and µ), we performed a simple statistical analysis of the

results—number of infectious nodes, number of removed nodes, and minimum time

required for containment—in order to estimate the effect of stochastic fluctuations.
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The comparison of the proposed control strategies for the graph from 06.13.2001 with

10515 nodes is shown in Figures 6.6, 6.7, 6.8, and 6.9.

Clearly, there exists a stochastic ordering of the control strategies (ordering in

terms of the r.v. representing the number of infectious nodes over time), although we

do not make this precise. The dynamic control, modeled by the classical Susceptible-

Infectious-Removed framework, performs worse than the invariant dynamic immu-

nization, which in turn has worse performance compared to the control strategy that

combines static and dynamic immunization. However, the tail of the distribution

of infectious nodes for the strategy that combines static and dynamic immunization

is longer compared to that of the invariable dynamic immunization. The predictive

dynamic control strategy outperforms the rest of the proposed control techniques, in

terms of both, the number of infectious nodes and the number of removed nodes at

the end of the propagation (at time moment te).

Detailed statistical analysis of results concerning the invariable dynamic immu-

nization and the predictive traffic-blocking on four Macroscopic Internet graphs is

shown in Figures 6.2, 6.3, 6.4, 6.5. Regression analysis of the obtained results shows

that doubling the removal rate µ results in an increase of the number of susceptible

nodes at the end of the propagation by 4 times. Moreover, only substantial increase

(of order 100) of the rate µ, as compared to β, results in increasing the total number

of susceptible nodes at time te.
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ββββ µµµµ
average 

I (te )
average 

R (t e )
average t e  σσσσI (t e ) σσσσR (t e ) σ σ σ σ t e % S (t e )

1.80 3.60 5272.340 2674.080 3.276 1106.107 1079.993 0.260 0.120%
1.80 0.90 6432.480 1521.980 5.005 1258.377 1222.918 1.662 0.019%
1.80 0.30 7187.440 768.300 6.991 701.966 697.929 5.094 0.003%
1.50 3.60 5133.760 2811.640 4.057 935.860 772.113 0.633 0.133%
1.50 0.90 6283.800 1669.540 5.114 1054.694 976.662 0.965 0.033%
1.50 0.30 7074.600 881.060 8.393 951.347 936.792 10.723 0.004%
0.90 3.60 4774.140 3165.340 6.602 746.164 627.453 1.883 0.208%
0.90 0.90 5845.120 2106.060 7.237 731.210 691.731 1.409 0.061%
0.90 0.30 6736.060 1218.780 11.194 1190.792 1173.032 10.434 0.015%
0.50 3.60 4457.520 3481.620 11.687 517.438 451.547 4.297 0.212%
0.50 0.90 5352.540 2594.800 12.384 913.968 811.469 5.109 0.109%
0.50 0.30 6288.340 1665.640 15.354 716.596 688.847 12.685 0.025%

Graph AS 02.07.2000

c  = 3

ββββ average I (T ) average R (T ) average T  σσσσI (T ) σσσσR (T ) σσσσT % S (T )

1.8 1273.520 3817.560 3.805 94.355 283.064 0.728 36.010%
1.5 1252.580 3754.740 4.315 75.850 227.550 0.853 37.062%
0.9 1255.720 3764.160 7.847 85.374 256.122 1.603 36.904%
0.5 1275.440 3823.320 13.574 109.696 329.088 2.101 35.913%
0.2 1251.740 3752.220 33.414 77.219 231.658 5.421 37.105%

Graph AS 02.07.2000

c  = 4

ββββ average I (T ) average R (T ) average T  σσσσI (T ) σσσσR (T ) σσσσT % S (T )

1.8 343.320 1369.280 2.778 90.432 361.727 0.607 78.474%
1.5 358.820 1431.280 3.324 92.031 368.126 0.764 77.500%
0.9 346.640 1382.560 5.624 85.556 342.225 1.321 78.265%
0.5 363.620 1450.480 9.924 71.175 284.700 2.435 77.198%
0.2 343.460 1369.840 25.779 87.913 351.650 6.972 78.465%

Graph AS 02.07.2000

Figure 6.2: Statistical analysis of the invariable dynamic immunization and the
predictive dynamic traffic-blocking strategy on the Macroscopic Internet graph from
02.07.2000, where propagation starts at node of degree 1772

In light of Theorem 6.4.1, we also study who the increase in the number, c, of

susceptible nodes to which traffic-blocking is applied, might improve the effectiveness

of the predictive dynamic traffic-blocking. For the case when τ = 1, i.e., the predictive

dynamic traffic-blocking is applied each time an infectious node is detected, c = 4 is

the optimum value. For this value of c, the predictive dynamic traffic-blocking results
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ββββ µµµµ
average 

I (te)
average 

R (t e )
average t e  σσσσI (t e ) σσσσR (t e ) σ σ σ σ t e % S (t e )

1.80 3.60 3514.300 1834.400 3.314 837.480 777.388 0.490 0.155%
1.80 0.90 4306.340 1049.140 4.517 610.311 593.429 1.152 0.028%
1.80 0.30 4812.680 544.020 6.980 498.344 500.755 8.926 0.006%
1.50 3.60 3414.500 1931.240 4.043 516.173 479.370 0.368 0.210%
1.50 0.90 4200.180 1154.420 5.177 595.498 549.228 1.656 0.045%
1.50 0.30 4744.620 611.920 7.772 323.016 324.157 6.925 0.009%
0.90 3.60 3180.540 2163.840 6.618 540.335 398.586 2.548 0.236%
0.90 0.90 3902.300 1450.780 7.434 801.194 744.910 2.308 0.073%
0.90 0.30 4515.640 840.300 10.681 519.419 502.745 13.176 0.020%
0.50 3.60 2964.440 2374.980 11.136 307.680 325.489 3.287 0.328%
0.50 0.90 3569.620 1779.220 11.288 655.832 553.808 4.934 0.152%
0.50 0.30 4195.040 1159.480 15.505 1100.733 1039.316 18.528 0.046%

Graph AS 02.10.1999

c  = 3

ββββ average I (T ) average R (T ) average T  σσσσI (T ) σσσσR (T ) σσσσT % S (T )

1.8 792.060 2373.180 3.419 71.619 214.857 0.669 40.914%
1.5 778.240 2331.720 4.076 78.158 234.473 0.942 41.946%
0.9 774.000 2319.000 6.812 67.461 202.384 1.260 42.262%
0.5 782.640 2344.920 12.090 82.756 248.268 2.028 41.617%
0.2 791.980 2372.940 31.161 71.657 214.971 5.524 40.920%

Graph AS 02.07.1999

c  = 4

ββββ average I (T )
average 

R (T )
average T  σσσσI (T ) σσσσR (T ) σσσσT % S (T )

1.8 637.000 2544.000 3.391 41.776 167.105 0.701 40.620%
1.5 635.320 2537.280 4.119 34.915 139.659 0.766 40.777%
0.9 643.640 2570.560 6.936 40.298 161.191 1.378 40.000%
0.5 632.940 2527.760 11.795 37.840 151.362 1.717 40.999%
0.2 643.480 2569.920 31.037 35.366 141.466 6.459 40.015%

Graph AS 02.07.1999

Figure 6.3: Statistical analysis of the invariable dynamic immunization and the
predictive dynamic traffic-blocking strategy on the Macroscopic Internet graph from
02.07.1999, where propagation starts at node of degree 1193

in the minimum number of removed nodes and a fraction of susceptible nodes greater

than 40% at the end of the propagation.
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ββββ µµµµ
average 

I (te)
average 

R (t e )
average t e  σσσσI (t e ) σσσσR (t e ) σ σ σ σ t e % S (t e )

1.80 3.60 2700.820 1466.880 3.314 630.926 428.842 0.331 0.294%
1.80 0.90 3308.660 868.340 4.631 630.107 569.331 1.179 0.072%
1.80 0.30 3735.940 443.660 7.226 456.833 453.698 8.996 0.010%
1.50 3.60 2621.160 1544.600 3.833 417.688 348.041 0.377 0.341%
1.50 0.90 3235.160 941.300 5.305 549.770 496.296 1.648 0.085%
1.50 0.30 3671.600 507.700 8.415 364.490 357.439 10.481 0.017%
0.90 3.60 2445.500 1716.020 6.624 321.847 237.530 1.438 0.442%
0.90 0.90 3002.660 1170.840 7.322 532.515 415.688 1.671 0.156%
0.90 0.30 3483.800 694.880 11.052 701.102 695.944 7.427 0.032%
0.50 3.60 2292.920 1869.180 11.253 320.361 217.171 4.812 0.428%
0.50 0.90 2735.060 1432.220 12.222 673.772 523.114 5.127 0.304%
0.50 0.30 3231.020 945.600 15.491 633.081 563.143 12.303 0.081%

Graph AS 02.10.1998

c  = 3

ββββ average I (T ) average R (T ) average T  σσσσI (T ) σσσσR (T ) σσσσT % S (T )

1.8 631.380 1891.140 3.477 37.998 113.995 0.761 39.653%
1.5 646.020 1935.060 4.165 45.621 136.863 0.764 38.252%
0.9 630.140 1887.420 6.981 43.265 129.796 1.312 39.771%
0.5 650.300 1947.900 13.361 55.005 165.015 2.047 37.842%
0.2 640.100 1917.300 30.576 58.011 174.034 7.154 38.818%

Graph AS 02.10.1998

c  = 4

ββββ average I (T ) average R (T ) average T  σσσσI (T ) σσσσR (T ) σσσσT % S (T )

1.8 523.820 2091.280 2.924 129.724 518.895 0.652 37.438%
1.5 554.540 2214.160 3.607 129.287 517.150 0.884 33.763%
0.9 527.840 2107.360 5.757 155.817 623.269 1.202 36.957%
0.5 478.200 1908.800 11.697 181.106 724.425 2.820 42.895%
0.2 572.960 2287.840 27.823 121.856 487.425 5.212 31.560%

Graph AS 02.10.1998

Figure 6.4: Statistical analysis of the invariable dynamic immunization and the
predictive dynamic traffic-blocking strategy on the Macroscopic Internet graph from
02.10.1998, where propagation starts at node of degree 879

6.6 Summary

Despite the recent surge of research in control of worm propagation, currently, there

is no effective defense system against such cyber attacks. Here, we first present a clas-

sification of existing control strategies in two groups—static and dynamic—and dis-

cussed their advantages and disadvantages. As propagation and control strategies are
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ββββ µµµµ
average 

I (te)
average 

R (t e )
average t e  σσσσI (t e ) σσσσR (t e ) σ σ σ σ t e % S (t e )

1.80 3.60 1912.220 1090.340 3.529 507.196 333.453 0.421 0.413%
1.80 0.90 2355.300 656.400 4.737 504.990 416.286 1.442 0.109%
1.80 0.30 2675.080 339.620 7.542 312.075 306.934 15.583 0.010%
1.50 3.60 1855.660 1142.260 3.876 493.413 198.115 0.405 0.567%
1.50 0.90 2299.760 711.820 5.425 668.839 585.212 1.489 0.113%
1.50 0.30 2625.220 388.800 8.654 720.175 647.633 11.389 0.033%
0.90 3.60 1742.620 1257.320 6.285 495.383 288.875 1.681 0.500%
0.90 0.90 2129.640 878.920 7.611 656.031 466.157 1.383 0.214%
0.90 0.30 2484.700 528.220 11.631 1046.255 918.093 19.370 0.069%
0.50 3.60 1630.800 1364.460 10.907 245.388 163.764 3.759 0.655%
0.50 0.90 1944.460 1057.380 12.083 562.580 322.036 4.325 0.436%
0.50 0.30 2302.180 708.820 15.122 752.069 584.477 10.184 0.133%

Graph AS 08.11.1997

c  = 3

ββββ average I (T ) average R (T ) average T  σσσσI (T ) σσσσR (T ) σσσσT % S (T )

1.8 381.480 1141.440 2.855 56.576 169.728 0.715 49.489%
1.5 390.720 1169.160 3.289 61.850 185.551 0.663 48.263%
0.9 390.860 1169.580 5.490 54.749 164.246 0.860 48.244%
0.5 378.820 1133.460 10.077 58.260 174.781 2.404 49.841%
0.2 383.540 1147.620 24.050 56.458 169.375 5.870 49.215%

Graph AS 08.11.1997

c  = 4

ββββ average I (T ) average R (T ) average T  σσσσI (T ) σσσσR (T ) σσσσT % S (T )

1.8 313.040 1248.160 2.801 47.803 191.213 0.619 48.219%
1.5 311.400 1241.600 3.416 44.148 176.591 0.824 48.491%
0.9 303.580 1210.320 5.798 36.576 146.304 1.516 49.788%
0.5 312.200 1244.800 10.061 46.318 185.273 3.096 48.358%
0.2 310.595 1238.378 24.769 46.609 186.437 5.374 48.624%

Graph AS 08.11.1997

Figure 6.5: Statistical analysis of the invariable dynamic immunization and the
predictive dynamic traffic-blocking strategy on the Macroscopic Internet graph from
08.11.1997, where propagation starts at node of degree 590

tightly coupled with a particular detection mechanism, the review of control strategies

also encompasses the existing detection mechanism. Our thorough survey of worm

control and detection mechanisms shows that there are no control strategies that use

local network–information. Since the problem of containing worms is NP-hard, as

concluded in Chapter 4, we presented five novel control strategies—(1) dynamic soft-

quarantining, (2) combination of static and dynamic immunization reactive dynamic
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immunization, (3) invariable dynamic immunization, (4) soft-quarantining, all mod-

eled within the Susceptible-Infectious-Removed epidemiological framework, and (5)

predictive dynamic traffic-blocking that employs limited information about the net-

work topology and the level of worm propagation. For the dynamic soft-quarantining,

we determined a condition that guarantees minimum number of removed nodes at the

end of propagation. Like in Chapter 5, the analysis of the proposed control strategies

is carried out with the help of the epidemiological approach, with information about

the network structure, and individual-based simulation. Simulation results show that

there exists a stochastic ordering of the control strategies: The dynamic control, mod-

eled by the classical Susceptible-Infectious-Removed framework, performs worse than

the invariant dynamic immunization, which in turn has worse performance compared

to the control strategy that combines static and dynamic immunization. The predic-

tive dynamic control strategy outperforms the rest of the proposed control techniques,

in terms of both, the number of infectious nodes and the number of removed nodes

at the end of the propagation (at time moment te). For c, the number of susceptible

nodes removed per new infectious node, of value 4, the predictive dynamic traffic-

blocking results in minimum number of removed nodes, in line with the analysis of

dynamic soft-quarantining, and a fraction of susceptible nodes greater than 40% at

the end of the propagation.
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Comaprison of Control Strategies
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Figure 6.6: The number of infectious nodes and the tail of its dis-
tribution over time for four control strategies: (1) dynamic Suscepti-
ble–Infectious–Removed, (2) invariable dynamic immunization, (3) combination of
static and dynamic immunization, and (4) predictive traffic-blocking with parame-
ters β = 1.8, γ = 0.02, p = 0.1, µ = 3.6, c = 4 on Macroscopic Internet graph from
06.13.2001
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Figure 6.7: The number of infectious nodes and the tail of its dis-
tribution over time for four control strategies: (1) dynamic Suscepti-
ble–Infectious–Removed, (2) invariable dynamic immunization, (3) combination of
static and dynamic immunization, and (4) predictive traffic-blocking with parame-
ters β = 1.8, γ = 0.02, p = 0.1, µ = 3.6, c = 4 on Macroscopic Internet graph from
06.13.2001
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Figure 6.8: The number of infectious nodes and the tail of its dis-
tribution over time for four control strategies: (1) dynamic Suscepti-
ble–Infectious–Removed, (2) invariable dynamic immunization, (3) combination of
static and dynamic immunization, and (4) predictive traffic-blocking with parame-
ters β = 0.9, γ = 0.1, p = 0.3, µ = 0.9, c = 4 on Macroscopic Internet graph from
06.13.2001
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Figure 6.9: The number of infectious nodes and the tail of its distribution over time
for four control strategies: (1) dynamic Susceptible–Infectious–Removed, (2) invari-
able dynamic immunization, (3) combination of static and dynamic immunization,
and (4) predictive traffic-blocking with parameters β = 0.9, γ = 0.1, p = 0.3, µ = 0.9
on Macroscopic Internet graph from 06.13.2001
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CHAPTER 7

DETECTION VIA DISTRIBUTED

BLACKHOLES

7.1 Introduction

A necessary requirement for any control strategy is timely and accurate detection

of the worm. Automated detection of cyber attacks employing network worm is

performed using an Intrusion Detection System (IDS ) that attempts to detect the

existence of an attack, isolate its source, and inform the system (network) admin-

istrator. There are two types of IDSs: signature–based and anomaly–based [PP03].

Signature–based detection performs pattern–matching of binary code or a series of

commands (and events) that is known to indicate a particular intrusion. This type

of IDS scans network packets or examines audit records generated by the operating

system looking for such signatures. For instance, signature–based IDS may look for
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network packets that are directed to ports or services that are known to be vulner-

able. Instead of looking for matches, anomaly-based detection uses aberrations from

the system’s behavior that is considered normal (based on the knowledge of behavioral

patterns) to indicate possible attacks.

The sensitivity of an IDS can be expressed by the number of false positives and

false negatives it produces. False positive indicates the event of signaling an attack,

when an attack has not happened. Large number of false positives increases the

possibility of ignoring some signals that might be associated with a real attack. False

negative indicates that real attacks pass through the IDS undetected. Therefore,

developing an IDS with minimal number of false negatives and false positives is of

particular importance.

The chapter is organized as follows: Section 2 gives overview of existing worm

detection mechanisms with their advantages and disadvantages. In Section 3, the

novel Detection via Distributed Blackholes is described in detail. Finally, Section

4 presents the combination of the distributed architecture and algorithm with the

control strategy called contact-tracing.
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7.2 Existing Detection Techniques

A prerequisite for a defense system is its ability to identify a worm signature—a

string of bytes in the traffic that passes through a network link. Most techniques for

detection of network worms require the use of attack–free data (that can be leveraged

to train an anomaly detector), a large block of unused IP addresses for eliciting erratic

network (or host) behavior, or a recently developed honeypot approach.

7.2.1 Loss of Self–similarity of Network Traffic

Paxon and Floyd’s study [PF95] of the number of bytes and duration of a session for

several different applications (telnet, e-mail, FTP) showed that none of the considered

quantities was well-modeled as a Poisson process, but followed the log-extreme, log-

normal, or Pareto distribution. Leland, Taqqu, Willinger, and Wilson [LTW94] were

the first to demonstrate that the distribution of traffic in LANs and on the Internet

exhibits self-similarity.

Schleifer and Mannle [SM01] proposed a method for detecting attacks based on

the changes in the self-similarity of the network traffic. Cabrera, Ravichandran,

and Mehra [CRM00] showed that denial-of-service and scanning/probing can affect

network traffic to a measurable extent. Li, Jia, and Zhao [MZ01] demonstrated
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mathematically that a significant change in the Hurst parameter (from that of the

non-attack traffic) can be used to detect an attack. Allen and Marin [AM03] indicated

that the loss of self-similarity can be used to detect possible denial-of-service attack

or intense probing, provided only that the normal (non-attack) traffic is self-similar.

They propose a procedure LOSS that divides the time-line (for the examined traffic)

into overlapping one-hour windows using 15-minuite increments for which the Hurst

parameter is calculated; this could be used in determining more accurately the onset

and the ending of detected attacks.

7.2.2 Abnormal Behavior at the Source of Attack

With the increase of the network components’ speed, it is becoming harder for the

IDSs and firewalls to process packets fast enough to ensure full protection. While

traditional IDS operate at the destination of the attack, behavior blocking prevents a

computer from performing malicious activities by blocking (e.g., slowing, turning off)

its attacking capabilities. This technique, similarly to anomaly-based IDSs, uses a pol-

icy for the allowed behaviors of an application, and any infringements of that policy

are detected and reported. Bruschi and Rosti [BR00] call this technique host dis-

arming, implemented through filtering components added as middleware between the

device drivers and the kernel (so they can monitor all outgoing traffic). Williamson’s
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technique [Wil02] is based on the observation that a corrupted computer will connect

to as many computers as possible, while an uncorrupted computer makes repeated

connection to recently accessed computers with higher probability. Since this tech-

nique provides an automatic response implemented through a delay queue and a

series of time-outs, it does not affect the normal traffic. Similar techniques have been

already marketed by Okena and Entercept.

7.2.3 Unused Block of IP Addresses

Eliciting erratic behavior (and extracting worm signatures) by combining wide ad-

dress space monitors and host-based honeypot tools have already been studied. By

using these techniques, researchers have successfully characterized and classified the

traffic observed at unused blocks [Moo03, ZGT03a]. As noted in [CBM04] one

interesting feature of the plots presented in that analysis were the differences in mag-

nitude and composition of traffic between the different blocks. One approach for

obtaining representative data is to increase the number and size of unused address

blocks [Moo03]. To better understand how observed traffic is affected by sensor

placement, data from Internet Monitor Sensor (IMS) is used in [CBM04] to present

evidence that distributed unused address blocks observe significantly different traffic

patterns. Unlike the approach in [Moo03] where a large unused address block is used
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to obtain characterization of the global Internet traffic, the IMS utilizes a distributed

collection of blackhole sensors. These sensors are deployed in networks belonging to

service providers, large enterprises, and academic institutions representing a diverse

sample of the IPv4 address space. The results of the analysis is that these distributed

address blocks observe dramatically different traffic patterns.

7.3 Detection via Distributed Blackholes

Recently developed approaches for automatic extraction of worm signatures include

detection through honeypots, virtual honeypots, honeynets, and blackholes (also

known as network telescopes, darknets). A honeypot is a closely monitored network–

decoy that can distract adversaries from more valuable machines on a network, provide

early warning about new attack and exploitation trends, or can allow in–depth exam-

ination of adversaries during and after exploitation of the honeypot. While deploying

a physical honeypot is often time intensive and expensive, virtual honeypots [Pro04]

simulate virtual computer systems at the network level without the necessary hard-

ware requirements. The simulated computer systems appear to run on unallocated

network addresses. To deceive network fingerprinting tools, virtual honeypots simu-

lates the networking stack of different operating systems and can provide arbitrary

routing topologies and services for an arbitrary number of virtual systems. Unlike
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honeypots and virtual honeypots, a honeynet [LLO03] is an entire network of sys-

tems that runs real applications and services. An attacker can interact with operating

systems and execute tools on what appears to be a legitimate production network.

In a network telescope, a portion of unused address space is globally announced and

routed to a collection infrastructure that records incoming and/or outgoing packets.

All captured activities are assumed to be unauthorized or malicious as any connection

initiated inbound or outbound to these four systems is most likely a result of mis-

configuration, or scanning from worms and other network probing. The signatures

obtained from traffic analysis, in turn, can be used to devise agents that block attacks

into real systems.

Our detection mechanism, Detection via Distributed Blackholes (DDBH ), (1) be-

longs to the group of threshold-based algorithms, (2) operates via network traffic

monitoring, and (3) uses distributed collection of unused address blocks (known as

blackholes). The last characteristic renders DDBH deployable via (virtual) honeypots

or honeynets. Moreover, DDBH provides the basis for coordinated defense by using

only locally available information.

The DDBH architecture is a set of heterogeneous blackhole sensors, aggregators,

and responders. Each blackhole sensor monitors a dedicated range of unused IP

addresses. For each packet sent to the blackhole, the sensor records the source IP

address, destination IP address, and the destination port. Because there are no
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legitimate hosts in an unused address block, the traffic must be a result of poor routing

management or scanning/probing activity. Each blackhole sensor is responsible for

gathering and storing data, performing queries on its local storage, and generating

alerts that are sent to the aggregators. The blackhole sensor looks for erratic activities

such as: horizontal scan, vertical scan, or coordinated scans whose characterization

has already been studied [VVK98, VCI99]. Aggregators communicate with the sensors

to gather information about the global characteristics of the propagation and plan

further actions, e.g., alarming certain responders. Finally, responders, through two–

way communication with analyzers and aggregators, initiate a pre–specified control

strategy. The DDBH architecture is presented in Figure 7.1, below.

Internet

sensor

responder

sensor

responder

aggregatoraggregator

aggregator

sensor

responder

Figure 7.1: DDBH Algorithm at Aggregator
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Let τ denote the threshold for the number of unused IP addresses on which scan-

ning attempts are detected and td be the time when the threshold is exceeded. Each

aggregator keeps a list of pairs (destination address, source address). When a black-

hole sensor detects scanning activity for a particular destination address, it sends

the pair of “infected” blackhole address and infectious (source) address to the ag-

gregator. When the number of blackhole destination address, on which scanning was

attempted, exceeds the threshold, the aggregator activates the responders responsible

for handling the associated source addresses. The responders, in turn, through com-

munication with the blackhole sensors and aggregators initiate a pre–specified control

strategy. A responder that has been activated updates its actions based on the data

from the corresponding sensor and aggregator. Therefore, a particular control strat-

egy launched by a given responder can be terminated and redirected to another part

of the network. The DDBH algorithm is formally described in Figure 7.2.

7.4 Model of DDBH with Contact-tracing

Contact tracing is a form of targeted control, where applying a chosen control mech-

anism is focused on the potential next-generation cases. Spatially-explicit contact-

tracing is an epidemiological control strategy (see [TH03] and references therein)

that has not yet been investigated in the context of worm quarantining. As contact

184



Algorithm Detection via Distributed Blackholes

Input:

L∅, list of pairs (infected ∅-node, infectious (regular) node neighbor)
ϑ, number of elements in L∅

1: if pair (∅, i) received from a sensor/child-aggregator then
2: ϑ ← ϑ + 1
3: end if
4: if ϑ > τ then
5: ϑ ← 0
6: empty L∅
7: start control strategy at responders responsible for L∅
8: end if

Figure 7.2: Detection via Distributed Blackholes algorithm

tracing is fundamentally linked to the network of potential transmission routes, classi-

cal epidemiological models are not suitable for its analysis. This control strategy looks

for patterns of infectious nodes (once they have been identified), and hence utilizes the

network structure associated with transmission. Contact tracing is modeled by inves-

tigating a proportion of the neighbors of an identified infectious node—this portion

is referred to as tracing efficiency. Existing contact-tracing models [TH03, EK03]

truncate the chains of transmission at adjacent nodes, i.e., secondary cases. Here, we

present a model of contact tracing that follows the entire chain of transmission.

We formalize the DDBH detection mechanism as a modification of the Susceptible-

Infectious model employing information about the network structure: Nodes are di-

vided into two groups—regular nodes, representing used IP addresses (hosts), and
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∅-nodes, modeling unused IP addresses (blackholes). Before the time moment td,

when the worm is detected, a regular node can be either susceptible or infectious,

while a ∅-node can be either susceptible or infected. Note that a ∅-node is never

infectious, and thus, it does not facilitate the propagation.

Contact-tracing is incorporated into the detection framework via the Susceptible-

Infectious-Traced-Removed model: at any time moment after td, a regular node can

be in one of the four states—susceptible, infectious, traced, and removed, whereas

a ∅-node can be susceptible, infected, or traced. When an infectious (regular) node

moves in the traced state, it can no longer propagate the worm. Finally, if the number

of infected ∅-nodes exceeds τ , all infected (∅-node) enter the traced state and initiate

contact-tracing. Therefore, the model allows for studying not only the effect of the

distributed placement of blackholes but also coordination in the wake of an attack by

only using local information.

Let β denote the rate at which a susceptible node is infected from an adjacent

infectious node, µ be the rate at which nodes are traced, and γ be the rate at which

nodes move out of the traced state (i.e., are removed). Let for any time moment t, [S]

denote the number of susceptible regular nodes, [I], the number of infectious nodes,

[T ], the number of traced regular nodes, [R], the number of removed nodes,
[
S∅

]
, the

number of susceptible ∅-nodes,
[
I∅

]
, the number of infected nodes, and

[
T ∅] be the

number of traced ∅-nodes. Furthermore, let [XY ] denote the number of pairs where
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one node is in state X and the other is in state Y , and [XY Z] be the number of

triples in which node in state Y has two neighbors in states X and Z.

For simplicity, let G be a d-regular graph on a set of regular and ∅-nodes. Following

the approach in [Ran99], we derive the following set of equations for the dynamics

of the defense system before td:

d [S]

dt
= −β [SI] ,

d [I]

dt
= β [SI] ,

d
[
S∅

]

dt
= −β

[
S∅I

]
,

d
[
I∅

]

dt
= β

[
S∅I

]
,

(7.4.1)

where initially [I] > 0,
[
I∅

]
= 0. At any time moment before td, [S] + [I] = n,

[
S∅

]
+

[
I∅

]
= n∅. The first two equations in model (7.4.1) describe the propagation of

the worm on the regular nodes, while the last two equations model the worm scanning

captured by the ∅-nodes. Similarly, the dynamics of contact-tracing, initiated at time

moment td, is given by:
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d [S]

dt
= −β [SI] ,

d [I]

dt
= β [SI]− µ

(
[TI]− [

T ∅I
])

,

d [T ]

dt
= µ [TI]− γ [T ] ,

d [R]

dt
= γ [T ] ,

d
[
S∅

]

dt
= −β

[
S∅I

]
,

d
[
I∅

]

dt
= β

[
S∅I

]
,

(7.4.2)

where, initially,
[
T ∅] equals to the value of

[
I∅

]
when ϑ = τct, and

[
I∅

]
= 0. At any

time moment after td, [S] + [I] + [T ] + [R] = n,
[
S∅

]
+

[
I∅

]
+

[
T ∅] = n∅.
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The dynamics of the pairs before the time moment td is given below:

d [SS]

dt
= −2β [SSI] ,

d [SI]

dt
= β ([SSI]− [ISI]− [SI]) ,

d [II]

dt
= 2β ([ISI] + [SI]) ,

d
[
S∅S

]

dt
= −β

([
S∅SI

]
+

[
IS∅S

])
,

d
[
S∅I

]

dt
= β

([
S∅SI

]− [
IS∅I

]− [
S∅I

])
,

d
[
I∅S

]

dt
= β

([
IS∅S

]− [
I∅SI

])
,

d
[
I∅I

]

dt
= β

([
S∅I

]
+

[
IS∅I

]
+

[
I∅SI

])
,

(7.4.3)

where at any time moment, the sum of all possible pairs equals twice the edges, i.e.,

nd. The pair dynamics of contact-tracing is given by:
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d [SS]

dt
= −2β [SSI] ,

d [SI]

dt
= β ([SSI]− [ISI]− [SI])− µ [SIT ] ,

d [ST ]

dt
= µ [SIT ]− γ [ST ] ,

d [SR]

dt
= γ [ST ] ,

d [II]

dt
= 2β ([ISI] + [SI])− 2µ [IIT ] ,

d [IT ]

dt
= µ [IIT ]− γ [IT ] ,

d [IR]

dt
= γ [IT ] ,

d [TT ]

dt
= 2µ [TIT ]− 2γ [TT ] ,

d [TR]

dt
= γ [TT ] ,

d [RR]

dt
= 2γ [TR] ,

(7.4.4)
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while for the interaction among regular and ∅-nodes one can obtain:
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d
[
S∅S

]

dt
= −β

([
S∅S

]
+

[
IS∅S

])
,

d
[
S∅I

]

dt
= β

([
S∅SI

]− [
IS∅I

]− [
S∅I

])− µ
[
S∅IT

]
,

d
[
S∅T

]

dt
= µ

[
S∅IT

]− γ
[
S∅T

]
,

d
[
S∅R

]

dt
= γ

[
S∅T

]
,

d
[
I∅S

]

dt
= β

([
IS∅S

]− [
I∅SI

])
,

d
[
I∅I

]

dt
= β

([
S∅I

]
+

[
IS∅I

]
+

[
I∅SI

])− µ
[
I∅IT

]
,

d
[
I∅T

]

dt
= µ

[
I∅I

]− γ
[
I∅T

]
,

d
[
I∅R

]

dt
= γ

[
I∅T

]
,

d
[
T ∅S

]

dt
= −β

[
T ∅SI

]
,

d
[
T ∅I

]

dt
= −β

[
T ∅SI

]− µ
[
T ∅I

]
,

d
[
T ∅T

]

dt
= µ

[
T ∅I

]− γ
[
T ∅T

]
,

d
[
T ∅R

]

dt
= γ

[
T ∅T

]
.

(7.4.5)
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To approximate the third moments [XY Z], one can use the estimate derived in

[Ran99]:

[XY Z] =
d− 1

d

[XY ] [Y Z]

[Y ]
. (7.4.6)

In order to study the effects of distributed placement of ∅-nodes, we extend the model

given by (7.4.1) - (7.4.3) to include the full network structure, according to the model

presented in Chapter 5:

d [Ia]

dt
= β

∑
k∈Λa

[SaIk],

d [Sa]

dt
= −β

∑
k∈Λa

[SaIk],

d
[
I∅a

]

dt
= β

∑
k∈Λa

[
S∅aIk

]
,

d
[
S∅a

]

dt
= −β

∑
k∈Λa

[
S∅aIk

]
.

(7.4.7)
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The dynamics of the pairs of regular nodes is then given by:

d [SaSb]

dt
= −β

(
∑

k∈Λa

[IkSaSb] +
∑

k∈Λb

[SaSbIk]

)
,

d [SaIb]

dt
= −β

(
∑

k∈Λa

[IkSaIb]−
∑

k∈Λb

[SaSbIk] + [SaIb]

)
,

d [IaSb]

dt
= −β

(
∑

k∈Λb

[IaSbIk]−
∑

k∈Λa

[IkSaSb] + [IaSb]

)
,

d [IaIb]

dt
= β

(
[SaIb] + [IaSb] +

∑
k∈Λa

[IkSaIb] +
∑

k∈Λb

[IaSbIk]

)
,

(7.4.8)

while the interaction between the regular and ∅-nodes can be described by:

194



d
[
S∅aSb

]

dt
= −β

(
∑

k∈Λa

[
IkS

∅
aSb

]
+

∑
k∈Λb

[
S∅aSbIk

]
)

d
[
S∅aIb

]

dt
= β

(
∑

k∈Λb

[
S∅aSbIk

]− ∑
k∈Λa

[
IkS

∅
aIb

]− [
S∅aIb

]
)

,

d
[
I∅aSb

]

dt
= β

(
∑

k∈Λa

[
IkS

∅
aSb

]− ∑
k∈Λb

[
I∅aSbIk

]
)

,

d
[
I∅aIb

]

dt
= β

(
[
S∅aIb

]
+

∑
k∈Λa

[
IkS

∅
aIb

]
+

∑
k∈Λb

[
I∅aSbIk

]
)

.

(7.4.9)

To solve the model, observe that the approximation given by (7.4.6) could be

extended to:

[XaYbZc] =
b− 1

b

[XaYb] [YbZc]

[Yb]
. (7.4.10)

Similar arguments can be used to extend model (7.4.4) - (7.4.5).
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7.5 Analysis of DDBH with Contact-Tracing

In this section we analyze the model presented in Section 7.4 above by means of the

individual-based simulation described in Section 5.4. First, we need to choose where

to place the ∅-nodes and how many of them to place. We note that the study in

[MVS03] concluded that almost all network paths should be monitored in order to

effectively control the worm propagation.

Given a graph G, let V ′ (G) be the minimum vertex cover of G. Here, for every

node u of highest degree from V ′ (G), a new emptyset-node with same neighbors as u

is added to G. Thus, the ∅-nodes are added by copying the first n∅ nodes of highest

degree in V ′ (G).

Since the problem of finding a minimum vertex cover of G is NP-hard, we use the

heuristic presented in Figure 7.3 to find an approximation. The heuristic is a greed

algorithm that at each step chooses a node (not in V ′ (G)) for inclusion in the vertex

cover.

The size of the vertex covers for five Macroscopic Internet graphs are shown in

Figure 7.4. Given a Macroscopic Internet graph G, the number of ∅-nodes added to

G is 1% (respectively, 2%) of the order of G when ∅-nodes comprise 4% (respectively,
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Algorithm Vertex cover

Input: G, graph

Output: V ′ (G), vertex cover of G

V ′ (G) ← ∅
while there |V (G) | > 0 do

v ← node of highest degree
V ′ (G) ← V ′ (G) ∪ v
G = G− v

end while

Figure 7.3: Vertex cover heuristic

8%) of the highest-degree nodes in the vertex cover. These values allows comparison

of our results with the outcome of previous studies, presented in Chapter 6.

Graph Order
Size of Vertex 

Cover (VC)

AS 08.11.1997 3015 588 24 0.78% 47 1.56%
AS 02.20.1998 4180 829 33 0.79% 66 1.59%
AS 02.07.1999 5357 964 39 0.72% 77 1.44%
AS 02.07.2000 7956 1266 51 0.64% 101 1.27%
AS 03.16.2001 10515 1640 66 0.62% 131 1.25%

4% of VC 8% of VC

Figure 7.4: Number of nodes in vertex cover of Macroscopic Internet graphs

Three sets of experiments were performed for each graph and each number of ∅-

nodes added when τ = 1, 3, or 6. An increase in the value of τ , renders the DDBH

algorithm more sensitive to false positives, but at the same time, it increases the time
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before the worm is detected. By varying the parameter τ , we were able to determine

how the DDBH algorithm performs for the three levels of sensitivity to false alarms.

In all experiments, the parameter γ = 0, in order to model the case when the

infectious nodes are only traced (i.e., their traffic is blocked) without removing the

worm. With the help of the individual-based simulation we were able to answer

questions related to:

1. The time, td, necessary to detect the worm,

2. The number of infectious nodes when the worm is detected, and

3. The number of nodes at time te, when all infectious nodes are traced.

As in Section 6.5, the fraction of susceptible nodes at the end of propagation (at

time moment te) is used as a measure of the effectiveness of contact-tracing. The

results of the empirical study for the Macroscopic Internet graphs from 08.11.1997

appear in Figures 7.5. The results for the Macroscopic Internet graph from 02.07.2000

are shown in Figures 7.6.

To summarize the results:

1. With the increase of τ , (i) the time, td to detect the worm, (ii) the number of

infectious nodes, I (td) when the worm is detected increase, and (iii) the fraction

of susceptible nodes S (te) at the end of the propagation, increase.
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ττττ = 1

ββββ µµµµ average td σ σ σ σ td average % I(td) σσσσ % I(td) te % S(te )

1.8 3.6 0.217 0.187 0.184% 0.208% 6.529 59.575%
1.8 1.8 0.255 0.214 0.237% 0.326% 6.953 55.841%
1.8 0.4 0.241 0.233 0.228% 0.235% 20.042 33.272%
1.5 3.6 0.245 0.173 0.199% 0.229% 7.549 59.379%
1.5 1.8 0.298 0.237 0.222% 0.235% 8.566 60.101%
1.5 0.4 0.309 0.286 0.237% 0.229% 20.069 37.884%
0.9 3.6 0.481 0.398 0.166% 0.172% 10.118 64.993%
0.9 1.8 0.497 0.407 0.191% 0.290% 11.889 64.724%
0.9 0.4 0.473 0.389 0.162% 0.177% 20.488 48.144%

AS 08.11.1997 4% of vertex cover monitored

ττττ = 1

ββββ µµµµ average td σ σ σ σ td average % I(td) σσσσ % I(td) te % S(te )

1.8 3.6 0.271 0.235 0.167% 0.190% 7.322 61.502%
1.8 1.8 0.225 0.179 0.170% 0.207% 7.593 59.835%
1.8 0.4 0.182 0.232 0.188% 0.244% 19.534 40.856%
1.5 3.6 0.321 0.296 0.154% 0.174% 8.562 63.481%
1.5 1.8 0.207 0.232 0.120% 0.198% 8.120 67.685%
1.5 0.4 0.265 0.197 0.192% 0.213% 20.477 43.207%
0.9 3.6 0.507 0.419 0.149% 0.177% 11.444 68.450%
0.9 1.8 0.595 0.606 0.188% 0.174% 15.550 57.307%
0.9 0.4 0.558 0.419 0.167% 0.197% 20.062 55.799%

AS 08.11.1997 8% of vertex cover monitored

(a)

2. With the decrease of µ, the fraction of susceptible nodes S (te) at the end of the

propagation (when all infectious nodes are traced) decreases.

3. DDBH algorithm could detect the worm when less than 4% of nodes are infected.

Moreover, the experimental analysis showed that by integrating contact-tracing

within the DDBH architecture more than 40% of the susceptible nodes can be pro-

tected.
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ττττ = 3

ββββ µµµµ average td σ σ σ σ td average % I(td) σσσσ % I(td) te % S(te )

1.8 3.6 0.434 0.337 0.696% 0.469% 8.627 50.960%
1.8 1.8 0.464 0.355 0.813% 0.578% 7.741 53.877%
1.8 0.4 0.478 0.348 0.635% 0.438% 20.270 37.375%
1.5 3.6 0.464 0.271 0.778% 0.459% 9.937 47.914%
1.5 1.8 0.521 0.356 0.626% 0.436% 9.728 54.259%
1.5 0.4 0.542 0.412 0.657% 0.488% 21.204 39.752%
0.9 3.6 1.137 1.232 0.677% 0.468% 15.569 47.330%
0.9 1.8 0.774 0.754 0.673% 0.421% 17.018 51.922%
0.9 0.4 0.879 0.602 0.704% 0.477% 20.989 47.132%

AS 08.11.1997 4% of vertex cover monitored

ττττ = 3

ββββ µµµµ average td σ σ σ σ td average % I(td) σσσσ % I(td) te % S(te )

1.8 3.6 0.534 0.450 0.654% 0.392% 9.614 53.167%
1.8 1.8 0.398 0.259 0.647% 0.335% 8.696 56.175%
1.8 0.4 0.539 0.381 0.647% 0.380% 21.263 40.919%
1.5 3.6 0.572 0.388 0.582% 0.389% 10.396 50.319%
1.5 1.8 0.534 0.566 0.602% 0.395% 10.836 56.783%
1.5 0.4 0.580 0.436 0.625% 0.416% 21.041 44.076%
0.9 3.6 0.890 0.671 0.632% 0.434% 16.991 49.492%
0.9 1.8 0.808 0.750 0.574% 0.330% 18.434 53.162%
0.9 0.4 0.929 0.826 0.540% 0.333% 21.935 51.374%

AS 08.11.1997 8% of vertex cover monitored

(b)

7.6 Summary

A prerequisite for a defense system is its ability to identify the presence of the worm

on the network. First, we describe the existing worm detection mechanism, and point

out their advantages and disadvantages. As obtaining attack-free traffic data is almost

impossible and a large block of unused IP addresses does not give a clear picture for the

global propagation of the worm, here we designed a distributed detection architecture
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called Detection via Distributed Blackholes (DDBH ). Our novel detection mechanism

could be implemented via virtual honeypots or honeynets. Finally, a novel control

strategy called contact-tracing is incorporated in the DDBH. Simulation results show

that the worm can be detected with virtual honeypots on only 3% of the nodes.

Moreover, the worm is detected when less than 4% of the nodes are infected. Contact-

tracing integrated in the DDBH can protected more than 40% of the susceptible

nodes.
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ττττ = 6

ββββ µµµµ average td σ σ σ σ td average % I(td) σσσσ % I(td) te % S(te )

1.8 3.6 0.476 0.318 1.554% 0.716% 8.997 51.788%
1.8 1.8 0.465 0.344 1.406% 0.693% 8.029 55.340%
1.8 0.4 0.428 0.361 1.407% 0.632% 20.064 39.015%
1.5 3.6 0.541 0.424 1.295% 0.675% 10.653 49.763%
1.5 1.8 0.648 0.470 1.455% 0.704% 10.144 55.389%
1.5 0.4 0.518 0.376 1.555% 0.725% 20.762 43.222%
0.9 3.6 0.960 0.674 1.321% 0.683% 16.405 47.955%
0.9 1.8 1.125 0.828 1.378% 0.725% 18.030 50.180%
0.9 0.4 1.094 0.778 1.373% 0.608% 22.049 50.519%

AS 08.11.1997 4% of vertex cover monitored

ττττ = 6

ββββ µµµµ average td σ σ σ σ td average % I(td) σσσσ % I(td) te % S(te )

1.8 3.6 0.611 0.437 1.210% 0.617% 9.220 52.807%
1.8 1.8 0.416 0.283 1.274% 0.586% 8.964 57.960%
1.8 0.4 0.473 0.309 1.244% 0.513% 20.361 42.479%
1.5 3.6 0.586 0.391 1.115% 0.512% 11.007 52.076%
1.5 1.8 0.480 0.308 1.073% 0.468% 11.696 57.751%
1.5 0.4 0.546 0.429 1.390% 0.661% 20.243 45.499%
0.9 3.6 0.802 0.517 1.292% 0.511% 18.371 50.018%
0.9 1.8 1.048 1.023 1.171% 0.493% 19.820 53.526%
0.9 0.4 1.073 0.776 1.256% 0.611% 21.627 53.546%

AS 08.11.1997 8% of vertex cover monitored

(c)

Figure 7.5: Statistical analysis of contact-tracing integrated with DDBH on Macro-
scopic Internet graph from 08.11.1997, (a) τ = 1, (b) τ = 3, (c) τ = 6
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ττττ = 3

ββββ µµµµ average td σ σ σ σ td average % I(td) σσσσ % I(td) te % S(te )

1.8 3.6 0.203 0.150 0.367% 0.284% 8.275 53.807%
1.8 1.8 0.220 0.178 0.367% 0.256% 7.936 57.920%
1.8 0.4 0.204 0.164 0.364% 0.229% 22.548 39.575%
1.5 3.6 0.287 0.268 0.417% 0.299% 9.123 55.578%
1.5 1.8 0.228 0.211 0.396% 0.222% 10.448 56.610%
1.5 0.4 0.185 0.163 0.475% 0.283% 23.441 42.832%
0.9 3.6 0.342 0.303 0.417% 0.271% 15.240 45.035%
0.9 1.8 0.380 0.292 0.411% 0.272% 16.872 52.318%
0.9 0.4 0.352 0.265 0.422% 0.246% 23.334 50.498%

AS 02.07.2000 4% of vertex cover monitored

(a)

ττττ = 6

ββββ µµµµ average td σ σ σ σ td average % I(td) σσσσ % I(td) te % S(te )

1.8 3.6 0.224 0.211 0.783% 0.350% 8.759 52.572%
1.8 1.8 0.189 0.125 0.829% 0.365% 8.726 58.369%
1.8 0.4 0.220 0.191 0.765% 0.347% 23.368 41.434%
1.5 3.6 0.230 0.172 0.796% 0.321% 9.786 50.130%
1.5 1.8 0.241 0.191 0.780% 0.410% 10.697 57.497%
1.5 0.4 0.229 0.207 0.752% 0.340% 23.816 44.956%
0.9 3.6 0.368 0.273 0.875% 0.366% 16.346 45.323%
0.9 1.8 0.380 0.285 0.782% 0.355% 17.837 52.755%
0.9 0.4 0.479 0.388 0.801% 0.366% 23.436 52.144%

AS 02.07.2000 4% of vertex cover monitored

(b)

Figure 7.6: Statistical analysis of contact-tracing integrated with DDBH on Macro-
scopic Internet graph from 02.07.2000, (a) τ = 3, (b) τ = 6

203



LIST OF REFERENCES

[AB02] R. Albert and A. Barabasi. “Statistical Mechanics of Complex Networks.”
Reviews of Modern Physics, 74:47–97, 2002.

[ACL00] W. Aiello, F. Chung, and L. Lu. “A Random Graph Model of Massive
Graphs.” In Proceedings of the 32nd ACM Symposium on Theory of Com-
puting, pp. 171–180, 2000.

[AF84] M. Aigner and M. Fromme. “A Game of Cops and Robbers.” Discrete
Applied Mathematics, 8:1–12, 1984.

[AJB99] R. Albert, H. Jeong, and A. L. Barabasi. “Diameter of the World Wide
Web.” Nature, 401(130-131), 1999.

[AKL79] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovsz, and C. Rackoff. “Ran-
dom Walks, Universal Traversal Sequences, and the Complexity of Maze
Problems.” In Proceedings of the IEEE Symposium on Foundation of
Computer Science, pp. 218–223, 1979.

[AM92] R. M. Anderson and R. M. May. Infectious Diseases in Humans. Oxford
University Press, 1992.

[AM03] W. Allen and G. Marin. “Detecting New Denial–of–Service Attacks With-
out a Traffic Template.” In Proceedings of the IEEE/IPSJ International
Symposium on Applications and the Internet (SAINT), 2003.

[And86] T. Andreae. “On a Pursuit Game Played on Graphs for which Minor is
Excluded.” Journal of Combinatorial Theory Series B, 41:37–47, 1986.

[ARS02] M. Adler, H. Racke, N. Sivadasan, C. Sohler, and B. Vocking. “Random-
ized Pursuit–Evasion in Graphs.” Lecture Notes in Computer Science,
2380:901–912, 2002.

[Att00] A. Attoui. Real–Time and Multi–Agent Systems. Springer–Verlag, 2000.

[BA99] A. Barabasi and R. Albert. “Emergence of Scaling in Random Networks.”
Science, 286:509–512, 1999.

204



[Bau02] C. T. Bauch. “A Versatile ODE Approximation to a Network Model for
the Spread of Sexually Transmitted Diseases.” Journal of Mathematical
Biology, 45(375-395), 2002.

[BB03] V. H. Berk and G. Bakos. “Designing a Framework for Active Worm
Detection on Global Networks.” In Proceedings of the IEEE International
Workshop on Information Assurance, 2003.

[BGB02] V. H. Berk, R. S. Gray, and G. Bakos. “Using Sensor Networks and
Data Fusion for Early Detection of Active Worms.” In Proceedings of the
SPIE conference on Sensors, and Command, Control, Communications
and Intelligence, 2002.

[BKM00] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener. “Graph Structure in the Web.” Computer
Networks, 33:309–315, 2000.

[BO98] T. Basar and G.J. Olsder. Dynamic Non–cooperative Game Theory.
SIAM, 1998.

[BO04] P.G. Buckley and D. Osthus. “Popularity based Random Graph Model
Leading to a Scale–free Degree Sequence.” Discrete Mathematics, 282:53–
68, 2004.

[Bol85] B. Bollobas. Random Graphs. Academic Press Inc., 1985.

[Bol03] B. Bollobas. “Mathematical Results on Scale–free Graphs.” preprint,
2003.

[BPV03] M. Boguna, R. Pastor-Satorras, and A. Vespignani. Lecture Notes in
Physics, volume 625, chapter Epidemic Spreading in Complex Networks
with Degree Correlations, pp. 127–147. 2003.

[BR00] D. Bruschi and E. Rosti. “Disarming Offense to Facilitate Defense.” In
Proceedings of the New Security Paradigms Workshop, pp. 69–75, 2000.

[BR04] B. Bollobas and O. M. Riordan. “The Diameter of a Scale–free Random
Graph.” Combinatorica, 24(1):5–34, 2004.

[Bra97] J. Bradshaw. Software Agents. The MIT Press, 1997.

[BS91] D. Bienstock and P. Seymour. “Monotonicity in Graph Searching.” Jour-
nal of Algorithms, 12:239–245, 1991.

205



[BW00] A. Barrat and M. Weigt. “On the Properties of Small–World Network
Models.” European Physical Journal B, 13:547–560, 2000.

[CBM04] E. Cooke, M. Bailey, Z. Morley Mao, and D. McPherson. “Toward Under-
standing Distributed Blackhole Placement.” In Proceedings of the ACM
Workshop on Rapid Malcode, pp. 54–54, 2004.

[Cen01a] CERT Coordination Center. “Advisory CA-2001-19. Available at:
www.cert.org/advisories/CA-2001-19.html.” 2001.

[Cen01b] CERT Coordination Center. “Advisory CA-2001-26. Available at:
www.cert.org/advisories/CA-2001-26.html.” 2001.

[Cen03] CERT Coordination Center. “Advisory CA-2001-19. Available at:
www.cert.org/advisories/CA-2003-20.html.” 2003.

[CF03] C. Cooper and A. Frieze. “A General Model of Web Graphs.” Random
Structures and Algorithms, 22(3):311–335, 2003.

[CGK03] Z. Chen, L. Gao, and K. Kwiat. “Modeling the Spread of Active Worms.”
In Proceedings of the IEEE INFOCOM, 2003.

[CL01] F. Chung and L. Lu. “The Diameter of Random Sparse Graphs.” Ad-
vances in Applied Mathematics, 26, 2001.

[CLV03] F. Chung, L. Lu, and V. Vu. “Spectra of Random Graphs with Given
Expected Degrees.” In Proceedings of the National Academy of Sciences
of the United States of America, volume 100, pp. 6313–6318, 2003.

[COP01] J. Cowie, A. T. Ogielski, B. J. Premore, and Y. Yuan. “Global Rout-
ing Instabilities Triggered by Code Red II and Nimda. Available at:
www.renesys.com.” 2001.

[CR04] S. Chen and S. Ranka. “An Internet–worm Early Warning System.” In
Proceedings of the IEEE GLOBECOM 2004 - Security and Network Man-
agement, volume 4, pp. 2261–2265, 2004.

[CRM00] J. Cabrera, B. Ravichandran, and R. Mehra. “Statistical Traffic Modeling
for Network Intrusion Detection.” In Proceedings of the 8th IEEE Sympo-
sium on Modeling, Analysis, and Simulation of Computers and Telecom-
munications, 2000.

[CT04] S. Chen and Y. Tang. “Slowing Down Internet Worms.” In Proceedings
of the 24th International Conference on Distributed Computing Systems
(ICDCS), pp. 312–319, 2004.

206



[DF02] S. N. Dorogovtsev and J. F. F.Mendes. “Evolution on Networks.” Ad-
vances in Physics, 51, 2002.

[DFS00] S. N. Dorogovtsev, J. F. F.Mendes, and A. N. Samukhin. “Structure of
Growing Networks with Preferential Linking.” Physical Review Letters,
85, 2000.

[DKM02] S. Dill, R. Kumar, K. S. Mccurley, S. Rajagopalan, D. Sivakumar, and
A. Tomkins. “Self–similarity in the Web.” ACM Transactions on Internet
Technology, 2(3):205–223, 2002.

[DKT97] N. Dendris, L. Kirousis, and D. Thilikos. “Fugitive–search Games on
Graphs and Related Parameters.” Theoretical Computer Science, pp. 233–
254, 1997.

[EK02a] K. T. D. Earnes and M. J. Keeling. “Modeling Dynamic and Network
Heterogeneities in the Spread of Sexually Transmitted Diseases.” In Pro-
ceedings of the National Academy of Sciences, volume 99, pp. 13330–13335,
2002.

[EK02b] V. M. Eguiluz and K. Klemm. “Epidemic Threshold in Structured Scale–
free Networks.” Physics Review Letters, 89(108701), 2002.

[EK03] K. T. D. Eames and M. J. Keeling. “Contact Tracing and Disease Con-
trol.” In Proceedings of the Royal Society of London B, volume 270, 2003.

[ER59] P. Erdos and A. Renyi. “On Random Graphs I.” Publicationes Mathe-
maticae Debrecen, 5:290–297, 1959.

[FFF99] M. Faloutsos, P. Faloutsos, and C. Faloutsos. “On Power–Law Relation-
ships of the Internet Topology.” In Proceedings of SIGCOMM, 1999.

[Fra87] P. Frankl. “Cops and Robbers in Graphs with Large Girth and Cayley
Graphs.” Discrete Applied Mathematics, 17:301–305, 1987.

[Gil56] N. Gilbert. “Enumeration of Labeled Graphs.” Canadian Journal of
Mathematics, 8:405–411, 1956.

[GJ99] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H.
Freeman, 1999.

[GLL99] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Motwani.
“A Visibility–based Pursuit–evasion problem.” International Journal of
Computational Geometry and Applications, 9(4/5):471, 1999.

207



[GR95] A. S. Goldstein and E. M. Reingold. “The Complexity of Pursuit–evasion
on a Graph.” Theoretical Computer Science, 143:93–112, 1995.

[GSQ05] G. Gu, M. Sharif, X. Qin, D. Dragon, W. Lee, and G. Riley. “Worm Detec-
tion, Early Warning and Response, Based on Local Victim Infromation.”
preprint, 2005.

[GT00] R. Govindan and H. Tangmunarunkit. “Heuristics for Internet Map Dis-
covery.” In Proceedings of the IEEE INFOCOM, 2000.

[Het00] H. W. Hethcote. “Mathematics of Infectious Diseases.” SIAM Review,
42(4):599–653, 2000.

[HM04] G. Hahn and G. MacGillivray. “A Characterization of k–cop–win Graphs
and Digraphs.” preprint, 2004.

[IKK04] V. Isler, S. Kannan, and S. Khanna. “Randomized Pursuit–evasion with
Limited Visibility.” In Proceedings of the 15th Annual ACM-SIAM sym-
posium on Discrete Algorithms, 2004.

[Ins04] Computer Security Institute. “Ninth Annual Computer Crime and Secu-
rity Survey. Available at: i.cmpnet.com.” 2004.

[Kee99] M. J. Keeling. “The Effects of Local Spatial Structure on Epidemiological
Invasions.” In Proceedings of the Royal Society of London B, volume 266,
pp. 859–867, 1999.

[Kep94] J. O. Kephart. Artificial Life III, chapter How Topology Affects Popula-
tion Dynamics. Addison–Wesley, 1994.

[KP86] L. Kirousis and C. Papadimitriou. “Searching and Pebbling.” Theoretical
Computer Science, 47:205–218, 1986.

[KR01] P. L. Krapivsky and S. Redner. “Organization of Growing Random Net-
works.” Physical Review E, 066123, 2001.

[KRD04] K. Kim, S. Radhakrishnan, and S. K. Dhall. “Measurement and Analysis
of Worm Propagation on Internet Network Topology.” In Proceedings of
the IEEE Conference on Computer Communications and Networks, 2004.

[KRR99] R. Kumar, P. Raghavan, S. Rajagopalan, and A.S. Tomkins. “Trawl-
ing the Web for Emerging Cyber–communities.” Computer Networks,
31:1481–1493, 1999.

208



[KRR00] R. Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins, and E. Upfal. “Ran-
dom Graph Models for the Web Graph.” In Proceedings of the 41st FOCS,
pp. 57–65, 2000.

[KW91] J. O. Kephart and S. R. White. “Directed–graph Epidemiological Models
of Computer Viruses.” In Proceedings of the IEEE Symposium on Security
and Privacy, p. 343, 1991.

[LaP93] A. LaPaugh. “Recontamination Does not Help to Search a Graph.” Jour-
nal of the ACM, 40:224–245, 1993.

[LLO03] J. Levine, R. LaBella, H. Owen, D. Contis, and B. Culver. “The Use
of Honeynets to Detect Exploited Systems Across Large Enterprise Net-
works.” In Proceedings of the 2003 IEEE Workshop on Information As-
surance, 2003.

[LN04] M. Liljenstam and D. M. Nicol. “Comparing Passive and Active Worm
Defenses.” In Proceedings of the First International Conference on the
Quantitative Evaluation of Systems (QEST), pp. 18–27, 2004.

[LNB03] M. D. Liljenstam, M. Nicol, V. H. Berk, and R. S. Gray. “Simulating
Realistic Network Worm Traffc for Worm Warning System Design and
Testing.” In Proceedings of the ACM Workshop on Rapid Malcode, 2003.

[LTW94] W. Leland, M. Taqqu, W. Willinger, and D. Wilson. “On the Self–similar
Nature of Ethernet Traffic.” IEEE-ACM Transactions on Networking,
2(1), 1994.

[MHG88] N. Megiddo, S. Hakimi, M. Garey, D. Johnson, and C. Papadimitriou.
“The Complexity of Searching a Graph.” Journal of the ACM, 35:18–44,
1988.

[Mit04] M. Mitzenmacher. “A Brief History of Generative Models for Power Law
and Lognormal Distributions.” Internet Mathematics, 1(2):226–251, 2004.

[MM87] M. Maamoun and H. Meyniel. “On a Game of Policemen and Robber.”
Discrete Applied Mathematics, 17:301–305, 1987.

[Moo03] D. Moore. “Network Telescopes. Available at: www.caida.org.” 2003.

[MP02] M. Mihail and C. Papadimitriou. “On the Eigenvalue Power Law.”
preprint, 2002.

209



[MPS03] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver.
“Inside the Slammer Worm. Available at: www.computer.org/security.”
2003.

[MR95] M. Molloy and B. A. Reed. “A Critical Point for Random Graphs with a
Given Degree Sequence.” Random Structures and Algorithms, 6(2/3):161–
180, 95.

[MSK01] S. McClure, J. Scambray, and G. Kurtz. Hacking Exposed, chapter Scan-
ning. McGraw–Hill, 2001.

[MVS03] D. Moore, G. M. Voelker, C. Shannon, and S. Savage. “Internet Quaran-
tine: Requirements for Containing Self–Propagating Code.” In Proceed-
ings of the IEEE INFOCOM, 2003.

[MZ01] W. Jia M. Li and W. Zhao. “Decision Analysis of Network–based Intrusion
Detection System for Denial–of–Service Attacks.” In Proceedings of the
IEEE Conference on Info-tech and Info-net, 2001.

[Nac99] C. Nachenberg. “Computer Parasitology.” In Proceedings of the 9th In-
ternational Virus Bulletin Conference, pp. 7–26, 1999.

[NAW01] J. Nazario, J. Anderson, R. Wash, and C. Connelly. “The Future of In-
ternet Worms. Available at: www.crimelabs.net.” 2001.

[New89] M. E. J. Newman. “Assortative Mixing in Networks.” Physical Review
Letters, 208701, 89.

[NL04] D. M. Nicol and M. Liljenstam. “Models of Active Worm Defenses.” In
Proccedings of the IPSI Studenica Conference, 2004.

[NN93] S. Neufeld and R. Nowakowski. “A Vertex–to-Vertex Pursuit Game Played
on Disjoint Sets of Edges.” In N. Sauer, editor, Proceedings of the NATO
Advanced Study Institute on Finite and Infinite Combinatorics in Sets and
Logic, pp. 299–312, 1993.

[NN98] S. Neufeld and R. Nowakowski. “A Game of Cops and Robbers Played on
Products of Graphs.” Discrete Mathematics, 186:253–268, 1998.

[NSW02] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. “Random Graph
Models of Social Networks.” In Proceedings of the National Academy of
Science of the United States of America, volume 99, pp. 2566–2572, 2002.

[NW83] R. Nowakowski and P. Winkler. “Vertex to Vertex Pursuit in Graph.”
Discrete Mathematics, 43:235–239, 1983.

210



[Par76] T. Parsons. Theory and Applications of Graphs, chapter Pursuit–evasion
in a Graph, pp. 426–441. Springer, 1976.

[PF95] V. Paxon and S. Floyd. “Wide–area Traffic: The Failure of Poisson Mod-
eling.” IEEE-ACM Transactions on Networking, 3(3), 1995.

[PP03] C. P. Phleeger and S. L. Phleeger. Security in Computing. Prentice Hall,
2003.

[Pro] Oregon RouteView Project. “Available at: www.routeviews.org/.”.

[Pro04] N. Provos. “A Virtual Honeypot Framework.” In Proceedings of the 12th
USENIX Security Symposium, pp. 1–14, 2004.

[PV02] R. Pastor-Satorras and A. Vespignani. Handbook of Graphs and Networks:
From the Genome to the Internet, chapter Epidemics and Immunization
in scale–free Networks, pp. 113–132. Wiley–VCH, 2002.

[PVV01] R. Pastor-Satorras, A. Vazquez, and A. Vespignani. “Dynamical and Cor-
relation Properties of the Internet.” Physical Review Letters, 87(258701),
2001.

[Qui85] A. Quilliot. “A Short Note about Pursuit Game Played on Graph with
a Given Genus.” Journal of Combinatorial Theory Series B, 38:89–92,
1985.

[Ran99] D. A. Rand. Advanced Ecological Theory, Principles and Applications,
chapter Correlation Equations and Pair Approximation for Spatial Ecolo-
gies, pp. 100–142. Blackwell Science, 1999.

[SGJ01] S. Staniford, G. Grim, and R. Jonkman. “Flash Worms: Thirty Seconds to
Infect the Internet. Available at: www.silicondefense.com/flash/.” 2001.

[SH82] J. F. Shoch and J. A. Hupp. “The Worm Programs—Early Experi-
ence with Distributed Computation.” Communications of the ACM,
25(3):172–180, 1982.

[SM01] W. Schleifer and M. Mannle. “Online Error Detection through Observa-
tion of Traffic Self–similarity.” In IEEE Proceedings on Communications,
volume 148, 2001.

[Sol90] A. Solomon. “Epidemiology and Computer Viruses. Available at:
vx.netlux.org.” 1990.

211



[SPW02] S. Staniford, V. Paxson, and N. Weaver. “How to Own the Internet in Your
Spare Time.” In Proceedings of the 11th USENIX Security Symposium,
pp. 149 – 167, 2002.

[ST93] P. Seymour and R. Thomas. “Graph Searching and a Min–Max Theorem
for Tree–width.” Journal of Combinatorial Theory Series B, 58:22–33,
1993.

[ST00] Y. Stamatiou and D. M. Thilikos. Electronic Notes in Discrete Mathe-
matics, volume 3, chapter Monotonicity and Inert Fugitive Search Game.
Elsevier Science Publishers, 2000.

[STA95] P. Spirakis, B. Tampakas, and H. Antonopoulou. “Distributed Protocols
Against Mobile Eavesdroppers.” In Proceedings of the 9th International
Workshop on Distributed Algorithms LNCS, volume 972, pp. 160–167,
1995.

[Sto99] A. Stoimenow. On Enumeration of Chord Diagrams and Asymptotics of
Vassiliev Invariants. PhD thesis, University of Berlin, 1999.

[SZ04] G. Serazzi and S. Zanero. Performance Tools and Applications to Net-
worked Systems, chapter Computer Virus Propagation Models, pp. 26–50.
2004.

[TH03] L. S. Tsimring and R. Huerta. “Modeling of Contact Tracing in Social
Networks.” Physica A, 325:33–39, 2003.

[VCI99] M. de Vivo, E. Carrasco, G. Isern, and G. de Vivo. “A Review of Port
Scanning Techniques.” Operating Systems Review, 29(2):41–48, 1999.

[VVK98] M. de Vivo, G. de Vivo, R. Koeneke, and G. Isern. “Internet Vulnera-
bilities Related to TCP/IP and T/TCP, Internet Security Attacks at the
Basic Level.” Operating Systems Review, 32(2):4–15, 1998.

[WDP03] A. Wagner, T. Dubendorfer, B. Plattner, and R. Hiestand. “Experiences
with Worm Propagation Simulations.” In Proceedings of the 2003 ACM
workshop on Rapid Malcode, pp. 34–41, 2003.

[Wea02] N. Weaver. “Potential Strategies for High Speed Active Worms: A Worst
Case Analysis. Available at: brass.cs.berkeley.edu.” 2002.

[Wil02] M. M. Williamson. “Throttling Viruses: Restricting propagation to de-
feat malicious mobile code.” In Proceedings of the 18th Annual Computer
Security Applications Conference, p. 61, 2002.

212



[WKE00] C. Wang, J. C. Knight, and M. C. Elder. “On Computer Viral Infec-
tion and the Effect of Immunization.” In Proceedings of the 16th Annual
Computer Security Applications Conference, p. 246, 2000.

[WL03] M. M. Williamson and J. Leveille. “An Epidemiological Model of Virus
Spreading and Cleanup.” In Proceedings of the Virus Bulletin Conference,
2003.

[Woo99] M. Wooldridge. Multiagent Systems, chapter Intelligent Agents, pp. 27–
77. The MIT Press, 1999.

[WPS03a] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham.
“Large Scale Malicious Code: A Research Agenda. Available at:
www.cs.berkeley.edu/ nweaver.” 2003.

[WPS03b] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham. “A Taxonomy of
Computer Worms.” In Proceedings of ACM Workshop on Rapid Malcode,
2003.

[WS98] D. J. Watts and S. H. Strogatz. “Collective Dynamics of Small–World
Networks.” Nature, 393:440–442, 1998.

[WVG04] J. Wu, S. Vangala, L. Gao, and K. Kwiat. “An Effective Architecture
and Algorithm for Detecting Worms with Various Scan Techniques.” In
Proceedings of the Network and Distributed System Security Symposium,
2004.

[WW03] Y. Wang and C. Wang. “Modeling the Effects of Timing Parameters
on Virus Propagation.” In Proceedings of the ACM Workshop on Rapid
Malcode, pp. 61–66, 2003.

[WWS04] C. Wong, Chenxi Wang, Dawn Song, Stan Bielski, and Gregory R. Ganger.
“Dynamic Quarantine of Internet Worms.” In Proceedings of the Interna-
tional Conference on Dependable Systems and Networks DSN-2004, 2004.

[YJB02] S.-H. Yook, H. Jeong, and A. L. Barabasi. “Modeling the Internet’s Large–
scale Topology.” In Proceedings of the National Academy of Sciences of
the United States of America, volume 99, 2002.

[ZGT02] C. C. Zou, W. Gong, and D. Towsley. “Code Red Worm Propagation
Modeling and Analysis.” In Proceedings of the 9th ACM conference on
Computer and communications security, pp. 138–147, 2002.

213



[ZGT03a] C. C. Zou, W. Gong, D. Towsley, and D. Gao. “Monitoring and Early De-
tection for Internet Worms.” In Proceedings of the 10th ACM Conference
on Computer and Communication Security, 2003.

[ZGT03b] C. C. Zou, W. Gong, D. Towsley, and D. Gao. “Worm Propagation Mod-
eling and Analysis under Dynamic Quarantine Defenses.” In Proceedings
of the ACM CCS Workshop on Rapid Malcode, 2003.

214


	Graph-theoretic Approach To Modeling Propagation And Control Of Network Worms
	STARS Citation

	LIST OF FIGURES
	CHAPTER 1 INTRODUCTION
	1.1 Problem Statement

	CHAPTER 2 MODELS OF REAL-WORLD NETWORKS
	2.1 Introduction
	2.2 Internet Graphs
	2.3 Webgraph
	2.4 The Salient Characteristics
	2.4.1 Classical Random Graphs
	2.4.2 Watts-Strogatz ``Small Worlds''
	2.4.3 Scale-free Random Graph Processes

	2.5 Degree-correlation of a Scale-free Random Graph
	2.5.1 Joint Probability Distribution

	2.6 Summary

	CHAPTER 3 WORM PROPAGATION STRATEGIES
	3.1 Introduction
	3.2 Worms as Multi-agent Systems
	3.3 Classification of Propagation Strategies
	3.4 Examples of Worms
	3.4.1 Variants of Code Red
	3.4.2 Nimda
	3.4.3 Slammer
	3.4.4 Blaster

	3.5 Summary

	CHAPTER 4 GRAPH-THEORETIC MODEL OF WORM PROPAGATION AND QUARANTINING
	4.1 Introduction
	4.2 Classification Scheme for Cops-and-Robbers Games
	4.2.1 Games with Complete Information
	4.2.2 Games with Complete Information about Cops' Positions
	4.2.3 Games with no Information about Players' Positions and Strategies
	4.2.4 Games with Complete Information about Robbers' Positions and Strategies
	4.2.5 Generalization of the Classical Cops-and-Robbers Game

	4.3 Cops-and-Robbers Game for Quarantining Network Worms
	4.4 Summary

	CHAPTER 5 MODEL OF WORM PROPAGATION ON SCALE-FREE GRAPHS
	5.1 Introduction
	5.2 Existing Models of Propagation
	5.3 Pair-approximation Model on Scale-free Networks
	5.3.1 Calculating R0  for the SIR Model on a Scale-free Random Graph

	5.4 Pair-approximation Model vs. Individual-based Simulation 
	5.5 Summary

	CHAPTER 6 CONTROL STRATEGIES ON SCALE-FREE GRAPHS
	6.1 Introduction
	6.2 Determinants of Propagation and Control
	6.3 Classification of Control Strategies
	6.3.1 Models of Static Control Strategies
	6.3.2 Models of Dynamic Control Strategies

	6.4 Novel Near-optimal Dynamic Control Strategies
	6.4.1 Combination of Static and Dynamic Immunization
	6.4.2 Reactive Dynamic Immunization
	6.4.3 Invariable Dynamic Immunization
	6.4.4 Optimal Soft-quarantining
	6.4.5 Predictive Dynamic Traffic-blocking

	6.5 Analysis of the Proposed Control Strategies
	6.6 Summary

	CHAPTER 7 DETECTION VIA DISTRIBUTED BLACKHOLES
	7.1 Introduction
	7.2 Existing Detection Techniques
	7.2.1 Loss of Self--similarity of Network Traffic
	7.2.2 Abnormal Behavior at the Source of Attack
	7.2.3 Unused Block of IP Addresses

	7.3 Detection via Distributed Blackholes
	7.4 Model of DDBH with Contact-tracing
	7.5 Analysis of DDBH with Contact-Tracing
	7.6 Summary

	LIST OF REFERENCES

