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ABSTRACT

This dissertation as a whole aims to provide the means to better understand hot-

Jupiter planets through observing, performing thermochemical calculations, and modeling

their atmospheres. We used Spitzer multi-wavelength secondary-eclipse observations to char-

acterize planetary atmospheres. We chose targets with high signal-to-noise ratios, as their

deep eclipses allow us to detect signatures of spectral features and assess planetary atmo-

spheric structure and composition with greater certainty.

Chapter 1 gives a short introduction. Chapter 2 presents the Spitzer secondary-eclipse

analysis and atmospheric characterization of WASP-14b. The decrease in flux when a planet

passes behind its host star reveals the planet dayside thermal emission, which, in turn,

tells us about the atmospheric temperature and pressure profiles and molecular abundances.

WASP-14b is a highly irradiated, transiting hot Jupiter. By applying a Bayesian approach

in the atmospheric analysis, we found an absence of thermal inversion contrary to theoretical

predictions.

Chapter 3 describes the infrared observations of WASP-43b’s Spitzer secondary eclipses,

data analysis, and atmospheric characterization. WASP-43b is one of the closest-orbiting

hot Jupiters, orbiting one of the coolest stars with a hot Jupiter. This configuration provided
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one of the strongest signal-to-noise ratios. The eclipse timings improved the estimate of the

orbital period compared to previous analyses. The atmospheric analysis ruled out a strong

thermal inversion in the dayside atmosphere of WASP-43b and put a nominal upper limit

on the day-night energy redistribution.

Chapter 4 presents an open-source Thermochemical Equilibrium Abundances (TEA)

code and its application to several hot-Jupiter temperature and pressure models. TEA

calculates the abundances of gaseous molecular species using the Gibbs free-energy mini-

mization method within an iterative Lagrangian optimization scheme. The thermochemical

equilibrium abundances obtained with TEA can be used to initialize atmospheric models of

any planetary atmosphere. The code is written in Python, in a modular fashion, and it is

available to the community via http://github.com/dzesmin/TEA.

Chapter 5 presents my contributions to an open-source Bayesian Atmospheric Radia-

tive Transfer (BART) code, and its application to WASP-43b. BART characterizes planetary

atmospheres based on the observed spectroscopic information. It initializes a planetary at-

mospheric model, performs radiative-transfer calculations to produce models of planetary

spectra, and using a statistical module compares models with observations. We describe the

implementation of the initialization routines, the atmospheric profile generator, the eclipse

module, the best-fit routines, and the contribution function module. We also present a com-

prehensive atmospheric analysis of all WASP-43b secondary-eclipse data obtained from the

space- and ground-based observations using BART.
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CHAPTER 1
INTRODUCTION

The exoplanetary field began its endeavor in 1992 with the first discovery of planets

outside of our Solar system (Wolszczan & Frail, 1992). Soon after, in 1995, the detection of

an extrasolar planet around a Sun-like star (Mayor & Queloz, 1995) led to the discovery that

planets similar to the ones in our solar neighborhood are common (Fressin et al., 2013). In

2002, the first discovery of an exoplanetary atmosphere (Charbonneau et al., 2002), gave us

hope that we have come closer to answering the ultimate question: “Is there life out there?”

Since then, the exoplanetary field has become one of the most rapidly developing

fields in astronomy. Today, there are around 1500 confirmed planets and more than 3500

candidates (August 2015, www.exoplanets.org). The response of the scientific community to

such a large number of exoplanets is the number of different techniques employed to analyze

their data (e.g., Morales-Calderón et al., 2006; Deming et al., 2006; Knutson et al., 2007;

Pont et al., 2008, 2009; Swain et al., 2009a,b; Désert et al., 2009; Knutson et al., 2009; Carter

& Winn, 2010; Stevenson et al., 2012; de Wit et al., 2012; Deming et al., 2015). In addition,

serious efforts have been made to characterize their atmospheres (e.g., Charbonneau et al.,

2005; Deming et al., 2005; Harrington et al., 2007; Knutson et al., 2008; Fortney et al., 2008;

Tinetti et al., 2007, 2010; Burrows et al., 2006; Anderson et al., 2011; Showman et al., 2009;
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Madhusudhan & Seager, 2009; Lee et al., 2012; Benneke & Seager, 2012; Line et al., 2014).

The analyses revealed that the diversity of extrasolar planets is astonishing, and surprisingly,

some of them are very different from the ones in our Solar system.

In the past decade, exoplanetary research was mostly centered on hot Jupiters,

gaseous giant planets. These planets, located very close to their host stars, are usually

found on circular orbits, expected to be facing their stars with the same side. Although

hot Jupiters are in fact less frequent than hot Neptunes and super Earths (Howard et al.,

2012), current technological limitations and instrumental systematics have directed us to use

them to teach ourselves how to analyze exoplanets until more advanced instruments become

available (Seager & Deming, 2010; Hansen et al., 2014; Burrows, 2014). Due to their large

radii and small semimajor axes, these objects have provided the strongest signal-to-noise

ratios and become the best targets for ground- and space-based observations, allowing us to

get the first insights into exoplanetary atmospheres (Fortney et al., 2005; Harrington et al.,

2007; Knutson et al., 2008; Swain et al., 2008; Madhusudhan & Seager, 2009; Stevenson

et al., 2010; Anderson et al., 2010; Line et al., 2013; Benneke, 2015).

To learn about an exoplanetary atmosphere, we need to study the planetary spectrum,

a thermal emission caused by the planet’s intrinsic temperature, shaped as a Planck function

(a black-body curve), which carries spectral features of molecular species present in its

atmosphere. Each molecule has its unique signature (a set of absorption and emission lines)

connected to specific wavelength locations. Thus, by distinguishing the spectral features in
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the planetary spectrum, we can say which molecules are present in the planetary atmosphere.

In addition, the depth and the width of each feature tells us the abundance of a certain

molecule and the local temperature in the atmosphere.

The most fruitful technique for observing and studying planetary atmospheres, thus

far, is the transit method. As seen from Earth, transiting planets pass in front of and/or

behind their stars, revealing the most fundamental parameters of the planet-star system and

providing a view into the planetary atmosphere. Being very far away from us (the closest

confirmed exoplanet is ∼4 light years away, Dumusque et al., 2012), the majority of planet-

star systems appear as point sources in most instruments. The transit method allows us to

separate the planet from its star by observing the planet-star system in and out of a transit

event. During transit, the planet passes in front of its star and obstructs some of its light.

Comparing the flux before and during the transit, we see a small dip when the planet is

in transit. During transit, the stellar light passes through the terminator, the transition

zone between the day and the night side. Superimposed on the stellar spectrum, we see the

spectral features of the molecules present in the upper part of the planetary atmosphere.

During secondary eclipse, the planet is passing behind its star, looking at the star with its

dayside. The dip is observed when the planet is hidden by the star. Comparing the flux in

and out of eclipse, we obtain information about the planetary dayside thermal emission.

Planetary spectra can be observed using either spectroscopy or photometry. In spec-

troscopy, we measure many spectral channels at ones. In photometry, we measure the flux
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only in certain wavelengths. However, we choose wavelength regions where we know that cer-

tain molecular species have spectral features. Thus, combining photometry measurements in

multiple broad wavelength regions (bandpasses), we get useful information about the species

present in the planetary atmosphere. The majority of the most abundant molecular species

have spectral features in the infrared.

Two techniques have been proposed to date to characterize exoplanetary atmospheres.

One employs the direct method, where the theoretical spectra are generated based on several

physical parameters and comparisons with the observations are done by eye (e.g., Fortney

et al., 2005). The other is called the inverse approach, where the properties of the plan-

etary atmosphere are determined based on the available observations. This approach uses

a statistical exploration algorithm that seeks the best combination of physical parameters

that matches the data (Madhusudhan & Seager, 2010; Benneke & Seager, 2012; Line et al.,

2014; Waldmann et al., 2015). Both approaches provide information about the atmospheric

temperature and pressure profile, chemical composition, and energy redistribution. However,

the inverse approach allows for better exploration of plausible ranges for physical parameters

and a more accurate match to the data.

Interested in characterizing planetary atmospheres, for my dissertation I have focused

on transiting hot Jupiters. I chose to observe hot Jupiters during secondary eclipse, as

this geometric configuration provides the best way to study the temperature and pressure

structures and chemical compositions of planetary dayside atmospheres.
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I have used the Spitzer Space Telescope to observe and analyze their atmospheres,

employing broadband photometry in multiple bandpasses. Although not designed for exo-

planetary observations, Spitzer enabled some revolutionary achievements in the exoplane-

tary field. It was the first telescope that detected the emission from a planetary atmosphere

(Charbonneau et al., 2005; Deming et al., 2005) and the first that found a carbon-rich planet

(Madhusudhan et al., 2011). A large number of characterized exoplanetary atmospheres fol-

lowed (e.g., Todorov et al., 2010; Christiansen et al., 2010; O’Donovan et al., 2010; Machalek

et al., 2010; Deming et al., 2011; Knutson et al., 2011; Crossfield et al., 2012; Stevenson et al.,

2010; Cubillos et al., 2013; Blecic et al., 2013, 2014). Trained to target and observe exo-

planets with Spitzer, among dozens of planets, I have selected WASP-14b and WASP-43b

as the main objects of my study. Both planets, having unusually high signal-to-noise ratios,

provided excellent opportunities to study their gaseous envelopes in more detail.

In the beginning of my Ph.D. studies, our research group did not have an atmo-

spheric modeling tool. Thus, we had to call on an external theorist to help us characterize

planetary atmospheres. In 2011, I proposed to my committee to develop modeling meth-

ods that would allow us to do the atmospheric characterization within our research group.

At the time, only one theorist employed the aforementioned inverse technique to infer ex-

oplanetary thermal structures and chemical compositions (Madhusudhan & Seager, 2009,

2010). Wishing to provide others with the tools to do the atmospheric analysis themselves,

our research group decided to make an open-source code that incorporates thermochemi-
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cal, radiative, and statistical algorithms within the inverse approach. This tool allows us

to calculate thermochemical states in planetary atmospheres, and put constraints on the

atmospheric chemical composition, temperature profile, energy redistribution, equilibrium

and non-equilibrium processes, and the presence or absence of thermal inversion using either

transit or eclipse geometry. We call this project BART, Bayesian Atmospheric Radiative

Transfer. To develop the thermochemical algorithm, (TEA, Thermochemical Equilibrium

Abundances) and parts of BART, I received a NASA Earth and Space Science Fellowship in

2012 and continued to be funded through the end of my Ph.D. studies.

In this dissertation, through observations, thermochemical calculations, and atmo-

spheric modeling, we have gained new insights into the equilibrium chemistry, thermal struc-

ture, and composition of several hot Jupiters. During this process, chemical and modeling

tools have been developed that our research group is sharing with the community.

Chapter 2 presents the Spitzer observations, secondary eclipse analysis, and atmo-

spheric characterization of WASP-14b. Chapter 3 describes the secondary eclipse observa-

tions and atmospheric analysis of WASP-43b. Chapter 4 presents the open-source Ther-

mochemical Equilibrium Abundances (TEA) code that calculates equilibrium abundances of

gaseous molecular species and its application to several hot Jupiters, and Chapter 5 describes

my contributions to the open-source Bayesian Atmospheric Radiative Transfer (BART) code

and its application to WASP-43b.
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The legacy of this dissertation are the two Spitzer secondary eclipse analyses of WASP-

14b and WASP-43b, a comprehensive atmospheric analysis of WASP-43b, and two open-

source codes, TEA and BART, that we hope will provide useful contributions to the field

and grow as the science progresses.
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2.1 ABSTRACT

Exoplanet WASP-14b is a highly irradiated, transiting hot Jupiter. Joshi et al. cal-

culate an equilibrium temperature (Teq) of 1866 K for zero albedo and reemission from the

entire planet, a mass of 7.3 ± 0.5 Jupiter masses (MJ) and a radius of 1.28 ± 0.08 Jupiter

radii (RJ). Its mean density of 4.6 g cm-3 is one of the highest known for planets with periods

less than 3 days. We obtained three secondary eclipse light curves with the Spitzer Space

Telescope. The eclipse depths from the best jointly fit model are 0.224% ± 0.018% at 4.5

µm and 0.181% ± 0.022% at 8.0 µm. The corresponding brightness temperatures are 2212

± 94 K and 1590 ± 116 K. A slight ambiguity between systematic models suggests a conser-

vative 3.6 µm eclipse depth of 0.19% ± 0.01% and brightness temperature of 2242 ± 55 K.

Although extremely irradiated, WASP-14b does not show any distinct evidence of a thermal

inversion. In addition, the present data nominally favor models with day night energy re-

distribution less than ∼30%. The current data are generally consistent with oxygen-rich as

well as carbon-rich compositions, although an oxygen-rich composition provides a marginally

better fit. We confirm a significant eccentricity of e = 0.087 ± 0.002 and refine other orbital

parameters.
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2.2 INTRODUCTION

The Spitzer Space Telescope (Werner et al., 2004) is the most widely used facility for

measuring thermal properties of extrasolar planets. Spitzer systematics are well studied and

modeled, providing an invaluable resource for exoplanet characterization (Seager & Deming,

2010). This has enabled the measurement of tens of atmospheres, using the detection of

primary and secondary eclipses as the most prolific method of investigation to date.

The planet-to-star flux ratio is enhanced in the infrared due to the rising planetary

thermal emission and the dropping stellar emission, enabling detection of planetary emission

through high-precision photometric measurements. Combining several secondary-eclipse ob-

servations measured in broad Spitzer bandpasses with the Infrared Array Camera (IRAC;

Fazio et al., 2004), a low-resolution dayside spectrum from the planet can be reconstructed,

revealing key atmospheric and physical parameters. These measurements can further be

used to constrain atmospheric composition, thermal structure, and ultimately the formation

and evolution of the observed planet.

WASP-14b represents an intriguing object for such an analysis, having characteristics

not so common for close-in, highly irradiated giant planets. Joshi et al. (2009) discovered it

as a part of the SuperWASP survey (Wide-Angle Search for Planets; Pollacco et al., 2006;

Collier Cameron et al., 2006, 2007). Photometric and radial-velocity observations revealed a

planetary mass of 7.3 ± 0.5 MJ and a radius of 1.28 ± 0.08 RJ. Its density (ρ = 4.6 g cm-3)
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is significantly higher than typical hot-Jupiter densities of 0.34–1.34 g cm-3 (Loeillet et al.,

2008a). The planet is also very close to its star (semi-major axis 0.036 ± 0.001 AU), and

has a significant orbital eccentricity, refined slightly to e = 0.087 ± 0.002 in this work.

Detailed spectroscopic analyses of the stellar atmosphere determined that the star

belongs to the F5 main-sequence spectral type with a temperature of 6475 ± 100 K and high

lithium abundance of log N(Li) = 2.84 ± 0.05. F-type stars with this temperature should

have depleted Li, being close to the Li gap or “Boesgaard gap” (Boesgaard & Tripicco, 1986;

Balachandran, 1995). However, the high amount of Li and a relatively high rotational speed

of v sin(i) = 4.9 ± 1.0 km s-1 indicate that WASP-14 is a young star. Comparing these results

with models by Fortney et al. (2007) for the range of planetary masses and radii led Joshi

et al. (2009) to constrain the age of the system to 0.5–1.0 Gyr.

Joshi et al. (2009) also discuss the high eccentricity of the planet. Because WASP-

14b has a very small orbital distance, probable scenarios for such a significant eccentricity

(their e = 0.091 ± 0.003) would be either that the system age is comparable to the tidal

circularization time scale or there is a perturbing body.

Husnoo et al. (2011) performed long-term radial-velocity measurements to discover or

reject the presence of a third body. They refined the orbital eccentricity to e = 0.088 ± 0.003.

They argue that this planet has undergone some degree of orbital evolution, but that it is

still subject to strong tidal forces. They state that since there is no observable unambiguous

trend in residuals with time, there is no firm evidence for a planetary companion. This
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would establish a new lower limit for the semimajor axis at which orbital eccentricity can

survive tidal evolution for the age of the system. We obtained three secondary eclipse light

curves at 3.6 µm, 4.5 µm, and 8.0 µm using Spitzer. We present analytic light-curve models

that incorporate corrections for systematic effects that include the new Stevenson et al.

(2012a) pixel sensitivity mapping technique, a Keplerian orbital model, estimates of infrared

brightness temperatures, and constraints on atmospheric composition and thermal structure.

In Section 3.3 we describe our observations. Section 2.4 discusses data reduction

procedures. Section 2.5 presents our photometry and Section 2.6 discusses the modeling

techniques and results from each dataset. Section 3.6 presents constraints on the orbit of

WASP-14b, and Section 3.7 reveals the atmospheric structure and composition. In Section

2.9 we discuss our results and in Section 2.10 we present our conclusions. Data files containing

the light curves, best-fit models, centering data, photometry, etc., are included as electronic

supplements to this article.

2.3 OBSERVATIONS

The Spitzer IRAC instrument observed two events; one at 3.6 µm in 2010 March

(Knutson’s program 60021, Warm Spitzer) and one observation simultaneously in two wave-

length bands (4.5 and 8.0 µm) in 2009 March (Harrington’s program 50517, Spitzer cryogenic

mission). The observation at 3.6 µm (channel 1) was made in subarray mode with 2 s ex-
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posures, while the observations at 4.5 and 8.0 µm (channels 2 and 4) were made in stellar

mode (2×2,12) with pairs of 2 s frames taken in the 4.5 µm band for each 12 s frame in the

8.0 µm band. This mode was used to avoid saturation in channel 2.

Table 2.1: Observation Information

Channel Observation Start Time Duration Exposure Number of
Date (JD) (s) Time (s) Frames

Main science observation
Ch1 2010 Mar 18 2455274.4707 28055.4 2 13760
Ch2 2009 Mar 18 2454908.8139 19998.7 2 × 2 2982
Ch4 2009 Mar 18 2454908.8139 19998.7 12 1481

Pre-observation
Ch2+4 2009 Mar 18 2454908.7877 2019 2 213

Post-observation
Ch2+4 2009 Mar 18 2454909.0455 367 2 × 2,12 10

We have pre- and post-observation calibration frames for the 4.5 and 8.0 µm obser-

vation. Prior to the main observation, we exposed the array to a relatively bright source

(see Section 3.5.2). That quickly saturated charge traps in the detector material, reducing

the systematic sensitivity increase during the main observation. Post-eclipse frames of blank

sky permit a check for warm pixels in the aperture. The Spitzer pipeline version used for the

3.6 µm observation is S.18.14.0 and for the 4.8 and 8.0 µm observation is S18.7.0. The start

date of each observation, duration, exposure time and total number of frames are given in

Table 2.1.
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2.4 DATA REDUCTION

2.4.1 Background

Our analysis pipeline is called Photometry for Orbits, Eclipses and Transits (POET).

It produces light curves from Spitzer Basic Calibrated Data (BCD) frames, fits models to the

light curves, and assesses uncertainties. The derived parameters constrain separate orbital

and atmospheric models. In this section we give a general overview of POET. Subsequent

sections will provide details as needed.

Each analysis starts by identifying and flagging bad pixels in addition to the ones de-

termined by the Spitzer bad pixel mask (see Section 2.5). Then we perform centering. Due

to the ∼0.1% relative flux level of secondary-eclipse observations and Spitzer’s relative pho-

tometric accuracy of 2% (Fazio et al., 2004), we apply a variety of centering routines, looking

for the most consistent. We test three methods to determine the point-spread function (PSF)

center precisely: center of light, two-dimensional Gaussian fitting, and least asymmetry (see

Supplementary Information of Stevenson et al., 2010 and Lust et al., 2013). The routines

used for each data set are given below. We then apply 5×-interpolated aperture photometry

(Harrington et al., 2007), where each image is re-sampled using bilinear interpolation. This

allows the inclusion of partial pixels, thus reducing pixelation noise (Stevenson et al., 2012a).

We subtract the mean background within an annulus centered on the star and discard frames

with bad pixels in the photometry aperture.
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Spitzer IRAC has two main systematics, which depend on time and the sub-pixel po-

sition of the center of the star. To find the best time-dependent model (the “ramp”), we fit

a variety of systematic models from the literature, and some of our own, using a Levenberg–

Marquardt χ2 minimizer (Levenberg, 1944; Marquardt, 1963). We use our newly developed

(Stevenson et al., 2012a) BiLinearly Interpolated Subpixel Sensitivity (BLISS) mapping tech-

nique to model intrapixel sensitivity variation (see Section 2.4.2). The BLISS method can

resolve structures inaccessible to the widely used two-dimensional polynomial fit (Knutson

et al., 2008; Machalek et al., 2009; Fressin et al., 2010). It is faster and more accurate than

the mapping technique developed by Ballard et al. (2010), which uses a Gaussian-weighted

interpolation scheme and is not feasibly iterated in each step of Markov-Chain Monte Carlo

(MCMC; see next section for details on modeling systematics).

To determine the best aperture size, we seek the smallest standard deviation of nor-

malized residuals (SDNR) among different aperture sizes for the same systematic model

components. The best ramp model at that aperture size is then determined by applying the

Bayesian (BIC) and Akaike (AIC) information criteria (Liddle, 2007), which compare models

with different numbers of free parameters (see Section 2.4.3). The BIC and AIC cannot be

used to compare BLISS maps with differing grid resolutions, or BLISS versus polynomial

maps (see Section 2.4.2), but BLISS has its own method for optimizing its grid (Stevenson

et al., 2012a).
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To explore the parameter space and to estimate uncertainties, we use an MCMC

routine (see Section 2.4.3). We model the systematics and the eclipse event simultaneously,

running four independent chains until the Gelman & Rubin (1992) convergence test for

all free parameters drops below 1%. Our MCMC routine can model events separately or

simultaneously, sharing parameters such as the eclipse midpoint, ingress/egress times or

duration.

Finally, we report mid-times in both BJDUTC (Barycentric Julian Date, BJD, in Co-

ordinated Universal Time) and BJDTT (BJDTDB, Barycentric Dynamical Time), calculated

using the Jet Propulsion Laboratory (JPL) Horizons system, to facilitate handling disconti-

nuities due to leap seconds and to allow easy comparison of eclipse mid-times (see Eastman

et al., 2010 for discussion of timing issues).

2.4.2 Modeling Systematics

Modeling systematics is critical to recovering the extremely weak signal of an ex-

oplanetary atmosphere against the stellar and/or background noise, particularly when us-

ing instrumentation not specifically built for the job. Several re-analyses of early Spitzer

eclipse data sets underscore this. For example, our group’s initial analysis of an HD 149026b

lightcurve Harrington et al. (2007) found two χ2 minima, with the deeper eclipse having

the deeper minimum. This analysis used the bootstrap Monte Carlo technique as described
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without statistical justification and too simplistically by Press et al. (1992). The re-analysis

by Knutson et al. (2009b), using MCMC, preferred the lower value, which additional obser-

vations confirmed. Our own re-analysis, by Stevenson et al., 2012a, agreed with Knutson

et al.. Another example is the Désert et al. (2009) re-analysis of the putative detection of

H2O on HD 189733b by Tinetti et al. (2007). Désert et al. found a shallower transit that did

not support the detection. Although the number of such discrepancies in the Spitzer eclipse

and transit literature is not large compared to the many dozens of such measurements, they

serve as cautionary tales. It is critical to use only the most robust statistical treatments

(e.g., MCMC rather than bootstrap), to compare dozens of systematic models using objec-

tive criteria (like BIC), and to worry about minutiae like the differences between various

centering and photometry methods. Re-analyses of photometric work done with such care

have uniformly been in agreement. Most of these appear as notes in original papers stating

that another team confirmed the analysis (e.g., Stevenson et al., 2012b).

Spitzer’s IRAC channels can exhibit both time-dependent and position-dependent

sensitivity variations. These variations can be up to ∼3%, much more than typical (0.01%–

0.5%) eclipse depths. The 3.6 and 4.5 µm bands use InSb detectors, and the 5.8 and 8.0 µm

bands use Si:As detectors. Although each type of systematic is strongest in a different set of

channels, many authors reported both systematics in both sets of channels (Stevenson et al.,

2010; Reach et al., 2005; Charbonneau et al., 2005; Campo et al., 2011), so we test for them

all in each observation.
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The time-varying sensitivity (“ramp”) is most pronounced at 8.0 µm (Charbonneau

et al., 2005; Harrington et al., 2007) and is very weak, often nonexistent, in the InSb channels.

It manifests as an apparent increase in flux with time, and at 8.0 µm it is attributed to charge

trapping. Observing a bright (>250 MJy sr-1 in channel 4), diffuse source (“preflashing”)

saturates the charge traps and produces a flatter ramp (Knutson et al., 2009b). An eclipse is

easily separated from the ramp by fitting, but not without adding uncertainty to the eclipse

depth. Model choice is particularly important for weak eclipses, where a poor choice can

produce an incorrect eclipse depth. To model the ramp effect, we test over 15 different forms

of exponential, logarithmic, and polynomial models (see Stevenson et al., 2012a, Equations

(2)–(11)).

InSb detectors can have intrapixel quantum efficiency variations, which strongly af-

fects Spitzer’s underresolved PSF and requires accurate (∼0.01-pixel) determination of the

stellar center location. This intrapixel sensitivity is greatest at pixel center and declines

toward the edges by up to 3.5% (Morales-Calderón et al., 2006). It is also not symmetric

about the center and the amplitude of the effect varies from pixel to pixel. Over the total

duration of the observation, the position varies by several tenths of a pixel. Since the stellar

center oscillates over this range frequently, this systematic is adequately sampled during a

single eclipse observation. Observing with fixed pointing minimizes the effect (Reach et al.,

2005; Charbonneau et al., 2005; Harrington et al., 2007; Stevenson et al., 2010).
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Our BLISS method (Stevenson et al., 2012a) maps a pixel’s sensitivity on a fine

grid of typically over 1000 “knots” within the range of stellar centers. It then uses bilinear

interpolation to calculate the sensitivity adjustment for each observation from the nearest

knot values (M(x, y) in Equation (3.1)). To compute the map, we divide the observed fluxes

by the eclipse and ramp models, and assume that any residual fluxes are related to the stellar

center’s position in the pixel (hence the need for accurate stellar centering; see above). We

average the residuals near each knot to calculate its value. Each data point contributes to

one knot, and each knot comes from a small, discontiguous subset of the data. The map is

recalculated after each MCMC iteration and is used to calculate χ2 in the next iteration.

The MCMC does not directly vary the knot values, but the values change slightly at each

iteration. This method quickly converges.

The crucial setup item in BLISS is determining the knot spacing (i.e., bin size or

resolution). The bin size must be small enough to catch any small-scale variation, but also

large enough to ensure no correlation with the eclipse fit (see Section 3.5.1). Either bilinear

(BLI) or nearest-neighbor (NNI) interpolation can generate the sensitivities from the knots.

Assuming accurate centering, BLI should always outperform NNI. The bin size where NNI

outperforms BLI thus indicates the centering precision and determines the bin size for that

particular data set. If NNI always outperforms BLI, that indicates very weak intrapixel

variability, and intrapixel modeling is unnecessary.
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Compared to polynomial intrapixel models, the SDNR improves with BLISS mapping,

but this would be expected of any model with more degrees of freedom. Previously, we have

used BIC and AIC to evaluate whether a better fit justifies more free parameters. Both BIC

and AIC are approximations to the Bayes factor, which is often impractical to calculate. Both

criteria apply a penalty to χ2 for each additional free parameter (k, in Equations (2.2) and

(2.3)), allowing comparison of model goodness-of-fit to the same dataset for different models.

However, both criteria assume that every data point contributes to each free parameter. That

is, they assume that changing any data point potentially changes all of the free parameters,

as do all other information criteria we have researched. However, each BLISS knot value

comes from only a specific, tiny fraction of the data. Changing any individual data point

changes exactly one BLISS knot. Thus, the knots each count for much less than one free

parameter in the sense of the assumptions of BIC and AIC, but not zero (i.e., they each

increment k by much less than 1). Because BLISS violates their assumptions, BIC and AIC

are inappropriate for comparing models using BLISS to models that do not use it. It is still

possible to compare two models using BLISS maps with the same knot grid because the

increment in the penalty terms would be the same for both grids and would thus not affect

the comparison. See Appendix A of Stevenson et al. (2012a) for a more statistically rigorous

discussion.

At this point in BLISS’s development, we are still working on an appropriate compar-

ison metric. What we do know is that BLISS resolves fine detail in pixel sensitivity that, in
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many cases, is not compatible with any low-order polynomial form. For example, Stevenson

et al. (2012a) show (and compensate for) the effects of pixelation in digital aperture pho-

tometry, and demonstrate how our interpolated aperture photometry reduces pixelation bias.

For this paper, the eclipse-depth values are similar between BLISS and non-BLISS analyses,

and the residuals are smaller with BLISS, since it is taking out some of these effects in a way

that low-order polynomial models cannot (see Figure 2.5 and examples in Stevenson et al.,

2010). We have a large excess of degrees of freedom, so we adopt the BLISS results. We

continue to use BIC for ramp-model selection.

2.4.3 Modeling Light Curves and the Best Fit Criteria

To find the best model, for each aperture size we systematically explore every com-

bination of ramp model and intrapixel sensitivity model. The final light curve model is:

F (x, y, t) = FsR(t)M(x, y)E(t), (2.1)

where F (x, y, t) is the aperture photometry flux, Fs is the constant system flux outside

of the eclipse, R(t) is the time-dependent ramp model, M(x, y) is the position-dependent

intrapixel model and E(t) is the eclipse model (Mandel & Agol, 2002). We fit each model

with a Levenberg–Marquardt χ2 minimizer and calculate SDNR, BIC, and AIC (note that

parameter uncertainties, and hence MCMC, are not needed for these calculations).
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To estimate uncertainties, we use our MCMC routine with the Metropolis–Hastings

random walk algorithm, running at least 106 iterations to ensure accuracy of the result. This

routine simultaneously fits eclipse parameters and Spitzer systematics. It explores the pa-

rameter phase space, from which we determine uncertainties fully accounting for correlations

between the parameters. The depth, duration, midpoint, system flux, and ramp parameters

are free. Additionally, the routine can model multiple events at once, sharing the eclipse

duration, midpoint and ingress/egress times. These joint fits are particularly appropriate

for channels observed together (see Campo et al., 2011 for more details about our MCMC

routine).

To avoid fixing any model parameter during MCMC, we use Bayesian priors (e.g.,

Gelman, 2002). This is particularly relevant for noisy or low signal-to-noise (S/N) datasets

where some parameters like ingress and egress times are not well constrained by the obser-

vations. For them we use informative priors taken from the literature (see Section 2.6 for

the values used in this analysis).

Photometric uncertainties used in our analyses are derived by fitting an initial model

with a Levenberg–Marquardt χ2 minimizer and re-scaling it so reduced χ2 = 1. This is

needed because Spitzer pipeline uncertainties have often been overestimated (Harrington

et al., 2007), sometimes by a factor of two or three. Along with the BCD frames, the

Spitzer Science Center provides images giving the uncertainties of the BCD pixels. The

calculations behind these images include uncertainty in the absolute flux calibration, which
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effect we divide out. The Spitzer-provided errors are thus too large for exoplanet eclipses

and transits, but they do contain information about the relative noisiness of different pixels.

Most workers ignore the uncertainty frames and calculate a single per-frame uncer-

tainty from their root mean square (rms) model residuals, sometimes taken over just a short

time span. This has the effect of fixing the reduced chi-squared to 1, and possibly ignoring

red noise, depending on the time span of residuals considered. We do use the Spitzer-provided

uncertainties, resulting in slightly differing uncertainties per frame. However, this approach

can produce reduced chi-squared values of 0.3, and sometimes 0.1, as the Spitzer uncer-

tainties are computed with absolute calibration in mind. So, we also re-scale the per-frame

uncertainties to give a reduced chi-squared of 1. As a practical matter, the variation in our

uncertainties is a few percent and the typical uncertainty is the same as with the rms method

applied to the entire dataset, which accounts for a global average of red noise.

Rescaling the uncertainties is changing the dataset, and BIC can only compare differ-

ent models applied to a single dataset. So, we use just one rescaling per aperture size, and fit

all the models to that dataset. This works because the reasonable models for a given dataset

all produce nearly the same scaling factor. The rank ordering of models is not altered by

the scaling factor. In the Section 3.5.3 we lists the rescaling factor for each dataset.

After deriving new uncertainties, we re-run the minimizer and then run MCMC. If

MCMC finds a lower χ2 than the minimizer, we re-run the minimizer starting from the

MCMC’s best value. The minimizer will find an even better χ2. We then restart the MCMC
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from the new minimizer solution. We ensure that all parameters in four independent MCMC

chains converge within 1% according to the Gelman & Rubin (1992) test. We also inspect

trace plots for each parameter, parameter histograms, and correlation plots for all parameter

pairs.

Our measures of goodness of fit are SDNR, BIC, and AIC values (Liddle, 2007):

BIC = χ2 + k lnN, (2.2)

AIC = χ2 + 2k, (2.3)

where k is the number of free parameters, N is the number of data points. These criteria

penalize additional free parameters in the system, with better fits having lower values. To

appropriately compare BIC or AIC values for a given aperture size, and determine the best

fit, we use the same uncertainties for each dataset, and model all combinations of ramp

models and intrapixel model. SDNR values are used to compare different aperture sizes

using the same model. The lowest value defines the best aperture size.

Equally important is the correlation in the residuals (see Section 3.5.1). We plot and

compare the scaling of binned model residuals versus bin size (Pont et al., 2006; Winn et al.,

2008) with the theoretical 1/
√
N scaling for the rms of Gaussian residuals. A significant

deviation between those two curves indicates time-correlated variation in the residuals and

possible underestimation of uncertainties if only their point-to-point variation is considered.
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Note that our uncertainty estimation uses the residuals’ global rms, so we already account

for a global average of correlated noise.

After MCMC is finished, we study parameter histograms and pairwise correlations

plots, as additional indicators of good posterior exploration and convergence.

2.5 WASP-14b PHOTOMETRY

For our analyses, we used BCD frames generated in the Spitzer IRAC pipeline (Fazio

et al., 2004). The pipeline version used for each observation is given in Section 3.3. Our data

reduction procedure started with applying Spitzer’s bad pixel masks and with our procedure

for flagging additional bad pixels (Harrington et al., 2007). In each group of 64 frames and

at each pixel position, we applied two-iteration outlier rejection, which calculated the frame

median and the standard deviation from the median (not mean), and flagged pixels that

deviated by more than 4σ. Then we found the stellar centroid for the photometry by using

a two-dimensional Gaussian fit to data in an aperture radius of four pixels.

After subtracting the mean background (annuli given in Section 3.5.3), light curves

were extracted using 5×-interpolated aperture photometry (Harrington et al., 2007) for every

aperture radius from 2.25 to 4.25 pixels in 0.25 pixel steps.

To calculate the BJD of each exposure we used the mid-exposure time of each frame,

based on the UTCS-OBS value in the FITS header and the frame number. We performed
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our barycentric light-time correction using our own code and the coordinates of the Spitzer

spacecraft from the Horizons ephemeris system of the JPL. The times are corrected to

BJDTDB to remove the effects of leap seconds and light-travel time across the exoplanet’s

orbit.
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Figure 2.1: Raw (left), binned (center, 60 points per bin), and systematics-corrected (right)
secondary-eclipse light curves of WASP-14b at 3.6, 4.5, and 8.0 µm. The results are normal-
ized to the system flux and shifted vertically for clarity. The colored lines are best-fit models
and the error bars are 1σ uncertainties. The black lines in the binned plots are models with-
out an eclipse. As seen in the same plots of channels 2 and 4, a ramp model is not needed
to correct for the time-dependent systematic even without clipping any initial data points.
The channel 1 model omits early data due to an initial pointing drift (see Section 3.5.1).
(A color version of this figure is available in the online journal.)
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2.6 WASP-14b SECONDARY ECLIPSES

Here, we discuss each channel’s analysis and model selection in detail, particularly

focusing on channel 1, due to the demanding analysis of that data set. In Subsection 3.5.1

we give our control plots, as an example of how we verify that our results are indeed the

best solution for the particular data set. We present each channel separately, followed by a

joint fit to all data. Figure 2.1 shows our best-fit eclipse light curves. Figure 2.2 shows how

the rms of the residuals scales with bin size, a test of correlated noise. In the Appendix we

summarize parameters for the WASP-14 system as derived from this analysis and found in

the literature.

2.6.1 Channel 1–3.6 µm

The channel-1 observation lasted 7.8 hr, giving ample baseline before and after the

secondary eclipse. The telescope drifted at the start of the observation. Models with initial

data points removed produce better fits with lower values for SDNR. We therefore ignored

some initial data (∼36 minutes, 1100 of 13760 points). Figure 2.3 compares SDNR values

for models with different ramps and with and without exclusion of the initial data.

Starting from an aperture radius of 2.25 pixels and continuing in increments of 0.25

pixels, we tested all of the ramp models (linear, rising, exponential, sinusoidal, double expo-

nential, logarithmic, etc.). Corresponding equations are listed in Stevenson et al. (2012a).
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Figure 2.2: Correlations of the residuals for the three secondary eclipse light curves of WASP-
14b, following Pont et al. (2006). The black line represents the rms residual flux vs. bin size.
The red line shows the predicted standard error scaling for Gaussian noise. The green line
shows the Poisson-noise limit. The black vertical lines at each bin size depict 1σ uncertainties
on the rms residuals, rms/

√
2N , where N is the number of bins (see Jeffreys, 1961, Section

3.41 and Sivia & Skilling, 2006, Section 3.3 for a derivation including the factor of two, which
arises because this is the uncertainty scaling of the rms, not the mean). The dotted vertical
blue line indicates the ingress/egress timescale, and the dashed vertical green line indicates
the eclipse duration timescale. Large excesses of several σ above the red line would indicate
correlated noise at that bin size. Inclusion of 1σ uncertainties shows no noise correlation
between the ingress/egress and eclipse duration timescales anywhere except for channel 1
ingress/egress, which hints 3σ at a correlation (adjacent points on this plot are themselves
correlated). Since the relevant timescale for eclipse depths is the duration timescale, we do
not scale the uncertainties. See Section 2.6.1.1 for further discussion.
(A color version of this figure is available in the online journal.)

To determine the best solution we consider our best-fit criteria (see Section 2.4.3) and study

the correlation plots. Most of the models produced obvious bad fits, so minimizer and shorter

MCMC runs eliminated them. The best aperture radius is 2.75 pixels (see Figure 2.3, bot-

tom panel). We tested the dependence of eclipse depth on aperture radius (Anderson et al.,

2010). The trend in some events may indicate a slightly imperfect background removal (see

Figure 2.4). The effect is less than 1σ on the eclipse depth.
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Figure 2.3: SDNR vs. aperture size for different ramp models in channel 1. A lower value
indicates a better model fit. Top: all observational points included (no-preclip). Bottom:
same, but with 1100 initial points excluded (preclip).
(A color version of this figure is available in the online journal.)
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Figure 2.4: Best-fit eclipse depths as a function of photometry aperture size for channel
1. The four best ramp models are plotted (see bellow). The red point indicates the best
aperture size for that channel. The eclipse-depth uncertainties are the result of 105 MCMC
iterations. The trend shows insignificant dependence of eclipse depth on aperture size (less
than 1σ).
(A color version of this figure is available in the online journal.)

Figure 2.5 presents the channel-1 BLISS map and Figure 2.6 gives the correlation

coefficients between the knot values and the eclipse depth. As stated in the Section 2.4.2, the

most important variable to consider with BLISS is the bin size, which defines the resolution

in position space. The position precision for channel 1, measured as the rms of the position

difference on consecutive frames, is significantly different for the x and y axes (see Figure 2.7).

We considered a range of bin sizes for both BLI and NNI around the calculated precision.
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Figure 2.5: Top: BiLinearly Interpolated Subpixel Sensitivity (BLISS) map of channel 1.
Redder (bluer) colors indicate higher (lower) subpixel sensitivity. The horizontal black line
defines the lower pixel boundary. Bottom: Pointing histogram. Colors indicate the number
of points in a given bin.
(A color version of this figure is available in the online journal.)
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The best bin size for this data set, determined when NNI outperformed BLI, is 0.004 pixels

for x and 0.01 for y.
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Figure 2.6: Correlation coefficients between eclipse depth and computed BLISS map knots
for channel 1. The correlation regions (in red) indicate that it is necessary to compute the
BLISS map at each MCMC step, to assess the uncertainty on the eclipse depth correctly.
(A color version of this figure is available in the online journal.)

We also tested two-dimensional polynomial intrapixel models (Knutson et al., 2008;

Stevenson et al., 2010; Campo et al., 2011):

VIP(x, y) = p1y
2 + p2x

2 + p3xy + p4y + p5x+ 1, (2.4)

where x and y are relative to the pixel center nearest the median position and p1–p5 are

free parameters. As noted in Section 2.4.2, we currently lack a quantitative model-selection
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criterion between polynomial and BLISS intrapixel models, but BIC can apply within a

group of BLISS models with the same grid. BLISS reduces SDNR significantly compared to

polynomial models (see Table 2.2), but so would many models with more free parameters. We

use BLISS because it can handle variations that polynomials cannot follow. See Stevenson

et al. (2012a) for other tests that compare polynomial and BLISS intrapixel models.
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Figure 2.7: BLISS map and data of channel 1 integrated along the x (right) and y (left)
axes. BLISS effectively fits the position-dependent sensitivity variation.
(A color version of this figure is available in the online journal.)

Table 2.2: Comparison BLISS And Best Polynomial Model

Ramp Model BLISS Polynomial-Quadratic
SDNR BIC SDNR BIC

No ramp 0.003313 12350.0 0.0033853 12593.2
Linear 0.003311 12342.3 0.0033852 12588.5
Sinusoidal 0.003316 12342.2 0.0033855 12590.5
Quadratic 0.003310 12351.5 0.0033850 12597.3

To determine the uncertainties in the model parameters, we explored the posterior

probability distribution of the model given the data with MCMC. We used a Bayesian in-
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formative prior for the secondary-eclipse ingress and egress time (t2−1 = 1046.8 ± 43.9 s),

calculated from unpublished WASP photometric and radial-velocity data. All other param-

eters (eclipse midpoint, eclipse duration, eclipse depth, system flux, and ramp parameters)

were left free.

Table 2.3: Channel 1 Ramp Models

Ramp Model SDNR BIC Eclipse Depth (%)
No ramp 0.0033129 12350.0 0.184 ± 0.007
Linear 0.0033105 12342.3 0.187 ± 0.007
Sinusoidal 0.0033162 12342.2 0.193 ± 0.007
Quadratic 0.0033105 12351.5 0.190 ± 0.010

Considering all the above criteria (see also Section 2.4.3), we selected four ramp

models (see Table 2.3). The first is without a ramp model, while the other three are:

R(t) = 1 + r0 (t− 0.5), (2.5)

R(t) = 1 + a sin (2π(t− t1)) + b cos (2π(t− t2)), (2.6)

R(t) = 1 + r1 (t− 0.5) + r2 (t− 0.5)2, (2.7)

where t is orbital phase and a, b, r0, r1 and r2 are free parameters.
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The models produce almost identical SDNR values. However, upon studying the BIC

values and the inconsistent trend in the eclipse depths between models with similar BIC

values (see Table 2.3), we concluded that there is no single best ramp model for this data

set.

Therefore, we again use Bayes’s theorem and the BIC approximation to the Bayes

factor to compare two different models to the data. Following Raftery (1995) Equations (7)

and (8), we calculate the posterior odds, i.e., to which extent the data support one model

over the other:

Posterior Odds = Bayes Factor x Prior Odds, (2.8)

P (M2 |D)

P (M1 |D)
=

P (D |M2)

P (D |M1)

P (M2)

P (M1)
, (2.9)

where M1 and M2 denote two models, and D denotes the data. P (M1 |D) and P (M2 |D)

denote the posterior distributions of the models given the data, P (D |M1) and P (D |M2)

denote the marginal probabilities of the data given the model, and P (M1) and P (M2) denote

the prior probabilities of the models.

The first term on the right side of Equation (2.9) is the Bayes factor for model 2

against model 1, which we will denote as B21. If B21 > 1, the data favor model 2 over model

1, and vise versa.
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Raftery (1995, see his Equations (20)–(22)) further derives an approximation to the

Bayes factor, using BIC, that defines the ratio of marginal probabilities for the two models

as:

B21 =
P (D |M2)

P (D |M1)
≈ e−∆BIC/2, (2.10)

where ∆BIC = BIC(M2) - BIC(M1). We calculate this quantity for each of our ramp models.

Table 2.4: Bayes Factor for Model 2 against Model 1

Ramp Model BIC ∆ BIC B21 1 /B21

No ramp 12350.0 7.8 0.02 49.4
Linear 12342.3 0.1 0.95 1.05
Sinusoidal 12342.2 0.0 ... ...
Quadratic 12351.5 9.3 0.009 104.6

Table 2.4 gives the probability ratio, or the Bayes factor, for each of our ramp models

compared to the model with the smallest BIC value (the sinusoidal model, see Table 2.3).

These models are all within the 3σ confidence interval of the best model, indicating an

ambiguous situation. In the atmospheric modeling below, we use the eclipse depth and

uncertainty from each of the two extreme models (no-ramp and sinusoidal), and show that

the resulting atmospheric models are consistent with each other. A representative single

eclipse depth and uncertainty that spans the two points from the joint fit model (see Section

3.5.3) is 0.19% ± 0.01%, and the corresponding brightness temperature is 2242 ± 55 K.
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2.6.1.1 On WASP-14 Activity

In this channel, we detect time correlation of noise at the 3σ level on time scales of

< 103 s and . 2σ up to about the 3000 s scale (Figure 2.2, left panel, and Figure 2.8). The

longest time scale with even a 2σ detection of correlation is about 1/7 the eclipse duration,

so we do not expect a major effect on the planetary results. Although not perfect, our ramp

and intrapixel models typically remove instrumental effects (e.g., see the middle and right

panels of Figure 2.2), raising the question of stellar activity.
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Figure 2.8: Residuals for the channel 1 observations (lower panel) display some level of
correlated noise both in and out of the eclipse.
(A color version of this figure is available in the online journal.)

One would not expect a hot mid-F star (with a small convective zone) like WASP-14

to be active or to show much spot activity even if it were a moderate rotator. Nonetheless,
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we analyzed the WASP light curve of WASP-14 to determine whether it shows periodic

modulation due to the combination of magnetic activity and stellar rotation. The stellar

rotation values derived by Joshi et al. (2009) together with the estimated stellar radius

imply a rotation period of about 12 days or more, assuming that the rotation axis of the star

is approximately aligned with the orbital axis of the planet. We used the sine-wave fitting

method described by Maxted et al. (2011) to calculate a periodogram over 4096 uniformly

spaced frequencies from 0 to 1.5 cycles day-1. The false-alarm probability (FAP) for the

strongest peak in these periodograms was calculated using a bootstrap Monte Carlo method

also described by Maxted et al. (2011).

We did not find any significant periodic signals (FAP < 0.05) in the WASP data, apart

from frequencies near 1 cycle day-1, which are due to instrumental effects. We examined the

distribution of amplitudes for the most significant frequency in each Monte Carlo trial and

used these results to estimate a 95% upper confidence limit of 1 milli-magnitude (0.1%) for

the amplitude of any periodic signal in the lightcurve.

In our work on dozens of Spitzer eclipses, we have often found the same channel

to behave differently at different times, even on the same star. Our systematics removal

algorithms correct the worst effects, which are consistent, but there is sometimes still some

significant baseline scatter or oscillation. While one might expect certain kinds of stars to

be relatively stable, Spitzer can reach σ ∼ 0.01% eclipse-depth sensitivity, and non-periodic
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stellar oscillations of this scale and at these wavelengths are not well studied. So, it is not

fully clear whether these effects come from the observatory or the star.

Since scatter and oscillation often persist during an eclipse (when the planet is behind

the star), and since a change in planetary signal of the magnitude seen would generally mean

an implausibly dramatic change in the planet, we feel justified in treating the scatter or

oscillation phenomenologically. In this case, our per-point uncertainties account for a global

average of correlated noise. MCMC accounts for any correlation between eclipse and model

parameters, and the rms versus bin size analysis, now including error bars, determined that

the time correlation was not significant near the time scale of interest (Figure 2.2). Also,

a larger uncertainty was assigned to the eclipse depth based on model ambiguity (above),

which provides an additional margin of safety.

2.6.2 Channel 2–4.5 µm

Channel 2 and 4 were observed at the same time. We first modeled each channel

separately, determining the best aperture size, time-variability (ramp) model, and bin size

for BLISS. Then we applied a joint fit. For both channels 2 and 4, we again used the Bayesian

informative prior for the values of ingress and egress times (t2−1 = 1046.8± 43.9 s), calculated

from unpublished WASP photometric and radial-velocity data. All other parameters were

left free.
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The observation in channel 2 lasted 5.5 hr. There was no stabilization period observed

in the data, so no initial points were removed from the analysis.
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Figure 2.9: Channel 2 comparison between linear and no ramp models. The plots show the
SDNR and ∆BIC vs. aperture size. A lower value indicates a better model fit.
(A color version of this figure is available in the online journal.)

Table 2.5: Channel 2 Ramp Models

Ramp Model SDNR BIC Eclipse Depth (%)
No Ramp 0.0044726 2964.2 0.224 ± 0.012
Linear 0.0044725 2971.9 0.224 ± 0.018
Quadratic 0.0044723 2979.9 0.241 ± 0.025
Rising 0.0044726 2980.1 0.224 ± 0.021
Lin+Log 0.0044690 2983.9 0.228 ± 0.017

Following the criteria in Section 2.4.1, we tested each of our ramp models (Table

2.5) at each of the aperture radii from 2.25–4.25 pixels in 0.25 pixel increments. Figure

2.9 shows SDNR and ∆BIC versus aperture size for our two best ramp models. We note
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insignificantly different SDNR values between the two ramp models, which suggests that the

best dataset (aperture radius of 2.50) does not depend on the model being fit. The BIC

favors the no-ramp model. The no-ramp model is 47 times more probable than the linear

model.

We also tested the dependence of eclipse depth on aperture radius (see Figure 2.10).

The eclipse depths are well within 1σ.
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Figure 2.10: Best-fit eclipse depths as a function of photometry aperture size for channel 2.
The red point indicates the best aperture size for that channel. The eclipse-depth uncer-
tainties are the result of 105 MCMC iterations. The trend shows insignificant dependence of
eclipse depth on aperture size (much less than 1σ).
(A color version of this figure is available in the online journal.)

Prior to the science observations in channels 2 and 4, we observed a 212-frame

preflash (see Section 3.3) on a diffuse, uniformly bright HII emission region centered at

48



α = 10, 45, 02.2, δ = − 59, 41, 10.1. The portion of the array within the aperture of the

science observation in each channel was uniformly illuminated. For channel 2, the average

flux within the 2.5 pixel aperture is ∼200 MJy sr-1, while for the 3.5 pixel aperture of channel

4 it is ∼1800 MJy sr-1.

As expected, channel 2 shows no increase in flux during the preflash observation (see

Figure 2.11, left panel) nor during the main science observation (see Figure 2.1, raw data).

The preflash observation in channel 4 saturated within the 30 minutes, eliminating the ramp

effect in channel 4.
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Figure 2.11: Preflash light curves for channel 2 (left) and channel 4 (right). The plots show
binned data over 30 minutes of observation. The preflash source is a bright HII emission
region. Without a preflash, the science observations would show a similar or possibly longer
ramp in channel 4.

Regardless of the preflash observations, we tested the full set of ramp equations and

discarded obvious bad fits after shorter runs. Among acceptable fits, the lowest BIC value

(see Table 2.5) determined that there is no significant ramp effect in the channel 2 dataset.
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Each observation ended with a 10-frame, post-eclipse observation of blank sky in the

same array position as the science observations to check for warm pixels in the photometric

aperture. There were none.

To remove intrapixel variability we again apply our new BLISS technique, and also

Equation (2.4). As with channel 1, the projection plot shows BLISS following significant

variations that the polynomial does not fit well. The position precisions in channel 2 are

0.02 pixels for x and 0.014 pixels for y. The best bin sizes are 0.028 pixels in x and 0.023

pixels in y. The best aperture size, ramp model, and BLISS bin sizes are then used in our

joint fit, which gave us the eclipse depths and the brightness temperatures in Section 3.5.3.

2.6.3 Channel 4–8.0 µm

Again, no stabilization period was observed in the 8.0 µm dataset data set, hence no

initial data points were removed. The preflash eliminated the ramp entirely, according to

BIC (Table 2.6).

Table 2.6: Channel 4 Ramp Models

Ramp Model SDNR BIC Eclipse Depth (%)
No ramp 0.0039799 1459.2 0.181 ± 0.013
Linear 0.0039770 1464.3 0.182 ± 0.012
Rising 0.0039799 1466.4 0.198 ± 0.030
Quadratic 0.0039763 1471.3 0.181 ± 0.018
Lin+Log 0.0039799 1481.0 0.181 ± 0.024
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Figure 2.12 plots the SDNR and ∆BIC values versus aperture size at 8.0 µm. For

our two best ramp models (Table 2.6) the smallest SDNR value is at 3.50 pixels (which

determined our best aperture size), and the lowest BIC value at that aperture size is for the

model without a ramp. We again test for the dependence of eclipse depth on aperture size

(Figure 2.13).
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Figure 2.12: Channel 4 comparison between linear and no-ramp models. The plots show
SDNR and ∆BIC vs. aperture size. A lower value indicates a better model fit.
(A color version of this figure is available in the online journal.)

Even though intrapixel variability is not so strong in channels 3 and 4, pixelation can

be significant at any wavelength if the aperture is small (see Stevenson et al., 2012a and

Anderson et al., 2011). This justifies testing whether BLISS can give a better fit. Upon

testing a full set of bin sizes, we concluded that NNI always outperforms BLI, indicating

that variability from pixelation is insignificant.
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Figure 2.13: Best-fit eclipse depths as a function of photometry aperture size for channel 4.
The red point indicates the best aperture size for that channel. The eclipse-depth uncer-
tainties are the result of 105 MCMC iterations. This channel has the lowest S/N (∼8). The
aperture size of 2.25 pixels shows excess noise. Excluding it, the trend exhibits insignificant
dependence of eclipse depth on aperture size (less than 1σ).
(A color version of this figure is available in the online journal.)

2.6.4 Joint Fit

Our final models fit all data simultaneously. The models shared a common eclipse

duration for channels 1, 2, and 4 and a common midpoint time for channels 2 and 4, which

were observed together. We used the same priors as above. The Gelman & Rubin (1992)

convergence diagnostic dropped below 1% for all free parameters after 50,000 iterations.

Histograms for some interesting parameters for channel 1 appear on the left side of Figure

2.14. The middle plots show the pairwise correlations (marginal distributions) of these
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parameters. The histograms on the right are for the joint fit of channels 2 and 4. All other

histograms are similarly Gaussian, confirming that the phase space minimum is global and

defining the parameter uncertainties. Tables 2.7 and 2.8 report two joint-fit results for our

two best ramp models in channel 1 (linear and sinusoidal), along with photometric results

and modeling choices from the individual fits. Light-curve files including the best-fit models,

centering data, photometry, etc., are included as electronic supplements to this article.
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Figure 2.14: Left and Center: sample parameter histograms and parameter correlations for
channel 1. The background color depicts the absolute value of the correlation coefficient.
Right: sample parameter histograms for channel 2 and channel 4, produced in the joint fit.
All other parameter histograms are similarly Gaussian. Every 10th step in the MCMC chain
is used to decorrelate consecutive values.
(A color version of this figure is available in the online journal.)

2.7 ORBIT

We fit the midpoint times from the Spitzer lightcurves simultaneously with the avail-

able radial velocity curves and transit photometry in order to provide updated estimates of
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system orbital parameters. The timing of secondary eclipse is a strong constraint on the

shape and orientation of the orbit. The two eclipses for the linear and sinusoidal joint fit

(Tables 2.7 and 2.8) have an insignificant difference in phases (less than 0.5σ), and the linear

joint fit has slightly lower BIC value. Hence, we picked the linear joint fit phases for the use in

the orbital analysis. The two eclipses occur at phases 0.4825 ± 0.0003 and 0.4841 ± 0.0005

(using the Joshi et al., 2009 ephemeris), with a weighted mean after a 37 s eclipse-transit

light-time correction of 0.48273 ± 0.00025, indicating that e cosω = - 0.0271 ± 0.0004. The

phases differ from each other by approximately 3σ, but depend strongly on the accuracy of

the ephemeris used to compute them.

We fit a Keplerian orbit model to our secondary eclipse times along with radial

velocity data from Husnoo et al. (2011) and Joshi et al. (2009), and transit timing data from

both amateur observers and WASP-14b’s discovery paper (Joshi et al., 2009). The entire

data set comprised 38 RV points, six of which were removed due to the Rossiter-McLaughlin

effect, 30 transits, and two eclipses (see Table 2.9). All times were adjusted to BJDTDB

(Eastman et al., 2010). The errors were estimated using our MCMC routine. This fit gave

e = 0.087 ± 0.002 and ω = 107.1±0.5. We did not adjust for any anomalous eccentricity

signal from the stellar tidal bulge as described by Arras et al. (2012) because the predicted

amplitude of this effect is smaller than the uncertainty on the eccentricity, and much smaller

than the eccentricity itself.
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Table 2.7: Joint Best-fit Eclipse Light-curve Parameters (Channel 1–Linear Ramp)

Parameter Channel 1 Channel 2 Channel 4
Array position (x̄, pixel) 14.16 23.82 24.6
Array position (ȳ, pixel) 15.69 24.11 21.9
Position consistencya(δx, pixel) 0.005 0.02 0.021
Position consistencya(δy, pixel) 0.012 0.014 0.025
Aperture size (pixel) 2.75 2.5 3.5
Sky Annulus inner radius (pixel) 8.0 12.0 12.0
Sky Annulus outer radius (pixel) 20.0 30.0 30.0
System flux Fs (µJy) 102802± 4 66083± 7 24381± 3
Eclipse depth (%) 0.187± 0.007 0.224± 0.018 0.181± 0.022
Brightness temperature (K) 2225± 39 2212± 94 1590± 116
Eclipse midpoint (orbits) 0.4825± 0.0003 0.4842± 0.0005 0.4842± 0.0005
Eclipse midpoint (BJDUTC –2,450,000) 5274.6609± 0.0006 4908.9290± 0.0011 4908.9290± 0.0011
Eclipse midpoint (BJDTDB –2,450,000) 5274.6617± 0.0006 4908.9298± 0.0011 4908.9298± 0.0011
Eclipse duration (t4−1, hrs) 2.59± 0.03 2.59± 0.03 2.59± 0.03
Ingress/egress time (t2−1, hrs) 0.290± 0.007 0.290± 0.007 0.290± 0.007
Ramp name linear ... ...
Ramp, linear term (r0) 0.0044± 0.0010 ... ...
Intrapixel method BLISS BLISS ...
BLISS bin size in x (pixel) 0.004 0.028 ...
BLISS bin size in y (pixel) 0.01 0.023 ...
Minimum number of points per bin 4 5 ...
Total frames 13693 2972 1432
Rejected frames (%) 0.49 0.34 3.89
Free parameters 6 3 2
AIC value 16695.8 16695.8 16695.8
BIC value 16780.7 16780.7 16780.7
SDNR 0.003311 0.004473 0.003980
Uncertainty scaling factor 0.031968 0.294486 0.342520
Photon-limited S/N (%) 72.7 90.4 68.1
arms frame-to-frame position difference.
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Table 2.8: Joint Best-fit Eclipse Light-curve Parameters (Channel 1–Sinusoidal Ramp)

Parameter Channel 1 Channel 2 Channel 4
Array position (x̄, pixel) 14.16 23.82 24.6
Array position (ȳ, pixel) 15.69 24.11 21.9
Position consistencya(δx, pixel) 0.005 0.02 0.021
Position consistencya(δy, pixel) 0.012 0.014 0.025
Aperture size (pixel) 2.75 2.5 3.5
Sky Annulus inner radius (pixel) 8.0 12.0 12.0
Sky Annulus outer radius (pixel) 20.0 30.0 30.0
System flux Fs (µJy) 102616± 7 66083± 7 24381± 3
Eclipse depth (%) 0.193± 0.007 0.224± 0.017 0.181± 0.021
Brightness temperature (K) 2258± 38 2212± 89 1590± 111
Eclipse midpoint (orbits) 0.4825± 0.0003 0.4843± 0.0005 0.4843± 0.0005
Eclipse midpoint (BJDUTC –2,450,000) 5274.6609± 0.0006 4908.9291± 0.0011 4908.9291± 0.0011
Eclipse midpoint (BJDTDB –2,450,000) 5274.6617± 0.0006 4908.9298± 0.0011 4908.9298± 0.0011
Eclipse duration (t4−1, hrs) 2.59± 0.03 2.59± 0.03 2.59± 0.03
Ingress/egress time (t2−1, hrs) 0.290± 0.007 0.290± 0.007 0.290± 0.007
Ramp name sinusoidal ... ...
Ramp, cosine phase offset (t2) 0.5356± 0.0016 ... ...
Intrapixel method BLISS BLISS ...
BLISS bin size in x (pixel) 0.004 0.028 ...
BLISS bin size in y (pixel) 0.01 0.023 ...
Minimum number of points per bin 4 5 ...
Total frames 13693 2972 1432
Rejected frames (%) 0.49 0.34 3.89
Free parameters 6 3 2
AIC value 16695.9 16695.9 16695.9
BIC value 16780.8 16780.8 16780.8
SDNR 0.003316 0.004473 0.003980
Uncertainty scaling factor 0.031968 0.294485 0.342520
Photon-limited S/N (%) 72.6 90.4 68.1
arms frame-to-frame position difference.
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Table 2.9: Transit Timing Data

Mid-transit Time (BJDTDB) Uncertainty Sourcea

2455695.4082 0.0012 V. Slesarenkno, E. Sokov b

2455668.4790 0.0011 Frantîsek Lomoz
2455652.7744 0.0014 Stan Shadick, C. Shielsc

2455650.5307 0.0018 Lubos Brát
2455650.52789 0.00076 Martin Vrašt’ák
2455650.52566 0.00067 Jaroslav Trnkad

2455632.5807 0.0011 E. Sokov, K. N. Naumov b

2455318.45101 0.00085 Anthony Ayiomamitis
2455302.7464 0.0010 Stan Shadickc

2455264.6021 0.0012 Hana Kučákováe

2455264.6017 0.0013 Radek Kociánf

2455219.7290 0.0012 Lubos Brát
2454979.643 0.003 Wiggins, AXA
2454968.426 0.001 Srdoc, AXA
2454950.4831 0.0021 Jesionkiewicz, AXA
2454950.4746 0.0014 Lubos Brát
2454950.4745 0.0018 Hana Kučákováe

2454950.4731 0.0021 Pavel Marek
2454950.4728 0.0014 Wardak, AXA
2454943.7427 0.0006 Dvorak, AXA
2454941.49799 0.00081 Jaroslav Trnkad

2454941.4916 0.0019 Frantǐsek Lomoz
2454934.765 0.001 Brucy Gary, AXA
2454932.5246 0.0014 Radek Dřevěný
2454932.5232 0.0011 Lubos Brát
2454932.5222 0.0013 Jaroslav Trnkad

2454932.5219 0.0015 T. Hynek, K. Onderková
2454914.5753 0.0008 Naves, AXA
2454887.6457 0.0014 Georgio, AXA

aThe Amateur Exoplanet Archive (AXA), http://brucegary.net/AXA/x.htm) and Transiting
ExoplanetS and Candidates group (TRESCA), http://var2.astro.cz/EN/tresca/index.php) supply
their data to the Exoplanet Transit Database (ETD), http://var2.astro.cz/ETD/), which performs
the uniform transit analysis described by Poddaný et al. (2010). The ETD Web site provided the
AXA and TRESCA numbers in this table, which were converted to BJDTDB.
bSokov E., Naumov K., Slesarenko V. et al., Pulkovo Observatory of RAS, Saint-Petersburg, Russia.
cPhysics and Engineering Physics Department, University of Saskatchewan, Saskatoon, Saskatchewan,
Canada, S7N 5E2.
dMunicipal Observatory in Slany Czech Republic.
eProject Eridanus, Observatory and Planetarium of Johann Palisa in Ostrava.
fKocián R., Johann Palisa, Observatory and Planetarium, Technical University Ostrava, 17. Listopadu
15, CZ-708 33 Ostrava, Czech Republic.
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With our new data, we refine the ephemeris to TBJDTDB
= 2454827.06666(24) +

2.2437661(11)N , where T is the time of transit and N is the number of orbits elapsed

since the transit time (see Table 2.10). We find that the new ephemeris reduces the differ-

ence between the two eclipse phases to less than 1.6σ. Performing an ephemeris fit to the

transit and eclipse data separately shows that the transit and eclipse periods differ by (1.1

± 0.8) × 10-5 days, a 1.5σ result that limits apsidal motion, ω̇, to less than 0.0024 day-1 at

the 3σ level (Giménez & Bastero, 1995).

Table 2.10: Eccentric Orbital Model

Parameter Value
e sinωa 0.0831± 0.0021
e cosωa −0.02557± 0.00038
e 0.087± 0.002
ω () −107.1± 0.5
P (days)a 2.2437661± 0.0000011
T0

ab 2454827.06666± 0.00024
K (m s-1)ac 990± 3
γ (m s-1)ad −4987.9± 1.6
χ2 162
aFree parameter in MCMC fit.
bBJDTDB.
cRadial velocity semi-amplitude.
dRadial velocity offset.

The results confirm an eccentric orbit for WASP-14b and improve knowledge of other

orbital parameters.
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2.8 ATMOSPHERE

We explore the model parameter space in search of the best-fitting models for a given

data set. The model parameterization is described by Madhusudhan & Seager (2009, 2010);

Madhusudhan (2012). The sources of opacity in the model include molecular absorption

due to H2O, CO, CH4, CO2, TiO, and VO, and collision-induced absorption (CIA) due to

H2-H2. Our molecular line lists are obtained from Freedman et al. (2008), R. S. Freedman

(2009, private communication), Rothman et al. (2005); Karkoschka & Tomasko (2010), and

E. Karkoschka (2011, private communication). Our CIA opacities are obtained from Borysow

et al. (1997) and Borysow (2002). We explore the model parameter space using a MCMC

scheme, as described by Madhusudhan & Seager (2010). However, since the number of

model parameters (n = 10) exceed the number of data points (Ndata = 3), our goal is not

to find a unique fit to the data but, primarily, to identify regions of model phase space that

the data exclude. In order to compute the model planet-star flux ratios to match with the

data, we divide the planetary spectrum by a Kurucz model of the stellar spectrum derived

from Castelli & Kurucz (2004). Our models allow constraints on the temperature structure,

molecular mixing ratios, and a joint constraint on the albedo and day-night redistribution.

We find that strong constraints can be placed on the presence of a thermal inversion

in WASP-14b even with our current small set of observations. At an irradiation of 3 × 109

erg s-1 cm-2, WASP-14b falls in the class of extremely irradiated planets that are predicted

to host thermal inversions according to the TiO/VO hypothesis of Fortney et al. (2008).
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However, the present observations do not show any distinct evidence of a thermal inversion in

the dayside atmosphere of WASP-14b. We explored the model parameter space by running

∼106 models with and without thermal inversions, using an MCMC scheme as discussed

above. We found that the data could not be explained by a thermal inversion model for any

chemical composition. On the other hand, the data are easily fit by models with no thermal

inversions. While the brightness temperatures in the 3.6 and 4.5 µm channels are consistent

with a blackbody spectrum of the planet at T∼2200 K, the 8 µm flux deviates substantially

from the assumption of a blackbody with a brightness temperature of 1668 ± 125 K. In the

presence of a thermal inversion, the flux in the 8 µm channel is expected to be much higher

than the fluxes in the 3.6 and 4.5 µm channels due to emission features of water vapor and,

if present, methane. The low flux observed at 8 µm, therefore, implies strong water vapor

and/or methane in absorption, implying the lack of a significant temperature inversion (see

Madhusudhan & Seager, 2010 for a discussion on inferring thermal inversions). We also note

that, as mentioned in Section 3.5.1, the observations yield different planet–star flux contrasts

in the 3.6 µm channel for different choices of ramp models. However, as shown in Figure

2.15, the two extreme values are still consistent at the 1σ level, and as such, lead to similar

model conclusions.
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Figure 2.15: Observations and model spectra for dayside emission from WASP-14b. The
blue filled circles with error bars show our observations in Spitzer channel 1 (3.6 µm), 2 (4.5
µm), and 4 (8.0 µm). For the 3.6 µm channel, two values are shown, in blue and brown,
corresponding to different ramp models used in deriving the eclipse depths (see Section 3.5.1).
The green, red, and gray curves show model spectra with different chemical compositions and
without thermal inversions that explain the data; the corresponding pressure–temperature
(P − T ) profiles are shown in the inset. The green model has molecular abundances in
thermochemical equilibrium assuming solar elemental abundances. The red model has 10
times lower CO and 6 times higher H2O compared to solar abundance chemistry, i.e., more
oxygen-rich than solar abundances. The gray model has a carbon-rich chemistry (C/O =
1). The green, red, and gray circles show the model spectra integrated in the Spitzer IRAC
bandpasses. The oxygen-rich (red) model provides a marginally better fit to the data than
the solar and carbon-rich models. The black dotted lines show three blackbody planet spectra
at 1600 K, 2200 K, and 2600 K.
(A color version of this figure is available in the online journal.)
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We modeled the dayside atmosphere of WASP-14b using the exoplanetary atmo-

spheric modeling method developed by Madhusudhan & Seager (2009, 2010). We use a

one-dimensional line-by-line radiative transfer code to model the planetary atmosphere un-

der the assumption of local thermodynamic equilibrium, hydrostatic equilibrium, and global

energy balance at the top of the atmosphere. The latter condition assumes that the inte-

grated emergent planetary flux balances the integrated incident stellar flux, accounting for

the Bond albedo (AB) and possible redistribution of energy onto the night side. Our model

uses parameterized prescriptions to retrieve the temperature structure and chemical com-

position from the observations, as opposed to assuming radiative and chemical equilibrium

with fixed elemental abundances (Burrows et al., 2008; Fortney et al., 2008).

We find that the data can be explained by models with a wide range of chemical com-

positions. Figure 2.15 shows three model spectra with different chemistries, along with the

observations: (1) a solar-abundance model (in green in Figure 2.15) with chemical composi-

tion in thermochemical equilibrium assuming solar abundances (TEsolar), (2) an oxygen-rich

model (in red) with 10× lower CO and 8× higher H2O, and (3) a carbon-rich model (in gray,

e.g., Madhusudhan et al., 2011a, Madhusudhan, 2012). The oxygen-rich model fits the data

marginally better than the solar abundance model. A slightly lower CO is favored because of

the slightly higher 4.5 µm flux compared to the 3.6 µm flux, which means lower absorption

due to CO. Higher absorption due to H2O is favored by the low 8 µm point. In principle, a

lower CO and a higher H2O, compared to TEsolar values, are both possible by having a C/O
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ratio less than the solar value of 0.54. However, more data would be required to confirm the

low CO requirement, because a blackbody of ∼2200 K fits the 3.6 and 4.5 µm points just as

well.

Models with high C/O ratios (C/O ≥ 1, i.e., carbon-rich), can lead to strong CH4,

C2H2, and HCN absorption in the 3.6 µm and 8 µm channels (e.g., Madhusudhan et al.,

2011a,b; Madhusudhan, 2012), instead of H2O absorption in the low-C/O models. As shown

in Figure 2.15, the C-rich model fits the data as well as the solar-abundance model, but less

precisely than the model with low C/O (i.e., enhanced H2O and low CO). Although the data

marginally favor an oxygen-rich composition in the dayside atmosphere of WASP-14b, new

observations are required to provide more stringent constraints on the C/O ratio. Future

observations in the near-infrared, from ground and space, can place further constraints on the

temperature structure and composition, especially the C/O ratio, of the dayside atmosphere

of WASP-14b. In particular, as shown in Figure 2.15, near-infrared observations in the 1–2.5

µm range probe spectral features of several oxygen- and carbon-bearing molecules such as

H2O, CO, and CH4, mixing ratios of which can provide stringent constraints on the C/O ratio

(Madhusudhan et al., 2011b). For example, the oxygen-rich models predict deep absorption

features in the H2O bands, contrary to the carbon-rich model, which contains no significant

water absorption. Hubble Space Telescope WFC3 observations in the 1.1–1.7 µm range can

test for water absorption. Furthermore, the models with different C/O ratios also predict
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different continuum fluxes, which can be observed from ground in the J , H, and K bands

(see Madhusudhan, 2012).

Figure 2.16: Left: contribution functions in the four Spitzer channels corresponding to the
green model shown in Figure 2.15. The legend shows the channel center wavelength in µm
and the curves are color-coded by the channel. All the contribution functions are normalized
to unity. Middle: contribution functions corresponding to the red model shown in Figure
2.15. Right: contribution functions corresponding to the gray model shown in Figure 2.15.
(A color version of this figure is available in the online journal.)

The models explaining the observations require relatively low day-night energy re-

distribution in WASP-14b. As shown by the contribution functions in Figure 2.16, the 3.6

µm IRAC channel probes the atmosphere between 0.1 and 1 bar. Consequently, the high

brightness temperature in the 3.6 µm channel indicates a hot planetary photosphere. Over

the entire model population explored by our retrieval method, we find that the data allow for

up to ∼30% of the energy incident on the dayside to be redistributed to the night side (i.e.,

for zero Bond albedo). For the particular best-fitting model (in red) shown in Figure 2.15,

this fraction is ∼25%. For non-zero albedos the fraction is even lower; since the quantity
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we constrain is η = (1-AB)(1-f r), where AB is the Bond albedo and f r is the fraction of

the dayside incident energy redistributed to the nightside Madhusudhan & Seager (2009).

However, the present constraints on the day-night redistribution are only suggestive and new

observations are essential to further constrain the energy redistribution in WASP-14b. For

example, observations in atmospheric windows at lower wavelengths, e.g., between 1 and 2

µm, where the black-body of the planetary photosphere would peak, would be critical to

further constrain the lower atmospheric thermal structure, and hence the energy budget of

the planet’s dayside atmosphere. More importantly, phase-curve observations are required

to constrain the day-night energy redistribution directly (e.g., Knutson et al., 2007, 2009a).

2.9 DISCUSSION

The absence of a thermal inversion in the dayside atmosphere of WASP-14b con-

strains inversion-causing phenomena in irradiated atmospheres. The canonical argument

for such inversions is via absorption in the optical by gaseous TiO and VO (Hubeny et al.,

2003; Fortney et al., 2008). On the other hand, Spiegel et al. (2009) showed that the high

mean molecular masses of TiO and VO would lead to significant gravitational settling of

these molecules, thereby depleting them from the upper atmospheres, unless strong vertical

mixing keeps them aloft. Additionally, the abundances of inversion-causing molecules might

also be influenced by stellar activity and photochemistry (Knutson et al., 2010). Conse-
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quently, the real cause of thermal inversions in irradiated atmospheres is currently unknown.

Nevertheless, models used to infer thermal inversions in the literature have either used pa-

rameterized visible opacity sources (Burrows et al., 2008) or parametric temperature profiles

(Madhusudhan & Seager, 2009, also used in the present work). To first order, the lack of

a thermal inversion in WASP-14b might indicate that the vertical mixing in the dayside

atmosphere of WASP-14b is weaker compared to the downward diffusion of TiO and VO.

Spitzer has observed a number of strongly irradiated hot Jupiters with brightness

temperatures in the 1000–2000 K range. The inferences of thermal inversions from emission

photometry result from flux excesses in molecular bands where strong absorption is expected

(Madhusudhan & Seager, 2010). In principle, detection of a thermal inversion is possible

with just two Warm Spitzer channels with sufficient S/N if there is a large flux difference

between channels 1 and 2 (Knutson et al., 2008, 2009a; Madhusudhan & Seager, 2010;

Machalek et al., 2009; O’Donovan et al., 2010; Christiansen et al., 2010). Based on the

TiO/VO hypothesis described above, Fortney et al. (2008) suggested that depending on the

level of irradiation from their parent star, irradiated planets can fall into two categories: the

very highly irradiated atmospheres that host thermal inversions and the less-irradiated ones

that do not. However, recent observations have revealed several counterexamples to this

hypothesis. Machalek et al. (2008) present evidence for a temperature inversion in XO-1b,

despite low irradiation of the planet (Teq = 1209 K), while Fressin et al. (2010) show no

thermal inversion, although TrES-3b is a highly irradiated planet (Teq = 1643 K). Similarly,
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WASP-12b, one of the most irradiated hot Jupiters known, has also been reported to lack a

significant thermal inversion (Madhusudhan et al., 2011a). In this paper, we present WASP-

14b as another counterexample. It is possible that additional parameters (e.g., metallicity,

surface gravity, C/O ratio) influence the presence or the absence of a temperature inversion.

However, more observations are needed to explain WASP-14b’s missing inversion.

2.10 CONCLUSIONS

During two secondary eclipse events, Spitzer observed WASP-14b in three IRAC

channels: 3.6, 4.5, and 8.0 µm. All eclipses have a high S/N (3.6 µm channel ∼25, 4.5 µm

channel ∼12, 8.0 µm channel ∼8), which allowed us to constrain the planetary spectrum

and orbital parameters.

Our observations probe the atmosphere at pressures between 0.01 and 1 bar and indi-

cate the absence of a significant thermal inversion in the dayside atmosphere of WASP-14b.

Given WASP-14b’s highly irradiated atmosphere, this contradicts predictions that the most-

irradiated hot Jupiters should have thermal inversions due to gaseous TiO/VO (Fortney

et al., 2008). Additionally, our observations place nominal constraints on the chemical com-

position and day-night energy redistribution in the atmosphere of WASP-14b. We find that

the data can be explained by non-inversion models with nearly solar abundances in chemical

equilibrium. A factor of 10 less CO and a factor of 6 higher H2O, compared to those obtained
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with solar abundances, explain the data to within the 1σ uncertainties, on average. Such CO

depletion and H2O enhancement are, in principle, possible in chemical equilibrium with C/O

ratios lower than solar. More data are required to constrain the atmospheric composition of

WASP-14b better.

Because the planet is much brighter than its predicted equilibrium temperature for

uniform redistribution (Teq = 1866 K), the best-fitting models limit day-night energy redis-

tribution in WASP-14b to ≤ 30% for zero Bond albedo. Thermal phase-curve observations

can probe the nightside emission directly and better constrain this quantity.

WASP-14b is one of the most massive transiting planets known, along with CoRoT-

3b (Triaud et al., 2009; Deleuil et al., 2008), HAT-P-2b (Bakos et al., 2007; Winn et al.,

2007; Loeillet et al., 2008b), XO-3b (Hébrard et al., 2008; Johns-Krull et al., 2008; Winn

et al., 2008), and WASP-18b (Nymeyer et al., 2011). With the exception of WASP-18b, all of

these objects have very eccentric orbits. Classically, closer planets should have more circular

orbits due to greater tidal orbital decay. At distances a < 0.1 AU, circularization should

occur in typically a few Myr, compared to common system ages of a few Gyr. However,

Pont et al. (2011) argue that the time to circularize scales with the planet-star mass ratio,

and is also a steep function of the orbital separation scaled to the planet radius (see their

Figure 3). For planets with M > MJ, the mass-period relation (see their Figure 2) suggests

that heavier planets get circularized very close to their parent star, or may not ever reach

circularization in their lifetime. A possible explanation is that the planet raises tides on
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its host star strong enough that the angular momentum of the planet is transferred to the

stellar spin, and the planet gets swallowed by the star. This does not oppose the classical tide

theory (e.g., Goldreich & Soter, 1966), but rather suggests that stopping mechanisms and

tidal circularization are related. WASP-14b also has unusually high density for a hot Jupiter,

similar to that of some rocky planets (4.6 g cm-3). The planet’s strong signal makes it ideal

for further observation to constrain its composition and thus possible formation mechanisms

for it and similar objects.
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2.11 SYSTEM PARAMETERS

Table 2.11 lists WASP-14 system parameters derived from our analysis and the liter-

ature. The eclipse parameters are listed in Tables 2.7 and 2.8.

Table 2.11: System Parameters of WASP-14

Parameter Value Reference
Orbital parameters

Orbital period, P (days) 2.2437661 ± 0.0000011 a
Semimajor axis, a (AU) 0.036 ± 0.001 b
Transit time (BJDTDB) 2454827.06666 ± 0.00024 a
Orbital eccentricity, e 0.087 ± 0.002 a
Argument of pericenter, ω (deg) −107.1 ± 0.5 a
Velocity semiamplitude, K (m s-1) 990.0 ± 3 a
Centre-of-mass velocity γ (m s-1) −4987.9 ± 1.6 a

Stellar parameters
Spectral type F5V b
Mass, M∗ (M�) 1.211 +0.127

−0.122 b
Radius, R∗ (R�) 1.306 +0.066

−0.073 b
Mean density, ρ∗ (ρ�) 0.542 +0.079

−0.060 b
Effective temperature, Teff (K) 6475 ± 100 b
Surface gravity, log g∗ (cgs) 4.287 +0.043

−0.038 b
Projected rotation rate, v∗ sin(i) (kms-1) 4.9 ± 1.0 b
Metallicity [M/H] (dex) 0.0 ± 0.2 b
Age (Gyr) ∼0.5–1.0 b
Distance (pc) 160 ± 20 b
Lithium abundance, log N(Li) 2.84 ± 0.05 b

Planetary parameters
Transit depth, (Rp/Rstar)

2 0.0102 +0.0002
−0.0003 b

Mass, Mp (MJ) 7.341 +0.508
−0.496 b

Radius, Rp (RJ) 1.281 +0.075
−0.082 b

Surface gravity, log gp (cgs) 4.010 +0.049
−0.042 b

Mean density, ρp (g cm-3) 4.6 b
Equilibrium temperature (A=0), Teq (K) 1866.12 +36.74

−42.09 b
a Our analyses (see Section 3.6)
b Joshi et al. (2009)
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3.1 ABSTRACT

WASP-43b is one of the closest-orbiting hot Jupiters, with a semimajor axis of a =

0.01526 ± 0.00018 AU and a period of only 0.81 days. However, it orbits one of the coolest

stars with a hot Jupiter (T∗ = 4520 ± 120 K), giving the planet a modest equilibrium tem-

perature of Teq = 1440 ± 40 K, assuming zero Bond albedo and uniform planetary energy

redistribution. The eclipse depths and brightness temperatures from our jointly fit model

are 0.347% ± 0.013% and 1670 ± 23 K at 3.6 µm and 0.382% ± 0.015% and 1514 ± 25

K at 4.5 µm. The eclipse timings improved the estimate of the orbital period, P , by a

factor of three (P = 0.81347436 ± 1.4×10-7 days) and put an upper limit on the eccentricity

(e = 0.010+0.010
−0.007). We use our Spitzer eclipse depths along with four previously reported

ground-based photometric observations in the near-infrared to constrain the atmospheric

properties of WASP-43b. The data rule out a strong thermal inversion in the dayside atmo-

sphere of WASP-43b. Model atmospheres with no thermal inversions and fiducial oxygen-rich

compositions are able to explain all the available data. However, a wide range of metallicities

and C/O ratios can explain the data. The data suggest low day-night energy redistribution

in the planet, consistent with previous studies, with a nominal upper limit of about 35% for

the fraction of energy incident on the dayside that is redistributed to the nightside.
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3.2 INTRODUCTION

Our knowledge of exoplanetary systems is rapidly improving. Recent Kepler results

(Borucki et al., 2011; Batalha & Kepler Team, 2012) have shown a striking increase in

detections of the smallest candidates, and the planet candidate lists now show that hot

Jupiters are much less common than planets smaller than Neptune. However, nearly all

Kepler candidates are too small, cold, or distant for atmospheric characterization, except the

nearby hot Jupiters. Their host stars, bright enough for radial velocity (RV) measurements,

subject these planets to a strong irradiating flux, which governs their atmospheric chemistry

and dynamics. Their large sizes and large scale heights (e.g., Showman & Guillot, 2002) give

the signal-to-noise ratio (S/N) needed for basic atmospheric characterization.

The most common technique for observing hot Jupiters and characterizing their day-

side atmospheres is secondary eclipse photometry (e.g., Fraine et al., 2013; Crossfield et al.,

2012; Todorov et al., 2012; Desert et al., 2012; Deming et al., 2011; Beerer et al., 2011; De-

mory et al., 2007). During secondary eclipse, when the planet passes behind its star, we see

a dip in integrated flux proportional to the planet-to-star flux ratio, or usually 0.02%–0.5%

in the Spitzer Space Telescope infrared wavelengths, where the signal is strongest. This dip

is much lower at wavelengths accessible from the ground or from the Hubble Space Telescope.

Techniques such as phase curve measurement (Knutson et al., 2009, 2012; Lewis et al., 2013;

Cowan et al., 2012a,b; Crossfield et al., 2010), transmission spectroscopy (Deming et al.,

2013; Gibson et al., 2012; Berta et al., 2012), and ingress–egress mapping (de Wit et al.,
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2012; Majeau et al., 2012) can reveal more than a secondary eclipse but are available for

only a small number of high-S/N planets.

A secondary eclipse observed in one bandpass places a weak constraint on an exo-

planet’s temperature near the average altitude of optical depth unity over that bandpass.

Multiple wavelengths constrain the planet’s dayside spectrum, potentially yielding insight

into the atmospheric composition and temperature structure. Different wavelengths probe

different atmospheric levels and can be combined into a broadband spectrum for further

atmospheric modeling (e.g., Madhusudhan & Seager, 2009; Stevenson et al., 2010). Infrared

observations are specifically valuable because the most abundant chemical species in plane-

tary atmospheres (aside from H2 and He), such as H2O, CO, CO2, and CH4, have significant

absorption and emission features at these wavelengths (e.g., Madhusudhan & Seager, 2010).

Constraints on chemical composition and thermal structure are important for both further

atmospheric modeling (e.g., Showman et al., 2009) and studies of the planet’s formation.

Several recent studies have shown that the atmospheric C/O ratios of giant planets can be

significantly different from those of their host stars because of, for example, the formation

location of the planet (see, for exoplanets, Öberg et al., 2011 and Madhusudhan et al., 2011b,

and for Jupiter, Lodders, 2004 and Mousis et al., 2012).

Secondary eclipse observations also provide insight into the exoplanet’s orbit. Mea-

suring the time of the secondary eclipse relative to the time of transit can establish an upper

limit on orbital eccentricity, e, and constrain the argument of periapsis, ω, independently
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of RV measurements. Orbital eccentricity is important in dynamical studies and in calcu-

lating irradiation levels. Apsidal precession can also be constrained by eclipse timing and

can be used to reveal the degree of central concentration of mass in the planetary interior

(Ragozzine & Wolf, 2009; Campo et al., 2011; López-Morales et al., 2010).

WASP-43b was first detected by the Wide-Angle Search for Planets (WASP) team

(Hellier et al., 2011) in 2009 and 2010 from the WASP-South and WASP-North observatories.

The WASP team also performed follow-up measurements with the CORALIE spectrograph,

the TRAPPIST telescope, and EulerCAM in 2010 December. These observations revealed

a planet with a mass of Mp = 1.78 Jupiter masses (MJ) and a radius of Rp = 0.93 Jupiter

radii (RJ), transiting one of the coldest stars to host a hot Jupiter (type K7V, T∗ = 4400

± 200 K). They found the planet to have an exceptionally short orbital period of 0.81 days

and a semimajor axis of only 0.0142 AU, assuming the host star has a mass of M∗ = 0.58 ±

0.05 M�. The planet’s orbital eccentricity was constrained by the radial velocity and transit

data to e < 0.04 at 3σ. Spectroscopic measurements of the star revealed a surface gravity

of log (g) = 4.5 ± 0.2 (cgs) and a projected stellar rotation velocity of v∗ sin(i) = 4.0 ± 0.4

km s-1, where i is the inclination of the star’s pole to the line of sight. Strong Ca H and K

emission indicates that the star is active. The estimated age of the star is 400+200
−100 Myr.

For low-mass stars like WASP-43, there are notable discrepancies (Berger et al., 2006)

between interferometrically determined radii and radii calculated in evolutionary models (i.e.,

Chabrier & Baraffe, 1997; Siess et al., 1997). Boyajian et al. (2012) presented high-precision
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interferometric diameter measurements of 33 late-type K and M stars. They found that

evolutionary models overpredict temperatures for stars with temperatures below 5000 K by

∼3% and underpredict radii for stars with radii below 0.7 R� by ∼5%. Their Table 11 lists

an average temperature and radius for each spectral type in the sample, suggesting that

WASP-43, with its measured temperature of 4520 ± 120 K, is likely a K4 star rather than

a K7 as reported by Hellier et al. (2011).

Gillon et al. (2012) analyzed twenty-three transit light curves, seven occultations, and

eight new measurements of the star’s RV, observed during 2010 and 2011 with TRAPPIST,

the Very Large Telescope (VLT), and EulerCAM. They refined eccentricity to e = 0.0035

± 0.0043 and placed a 3σ upper limit of 0.0298 using all data simultaneously. They also

improved the parameters of the system significantly (Mp = 2.034 ± 0.052 MJ, Rp = 1.036

± 0.019 RJ), refined stellar parameters (Teff = 4520 ± 120 K, M∗ = 0.717 ± 0.025 M�, R∗

= 0.667 ± 0.011 R�), and constrained stellar density (ρ∗ = 2.41 ± 0.08 ρ�).. They also

confirmed that the observed variability of the transit parameters can be attributed to the

variability of the star itself (consistent with Hellier et al., 2011). In addition, they detected

the planet’s thermal emission at 1.19 µm and 2.09 µm and used the atmospheric models

of Fortney et al. (2005, 2008) to infer poor redistribution of heat to the night side and an

atmosphere without a thermal inversion.

In this paper we present two secondary eclipses, observed at 3.6 and 4.5 µm with

the Infrared Array Camera (IRAC, Fazio et al., 2004) on the Spitzer Space Telescope, which
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further constrain the dayside emission of the planet and improve the orbital parameters of

the system. We combine our Spitzer eclipse depth measurements with on previously reported

measurements of thermal emission in the near-infrared from Gillon et al. (2012) and Wang

et al. (2013) to constrain the atmosphere’s energy redistribution and thermal profile by using

the retrieval method of Madhusudhan & Seager (2009) as subsequently developed.

The following sections present our observations (Section 3.3); discuss photometric

analysis (Section 3.4); explain specific steps taken to arrive at the fits for each observation

and a joint fit (Section 3.5); give improved constraints on the orbital parameters based on

available RV, eclipse, and transit data (Section 3.6); discuss implications for the planetary

emission spectrum and planetary composition (Section 3.7); state our conclusions (Section

5.5); and, in the Appendix, supply the full set of system parameters from our own work and

previous work. The electronic attachment to this paper includes archival light curve files in

FITS ASCII table and IRSA formats.

Table 3.1: Observation Information

Channel Observation Start Time Duration Exposure Number of
Date (MJDUTC) (s) Time (s) Frames

Ch1 2011 Jul 30 2455772.6845 21421 2 10496
Ch2 2011 Jul 29 2455771.8505 21421 2 10496
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3.3 OBSERVATIONS

We observed two secondary eclipses of WASP-43b with the Spitzer IRAC camera in

subarray mode (Program ID 70084). A sufficiently long baseline (Figure 3.1) was moni-

tored before the eclipses, providing good sampling of all Spitzer systematics. To minimize

intrapixel variability, each target had fixed pointing. We used the Basic Calibrated Data

(BCD) from Spitzer’s data pipeline, version S.18.18.0. Basic observational information is

given in Table 3.1.

3.4 SECONDARY ECLIPSE ANALYSIS – METHODOLOGY

Exoplanet characterization requires high precision, since the planets’ inherently weak

signals are weaker than the systematics. In addition, Spitzer’s systematics lack full physical

characterizations. We have developed a modular pipeline, Photometry for Orbits, Eclipses,

and Transits (POET), that implements a wide variety of treatments of systematics and uses

Bayesian methods to explore the parameter space and information criteria for model choice.

The POET pipeline is documented in our previous papers (Stevenson et al., 2010; Campo

et al., 2011; Nymeyer et al., 2011; Stevenson et al., 2012; Blecic et al., 2013; Cubillos et al.,

2013), so we give here just a brief overview of the specific procedures used in this analysis.

The pipeline uses Spitzer-supplied BCD frames to produce systematics-corrected light

curves and parameter and uncertainty estimates, routinely achieving 85% of the photon S/N
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limit or better. Initially, POET masks pixels according to Spitzer’s permanent bad pixel

masks, and then it additionally flags bad pixels (energetic particle hits, etc.) by grouping

sets of 64 frames and performing a two-iteration, 4σ rejection at each pixel location. Image

centers with 0.01 pixel accuracy come from testing a variety of centering routines (Stevenson

et al., 2010, Supplementary Information). Subpixel 5× interpolated aperture photometry

(Harrington et al., 2007) produces the light curves. We omit frames with bad pixels in the

photometry aperture. The background, subtracted before photometry, is an average of good

pixels within an annulus centered on the star in each frame.

Detector systematics vary by channel and can have both temporal (detector ramp)

and spatial (intrapixel variability) components. At 3.6 and 4.5 µm, intrapixel sensitivity

variation is the dominant effect (Charbonneau et al., 2005), so accurate centering at the

0.01 pixel level is critical. We fit this systematic with a Bilinearly Interpolated Subpixel

Sensitivity (BLISS) mapping technique, following Stevenson et al. (2012), including the

method to optimize the bin sizes and the minimum number of data points per bin.

At 8.0, and 16 µm, there is temporal variability, attributed to charge trapping (Knut-

son et al., 2009). Weak temporal dependencies can also occur at 3.6 and 4.5 µm (Reach et al.,

2005; Charbonneau et al., 2005; Campo et al., 2011; Demory et al., 2011; Blecic et al., 2013),

while weak spatial variability has been seen at 5.8 and 8.0 µm (Stevenson et al., 2012; An-

derson et al., 2011). Thus, we consider both systematics in all channels when determining

the best-fit model.
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Figure 3.1: Raw (left), binned (center, 60 points per bin, with 1σ error bars), and
systematics-corrected (right) secondary eclipse light curves of WASP-43b at 3.6 and 4.5
µm. The results are normalized to the system flux and shifted vertically for comparison.
Note the different vertical scales used in each panel. The colored lines are best-fit models.
The black curves in panel 2 are models without eclipses. As seen in the binned plots of
channel 2, a ramp model is not needed to correct for the time-dependent systematic if initial
data points affected by pointing drift are clipped (see Section 3.4).
(A color version of this figure is available in the online journal.)

We fit the model components simultaneously using a Mandel & Agol (2002) eclipse,

E(t); the time-dependent detector ramp model, R(t); and the BLISS map, M(x, y):

F (x, y, t) = Fs R(t)M(x, y)E(t), (3.1)
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where F (x, y, t) is the aperture photometry flux and Fs is the constant system flux outside

of the eclipse.

To choose the best systematics models, we analyze dozens of model combinations

and use goodness-of-fit criteria (Campo et al., 2011). For a given channel, we first vary the

photometric aperture size and the number of initial data points that we exclude because of

instrument settling, and then we test different ramp models and bin sizes for the intrapixel

model. To choose the best aperture size and the number of initial points dropped during

instrument settling, we minimize the standard deviation of the normalized residuals (SDNR).

Ignoring data points from the beginning of the observation is a common procedure (Knutson

et al., 2011) when searching for the best-fitting ramp. We remove the smallest number of

points consistent with the minimal SDNR (see each channel analysis for the number of points

discarded).

Once we have found the best dataset in this way, we compare different ramp models

by applying the Bayesian Information Criterion:

BIC = χ2 + k lnN, (3.2)

where N is the number of data points. The best model minimizes the chosen criterion.

The level of correlation in the photometric residuals is also considered by plotting root-

mean-squared (rms) model residuals versus bin size (time interval, Pont et al., 2006; Winn

et al., 2008; Campo et al., 2011) and comparing this to the theoretical 1/
√
2N rms scaling

92



(Blecic et al., 2013 explains the factor of 2). Sometimes, we prefer less-correlated models

with insignificantly poorer BIC values.

We explore the phase space and estimate errors by using a Markov-chain Monte Carlo

(MCMC) routine following the Metropolis–Hastings random-walk algorithm, which uses in-

dependent Gaussian proposal distributions for each parameter with widths chosen to give an

acceptance rate of 30%–60%. Each MCMC model fit begins with the Levenberg–Marquardt

algorithm (least-squares minimization). We use an informative prior (e.g., Gelman, 2002)

taken from other work on parameters that are more tightly constrained than what our fits

can achieve. In this work, those are ingress and egress times, which are not well sampled

by our observation. All other parameters have flat priors and are free parameters of the

MCMC. For each channel, they are listed in Section 3.5.3. For orbital analysis, they are

listed in Section 3.6. We then run enough MCMC iterations to satisfy the Gelman & Rubin

(1992) convergence test. After every run, we assess convergence by examining plots of the

parameter traces, pairwise correlations, autocorrelations, marginal posteriors, best-fitting

model, and systematics-corrected best-fitting model. The final fit is obtained from the si-

multaneous run of all datasets, sharing parameters such as the eclipse midpoint and duration

among some or all datasets.

We report the times of our secondary eclipses in both BJDUTC (Coordinated Uni-

versal Time) and BJDTT (BJDTDB, Barycentric Dynamical Time), calculated using the Jet

Propulsion Laboratory (JPL) Horizons system and following Eastman et al. (2010).
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3.5 SECONDARY ECLIPSE ANALYSIS – FIT DETAILS

Light curves for both channels were extracted using every aperture radius from 2.00

to 4.50 pixels, in 0.25 pixel increments. We tested three centering routines, center of light,

two-dimensional (2D) Gaussian fit, and least asymmetry (see Supplementary Information of

Stevenson et al., 2010 and Lust et al., 2013). A 2D Gaussian fit found the most consistent

stellar centers. We estimated the background flux by using an annulus of 7–15 pixels from

the center of the star for both channels. For the secondary eclipse ingress and egress time,

we used a Bayesian prior (t2−1 = 950.5 ± 145.5 s), calculated from unpublished WASP

photometric and RV data.

Figure 3.1 shows our systematics-corrected, best-fit light curve models. Figure 3.2

presents the scaling of the rms model residuals versus bin size for both channels, which shows

no significant time correlation in the residuals.

3.5.1 Channel 1 – 3.6 µm

The most prominent systematic in this Spitzer channel is the intrapixel effect. The

best BLISS-map bin size is 0.006 pixels when we exclude bins with less than four measure-

ments. The ramp and eclipse models fit without removing initial data points. The smallest

value of BIC reveals that the best ramp model is quadratic; this model is 1.2×1030 times
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more probable than the next-best (linear) model. Table 3.2 lists the best ramp models,

comparing their SDNR, BIC values, and eclipse depths.

Table 3.2: Channel 1 Ramp Models

Ramp Model SDNR ∆BIC Eclipse Depth (%)
Quadratic 0.0039001 0.0 0.344 ± 0.013
Rising 0.0039113 56.8 0.292 ± 0.012
No-Ramp 0.0039315 144.4 0.268 ± 0.012
Linear 0.0039293 142.1 0.270 ± 0.012
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Figure 3.2: Correlations of the residuals for the two secondary eclipses of WASP-43b, follow-
ing Pont et al. (2006). The black line represents the rms residual flux vs. bin size. The red
line shows the predicted standard error scaling for Gaussian noise. The green line shows the
theoretical photon noise limit (observed S/N is 80.3% and 85% of the photon-limited S/N
for channel 1 and channel 2, respectively; see Section 3.5.3). The black vertical lines at each
bin size depict 1σ uncertainties on the rms residuals (rms/

√
2N , where N is the number of

bins). The dotted vertical blue line indicates the ingress/egress timescale, and the dashed
vertical green line indicates the eclipse duration timescale. Large excesses of several σ above
the red line would indicate correlated noise at that bin size. Inclusion of 1σ uncertainties
shows no noise correlation on the timescales between the ingress/egress duration and the
eclipse duration.
(A color version of this figure is available in the online journal.)
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Figure 3.3: Channel 1 comparison between different ramp models. The plots show SDNR
vs. aperture size and ∆BIC vs. aperture size. A lower SDNR value indicates a better model
fit. The lowest SDNR value marks the best aperture size (2.50 pixels). A lower ∆BIC value
at the best aperture size indicates which ramp model is the best (quadratic ramp model,
green triangles).
(A color version of this figure is available in the online journal.)

Figure 3.3 shows a comparison between the best ramp models and their SDNR and

BIC values through all aperture sizes, indicating which aperture size is the best and which

model has the lowest BIC value.

Photometry generates consistent eclipse depths for all tested apertures, with the

lowest SDNR at an aperture radius of 2.50 pixels (Figure 3.4).
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Figure 3.4: Best-fit eclipse depths as a function of photometry aperture size for channel 1.
The four best ramp models are plotted. The red point indicates the best aperture size for
that channel. The eclipse depth uncertainties are the result of 105 MCMC iterations. The
trend shows insignificant dependence of eclipse depth on aperture size (much less than 1σ).
(A color version of this figure is available in the online journal.)

3.5.2 Channel 2 – 4.5 µm

In this channel, we noticed an upward trend in flux at the beginning of the observation,

possibly due to telescope settling, which we do not model. We clipped 2300 initial data points

(∼38 minutes of observation), the smallest number of points consistent with the minimal

SDNR. The 2.50 pixel aperture radius minimizes SDNR (Figure 3.5).
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Figure 3.5: Channel 2 comparison between different ramp models. Plot shows SDNR vs.
aperture size and ∆BIC vs. aperture size. A lower SDNR value indicates a better model fit.
The lowest SDNR value marks the best aperture size (2.50 pixels). Lower BIC values at the
best aperture size indicate better models (best: no-ramp model, blue diamonds). The inset
shows separation in SDNR for different ramp models at the best aperture size.
(A color version of this figure is available in the online journal.)

To remove intrapixel variability, the BLISS bin size is 0.016 pixels, ignoring bins with

less than four points. The lowest BIC value corresponds to the model without a ramp (Table

3.3), which is 78 times more probable than the linear model.

We tested the dependence of eclipse depth on aperture radius, showing that they are

all well within 1σ of each other, to validate the consistency of our models (Figure 3.6).
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Figure 3.6: Best-fit eclipse depths as a function of photometry aperture size for channel 2.
The three best ramp models are plotted. The red point indicates the best aperture size for
that channel. The eclipse-depth uncertainties are the result of 105 MCMC iterations. The
trend shows negligible dependence of eclipse depth on aperture size (much less than 1σ).
(A color version of this figure is available in the online journal.)

Table 3.3: Channel 2 Ramp Models

Ramp Model SDNR ∆BIC Eclipse Depth (%)
No-Ramp 0.0051158 0 0.392 ± 0.016
Linear 0.0051157 8.8 0.392 ± 0.016
Quadratic 0.0051143 14.2 0.409 ± 0.019
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3.5.3 Joint Fit

To improve accuracy, we share the eclipse width (duration), eclipse midpoint phases,

and ingress and egress times in a joint fit of both datasets. Table 3.4 indicates which

parameters are free, shared, or have informative priors. The best ramp models and the best

aperture sizes from the separate channel analyses are used in the joint fit. To produce the

best joint-model fits, we iterated MCMC until the Gelman & Rubin (1992) diagnostics for

all parameters dropped below 1%, which happened after 105 iterations.

The best joint-model fit parameters are in Table 3.4. Files containing the light curves,

best model fits, centering data, photometry, etc., are included as electronic supplements to

this article. The eclipse midpoint time is further used for the subsequent orbital analysis,

and the eclipse depths are used for the atmospheric analysis.
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Table 3.4: Best-fit Joint Eclipse Light Curve Parameters

Parameter Channel 1 Channel 2
Array position (x̄, pixel) 14.99 14.8
Array position (ȳ, pixel) 15.01 15.05
Position consistencya(δx, pixel) 0.009 0.016
Position consistencya(δy, pixel) 0.012 0.014
Aperture size (pixel) 2.5 2.5
Sky annulus inner radius (pixel) 7.0 7.0
Sky annulus outer radius (pixel) 15.0 15.0
System flux Fs (µJy)

b 64399.0± 5.0 37911.0± 2.0
Eclipse depth (%)b 0.347± 0.013 0.382± 0.015
Brightness temperature (K) 1670± 23 1514± 25
Eclipse midpoint (orbits)b 0.4986± 0.0004 0.4986± 0.0004
Eclipse midpoint (BJDUTC–2,450,000) 5773.3172± 0.0003 5772.5037± 0.0003
Eclipse midpoint (BJDTDB–2,450,000) 5773.3179± 0.0003 5772.5045± 0.0003
Eclipse duration (t4− 1, hr)b 1.25± 0.02 1.25± 0.02
Ingress/egress time (t2− 1, hr)b 0.268± 0.018 0.268± 0.018
Ramp name quadramp no-ramp
Ramp, quadratic termb -0.0827± 0.0069 ...
Ramp, linear termb -0.0002± 0.0005 ...
Intrapixel method BLISS BLISS
BLISS bin size in x (pixel) 0.006 0.016
BLISS bin size in y (pixel) 0.006 0.016
Minimum number of points per bin 4 4
Total frames 10496 10496
Frames used 10124 8004
Rejected frames (%) 0.44 1.12
Free parameters 7 2
Number of data points in fit 10124 8004
BIC 18207.3 18207.3
SDNR 0.0039007 0.0051167
Photon-limited S/N (%) 80.3 85.0

Notes.
arms frame-to-frame position difference.
bFree parameter in MCMC fit. All priors are flat except t2−1, which uses a Gaussian
prior of 950.5 ± 145.5 s, calculated from unpublished WASP photometric and RV
data. Parameters with identical values and uncertainties are fit jointly.
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3.6 ORBIT

The eclipse midpoint (after a 15.2 s correction for the eclipse transit light-time) has

a phase of 0.5001 ± 0.0004, so e cosω = 0.0001 ± 0.0006, or a 3σ upper limit of |e cosω| <

0.0018, consistent with a circular orbit.

To improve the orbit solution further, we combined data from our observations with

data from a variety of sources (see Table 3.5). Transit midpoint times were taken from Hellier

et al. (2011) and Gillon et al. (2012), and amateur observations were listed in the Exoplanet

Transit Database (see Table 3.5). We used CORALIE RV observations published by Hellier

et al. (2011) and Gillon et al. (2012). No RV points analyzed were gathered during transit.

We subtracted 15.2 s from the eclipse midpoint to correct for light-travel time across the

orbit. We corrected all points to TDB if this was not already done (Eastman et al., 2010).

We converted the amateur data from HJD to BJD, putting all times in a consistent BJDTDB

format. There were 49 transit points, 23 RV points, and one effective eclipse observation. We

fit all of these data simultaneously, as described by Campo et al. (2011). The free parameters

in this fit were e sinω; e cosω; the period, P ; the reference transit midpoint time, T0; the RV

semi-amplitude, K; and the RV offset, γ. The addition of the amateur transit observations

improves the uncertainty of P by a factor of nearly five compared with Gillon et al. (2012),

reducing it to 13 ms. The fit finds an eccentricity of 0.010+0.010
−0.007, consistent with a circular

orbit and expectations for a close-in planet, where eccentricity should be damped by tidal

interactions with the host star (Jackson et al., 2008). Table 3.6 summarizes the fit results.
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Table 3.5: Transit Timing Data

Mid-transit Time Uncertainty Sourcea Quality
(BJDTDB) Rating
2456440.77250 0.00037 Phil Evans 1
2456410.67704 0.00097 Robert Majewski 5
2456407.42697 0.00097 Enrique Dı́ez Alonso 3
2456407.41972 0.00102 Ullrich Dittler 3
2456403.34716 0.0017 Jens Jacobsen 5
2456401.72885 0.00199 Alex Chassy 5
2456387.89785 0.00046 Phil Evans 2
2456375.70739 0.00158 Parijat Singh 4
2456368.37413 0.00076 Adam Büchner 3
2456335.83452 0.00113 Phil Evans 3
2456328.51426 0.00039 Juan Lozano de Haro 2
2456328.51296 0.00181 Daniel Staab 4
2456326.88711 0.00072 Phil Evans 3
2456313.87042 0.00039 P. Kehusmaa & C. Harlingten 2
2456288.65334 0.00087 Jordi Lopesino 3
2456283.77139 0.00068 A. Chapman & N. D. Dı́az 3
2456250.42005 0.00067 L. Zhang, Q. Pi & A. Zhou 5
2456035.66489 0.0005 George Hall 2
2456015.3273 0.00057 Martin Źıbar 2
2456006.38071 0.00101 Frantîsek Lomoz 3
2456006.3781 0.00109 Frantîsek Lomoz 3
2456001.49859 0.00156 Alfonso Carreño 3
2456001.49662 0.00035 Gustavo Muler Schteinman 1
2456001.49531 0.00019 Fernand Emering 1
2455997.43508 0.00086 René Roy 3
2455997.43105 0.00051 Faustino Garcia 3
2455997.43008 0.0004 Nicolas Esseiva 2
2455997.42981 0.00068 Juanjo Gonzalez 3
2455984.41939 0.00064 Ferran Grau Horta 3
2455984.41548 0.00126 Frantîsek Lomoz 3
2455984.4149 0.00047 Fabio Martinelli 2
2455984.41472 0.00071 Frantîsek Lomoz 3
2455979.534 0.00044 Nicolas Esseiva 2
2455979.5335 0.0004 Juanjo Gonzalez 2
2455957.57296 0.00122 Frantîsek Lomoz 4
2455944.55468 0.00106 Roy René 3
2455940.48744 0.0005 Anthony Ayiomamitis 2
2455939.67475 0.00052 Ramon Naves 2
2455933.16473 0.00025 Peter Starr 1
2455686.68399 0.0008 Stan Shadick 3
2455682.61364 0.00039 Tanya Dax, Stacy Irwin 5

Notes. aThe TRansiting ExoplanetS and CAndidates group (TRESCA,
http://var2.astro.cz/EN/tresca/index.php) supply their data to the Exo-
planet Transit Database (ETD, http://var2.astro.cz/ETD/), which per-
forms the uniform transit analysis described by Poddaný et al. (2010). The
ETD web site provided the numbers in this table, which were converted
from HJD (UTC) to BJD (TDB).
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Table 3.6: Eccentric Orbital Model

Parameter Value
e sinωa −0.010 ± 0.011
e cosωa −0.0003 ± 0.0006
e 0.010 +0.010

−0.007

ω (◦) −88 +5
−9

P (days)a P = 0.81347436 ± 1.4×10−7

T0 (BJDTDB)
a 2455528.86857 ± 0.00005

K (m s-1)a 549 ± 6
γ (m s-1)a −3595 ± 4
χ2 458

Note. aFree parameter in MCMC fit.

Table 3.7: Ephemeris Solutions

All Data (Transits, Eclipses, RV) Transits Only Transits Only
Parameter Linear Ephemeris Linear Ephemeris Quadratic Ephemeris
T0 (BJDTDB) 2455528.86857 ± 0.00005 2455581.74439 ± 0.00004 2455581.74437 ± 0.00004
P (days orbit-1) 0.81347436 ± 1.4×10−7 0.81347450 ± 1.5× 10−7 0.81347530 ± 3.8×10−7

δP (days orbit-2)a ... ... (−2.5±0.9)× 10−9

Ṗ (s yr-1)b ... ... −0.095±0.036
χ2 ... 444.7 437.9
BIC ... 452.8 450.0

Notes.
aδP = ṖP .
bDerived parameter.
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Because e sinω is a much larger component of the eccentricity than e cosω, it is

possible that much of this eccentricity signal comes from the effect of the planet raising

a tidal bulge on its host star. Arras et al. (2012) predict that the RV semi-amplitude of

this effect is 8.9 ms-1. Since our model shows that eK = 5+6
−3 ms-1, it is possible that the

majority or entirety of the eccentricity signal is due to the tidal bulge interaction, and the

true eccentricity is closer to the upper limit derived from the secondary eclipse.

We found that, for a linear ephemeris fit to just the transit timing data, there is

considerable scatter in O-C (observed time minus calculated time). The root-mean-square

of the stated transit-time uncertainties is 51 s, while the standard deviation of the residuals

is 124 s. WASP-43b is close enough to its host star that tidal decay is a significant factor

in its evolution, so we attempted to estimate the decay rate by adding a quadratic term to

our ephemeris model, following Adams et al. (2010). Our model for the transit ephemeris is

now:

TN = T0 + PN + δP
N(N − 1)

2
, (3.3)

where N is the number of orbits elapsed since the epoch T0, P is the orbital period at T0,

and δP = ṖP , where Ṗ is the short-term rate of change in the orbital period. Fitting this

model to the transit data, we find that δP = (-2.5 ± 0.9)×10-9 days orbit-2, or Ṗ = -0.095

± 0.036 s yr-1. This is illustrated in Figure 3.7. This is a nondetection, though the best-fit

value is comparable to the value of -0.060 ± 0.015 s yr-1 found by Adams et al. (2010) for

OGLE-TR-113b.

105



55400 55600 55800 56000 56200 56400 56600
BJD - 2,400,000

−5

0

5

10
O

-C
 (

M
in

u
te

s)
Linear  model
Quadratic model

Figure 3.7: O-C diagram for transit observations of WASP-43b with respect to the linear
terms in the best-fit quadratic ephemeris. The quadratic ephemeris is shown with the 1σ
prediction uncertainty in grey. The best-fit linear ephemeris is also shown as a dashed line.
Only points with an Exoplanet Transit Database quality rating of 3 or better are shown here
and used in this analysis.
(A color version of this figure is available in the online journal.)

While the suggestion of a quadratic inspiral existed in the data gathered prior to BJD

2456035, the addition of 17 new amateur observations from BJD 2456250 to BJD 2456440

(11 of which were of sufficiently high data quality for inclusion) put the linear fit within the

credible region of the quadratic fit.

Table 3.7 summarizes all three transit ephemeris models. The first is the linear

ephemeris from the fit discussed above. We also fit linear and quadratic models to just the

transit data to study any trend in orbital period. These are the second and third fits in
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Table 3.7. Their BIC and chi χ2 are comparable to each other but not to the first fit, since

the data sets are not identical.

The BIC values still favor the quadratic (decaying) ephemeris (BIC = 450) over the

linear ephemeris (BIC = 452.8) by a probability ratio of e∆BIC/2 = 4. Two lines of reasoning

favor the linear ephemeris, however, so we consider the linear ephemeris to be more likely.

First, the inspiral time predicted by the quadratic is extremely short compared to the

planet’s lifetime. We would need to believe that we are seeing the planet at a very brief and

special time in its history to accept the conclusion of inspiral.

Second, the rms scatter about the quadratic ephemeris is 121 s, much larger than

the 51 s typical transit time uncertainty and not much different from the linear result. The

reduced χ2 for the quadratic fit is ∼8, so much of the residual scatter is unexplained by either

model. Possible explanations include stellar activity, transit timing variations (TTVs), or

problems in data processing or reporting. Mistakes in the time corrections for heterogeneous

transit data are unlikely because the Exoplanet Transit Database indicates that all amateur

observations were submitted in UTC, while the professional data were unambiguous in their

use of TDB. While it is possible that uncertainties for certain sets of transit data points may

have been underestimated, the data come from many amateur and professional sources, and

all would have had to make such errors. Since WASP-43 is an early K-type star, a likely

explanation for the scatter is stellar activity.
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Effects like TTVs or tidal infall could still contribute to the scatter, so we present

related calculations below, mainly as motivation and background for future studies.

From the measured period change of Ṗ = -0.095 ± 0.036 s yr-1, we adopt a 3σ

upper limit, |Ṗ | < 0.129 s yr-1. For WASP-43b, this translates to a maximum change in

the semimajor axis of |ȧ| < 1.9 ×10-8 AU yr-1. The three-sigma upper limit on the period

decay also suggests an infall timescale of at least 5×105 ys. Levrard et al. (2009) give a

relation for tidal decay, which for synchronous planetary rotation and negligible eccentricity

and obliquity reduces to:

1

a

da

dt
=

6

Q′
?

Mp

M?

(
R?

a

)5 (
ω? −

2π

P

)
, (3.4)

where Q′
? is the ratio of the stellar tidal quality factor to the second-order stellar tidal Love

number, k2, and ω? is the stellar rotation rate. The upper limit on the quadratic term implies

Q′
? > 12, 000. This is much lower than the values of 105–1010 normally assumed and thus

cannot rule out any plausible values. A small value of Q′
? was also found by Adams et al.

(2010).

While the quadratic fit failed to produce a useful upper limit on tidal decay, obser-

vations with a longer time baseline may yet find secular changes or TTVs. Until then, the

linear ephemeris presented here is the most reliable predictor of future transit times.
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3.7 ATMOSPHERE

We modeled the dayside atmosphere of WASP-43b by using the atmospheric modeling

and retrieval method of Madhusudhan & Seager (2009, 2010). The model computes line-

by-line radiative transfer in a one-dimensional, plane-parallel atmosphere, with constraints

of local thermodynamic equilibrium, hydrostatic equilibrium, and global energy balance.

The pressure–temperature profile and components of the molecular composition are free

parameters of the model, allowing exploration of models with and without thermal inversions

and those with oxygen-rich as well as carbon-rich compositions (Madhusudhan, 2012).

The model includes all the primary sources of opacity expected in hydrogen-dominated

giant-planet atmospheres in the temperature regimes of hot Jupiters, such as WASP-43b.

The opacity sources include line-by-line absorption due to H2O, CO, CH4, CO2, and NH3 and

collision-induced absorption (CIA) due to H2-H2. We also include hydrocarbons besides CH4,

such as HCN and C2H2, which may be abundant in carbon-rich atmospheres (Madhusud-

han et al., 2011b; Kopparapu et al., 2012; Madhusudhan, 2012). Since in highly irradiated

oxygen-rich atmospheres TiO and VO may be abundant (Fortney et al., 2008), we also in-

clude line-by-line absorption due to TiO and VO in regions of the atmosphere where the

temperatures exceed the corresponding condensation temperatures. Our molecular line data

are from Freedman et al. (2008), R. S. Freedman (2009, private communication), Rothman

et al. (2005), Karkoschka & Tomasko (2010), E. Karkoschka (2011, private communication),

and Harris et al. (2008). We obtain the H2-H2 CIA opacities from Borysow et al. (1997) and
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Borysow (2002). The volume mixing ratios of all the molecules are free parameters in the

model.

We constrain the thermal structure and composition of WASP-43b by combining

our Spitzer photometric observations at 3.6 µm and 4.5 µm combined with previously re-

ported ground-based narrow-band photometric data from Gillon et al. (2012), obtained using

VLT/HAWK-I at 1.19 µm and 2.09 µm, and broadband photometric data from Wang et al.

(2013) obtained using CFHT/WIRCAMthe in the H (1.6 µm) and Ks (2.1 µm) bands. The

data also place a joint constraint on the day–night energy redistribution and the Bond albedo

by requiring global energy balance, i.e., that the integrated emergent power from the planet

does not exceed the incident irradiation. Given that the number of model parameters is ≥

10 (depending on the C/O ratio) and the number of available data points is 6, our goal is

to find the regions of model space favored by the data, rather than to determine a unique

fit. We explore the model parameter space by using an MCMC routine (for details, see

Madhusudhan & Seager, 2009, 2010; Madhusudhan et al., 2011a).

The data rule out a strong thermal inversion in the dayside atmosphere of WASP-

43b. The data and two model spectra of atmospheres without thermal inversions are shown

in Figure 3.8. The ground-based and Spitzer data provide complementary constraints on

the atmospheric properties. The ground-based photometric bandpasses, in narrow bands

at 1.19 µm and 2.09 µm (Gillon et al., 2012) and in broad bands at 1.6 µm and 2.1 µm

(Wang et al., 2013), span spectral regions of low molecular opacity probe the deep layers
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of the atmosphere at pressures of P ∼ 1 bar, beyond which the atmosphere is optically

thick because of collision-induced opacity (the contribution functions are given in Figure

3.9). Consequently, the brightness temperatures from such ground-based data constrain the

isothermal temperature structure of the deep atmosphere (Madhusudhan, 2012).

Figure 3.8: Observations and model spectra for dayside thermal emission from WASP-43b.
The black filled circles with error bars show our data in Spitzer IRAC channels 1 (3.6 µm)
and 2 (4.5 µm) and previously published ground-based near-infrared data in narrow-band
photometry at 1.19 µm and 2.09 µm (Gillon et al., 2012) and in broadband photometry at
1.6 µm and 2.1 µm (Wang et al., 2013). The solid curves show the model spectra in the main
panel, and the corresponding temperature–pressure profiles, with no thermal inversions, in
the inset. The green and red curves correspond to models with compositions of nearly solar
and 10 × solar metallicity, respectively. Both models fit the data almost equally well. The
dashed curves show blackbody spectra corresponding to planetary brightness temperatures
of 1670 K and 1514 K, the observed brightness temperatures in the Spitzer IRAC channels
1 and 2, respectively.
(A color version of this figure is available in the online journal.)
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Figure 3.9: Contribution functions for the atmospheric models. The solid (dashed) curves
show the contribution functions for the model in Figure 3.8 with solar (10 × solar, ”High-
Z”) composition. The contribution functions are shown in all the bandpasses corresponding
to the data, denoted by the central wavelengths in µm and instruments in parentheses, as
shown in the legend.
(A color version of this figure is available in the online journal.)

On the other hand, the two Spitzer data sets show lower brightness temperatures

at 3.6 µm and 4.5 µm relative to the ground-based data, which is possible only if the

temperature structure is decreasing outward in the atmosphere, causing molecular absorption

in the Spitzer bands. The presence of a strong thermal inversion, on the contrary, would have

caused molecular emission leading to higher brightness temperatures in the Spitzer bands

relative to the ground-based bands. Consequently, the sum total of Spitzer and ground-based

data rule out a strong thermal inversion in WASP-43b’s dayside photosphere.
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The molecular composition is less well constrained by the data. Several physically

plausible combinations of molecules can explain the absorption in the two Spitzer bands

(e.g., Madhusudhan & Seager, 2010; Madhusudhan, 2012). Figure 3.8 shows two oxygen-

rich models in chemical equilibrium, with C/O ratios of 0.5 (solar value) but with different

metallicities (nearly solar and ten times solar) and thermal profiles, both of which explain

the data almost equally well. In both cases, H2O absorption in the 3.6 µm band, and H2O,

CO, and CO2 absorption in the 4.5 µm band explain the Spitzer data.

The comparable fits demonstrate the degeneracy between the molecular mixing ratios

(via the metallicity) and the temperature gradient. Given the current photometric data, the

solar metallicity model with a steep temperature profile (green curve) produces almost as

good a fit as the higher metallicity model with a shallower temperature profile (red curve). On

the other hand, carbon-rich models with C/O≥1 (e.g., Madhusudhan, 2012), with absorption

due to CH4, CO, C2H2, and HCN, could also explain the data. As such, the current data are

insufficient to discriminate between O-rich and C-rich compositions. Thus, new observations

are required to obtain more stringent constraints on the chemical composition of WASP-

43b. Observations using the HST Wide Field Camera 3 in the 1.1–1.8 µm bandpass can

help constrain the H2O abundance in the atmosphere. As shown in Figure 3.8, an O-rich

composition predicts strong absorption due to H2O in the WFC3 bandpass, which would be

absent in a carbon-rich atmosphere (Madhusudhan et al., 2011a). Similarly, observations
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in other molecular bands, such as the CO band at 2.3 µm, can provide constraints on the

corresponding molecular mixing ratios.

Our observations provide nominal constraints on the day–night energy redistribution

fraction (fr; Madhusudhan & Seager, 2009) in WASP-43b. The models shown in Figure 3.8

have fr = 16%–20%, assuming zero Bond albedo. Our population of model fits to the com-

bined Spitzer and ground-based data allow for up to ∼35% day–night energy redistribution

in the planet. Among the acceptable models, those with higher fr values require cooler lower

atmospheres on the dayside and hence predict lower fluxes in the ground-based channels.

While such models produce an acceptable fit to all four data points overall, they predict sys-

tematically lower fluxes in the ground-based channels, some fitting the ground-based data

points only at the σ lower error bars. Considering the ground-based points alone, without

the Spitzer data, would imply a significantly higher continuum flux and correspondingly a

significantly lower day–night redistribution in the planet than ∼35%, consistent with the

findings of Gillon et al. (2012) and Wang et al. (2013).

The lack of a strong thermal inversion in WASP-43b is not surprising. At an equilib-

rium temperature of ∼1400 K, the dayside atmosphere of WASP-43b is not expected to host

gaseous TiO and VO, which have been proposed to cause thermal inversions (Spiegel et al.,

2009; Hubeny et al., 2003; Fortney et al., 2008), though hitherto unknown molecules that

could also potentially cause such inversions cannot be ruled out (Zahnle et al., 2009). The
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lack of a thermal inversion is also consistent with the hypothesis of Knutson et al. (2010),

since the host star WASP-43 is known to be active (Hellier et al., 2011).

3.8 CONCLUSIONS

Exoplanet secondary eclipses provide us with a unique way to observe the dayside

spectrum of an irradiated planetary atmosphere, where the opacities of the mixture of at-

mospheric trace molecules determine the thermal structure of the planetary atmosphere.

WASP-43b has a 0.81 day period, making it one of the shortest-period transiting

planets. It has a small semimajor axis (0.01526 ± 0.00018 AU, Gillon et al., 2012). WASP-

43 is a low-mass star (M∗ = 0.717 ± 0.025 M�, Gillon et al., 2012) and is also one of the

coldest of all stars hosting hot Jupiters. The close proximity of the planet probably induces

large tidal bulges on the planet’s surface (Ragozzine & Wolf, 2009). The planet’s projected

lifetime is also unusually short for such a late-type host star, owing to tidal in-spiral. The

estimated lifetime for this planet is perhaps 10 Myr–1 Gyr (Hellier et al., 2011).

In this paper we report two Spitzer secondary eclipse observations, using the IRAC 3.6

and 4.5 µm channels. The S/N of 26 in channel 1 and 24 in channel 2 allowed a nonambiguous

analysis. The final eclipse depths from our joint-fit models are 0.347% ± 0.013% and 0.382%

± 0.015%, in channels 1 and 2, respectively. The corresponding brightness temperatures are

1670 ± 23 K and 1514 ± 25 K.
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Our secondary eclipse timings, along with the available RV data and transit photom-

etry from the literature and amateur observations, provide better constraints on the orbital

parameters. WASP-43b’s orbital period is improved by a factor of three (P = 0.81347436

± 1.4×10-7 days). The timing of our secondary eclipse observations is consistent with and

suggestive of a circular orbit.

We combined our Spitzer eclipse depths with ground-based data in the near-infrared

from Gillon et al. (2012) and Wang et al. (2013) to constrain the atmospheric properties of

WASP-43b. The data rule out a strong thermal inversion in the dayside atmosphere. This

is particularly evident because the brightness temperatures in both the Spitzer channels are

lower than those observed in the ground-based channels, suggesting temperatures decreasing

outward. The data do not suggest very efficient day–night energy redistribution in the planet,

consistent with previous studies, though models with up to ∼35% redistribution can explain

the data reasonably well. Current data are insufficient to provide stringent constraints on

the chemical composition.

WASP-43b is a promising planet for a variety of future observations. Its high eclipse

S/N makes it a prime candidate for dayside mapping using eclipse ingress and egress data

(e.g., de Wit et al., 2012; Majeau et al., 2012). Observations in the HST WFC3 bandpass

could break the degeneracy between O-rich and C-rich atmospheric models. Finally, the pos-

sibility of measuring orbital decay in the future is exciting because of the unique constraints

this could place on stellar interior parameters.
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3.9 SYSTEM PARAMETERS

Table 3.8 lists WASP-43 system parameters derived from our analysis and the liter-

ature.

Table 3.8: System Parameters of WASP-43

Parameter Value Reference
Eclipse Parameters

Eclipse midpoint (BJDTDB) (2011 Jul 30) 2455773.3179 ± 0.0003 (1)
Eclipse midpoint (BJDTDB) (2011 Jul 29) 2455772.5045 ± 0.0003 (1)
Eclipse duration t4−1 (hr) 1.25 ± 0.02 (1)
Eclipse depth Spitzer IRAC, 3.6 µm (%) 0.347 ± 0.013 (1)
Eclipse depth Spitzer IRAC, 4.5 µm (%) 0.382 ± 0.015 (1)
Eclipse depth VLT HAWK-I, 2.095 µm (ppm) 1560 ± 140 (2)
Eclipse depth VLT HAWK-I, 1.186 µm (ppm) 790 ± 320 (2)
Ingress/egress time t2−1 (hr) 0.264 ± 0.018 (1)

Orbital parameters

Orbital period, P (days) P = 0.81347436 ± 1.4×10-7 (3)
Semimajor axis, a (AU) 0.01526 ± 0.00018 (2)
Transit time (BJDTDB) 2455726.54336 ± 0.00012 (2)
Orbital eccentricity, e 0.010 +0.010

−0.007 (3)
Argument of pericenter, ω (deg) −88 +5

−9 (3)
Velocity semiamplitude, K (m s-1) 549 ± 6 (3)
Center-of-mass velocity γ (m s-1) −3595 ± 4 (3)

Stellar parameters
Spectral type see Section 5.2 (2)
Mass, M∗ (M�) 0.717 ± 0.025 (2)
Radius, R∗ (R�) 0.667 +0.011

−0.010 (2)
Mean density, ρ∗ (ρ�) 2.410 +0.079

−0.075 (2)
Effective temperature, Teff (K) 4520 ± 120 (2)
Surface gravity, log g∗ (cgs) 4.645 +0.011

−0.010 (2)
Projected rotation rate, v∗ sin(i) (kms-1) 4.0 ± 0.4 (2)
Metallicity [Fe/H] (dex) -0.01 ± 0.12 (2)
Distance (pc) 80 ± 20 (4)

Planetary parameters

Mass, Mp (MJ) 2.034 +0.052
−0.051 (2)

Radius, Rp (RJ) 1.036 ± 0.019 (2)
Surface gravity, log gp (cgs) 3.672 +0.013

−0.012 (2)
Mean density, ρp (g cm-3) 1.377 +0.063

−0.059 (2)
Equilibrium temperature (A = 0), Teq (K) 1440 +40

−39 (2)

Notes. References. (1) This work (parameters derived using joint fit, see Section 3.5.3);
(2) Gillon et al. (2012); (3) This work (see Section 3.6); (4)Hellier et al. (2011).
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4.1 ABSTRACT

We present an open-source Thermochemical Equilibrium Abundances (TEA) code

that calculates the abundances of gaseous molecular species. The code is based on the

methodology of White et al. (1958) and Eriksson (1971). It applies Gibbs free-energy mini-

mization using an iterative, Lagrangian optimization scheme. Given elemental abundances,

TEA calculates molecular abundances for a particular temperature and pressure or a list

of temperature-pressure pairs. We tested the code against the method of Burrows & Sharp

(1999), the free thermochemical equilibrium code CEA (Chemical Equilibrium with Appli-

cations), and the example given by White et al. (1958). Using their thermodynamic data,

TEA reproduces their final abundances, but with higher precision. We also applied the TEA

abundance calculations to models of several hot-Jupiter exoplanets, producing expected re-

sults. TEA is written in Python in a modular format. There is a start guide, a user

manual, and a code document in addition to this theory paper. TEA is available under a

reproducible-research, open-source license via https://github.com/dzesmin/TEA.

4.2 INTRODUCTION

There are two methods to calculate chemical equilibrium: using equilibrium constants

and reaction rates, i.e., kinetics, or minimizing the free energy of a system (Bahn & Zukoski,

1960; Zeleznik & Gordon, 1968).
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The kinetic approach, where the pathway to equilibrium needs to be determined,

is applicable for a wide range of temperatures and pressures. However, using kinetics for

thermochemical equilibrium calculations can be challenging. Chemical equilibrium can be

calculated almost trivially for several reactions present in the system, but as the number

of reactions increases, the set of numerous equilibrium constant relations becomes hard to

solve simultaneously. To have an accurate kinetic assessment of the system, one must collect

a large number of reactions and associate them with the corresponding rates. This is not

an issue at lower temperatures, where reaction rates are well known. However, at high

temperatures, where thermochemical equilibrium should prevail, one needs to know forward

and reverse reactions and corresponding reaction rates, which are less well known.

The advantage of the free energy minimization method is that each species present

in the system can be treated independently without specifying complicated sets of reactions

a priori, and therefore, a limited set of equations needs to be solved (Zeleznik & Gordon,

1960). In addition, the method requires only knowledge of the free energies of the system,

which are well known, tabulated, and can be easily interpolated or extrapolated.

Thermochemical equilibrium calculations have been widely used in chemical engineer-

ing to model combustion, shocks, detonations and the behaviour of rockets and compressors

(e.g., Miller et al., 1990; Belford & Strehlow, 1969). In astrophysics, they have been used to

model the solar nebula, the atmospheres and circumstellar envelopes of cool stars, and the

volcanic gases on Jupiter’s satellite Io (e.g., Lauretta et al., 1997; Lodders & Fegley, 1993;
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Zolotov & Fegley, 1998). Thermochemistry also governs atmospheric composition in vast

variety of giant planets, brown dwarfs, and low-mass dwarf stars (Lodders & Fegley, 2002;

Visscher et al., 2006, 2010a, and references therein ).

4.2.1 Chemical Models of Exoplanets

To perform a comprehensive study of a planetary atmosphere, aside from thermoequi-

librium chemistry, one must consider disequilibrium processes like photochemistry, vertical

mixing, horizontal transport, and transport-induced quenching (Moses et al., 2011, 2013;

Venot et al., 2012, 2014; Agúndez et al., 2012, 2014; Line et al., 2010, 2011; Visscher &

Moses, 2011). Today, we have 1D chemical models that integrate thermochemistry, kinetics,

vertical mixing, and photochemistry (Line et al., 2011; Moses et al., 2011; Visscher et al.,

2010b). These models have an ability to smoothly transition from the thermochemical-

equilibrium regime to transport-quenched and photochemical regimes. Specifically, in giant

planets, we can distinguish three chemical layers: deep within the planetary atmosphere,

the temperatures and pressures are so high that chemical reaction timescales are short,

ensuring a chemical equilibrium composition; at lower temperatures and pressures higher

in the atmosphere, the timescales for chemical reactions slows down, reaching the vertical

transport timescale and smoothing the vertical mixing-ratio profile by producing quenched
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abundances; high in the atmosphere, the host star’s ultraviolet radiation destroys stable

molecules, driving photochemical reactions.

Photochemical models today face several difficulties. They lack high-temperature

photochemical data, and the list of reactions and associated rate coefficients are not well

defined or are conflicted (Venot et al., 2012; Visscher et al., 2010b). In addition, the exo-

planet photospheres observed with current instruments are sampled within the region of the

atmosphere dominated by vertical mixing and quenching, but not by photochemistry (Line

& Yung, 2013).

The majority of early hot-Jupiter atmospheric models assumed chemical composition

consistent with thermochemical equilibrium (e.g., Burrows et al., 2007; Fortney et al., 2005;

Marley et al., 2007; Fortney et al., 2010; Burrows & Sharp, 1999; Sharp & Burrows, 2007;

Rogers et al., 2009). More recently, a variety of 1D photochemical models has been used to

explore the compositions of hot Jupiters (Moses et al., 2011; Zahnle et al., 2009; Line et al.,

2010; Kopparapu et al., 2012; Venot et al., 2012; Line & Yung, 2013; Visscher et al., 2006,

2010b; Venot et al., 2012). A common conclusion of these studies is that in hot atmospheres

(T > 1200 K), disequilibrium effects are so reduced that thermochemical equilibrium prevails.

Using secondary eclipse observations as the most fruitful technique today to assess

atmospheric composition (e.g., Knutson et al., 2009a,b; Machalek et al., 2008; Stevenson

et al., 2012; Fraine et al., 2013; Crossfield et al., 2012; Todorov et al., 2012; Désert et al.,

2009; Deming et al., 2011; Demory et al., 2007; Madhusudhan & Seager, 2009; Madhusudhan
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et al., 2011a; Blecic et al., 2013, 2014), Line & Yung (2013) studied the most spectroscopically

active species in the infrared on eight hot planets (GJ436b, WASP-12b, WASP-19b, WASP-

43b, TrES-2b, TrES-3b, HD 189733b, and HD 149026b), with equilibrium temperatures

ranging between 744 K and 2418 K. They chose to evaluate the presence of disequilibrium

chemistry at 100 mbar, where most secondary-eclipse observations sample, i.e., where their

thermal emission weighting functions usually peak. They find that all of the models are

consistent with thermochemical equilibrium within 3σ (the work of Stevenson et al., 2010,

however, questions this conclusion for GJ436b). They also show that for the hottest planets,

(T100mb > 1200 K ), CH4, CO, H2O, and H2 should be in thermochemical equilibrium even

under a wide range of vertical mixing strengths.

Thermochemical equilibrium calculations are the starting point for initializing models

of any planetary atmosphere. In general, thermochemical equilibrium governs the composi-

tion of the deep atmospheres of giant planets and brown dwarfs, however, in cooler atmo-

spheres thermoequilibrium calculations are the necessary baseline for further disequilibrium

assessment. They can also provide a first-order approximation for species abundances as a

function of pressure, temperature, and metallicity for a variety of atmospheres (e.g., Visscher

et al., 2010b; Lodders & Fegley, 2002).

The Gibbs free energy minimization method for calculating thermochemical equilib-

rium abundances of complex mixtures was first introduced by White et al. (1958). Prior

to 1958 all equilibrium calculations were done using equilibrium constants of the governing
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reactions. White et al. (1958) were the first to develop a method that makes no distinction

among the constituent species and does not need a list of all possible chemical reactions and

their rates. Rather, it depends only on the chemical potentials of the species involved. To

derive the numerical solution, they apply two computational techniques: a steepest-descent

method applied to a quadratic fit and the linear programming method.

Following their methodology, Eriksson (1971) developed the SOLGAS code that cal-

culates equilibrium composition in systems containing ideal gaseous species and pure con-

densed phases. Subsequent modification of this code were made by Eriksson & Rosen (1973),

Eriksson (1975), and Besmann (1977), after which the code was modified for astrophysical

applications and called SOLAGASMIX by Sharp & Huebner (1990); Petaev & Wood (1998),

Burrows & Sharp (1999), and Sharp & Burrows (2007).

The Gibbs free energy minimization approach has been used by many authors in the

exoplanetary field (e.g., Seager, 1999, 2010; Madhusudhan & Seager, 2009, 2010; Sharp &

Huebner, 1990). In addition to SOLAGASMIX and other proprietary codes (e.g., CONDOR

by Fegley & Lodders, 1994; Lodders & Fegley, 1994), and one analytic method to calculate

major gaseous species in planetary atmospheres by Burrows & Sharp (1999), just one free-

software code is available to the exoplanet community, CEA (Chemical Equilibrium with

Applications, http://www.grc.nasa.gov/WWW/CEAWeb, by Gordon & McBride, 1994), .

In this paper, we present a new open-source code, Thermochemical Equilibrium Abun-

dances (TEA). The TEA code is a part of the open-source Bayesian Atmospheric Radiative
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Transfer project (https://github.com/joeharr4/BART). This project consists of three ma-

jor parts: TEA - this code, a radiative-transfer code that models planetary spectra, and a

statistical module that compares theoretical models with observations.

TEA calculates the equilibrium abundances of gaseous molecular species. Given a

single T, P point or a list of T, P pairs (the thermal profile of an atmosphere) and elemental

abundances, TEA calculates mole fractions of the desired molecular species. The code is

based on the Gibbs free energy minimization calculation of White et al. (1958) and Eriksson

(1971). TEA uses 84 elemental species and the thermodynamical data for more then 600

gaseous molecular species available in the provided JANAF (Joint Army Navy Air Force)

tables (http://kinetics.nist.gov/janaf/, Chase et al., 1982; Chase, 1986). TEA can

adopt any initial elemental abundances. For user convenience a table with solar photospheric

elemental abundances from Asplund et al. (2009) is provided.

The code is written in Python in an architecturally modular format. It is accompa-

nied by detailed documentation, a start guide, the TEA User Manual (Bowman and Blecic),

the TEA Code Description document (Blecic and Bowman), and the TEA Theory docu-

ment (this paper), so the user can easily modify it. The code is actively maintained and

available to the scientific community via the open-source development website GitHub.com

(https://github.com/dzesmin/TEA, https://github.com/dzesmin/TEA-Examples).

This paper covers an initial work on thermochemical calculations of species in gaseous phases.

Implementation of condensates is left for future work.
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In this paper, we discuss the theoretical basis for the method applied in the code.

Section 4.3 explains the Gibbs Free energy minimization method; Section 4.4 describes the

general Lagrangian optimization method and its application in TEA; in Section 4.5 we intro-

duce the Lambda Correction algorithm for handling negative abundances that follow from

the Lagrangian method; Section 4.6 describes the layout of the TEA code; Section 4.7 ex-

plores chemical equilibrium abundance profiles of several exoplanetary atmospheres; Section

4.8 compares our code to other methods available, and Section 5.5 states our conclusions.

4.3 GIBBS FREE ENERGY MINIMIZATION METHOD

Equilibrium abundances can be obtained by using different combinations of thermo-

dynamical state functions: temperature and pressure – (t, p), enthalpy and pressure – (H, p),

entropy and pressure – (S, p), temperature and volume – (t, v), internal energy and volume –

(U, v), etc. Depending on how the system is described, the condition for equilibrium can be

stated in terms of Gibbs free energy, helmholtz energy, or entropy. If a thermodynamic state

is defined with temperature and pressure, Gibbs free energy (G) is most easily minimized,

since those two states are its natural, dependent variables.

Gibbs free energy represents a thermodynamic potential that measures the useful

work obtainable by the system at a constant temperature and pressure. Thus, the Gibbs free
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energy minimization method minimizes the total chemical potential of all involved species

when the system reaches equilibrium.

The Gibbs free energy of the system at a certain temperature is the sum of the Gibbs

free energies of its constituents:

Gsys(T ) =
n∑
i

Gi(T ) , (4.1)

where Gsys(T ) is the total Gibbs free energy of the system for n chemical species, Gi(T ) is

the Gibbs free energy of a gas species i, and T is the temperature. The total Gibbs free

energy of the system is expressed as the sum of the number of moles x of the species i, xi,

and their chemical potentials gi(T ):

Gsys(T ) =
n∑
i

xi gi(T ) . (4.2)

The chemical potential gi(T ) depends on the chemical potential at the standard state g0i (T )

and the activity ai,

gi(T ) = g0i (T ) +RT ln ai , (4.3)

where R is the gas constant, R = kBNA, and kB and NA are the Boltzmann constant and

Avogadro’s number, respectively. Activities for gaseous species, which are treated as ideal,
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are equal to the partial pressures, and for condensates they equal 1:

ai = Pi = P
xi

N
, for gases (4.4)

ai = 1 , for condensates , (4.5)

where P is the total pressure of the atmosphere, N is the total number of moles of all species

involved in the system. Hence, Equation (4.3) for gaseous species becomes:

gi(T ) = g0i (T ) +RT lnPi . (4.6)

Combining Equation (4.6) with Equation (4.2), the Gibbs free energy of the system becomes:

Gsys(T ) =
n∑
i

xi

(
g0i (T ) +RT lnPi

)
, (4.7)

or,

Gsys(T ) =
n∑
i

xi

(
g0i (T ) +RT lnP +RT ln

xi

N

)
, (4.8)

For our purposes, it is more convenient to write Equation (4.8) in unitless terms:

Gsys(T )

RT
=

n∑
i=1

xi

[g0i (T )
RT

+ lnP + ln
xi

N

]
. (4.9)
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Equation (5.11) requires a knowledge of the free energy of each species as a function of tem-

perature. These can be obtained from the JANAF tables (http://kinetics.nist.gov/janaf/,

Chase et al., 1982; Chase, 1986; Burrows & Sharp, 1999), or easily derived from other tabu-

lated functions.

To extract free energies, g0i (T )/RT , from the JANAF tables, we used the expression

given in Eriksson (1971), Equation (2):

g0i (T )

RT
= 1/R

[G0
i −H0

298

T

]
+

∆fH
0
298

RT
, (4.10)

where g0i (T ) is given in J/mol, R = 8.3144621 J/K/mol, H0
298 is the enthalpy (heat content)

in the thermodynamical standard state at a reference temperature of 25oC = 298.15 K, G0
i

is the Gibbs free energy in J/mol, (G0
i − H0

298/T ) is the free-energy function in J/K/mol,

and ∆fH
0
298 is the heat of formation at 298.15 K in kJ/mol. Thus, our conversion equation

becomes:

g0i (T )

RT
= 1/R

[G0
i −H0

298

T

]
+

∆fH
0
2981000

RT
, (4.11)

G0
i − H0

298/T is the fourth term in the JANAF tables and ∆fH
0
298 is the sixth. The free

energy function of a species corresponding to a temperature other than those provided in

the JANAF tables is calculated using spline interpolation.
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Alternatively, the free energies can be calculated using the eighth term in the JANAF

tables, following Equation (3) from Eriksson (1971):

g0i (T )

RT
= − ln (10) log10 (Kf ) , (4.12)

where Kf is the equilibrium constant of formation.

To determine the equilibrium composition, we need to find a non-negative set of values

xi that minimizes Equation (5.11) and satisfies the mass balance constraint:

n∑
i=1

aij xi = bj , (j = 1, 2, ...,m) , (4.13)

where the stoichiometric coefficient aij indicates the number of atoms of element j in species

i (e.g., for CH4 the stoichiometric coefficient of C is 1 and the stoichiometric coefficient of H

is 4), and bj is the total number of moles of element j originally present in the mixture.

We use the reference table containing elemental solar abundances given in Asplund

et al. (2009) Table 1 for b values. Asplund et al. (2009) adopt the customary astronomical

scale for logarithmic abundances, where hydrogen is defined as log εH = 12.00, and log

εX = log(NX/NH)+12, where NX and NH are the number densities of element X and H,

respectively. Thus, their values are given in dex (decimal exponent) units. We transform

these values into elemental fractions by number, i.e., ratio of number densities. We convert

each species dex elemental abundance into number density and divide it by the hydrogen
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number density (Asplund et al., 2009, Section 3). The final output are fractional abundances

(mole mixing fractions), i.e., the ratio of each species’ number of moles to the number of

moles in the mixture.

4.4 LAGRANGIAN METHOD OF STEEPEST DESCENT

To find equilibrium abundances of the desired molecular species at a given temper-

ature and pressure, we need to minimize Equation (5.11). To do so, we have to apply a

technique that minimizes a multi-variate function under constraint. There are many opti-

mization techniques used to find the minima of a function subject to equality constraints

(e.g., line search method, Dantzig-simplex method for linear programming, Newton-Raphson

method, Hessian-conjugate gradient method, Lagrangian steepest-descent method). The

main advantage of the Lagrangian steepest-descent method is that the number of equations

to solve scales with the number of different types of atoms present in the mixture, which is

usually a much smaller number than the possible number of molecular constituents. This

allows the code to be executed much faster than in other methods.

Gradient descent, also known as steepest descent, is an algorithm for finding a local

minimum of a function. At each iteration, the method takes steps towards the minimum,

where each step is proportional to the negative gradient of the function at the current point.

If a function f(x) is defined and differentiable in the neighborhood of a point a, then f(x)
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decreases most rapidly in the direction of the negative gradient, −∇f(a). From this, it

follows that if b = a − λ∇f(a), then f(a) > f(b) if λ is small enough. Starting with

a guess x0 for a local minimum of f , and considering a sequence x0, x1, x2, ... such that

xn+1 = xn − λ∇f(xn), n ≥ 0, one gets f(x0) ≥ f(x1) ≥ f(x2) ≥... . This sequence of xn

converges to a desired local minimum if the correct λ value is assigned. The value of λ can

vary at each iteration. If the function f is convex, the local minimum is also the global

minimum.

Figure 4.1: Example of the Lagrangian minimization approach. Left: The 3D illustration of
the minimization problem. Blue lines indicate starting and ending values of f(x, y) during
minimization. An (x, y) pair is found that minimizes f(x, y) (bottom blue line) subject to a
constraint g(x, y) = C (red line). Right: Contour map of the left figure. The point where
the red line (constraint) tangentially touches a blue contour is the solution. Since d1 < d2,
the solution is the minimum of f(x, y).

Our code implements a more complex version of the method outlined above. The

problem consists of some function f(x, y) subject to a constraint g(x, y) = C. In this case,

we need both f and g to have continuous first partial derivatives. Thus, we introduce a new
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variable called the Lagrangian multiplier, π, where:

Λ(x, y, λ) = f(x, y)± π (g (x, y)− C) , (4.14)

which allows us to find where the contour of g(x, y) = C tangentially touches f(x, y) (Figure

4.1). The point of contact is where their gradients are parallel:

∇xy f(x, y) = −π∇xy g(x, y) . (4.15)

The constant π allows these gradients to have different magnitudes. To find the minimum,

we need to calculate all partial derivatives of the function Λ, equate them with zero,

∇x,y,π Λ(x, y, π) = 0 , (4.16)

and follow the same iteration procedure as explained above.

4.4.1 Lagrangian Method in TEA

To implement this in our code, we followed the methodology derived in White et al.

(1958). We applied an iterative solution to the energy minimization problem, where the

mole numbers of the desired molecular species are recomputed at each step and the new

144



direction of steepest descent is calculated. This produces improved mole number values,

which however, could be negative. Thus, two short procedures are required in each iteration

cycle: solving a set of simultaneous linear equations for an improved direction of descent

(described in this Section) and approximately minimizing a convex function of one variable,

λ, to ensure that all improved mole number values are positive (Section 4.5).

To calculate the direction of steepest descent (following the methodology derived in

Section 4.4) and initiate the first iteration cycle, we first need to solve the mass balance

equation, Equation (5.12). We start from any positive set of values for the initial mole

numbers, y = (y1, y2, ..., yn), as our initial guess:

n∑
i=1

aij yi = bj (j = 1, 2, ...,m) . (4.17)

To satisfy the mass balance Equation (4.17), some yi variables must remain as free param-

eters. In solving these equations, we leave as many free parameters as we have elements in

the system, thus ensuring that the mass balance equation can be solved for any number of

input elements and output species the user chooses. We set all other yi to a known, arbitrary

number. Initially, the starting values for the known species are set to 0.1 moles, and the

mass balance equation is calculated. If that does not produce all positive mole numbers, the

code automatically sets known parameters to 10 times smaller and tries again. The initial

iteration input is set when all mole numbers are positive, and the mass balance equation is

satisfied.
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To follow with the Lagrangian method, we denote two terms in Equation (5.11) as:

ci =
g0i (T )

RT
+ lnP , (4.18)

where P is the pressure in bar. Using ci, we denote the right side of Equation (5.11) as the

variable fi(Y ):

fi(Y ) = yi

[
ci + ln

yi
ȳ

]
, (4.19)

where Y = (y1, y2, ..., yn) and ȳ is the total initial number of moles. The left side of Equation

(5.11), Gsys(T )/RT , we denote as function F (Y ):

F (Y ) =
n∑

i=1

yi

[
ci + ln

yi
ȳ

]
. (4.20)

Then, we do a Taylor series expansion of the function F about Y . This yields a quadratic

approximation Q(X):

Q(X) = F (X)
∣∣∣
X=Y

+
∑
i

∂F

∂xi

∣∣∣
X=Y

∆i + (4.21)

1

2

∑
i

∑
k

∂2 F

∂xi∂xk

∣∣∣
X=Y

∆i ∆k .
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where ∆i = xi−yi, and xi are the improved mole numbers. This function is minimized using

the Lagrangian principle. We now introduce Lagrangian multipliers as πj:

G(X) = Q(X) +
∑
j

πj(−
∑
i

aij xi + bj) , (4.22)

and calculate the first derivatives, ∂G/∂xi, of the new function. We equate them to zero to

find the minima, ∂G/∂xi = 0.

We solve for xi from Equation (4.22) by combining Equation (4.17) and (4.19) with

the fact that x̄ is the sum of the improved mole numbers, x̄ =
∑n

i=1 xi. The improved

number of moles, xi, are given as:

xi = −fi(Y ) + (
yi
ȳ
) x̄+ (

m∑
j=1

πj aij) yi , (4.23)

while the Lagrangian multipliers, πj, are expressed as:

m∑
j=1

πj

n∑
i=1

aij yi =
n∑

i=1

yi

[g0i (T )
RT

+ lnP + ln
yi
ȳ

]
, (4.24)

where j iterates over the m elements and i iterates over the n species. x̄ and ȳ are the sums

of improved and initial number of moles, respectively. Using Equation (4.19), we can now
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rewrite Equation (4.24) as:

m∑
j=1

πj bj =
n∑

i=1

fi(Y ) . (4.25)

If we further denote the constants with:

rjk = rkj =
n∑

i=1

(aij aik) yi, (4.26)

combining Equations (4.23), (4.25), and (4.26), we get the following system ofm+1 equations

that can easily be solved:

r11π1 + r12π2 + ...+ r1mπm + b1 u =
n∑

i=1

ai1 fi(Y ) ,

r21π1 + r22π2 + ...+ r2mπm + b2 u =
n∑

i=1

ai2 fi(Y ) ,

. ,

. , (4.27)

. ,

rm1π1 + rm2π2 + ...+ rmmπm + bm u =
n∑

i=1

aim fi(Y ) ,

b1π1 + b2π2 + ...+ bmπm + 0u =
n∑

i=1

fi(Y ) ,
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where:

u = −1 + x̄/ȳ . (4.28)

The solutions to Equations (4.27) and (4.28) will give πj and u, and from them using Equation

(4.23) we can calculate the next set of improved mole numbers, i.e., an improved direction

of descent, ∆i = xi − yi.

4.5 LAMBDA CORRECTION ALGORITHM

Solving a system of linear equations (i.e., performing the Lagrangian calculation) can

also lead to negative mole numbers for some species, so a short additional step is needed to

eliminate this possibility and guarantee a valid result.

To do so, the difference between the initial and final values given by the Lagrangian

calculation, ∆i = xi − yi, we will call the total distance for each species. To ensure that all

improved mole numbers are positive, we introduce a new value, λ, that defines the fraction

of the total distance as λ∆i (see Figure 4.2).

The computed changes, λ∆i, are considered to be directional numbers indicating the

preferred direction of descent the system moves to. Other than providing all positive mole

numbers, we determine the value λ so that the Gibbs energy of the system must decrease,

i.e., the minimum point is not passed (see Equation 4.34).
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Figure 4.2: Simplified illustration of the lambda correction algorithm. Initial values for one
hypothetical Lagrangian iteration cycle, yi, are given in green. These values are all positive
and satisfy the mass balance equation, Equation 4.17. The xi values, given in blue, are the
values produced by the Lagrangian calculation. These values can be negative, but they also
satisfy the mass balance equation. The x

′
i values, given in red, are produced by choosing the

maximum value of lambda that ensures all positive and non-zero x
′
i. These values become

the new initial values of yi for the next iteration cycle.

At each Lagrangian iteration cycle we start with the initial positive values, yi and we

get the next set of improved values xi given as:

xi = yi +∆i . (4.29)

Since we do not want any xi to be negative, the variable λ performs a small correction:

x
′

i = yi + λ∆i . (4.30)

λ takes values between 0 and 1, where value of zero implies no step is taken from the

iteration’s original input, yi, and one implies that the full Lagrangian distance is travelled,
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∆i. We now rewrite Equation (4.19) using Equation (4.30) as:

fi(X
′
) = x

′

i

(g0i (T )
RT

+ lnP + ln
x

′
i

x̄′

)
, (4.31)

which can be written in the form:

fi(λ) = (yi + λ∆i)
(g0i (T )

RT
+ lnP + ln

yi + λ∆i

ȳ + λ∆̄

)
, (4.32)

where ∆̄ = ȳ − x̄. Summing over i, we get a new function, F (λ):

F (λ) =
∑
i

(yi + λ∆i)
(g0i (T )

RT
+ lnP + ln

yi + λ∆i

ȳ + λ∆̄

)
. (4.33)

Thus, to ensure that the new corrected values x
′
i are all positive, the distance travelled

will be limited to fractional amounts defined by λ∆i, using the largest possible value of λ

that satisfies the conditions:

1. The function called the directional derivative is defined and exists:

dF (λ)

dλ
=

n∑
i=1

∆i

[g0i (T )
RT

+ lnP + ln
yi + λ∆i

ȳ + λ∆̄

]
. (4.34)

2. The directional derivative does not become positive (the minimum point is not passed).
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Every new iteration starts with a different set of yi, thus changing the convex function

F (λ), Equation 4.33, and producing a new minimum. This yields to a new λ value. λ will be

found to approach unity after some number of iterations. Unity in λ indicates the solution

is near.

We repeat the Lagrangian method and the lambda correction until a pre-defined max-

imum number of iterations is met. The final abundances are given as fractional abundances

(mole mixing fractions), i.e., the ratio of each species’ mole numbers to the total sum of mole

numbers of all species in the mixture.

4.6 CODE STRUCTURE

The TEA code is written entirely in Python and uses the Python packages NumPy

(http://numpy.org/) and (http://www.scipy.org/) along with SymPy, an external linear

equation solver (http://sympy.org/).

The code is divided into two parts: the pre-pipeline that makes the thermochemical

data library and stoichiometric tables, and the pipeline that performs abundance calcula-

tions. Given elemental abundances, TEA calculates molecular abundances for a particular

temperature and pressure or a list of temperature-pressure pairs. Documentation is provided

in the TEA User Manual (Bowman and Blecic) and the TEA Code Description (Blecic and
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Bowman) that accompany the code. Figure 4.3 shows the layout of the TEA program’s flow.

Its modules are:

1. prepipe.py: Runs the readJANAF.py and makestoich.py modules and provides their

common setup.

2. readJANAF.py: Extracts relevant from all available NIST-JANAF Thermochemical

Tables and writes ASCII files.

3. makestoich.py: Reads the chemical formula to obtain species names and their stoi-

chiometric coefficients from each JANAF file, and elemental solar abundances from an

ASCII file based on Asplund et al. (2009) Table 1. The code produces an output file

containing species, stoichiometric coefficients, and abundances.

4. runsingle.py: Runs TEA for a single T, P pair.

5. runatm.py: Runs TEA over a pre-atmosphere file containing a list of T, P pairs.

6. readatm.py: Reads the pre-atmospheric file with multiple T, P pairs.

7. makeheader.py: Combines the stoichiometric information, Gibbs free energy per

species at specific temperatures, and the user input to create a single file with relevant

chemical informations further used by the pipeline.

8. balance.py: Uses species and stoichiometric information to establish viable, mass-

balanced, initial mole numbers.

153



Figure 4.3: Layout of the TEA pre-pipeline and pipeline modules. The modules have one
of three roles: scientific calculation, file or data structure support, or execution of the cal-
culation programs over temperature and pressure points in an iterative manner. In addition
to the modules shown, TEA has three supporting modules: readconfig.py, makeatm.py, and
plotTEA.py. All modules are described in the text.
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9. format.py: Auxiliary program that manages input/output operations in each piece

of the pipeline.

10. lagrange.py: Uses data from the most recent iteration’s corrected mole numbers

and implements the Lagrangian method for minimization. Produces output with raw,

non-corrected mole numbers for each species (values are temporarily allowed to be

negative).

11. lambdacorr.py: Takes non-corrected mole numbers and implements lambda correc-

tion to obtain only valid, positive numbers of moles. Output is the corrected mole

numbers for each species.

12. iterate.py: Driver program that repeats lagrange.py and lambdacorr.py until a

pre-defined maximum number of iterations is met.

13. readconfig.py: Reads TEA configuration file.

14. makeatm.py: Makes pre-atmospheric file for a multiple T, P run.

15. plotTEA.py: Plots TEA output, the atmospheric file with final mole-fraction abun-

dances.
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4.7 APPLICATION TO HOT-JUPITER ATMOSPHERES

In this section, we illustrate several applications of the TEA code. We produced

molecular abundances profiles for models of hot-Jupiter planetary atmospheres, given their

temperature-pressure profiles.

The temperature and pressure (T − P ) profiles adopted for our thermochemical cal-

culations are shown in Figure 4.4. The left and middle panel show the T − P profiles of

WASP-12b from Stevenson et al. (2014a) with the C/O ratio of 0.5 and 1.2, respectively.

The right panel shows the thermal profile of WASP-43b from Stevenson et al. (2014b) with

solar metallicity. These profiles are chosen for their relevance to atmospheric conditions at

secondary eclipses.

We chose elemental-abundance profiles with C/O > 1 and C/O < 1 and three profiles

with solar, 10 times solar, and 50 times solar elemental abundances to show the influence of

the C/O ratio and metallicity on the chemistry and composition of extrasolar giant planets.

We adopt Asplund et al. (2009) photospheric solar abundances as our baseline. To

change the elemental abundance profile, set them to a certain C/O ratio, or enhance metal-

licity, we use our Python routine, makeAbun.py. This routines is the part of the BART

project and it is available to the community via Github.com under an open-source licence

(https://github.com/joeharr4/BART). For different metallicities, the routine multiples the
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elemental abundances of all species except for hydrogen and helium, preserving the ratio of

major atomic species like C, N, and O.
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Figure 4.4: The left and middle panels show the O-rich and C-rich temperature and pressure
(T −P ) profile of WASP-12b from Stevenson et al. (2014a) with C/O = 0.5 and C/O = 1.2
respectively. The right panel shows the T − P profile of WASP-43b from Stevenson et al.
(2014b) with solar metallicity.
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Figure 4.5: Comparison between vertical thermochemical equilibrium distributions for
WASP-12b O-rich, left panel, and WASP-12b C-rich, right panel, elemental abundance pro-
file. The inset plots are the T − P profiles shown in Figure 4.4, left and middle panels.
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We chose to run the models for all plausible, spectroscopically active species in the

infrared relevant for hot-Jupiter atmospheres: H2, CO, CO2, CH4, H2O, HCN, C2H2, C2H4,

N2, NH3, HS, and H2S. Our input species are: H, He, C, N, O, S.

Figure 4.5 shows results for WASP-12b. Each T − P profile is sampled 100 times

uniformly in log-pressure space. Figure 4.6 shows the TEA runs for WASP-43b with different

metallicities. This T − P profile is sampled 90 times in uniformly log-pressure space.

As expected, Figure 4.5 shows that H2O, CH4, CO, CO2, C2H2, C2H4, and HCN

are under the strong influence of the atmospheric C/O ratio in hot Jupiters (e.g., Lodders

& Fegley, 2002; Seager et al., 2005; Fortney et al., 2005; Madhusudhan et al., 2011a,b;

Madhusudhan, 2012; Madhusudhan & Seager, 2011; Moses et al., 2013). These species are

plotted in solid lines, while species with only small influence from the C/O ratio are plotted

as dashed lines.

The results also show, as expected, that CO is a major atmospheric species on hot

Jupiters for all C/O ratios and metallicities (Figures 4.5 and 4.6), because CO is chemically

favored over H2O. Other oxygen-bearing molecules like H2O and CO2 are more abundant

when C/O<1, while CH4, C2H2, and C2H4 become significant species when C/O>1. Species

like N2 and NH3 that do not contain carbon or oxygen are much less affected by the C/O

ratio.
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Figure 4.6: Thermochemical equilibrium vertical distributions for different metallicities of
WASP-43b assuming the T − P profile in Figure 4.4, right panel (profile given in inset).
Three metallicity cases with ζ= 1, 10, and 50 are shown from the top to the bottom.
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H2O is abundant in hot-Jupiter atmospheres (e.g., Burrows & Sharp, 1999; Lodders

& Fegley, 2002; Hubeny & Burrows, 2007; Sharp & Burrows, 2007) due to the large solar

abundances of oxygen and hydrogen. Even disequilibrium processes like photochemistry

cannot deplete its abundance. Photochemical models by Moses et al. (2011) and Line et al.

(2010, 2011) predict that water will be recycled in hot-Jupiter atmospheres, keeping H2O

abundances close to thermochemical equilibrium values. A low water abundance seems to

occur only in atmospheres with a C/O>1.

CO2, although present in hot-Jupiter atmospheres and spectroscopically important,

is not a major constituent, and it becomes even less abundant when C/O>1. Although

photochemistry can greatly enhance the HCN, C2H2, and C2H4 abundances (Moses et al.,

2013), we also see that with C/O>1, they are the most abundant constituents.

In Figure 4.6, the species strongly influenced by metallicity are again plotted as solid

lines. In general, we see, as expected (e.g., Line et al., 2011; Lodders & Fegley, 2002;

Venot et al., 2014), that the shapes of the vertical distributions are mostly preserved for

all metallicities. However, the thermochemical mixing ratio of CO2, CO, H2O, N2, HS, and

H2S vary by several orders of magnitude over the range of metallicities, while CH4 and

hydrocarbons change very little.

When the metallicity changes from 1 to 50, the abundance of CO2 experiences the

most dramatic change. It increases by a factor of 1000, confirming it as the best probe

of planetary metallicity (Lodders & Fegley, 2002; Zahnle et al., 2009). CO2 abundance is
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the quadratic function of metallicity (Venot et al., 2014), while CO, H2O, HS, H2S, and

N2 abundances, for species that either contain one metal atom or are the major reservoirs

of carbon and nitrogen, increase linearly with metallicity (Visscher et al., 2006). For this

metallicity range, the CO, H2O, HS, H2S, and N2 abundances change by a factor of 100,

while NH3, CH4, C2H2, C2H4, and HCN change by a factor of 10 or less.

4.8 COMPARISON TO OTHER METHODS

To test the validity of our code, we performed 4 different tests. We compared the

output of TEA with the example from White et al. (1958) using their thermodynamic data.

We also compared the TEA output with the output of our TEBS (Thermochemical Equi-

librium by Burrows & Sharp) code that implements the Burrows & Sharp (1999) analytical

method for calculating the abundances of five major molecular species present in hot-Jupiter

atmospheres (CO, CH4, H2O, N2, NH3). As another comparison, we used the free ther-

mochemical equilibrium code CEA (Chemical Equilibrium with Applications, available from

NASA Glenn Research Center at http://www.grc.nasa.gov/WWW/CEAWeb/). This code uses

the Newton-Raphson descent method within the Lagrange optimization scheme to solve for

chemical abundances. Their approach is described by Gordon & McBride (1994); McBride

& Gordon (1996), and Zeleznik & Gordon (1960, 1968). The thermodynamic data included

in the CEA code are partially from the JANAF tables (Chase, 1986) that we used in our
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TEA code, but also from numerous other sources (e.g., Cox et al., 1982; Gurvich et al., 1989;

McBride et al., 1993). Lastly, we derived CEA free energies and used them as input to TEA,

to compare the CEA and TEA outputs.

Our first comparison was done using the example from White et al. (1958). We

determined the composition of the gaseous species arising from the combustion of a mixture

of hydrazine, N2H4, and oxygen, O2, at T = 3500 K and the pressure of 750 psi = 51.034

atm. We used the free-energy functions and bj values (total number of moles of element

j originally present in the mixture) from their Table 1. We reproduced their abundances,

Table 4.1, with slightly higher precision probably due to our use of double precision.

Table 4.1: Comparison White et al. vs. TEA

Species
g0i (T )

RT
White et al. TEA Difference
abundances abundances

H -10.021 0.040668 0.04065477 -0.00001323
H2 -21.096 0.147730 0.14771009 -0.00001991
H2O -37.986 0.783153 0.78318741 0.00003441
N -9.846 0.001414 0.00141385 -0.00000015
N2 -28.653 0.485247 0.48524791 0.00000091
NH -18.918 0.000693 0.00069312 0.00000012
NO -28.032 0.027399 0.02739720 -0.00000180
O -14.640 0.017947 0.01794123 -0.00000577
O2 -30.594 0.037314 0.03730853 -0.00000547
OH -26.111 0.096872 0.09685710 0.00001490

Figure 4.7, left panel, shows the CEA, TEA, and TEBS runs for the temperatures

between 600 and 3000 K, pressure of 1 bar, and solar abundances. The runs were performed

with the input and output species that all codes contain (H, C, O, N, H2, CO, CH4, H2O,
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N2, NH3). We also run the comparison just between CEA and TEA, Figure 4.7, right panel,

for the WASP-43b model atmosphere that we described in Section 4.7. We used the pressure

and temperature profile shown in Figure 4.4, right panel, and solar elemental abundances.

The temperatures and pressures range from 958.48 to 1811.89 K and 1.5×10-5 to 3.1623×101

bar, respectively. We included the same species as in Section 4.7 with the exclusion of the

C2H2 and HS species, because CEA does not carry the thermodynamical parameters for

them.
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Figure 4.7: Left: Comparison TEA, CEA and TEBS. TEBS is an analytic method, while
CEA and TEA are numerical methods. We show the major spectroscopically-active species
in the infrared that can be produced by all three methods. We run the codes for the same
range of temperatures and the pressure of P = 1 bar. Each species in each method is plotted
with a different line style, but with the same color. The TEBS final abundances are plotted
as dots, CEA as dashed lines, while TEA is plotted as solid lines. Right: Comparison of the
TEA results with the results from CEA. CEA and TEA are both numerical methods that
use Gibbs free energy minimization method with similar optimization scheme. We show the
most plausible and most abundant spectroscopically-active species in the infrared expected
to be present in hot-Jupiter atmospheres, that all codes can cover. In the inset plot, we show
a detail (zoom-in part), pointing out species lines that do not overlap. The T − P profile
used for this run is given in the right panel of Figure 4.4. Tables 4.2 and 4.3 list differences
between the final abundances for random three T, P points chosen from each run.
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In the left panel of Figure 4.7, we see that for the most species and temperatures

CEA and TEA lines overlap (CEA result is plotted in dashed and TEA in solid lines).

However, CH4 species abundances above T ∼1700 K do not overlap. TEBS colored dots do

not overplot either CEA or TEA curves, but follow them closely. This method is derived for

only five major molecular species and is based on a few simple analytic expressions.

In Figure 4.7, right panel, we again see that most species overlap, except HCN and

CH4. The HCN curves (for CEA and TEA runs) differ for the full temperature range (see

the inset figure), while, as before, CH4 curve differs slightly only for pressures above ∼0.1

bar and temperatures above ∼1700 K (see Figure 4.4 for the T −P profile used for this run).

The differences seen in Figure 4.7 come from the different sources of thermodynamic

data used for CEA and TEA (see Tables 4.2 and 4.3). When the CEA thermodynamic data

are used as input to TEA, all species final abundances match, see Figure 4.8. Section 4.8.1,

below, elaborates on this and investigate the difference in free energy input values used for

CEA and TEA.

4.8.1 Comparison of Free Energy Values in CEA and TEA

The thermodynamic data used for CEA are in the form of polynomial coefficients,

and are listed in the termo.inp file provided with the CEA code. The format of this

library is explained in Appendix A of McBride & Gordon (1996). For each species, the
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file lists, among other data, the reference sources of the thermodynamic data, the values

of the standard enthalpy of formation, ∆fH
0
298, at the reference temperature of 298.15 K

and pressure of 1 bar, and coefficients of specific heat, C0
p , with integration constants for

enthalpy, Ho, and entropy, So, for temperature intervals of 200 to 1000 K, 1000 to 6000 K,

and 6000 to 20000 K.

The JANAF tables list the reference sources of their thermodynamic parameters in

Chase (1986). The data are also available at http://kinetics.nist.gov/janaf/.

The difference in thermodynamic parameters between CEA and TEA is noticeable

even in their ∆fH
0
298 values. The source of standard enthalpies of formation in CEA for, e.g.,

HCN and CH4 is Gurvich (1991), page 226 and 36, respectively, and their respective values

are 133.08 and -74.60 kJ/mol. The source of standard enthalpies of formation in the JANAF
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Figure 4.8: Left: Comparison TEA and CEA using CEA thermodynamic data provided
in their thermo.inp file. The comparison is done for the same conditions as in Figure 4.7.
Tables 4.2 and 4.3 list differences between the final abundances for random three T, P points
chosen from each run.
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tables is listed in Chase (1986) on page 600 and 615, respectively, and their respective values

are 135.14 and -74.873 kJ/mol.

TEA uses JANAF tables to calculate the values of free energies for each species

following Equation 4.10. To calculate the values of free energies used in CEA, we started

from Chapter 4 in Gordon & McBride (1994). Our goal is to plug CEA free energies into

TEA and test whether TEA will produce the same final abundances as CEA does.

As explained in Section 4.2, the thermodynamic functions specific heat, enthalpy, and

entropy as function of temperatures are given as:

Co
p

R
=

∑
ai T

qi , (4.35)

Ho

RT
=

∫
Co

p dT

RT
, (4.36)

So

R
=

∫
Co

p

RT
dT . (4.37)
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These functions are given in a form of seven polynomial coefficients for specific heat, Co
p/R,

and two integrations constants (a8 and a9) for enthalpy, H
o/RT , and entropy, So/R:

Co
p

R
= a1T

−2 + a2T
−1 + a3 + a4T + a5T

2 + a6T
3 + (4.38)

a7T
4 ,

Ho

RT
= − a1T

−2 + a2T
−1 lnT + a3 + a4

T

2
+ a5

T 2

3
+ (4.39)

a6
T 3

4
+ a7

T 4

5
+

a8
T

,

So

R
= − a1

T−2

2
− a2T

−1 + a3 lnT + a4T + a5
T 2

2
+ (4.40)

a6
T 3

3
+ a7

T 4

4
+ a9 .

To derive free energies in the form that TEA uses them, we rewrite Equation 4.10 for one

species as:

g0(T )

RT
= 1/R

[G0
T −H0

298

T

]
+

∆fH
0
298

RT
, (4.41)
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The first term on the right side can be expressed in the following format (Chase et al., 1974,

Page 3):

G0
T (T )−H0

298

T
= − So

T +
(Ho

T −H0
298)

T
. (4.42)

Thus, we rewrite Equation 4.41 as:

g0(T )

RT
= 1/R

[
So
T +

(Ho
T −H0

298)

T

]
+

∆fH
0
298

RT
, (4.43)

g0(T )

RT
= 1/R

[
So
T +

Ho
T

T
− H0

298

T

]
+

∆fH
0
298

RT
, (4.44)

To see Equations 4.39 and 4.40 inside Equation 4.44, we multiply and divide the first and

second term on the right with R and get:

g0(T )

RT
=

So
T

R
+

Ho
T

RT
− H0

298

RT
+

∆fH
0
298

RT
, (4.45)

In the CEA analysis paper, Section 4.1, Gordon & McBride (1994) state that they have

arbitrary assumed Ho(298.15) = ∆fH
o(298.15). Adopting this assumption leads to:

g0(T )

RT
=

So
T

R
+

Ho
T

RT
− ∆fH

0
298

RT
+

∆fH
0
298

RT
. (4.46)
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The last two terms cancel leading to a simple expression for free energies:

g0(T )

RT
=

So
T

R
+

Ho
T

RT
, (4.47)

The first term on the right side is Equation 4.40, while the second term is Equation 4.39;

expressions with polynomial coefficients that are given in the CEA thermo.inp file.

Following the last conclusion, we calculated the free energies for each species of interest

and used them as input to TEA. Figure 4.8 shows the comparison between CEA and TEA

using CEA free energies. We see that all species overlap. Tables 4.2 and 4.3 give the exact

values of free energies used and the final abundances for several (T, P ) points that showed the

largest differences between CEA and TEA runs in Figure 4.7. It also lists the free energies

calculated using JANAF tables and the final abundances produced by TEA using JANAF

thermodynamic data.

As seen in Figure 4.8, although CEA uses Newton-Raphson and TEA the Lagrangian

method of steepest descent, both approaches, using the same inputs (free energies), find the

same final abundances. Table 4.2, (groups CEA final abundances and TEA final abundances

using CEA free energies), shows values identical for most species between the two tests. A

few cases show that abundance ratios are inconsistent at the 10-5 level. Table 4.3 displays

the same trend. The differences in the fifth decimal place may indicate that, somewhere in

CEA, a calculation is carried out in 32-bit precision, possibly due to a literal single-precision

number in the source code. Python floating literals are in 64-bit precision by default.
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Table 4.2: Difference between CEA vs. TEA for Figures 4.7 and 4.8, Left Panels

Pressure Temp Species
(bar) (K) CO CH4 H2O N2 NH3

CEA free energies
1.0000e+00 2500.00 -33.80559930 -34.91655970 -40.12912409 -27.71757996 -32.70878374
1.0000e+00 2700.00 -33.69182758 -35.33414843 -39.64186320 -27.99507610 -33.05270703
1.0000e+00 2900.00 -33.61649725 -35.76252669 -39.25604592 -28.25692510 -33.39666924

TEA (JANAF) free energies
1.0000e+00 2500.00 -33.80793700 -34.70780992 -40.12426098 -27.72037451 -32.73695542
1.0000e+00 2700.00 -33.69214791 -35.08662806 -39.63255004 -27.99496246 -33.08302621
1.0000e+00 2900.00 -33.61466712 -35.47533692 -39.24191944 -28.25439783 -33.42896561

CEA final abundances
1.0000e+00 2500.00 5.3129e-04 4.2666e-09 4.3546e-04 6.6686e-05 8.2252e-08
1.0000e+00 2700.00 5.2311e-04 1.8387e-09 4.2855e-04 6.5661e-05 6.4332e-08
1.0000e+00 2900.00 5.0876e-04 8.2340e-10 4.1586e-04 6.3844e-05 4.9466e-08

TEA final abundances using CEA free energies
1.0000e+00 2500.00 5.3129e-04 4.2665e-09 4.3547e-04 6.6685e-05 8.2251e-08
1.0000e+00 2700.00 5.2311e-04 1.8387e-09 4.2856e-04 6.5661e-05 6.4332e-08
1.0000e+00 2900.00 5.0876e-04 8.2339e-10 4.1586e-04 6.3844e-05 4.9466e-08

TEA final abundances using JANAF free energies
1.0000e+00 2500.00 5.3129e-04 3.3976e-09 4.3547e-04 6.6685e-05 8.3987e-08
1.0000e+00 2700.00 5.2312e-04 1.4194e-09 4.2856e-04 6.5661e-05 6.6260e-08
1.0000e+00 2900.00 5.0878e-04 6.1471e-10 4.1586e-04 6.3845e-05 5.1339e-08
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Table 4.3: Difference between CEA vs. TEA for Figures 4.7 and 4.8, Right Panels

Pressure Temp Species
(bar) (K) CO CO2 CH4 H2O HCN NH3 H2S

CEA free energies
3.8019e-01 1719.64 -34.9307244 -58.4124145 -33.595356 -43.7404858 -19.8124391 -31.4721776 -30.6054338
1.6596e+00 1805.28 -34.7237371 -57.3627896 -33.695587 -43.1403205 -20.4938031 -31.5886558 -30.7577826
2.1878e+01 1810.15 -34.7128505 -57.3065771 -33.701803 -43.1083097 -20.5310828 -31.5955222 -30.7664570

TEA (JANAF) free energies
3.8019e-01 1719.64 -34.9288052 -58.4130468 -33.5180429 -43.7386156 -19.6678405 -31.4830322 -30.5760402
1.6596e+00 1805.28 -34.7231685 -57.3648328 -33.6061366 -43.1392058 -20.3573682 -31.6020990 -30.7285988
2.1878e+01 1810.15 -34.7123566 -57.3086978 -33.6116396 -43.1072342 -20.3950903 -31.6091097 -30.7372812

CEA final abundances
3.8019e-01 1719.64 4.5960e-04 5.8035e-08 4.9221e-08 3.7681e-04 5.6243e-09 7.9716e-08 2.2498e-05
1.6596e+00 1805.28 4.5918e-04 5.2864e-08 4.4665e-07 3.7724e-04 2.4131e-08 2.8864e-07 2.2504e-05
2.1878e+01 1810.15 4.0264e-04 5.3052e-08 5.6873e-05 4.3396e-04 2.3851e-07 3.7082e-06 2.2520e-05

TEA final abundances using CEA free energies
3.8019e-01 1719.64 4.5959e-04 5.8035e-08 4.9219e-08 3.7682e-04 5.6240e-09 7.9714e-08 2.2498e-05
1.6596e+00 1805.28 4.5918e-04 5.2865e-08 4.4667e-07 3.7724e-04 2.4131e-08 2.8864e-07 2.2504e-05
2.1878e+01 1810.15 4.0263e-04 5.3053e-08 5.6875e-05 4.3396e-04 2.3851e-07 3.7083e-06 2.2519e-05

TEA final abundances using JANAF free energies
3.8019e-01 1719.64 4.5959e-04 5.8326e-08 4.5480e-08 3.7681e-04 4.8604e-09 8.0472e-08 2.2497e-05
1.6596e+00 1805.28 4.5922e-04 5.3200e-08 4.0512e-07 3.7719e-04 2.0937e-08 2.9102e-07 2.2504e-05
2.1878e+01 1810.15 4.0694e-04 5.3429e-08 5.2592e-05 4.2965e-04 2.1124e-07 3.7386e-06 2.2519e-05
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4.9 REPRODUCIBLE RESEARCH LICENSE

Reproducing a lengthy computation, such as that implemented in TEA, can be pro-

hibitively time consuming (Stodden, 2009). We have released TEA under an open-source

license, but this is not enough, as even the most stringent of those licenses (e.g., the GNU

General Public License) does not require disclosure of modifications if the researcher does

not distribute the code. So that the process of science can proceed efficiently, there are

several terms in our license to ensure reproducibility of all TEA results, including those from

derivative codes. A key term requires that any reviewed scientific publication using TEA or

a derived code must publish that code, the code output used in the paper (such as data in

tables and figures, and data summarized in the text), and all the information used to initial-

ize the code to produce those outputs in a reproducible research compendium (RRC). The

RRC must be published with the paper, preferably as an electronic supplement, or else in a

permanent, free-of-charge, public internet archive, such as github.com. A permanent link to

the archive must be published in the paper, and the archive must never be closed, altered,

or charged for. Details and examples of how to do this appear in the license and documents

accompanying the code, along with additional discussion. The RRC for this paper, including

the TEA package and documentation, is included as an electronic supplement, and is also

available via https://github.com/dzesmin/ RRC-BlecicEtal-2015a-ApJS-TEA/.
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4.10 CONCLUSIONS

We have developed an open-source Thermochemical Equilibrium Abundances code

for gaseous molecular species. Given elemental abundances and one or more temperature-

pressure pairs, TEA produces final mixing fractions using the Gibbs-free-energy minimization

method with an iterative Lagrangian optimization scheme.

We applied the TEA calculations to several hot-Jupiter T −P models, with expected

results. The code is tested against the original method developed by White et al. (1958), the

analytic method developed by Burrows & Sharp (1999), and the Newton-Raphson method

implemented in the free Chemical Equilibrium with Applications code. Using the free en-

ergies listed in White et al. (1958), their example, and derived free energies based on the

thermodynamic data provided in CEA’s thermo.inp file, TEA produces the same final

abundances, but with higher precision.

Currently, TEA is specialized for gaseous species, with the implementation of con-

densates left for future work. In opacity calculations at low temperatures (below 1000 K),

the inclusion of condensates is necessary as it reduces the gas phase contribution to opacity

(e.g., Sharp & Huebner, 1990; Lodders & Fegley, 2002; Burrows & Sharp, 1999).

The thermochemical equilibrium abundances obtained with TEA can be used in all

static atmospheres, atmospheres with vertical transport and temperatures above 1200 K

(except when ions are present), and as a starting point in models of gaseous chemical ki-
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netics and abundance retrievals run on spectroscopic data. TEA is currently used to ini-

tialize the atmospheric retrial calculations in the open-source BART project (available at

https://github.com/joeharr4/BART).

TEA is written in a modular way using the Python programming language. It is

documented (the Start Guide, the User Manual, the Code Document, and this theory paper

are provided with the code), actively maintained, and available to the community via the

open-source development sites https://github.com/dzesmin/TEA and

https://github.com/dzesmin/TEA-Examples.
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5.1 ABSTRACT

This paper is a part of three contributed papers (Harrington et al., 2015; Cubillos

et al., 2015a) that describe a new open-source retrieval framework, Bayesian Atmospheric

Radiative Transfer (BART). BART is a line-by-line radiative-transfer code initialized by

a thermochemical equilibrium abundances code and driven through the parameter phase

space by a differential-evolution Markov-chain Monte Carlo sampler. The three major parts

of BART, the Thermochemical Equilibrium Abundances module (TEA, Blecic et al., 2015),

the radiative-transfer module (Transit), and the Multi-core Markov-chain Monte Carlo

statistical module (MC3, Cubillos et al., 2015b) are self-sufficient modules that can be used

for other scientific purposes. BART and its submodules are available to the community

under the reproducible-research license via https://github.com/exosports/BART. In this

paper, we describe the implementation of the initialization routines, the atmospheric profile

generator, the eclipse module, the best-fit routines, and the contribution function module.

Other modules and routines are presented in the collaborative paper by Cubillos et al.

(2015a). We also present a comprehensive atmospheric analysis of all WASP-43b secondary

eclipse data obtained from the space- and ground-based observations using BART.
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5.2 INTRODUCTION

The rapid increase of detected extrasolar planets in the last decade (1593 confirmed

and 3751 candidates as of August 5th, 2015; exoplanets.org) and the number of novel

techniques employed to analyze their data (e.g., Swain et al., 2008; Carter & Winn, 2010;

Knutson et al., 2009a; Stevenson et al., 2012; Deming et al., 2013; de Wit et al., 2012;

Deming et al., 2015), have prompted theorists to develop different methods to model their

atmospheres. To get an insight into their thermal structure and chemical composition, initial

methods started from the first principles in a one-dimensional (1D) scheme (e.g., Fortney

et al., 2005) and later developed into complex three-dimensional (3D) models that study the

atmospheric dynamics and circulations (e.g., Showman et al., 2009; Dobbs-Dixon & Agol,

2013).

Today, we have two major approaches to atmospheric modeling. One applies a direct,

forward modeling technique that provides a set of parameters to generate the observed

spectra, and the other uses the observations to determine the model’s best-fit parameters and

their uncertainties. In the direct approach, a set of physically motivated models is generated

and the comparison is done by eye. Usually, in these models the molecular abundances are

assumed to be in the thermochemical equilibrium (e.g., Lodders, 2009; Fortney et al., 2005,

2008a; Burrows et al., 2008). The inverse, essentially Bayesian based retrieval technique,

determines the properties of the planetary atmosphere based on the available observations.

It uses a statistical algorithm (usually a Markov-chain Monte Carlo method, MCMC) to
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explore the posterior distribution of the model given the data. By searching for the regions

of space that provide the best fit to the data, this approach determines the uncertainties in

the model parameters.

The retrieval approach in characterizing exoplanetary atmospheres was first intro-

duced by Madhusudhan & Seager (2009). Providing a set of free parameters, six for the

temperature and pressure profile, T (p), and four for species mixing ratios (abundances),

they used a multidimensional grid optimization scheme in a line-by-line radiative-transfer

model to explore the parameter phase space. Soon after, Madhusudhan & Seager (2010) uti-

lized the first application of the MCMC algorithm in the retrieval to explore the likelihood

space of models with millions of samples.

In 2012, Lee et al. (2012) introduced an optimal estimation retrieval algorithm (Ir-

win et al., 2008; Rodgers, 2000) that applies the correlated-K technique in an iterative

scheme (Lacis & Oinas, 1991). They used K-distribution tables pre-calculated from line-list

databases, allowing rapid integration of the model spectra and an order of magnitude faster

exploration of the phase space than line-by-line algorithms. This method requires fewer

model evaluations attributed to the assumption that the parameter error distributions are

Gaussians, and offers a single best-fit solution calculated using the Levenberg-Marquardt

algorithm (Levenberg, 1944; Marquardt, 1963). Line et al. (2012) applies this approach to

the line-by-line radiative transfer.
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The same year, Benneke & Seager (2012) introduced another Bayesian-based retrieval

algorithm, which considers non-Gaussian uncertainties of the atmospheric parameters and re-

turns to computationally intensive exploration of the phase space. In addition, they account

for the presence of a cloud deck or solid surface.

In 2014, Line et al. (2014) tested three recently proposed retrieval approaches on a

synthetic water-dominated hot Jupiter: optimal estimation, differential evolution Markov

chain Monte Carlo (DEMC), and bootstrap Monte Carlo. They found a good agreement

between the three methods only when the observations are of good quality (a high spectral

resolution and high signal-to-noise data), and there are more observed spectral channels than

free parameters. For weak and noisy exoplanetary signals, the best approach is to proceed

with DEMC (Line et al., 2013; Line & Yung, 2013).

In 2015, Waldmann et al. (2015) introduced their novel inverse retrieval code, τ−REx,

Tau Retrieval for Exoplanets. It utilizes molecular line lists from the ExoMol project, a

custom built software that identifies likely absorbers/emitters in the spectra, a Bayesian

partition function (also called the Bayesian Evidence) that allows appropriate selection of the

best-fit model, and two independent algorithms for sampling the parameter space: the nested

sampling and the classical MCMC algorithm. This approach allows them to thoroughly

explore the likelihood space of models with a large number of parameters through the multi-

core processor scalability.
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Figure 5.1: Simplified BART flow chart. In purple are the three major BART modules. TEA and MC3 are
written in Python, while Transit is written in the C language. Other supporting modules are written in
Python and given in yellow. In white are the inputs/outputs of each module. In green are the input files.
In blue are transit and eclipse raypath-solution submodules. Stars denote modules and packages that will
be described in more detail in this paper.

Very recently, Benneke (2015) introduced his new Self-Consistent Atmospheric Re-

trievaL framework for ExoplaneTs (SCARLET). In addition to retrieving molecular abun-

dances, this code determines the full range of self-consistent scenarios by accounting for the

uncertainties resulting from our limited knowledge of the chemical, dynamical, and cloud

formation processes in planetary atmospheres.

Here, we present a new Bayesian line-by-line radiative-transfer framework. This paper

is a part of three contributed papers that describe the architecture, individual modules

and packages, and theory implemented in the open-source Bayesian Atmospheric Radiative

Transfer (BART) code. Figure 5.1 shows a simplified flow of the BART code. The underlying

theory and the code structure of the modules and packages marked by the stars will be
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covered in more detail in this paper. Other modules are described in the collaborative paper

by Cubillos et al. (2015a). In addition, each paper presents an atmospheric analysis of a

hot-Jupiter planet using BART to show its diverse features.

In Section 5.3, we present BART and describe the implementation of the initialization

routines, atmospheric profile generator, eclipse module, best-fit routines, and contribution

function module. In Section 5.4, we present an atmospheric analysis of all available WASP-

43b secondary eclipse data using BART. In Section 5.5, we state our conclusions.

5.3 THE BAYESIAN ATMOSPHERIC RADIATIVE TRANSFER CODE

Bayesian Atmospheric Radiative Transfer (BART) is an open-source Bayesian, ther-

mochemical, radiative-transfer code written in Python and C, and available to the commu-

nity under the reproducible-research license via https://github.com/exosports/BART. The

code initializes a model for the atmospheric retrieval calculation, generates thousands of

theoretical model spectra using parametrized pressure and temperature profiles and line-by-

line radiative-transfer calculation, and employs a statistical package to compare the models

with the observations. Given transit or eclipse observations at multiple wavelengths, BART

retrieves the thermal profile and chemical abundances of the selected atmospheric species.

BART consists of three major parts (Figure 5.1, purple boxes): the Thermochemi-

cal Equilibrium Abundances (TEA) module, a radiative-transfer module (Transit), and the
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Multi-core Markov-chain Monte Carlo statistical module (MC3). Each of the modules works

independently and can be used for other scientific purposes. TEA is an open-source thermo-

chemical equilibrium abundances code that calculates the mixing fraction of gaseous molecu-

lar species (Blecic et al., 2015). The code is written in Python and available to the community

via https://github.com/dzesmin/TEA. Transit is an open-source radiative-transfer code

originally developed by Patricio Rojo. Transit applies 1D line-by-line radiative-transfer

computation in local thermodynamic equilibrium to generate model spectra. This code,

written in C, was built specifically to attempt to detect water in the extrasolar planet HD

209458b using transit spectroscopy. Since then, Transit has been significantly improved to

handle eclipse geometry, multiple line-list and CIA opacity sources, and to perform opacity

grid and Voigt profile calculation (see the collaborative paper by Cubillos et al. 2015a). The

user’s and programmer’s documentation are added to the package. The code is available

via https://github.com/exosports/transit. MC3 is an open-source model-fitting tool (Cubillos

et al., 2015b). It uses Bayesian statistics to estimate the best-fit values and the credible

region of the model parameters. The code is written in Python and C and available at

https://github.com/pcubillos/MCcubed.

To start off the retrieval (5.1), BART generates an initial atmospheric model (see

Section 5.3.1). Given a pressure array, BART evaluates the temperature profile by using

one of the two parametrization schemes (see Section 5.3.2). Then, for given elemental and

molecular species, the species mixing ratios are calculated using the TEA module or the
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routine that produces a vertically uniform abundances profile. The T (p) profile and species

scaling factors are free parameters of the models. Given an initial guess, the atmospheric

generator produces the atmospheric model, passes it to Transit to calculate an emergent

spectrum for the desired geometry (transit or eclipse), and integrates the spectrum over

the observational bandpasses. The band-integrated values are sent to MC3 to compare them

against the observations and calculate χ2. Then, MC3 generates a new set of free parameters,

repeating the process until the phase space of parameters is fully explored and the Gelman

and Rubin convergence test is satisfied (Gelman & Rubin, 1992). Upon finishing the loop, the

MC3 returns the sampled parameter posterior distribution, best-fit values, and 68% credible

region. For details about the spectrum integrator and the MC3 loop see collaborative paper

by Cubillos et al. (2015a).

The best-fit parameters are then used to run the Transit module once more to repro-

duce the spectra of the best-fit model atmosphere (see Section 5.3.6). In this run, Transit

generates a file with the optical depth values for each atmospheric layer and wavelength,

which is used to calculate the contribution functions of each observation (see Section 5.3.7).

Finally, BART plots the best-fit spectrum with data and model band-integrated values, the

T (p) profile, and the contribution functions. In addition, MC3 plots the parameters’ traces,

pairwise posterior distributions, and marginal posterior histograms.

In the following sections, we describe in more detail the implementation of the initial-

ization routines, Section 5.3.1; the atmospheric profile generator, Section 5.3.2; the eclipse
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module, Section 5.3.5; the best-fit routines, Section 5.3.6; and the contribution function

module, Section 5.3.7. The TEA and MC3 modules, given in short in this paper (Sections

5.3.3 and 5.3.4), are described in detail in Blecic et al. (2015) and Cubillos et al. (2015b)

respectively.

5.3.1 BART Initialization

BART is configured with a single ASCII file, BART.cfg. BART.cfg is the main input

file for the BART driver, BART.py, that executes all other modules and subroutines. Figure

5.2 shows a simplified execution order of the routines called in BART.py.

In this section, we describe in more detail the routines listed in the Init section of

Figure 5.2. Section Run MCMC Loop is described in the collaborative paper by Cubillos et al.

(2015a), and Section Run BEST Fit is described in Section 5.3.6 of this paper.

The initialization starts with parsing the arguments from BART.cfg and any addi-

tional arguments provided on the command line. BART.cfg gathers information from the

user about the output directory, initial atmospheric model, data and uncertainties, and ar-

guments’ values needed to run TEA, Transit, and MC3. These inputs constrain the final

atmospheric model.
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Figure 5.2: Flow chart of the BART driver, BART.py. The gray sections show the initialization routines,
the MCMC loop (described in the collaborative paper by Cubillos et al. 2015a), and the best-fit routines.
All routines are called inside BART.py.
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The user chooses the pressure grid in logarithmic or linear space, the desired elemental

and molecular species, the elemental mixing ratios, a C/O ratio and/or solar metallicity

factor, and a parametrization scheme for the temperature profile. This generates a pre-

atmospheric file for the TEAmodule. TEA is executed to calculate thermochemical equilibrium

abundances for the species of interest. Then, based on the hydrostatic balance equation and

the referenced planetary radius and pressure, the radius array is calculated and added to the

final TEA output. This produces the initial atmospheric profile for the first MC3 iteration.

In addition to using TEA to calculate the species’ equilibrium abundances, the user

has an option to choose a vertically-uniform-abundances profile. Upon setting the pressure

array and evaluating the temperature profile, the user sets the desired mixing fractions for

the input and output species and calls a routine to generate a uniform atmospheric model.

5.3.2 Atmospheric Profile Generator

BART provides two parametrized temperature-profile schemes. One originally devel-

oped by Guillot (2010), and the other based on the parametrization described in Madhusud-

han & Seager (2009).
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5.3.2.1 Parametrization Scheme I

This parametrization scheme was originally formulated by Guillot (2010) and subse-

quently modified by Parmentier & Guillot (2014); Line et al. (2013), and Heng et al. (2012)

to include more freedom for the case when temperature inversion is present in a planetary

atmosphere. This approach is usually denoted as the three-channel approximation, where

the planet’s temperature is given as:

T 4(τ) =
3T 4

int

4

(2
3
+ τ

)
+

3T 4
irr

4
(1− α) ξγ1(τ) +

3T 4
irr

4
α ξγ2(τ) , (5.1)

with ξγi defined as:

ξγi =
2

3
+

2
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[
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(γiτ
2
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e−γiτ

]
+

2γi
3
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2

)
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γ1 and γ2 are ratios of the mean opacities in the visible to the infrared, given as γ1 = κυ1/κIR

and γ2 = κυ2/κIR. The parameter α ranges between 0 and 1 and describes the separation

of the two visible streams, κυ1 and κυ2. E2(γτ) is the second-order exponential integral

function. The planet internal flux is given as:

Tirr = β
(R∗

2a
)1/2 T∗ (5.3)
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where R∗ and T∗ are the stellar radius and temperature, and a is the semimajor axis. The

incident solar flux is denoted as Tirr. Both Tint and Tirr variables have fixed values. The

parameter β has a value around 1 and accounts for albedo, emissivity, and day-night redis-

tribution. The parameter τ is the infrared optical depth calculated using the mean infrared

opacity, κIR, pressure P , and the planet surface gravity g at one 1 bar level:

τ =
κIR P

g
, (5.4)

This parametrized approach has five free parameters: κIR, κυ1, κυ2, α, and β. The energy

balance at the top of the atmosphere is accounted through the parameter β. The existence

of a temperature inversion is allowed through the parameters κυ1 and κυ2. For boundaries

imposed on these parameters see Line et al. (2014), Section 3.2.

5.3.2.2 Parametrization Scheme II

Our second choice for the temperature-profile generator is the parametrization scheme

similar to the one developed by Madhusudhan & Seager (2009). We made some minor

changes to this method, which are described below.

In this scheme, the profiles are generated for an inverted and non-inverted atmosphere

separately. The atmosphere is divided into three layers based on the physical constraints

expected in hot Jupiters, Figure 5.3.
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Figure 5.3: Parametric T(p) profiles for inverted and non-inverted atmosphere based on Madhusudhan
& Seager (2009). The profiles include three layers: 1. Mesopheric layer, Layer 1 - layer below 10-5 bars,
important for atmospheric escape and photochemistry. The atmosphere is transparent to the outgoing
radiation in infrared and optical. This layer is heated from the lower layers and cooled with increasing
altitude; 2. Stratospheric layer, Layer 2 - in this layer a temperature inversion can occur depending on
the level of irradiation from the host star and the presence of strong absorbers. Radiation is the dominant
transport mechanism. Most spectral features come from this layer; 3. Isothermal layer, Layer 3 - due to the
strong radiation from the parent star the radiative-convective boundary of hot-Jupiter planets is shifted deep
in the planetary atmosphere. Strong irradiation is absorbed higher in the atmosphere and does not reach this
layer, leading to an isothermal temperature profile. Radiation that comes from this layer behaves like a black
body spectra. Left: For the inverted atmosphere, Layer 2 consists of two parts: one where temperature
decreases with height, and the other where temperature increases with height (thermal inversion occurs).
Different colors depict partial profiles for each layer generated using our Equation (5.9). The dots display
the number of levels in the atmosphere, which is equally spaced in log-pressure space. The profile has six free
parameters: P1, P2, P3, T3, α1, and α2. The thin black line shows the smoothed profile using a 1D Gaussian
filter. Right: Non-inverted atmospheric profile. The different colors depict partial profiles for each layer
generated using our Equation (5.10). The profile has five free parameters: P1, P3, T3, α1, and α2. The thin
black line shows the smoothed profile using a 1D Gaussian filter.

The following set of equations, as given by Madhusudhan & Seager (2009), mimics

the behaviour in each atmospheric layer (see the caption of Figure 5.3 for more details):

P0 < P < P1 P = P0e
α1(T−T0)β1 layer 1

P1 < P < P3 P = P2e
α2(T−T2)β2 layer 2 (5.5)

P > P3 T = T3 layer 3
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The set contains 12 variables: P 0, P 1, P 2, P 3, T 0, T 1, T2, T3, α1, α2, β1, and β2.

To decrease the number of free parameters, we first set P 0 to the pressure at the top

of the atmosphere. The parameters β1 and β2 are empirically determined to be β1 = β2 =

0.5 (Madhusudhan & Seager, 2009). Two of the parameters can be eliminated based on the

two constraints of continuity at the two layer boundaries.

The temperature T3 is estimated based on the effective (surface) temperature of the

planet. When a planet total emissivity in the observed wavelength band is less than one,

due to the presence of an atmosphere, its emissivity is less than that of a black body and the

actual temperature of the object is higher than the effective temperature. Thus, to account

for the presence of an atmosphere and spectral features, we use a scaling factor of 1 to 1.5

to constrain the maximum range of the T3 temperature.

The effective temperature of the planet is calculated based on the energy balance

equation as:

T 4
eff = f T ∗ 4

eff

(R
a

)2

(1− A) , (5.6)

where factor f describes the energy redistribution from the day to the night side. f = 1/4

defines the uniform redistribution of energy between the day and the night side of the planet.

Since we are observing the planet dayside during secondary eclipse, we are interested in the

case when the energy received is uniformly redistributed on the planet dayside, and none of

the energy is transferred to the night side. In that case, the factor f is 1/2. For zero albedo,
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Equation (5.6) becomes:

T 4
eff =

1

2
T ∗ 4
eff

(R
a

)2

. (5.7)

To remove one more free parameter for a non-inversion case, we rewrite Equation (5.5) to

distinguish the increasing and decreasing part of the Layer 2 curve:

P0 < P < P1 P = P0e
α1(T−T0)1/2

P1 < P < P2 P = P2e
α2(T−T2)1/2 (5.8)

P2 < P < P3 P = P2e
−α2(T−T2)1/2

P > P3 T = T3

5.3.2.2.1 Inverted T (p) Profile

The parametric profile for the inverted atmosphere has six free parameters: P 1, P 2,

P 3, T 3, α1, and α2. We calculate the T0, T1, and T2 temperatures as:

T2 = T3 −
( log(P3/P2)

α2

)2
T0 = T2 −

( log(P1/P0)

α1

)2
+
( log(P1/P2)

−α2

)2
(5.9)

T1 = T0 +
( log(P1/P0)

α1

)2
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An example of an inverted T (p) profile is shown in Figure 5.3, left panel. To remove sharp

kinks on the layer boundaries, we use a Gaussian filter.

5.3.2.2.2 Non-Inverted T (p) Profile

For the non-inverted atmosphere, we assume that the Layer 2 follows an adiabatic

temperature profile and exclude P2 as a free parameter. Thus, the parametric profile for the

inverted atmosphere has five free parameters: P 1, P 3, T 3, α1, and α2. We calculate T0 and

T1 as:

T1 = T3 −
( log(P3/P1)

α2

)2
(5.10)

T0 = T1 −
( log(P1/P0)

α1

)2

An example of a non-inverted T (p) profile is shown in Figure 5.3, right panel. To remove

sharp kinks on the layer boundaries, we againuse a Gaussian filter.

5.3.2.3 Species Factors

In addition to the temperature profile parameters, the atmospheric generator ac-

cepts free parameters for the molecular species scaling factors. This way, we allow for

non-equilibrium conditions in the planetary atmosphere to occur. We have as many free

parameters as species we want to fit in our model. Our scaling factors are constant with alti-
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tude, and we are retrieving log of the species abundances to prevent negative and physically

un-plausible mixing ratios (and to allow them to vary over several orders of magnitude).

5.3.3 TEA Module

To initialize the retrieval and calculate the equilibrium abundances for the species of

interest, we use the Thermochemical Equilibrium Abundances code (TEA Blecic et al., 2015).

TEA calculates the mixing fractions of gaseous molecular species following the methodology

by White et al. (1958) and Eriksson (1971). Given a T (p) profile and elemental abundances,

TEA determines the mixing fractions of the desired molecular species by minimizing the

total Gibbs free energy of the system:

Gsys(T )

RT
=

n∑
i=1

xi

[g0i (T )
RT

+ lnP + ln
xi

N

]
, (5.11)

under the mass balance constraint:

n∑
i=1

aij xi = bj , (j = 1, 2, ...,m) , (5.12)

where Gsys(T ) is the total Gibbs free energy of the system, n is the number of chemical

species, T is the temperature, R is the gas constant, P is the pressure, xi is the number of

moles of species i, aij is the stoichiometric coefficient that indicates the number of atoms of
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element j in species i, m is the number of elemental species originally present in the mixture,

bj is the total number of moles of element j, and g0i (T ) is the free energy of the species.

The minimization is done using an iterative Lagrangian steepest-descent method that

minimizes a multi-variate function under constraint. In addition, to guarantee physically

plausable results, i.e., positive mixing fractions, TEA implements the lambda correction

algorithm.

Equation (5.11) requires a knowledge of the free energy of species as a function of

temperature. These are obtained from the JANAF (Joint Army Navy Air Force) tables

(http://kinetics.nist.gov/janaf/, Chase et al., 1982; Chase, 1986). Thus, TEA has an access

to 84 elemental species and the thermodynamical data for more than 600 gaseous molecular

species. We use the reference table containing elemental solar abundances given in Asplund

et al. (2009), their Table 1.

TEA is tested against the original method developed by White et al. (1958), the

analytic method developed by Burrows & Sharp (1999), and the Newton-Raphson method

implemented in the free Chemical Equilibrium with Applications code

(CEA, http://www.grc.nasa.gov/WWW/CEAWeb/). Using the free energies listed in White

et al. (1958), their Table 1, and derived free energies based on the thermodynamic data

provided in CEA’s thermo.inp file, TEA produces the identical final abundances for both

approaches, but with a higher numerical precision.
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The thermochemical equilibrium abundances obtained with TEA can be used in static

atmospheres, and as a starting point in models of gaseous chemical kinetics and abundance

retrievals. TEA is written in Python in a modular way, documented (the start guide, the

user manual, the code document, and the theory paper are provided with the code), ac-

tively maintained, and available to the community via the open-source development sites

https://github.com/dzesmin/TEA and https://github.com/dzesmin/TEA-Examples.

5.3.4 Statistical Module

BART explores the parameter space of thermal profiles and species abundances using

the Multi-core Markov-chain Monte Carlo module (MC3, Cubillos et al., 2015a,b). MC3 is an

open-source general-purpose statistical package for model fitting. Using Bayesian Inference

through a MCMC algorithm, MC3 provides two routines to sample the parameters’ posterior

distributions: Differential-Evolution (DEMC, ter Braak, 2006) or Metropolis Random Walk

(using multivariate Gaussian proposals). It handles Bayesian priors (uniform, Jeffrey’s, or

informative), and implements the Gelman-Rubin convergence test (Gelman & Rubin, 1992).

It utilizes single-CPU and multi-core computation, supported through Messaging Passing

Interface, MPI. The code, written in Python with several C-routines, is documented and

available to the community via https://github.com/pcubillos/MCcubed.
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5.3.5 Eclipse Geometry

The radiative-transfer equation allows us to generate and study planetary spectra.

A planetary emergent spectrum depends on where and how much incoming and outgoing

radiation is absorbed, scattered, and re-radiated. It carries information about the atmo-

spheric temperature, pressure, and chemical composition. To develop the radiative-transfer

equation, we need to know the observing geometry and the energy transitions of the atoms

and molecules present in the planetary atmosphere.

During transit, the planet passes in front of the host star and the incoming radiation

travels through the planetary limb probing upper layers of the planetary atmosphere. During

eclipse, the planet is passing behind the star, allowing us to measure the planet dayside

thermal emission.

The raypath solution for the transit geometry was part of the original Transitmodule

(see collaborative paper by Cubillos et al. 2015a). Below, we describe the implementation of

the eclipse module that calculates the raypath solution for the eclipse geometry.

The eclipse module sets eclipse geometry, calculates optical depth, and returns the

emergent flux at the top of the atmosphere. The workflow of the eclipse module is given in

Figure 5.4. Transit treats an atmosphere as a plane-parallel radiation field under the local

thermodynamic equilibrium conditions. Irradiation from the host star reaches the top of the

atmosphere and propagates through it in 1D (see Figure 5.5). The interaction of photons
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travelling through a planetary atmosphere is expressed in terms of optical depth. The change

in the monochromatic optical depth along a path (ds) is given as:

dτν = −e ds , (5.13)

where e is the extinction and s is the distance travelled from a certain layer to the top layer

of the planetary atmosphere. Transit calculates extinction either through a line-by-line

calculation or by interpolating the pre-calculated opacity grid. The negative sign comes

from the fact that we are measuring optical depth from the top of the atmosphere, where it

equals zero.

Figure 5.4: Work flow of the eclipse module. In orange are the routines written for the eclipse geometry.
In blue is the routine from the original Transit code that calculates extinction.

205



A ray, emerging at the top of the atmosphere at an angle in respect to the normal,

travels a distance:

ds = − dz

cosθ
. (5.14)

Figure 5.5: Monochromatic beam of radiation travelling through a planetary atmosphere and emerging at
the top of the atmosphere at an angle θ. ds is the distance along the path, and Iν⊥ is the intensity in the
observer’s direction.

If we denote cos θ = µ, the radiative-transfer equation as a function of the optical depth and

incident angle becomes:

µ
dIν
dτν

= Iν − Sν . (5.15)

where Iν is the intensity of radiation and Sν is the source function. Under the LTE and

no scattering, Kirchoff’s Law is valid, and the source function is equal to the black body

function leading to:

− µ
dIν
dτ

= −Iν +Bν . (5.16)

206



By multiplying Equation (5.16) by exp (−τ/µ), recognizing derivative terms, and integrat-

ing from the bottom to the top of the atmosphere, we get the intensity at the top of the

atmosphere:

Iν (τ = 0) =

∫ τ

0

Bν

µ
e−τ/µdτ , (5.17)

In Transit, intensity is given in erg/s/cm/sr.

5.3.5.1 Intensity Grid and Observed Flux

We are interested in the flux coming from the dayside of the planet at the observer’s

location. Thus, we need to account for the distance to the observer.

Figure 5.6: Observing geometry. a is the shortest distance between the planet and the observer. x is the
distance between the observer and the point at the top of the atmosphere, where the intensity emerges at
the angle θ. Rp is the radius of the planet.
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To get the surface flux, we would integrate over the solid angle for half of the sphere

(dayside). If we assume the uniform T (p) profile and opacities on the planet dayside, the

intensities at different angles (θ) emerging at the top of the atmosphere are the same, and

we can take them outside of the integral.

This gives us the well-known expression for the surface flux:

Fν =

∫
Ω

Iν cosθ dΩ ,

Fν = π Iν , (5.18)

where cos θ describes the angle between the intensity vector (where the ray is coming out

of the atmosphere) and the direction of the solid angle (Iν cosθ is denoted as Iν⊥ in Figure

5.5).

However, the flux at the observer’s location is different than the surface flux. In

addition to angle θ, it also depends on the angle α (see Figure 5.6):

Fν =

∫
Ω

Iν⊥ cosα dΩ , (5.19)

where Ω is the solid angle, dΩ = sinα dα dφ, giving:

Fν = 2π

∫ π/2

0

Iν⊥ cosα sinα dα . (5.20)
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To solve this integral, we calculate intensities at several angles across the planet’s dayside

and perform hemispheric integration to get the flux at the observer’s location.

From the geometry in Figure 5.6 we see that sinα = Rp

x
≈ Rp

a
, where Rp is the radius

of the planet, x is the hypotenuse, and a is the distance to the observer. Thus, our integral

becomes:

Fν = 2π

∫ Rp/a

0

Iν⊥ cosα sinα dα . (5.21)

By expressing angle α through angle θ, and assuming that at very large distances x ≈ a,

sinα ≈ α, and cosα ≈ 1, we get:

aα = Rp sinθ . (5.22)

If we substitute this in Equation (5.21) and change limits, we get:

Fν = 2π
(Rp

a

)2
∫ π/2

0

Iν⊥ sin θ d(sin θ) . (5.23)

We choose several angles across the planet dayside and calculate the intensity in the observers

direction, and then integrate along the donut-shaped segments that account for the calculated

intensity, so that the full solid angle between [0, π
2
] is covered (Figure 5.7).
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Figure 5.7: Intensity grid. The flux at the observer’s location is integrated along the donut-shaped segments
for each intensity at angle θ along the whole hemisphere.

If we denote the intensities at different angles θ, Iν⊥(θ), as Ii, Equation (5.23) be-

comes:

Fν = 2π
(Rp

a

)2 ∑
(0,π

2
)

Ii
(sin θ)2

2

∣∣∣θfin
θin

, (5.24)

Fν = π
(Rp

a

)2 ∑
(0,π

2
)

Ii (sin θ)
2
∣∣∣θfin
θin

. (5.25)

Transit calculates and outputs the following flux:

Fν = π
∑
(0,π

2
)

Ii (sin θ)
2
∣∣∣θfin
θin

. (5.26)

The distance factor (Rp

a
)2 is dropped and included in the Spectrum integrator (see collabo-

rative paper by Cubillos et al. 2015a).
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5.3.6 Best Fit

Upon running the desired number of MC3 iterations and checking for the Gelman and

Rubin convergence, MC3 generates the best-fit parameters file that we use to run the Transit

module one more time. This generates the final BART outputs: the best-fit atmospheric file,

a file that carries the optical depths for each layer in the atmosphere, and the best-fit flux

values. Using these, we calculate the flux ratio, plot the best-fit spectrum and the PT-profile

posteriors, and calculate and plot the contribution functions (see Figures 5.1 and 5.2, right

and bottom parts, respectively).

5.3.7 Contribution Functions

The contribution functions provide the information of how well the observer (tele-

scope) sees a particular layer of the atmosphere, i.e., where the emission measured by the

telescope originates (Chamberlain, 1978; Orton, 1977; Knutson et al., 2009b; Griffith et al.,

1998; Lee et al., 2012).

The intensity measured at each wavelength comes from different atmospheric layers.

To assess the contribution from a certain layer to the observed intensity, we calculate two

quantities: the transmission weighting function and the Planck function at a given temper-

ature. The weighting function, which describes how transmission is changing with altitude,

is the kernel of the radiative-transfer integral. It ’weights’ the contribution to the intensity
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from the Planck functions at different log-pressure altitudes. The contribution function, the

product of the weighting function and the Plank function, is the integrand of the radiative-

transfer integral.

The weighting function is defined as a partial derivative of the transmission function:

T = e−τ/µ , (5.27)

W =
dT
d z

, (5.28)

where z is the altitude.

The altitude where the peak of the weighting function is found depends on the opacity

at that wavelength. In other words, it is sensitive to the atmospheric thermal structure and

composition (mixing fractions). The contribution function assesses vertical sensitivity of

the emission spectrum by giving the pressure level at which thermal emission from the

atmosphere contributes most to the intensity observed at the top of the atmosphere in each

wavelength.

To investigate the contribution from a certain atmospheric layer to the observed in-

tensity, we start with Equation (5.17) that defines the intensity at the top of the atmosphere:

Iν (τ = 0) =

∫ τ

0

Bν

µ
e−τ/µdτ , (5.29)
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and rewrite it as:

Iν (τ = 0) =

∫ τ

0

Bν

µ
d(e−τ/µ) (−µ) . (5.30)

Using the fact that:

d(e−τ/µ) = e−τ/µ (− 1

µ
) dτ , (5.31)

we get:

Iν (τ = 0) =

∫ 0

τ

Bν d(e
−τ/µ) . (5.32)

The above equation can be rewritten in terms of altitude:

Iν (z) =

∫ ∞

0

Bν

d(e− τ(z)
µ
)

d z
d z . (5.33)

By using Equation (5.27), Equation (5.33) simplifies to:

Iν (z) =

∫ ∞

0

Bν
d T
d z

d z , (5.34)
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i.e.,

Iν (z) =

∫ ∞

0

Bν W (z) d z , (5.35)

where W (z) is the weighting function. Since pressure is closely related to altitude, Equation

(5.32) can be rewritten in terms of pressure and the weighting and the contribution functions

redefined accordingly. Starting with the hydrostatic balance equation:

d p

d z
= −g ρ , (5.36)

where g is gravity and ρ is density, and the equation of state, p = ρRT , Equation (5.36)

can be rewritten as:

d p

p
= −d z

H
, (5.37)

where H is the scale height given as H = RT/g (R is the gas constant and T is the surface

temperature). Using the fact that log p = d p
p
, Equation (5.37) can be expressed as:

d(logp) = −d z

H
, (5.38)
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and Equation (5.34), given in terms of altitude, can be rewritten in terms of pressure:

Iν (p) =

∫ pt

pb

Bν
d T

d(log p)
d(log p) , (5.39)

where pb and pt are pressures at the top and the bottom of the atmosphere. The weighting

function is now given as:

W (p) =
dT

d(log p)
, (5.40)

and the contribution function as:

CF (p) = Bν
dT

d(log p)
, (5.41)

i.e.,

CF (p) = Bν

d(e− τ(p)
µ
)

d(log p)
. (5.42)

Since the weighting function is the convolution of the rising transmission and falling

density, it is bell-shaped (Gaussian-shaped). The weighting function will have a Gaussian

shape for all wavelengths that do not sense the surface. When the atmosphere is more trans-

parent, the peak of the weighting function moves towards larger pressures (lower altitudes).

For wavelengths where the atmosphere is completely transparent, the weighting function is
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below the surface and the shape becomes exponential. Above the peak, the telescope does

not sense the atmosphere that well due to the low atmospheric density and few emitting

molecules. Below the peak, the emitting radiation is mostly absorbed by the atmosphere

above.

The weighting and contribution functions are the key quantities in temperature re-

trievals; thus, they strongly depend on the best-fitting models. BART calculates the con-

tribution functions after MC3 has determined the best-fit parameters. Using them, we run

the Transit module again and reproduce the optical-depth array of the best-fit model. The

optical depths are used to calculate contribution functions at each wavelength across the

planet’s spectrum. The band-averaged contribution functions are obtained by integrating

the calculated contribution functions across the filter bandpasses of our observations (the

transmission response functions) at every pressure layer.
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5.4 ATMOSPHERIC ANALYSIS OF WASP-43b

We model the dayside atmosphere of WASP-43b using BART. In the following Section

5.4.1, we give a comprehensive overview of the current studies done on WASP-43b and outline

the atmospheric analysis done in this paper. In Section 5.4.2, we list the data used in the

analysis. In Section 5.4.3, we present our modeling strategy. In Section 5.4.4, we describe

the BART setup used in this analysis. In Sections 5.4.5 and 5.4.6, we present our results.

In Section 5.4.8, we discuss constraints on the WASP-43b C/O ratio. In Section 5.4.7, we

analize WASP-43b contribution functions. In Section 5.4.9, we discuss our results, and in

Section 5.5, we state our conclusions.

5.4.1 WASP-43b Previous Studies

WASP-43b is one of the closest-orbiting hot Jupiters, rotating around one of the

coldest stars that hosts hot Jupiters. Attributed to the small radius of the host star, its cool

temperature, and small semi-major axis, the system produces deep eclipses both in transit

and occultation. This makes WASP-43b one of the most favorable objects today for space-

and ground-based observations and a perfect target for atmospheric characterization.

WASP-43b was discovered by Hellier et al. (2011) using the WASP-South camera

in conjunction with radial-velocity measurements from the Euler/CORALIE spectrograph.

They determined that WASP-43 is a K7V main-sequence star with an effective temperature
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of 4400 ± 200 K and a surface gravity of 4.65+0.06
−0.04 (cgs). The star is active, has slightly

above-solar metal abundances, and a rotational period of 15.6 ± 0.4 days. In 2013, Czesla

et al. (2013) reported the detection of WASP-43b in the X-ray band using XMM-Newton.

They derived WASP-43b’s bolometric luminosity and estimated its mass-loss rate. Two

years later, Salz et al. (2015) observed the planet again in the X-ray band, confirming that

WASP-43b has one of the highest mass-loss rates among hot-Jupiters.

Gillon et al. (2012) presented twenty-three transit light curves and seven occultation

light curves with eight new radial-velocity measurements of the star. This large data set

allowed them to significantly improve the parameters of the system and break the degeneracy

of the stellar solution from Hellier et al. (2011). They confirmed the planet’s circular orbit,

e = 0.0035+0.0060
−0.0025, and constrained stellar mass and radius to 0.717 ± 0.025 Msun and 0.667

± 0.011 Rsun, respectively. The planet’s mass and radius are deduced to 2.034 ± 0.052 Mj

and 1.036 ± 0.019 Rj, respectively. WASP-43b’s high density of 2.41 ± 0.08 ρsun favors an

old age and a massive core. They detected the emission of the planet at 2.09 and 1.19 µm.

and modeled the planetary atmosphere using the methods described in Fortney et al. (2005,

2008a) and Fortney & Marley (2007). The results showed poor redistribution of the heat to

the night side, favoring a model with no thermal inversion.

Wang et al. (2013) reported the ground-based detection of WASP-43b thermal emis-

sion in the H (1.6 µm) and Ks (2.1 µm) band observed using a WIRCam instrument on the

Canada-France-Hawaii Telescope. They combined their observations with the narrow-band
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observations at 1.19 and 2.09 µm from Gillon et al. (2012). The presence of thermal inver-

sion could not be constrained by the data and the eclipse depths are consistent with a single

black body curve at the temperature of ∼1850 K.

Blecic et al. (2014) presented the first observations of WASP-43b using the Spitzer

Space Telescope at 3.6 and 4.5 µm. The eclipse timings improved the orbital period by a

factor of three compared to Gillon et al. (2012), P = 0.81347436 ± 0.00000014 days, and

put an upper limit on eccentricity, e = 0.010+0.010
−0.007. Combining their observations with the

previous measurements from Gillon et al. (2012) and Wang et al. (2013), they confirmed

a weak day-night redistribution, and ruled out a strong thermal inversion. The data were

insufficient to break the degeneracy between the O-rich and C-rich, and the solar and super-

solar metallicity models.

Chen et al. (2014) observed one transit and one eclipse of WASP-43b simultaneously

in the g’, r’, i’, z’, J, H, K bands using the GROND instrument on the MPG/ESO 2.2 m

telescope at La Silla in Chile. The planetary dayside emission was detected in the K-band

and marginally in the i’ band. In their models, they investigated a Rayleigh scattering caused

by reflective hazes.

Line et al. (2013) performed a retrieval analysis using the eclipse depths from Blecic

et al. (2014), Gillon et al. (2012), and Wang et al. (2013). They ruled out a C to O ratio

larger than one, confirmed the absence of a temperature inversion, and determined that the
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WASP-43b atmospheric composition is consistent with thermochemical equilibrium within

3σ.

Zhou et al. (2014) reported on the Ks-band secondary eclipse observation of WASP-

43b using the IRIS2 infrared camera on the Anglo-Austrian Telescope. Using published P-T

profiles, they found that WASP-43b is marginally consistent with the carbon-rich composi-

tion, with a hazy layer at the top of the atmosphere.

Stevenson et al. (2014) reported the spectroscopic phase-curve observations of WASP-

43b using the Hubble Space Telescope. They constructed a longitudinally-resolved brightness

temperature map as a function of the optical depth. Using the same observations, Kreidberg

et al. (2014) performed a precise measurement of the water abundance and determined

the metallicity of WASP-43b to be 0.4 to 3.5 times solar, assuming the solar C/O ratio.

With the same data, Kataria et al. (2014) explored the atmosphere of WASP-43b using a

3D atmospheric circulation model coupled with a non-gray radiative-transfer code (Fortney

et al., 2006; Showman et al., 2009). They found that the 5×solar model (without TiO/VO)

is the best match to the data, and unlike the results from previous work, the inclusion of

TiO and VO revealed a localized temperature inversions on the dayside at pressures below

∼100 mbar. Benneke (2015) presents the analysis of WASP-43b transmission spectra using

the same HST/WFC3 observations. He finds the water abundance consistent with the solar

composition and a C/O < 0.9 at the 3σ level.
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In this paper, we performed a comprehensive atmospheric analysis of all WASP-43b

secondary eclipse data from the space- and ground-based observations using BART. Our

goals were to put additional constraints on the WASP-43b atmospheric model, to compare

our results with the results from the literature, and to investigate cases previously unexplored

on WASP-43b.

Table 5.1: Eclipse Depths

Source Wavelength Eclipse Depth
µm (%)

Gillon et al. (2012), VLT/HAWK I 0.90 0.021 ± 0.019
1.19 0.079 ± 0.032
2.09 0.156 ± 0.014

Wang et al. (2013), WIRCam 1.65 0.103 ± 0.017
2.19 0.194 ± 0.029

Chen et al. (2014), GROND 0.806 0.037 ± 0.022
2.19 0.197 ± 0.042

Blecic et al. (2014), Spitzer 3.6 0.347 ± 0.013
4.5 0.382 ± 0.015

Zhou et al. (2014), IRIS2/AAT 2.15 0.181 ± 0.027
Stevenson et al. (2014), HST 1.1425 0.0365 ± 0.0045

1.1775 0.0431 ± 0.0039
1.2125 0.0414 ± 0.0038
1.2475 0.0482 ± 0.0036
1.2825 0.0460 ± 0.0037
1.3175 0.0473 ± 0.0033
1.3525 0.0353 ± 0.0034
1.3875 0.0313 ± 0.0030
1.4225 0.0320 ± 0.0036
1.4575 0.0394 ± 0.0036
1.4925 0.0439 ± 0.0033
1.5275 0.0458 ± 0.0035
1.5625 0.0595 ± 0.0036
1.5975 0.0614 ± 0.0037
1.6325 0.0732 ± 0.0042

Stevenson et al. (2015), Spitzer 3.6 0.3300 ± 0.0089
4.5 0.3827 ± 0.0084
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5.4.2 Data

Table 5.1 lists the source, the observing instrument and bandpass, the center wave-

length, and the measured eclipse depth used in our analysis.

5.4.3 Retrieved models

In an attempt to test the conclusions from recent studies (e.g., Hansen et al., 2014;

Swain et al., 2013) on how the inclusion of additional opacity sources influences the best-fit

model, we generated multiple atmospheric cases and compared them using statistical factors

(Table 5.2). We constructed four cases where we fit four major molecular species, H2O,

CO2, CO, and CH4, with a different number of opacity sources, and three cases where we

fit seven molecular species, H2O, CO2, CO, CH4, NH3, HCN, and C2H2, with a different

number of opacity sources. In addition, we generated our initial atmospheric model using

the thermochemical equilibrium abundances profile and compared it to a commonly used

vertically-uniform abundances profile (e.g., Madhusudhan & Seager, 2010; Line et al., 2013).

We also generated and compared models with C/O ratios of 0.5, 0.7, and 1.

To assess different models quantitatively, we used three factors: the reduced χ2, χ2
red

= χ2

N−k
, where N is the number of data points, and k is the number of free parameters; the

Bayesian Information Criterion, BIC, χ2 + k ln(N); and standard deviation of the residuals,

SDR. BIC allows us to compare goodness-of-fit for the models generated on the same dataset.
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Table 5.2: Atmospheric Cases

Case Fitted Opacity Initial
Species Sources Abund. Profile

Case 1 4a 4a Uniform
Case 2 4a 4a Equilibrium
Case 3 4a 7b Equilibrium
Case 4 4a 11c Equilibrium
Case 5 7b 7b Uniform
Case 6 7b 7b Equilibrium
Case 7 7b 11c Equilibrium

aH2O, CO2, CO, CH4.
bH2O, CO2, CO, CH4, NH3, HCN, C2H2.
cH2O, CO2, CO, CH4, NH3, HCN, C2H2, C2H4, H2S, TiO, VO.

Although in general, models with more free parameters improve the fit, BIC adds a penalty

for any additional parameters in the system by increasing its value. Lower BIC value indicate

a better fit.

5.4.4 BART Setup

The pressure range for all of our models was constrained between 102 and 10-5 bars,

and sampled 100 times uniformly in log space. We used the parametrization from Section

5.3.2.1 as our T (p) profile generator. We performed several trial runs including all five

free parameters of the T (p) profile and concluded that we can fix γ2 and α to zero; thus,

the free parameters of the T (p) profile were: κIR, γ1, and β. In addition, we constrained

the temperature range between 300 and 3000 K to prevent MC3’s random walk from stepping

outside of the plausible temperature range (this range is bounded by the HITRAN/HITEMP

223



databases’ partition functions). The remaining free parameters were scaling factors of the

species abundances fit in our models.

For an equilibrium abundances profile case, we chose the temperature profile’s initial

parameters based on several trial runs, and calculated the mixing ratios using TEA. For

a vertically uniform abundances case, we used the mixing ratios typical for the expected

temperature regimes of WASP-43b as our initial guess. The mixing ratios of all input atomic

species were taken from Asplund et al. (2009).

When we wanted to directly compare our results with the results from Line et al.

(2013) and Kreidberg et al. (2014), we included only He, H2, CO, CO2, CH4, and H2O in the

atmospheric models. In our other runs, we included other expected and spectroscopically

active species relevant for hot-Jupiter atmospheres: HCN, C2H2, C2H4, NH3, HS, H2S, TiO,

and VO, in addition to the four major molecular species. We neglected the effect of clouds

and scattering in all of our models.

We used the HITRAN database as our main source for the molecular line-list data

(https://www.cfa.harvard.edu/hitran). For H2O, CO, and CO2, we used the molecular line-

list data from the HITEMP database, Rothman et al. (2010); for CH4, NH3, C2H2, and H2S,

from Rothman et al. (2013); for HCN and C2H4, from Rothman et al. (2009). The opacity

source for HS, although potentially significant in hot-Jupiter planetary atmospheres (Zahnle

et al., 2009), could not be found in the HITRAN database, so they were not included in our

analysis. The partition functions for the HITRAN opacity sources were calculated based on
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Laraia et al. (2011). We also included the line-list data for TiO (Schwenke, 1998) and VO

(B. Plez 1999, private communication). In addition to the molecular line lists, we included

the H2-H2 collision induced opacities from Borysow et al. (2001) and Borysow (2002), and

H2-He collision induced opacities from Richard et al. (2012).

Figures 5.8 and 5.9 show opacities for each of our species of interest for the wavelength

range used in our analysis (0.6 - 5.5 µm), temperature of 1500 K and pressure of 1 bar, as well

as the effect of the opacity of an individual species on the equilibrium spectrum of WASP-

43b. In addition, we plotted the filter bandpasses to show what spectral features are covered

in the wavelength range of our observation. The atmospheric model used for this figure

contains eleven molecular species. We used TEA to calculate the species’ thermochemical

equilibrium mixing fractions for the T (p) profile given in the inset figure (the same for all

the species).

We used flat priors on all parameters, with boundary limits set somewhat arbitrarily

to allow MC3 to explore the parameter phase space thoroughly. We imposed only one con-

straint: that the sum of fitted molecular species abundances must not exceed 15%. This

constraint forbids a random walk process, and guarantees physically plausible results. In

addition, on each iteration, we rescaled the mixing ratios of H2 and He, preserving their

original ratio such that the total sum of all species is unity.

We ran ten independent chains and enough iterations until the Gelman and Rubin

convergence test for all free parameters dropped below 1% (Gelman & Rubin, 1992).
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Figure 5.8: Opacities of the HITRAN/HITEMP species used in the retrieval at the temperature of 1500 K and pressure
of 1 bar, and their influence on the equilibrium spectra of WASP-43b. The gaps in the opacity figures come from the limited

y-axis range (the values not shown are well below 10-12 cm2/g). The T (p) profile and species abundances used to generate
WASP-43b spectra are given in the inset figures. Black dots represent the data points with uncertainties. At the bottom of the
figures, we show the bandpasses for each of the observations used in the analysis. From the individual equilibrium WASP-43b
models, we see that H2O, CO, and NH3 are the only absorbers that significantly influence the WASP-43b emission spectra in
the wavelength range of the available observations, with H2O being the most apparent.
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Figure 5.9: Opacities of the TiO and VO species used in the retrieval at the temperature of 1500 K and pressure of 1 bar,
and their influence on the equilibrium spectra of WASP-43b. The TiO line list comes from Schwenke (1998) and the VO line
list from B. Plez (1999, private communication).

Our filter files, the transmission response functions, for VLT/HAWK I, GROND,

and WIRCam observations were provided by Chen et al. (2014). The response functions of

IRIS2/AAT observations were provided by Zhou et al. (2014). The Spitzer response functions

for the channel 1 and 2 subarray observations were found on the Spitzer website. For each

of the HST observations, we used the top-hat response functions.

The system parameters (planetary mass and radius, star’s metallicity, effective tem-

perature, mass, radius, and gravity, and the semimajor axis) were taken from Gillon et al.

(2012). These parameters were used in the parametrized temperature model and to generate

the stellar spectrum by interpolating the stellar grid models from Castelli & Kurucz (2004).

Our initial T (p) profiles were chosen by running several short trial runs, or by taking

the parameter values from the literature. Then, we produced the line-list data files for the

species and the wavelength range of interest. From them, we generated the opacity tables

for the case when we had four, seven, and eleven opacity sources separately. The opacity

grid was generated between 300 to 3000 K in 100 K intervals. The wavelength range was
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generated between 0.6 - 5.5 µm in 1 cm-1 intervals in the wavenumber space. The maximum

optical depth was set to ten for all models (Transit stops the extinction calculation at

each wavelength when the optical depth reaches the user-defined value τmax, τ ≥ τmax, see

collaborative paper by Cubillos et al., 2015a).

5.4.5 Results - Four Fitted Species

In this section, we describe cases where we fit four major molecular species, H2O,

CO2, CO, and CH4. We first wanted to compare our results with Line et al. (2013) and

Kreidberg et al. (2014). Then, we investigated the goodness of fit between the models with

a vertically-uniform abundances profile versus a profile produced by the thermochemical

equilibrium calculations. We also explored how the inclusion of additional opacity sources

affects the best-fit model. For these purposes, we generated four different cases:

1. We retrieved the T (p) profile and vertically uniform mixing ratios of the four major

molecular species, using the best-fit T (p) profile and species abundances from Line

et al. (2013) as our initial guess. Following Line et al. (2013), we included only the

four major molecular species and their opacity sources in the mean molecular mass

and opacity calculation.

2. We retrieved the T (p) profile and abundances using the equilibrium abundances profile

calculated with TEA as the initial guess. For the initial T (p) profile, we used the best
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parameters from several short trial runs. Again, we only included the four major

molecular species and their opacities in the calculation.

3. Using the equilibrium abundances profile calculated with TEA as the initial guess, and

the same T (p) profile as in Case 2, we tested the statistical significance when additional

molecules and their opacity sources were included in the calculation. In this case, in

addition to H2O, CO2, CO, and CH4, we included NH3, HCN, and C2H2.

4. This case is the same as Case 3, with the inclusion of C2H4, H2S, TiO, and VO.

Figure 5.10 compares the vertically-uniform abundances profile and the TEA abun-

dances profile best-fit models.

The initial species abundances for the uniform-model-atmosphere case were H=10-6,

He=0.15, C=10-20, O=10-16, H2=0.85, H2O=5x10-4, CO2=10-7, CO=3x10-4, and CH4=10-6.

The initial free parameters were set to logκIR = −1.4 , logγ1 = −0.74, logγ2 = 0.0, logα =

0.0, logβ = 1.03, log fH2O = −1.07, log fCO2 = −1.07, log fCO = 1.784, and log fCH4 = 1.784.

The first three parameters reproduce the best-fit temperature profile from Line et al. (2013),

and the last four parameters are their reported best-fit scaling factors.

The initial species abundances for the equilibrium case were calculated using TEA.

The T (p) profile parameters were chosen from several short trial runs: logκIR = −0.6 ,

logγ1 = −0.4, logγ2 = 0.0, logα = 0.0, and logβ = 1.09.
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Figure 5.10: Best-fit models and T (p) profiles for Cases 1 and 2, four fitted species. The
upper panel shows the model when vertically-uniform mixing ratios are used as the initial
guess. The bottom panel uses the equilibrium mixing ratios calculated using TEA. In red are
the data points (eclipse depths) with error bars. In black are the integrated points of our
model over the bandpasses shown in grey. The models are generated with the four major
molecular species and their opacities.

Both cases were run with the initial 1.5x105 iterations per chain. The equilibrium case

took 1.2x105 iterations until all parameters converged and the Gelman and Rubin statistics

was satisfied. The uniform case needed additional iterations and converged after 1.8x105

iterations. χ2
red, BIC, and SDR, for Cases 1 and 2 are reported in Table 5.3.
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According to χ2
red and BIC, the equilibrium case provides a marginally better fit to

the data. In the inset of the bottom panel of Figure 5.10, we give a zoom-in detail of the

wavelength range covered with the HST data.

Table 5.3: 4 Species Goodness of Fit

χ2
red BIC SDR

Case 1, Uniform 1.9856 60.5324 0.000202731
Case 2, Equilibrium 1.9709 60.2547 0.000202287
Case 3, 7 opacities 1.9849 60.5198 0.000209638
Case 4, 11 opacities 2.0542 61.8365 0.000208284

Figure 5.11: Histograms for Cases 1 and 2, four fitted species. Figures show the species’
scaling factors expressed as log10(fX), where X is the species abundance.
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Figure 5.12: Influence of each species to the best-fit model for Case 2, four fitted species. In
the inset figures are the best-fit T (p) profile and the species’s mixing ratio.

Figure 5.11 shows the histograms of the posterior distribution of the retrieved molec-

ular species for both cases. Figure 5.12 shows the influence of the individual species on the

best-fit model, Case 2. Figure 5.13 shows the initial and the best-fit abundances for Case

2. As we can see, the water features are dominant in the spectrum; thus, water is the best

constrained molecule in our analysis (Figure 5.11). CO2 and CH4 are fully unconstrained in
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our analysis. CO and CO2 show absorption features only above 4.2 µm. Since CO2 and CH4

are unconstrained in our analysis, we tested a case where we fit only H2O and CO; however,

the results were unchanged.
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Figure 5.13: Initial and best-fit abundances for Case 2, four fitted species.

Considering that Case 2 provided a marginally better fit to the data, we continued

to investigate the effect of the inclusion of additional species on this model atmosphere. We

constructed the initial model atmosphere with seven molecular species, H2O, CO2, CO, CH4,

NH3, HCN, and C2H2; used the same initial T (p) profile as in Case 2; and calculated the

mixing ratios of the molecular species using TEA. We ran BART including all seven opacity

sources in the calculation. The procedure was repeated for eleven molecular species: H2O,

CO2, CO, CH4, NH3, HCN, C2H2, C2H4, H2S, TiO, and VO. These cases are referred to as

Cases 3 and 4.
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Table 5.3 compares the goodness of fit for Cases 3 and 4, and Table 5.4 lists the

mixing fractions of the fitted molecular species for all the cases at the pressure level of 1 bar.

Figure 5.14 shows the best-fit models for Cases 3 and 4. For these cases, the histograms and

the influences of the individual fitted species to the best-fit spectrum are similar to Figures

5.11 and 5.12. As we see, according to BIC, the inclusion of additional opacity sources does

not improve the fit.
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Figure 5.14: Best-fit models and T (p) profiles for Cases 3 and 4, four fitted species. The upper
panel shows the best-fit model when seven opacity sources are included in the calculation:
H2O, CO2, CO, CH4, NH3, HCN, and C2H2. The bottom panel shows the best-fit model
when eleven opacity sources are included in the calculation: H2O, CO2, CO, CH4, NH3,
HCN, C2H2, C2H4, H2S, TiO, and VO.
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Table 5.4: 4 Species Mixing Ratios

Case H2O CO2 CO CH4

Case 1 Best Fit 8.22 x 10-4 4.47 x 10-8 3.90 x 10-2 2.77 x 10-8

uniform 68% interval [2.70 x 10-4 – 2.51 x 10-3] [1.52 x 10-10 – 1.31 x 10-5] [1.17 x 10-2 – 1.30 x 10-1] [1.82 x 10-10 – 1.30 x 10-1]

Case 2 Best Fit 2.02 x 10-3 4.15 x 10-6 8.25 x 10-2 6.77 x 10-7

equilibrium 68% interval [6.54 x 10-4 – 6.27 x 10-3] [7.97 x 10-9 – 2.16 x 10-3] [2.49 x 10-2 – 2.73 x 10-1] [2.45 x 10-9 – 2.73 x 10-1]

Case 3 Best Fit 2.14 x 10-3 5.30 x 10-6 1.01 x 10-1 3.25 x 10-7

7 opacities 68% interval [6.56 x 10-4 – 7.00 x 10-3] [9.79 x 10-9 – 2.86 x 10-3] [3.43 x 10-2 – 2.97 x 10-1] [1.08 x 10-9 – 9.76 x 10-5]

Case 4 Best Fit 2.96 x 10-3 1.54 x 10-6 1.23 x 10-1 1.97 x 10-8

11 opacities 68% interval [1.10 x 10-3 – 7.96 x 10-3] [1.73 x 10-9 – 1.36 x 10-3] [4.25 x 10-2 – 3.57 x 10-1] [7.15 x 10-11 – 3.57 x 10-1]
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5.4.6 Results - Seven Fitted Species

In this section, we describe cases where we fit seven molecular species, H2O, CO2, CO,

CH4, NH3, HCN, and C2H2. Again, we tested the uniform versus the equilibrium abundances

profile case, and the effect of the inclusion of additional opacity sources. For these purposes,

we generated three different cases:

1. Using the best-fit T (p) profile and vertically-uniform species abundances from Line

et al. (2013) as our initial guess, we modeled the atmosphere of WASP-43b including

the opacity sources for all seven molecules.

2. Using the T (p) profile from Case 5 and the equilibrium abundances profile calculated

with TEA as the initial guess (Section 5.4.5), we retrieved the T (p) profile and mixing

fractions including the opacity sources for all seven molecules.

3. Using the equilibrium abundances profile calculated with TEA as the initial guess, and

the same T (p) profile as in Case 6, we modeled WASP-43b atmosphere including all

eleven opacity sources in the calculation (C2H4, H2S, TiO, and VO in addition to the

species from Cases 5 and 6).

Figure 5.15 shows the comparison between the vertically-uniform abundances profile

and the TEA abundances profile best-fit models for the case when seven molecular species are

included in the mean molecular mass and the opacity calculation.
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Figure 5.15: Best-fit models and T (p) profiles for Cases 5 and 6, seven fitted species. The
upper panel shows the model when vertically-uniform mixing ratios are used as the initial
guess. The bottom panel uses the equilibrium mixing ratios calculated using TEA. In red are
the data points (eclipse depths) with error bars. In black are the integrated points of our
model over the bandpasses shown in grey. The models are generated with the seven major
molecular species and their opacities.

The initial species abundances for the uniform-model-atmosphere case were H =

10-4, He = 0.145, C = 10-17, N = 10-9, O = 10-11, H2 = 0.85, H2O = 5x10-4, CO2 = 10-8,

CO = 3x10-4, CH4 = 10-7, NH3 = 10-4, HCN = 10-6, and C2H2 = 10-11. The initial free

parameters were set to logκIR = −1.4 , logγ1 = −0.74, logγ2 = 0.0, logα = 0.0, logβ = 1.03,

log fH2O = −1.07, log fCO2 = −1.07, log fCO = 1.784, and log fCH4 = 1.784. The first three
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parameters reproduce the best-fit temperature profile from Line et al. (2013), and the last

four are their reported best-fit abundances values. The initial species abundances for the

equilibrium case were calculated using TEA. The T (p) profile was the same as in Section 5.4.5.

Figure 5.16: Histograms for Case 5 (top panel) and Case 6 (bottom panel), seven fitted
species. Figures show the species’ scaling factors expressed as log10(fX), where X is the
species abundance.
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Figure 5.17: Influence of each species to the best-fit model for Case 6, seven fitted species.
In the inset figures are the best-fit T (p) profile and the species’s mixing ratio.
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We ran both cases with an initial 1.5x105 iterations per chain, and both converged

for all parameters after 1.2x105.

Table 5.5: 7 Species Goodness of Fit

χ2
red BIC SDR

Case 5, Uniform 2.3588 70.3210 0.000202230
Case 6, Equilibrium 2.3385 69.9968 0.000203473
Case 7, 11 opacities 2.4337 71.5197 0.000203565
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Figure 5.18: Initial and best-fit abundances for Case 6, seven fitted species.

Figure 5.16 shows the histograms of the posterior distribution of the retrieved molec-

ular species for Cases 5 and 6. Figure 5.17 shows the influence of the individual species on

the best-fit model, Case 6. As in Section 5.4.5, the most influence on the spectrum comes

from the water spectral features; thus, water is constrained the most in our analysis (Figure

5.16). The additional retrieved species NH3, HCN, and C2H2 show no influence on the spec-

trum (Figure 5.17), although they seem constrained to some extent in our analysis (Figure

5.16). Figure 5.18 shows the initial and the best-fit abundances for Case 6.
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According to the combination of the χ2
red and BIC values, the equilibrium case pro-

vided a marginally better fit to the data. Using that model, we constructed Case 7 and

included all eleven opacity sources into the retrieval, H2O, CO2, CO, CH4, NH3, HCN, C2H2,

C2H4, H2S, TiO, and VO. We give the best-fit species abundances in Table 5.6 and the good-

ness of fit for all three cases in Table 5.5. As we can see, according to BIC, the inclusion of

additional opacity sources does not improve the fit.
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Table 5.6: 7 Species Mixing Ratios

Case H2O CO2 CO CH4

Case 5 Best Fit 6.56 x 10-4 1.16 x 10-9 3.49 x 10-2 5.40 x 10-9

uniform 68% interval [2.25 x 10-4 – 1.91 x 10-3] [2.01 x 10-11 – 6.64 x 10-8] [1.27 x 10-2 – 9.64 x 10-2] [2.79 x 10-11 – 1.04 x 10-6]

Case 6 Best Fit 1.02 x 10-3 4.31 x 10-6 4.64 x 10-2 2.58 x 10-6

equilibrium 68% interval [3.67 x 10-4 – 2.82 x 10-3] [1.73 x 10-8 – 1.08 x 10-3] [1.60 x 10-2 – 1.34 x 10-1] [1.70 x 10-8 – 3.92 x 10-4]

Case 7 Best Fit 2.52 x 10-3 4.81 x 10-10 1.17 x 10-1 1.72 x 10-11

11 opacities 68% interval [1.02 x 10-3 – 6.22 x 10-3] [3.00 x 10-11 – 7.69 x 10-9] [5.89 x 10-2 – 2.31 x 10-1] [1.93 x 10-13 – 1.53 x 10-9]

Case NH3 HCN C2H2

Case 5 Best Fit 1.67 x 10-6 2.94 x 10-5 9.57 x 10-15

uniform 68% interval [2.28 x 10-8 – 1.22 x 10-4] [1.32 x 10-6 – 6.52 x 10-4] [9.33 x 10-18 – 9.82 x 10-12]

Case 6 Best Fit 8.75 x 10-6 1.20 x 10-4 1.94 x 10-15

equilibirum 68% interval [1.57 x 10-7 – 4.87 x 10-4] [8.53 x 10-6 – 1.69 x 10-3] [5.39 x 10-17 – 6.98 x 10-14]

Case 7 Best Fit 1.64 x 10-6 1.24 x 10-7 7.03 x 10-16

11 opacities 68% interval [1.12 x 10-7 – 2.38 x 10-5] [2.54 x 10-10 – 6.04 x 10-5] [8.07 x 10-19 – 6.12 x 10-13]
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5.4.7 WASP-43b Contribution Functions

Figure 5.19 shows the T (p) profile and abundances, the weighting functions for all

observations, and the normalized contribution functions for the HST, Spitzer, and ground-

based observations, for the best-fit models from Sections 5.4.5 (upper panel) and 5.4.6 (mid-

dle panel), as well as the model when all eleven opacity sources are included, Case 7, Section

5.4.6 (bottom panel). The right panels show the maximum optical depth at each wavelength

(upper panels), and the pressures where the maximum optical depth is reached (bottom

panels).

From the right panels, we see that in the cases when we have four and seven opacity

sources present in the retrieval, the wavelength range below 0.7 µm is almost transparent

to the outgoing radiation for the best-fit model. However, when all eleven species are in-

cluded, we see a significant increase in opacity, but only in the region below 0.7 µm. This

contribution, based on Figures 5.8 and 5.9, could come only from the TiO and VO opacities.

From the left panels, we see that the atmospheric models with four and seven ab-

sorbers (when H2S, TiO, and VO are not included) probe the thermal structure around 0.1

bars. This is not the case for the GROND observation at 0.809 µm that probes deeper layers.

In the bandpass of this observation, the atmosphere is mostly transparent to the outgoing

radiation, and the peak of the contribution function sits at the deep pressure layers below 1

bar.
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Figure 5.19: Contribution functions for the best-fit models from Sections 5.4.5 (upper panel),
Section 5.4.6 (middle panel), and Case 3 from Section 5.4.6 (lower panel). Right panels show
the maximum optical depth at each wavelength (upper panels), and the pressures where the
maximum optical depth is reached for each model (bottom panels).

The observations done by Spitzer’s channel 2 probe significantly lower pressures,

explained by the presence of several opacity sources in this bandpass. The maximum optical
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depth for this bandpass is reached at very low pressures. Figures 5.12 and 5.17 show that most

of the spectral features from H2O, CO, and CO2 are concentrated in this region. However,

this unusually high opacity on such low pressures must come from the high CO abundance

(Tables 5.4 and 5.6).

5.4.8 WASP-43b C/O Ratio

The C/O ratio in exoplanetary atmospheres is fundamental for understanding the

underlying chemistry in our models (Lodders & Fegley, 2002; Moses et al., 2013; Madhusud-

han, 2012). We investigated the influence of a C/O ratio on the best-fit model by generating

models with a C/O ratio of 0.5, 0.7, and 1.0 (Figure 5.20). To change the C/O ratio in our

models, we swapped the elemental abundances for C and O, and decreased the C abundance

until we reached the desired ratio (the O abundance is kept constant). For this analysis, we

used all eleven opacity sources in our models and the species abundances calculated using

TEA, as our initial model atmosphere. The initial T (p) profile is the same as in Section 5.4.5.

Table 5.7: C/O Ratio Goodness of Fit

χ2
red BIC SDR

C/O=0.5 2.4377 71.5197 0.000203565
C/O=0.7 2.4236 71.3587 0.000202348
C/O=1.0 2.4018 71.0097 0.000202891

Table 5.7 lists χ2, BIC, and SDR for all 3 models. We also tested the models with

a C/O ratio > 1.0, which resulted in a bad fit to the data. We see that the χ2 and BIC
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values differ only marginally between models, although some small decrease in the values is

noticeable with the C/O ratio increase. However, the SDR value is the best for the model

with a C/O ratio of 0.7. Although these differences are only marginal, our result is consistent

with the previous work by Zhou et al. (2014); Wang et al. (2013), and Benneke (2015).
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Figure 5.20: Best-fit models for C/O ratio 0.5, 0.7, and 1.0.
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5.4.9 Results - Discussion

Additional opacity sources besides the four major molecules H2O, CO2, CO, and CH4,

have proven to be fundamental in retrievals (Madhusudhan et al., 2011a; Crossfield et al.,

2012). H2O is one of the most abundant species in oxygen-rich atmospheres, showing strong

absorption features in the near infrared (see Figures 5.8 and 5.9). However, hydrocarbons,

CH4, HCN, C2H2, and C2H4 become important in carbon-rich atmospheres as they are more

abundant than H2O (e.g., Madhusudhan et al., 2011b; Moses et al., 2013; Blecic et al., 2015).

The inclusion of TiO and VO is justified since both species are strong absorbers in

the visible that could lead to thermal inversion around ∼1 mbar level (Hubeny et al., 2003;

Fortney et al., 2008b; Spiegel et al., 2009). However, questions have been raised whether

high stellar activity may cause them to be photochemically destroyed (Knutson et al., 2010)

or absent in the carbon-rich atmospheres (e.g., Madhusudhan, 2012). There are also other

species (like sulfur, Zahnle et al., 2009) that absorb highly in visible and could cause thermal

inversion (the H2S species included in our models is the only sulfur species available in the

HITRAN database).

We see no evidence of thermal inversion in any of our model cases. WASP-43b shows

a distinctive decrease in temperature with altitude in all of our models, consistent with

previous work. In addition, our best T (p) profiles for all of our cases are consistent with the

T (p) profiles from Stevenson et al. (2014); Line et al. (2013), and Blecic et al. (2014).
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The inclusion of additional opacity sources only marginally influences the shape of

the best-fit spectrum (Figure 5.14). The difference is only noticeable in the region above 4.2

µm. In addition, Table 5.3 does not show a major difference in the χ2
red and BIC values. This

is similar for the cases when we fit seven molecular species (Section 5.4.6). These results

suggest that the inclusion of additional chemical species does not have a major impact on the

best-fit model. The results are almost unchanged. In our analysis, the spectrum is dominated

by the H2O, and to some extent CO, CO2, NH3, and HCN absorption features. However,

only H2O, CO, and CO2 show spectral features in the bandpasses of our observations, with

water being the most dominant (CO and CO2 show absorption features only above 4.2 µm).

According to the posterior histograms (Figures 5.11 and 5.16), H2O, CO, and surprisingly

HCN show some level of constraint, with again water being the most constrained. CO2 and

CH4 are fully unconstrained in our analysis.

Based on these conclusions, we calculated the water abundance on the dayside of

WASP-43b using our best-fit model (Section 5.4.5, Case 2). Assuming the same solar wa-

ter abundance of 6.1x10-4 (for a solar composition gas in thermochemical equilibrium at

planetary temperatures) as Kreidberg et al. (2014), we constrained the water abundance to

1-10×solar at 1 bar pressure level, similar to the conclusions made by Blecic et al. (2014).

CO shows unusually high abundances in all of our models (Tables 5.4 and 5.6). Al-

though CO is the most abundant carbon-bearing species in the oxygen-rich and carbon-rich

hot-Jupiter atmospheres (especially in the high-metallicity atmospheres), this level of en-
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hancement is surprising. Kataria et al. (2014) find, using a self-consistent 3D circulation

approach, that 5×solar metallicity model is the best match to the data. Zhou et al. (2014)

find the best fit with the 2×solar metallicity model. However, neither metallicity level sup-

ports the amount of CO that we are seeing in our models.

We also compared a vertically-uniform abundances profile versus a thermochemical

equilibrium abundances profile goodness of fit. Although questions have been raised whether

the data provide enough constraints on the vertical abundances profile (Lee et al., 2012; Line

et al., 2012), and vertical mixing tends to quench minor chemical species (Moses et al., 2011),

the major molecular species already have close to vertically-uniform abundances profiles in

the thermochemical equilibrium (CO, CO2, H2O, NH3, HCN, see Figures 5.13 and 5.18).

As the thermochemical equilibrium calculations provide more realistic initial atmospheric

models, we assessed them against the uniform cases with the goodness-of-fit statistics. In

all cases, the thermochemical equilibrium abundances models provide a marginally better fit

to the data according to the combination of the χ2
red and BIC values (see Sections 5.4.5 and

5.4.6, Tables 5.3 and 5.5).
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5.5 CONCLUSIONS

This paper is a part of three contributed papers that present a novel retrieval frame-

work, the Bayesian Atmospheric Radiative Transfer (BART) code (see also Harrington

et al., 2015; Cubillos et al., 2015a). BART is an open-source open-development Bayesian,

thermochemical, radiative-transfer code under a reproducible-research license available at

https://github.com/exosports/BART. It consists of three self-sufficient modules: TEA, the

Thermochemical Equilibrium Abundances module that calculates the mixing fractions of

gaseous species; Transit, the radiative-transfer code; and MC3, the Multi-core Markov-chain

Monte Carlo package.

In this paper, we presented the implementation and the underlying theory of the

initialization routines, TEA module, atmospheric profile generator, eclipse module, best-fit

routines, and the contribution functions module. Other modules and packages are described

in Cubillos et al. (2015a). We also presented an atmospheric analysis of WASP-43b using

BART.

We performed a comprehensive analysis of all available space and ground secondary

eclipse data to constrain the dayside atmosphere of WASP-43b. Data confirmed a decreasing

temperature with pressure, i.e., an absence of thermal inversion, consistent with previous

analyses. The inclusion of additional opacity sources does not improve the fit. According to

BIC, the atmospheric model with only four opacity sources is the best match to the data.

However, this result is only marginal. We find no significant difference in the best-fit models
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produced using the uniform-abundances profiles versus the models with thermochemical

equilibrium profiles as the initial atmospheric model. We also put a marginal constraint on

the WASP-43b C/O ratio of 0.7.

We see an unusually high abundance of CO in our models with the peak of the

Spitzer channel 2 contribution function is located high in the planetary atmosphere. This

high amount of CO suggests that the data drove MC3 into a possibly physically unplausable

phase space (our retrieval technique is fully tested on a synthetic spectra, see collaborative

paper by Cubillos et al., 2015a). Compared to the retrieval results from Line et al. (2013),

the difference could come from the line-list databases used in the analysis, number of data

points included, and/or missing important opacity sources.

What we are seeing in our analysis could support conclusions from recent studies by

Hansen et al. (2014); Laughlin & Lissauer (2015); Burrows (2014), and Swain et al. (2013)

that complex atmospheric models might not be supported by the data. Hansen et al. (2014)

state that the features in the broadband emission spectra are due to astrophysical and in-

strumental noise rather than the molecular bands, and any claims about chemistry or C/O

are premature. These statements are supported by Laughlin & Lissauer (2015), their Sec-

tion 5.3, Figure 8, and their analysis of the Spitzer channel 2 observations of HD 80606b

(http://oklo.org/2013/08/21/central-limit-theorem/). Similar conclusions came from Bur-

rows (2014) that states that theorists and observers have a tendency to overinterpret the

exoplanetary measurements.
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In light of these studies and our conclusions, we are unsure what caused the high

CO abundance in our models. Our other results are consistent with the results of previous

analyses. Efforts have been made to provide accurate databases of gaseous species at high

temperatures that occur in hot-Jupiter atmospheres (e.g., for NH3, CH4, H2S, PH3, Harg-

reaves et al., 2011, 2013; Yurchenko et al., 2014; Azzam et al., 2013; Sousa-Silva et al., 2015),

see also Tennyson & Yurchenko (2014) for the list of the ExoMol hot molecules. We are hop-

ing that with the inclusion of various species opacities in the retrieval (supporting more

realistic atmospheric solution) and the spectroscopic phase curve observations of WASP-

43b using the James Webb Space Telescope, we will be able to address any inconsistencies

between the results of various groups.
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