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ABSTRACT

This work can be roughly divided into two parts. Initially, it may be considered

a continuation of the very interesting research on the topic of Lattice-Valued Convergence

Spaces given by Jäger [2001, 2005]. The alternate axioms presented here seem to lead to

theorems having proofs more closely related to standard arguments used in Convergence

Space theory when the Lattice is L = f0; 1g:Various Subcategories are investigated. One

such subconstruct is shown to be isomorphic to the category of Lattice Valued Fuzzy Con-

vergence Spaces de�ned and studied by Jäger [2001]. Our principal category is shown to be a

topological universe and contains a subconstruct isomorphic to the category of probabilistic

convergence spaces discussed in Kent and Richardson [1996] when L = [0; 1]: Fundamen-

tal work in lattice-valued convergence from the more general perspective of monads can be

found in Gähler [1995]. Secondly, diagonal axioms are de�ned in the category whose objects

consist of all the lattice valued convergence spaces. When the latter lattice is linearly or-

dered, a diagonal condition is given which characterizes those objects in the category that

are determined by probabilistic convergence spaces which are topological.

Certain background information regarding �lters, convergence spaces, and diagonal

axioms with its dual are given in Chapter 1. Chapter 2 describes Probabilistic Conver-

gence and associated Diagonal axioms. Chapter 3 de�nes Jäger convergence and proves

that Jäger�s construct is isomorphic to a bire�ective subconstruct of SL-CS. Furthermore,

connections between the diagonal axioms discussed and those given by Gähler are explored.

In Chapter 4, further categorical properties of SL-CS are discussed and in particular, it

is shown that SL-CS is topological, cartesian closed, and extensional. Chapter 5 explores
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connections between diagonal axioms for objects in the sub construct �(PCS) and SL-CS.

Finally, recommendations for further research are provided.
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CHAPTER 1.
FILTERS, CONVERGENCE SPACES AND DIAGONAL AXIOMS WITH

ITS DUAL

This chapter contains some background information which led to the convergence

space study in this dissertation. Section 1.1 provides some preliminaries on �lters. In Section

1.2, the concept of fuzzy sets and a brief background on the historical development of fuzzy

mathematics is provided. Sections 1.3 and 1.4 provide backgrounds on fuzzy �lters and

some preliminary information on diagonal conditions. A brief introduction to probabilistic

convergence is provided in Section 1.5.

1.1 Filters

The notion of a �lter of subsets introduced by Cartan [1937] has been used as a

valuable tool in the development of topology and its applications. Filters can be viewed as

a generalization of sequences. Concepts such as points of closure and compactness that are

extremely important in general topology theory cannot be described using sequences, but

can be described using general �lter theory. Convergence structures are described in terms

of �lter convergence.

De�nition 1 Let X be a nonempty set and let 2X represent the power set of X: A subcol-

lection F of 2X is said to be a �lter provided:

(1) F 6= ? and ? =2 F

(2) A; B 2 F implies A \ B 2 F

(3) A 2 F and B � A imply B 2 F:

The collection of all �lters on a set X is denoted by F(X):
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1.2 Fuzzy Sets

When mathematical analysis is utilized to describe real life physical situations where

uncertainty may exist, non-deterministic models or approaches are appropriate. Such is the

case with classical probability theory where random variables and their associated probability

distribution functions are used to describe inherent uncertainty present in some determin-

istic reference frame. Typically, as will be indicated later through careful exposition, the

reference frame utilized in probability theory is modeled as a metric space, with some known

deterministic metric. Many mathematicians have suggested more satisfactory results could

have been obtained if uncertainties were built into the geometric reference frame rather than

keeping the reference frame so rigid or non-probabilistic. Probabilistic metric spaces sug-

gested by Menger (1942) and probabilistic convergence spaces investigated by Richardson

and Kent (1996) provided more generalizable and relevant examples.

In 1965, L.A. Zadeh developed an approach where uncertainty could be built into

the underlying reference frame geometry. The rigid reference frame geometry is replaced

by mathematical structures that incorporate �fuzzy sets�. Fuzzy sets permit the addressing

of situations where impreciseness might not be probabilistic, meaning it is not due to some

error in measurement. Fuzzy set theory identi�es uncertainty as a function of classi�cation,

and not error in measurement. Linguistics has utilized many elements of fuzzy theoretic

concepts. In particular, our lexicon makes distinctions among words and concepts like large,

medium, small, petite, etc. di¢ cult to quantify. These ideas are subjective. Fuzzy set theory

allows for mathematical structures which directly model this type of uncertainty.
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1.3 Fuzzy Filters and Convergence

Lowen [1979] de�ned the concept of a pre�lter as a subset of [0; 1]X in order to study

the theory of fuzzy topological spaces. Later, Lowen et al. [1991] used pre�lters to de�ne the

notion of an L-fuzzy convergence space, when L = [0; 1], and showed that the category of all

such objects has several desirable properties, such as being Cartesian closed, not possessed by

the category of all fuzzy topological spaces. Höhle [1997] introduced the idea of a (strati�ed)

L-�lter as a descriptive map from LX into L rather than a subset of LX in the investigation

of MV-algebras. Strati�ed L-�lters are shown by Höhle and Sostak [1999] to be a fruitful

tool employed in the development of general lattice-valued topological spaces. Some basic

concepts are listed below.

Unless mentioned otherwise, it is assumed throughout this work that L = (L;^;_)

is a �xed underlying complete lattice with least (largest) element 0(1) which obeys the dis-

tributive law a ^ (_bb2B) = _b2B(a ^ b) for each a 2 L and B � L, respectively. The above

conditions are sometimes referred to in the literature as a complete Heyting algebra.

Moreover, for each nonempty subset X, LX denotes the complete lattice of all maps from X

into L equipped with the product order. Each element of LX is called a fuzzy subset of X.

In particular, given � 2 L and A � X, de�ne the fuzzy subset

�1A(x) :=

8>>><>>>:
�; if x 2 A

0; if x =2 A

; x 2 X:

De�nition 2 Given a nonempty set X, a map F :LX ! L is called a strati�ed L-�lter

provided for each � 2 L and a; b 2 LX :
3



(a) F(1�) = 0;F(�1X) ��

(b) F(a) � F(b) whenever a � b

(c) F(a) ^ F(b) � F(a ^ b).

Note that (b) implies equality in (c). Let FSL(X) denote the set of all strati�ed

L-�lters and F(X) the set of all Cartan-�lters de�ned on X. When L = f0; 1g, � :

FSL(X)! F(X) de�ned by �(F) := fA � X : F(1A) = 1g is a bijection. For a general L,

de�ne F � G by F(a) � G(a); (^j2JFj)(a) := ^j2JFj(a), [x](a) := a(x) and F0(a) :=^fa(y) :

y 2 Xg, for each x 2 X and a 2 LX . Then (FSL(X); � ) is a poset having least element

F0. Note that when L = f0; 1g, �([x]) = _x and �(F0) = _X, where _A denotes the �lter of all

oversets of A.

Let f : X ! Y be a map, a 2 LX and b 2 LY . The image of a under f is de�ned by

f!(a)(y) := _fa(x) : f(x) = yg provided y belongs to the range of f ; otherwise, f!(a)(y) =

0. Conversely, f (b) := b � f is called the inverse image of b under f . Moreover, given

F 2 FSL(X) and G 2 FSL(Y ), the image of F under f is de�ned as f!F(b) := F(f (b))and

the inverse image of G under f is given by f G(a) := _ fG(b) : f (b) � ag whenever

the latter is a strati�ed L-�lter, for each a 2 LX and b 2 LY . Let  2 F(X) and denote

�F := fA � X : F(1A) = 1g (1.1)

F (a) :=

8>>><>>>:
1; if � a 2  

0; otherwise

; where

� a := fx 2 X : a(x) 6= 0g; a 2 LX .
4



Lemma 3 Given the notations de�ned in (1.1), assume that f : X ! Y is a map,

F 2 FSL(X), G 2 GSL(Y ) and  2 F(X). Then

(a) f!F 2 FSL(Y )

(b) f G 2 FSL(X) i¤G(b) = 0 whenever f (b) = 1�

(c) �F 2 F(X)

(d) �[x] = _x; x 2 X

(e) �F0 =
_X

(f) F 2 FSL(X) provided L is linearly ordered

(g) �F =  whenever L is linearly ordered

(h) f!(�F) = �f!F.

Veri�cation of Lemma 3(b) is given in Proposition 3.5 of Jäger [2001] and the other

parts follow easily from the de�nitions.

1.4 Convergence Spaces and Diagonal Conditions

The aim of the theory of convergence spaces is to generalize traditional concepts

in topology while including convergence structures without restrictions imposed by local

coherence conditions contained in topologies. This analytic perspective is preferable to a

geometric one dependent on intuitive notions like open sets and accumulation points. It

should be noted that these concepts are consistent with metric spaces but meaningless in
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more general spaces. Formal treatments of �lters and convergence date back to Frechet whose

arguments were based on countable sequences, thereby limiting its usefulness. Subsequent

work replaced sequences with nets and research by Bourbaki showed that �lters provide a

better substitution for nets. Contemporary convergence space theory evolved from work by

Choquet [1948], Kowalsky [1954], and Fischer [1959].

Metric space theory has been useful in many applications, but the category MET

of metric spaces is not su¢ ciently inclusive enough to permit important properties. As an

example, pointwise convergence in a function space induced by a topology is not metrizable.

In fact, in TOP�the category of topological spaces�useful convergences like convergence

almost everywhere and continuous convergence on a function space are not well de�ned. It is

true, however, convergence structures do provide useful mechanisms to de�ne both concepts.

MET is not a topological category since it fails in general to have initial structures (or

uncountably in�nite products). Furthermore, MET and TOP are neither extensional nor

cartesian closed. Additionally, quotient maps are not productive in these categories.

Convergence space theory has proved useful in a variety of mathematical �elds in-

cluding functional analysis and algebraic topology. As an example, some areas of functional

analysis depend on relationships between a complete regular topological space X and the

R-algebra Cco(X) of all continuous real-valued functions de�ned on X equipped with the

topology of uniform convergence on compact subsets. A vast majority of these investiga-

tions are hampered by the fact that the evaluation map e : Cco(X) x X ! R de�ned as

follows e(f; x) = f(x) is not, in general, continuous and furthermore, Cco(X) may not be

complete. There is a coarsest convergence structure on C(X) that overcomes these prob-

6



lems. Papers by Cook and Fischer [1967] and Binz [1975] have addressed issues in these

areas. Work by Frolicher and Bucher [1966] and Frolicher and Kriegl [1985] have researched

areas where convergence spaces play signi�cant roles.

De�nition 4 A convergence structure on a set is a rule which assigns each �lter to a set

containing the points to which the �lter converges. More precisely, let X be a set, F(X)

denote the set of all �lters on X with a function q : F(X) ! 2X subject to the following

axioms:

(1) x 2 q( �x) for each x 2 X, where �x denotes the ultra�lter containing fxg ;

(2) F � G (that is, F � G) implies q(F) � q(G);

(3) x 2 q(F) implies x 2 q(F\ �x);

(4) q(F) \ q(F) � q(F \G) for all F, G 2 F(X);

(5) For each F 2 F(X), x 2 q(F) if x 2 q(G), for every ultra�lter G � F;

(6) x 2 q(Vq(x)), for all x 2 X;

where Vq(x) := \fF : x 2 q(F)g = \fF : F is an ultra�lter and x 2 q(F)g ;

Then q is said to be a

convergence structure if it satis�es (1) and (2);

Kent-convergence structure if it satis�es (1), (2), and (3);

limit structure if it satis�es (1), (2), and (4);

pseudo-topology if it satis�es (1), (2), and (5);

pretopology if it satis�es (1), (2), and (6).

Note that (6) implies (5) implies (4) implies (3), hence pretopology =)pseudo-

topology =)limit structure =) Kent-convergence structure =)convergence structure. The
7



pair (X; q) is called a convergence (respectively, Kent-convergence, limit, pseudo-

topology, pretopological) space, respectively. A �lter F is said to q � converge to x

when x 2 q(F); and is denoted by F q! x:The pair (X; q) is called a convergence space.

A map f : (X; q) ! (Y; p) between two convergence spaces is called continuous whenever

F
q!x implies that f!F q!f(x), where f!F denotes the �lter whose base is ff(F ) : F 2 Fg.

Let CON denote the category whose objects consist of all the convergence spaces and whose

morphisms are all the continuous maps between objects.

1.5 Probabilistic Convergence

Probabilistic convergence spaces were introduced by Florescu [1989] as an extension

of the notion of a probabilistic metric space which arose from the work of Menger [1942].

Replacing the axioms involving nets with the more compatible �lter theory gives the following

de�nition:

De�nition 5 Let L = [0; 1], F;G 2 F(X) and �; � 2 L. The pair (X;Q), where Q =

(Q�)�2L, is called a probabilistic convergence space provided:

(a) _x�
Q�! x and _X

Q0! x for each x 2 X

(b) G � F Q�! x implies G
Q�! x

(c) F
Q�! x implies F

Q�! x whenever � � �.

The probability of F converging to x being at least � is the interpretation given by

F
Q�! x. A map f : (X;Q)! (Y; P ) is said to be continuous whenever F

Q�! x implies that

8



f!F
P�! f(x) for each F 2 F(X), x 2 X and � 2 L. Let PCS denote the construct whose

objects consist of all the probabilistic convergence spaces and whose morphisms are all the

continuous maps between objects. Replacing F(X) in De�nition 5 with FSL(X) gives the

following, where L is a general lattice. Properties of the category PCS whenever L = [0; 1]

can be found in Brock and Kent [1997(a) , 1997(b)] and Kent and Richardson [1996].

9



CHAPTER 2.
STRATIFIED L-CONVERGENCE AND ASSOCIATED DIAGONAL

AXIOMS

This chapter provides descriptions of strati�ed convergence structures and related

diagonal axioms. In Section 2.1, strati�ed lattice convergence is de�ned and an important

theorem is proved showing that probability convergence spaces (PCS) are fully embedded

in the category of strati�ed lattice convergence spaces (SL-CS). A Choquet modi�cation

to SL-CS is made, and this author shows that this subcategory is bicore�ective in SL-CS

consistent with the de�nition provided in Preuss [2002]. Section 2.2 provides analysis of

the category SL-CS, and in particular the Kowalsky compression operator is de�ned. This

is done in an e¤ort to provide elucidation on SL-CS as the author proves several original

theorems (Theorems 7, 8, 10, 12, and 13), as well as Lemma 11. Among original results are a

proof that a subconstruct of SL-CS is topological and bire�ective. Additionally, this author

shows that the subcategory of SL-CS that satis�es version F2 of Kowalsky�s compression

operator is also pretopological. Results are extended and referred to in subsequent chapters

in this work.

2.1 Strati�ed L-Convergence

De�nition 6 Assume that F;G 2 FSL(X) and �; � 2 L. The pair (X; q), where q =

(q�)�2L, is called a strati�ed L-convergence space whenever the following conditions are

satis�ed:

(a) [x]
q�! x, F0

q0! x for each x 2 X

(b) G � F q�!x implies G q�!x
10



(c) F
q�!x implies F q�!x whenever � � �.

Amap f : (X; q)! (Y; p) is called continuous provided F
q�!x implies that f!Fp�!f(x),

for each F 2 FSL(X), x 2 X and � 2 L. Denote by SL-CS the construct whose objects

consist of all the strati�ed L-convergence spaces and whose morphisms are all the continuous

maps between objects.

Suppose that L = [0; 1] and (X;Q) 2 jPCSj. De�ne q = (q�)�2L as follows:

F
q�!x i¤ �F

Q�!x; � 2 L: (2.1)

Employing Lemma 3(d),(e), it easily follows that (X; q) 2 jSL-CSj.

De�ne

� : PCS! SL-CS as follows: (2.2)
�(X;Q) = (X; q) and �(f) = f:

Theorem 7 Given the notations used in (2.1)-(2.2), let L = [0; 1]: Then � : PCS !

SL� CS is a full-embedding functor.

Proof. First, it is shown that � is a functor, where �(X;Q) = (X; q). Assume that

f : (X;Q) ! (Y; P ) is continuous. It must be shown that f : (X; q) ! (Y; p) is also

continuous. If F
q�!x, then �F

Q�! x and consequently f!(�F)
P�! f(x). According to Lemma

3 (h), �f!F = f!(�F)
P�! f(x) and thus f!F

p�!f(x). Hence � is a functor. Conversely,

suppose that f : (X; q) ! (Y; p) is continuous; it remains to show that f : (X;Q) ! (Y; P )

is also continuous. If  
Q�! x, then by Lemma 3 (g), �F =  

Q�! x and thus F 
q�!x.

Hence f!F 
p�!f(x) and �f!F 

P�!f(x). It follows that �f!F = f!(�F ) = f!( )
P�!f(x)

and thus f : (X;Q) ! (Y; P ) is continuous. Finally, � is injective. Indeed, assume that

11



(X;Q) 6= (X;P ) and  
Q�! x but  P�! x fails for some � 2 L. Since �F =  , F 

q�!x but

F 
p�!x fails and thus j is injective.

Given

(X; q) 2 jSL-CSj; de�ne (X;R) as follows: (2.3)

 
R�! x i¤ there exists F 2 FSL(X)

such that F
q�!x and  � �F:

Veri�cation that (X;R) 2 jPCSj is straightforward.

Theorem 8 Suppose that L = [0; 1]. Then �(PCS) is bire�ective in SL-CS.

Proof. Given (X; q) 2 jSL-CSj, denote (X;R) 2 jPCSj as de�ned in (2.3). Let

(X; r) = �(X;R); then F
q�!x i¤ �F

R�!x; � 2 L. Note that id: (X; q) ! (X; r) is continuous.

Indeed, it follows from (2.3) that if F
q�!x, then �F

R�!x and thus F r�!x; � 2 L. Hence id:

(X; q)! (X; r) is continuous. Next, assume that (Y; p) = �(Y; P ) and f : (X; q)! (Y; p) is

continuous. It must be shown that f : (X; r)! (Y; p) is continuous. Suppose that F r�!x; then

�F
R�!x and thus there exists G q�!x such that �F � �G. Since f : (X; q)! (Y; p) is continuous,

f!G
p�!f(x) and hence f!(�G) = �f!G

P�!f(x). Since �f!F = f!(�F) � f!(�G)
P�! f(x),

it follows that f!F
p�!f(x) and thus f : (X; r) ! (Y; p) is continuous. Therefore �(PCS) is

bire�ective in SL-CS.

This author is unable to show that �(PCS) is bicore�ective in SL-CS but the cor-

responding result for their �Choquet modi�cations" is valid and is given in Theorem 10.

Object (X; q) 2 jSL-CSj is said to be a strati�ed L-Choquet convergence space pro-

vided F
q�!x whenever G q�!x for each strati�ed L-ultra�lter G � F. The full-subconstruct of

12



SL-CS consisting of all the strati�ed L-Choquet convergence spaces as objects is denoted by

SL-C-CS.

De�ne

� : SL-CS! SL-C-CS as follows: (2.4)

�(f) = f

�(X; q) = (X;Cq), where

F
Cq�!x i¤G

q�!x for each

strati�ed L-ultra�lter G � F.

It easily follows that (X;Cq) 2 jSL-C-CSj. Observe that � is a functor. Indeed,

assume that f : (X; q) ! (Y; p) is continuous in SL-CS, F
Cq�!x and G � f!F is a strati�ed

L-ultra�lter on Y . According to Theorem 9(a) below there exists a strati�ed L-ultra�lter

H � F for which f!H = G. Then H
q�!x, f!H = Gp�!f(x) and thus f!FCq�! f(x). Hence

f : (X;Cq)! (Y;Cp) is also continuous.

Given

(X; q) 2 jSL-CSj; de�ne(X;S) as follows: (2.5)

 
S�! x i¤ F

q�!x for each strati�ed

L-ultra�lter F obeying �F �  :

A straightforward argument shows that (X;S) 2 jPCSj; denote (X; s) = �(X;S). For sake of

convenience, the following results given in Lemma 3.7 and 4.1 in Jäger [2002] are summarized

in the next theorem.

13



Theorem 9 (Jäger [2002]). Let f : X ! Y be a map, F 2 FSL(X) and G a strati�ed

L-ultra�lter on Y . Then,

(a) if G � f!F, there exists a strati�ed L-ultra�lter H � F such that f!H = G

(b) whenever L = [0; 1],  = �G is an ultra�lter on X and F = G is the only strati�ed

L-ultra�lter on X satisfying �F =  .

Theorem 10 . Suppose that L = [0; 1] and � is the functor de�ned in (2.4). Then (� �

�)(PCS) is bicore�ective in SL-C-CS.

Proof. Given (X; q) 2 jSL-C-CSj, let (X;S) be as de�ned in (2.5) and (X; s) =

�(X;S). Note that id: (X; s)! (X;Cq)is continuous. Indeed, assume that F s�!x and G � F

is a strati�ed L-ultra�lter on X. Then by de�nition of s�, �F
S�! x. Since �G � �F, it follows

from (2.5) that G
q�!x and thus FCs�!x. Hence id: (X; s)! (X;Cq) is continuous and since �

is a functor, id: (X;Cs)! (X;Cq) is also continuous. Next, suppose that (X; p) 2 j�(PCS)j

and f : (X; p) ! (X; q) is continuous. It is shown that f : (X; p) ! (X;Cs) is continuous.

Assume that F
p�!y and it must be shown that f!FCs�! f(y) = x. It su¢ ces to show that G s�!x

whenever G � f!F is a strati�ed L-ultra�lter on X; equivalently, �G
S�! x. Employing the

de�nition of S� in (2.5), it must be shown that H
q�!x whenever H is a strati�ed L-ultra�lter

such that �H = �G. According to Theorem 9, H = G and there exists a strati�ed L-ultra�lter

K � F obeying f!K = G. Since Kp�!y, G =f!K q�!x and thus �G
S�! x. Therefore G s�!x and

f!F
Cs�!x; hence f : (Y; p) ! (X;Cs) and f : (Y;Cp) ! (X;Cs) are continuous. Since

Cq = q, it follows that (� � �)(PCS) is bicore�ective in SL-C-CS.
14



2.2 Diagonal Axioms with Its Dual

Kowalsky [1954] and Cook and Fischer [1967] investigated diagonal axiom F and

its dual R in the category of convergence spaces. They showed that a convergence space

is topological i¤ it obeys F and regular i¤ it satis�es R. The author here extends these

axioms to the category SL � CS whose objects consist of all the strati�ed L-convergence

spaces. Properties of these axioms are investigated and comparisons are made to the diagonal

axioms studied by Gähler [1992,1999]. Categorical terminology used here follows that given

by Preuss [2002]. A key component for the diagonal axioms in the category CON is the

notion of Kowalsky�s �compression operator" K : F(F(X))! F(X), de�ned by K(H) :=S
A2H

T
fF 2 Ag, where H 2 F(F(X)). For sake of convenience, these axioms are listed

below for (X; q) 2 jCONj.

(F): Let J be any set,  : J ! X, � : J ! F(X) such that �(y)
q!  (y) for each

y 2 J . If F 2 F(J) such that  !F q! x, then K�!F
q! x.

(R): Let J be any set,  : J ! X, � : J ! F(X) such that �(y)
q!  (y) for each

y 2 J . If F 2 F(J) such that K�!F q! x, then  !F
q! x.

As mentioned earlier, (X; q) is topological (regular) i¤ axiom F (R) is satis�ed, re-

spectively. These axioms are readily extended to (X; q) 2 jPCSj, where q = (q�)�2L, as

follows:

(F1): Same as F with q replaced by Q�, for each � 2 L.

(R1): Same as R with q replaced by Q�, for each � 2 L.

Axiom F1 (R1) also characterizes whenever (X; q) is topological (regular) as is shown in Kent
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and Richardson [1996] and Brock and Kent [1997], respectively. These axioms are extended

to the category SL-CS.

The di¢ culty in extending axioms F1 and R1 to the category SL-CS lies in de�ning

the compression operator. Let J be any set, � : J ! FSL(X), F 2 FSL(J) and �F given in

(2.5A). Then Kowalsky�s compression operator on �!F 2 FSL(FSL((X)) is de�ned as

K�!F : =
_
A2�F

^
y2A

�(y): (2.6)

Using the compression operator de�ned in (2.6), an extension of the diagonal axioms F1 and

R1 to (X; q) 2 jSL� CSj is given as follows:

(F2) Let J be any set,  : J ! X, � : J ! FSL(X) such that �(y)
q�!  (y) for each

y 2 J . If F 2 FSL(J) obeys  !F
q�! x, then K�!F

q�! x, � 2 L.

(R2) Let J be any set,  : J ! X, � : J ! FSL(X) such that �(y)
q�!  (y) for each

y 2 J . If F 2 FSL(J) and K�!F
q�! x, then  !F

q�! x, � 2 L.

Lemma 11 Assume that f : X ! Y , � : J ! FSL(X), �1 = f! �� are each maps, a 2 LX

and F 2 FSL(J). Then

(a) K�!F 2 FSL(X)

(b) K�!F(a) = _f^y2A�(y)(a) : A 2 �Fg

(c) f!(K�!F) =K�!1 F.

Proof. (a): Jäger�s [2001, Lemma 3.3] characterization as to when the supremum of

a collection of SL-�lters exists in FSL(X) is used here. Indeed, suppose that Ai 2 �F and ai 2

LX satisfy
n
^
i=1
ai = 1�. Denote B =

n
\
i=1
Ai 2 �F; then

n
^
i=1
[ ^
y2Ai

�(y)(ai)] �
n
^
i=1
[ ^
y2B

�(y)(ai)] =

^
y2B

�(y)(
n
^
i=1
ai) = 0 since

n
^
i=1
ai = 1� and ^

y2B
�(y) 2 FSL(X): Hence K�!F 2 FSL(X):
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(b): Lemma 3.3 in Jäger [2001] is used again with a 2 LX . Then K�!F(a) =

_f
n
^
i=1
( ^
y2Ai

�(y)(ai)) : Ai 2 �F;
n
^
i=1
ai � a; n � 1g = _f

n
^
i=1
( ^
y2Ai

�(y)(ai)) : B 2 �F;
n
^
i=1
ai �

a; n � 1g = _f ^
y2B

�(y)(a) : B 2 �Fg:

(c) Assume that b 2 LY : Then f!(K�!F)(b) = K�!F(f (b)) = _f ^
y2B

�(y)(f (b)) :

B 2 �Fg = _f ^
y2B

f!(�(y))(b) : B 2 �Fg = _f ^
y2B

�1(y)(b) : B 2 �Fg = K�!1 F(b) according

to part (b) above.

An object (X; q) 2 jSL�CSj is said to be pretopological provided that ^j2JFj
q�!x

whenever Fj
q�!x, j 2 J and � 2 L. The full subcategory of SL-CS whose objects consist of

all the pretopological spaces is denoted by SL-P-CS. Moreover, denote the full subcategory

of SL-CS consisting of all objects obeying F2 (R2) by SL-F2-CS (SL-R2-CS), respectively.

Theorem 12 Suppose that (X; q) 2 jSL� F2� CSj; then (X; q) 2 jSL� P � CSj.

Proof. Assume that Gj
q�!x, j 2 J , are all the SL-�lters on X which q�-converge to

x. De�ne  : J ! X and � : J ! FSL(X) by  (j) = x and �(j) = Gj, j 2 J . Recall

that F0 denotes the coarsest member of FSL(J) and F0(a) = ^j2Ja(j); a 2 LJ . Note that

�F0 = fJg since F0(1A) = 1 i¤ A = J . If b 2 LX ,   (b)(j) = (b �  )(j) = b(x) and thus

  (b) = b(x)1J . It follows that  
!F0(b) = F0( 

 (b)) = F0(b(x)1J) = b(x) = [x](b) and thus

 !F0 = [x]
q�!x. Since (X; q) 2 jSL � F2 � CSj; K�!F0 = _A2�F ^j2A�(j) = ^j2JGj

q�!x,

� 2 L. Hence (X; q) 2 jSL� P � CSj.

It is shown later in Theorem 26 that SL-CS is a topological category that is cartesian

closed and extensional. It is shown below that SL-F2-CS and SL-R2-CS are topological and

bire�ective in SL-CS.

17



Theorem 13 The subconstruct SL-F2-CS (SL-R2-CS) is topological and bire�ective in SL-

CS, respectively.

Proof. It is shown that SL-F2-CS has initial structures. Assume that fj : X !

(Yj; pj), where j 2 J , J an index class and (Yj; pj) 2 jSL � F2 � CSj. Denote pj =

(p|�)�2L and let q = (q�)�2L be the initial structure of the above in SL-CS; that is, F
q�!x i¤

f!j F
Pj�!fj(x) for each j 2 J . Suppose that  : J ! X, � : J ! FSL(X) such that �(y)

q�! (y)

for each y 2 J , � 2 L �xed. Let F 2 FSL(J) such that  !F
q�!x. It remains to show that

K�!F
q�!x; equivalently, f!j (K�!F)

Pj�!fj(x) for each j 2 J . Denote  j = fj �  : J ! Yj

and �j = f!j � � : J ! FSL(Yj) for each j 2 J . Then �j(y) = f!j (�(y))
Pj�!fj( (y)) =  j(y)

and  !j F =f
!
j ( 

!F)
Pj�!fj(x) since fj is continuous, for each y 2 J and j 2 J . It follows from

Lemma 11 (c) that f!j (K�
!F) =K�!j F and K�

!
j F

Pj�!fj(x) since (Yj; pj) 2 jSL�F2�CSj,

for each j 2 J . Hence K�!F q�!x and thus (X; q) 2 jSL � F2 � CSj. Therefore SL-F2-CS

is topological since SL-CS is topological. Next, it is shown that SL-F2-CS is bire�ective

in SL-CS. Let (X; q) 2 jSL � CSj. According to the proof given above, the supremum

in SL-CS of all s � q with (X; s) 2 jSL � F2 � CSj exists and is denoted by (X; r).

Moreover, (X; r) 2 jSL � F2 � CSj. In particular, r is the �nest structure coarser than

q satisfying (X; r) 2 jSL � F2 � CSj. Hence id: (X; q) ! (X; r) is continuous. Assume

that f : (X; q) ! (Y; p) is continuous, where (Y; p) 2 jSL � F2 � CSj. Let s denote the

initial structure for f : X ! (Y; p). Then (X; s) 2 jSL � F2 � CSj and s is the coarsest

structure such that f : (X; s) ! (Y; p) is continuous. It follows that s � q and also s � r.

Consequently, f : (X; r) ! (Y; p) is continuous and thus SL-F2-CS is bire�ective in SL-

CS. Minor changes in the argument given above shows that SL-R2-CS is also a topological
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construct that is bire�ective in SL-CS.

Remark: According to Theorem 2.2.12 (Preuss[2002]), a full subconstruct that is

bire�ective in a topological construct is also topological. Hence it was only necessary to

prove that SL� F2� CS (SL� R2� CS) is bire�ective in SL� CS. However, the proof

that SL� F2� CS is topological was used in the bire�ective proof.
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CHAPTER 3.
JÄGER�S CONVERGENCE AND FURTHER CONNECTIONS TO

DIAGONAL AXIOMS

This chapter provides a description of the strati�ed lattice fuzzy convergence spaces

studied extensively by Jäger [2001,2005]. In Section 3.1, it is shown that a subsconstruct

of SL-CS and Jäger�s category (SL-FCS) are isomorphic. This is a signi�cant result that

extends knowledge about subcategories of SL-CS that are proved to be both topological

and bire�ective. Additionally, in Section 3.2, further regularity conditions are provided that

further de�ne subcategories of SL-CS as they relate to Gahler�s compression operator. This

author proves three original theorems (Theorems 16, 19, and 21), as well as Lemmas 18 and

20.

Jäger [2001,2005] de�ned and investigated the notion of a fuzzy convergence structure

when L is a complete Heyting algebra. It is proved in this section that Jager�s construct is

isomorphic to a bire�ective subconstruct of SL-CS.

3.1 Strati�ed L-Fuzzy Convergence Spaces

De�nition 14 . Let F;G 2 FSL(X). Then (X; lim) is said to be a strati�ed L-fuzzy

convergence space provided lim : FSL(X)! LX obeys the following:

(a) (lim[x])(x) = 1 for each x 2 X

(b) F � G implies limF � limG.

A map f : (X; limX) ! (Y; limY ) is called continuous whenever (limX F)(x) �

(limY f
!F)(f(x)) for each F 2 FSL(X) and x 2 X. Since the composition of two continuous

functions is continuous, SL-FCS is the category whose objects consist of all the strati�ed L-
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fuzzy convergence spaces and whose morphisms are all the continuous maps between objects.

The grade of convergence of F to x is the interpretation given limF(x).

De�nition 15 . Object (X; q) 2 jSL-CSj is called left-continuous provided F q�!x i¤ there

exists A � L such that _A = � and F
q�!x for each � 2 A.

The full-subcategory of SL-CS consisting of all the left-continuous objects is denoted

by SL-LC-CS. Given (X; q); (Y; p) 2 jSL-CSj, where q = (q�)�2L and p = (p�)�2L, de�ne

p � q provided p� � q� for each � 2 L; that is, F
q�!x implies that Fp�!x.

De�ne

� : SL-FCS! SL-LC-CS by �(f) = f and (3.1)

�(X; lim) = (X; q); where q = (q�)�2L

and F
q�!x i¤ (limF)(x) � �:

It easily follows from (3.1) that (X; q) 2 jSL-LC-CSj.

Conversely, de�ne

 : SL-LC-CS! SL-FCS (3.2)

by  (f) = f and

 (X; q) = (X; limq); where

(limq F) (x) = _f� 2 L : F
q�!xg:

Likewise, it follows from (3.2) that (X; limq) 2 jSL-FCSj.

Theorem 16 . Given the notations de�ned in (3.1) and (3.2),
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(a) � : SL-FCS! SL-LC-CS is an isomorphism

(b) SL-LC-CS is bire�ective in SL-CS.

Proof. (a) First, observe that � is a functor. Indeed, assume that f : (X; limX)!

(Y; limY ) is continuous, �(X; limX) = (X; q) and �(Y; limY ) = (Y; p). Suppose that F
q�!x;

then by (3.1), � � limX F(x) � ( limY f
!F)(f(x)) and thus f!F

p�!f(x). Hence f : (X; q)!

(Y; p) is continuous and � is a functor. Conversely, assume that f : (X; q)! (Y; p) is contin-

uous; it must be shown that f : (X; limq) ! (Y; limp) is also continuous. Let F 2 FSL(X);

then (limq F)(x)= _ f� 2 L : F
q�!xg � _f� 2 L : f!F

p�!f(x)g= ( limp f
!F)(f(x)) and

thus f : (X; limq) ! (Y; limp) is continuous. Hence  is a functor. It remains to show that

 � � = idSL-FCS and � �  = idSL-LC-CS. Let (X; lim) 2 jSL-FCSj, �(X; lim) = (X; q) and

 (X; q) = (X; limq) as given in (3.1) and (3.2). Then F
q�!x i¤ (limF)(x) � � and hence

(limq F)(x) = _f� 2 L : F
q�!xg= _ f� 2 L : (limF)(x) � �g = (limF)(x), for each x 2 X.

Hence limq = lim and therefore  � � = idSL-FCS. Next, it is shown that � �  = idSL-LC-CS.

Suppose that (X; q) 2 jSL-LC-CSj;  (X; q) = (X; limq) and �(X; limq) = (X; p). It must be

shown that q = p. If F
q�!x, then limq F(x) � � and thus F

p�!x. Hence q� � p� for each � 2 L

and thus q � p. Conversely, suppose that F
p�!x; then � � (limq F)(x) = _f� 2 L : F

q�!xg.

Denote B = f� 2 L : F q�! xg; then _�2B(� ^ �) = � ^ (_�2B�) = � and since q� � q�^�,

F
q�^�! x for each � 2 B. Since (X; q) is left-continuous, it follows that F q�!x. Hence p� � q�

for each � 2 L and thus p = q and � �  = idSL-LC-CS. Therefore � : SL-FCS! SL-LC-CS is

an isomorphism.

(b) Given (X; q) 2 jSL-CSj, de�ne (X;LCq) as follows: FLCq�! x i¤ there exists A � L

such that _A = � and F
q�!x for each � 2 A. It must be shown that (X;LCq) 2 jSL-LC-CSj.
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Since LCq� � q� for each � 2 L; [x]
LCq�! x and F0

LCq0! x. Clearly G � FLCq�! x implies that

G
LCq�! x. Next, suppose that � � � and F

LCq�! x; then there exists A � L such that _A = �

and F
q�!x for each � 2 A. De�ne B = f�^� : � 2 Ag and note that _B = �. Since q� � q�^�,

F
q�^�! x for each � 2 A and thus by de�nition of LCq�, F

LCq�! x. Hence LCq� � LCq� whenever

� � �. Finally, it is shown that (X;LCq) is left-continuous. Assume that A � L, _A = �

and F
LCq�! x for each � 2 A. Fix � 2 A. Since F

LCq�! x there exists A� � L such that

_A� = � and F
q�!x for each � 2 A�. Denote D = [fA� : � 2 Ag; then _D = � and

since F
q�!x for each � 2 D, it follows that F

q�!x. Hence (X;LCq) 2 jSL-LC-CSj. Since

q � LCq, id : (X; q) ! (X;LCq) is continuous. Suppose that (Y; p) 2 jSL-LC-CSj and

f : (X; q)! (Y; p) is continuous. It is shown that f : (X;LCq)! (Y; p) is also continuous.

Assume that F
LCq�! x; then there exists A � L such that _A = � and F

q�!x for each � 2 A.

It follows that f!F
p�!f(x) for each � 2 A and since (Y; p) is left-continuous, f!F

p�!f(x).

Therefore f : (X;LCq)! (Y; p) is continuous and SL-LC-CS is bire�ective in SL-CS.

3.2 Connections between Diagonal Axioms and Gähler Axioms

The purpose of this section is to give connections between the diagonal axioms dis-

cussed in chapters 1 and 2 and those given by Gähler [1992,1999]. Gähler de�ned diagonal

axioms for pretopological, lattice-valued convergence spaces. However, in view of Theorem

19 (b) below each (X; q) 2 jSL�CSj which obeys Gähler�s axiom F3 is pretopological. Let

J be any set � : J ! FSL(X) and F 2 FSL(J). Then Gähler�s compression operator is

de�ned as:

G(�!F)(a) := F(ea � �); (3.3)
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where ea : FSL(X)! L is given by ea(G) := G(a), for each a 2 LX . It is easily veri�ed that

G(�!F) 2 FSL(X) whenever F 2 FSL(J). The diagonal axioms using Gähler�s compression

operator are listed below for (X; q) 2 jSL� CSj:

(F3) Let J be any set,  : J ! X, � : J ! FSL(X) such that �(y)
q�!  (y) for each

y 2 J . If F 2 FSL(J) obeys  !F
q�!x, then G(�!F) q�!x, � 2 L.

(R3) Let J be any set,  : J ! X, � : J ! FSL(X) such that �(y)
q�!  (y) for each

y 2 J . If F 2 FSL(J) obeys G(�!F)
q�!x, then  !F q�!x.

Axiom F2� (R2�, F3�, R3�) di¤ers from F2 (R2, F3, R3) in that �(y) 2 USL(X) for

each y 2 J , respectively.

Some connections between the compression operators K(�!F) and G(�!F) are given

below. For sake of convenience, the following result by Jäger [2002, Lemma 4.1] is listed.

Recall the de�nition of �F and F given in (1.1).

Lemma 17 Jäger[2002] Assume that L is linearly ordered, F 2 USL(X), and  = �F. Then

 2 U(X) and F = F .

Lemma 18 Let � : J ! FSL(X) and F 2 FSL(J). Then

(a) G(�!F) �K(�!F)

(b) G(�!F) =K(�!F) whenever �(y) 2 USL(X) for each y 2 J , F 2 USL(J) and L is

linearly ordered

(c) G(�!F) = K(�!F) provided L = f0; 1g.

Proof. (a): Given any A 2 �F and a 2 LJ , denote � = ^y2A�(y)(a). Then (ea �

�)(y) = �(y)(a) � � for each y 2 A and thus ea � � � �1A. Hence G(�!F)(a) = F(ea � �) �
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F(�1A) � � since A 2 �F. Therefore G(�!F)(a) � _f^y2A�(y)(a) : A 2 �Fg = K(�!F)(a)

by Lemma 11 (b) and thus G(�!F) �K(�!F):

(b): Given a 2 LX , denote B = fy 2 J : �(y)(a) = 1g. Since �(y) 2 USL(X) for each

y 2 J , it follows from Lemma 17 that �(y)(a) = 0 whenever y 2 Bc and thus ea � � = 1B.

Likewise, F 2 USL(J) implies that G(�!F)(a) = F(ea � �) = F(1B) =

8>>><>>>:
1; B 2 �F

0; B =2 �F

.

First, assume that B 2 �F; then K(�
!F)(a) � ^y2B�(y)(a) = 1 and thus K(�!F)(a) =

G(�!F) = 1. Next, suppose that B =2 �F; then F(1B) = 0 and thus G(�!F)(a) = 0. It

follows from part (a) that K(�!F)(a) = 0 and hence G(�!F) = K(�!F).

(c): According to (a) and the assumption that L = f0; 1g, it su¢ ces to show that if

a 2 LX and G(�!F)(a) = 1, then K(�!F)(a) = 1. Denote B = fy 2 J : �(y)(a) = 1g.

Since = f0; 1g, ea � � = 1B and the argument given in (b) shows that K(�!F)(a) = 1.

Hence G(�!F) =K(�!F).

Additional properties of objects obeying one of the diagonal axioms are listed below.

Theorem 19 . (a) Let (X; q) 2 jSL � F2 � CSj (jSL � R3 � CSj). Then (X; q) 2

jSL� F3� CSj (jSL�R2� CSj), respectively.

(b) (X; q) 2 jSL� F3� CSj implies that (X; q) 2 jSL� P � CSj

(c) SL� F3� CS(SL�R3� CS) is a topological construct that is also bire�ective

in SL-CS, respectively.

Proof. (a): Assume that (X; q) 2 jSL � R3 � CSj,  : J ! X, � : J ! FSL(X)

such that �(y)
q�!  (y) for each y 2 J and F 2 FSL(J) for which K(�!F)

q�!x. Employing
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Lemma 18 (a), G(�!F)
q�!x and since (X; q) 2 jSL � R3 � CSj,  !F q�!x. Hence (X; q) 2

jSL�R2� CSj. A similar argument is valid for the other part.

(b): Assume thatGj
q�!x, j 2 J , are all the q�-convergent SL-�lters. De�ne  : J ! X

and � : J ! FSL(X) by  (j) = x and �(j) = Gj, j 2 J . As shown in Theorem 12,

 !F0 = [x]
q�!x. Given a 2 LX , G(�!F0)(a) = F0(ea � �) = ^j2J(ea � �)(j) = ^j2Jea(Gj) =

^j2JGj(a)
q�!x since (X; q) 2 jSL� F3� CSj. Hence (X; q) 2 jSL� P � CSj.

(c): Veri�cation is deleted here since the argument involves minor changes in the

proof of Theorem 13.

Recall the de�nitions of F2, R2, F3 and R3 de�ned earlier. Given (X; q) 2 jSL�CSj

and � 2 L, denote

T� = f(G; z) : G 2 FSL(X) and G
q�!zg;

and let �i be the ith projection map de�ned on T� i = 1; 2:

Gähler [1992] de�nes regularity of (X; q) as follows:

if H 2 FSL(T�) such that G(�!1 H)
q�!x; then �!2 H

q�!x; for each � 2 L:

Theorem 21 below shows that the above diagonal axioms are satis�ed whenever they are

valid for J = T�,  = �2 and � = �1, for each � 2 L. The following lemma is needed.

Lemma 20 . Assume that (X; q) 2 jSL � CSj,  : J ! X, � : J ! FSL(X) such that

�(y)
q�!  (y) for each y 2 J , F 2 FSL(J) and de�ne � : J ! T� by �(y) = (�(y);  (y)); y 2 J .

Then

(a) K�!F = K[�!1 (�
!F)]
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(b) G�!F = G[�!1 (�
!F)].

Proof. (a): Note that �1 � � = �, �2 � � =  and recall that for any map f : X ! Y ,

f!(�F) = �f!F. Then K�
!F = _A2�F ^y2A �(y) = _A2�F ^y2A �1(�(y)) = _A2�F ^�(y)2�(A)

�1(�(y)) = _B2��!F
^z2B �1(z) = K�!1 (�

!F).

(b) The result follows from �1 � � = �.

Theorem 21 . Let (X; q) 2 jSL� CSj. Then

(a) (X; q) obeys R2 (R3,F2,F3) i¤R2 (R3,F2,F3) is satis�ed whenever J = T�,  = �2

and � = �1 for each � 2 L, respectively.

(b) (X; q) obeys F2 i¤ (X; q) is pretopological and satis�es F2 for the special case

whenever J = X and  is the identity map.

Proof. (a): Assume that (X; q) satis�es R2 whenever J = T�,  = �2 and � = �1.

It must be shown that R2 is valid for any J ,  : J ! X and � : J ! FSL(X) such that

�(y)
q�!  (y) for each y 2 J . Suppose that F 2 FSL(J) such that K�!F

q�!x and note that if

(G; z) 2 T�, then �1(G; z) = G
q�!z = �2(G; z). De�ne � : J ! T� by �(y) = (�(y);  (y)) for

each y 2 J . Then �!F 2 FSL(T�) and according to Lemma 20 (a), K�!1 (�!F) = K�!F
q�!x.

The hypothesis implies that �!2 (�
!F)

q�!x. Since  = �2 � �,  !F
q�!x and thus (X; q) obeys

R2. Veri�cation of R3, F2 and F3 is proved in a similar manner by employing Lemma 20.

(b): Suppose that (X; q�) is pretopological and obeys F2 whenever J = X and  

is the identity map. Assume that  : J ! X, � : J ! FSL(X) such that �(y)
q�!  (y)

for each y 2 J and let F 2 FSL(J) for which  !F
q�!x. It must be shown that K�!F q�!x.

De�ne � : X ! FSL(X) by �(y) = Uq�(y) for each y 2 X, where Uq�(y) is the SL-

neighborhood �lter at y. Note that Uq�(y)
q�!y since (X; q�) is pretopological. It is shown
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that K�!F � K�!Uq�(x). Because �(y)
q�!  (y), �(y) � �( (y)) for each y 2 J and also

 !(�F) = � !F � �Uq�(x) since  
!F

q�!x. Hence K�!F = _
A2�F

^
y2A

�(y) � _
A2�F

^
y2A
�( (y)) =

_
A2�F

^
z2 (A)

�(z) = _
B2� !F

^
z2B

�(z) � _
B2�Uq�(x)

^
z2B

�(z) = K�!Uq�(x)
q�! x according to

the hypothesis and the fact that (X; q�) is pretopological. Therefore, K�!F
q�! x and thus

(X; q) satis�es F2.

Given a set X, � � LX is called a strati�ed L-topology if it satis�es the following:

(a) �1X 2 � for each � 2 L

(b) a; b 2 � implies that a ^ b 2 �

(c) aj 2 � ; j 2 J , implies that _j2Jaj 2 � .

The pair (X; �) is said to be a strati�ed L-topological Space. A map f : (X; �)! (Y; �)

is continuous provided f (b) 2 � whenever b 2 �. Let SL-TOP denote the category

whose objects consist of all the strati�ed L-topological space and whose morphisms are

all the continuous functions between objects. Let (X; �) 2 jSL � TOP j, de�ne the SL-

neighborhood �lter at x by V� (x)(a) := _fb(x) : b 2 � and b � ag, where a 2 LX . Note

that V� (x) 2 FSL(X) for each x 2 X. Given (X; q) 2 jSL � CSj, where q = (q�); � 2 L;

then (X; q) is topological provided there exists (X; ��) 2 jSL � TOP j such that F q�!x

i¤ F � V��(x) for each x 2 X and � 2 L. The next result follows from Gähler [1999,

Proposition 30] and Theorem 19 (b).

Theorem 22 [Gähler, 1999]. Let (X; q) 2 jSL � CSj, where q = (q�)�2L. Then (X; q) is

topological i¤ (X; q�) obeys axiom F3 for each � 2 L.�
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CHAPTER 4.
CATEGORICAL PROPERTIES OF SL-CS

This chapter develops and extends key categorical properties of SL-CS. Section 4.1

provides key de�nitions of these properties and an original proof is given showing that SL-CS

is topological, cartesian closed, and extensional. Section 4.2 outlines important subconstructs

of SL-CS based on Choquet, L-Kent, and pretopological modi�cations. Original references

are provided indicating the historical signi�cance of each de�nition. All of this is done as a

precursor to the next chapter when two extremely signi�cant original results regarding SL-

CS and its subcategories are provided. This author states and proves two original theorems

(Theorems 26 and 28), as well as Lemma 24. Results are extended and referred to in

subsequent chapters in this work.

4.1 Topological, Cartesian Closed, and Extensional Properties of SL-CS

Jäger, et al. [2002] proved that the category SL-FCS discussed in Chapter 3 is a

cartesian closed topological construct and studied several important subconstructs. It is

shown in this section that SL-CS is topological, cartesian closed and extensional. Moreover,

properties of some interesting subconstructs are listed.

Given objects (X; q) and (Y; p) in jSL-CSj, let C(X; Y ) be the set of all continuous

functions from (X; q) into (Y; p) and denote the evaluation map e : C(X; Y ) � X ! Y by

e(f; x) = f(x), for each f 2 C(X; Y ) and x 2 X. De�ne

c = (c�) (4.1)
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as follows:

�
c�! f i¤ whenever F

q�!x; � � �;

e!(�� F) p�!f(x); where

� 2 FSL(C(X; Y )) and f 2 C(X; Y ):

Observe that (C(X; Y ); c) 2 jSL-CSj. Indeed, if F q�!x for some � � �, then it follows from

Lemma 8.2 in Jäger[2001] that e!([f ] � F) � f!F and thus e!([f ]) � F) p�!f(x). Hence

[f ]
c�! f for each � 2 L. The remaining axioms are easily veri�ed.

Consider the category SL-FCS with (X; limX) and (Y; limY ) 2 jSL-FCSj. Jäger [2001]

de�ned

(C(X; Y ); lim) 2 jSL-FCSj (4.2)

as follows:

(lim�)(f) = ^F;x _ f� 2 L : (limX F)(x) ^ � � (limY e
!(�� F))(f(x));

where � 2 F
SL
(C(X;Y )); F 2 FSL(X) and x 2 X:

The following remark shows that conditions (4.1) and (4.2) are compatible; veri�cation

is a straightforward application of the de�nitions.

Remark 23 . Suppose that (X; limX); (Y; limY ) 2 jSL-FCSj and � : SL-FCS ! SL-CS is

the embedding functor de�ned in (3.1). Then �(C(X; Y ); lim) = (C(X;Y ); c).

Assume that Z is a subset of X; (X; q) 2 jSL-CSj and iZ : Z ! X is the injection

iZ(y) = y, for each y 2 Z. Given F 2 FSL(Z) and G 2 FSL(X), denote [F] : = i!Z (F) and

GZ := i Z (G), provided the latter is a strati�ed L-�lter.
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Lemma 24 . Given the notations de�ned above with F 2 FSL(Z), G 2 FSL(X) and a 2 LZ.

Then

(a) [F]Z = F

(b) GZ(a) = G(a�), where a�(x) =

8>>><>>>:
a(x); x 2 Z

1; x 2 X � Z

, provided G(b) = 0 whenever

i Z (b) = 1�, b 2 LX .

Standard arguments can be employed to show that the category SL-CS is both topo-

logical and cartesian closed. It is shown in Theorem 26 below that SL-CS is also extensional.

In particular, this implies that quotient maps are hereditary.

De�nition 25 (Preuss[2002]). A topological construct C is called extensional if each B 2

jCj can be embedded in a C-object B� = B [ f1g;1 =2 B, such that each C-morphism

f : C ! B has the extension f� : A! B� whenever C is a subobject of A, where

f�(x) =

8>>><>>>:
f(x); x 2 C

1; x =2 C

is a C-morphism. (4.3)

Given (Y; r) 2 jSL-CSj, denote Y � = Y [ f1g, where 1 =2 Y . De�ne

r� = (r��)�2L (4.4)

as follows:

(a) G
r��! y i¤GY exists and GY

r�! y, or GY fails to exist

(b) G
r��!1, for each G 2 FSL(Y �).
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It is straightforward to show that (Y �; r�) 2 jSL-CSj and (Y; r) is a subspace of

(Y �; r�).

We next prove three signi�cant results about the category SL-CS.

Theorem 26 . The construct SL-CS is

(a) topological

(b) cartesian closed

(c) extensional.

Proof. Veri�cation of (a) and (b) follows standard arguments. Only the proof of

(c) is presented here. Let (Z; p) be any subspace of (X; q) 2 jSL-CSj and assume that

f : (Z; p) ! (Y; r) is continuous. It must be shown that f� : (X; q) ! (Y �; r�) is also

continuous, where f� and (Y �; r�) 2 jSL-CSj are de�ned in (4.3) and (4.4). First, assume

that F 2 FSL(X) such that F
q�!z; z 2 Z. Suppose that FZ exists. If a 2 LX , then by Lemma

24 (b), [FZ ](a) = FZ(i Z (a)) = F((i
 
Z (a))

�) � F(a). Hence [FZ ] � F and thus [FZ ]
q�!z. Since

(Z; p) is a subspace of (X; q) and f is continuous, f!(FZ)
r�!f(z). It is shown that (f!� F)Y =

f!(FZ). Indeed, let b 2 LY ; b�(s) =

8>>><>>>:
b(s); s 2 Y

1; s =1

and according to Lemma 24 (b),

(f!� F)Y (b) = (f
!
� F)(b

�) = F(b� � f�). De�ne a = b � f 2 LZ , a�(s) =

8>>><>>>:
a(s); s 2 Z

1; s 2 X � Z
and since b� � f� = a�, F(b� � f�) = F(a�) = FZ(a) = FZ(b � f) = (f!FZ)(b). Therefore

(f!� F)Y = f!FZ and thus f!� F
r��!f�(z). Next, suppose that F

q�!z but FZ fails to exist. It is

shown that (f!� F)Y also fails to exist. It follows from Proposition 3.5 [Jäger, 2001] that there
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exists a 2 LX such that i Z (a) = 1� and yet F(a) 6= 0. Denote b = f!� (a) and �x y 2 Y . Then

b(y) = _fa(x) : f�(x) = yg = _fa(z) : f(z) = yg = 0 and b(1) = _fa(x) : x 2 X � Zg �

a(x), for each x 2 X � Z. Hence b � f� � a and thus (f!� F)(b) = F(b � f�) � F(a) 6= 0.

Therefore (f!� F)Y fails to exist and thus by de�nition of r
�
�; f

!
� F

r��!f(z). Finally, assume that

F
q�!x, where x 2 X � Z. Since all strati�ed L-�lters r��-converge to 1; f!� F

r��!f�(x) = 1

and thus f� : (X; q)! (Y �; r�) is continuous. Therefore SL-CS is extensional.

4.2 Important Subconstructs of SL-CS

Jäger, et al. [2002] de�ned and investigated several important subconstructs of SL-

FCS. A brief summary of some corresponding results in the construct SL-CS is given below.

De�nition 27 . Recall that (X; q) 2 jSL-CSj is called a strati�ed L-Kent [Kent, 1968]

(Choquet [Kent, 1948]; pretopological) convergence space provided H
q�!x whenever F q�!x

and H � F^ [x] (F q�!x for each strati�ed L-ultra�lter F � H; H � Uq�(x) = ^fF 2 FSL(X) :

F
q�!xg, respectively. Moreover, (X; q) is said to be a strati�ed L-limit space [3] if F

q�!x

whenever F � ^ni=1Fi for some Fi
q�!x and n � 1.

Let SL-K-CS (SL-C-CS, SL-P-CS) denote the full-subconstruct of SL-CS whose

objects consist of all the strati�ed L-Kent (Choquet, pretopological) convergence spaces,

respectively. Further, SL-L-CS de�nes the full-subconstruct of SL-CS possessing all the

strati�ed L-limit spaces as its objects.

Theorem 28 . Assume that (X; q) and (Y; p) are objects belonging to jSL-CSj. Then

(a) SL-L-CS (SL-C-CS, SL-P-CS) is bire�ective in SL-CS, respectively.
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(b) SL-K-CS is both bire�ective and bicore�ective in SL-CS

(c) (C(X; Y ); c) 2 jSL-L-CSj(jSL-C-CSj; jSL-LC-CSj) provided (Y; p) 2

jSL-L-CSj(jSL-C-CSj; jSL-LC-CSj); respectively.

Jäger et al. [2002] proves the corresponding results of Theorem 28 for the construct

SL-FCS which, according to Theorem 16 (a), is embedded in SL-CS. However, proofs in the

category SL-CS seem to be more transparent since the steps involve determining whether a

strati�ed L-�lter converges to an element x 2 X rather than having to specify its limiting

L-fuzzy subset.
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CHAPTER 5.
CONNECTIONS AMONG DIAGONAL AXIOMS FOR OBJECTS IN A

SUBCONSTRUCT OF SL-CS

This chapter completes the analysis of the category SL-CS. A �nal comment on di-

agonal axioms are provided in Section 5.1 as an original theorem fully categorizing SL-CS

is provided. Additionally, this section shows an object in SL-CS satisfying condition F2

is equivalent to being determined by a probabilistic convergence space that is topological.

Section 5.2 provides a summary of this work, and possible areas for further research are

mentioned. Two research questions are proposed related to the context of strati�ed lattice

fuzzy topological spaces. This author states and proves two original theorems (Theorems 31

and 32), as well as Lemmas 29 and 30.

5.1 Diagonal Axioms and SL-CS

As we recall, L denotes a linearly ordered, complete Heyting algebra. Consider the

category PCS of probabilistic convergence spaces de�ned in section 1. Given (X;Q) 2 jPCSj,

de�ne q = (q�)�2L as follows:

F
q�!x i¤ �F

Q�!x; � 2 L: (5.1)

Then (X; q) 2 jSL � CSj. Recall, it is shown in Theorem 7 that � : PCS ! SL � CS

de�ned by

�(X;Q) = (X; q) (5.2)

is a full-embedding functor. The result is still valid even though the de�nition of �F in (1.1)

di¤ers from that given in Flores, et al. [2006]. This section is devoted to a study of diagonal
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axioms in the subconstruct �(PCS) of SL-CS. First, two fundamental lemmas are proved.

Recall the de�nitions of �F and F listed in (1.1).

Lemma 29 . Assume that J is a set, � : J ! F(X), � : F(X)! FSL(X) and � = � ��,

where �(�) = F� for each � 2 F(J). Let  2 F(J); then �G(�!F) = �K(�!F) = K�!.

Proof. It follows from Lemma 18 (a) that �G(�!F) � �K(�!F). Assume that

B 2 K�! = [A2 \y2A �(y); then there exists A 2  such that B 2 �(y) for each

y 2 A. Since �(y) = F�(y), it follows from de�nition (1.1) that F�(y)(�1B) = 1 for each

� > 0 and y 2 A. Moreover, according to Lemma 3(h), A 2 �F = . It follows that

K(�!F)(�1B) � ^y2A�(y)(�1B) � � for each � 2 L and thus B 2 �K(�!F). Hence

�K(�!F) � K�!. Conversely, suppose that B 2 �G(�!F) and let b = �1B, � > 0.

Then G(�!F)(b) = F(eb � �) � �. Denote A = fy 2 J : B 2 �(y)g and observe that

(eb � �)(y) = �(y)(b) = F�(y)(b) = 1A(y). When � = 1, 1 = F(eb � �) = F(1A) and thus

A 2 . It follows that B 2 [A2 \y2A �(y) = K�! and thus �G(�!F) � K�! and hence

�G(�!F) = �K(�!F) = K�!.

Lemma 30 . Suppose that J is a set, � : J ! USL(X)(FSL(X)); � : FSL(X) ! F(X) de-

�ned by �(G) = �G, � = ��� and F 2 FSL(J); then �G(�!F) � �K(�!F) = K�!�F (�K(�!F) �

K�!�F), respectively.

Proof. Again, according to Lemma 18 (a), �G(�!F) � �K(�!F). Assume that B 2

K�!�F = [A2�F \y2A �(y) = [A2�F \y2A ��(y). Then there exists A 2 �F such that B 2

��(y) and thus �(y)(�1B) � � for each y 2 A and � 2 L. Fix � > 0 and denote b = �1B.

Then K�!F(b) � ^y2A�(y)(b) � � and hence B 2 �K�!F. Therefore �K�!F � K�!�F.
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Conversely, suppose that B 2 �K�!F, � > 0 is �xed and b = �1B. Then � � K�!F(b) =

_A2�F ^y2A �(y)(b) and thus there exists A 2 �F such that ^y2A�(y)(b) > 0. Since �(y) 2

USL(X), it follows from Lemma 20 that ^y2A�(y)(b) = 1. Hence B 2 ��(y) = �(y) for each

y 2 A and hence B 2 [A2�F \y2A �(y) = K�!�F. Therefore �G(�!F) � K(�!F) = K�!�F:

Connections between diagonal axioms for objects in the subconstruct �(PCS) of SL-

CS given in Lemma 30 are listed below.

Theorem 31 . Assume that (X;Q) 2 jPCSj and (X; q) = �(X;Q). Then

(a) (X; q) is pretopological i¤ (X;Q) is pretopological.

(b) The following are equivalent:

(i) (X; q) obeys F2

(ii) (X; q) obeys F3

(iii) (X; q) is topological

(iv) (X;Q) is topological (obeys F1).

(c) (i) (X; q) satis�es R2 whenever it satis�es R3

(ii) (X; q) satis�es R2� i¤ (X;Q) satis�es R1.

Proof. (a): Assume that (X; q�) is pretopological and let Uq�(x) denote its SL-

neighborhood �lter at x. Since Uq�(x)
q�! x, �Uq� (x)

Q�! x. Moreover, note that if 
Q�! x, then

F
q�!x since �F = . Hence F � Uq�(x) and thus  = �F � �Uq� (x). It follows that �Uq� (x)

is a neighborhood �lter at x in (X;Q�) and (X;Q�) is pretopological. Conversely, assume

that (X;Q�) is pretopological and let VQ�(x) denote its neighborhood �lter at x. Assume
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that Fj
q�!x, j 2 J . Then �Fj

Q�! x and since �^jFj = \j�Fj � VQ�(x)
Q�!x, ^j2JFj

q�!x. Hence

(X; q�) is pretopological.

(b): Suppose that (X;Q) obeys F1,  : J ! X; � : J ! FSL(X) such that �(y)
q�!

 (y) for each y 2 J . Let F 2 FSL(J) satisfy  !F
q�!x. De�ne � : FSL(x)! F(X) by �(G) =

�G and let � = � � �. Then �(y) = ��(y)
Q�!  (y) for each y 2 J according to (5.1). Likewise,

 !F
q�!x implies that � !F

Q�! x and by Lemma 3(h),  !(�F)
Q�! x. Since (X;Q) obeys F1,

K�!�F
Q�! x and thus by Lemma 30, K(�!F)

q�!x and G(�!F) q�!x. Hence (X; q) obeys F2

and F3. Conversely, assume that (X; q) obeys F2 (F3),  : J ! X; � : J ! F(X) such that

�(y)
Q�!  (y) for each y 2 J . Let  2 F(J) obey  ! Q�! x, de�ne � : F(X) ! FSL(X) by

�(�) = F� for each � 2 F(X) and denote � = � � �. Note that �(y) = F�(y)
q�! (y) since

�F�(y) = �(y)
Q�!  (y) for each y 2 J . Moreover, � !F =  !(�F ) =  !()

Q�! x implies

that  !F
q�!x. Since (X; q) obeys F2 (F3), K�!F

q�!x(G(�!F)
q�!x) and thus by Lemma

29, K�!
Q�! x, respectively. Hence (X;Q) obeys F1 and thus axioms F1, F2 and F3 are

equivalent. The remainder of (b) follows by Theorem 22.

(c) Part (i) is proved in Theorem 19 (a). An argument employing Lemmas 29-30

shows that part (ii) is valid.

Theorem 32 . Assume that (X; q) 2 jSL � CSj. Then (X; q) obeys F2 i¤ there exists

(X;Q) 2 jPCSj that is topological and satis�es �(X;Q) = (X; q).

Proof. First, suppose that (X;Q) 2 jPCSj is topological and �(X;Q) = (X; q).

Then according to Theorem 31 (b) (X; q) obeys F2. Conversely, assume that (X; q) obeys

F2 and denote V�(x) = �Uq� (x) for each x 2 X. De�ne (X;P ); P = (P�)�2L, by 
P�! x i¤
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 � V�(x). It is easily shown that (X;P ) 2 jPCSj. Denote (X; p) = �(X;P ) 2 jSL� CSj.

Since (X;P ) is pretopological, it follows from Theorem 31 (a) that (X; p) 2 jSL�P �CSj.

Note that Uq�(x)
p�! x since �Uq� (x) = V�(x)

P�! x and thus q � p. Conversely, suppose

that F
p�!x. It is shown that F � K�!F � K�!Uq�(x) = Uq�(x), where �(y) = Uq�(y)

for each y 2 X. Note that if a 2 LX and A 2 �F, then a � ^y2Aa(y) � 1A and thus

F(a) � F[^y2Aa(y)1A] � ^y2A[y](a) � ^y2AUq�(y)(a) = ^y2A�(y)(a). It follows that F(a) �

_A2�F ^y2A �(y)(a) = K�!F(a). Moreover, since F
p�!x, �F

P�! x and thus �F � �Uq� (x).

Hence K�!F = _A2�F ^y2A �(y) � _A2Uq� (x) ^y2A �(y) = K�!Uq�(x) = Uq�(x) since (X; q)

obeys F2. It follows that F � Uq�(x) and thus F
q�!x. Hence q = p. Since (X; q) obeys F2

and �(X; p) = (X; q), it follows from Theorem 31 (b) that (X;P ) is topological.

Recall that (X; q) 2 jSL � CSj satis�es F3 i¤ it is topological. Let us conclude by

giving an example of (X; q) 2 jSL� CSj that is topological but fails to satisfy F2.

Example 33 . Let X = L = [0; 1] and � 2 L; de�ne �� = f�1X ; a : � 2 L; a 2 LX and

a � (1 � �)1Xg. Note that (X; ��) 2 jSL � TOP j for each � 2 L. De�ne Uq�(x)(b) =

_fc(x) : c 2 � ; c � bg. It is easily shown that Uq�(x) 2 FSL(X). De�ne F
q�!x i¤ F � Uq�(x)

and denote q = (q�)�2L. Then (X; q) 2 jSL� P � CSj and by construction it is topological

and according to Theorem 31 it obeys F3. It is shown that (X; q) fails to satisfy F2.

Observe that if A 2 �Uq� (x), then Uq�(x)(�1B) � � for each � 2 L i¤B = X provided

0 � � < 1. Hence for 0 � � < 1, �Uq� (x) =
_X. Denote �(y) = Uq�(y) for each y 2 X and

let b 2 LX . Then for 0 � � < 1, K�!Uq�(x)(b) = _A2�Uq� (x) ^y2A �(y)(b) = ^
y2X
Uq�(y)(b) �

^
y2X

b(y) = F0(b): Since F0 is the coarsest element in FSL(X); K�!Uq�(x) = F0 for each
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x 2 X and 0 � � < 1. It follows that if (X; q) obeys F2, Uq�(x) = F0 for each x 2 X and

0 � � < 1. Choose � = 1
2
and b = 1

2
1[0; 1

2
] + 1( 1

2
;1]. Then b 2 �� and thus Uq�(x)(b) = b(x),

whereas F0(b) = 1
2
. Hence Uq�(x)(b) 6= F0(b) whenever x 2 (12 ; 1]. Therefore (X; q) obeys F3

but not F2. Moreover, it follows form Theorem 32 that there fails to exist an (X;Q) 2 jPCSj

such that �(X;Q) = (X; q). �

5.2 Concluding Remarks and Recommendations for Further Research

The category SL � TOP of strati�ed L-topological spaces was studied above. More

generally, an L-fuzzy topological space is de�ned and studied by Höhle and Sostak [1999].

De�nition 34 The pair (x; �) is called a strati�ed L-fuzzy topological space provided

� : LX ! L satis�es:

(a) �(1�) = 1, and � � �(�1X) for each � 2 L

(b) �(a) ^ �(b) � �(a ^ b), a; b 2 LX

(c) ^
j2J
�(aj) � �( _

j2J
aj); aj 2 LX , j 2 J

In light of the aforementioned, this author proposes the following research ques-

tions:

Question 1: Can one �nd an appropriate diagonal condition which characterizes

when a strati�ed L-pretopological convergence space is a strati�ed L-fuzzy topological space?

Jager [ 2006] has de�ned interior operators I : LX ! LX which characterizes the

objects in SL-FCS which are pretopological. He mentions that these interior operators do

not characterize the objects in SL-CS which are pretopological.
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Question 2: Can one de�ne operators that characterize the objects in SL-CS which

are pretopological?

It is expected that the operators should be de�ned on I : LXx L! LX in this case.
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