
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2004

Dynamic Shared State Maintenance In Distributed Virtual Dynamic Shared State Maintenance In Distributed Virtual

Environments Environments

Felix George Hamza-Lup
University of Central Florida

 Part of the Computer Sciences Commons, and the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Hamza-Lup, Felix George, "Dynamic Shared State Maintenance In Distributed Virtual Environments"
(2004). Electronic Theses and Dissertations, 2004-2019. 132.
https://stars.library.ucf.edu/etd/132

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/132?utm_source=stars.library.ucf.edu%2Fetd%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

DYNAMIC SHARED STATE MAINTENANCE IN

DISTRIBUTED VIRTUAL ENVIRONMENTS

by

FELIX GEORGE HAMZA-LUP
B.S. Technical University of Cluj-Napoca, 1999

M.S. University of Central Florida, 2001

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the School of Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Summer Term
2004

© 2004 Felix George Hamza-Lup

 ii

ABSTRACT

Advances in computer networks and rendering systems facilitate the creation of distributed

collaborative environments in which the distribution of information at remote locations allows

efficient communication. Particularly challenging are distributed interactive Virtual

Environments (VE) that allow knowledge sharing through 3D information.

In a distributed interactive VE the dynamic shared state represents the changing information that

multiple machines must maintain about the shared virtual components. One of the challenges in

such environments is maintaining a consistent view of the dynamic shared state in the presence

of inevitable network latency and jitter. A consistent view of the shared scene will significantly

increase the sense of presence among participants and facilitate their interactive collaboration.

The purpose of this work is to address the problem of latency in distributed interactive VE and to

develop a conceptual model for consistency maintenance in these environments based on the

participant interaction model.

A review of the literature illustrates that the techniques for consistency maintenance in

distributed Virtual Reality (VR) environments can be roughly grouped into three categories:

centralized information management, prediction through dead reckoning algorithms, and

frequent state regeneration. Additional resource management methods can be applied across

these techniques for shared state consistency improvement. Some of these techniques are related

 iii

to the systems infrastructure, others are related to the human nature of the participants (e.g.,

human perceptual limitations, area of interest management, and visual and temporal perception).

An area that needs to be explored is the relationship between the dynamic shared state and the

interaction with the virtual entities present in the shared scene. Mixed Reality (MR) and VR

environments must bring the human participant interaction into the loop through a wide range of

electronic motion sensors, and haptic devices. Part of the work presented here defines a novel

criterion for categorization of distributed interactive VE and introduces, as well as analyzes, an

adaptive synchronization algorithm for consistency maintenance in such environments.

As part of the work, a distributed interactive Augmented Reality (AR) testbed and the algorithm

implementation details are presented. Currently the testbed is part of several research efforts at

the Optical Diagnostics and Applications Laboratory including 3D visualization applications

using custom built head-mounted displays (HMDs) with optical motion tracking and a medical

training prototype for endotracheal intubation and medical prognostics. An objective method

using quaternion calculus is applied for the algorithm assessment. In spite of significant network

latency, results show that the dynamic shared state can be maintained consistent at multiple

remotely located sites. In further consideration of the latency problems and in the light of the

current trends in interactive distributed VE applications, we propose a hybrid distributed system

architecture for sensor-based distributed VE that has the potential to improve the system real-

time behavior and scalability.

 iv

To my parents, my grandmothers who have supported me all the way since the beginning of my

studies, and in loving memory of my grandfathers.

To my friends. You keep my spirit alive!

To all those who believe in the richness of learning.

 v

ACKNOWLEDGEMENTS

GOD created us and when doing it He endowed us with both the ability to reason and that to feel.

He gifted us with ‘a brain’ enabling us to think, to learn, to remember and to perceive the world

around us, and He gifted us with ‘a heart’ which helps us love and care. Well equipped with

brains and heart we strive along our life path to quench our thirst of knowledge, to make our

dreams come true, but also to fulfill our commitments and carry out our mission on Earth. What

are we here for if not to enjoy, through our Savior, life eternal, solve what problems we can, give

light, peace and joy to our fellowmen, and leave this dear planet a little better and healthier than

when we were born. These have been the guiding principles in my life and at this most important

moment of it I would like to take the opportunity to thank, with all my heart and soul the

following honorable people for having supported me in the pursuit of achieving my ideals.

My deepest gratitude is now directed to:

• My advisors, Professor Jannick P. Rolland and Professor Charles E. Hughes, who have

guided me throughout my research and challenged me to expand my point of view and

see “the bigger” picture.

• My committee members: Michael Moshell, Frank Biocca and Kien Hua for their

comments and suggestions and for treating me with respect and timely advice.

• My wonderful parents, Georgeta “Mica” and Lucian “Ticu”, who deserve a vast amount of

credit for supporting me both emotionally and financially throughout my education and

vi

life, and most of all for believing in my intellectual capacity. Their encouragement has

helped me to find the path in the difficult moments when "hope was a lost friend".

• Nicoleta, all of your ceaseless support moving to Florida is deeply appreciated and my

sister, Georgiana, you have always been supportive, caring, and helpful. Both of you have

been by my side and patiently shared with me the shiny days of peace and calmness and

those full of worries and restlessness.

To my dear friends from USA who, from behind the scenes, have encouraged and supported my

endeavor and my work. I am grateful to them for investing time and energy discussing ideas with

me and tolerating my many digressions.

• Larry Davis Jr., for his friendship and understanding.

• Marc Smith, for his kind advice and friendship.

• Paulius Micikevicius, for healthy and constructive criticism and honesty.

• ODALab members, past and presence, for assistance at various stages in my work.

I will never forget my mentors and friends from Romania, especially:

• Professor Ioan Salomie for his advice and guidance during my undergraduate research at

the Technical University of Cluj-Napoca.

• Professor Kalman Pusztai for his extraordinary dedication in pushing the research forward

at all levels.

vii

And last but not least, my family and friends from Oradea and Cluj-Napoca who have made me

wish to turn back time and live again so many unforgettable moments:

• My cousin Ioan Abrudan "Nelu" for his guidance in life and for his unreserved friendship

and love of nature, for his inspiration and trust in the unmatched beauty of Transilvania’s

forests. I recall now our philosophical escapades on the hills of Totoreni near Beius.

Thank you for taking care of a little "gibonel" and for reciting Mihai Eminescu with such a

passion.

• My uncles Ghita and Cornel, my aunts Florica and Eugenia, my dear cousins Marius,

Adelina and Monica, my nephew Horatiu who have all surrounded me with their love.

• My grandparents Tati and Bunu (God rest them in peace), Mami and Buni, for loving me

unconditionally and for giving me beautiful childhood memories. You have a very special

place in my heart! God bless you.

• To anybody I missed who deserves a mention.

All these people have been part of my life and the dear thought of them brings into my mind

William Shakespeare’s memorable lines:

"What a piece of work is man! How noble in reason, how infinite in faculties, in form and

moving, how express and admirable in action… THE BEAUTY OF THE WORLD."

viii

TABLE OF CONTENTS

LIST OF TABLES .. xiii

LIST OF FIGURES.. xiv

LIST OF ACRONYMS ... xvii

1. INTRODUCTION .. 1

1.1 Remote Collaboration .. 1

1.2 Synchronicity - Consistent Dynamic Shared State ... 3

1.3 Inconsistency Factors .. 4

1.4 Motivation .. 8

1.5 Research Summary ... 9

1.6 Dissertation Overview.. 9

2. BACKGROUND AND RELATED WORK ... 12

2.1 Distributed Systems ... 12

2.1.1 Interaction Models .. 13

2.1.2 Coordination Models .. 14

2.1.3 Consistency Models... 16

2.1.3.1 Data-Centric Consistency Models ... 17

2.1.3.2 Client-Centric Consistency Models ... 17

2.1.4 Architectural System Models .. 18

2.1.4.1 From Client-Server to Distributed Object Model 19

2.1.4.2 Peer-to-Peer architectures.. 22

ix

2.1.5 Real-Time Distributed Systems ... 24

2.2 Virtual Environments - Mixed, Augmented and Virtual Reality 25

2.2.1 Background ... 25

2.2.2 Hardware Components for Interactive VEs.. 27

2.2.2.1 3D Display Systems... 28

2.2.2.2 Sensors for Motion Tracking .. 31

2.2.3 Distributed Interactive VEs Survey .. 32

2.2.3.1 Distributed Interactive VEs in the Defense Industry 33

2.2.3.2 Distributed Interactive VEs in the Entertainment Industry 34

2.2.3.3 Distributed Interactive VEs in the Academia.. 35

2.3 Survey of Consistency Maintenance Techniques in VEs 37

2.3.1 Centralized Information Repositories .. 39

2.3.2 Dead Reckoning Algorithms ... 42

2.3.3 Frequent State Regeneration ... 46

2.3.4 Resources Management Strategies .. 46

2.3.4.1 Communication Protocol Optimization.. 46

2.3.4.2 Visibility of Data Management.. 47

2.3.4.3 Human Perception Limitation ... 48

2.3.4.4 Systems Architecture... 49

3. SHARED STATE MAINTENANCE.. 50

3.1 Distributed Interactive Virtual Environments - Application Perspective............. 51

3.1.1 Consistency Model... 51

x

3.1.2 Human Factors - Response Times & Sensors .. 58

3.1.3 Classifying Interactive VE Applications - Action Frequency Patterns........ 59

3.1.4 The Adaptive Synchronization Algorithm ... 67

3.1.4.1 Fixed Threshold vs. Adaptive Threshold .. 71

3.2 Distributed Interactive VEs - System Perspective... 73

3.2.1 A Distributed System Model ... 73

3.2.2 Core-Based Tree - Minimizing the Delays among Participants 74

3.2.3 Hybrid Nodes with Real-Time Sensors... 78

3.2.4 Hybrid Data Distribution Scheme .. 82

3.2.4.1 The Control Protocol .. 83

3.2.4.2 Participant Joining the Interactive VE ... 84

3.2.4.3 Participant Leaving the Interactive VE .. 85

4. TESTBED COMPONENTS AND IMPLEMENTATION .. 87

4.1 Overview .. 87

4.2 Testbed - Hardware Components ... 87

4.2.1 3D Visualization Hardware Setup - HMD & ARC.. 88

4.2.2 Sensors - Polaris NDI Optical Motion Tracking System............................... 91

4.2.3 Nodes - Heterogeneous Workstations .. 92

4.3 Testbed - Software Components ... 93

4.3.1 Software Components Developed... 93

4.3.2 Hybrid Nodes Design... 95

5. EXPERIMENTAL DESIGN AND SETUP ... 100

xi

5.1 Overview .. 100

5.2 Experimental Scenario .. 100

5.3 Network Latency vs. Action Velocity ... 102

5.4 Active vs. Passive Participants, Scalability .. 103

5.5 Distributed Measurements, Assessment Method ... 106

6. RESULTS AND ANALYSIS .. 109

6.1 Varying the Number of Passive Participants ... 109

6.1.1 Two Node-Setup .. 109

6.1.2 Three, Four, Five and Six Nodes Setup ... 112

6.1.3 Scalability Regarding the Number of Passive Participants 114

6.2 Varying the Number of Active Participants .. 115

6.2.1 Two, Three, Four, Five and Six Active Participants.................................... 116

6.2.2 Scalability Regarding the Number of Active Participants 120

7. CONCLUSIONS AND OPEN PROBLEMS .. 123

7.1 Contributions and Implications of the Work ... 123

7.2 Potential Applications - A Distributed AR Training Prototype 124

7.3 Open Problems... 125

7.4 Research Horizons... 126

APPENDIX A. QUATERNION BASICS, CORRECTION QUATERNION 128

APPENDIX B. APIS AND SDKS.. 131

LIST OF REFERENCES ... 136

xii

LIST OF TABLES

Table 1. MCI Backbone Latency Statistics in (ms) .. 6

Table 2. Coordination Models .. 15

Table 3. Spectrum of Dynamic Shared State Management .. 38

Table 4. Possible transitions for a hybrid node... 81

Table 5. Hardware systems attributes ... 92

Table 6. Node 2 drift comparison in the 2,3,4,5,6 nodes configurations.................................... 113

xiii

LIST OF FIGURES

Figure 1. Virtuality Continuum... 27

Figure 2. Video See-through HMD .. 28

Figure 3. Optical See-through HMD .. 29

Figure 4. The CAVE... 30

Figure 5. GUI based interaction.. 60

Figure 6. Sensor based interaction .. 60

Figure 7. Action frequency is less than the Upshot frequency (ν< ν0), delay txy=1..................... 66

Figure 8. Action frequency is greater or equal than the Upshot frequency (ν≥ ν0), delay txy=3 .. 67

Figure 9. Adaptive vs. Fixed threshold... 72

Figure 10. Core-Based Tree construction ... 78

Figure 11. State machine representing the hybrid node behavior... 81

Figure 12. Distributed interactive VEs nodes and sensors ... 82

Figure 13. Snapshot of a distributed interactive sensor-based VE ... 83

Figure 14. Head-Mounted Displays... 88

Figure 15. Image formation .. 89

Figure 16. The ARC concept .. 90

Figure 17. The ARC implementation.. 90

Figure 18. Artificial Reality Center .. 90

Figure 19. Tracking probe with 4 active markers ... 91

Figure 20. Polaris position sensor... 92

xiv

Figure 21. Distributed interactive VE deployed on a LAN .. 95

Figure 22. The GUI allows manipulation of the virtual objects and mouse based 3D pointing... 96

Figure 23. Virtual cameras for the left and right eye: zone 3 stereo view.................................... 97

Figure 24. Dark shaded represents inactive agents, light shaded represents active agents 99

Figure 25. GUI .. 101

Figure 26. Local collaboration.. 101

Figure 27. Remote participant... 101

Figure 28. Two-node setup ... 104

Figure 29. Six-node setup ... 104

Figure 30. Six-active-participant setup ... 105

Figure 31. Drift behavior at node 2 with no drift compensation .. 110

Figure 32. Drift behavior at node 2 using the Event Updates method.. 111

Figure 33. Drift behavior at node 2 using the Adaptive Synchronization Algorithm (ASA)..... 112

Figure 34. Orientation drift behavior as the number of passive participants increases (ASA) .. 115

Figure 35. Orientation drifts between node 1 and node 2 without compensation when the number

of active participants increases from 2 to 6. ... 116

Figure 36 Drift behavior No Compensation: 6 active (left) vs. 6 passive participants (right) ... 117

Figure 37. Event Update; 2, 3, 4, 5, and 6 active nodes ... 118

Figure 38. Event Update; 1 active + 1, 2, 3, 4, and 5 passive nodes .. 118

Figure 39. ASA with 2,3,4,5, and 6 active nodes ... 119

Figure 40 ASA with 1 active + 1,2,3,4 and 5 passive nodes .. 120

Figure 41. Orientation drift behavior as the number of active participants increases (ASA)..... 121

xv

Figure 42. Illustration of the AR tool for training paramedics on ETI 124

Figure 43. Rotation represented with quaternions .. 129

Figure 44. Relationship between OpenGL, GLU and Linux windowing APIs 132

xvi

LIST OF ACRONYMS

AOI Area Of Interest

AR Augmented Reality

ARC Augmented/Artificial Reality Center

ASA Adaptive Synchronization Algorithm

AV Augmented Virtuality

CBT Core-Based Tree

CORBA Common Object Request Broker Architecture

CPO Control Package Object

CRT Cathode Ray Tube

CSCE Computer Supported Cooperative Environment

DARE Distributed Augmented Reality Environment

DIVE Distributed Interactive Virtual Environment

DVS Distributed Virtual System

ETI EndoTracheal Intubation

ETT EndoTracheal Tube

HPS Human Patient Simulator

HMD Head Mounted Display

IPD InterPupilary Distance

IRED InfraRed Emitting Diode

ISO International Standard Organization

LAN Large Area Network

LCD Liquid Crystal Display

LOD Level Of Detail

MASSIVE Model Architecture and System for Spatial Model of Communication

MIMD Multiple Instruction Multiple Data

MOM Message Oriented Middleware

xvii

MPI Message Passing Interface

MR Mixed Reality

NTP Network Time Protocol

OLED Organic Light Emitting Display

OMG Object Management Group

OOM Object Oriented Middleware

ORB Object Request Broker

OS Operating System

OSI Open System Interconnection

P2P Peer-To-Peer

PARADISE Performance Architecture for Advanced Distributed Interactive Simulation

Environments

QoS Quality of Service

RMI Remote Method Invocation

RPC Remote Procedure Call

RT Real Time

RTOS Real-Time Operating System

THMD Teleportal Head-Mounted Display

TCP Transport Control Protocol

UDP User Datagram Protocol

VE Virtual Environment

VR Virtual Reality

WAN Wide Area Networks

xviii

1. INTRODUCTION

Computers and computer networks are the main ingredients in the current development of

powerful information systems bound to be completely transformed in the near future into

knowledge sharing systems.

Knowledge is embedded in people and unlike information, knowledge creation occurs in a

process of social interaction. As our service-based society is evolving into a knowledge-based

society, there is an acute need for more effective collaboration and more effective knowledge

sharing systems for use by geographically scattered people. The current communication systems

are limited by physical factors (e.g., signal propagation time, noise) and make distributed

interactive application challenging. The heterogeneity of the application deployment

environment, the packet loss rate, the bandwidth limitations, traffic collisions and congestions

are several factors that influence the latency.

1.1 Remote Collaboration

Current technological advances have led to an increased interest in distributed collaborative

environments. These environments have the potential to significantly change the way activities

(e.g. research, business, education etc.) are carried out. The latest trends in distributed

1

collaboration technologies allow people to move across organizational boundaries and to

collaborate with others within/between organizations and communities.

"Collaboration" is a broad area of research involving wide-reaching issues such as knowledge

representation, interaction methods, and many others. Through collaboration individuals gain

maximum benefit from the community of users who share similar goals.

Technological advances in optical projection and computer graphics allow us to augment reality

with computer generated three-dimensional objects. Moreover the distribution of these three-

dimensional objects at dispersed locations allows efficient communication of ideas and concepts.

A distributed interactive virtual environment (VE) can enhance the level of this communication

by transforming current computer networks into navigable and populated 3D spaces.

As the pioneer of computer supported collaborative environments, D. C. Engelbart mentioned

[1]: "Three people working together in this augmented mode seem to be more than three times as

effective in solving a complex problem as is one augmented person working alone--and perhaps

ten times as effective as three similar men working together without this computer-based

augmentation. It is a new and exhilarating experience to be working in this independent-parallel

fashion with some good men. We feel that the effect of these augmentation developments upon

group methods and group capability is actually going to be more pronounced than the effect

upon individuals methods and capabilities."

2

This research concentrates on a subset of computer supported collaborative environments,

particularly environments in which collaboration is achieved through interactive mixed and

virtual reality paradigms i.e. distributed interactive VE. The application domain for these

environments range from entertainment and business to engineering and medicine including the

entire virtuality continuum [2] and evolving into potential infospaces [3].

1.2 Synchronicity - Consistent Dynamic Shared State

Have you ever been amazed by the perfect flight formation of a flock of birds? Where does the

power of a set of small entities come when they act together as one, at a particular moment in

time? Synchronicity is the answer and the examples are unlimited.

Restricting the synchronization application domain to remote collaboration and furthermore to

distributed interactive VE we can replace the synchronization paradigm with another one, the

consistent dynamic shared state. From a virtual environment perspective the dynamic shared

state constitutes the changing information that multiple, distributed machines must maintain

about the shared virtual components of the environment. From a distributed systems perspective

consistency is an inherent problem due to data replication. Several consistency models have been

proposed in the literature and will be investigated on the course of this work.

Now, let's briefly analyze these words: "interactive remote collaboration". The fact that we talk

about "collaboration" implies that two or more entities will be involved in the experience. From

3

the perspective of this work we will restrict these entities to human beings, which bring in

important issues related to human factors (e.g. perceptual, conceptual, and motor cycle time) [4].

"Remote" comes into play and brings in the main advantages and the motivations for building

such systems (e.g. reduced travel time and costs, as well as reduced risks). "Interactive" implies

that each participant is able to make its actions visible to the other participants in real time and

hence the need for consistency. Actions based on inconsistency judgments are undoubtedly

inconsistent.

1.3 Inconsistency Factors

The interactive and dynamic nature of a collaborative VE is constrained by many factors

including latency. Latency generators in distributed interactive VE can be roughly grouped in

two categories: computing system latency and network infrastructure latency.

In a VE, in describing the equipment (e.g. head-mounted display) that provides stereoscopic

visualization and body parts tracking, the latency is increased with the time elapsed from

detecting the body part motion to the time the appropriate image is displayed on the appropriate

interface. The computing system latency includes rendering delays (e.g. image-generation delay,

video sync delay, frame delay and internal display delay), mismatches in data speed between the

microprocessor and input/output devices, sensor delays (e.g. tracker delays) and inadequate data

buffers [5]. However, rapid advances in hardware technology are making computing system

4

http://whatis.techtarget.com/definition/0,,sid9_gci212568,00.html
http://whatis.techtarget.com/definition/0,,sid9_gci211713,00.html

latency much smaller than the one caused by the network infrastructure. Hence, one of our

focuses is reducing the network's contribution to potential inconsistencies.

In a network, latency a synonym for delay, is an expression of how much time it takes for a

packet of data to get from one designated point to another. The contributors to network latency

include:

• Propagation time: This is simply the time it takes for a packet to travel between one place

and another, close to the speed of light. Today and probably in the near future it will be

impossible for the signal to travel at the speed of light. Even if that would be possible it

would take 16 ms for the light to make the trip from coast to coast.

• Transmission time: The medium itself (whether optical fiber, wireless, or some other)

introduces some delay. The size of the packet introduces delay in a round trip since a large

packet will take longer to receive and return than a short one.

• Router and other processing times: Each gateway node takes time to examine and possibly

change the header in a packet (e.g. changing the hop count in the time-to-live field).

• Other computer and storage delays: Within networks at each end of the journey, a packet

may be subject to storage and hard disk access delays at intermediate devices such as

switches and bridges. (in backbone statistics, however, this kind of latency is probably not

considered.)

5

http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci212176,00.html
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci212665,00.html
http://whatis.techtarget.com/definition/0,,sid9_gci212253,00.html
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci214184,00.html
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci213079,00.html
http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci211705,00.html

Table 1 gives the MCI (UUnet) average backbone latency between US and different countries for

the past year [6].

Table 1. MCI Backbone Latency Statistics in (ms)

 2004 2003

Hong Kong to US 196.031 200.98 179.865 168.785 153.485 157.28 159.3 152.79
Singapore to US 214.553 206.62 208.585 217.085 211.80 207.80 207.075 206.375
Australia to US 165.816 169.49 173.155 160.55 162.615 163.27 163.935 163.69

Panama to US 59.997 66.45 66.27 68.51 64.99 64.19 69.69 72.9
Argentina to US 147.991 150.37 151.65 155.36 153.13 153.46 151.07 150.89

Chile to US 114.597 118.76 125.07 119.18 120.26 120.43 148.64 169.17

Factors that affect latency are the network infrastructure bandwidth, traffic congestion, error

rates and communication protocol characteristics.

The theoretical bandwidth is the maximum capacity of a communication line. While theoretical

peak bandwidth is fixed, actual or effective bandwidth varies and can be affected by high

latencies. Too much latency in a short period of time can create a bottleneck that prevents data

from "filling the pipe", thus decreasing effective bandwidth.

Another latency factor is congestion. In the points of congestion, packets will be stored for

limited periods of time in the communication infrastructure (i.e. buffers) and sometimes dropped

6

if the storing space is exceeded. The latency resulting in such cases is very hard to predict and

compensate.

Latency is affected by the signal-noise ratio which translates to errors. Errors influence the

packet loss at different levels from the physical level up to the application level in the protocol

stack. Error detection and correction algorithms are implemented at different levels and have a

major impact on latency.

The higher level protocols used for communication influence the latency too. Over IP networks

the UDP (User Datagram Protocol) simulates a packet switching connection with best effort. The

packets are sent from source to destination without acknowledgement, thus they may arrive out

of order or they might not arrive at all (packets may take different paths to arrive at the

destination). Some applications can cope with this scenario (e.g. video streaming, chat etc.) The

TCP simulates circuit switching (similar to a phone connection). Once the connection is

established all packets from source to destination follow the same path and each packet is

acknowledged by the destination. If a packet is not acknowledged it must be resent. TCP

provides a more reliable connection at the expense of latency if the connection between the

source and destination is not reliable.

Closely related to the network latency is the network jitter which refers to the variation in

network latency. Under high jitter conditions, packets are not received at a steady rate at the

destination even if they were transmitted at fixed intervals from the source.

7

1.4 Motivation

Envision a world where people from remote locations actively participate in a live three-

dimensional experience instead of just watching a broadcast. Imagine being able to learn

concepts by manipulating three-dimensional objects that represent those concepts.

One of the challenges in distributed interactive VEs is maintaining a consistent view of the

shared state. It is only recently that researchers have begun to examine systematically the effects

of consistency on the sense of presence. A consistent view in a shared scene may facilitate

participants interaction and thus significantly increase the sense of presence among them [7, 8].

One way in which interaction is related to presence is its ability to strengthen participant's

attention and involvement [9].

Virtual Reality (VR) environments and more importantly Mixed Reality (MR) (i.e. including

Augmented Reality) environments must bring in the loop human users which interact through a

wide range of electronic motion sensors and devices. This work aims at improving distributed

interactive VE spanning the entire virtuality continuum by proposing a novel criterion for

categorization of distributed VE applications as well as an algorithm and a distributed system

architecture for ameliorating the effects of latency.

8

1.5 Research Summary

We address the problem of latency in distributed interactive VE and develop a conceptual model

for consistency maintenance in these environments based on the participant's interaction model.

Our specific objectives are:

• A classification of the distributed interactive virtual (MR/VR) applications based on the

participant interaction frequency.

• The design, implementation and assessment of a distributed dynamic shared maintenance

algorithm for latency compensation.

• A hybrid distributed system architecture and data distribution scheme for interactive VE

containing real-time sensors.

1.6 Dissertation Overview

Chapter 2 gives an overview of distributed systems paradigms and of the technologies for

building VEs. We advance the notion of dynamic shared state in distributed VR environments

and the related research efforts. A brief description of the fundamental models and paradigms for

distributed systems is provided in Section 2.1. The most relevant architectural systems models

are further investigated. Section 2.2 concentrates on the technologies involved in the

development of VEs. The state of the art in three dimensional display devices and tracking

9

systems as well as the challenges for building interactive VEs are synthesized. The research

towards shared state maintenance in distributed interactive VEs has passed through various

stages in its development. Section 2.3 contains a survey of the dynamic shared state maintenance

techniques for VE.

A theoretical formulation of the consistency problem within a distributed interactive simulation

is presented in Chapter 3 which leads to a broader conceptualization of the consistency paradigm

and a novel categorization criterion for participant interaction in distributed VEs. We analyze a

distributed interactive environment from two perspectives: the application perspective Section

3.1 and the overall system perspective Section 3.2. A classification of the interactive VE

applications is proposed based on the participants' interaction patterns. The proposed adaptive

synchronization algorithm follows as well as a conceptual architecture for sensor-based

distributed interactive VE.

Chapter 4 is dedicated to the hardware and software implementation and starts with a system

overview in Section 4.1, followed by the testbed hardware and software description in Sections

4.2 and 4.3, respectively.

The experimental design and setup is described in Chapter 5 followed by the experimental results

and analysis in Chapter 6.

10

The research contributions, the implications and limitations of the work as well as proposed

directions for further research are summarized in Chapter 7, together with a medical training

application prototype that would benefit from this work.

11

2. BACKGROUND AND RELATED WORK

2.1 Distributed Systems

A distributed system is a collection of (possibly heterogeneous) nodes whose distribution is

transparent to the user so that the system appears as one local machine. The distribution

transparency is in contrast to a network, where the user is aware that there are several machines,

and their location, storage replication, load balancing and functionality are not transparent.

It is hard to capture all aspects of a distributed system in one definition. A more feasible

approach is to discuss distributed systems referring to specific characteristics of distribution. One

characteristic is the presence of a computer network. Such a system is built up from components

that communicate and coordinate their actions by passing messages. The main characteristics of

distributed systems are: openness, resource sharing, concurrency, modularity, scalability,

transparency and graceful degradation [10]. The concurrency of components, the lack of a global

clock and the independent failure of components relate the concept of distribution to disciplines

such as fault-tolerance, security, real-time, system management.

As distributed networks become faster and parallel machines tend to look more like fault-tolerant

distributed systems, distributed computing and parallel computing tend to be viewed as one

concept characterized by concurrency.

12

2.1.1 Interaction Models

Interacting processes perform all the activity in a heterogeneous distributed system [11]. At each

point in time there are an arbitrary number of active processes over a fixed or variable number of

physical nodes. Each of these processes has a set of data that it can access. The communication

performance and the lack of a global clock are the most important limiting factors that have an

impact on the processes’ interactions. Two important interaction models can be distinguished:

synchronous and asynchronous. We can also consider a hybrid, quasi-synchronous model.

Synchronous distributed systems have several important constraints [12]:

• Each message exchanged among the distributed system's nodes is received within a known

bounded time

• The time to execute each step of a process has a known lower and upper bound

• There is a local clock for each process with a known drift rate from the real time due to

hardware differences.

At the other end on an asynchronous distributed system:

• There is no bound on the message transmission delays

• From the process execution point of view each process may take an arbitrary amount of

time

• There are no bounds on the clocks’ drift rates.

13

A synchronous distributed system has several advantages over the asynchronous one. First the

processes are kept in synchronization with each other; they are progressing in a lockstep fashion.

Second, more robust algorithms can be designed since the level of determinism is higher than in

an asynchronous system. On the other end the asynchronous design is an attractive model

because it has no timing constraints. Timing constraints are sometimes hard to meet because of

the infrastructure limitations (e.g. limited network bandwidth and network latency). However,

the weakness of the model consists in the fact that it does not allow interaction in real-time.

Quasi-synchronous design is a hybrid design in which synchronization does not occur at a fixed

time interval as in the fully synchronous one. Each node runs asynchronously until it needs to

coordinate its activity with another node. At this point synchronization is necessary.

Since the research described in this dissertation revolves around distributed interactive virtual

environments the synchronous and the quasi-synchronous design are of particular interest.

2.1.2 Coordination Models

Besides interaction, another fundamental model of a distributed system is the coordination

model. The coordination model is closely linked with several characteristics of a system like

scalability, architecture and performance. A distributed system brings the advantages of data

and/or computation distribution. Any computation aspect is transparently viewed by the user as a

service. While centralized services, data and algorithms impose scalability limitations [13],

distribution ameliorates these problems at the expense of increased system complexity.

14

Centralized services are implemented by means of a single server running on a specific node in

the system. Obviously the server will become a bottleneck as the number of users grows.

Centralized data has the same effect on the scalability potential of a system. In a large

distributed system, a significant number of messages are routed over many lines. From a

theoretical point of view, the optimal way is to collect information about the load on all nodes

and lines, and then run a graph theory algorithm to compute the optimal routes. However

collecting and transporting all the input and output information would overload the system and

would lead to performance degradation. Distributed services and data approach allows the

improvement of the scalability attribute of a system. However in this case, the coordination

model is the source of the increased system complexity.

A taxonomy of the coordination models for mobile agents is given by [14]. The taxonomy can be

applied on a general distributed system if we view each process as being an agent.

Table 2. Coordination Models

 Temporal
 Coupled Uncoupled

Coupled Direct Mailbox

Referential
Uncoupled Meeting -oriented Generative communication

• In the direct coordination model the processes are coupled from the referential and

temporal aspect, i.e. the processes that are communicating know about each other and they

run at the same time. This is the “strongest” coordination model.

15

• The Mailbox coordination model allows temporal uncoupling of processes, i.e. even if the

processes know about each other, they do not have to run at the same time hence they

exchange messages in a mailbox fashion.

• Meeting based systems are usually implemented using events in a publish/subscribe

fashion, i.e. even if the processes do not know about each other (are anonymous), they

participate at the same time in a communication session.

• Generative communication is the “weakest” coordination model from the referential and

temporal point of view. Generative communication was introduced in the Linda

programming environments [15, 16]. In this case processes make use of a shared persistent

data space of tuples. Later IBM released an implementation of the tuple-space IBM T-

Spaces [17]. Other implementations are JavaSpaces [18] and GigaSpaces [19] sometimes

referred as space based middleware.

A distributed interactive VE will most likely use a direct (strong) model in which coordination is

achieved through message passing.

2.1.3 Consistency Models

Data replication is one of the most important issues in distributed systems. Particularly in a

distributed VE data are replicated to enhance reliability and improve performance. Two issues

arise, the first issue is related to the actual distribution of updates, which concerns placement of

replicas and the second issue is how replicas are kept consistent.

16

2.1.3.1 Data-Centric Consistency Models

Data-centric consistency models aim at providing a system wide consistent view on a data store

on which several concurrent processes may perform updates. The consistency models range from

strict consistency, where any "read" operation on a data item returns a value corresponding to the

result of the most recent "write", to weak consistency which enforces consistency on a group of

operations not on individual "reads" and "writes".

An important model in-between is the causal consistency [20] which makes a distinction

between events that are potentially causally related and those that are not. In other words, actions

(i.e. "writes") that are potentially causally related must be seen by all participants in the same

order. Concurrent actions (i.e. "writes") may be seen in a different order by different participants.

Implementing causal consistency requires keeping track of which participants (i.e. processes)

have seen which actions (i.e. "writes"). It means that a dependency graph of which action is

dependent on which other action must be constructed and maintained.

2.1.3.2 Client-Centric Consistency Models

Client-centric consistency models originate from the work on the Bayou database system [21]. In

essence, this model of consistency provides guarantees for a single client concerning the

consistency of access to a data store by that client. No guarantees are given concerning

concurrent accesses by different clients. The client centric model enhances the eventual

17

consistency using "Monotonic Reads and Writes" as well as "Writes Follow Read" and "Read

Your Writes" consistency. Since the constraints on consistency are relaxed the client centric

consistency model may be used in a mobile environment.

2.1.4 Architectural System Models

The architectural models are closely linked with the coordination and consistency models. The

strong coordination model is usually implemented on client-server architectures while the weak

coordination model is associated with the atomistic peer-to-peer architectures. The diversity of

applications makes developers take an architectural approach that falls in between these ranges.

In Chapter 3 we propose a novel architecture and data distribution scheme for sensor-based

distributed interactive VE that falls in-between the atomistic peer-to-peer model and the

traditional client-server model. Each node is autonomous and fully manages its resources and

connectivity. The dynamic behavior of the nodes can be dictated by the participants that

manipulate the virtual components of the environment through these sensors (e.g. motion

tracking sensors).

In what follows we briefly discuss the most popular architectural approaches. The scope of this

discussion is to give an overview of the advantages and disadvantages brought by different

architectures as they pertain to the development of distributed interactive applications.

18

2.1.4.1 From Client-Server to Distributed Object Model

An ideal system architecture does not exist; it is usually driven by the application domain and

users requirements. The Information Technology (IT) industry has been practicing a simple form

of client/server (C/S) computing since the initial foundation of the mainframe. A mainframe host

and a directly connected terminal represent a one-tier C/S system. In the two-tier C/S

architecture, the client communicates directly with the server, commonly a database server. The

application or business logic either resides on the client side or on the database server in the form

of stored procedures. Discussions on the C/S model can be found in [22].Two-tier C/S model

first began to emerge with the applications developed for local area networks in the late eighties

and early nineties, and was primarily based upon simple file sharing techniques. C/S based

systems for file sharing like: SUN Network file Systems, Andrew File Systems (AFS) as well as

a variation of AFS called CODA, developed at Carnegie Mellon University are compared in

[13].

Fat Clients and Fat Servers

The two-tier model initially involved a non-mainframe host, (a network file server) and an

intelligent "fat" client where most of the processing occurred. This configuration did not scale

well however it was enough to facilitate large or even mid-size information systems. With the

emergence of the Graphical User Interfaces (GUIs), client component became more complex

("fat") and required additional computational power. Moreover, the network "footprint" using fat

19

clients, became very large affecting the scalability of the systems running on a limited

bandwidth.

An alternative "thin" client / "fat" server configuration was introduced. The user invokes

procedures stored at the database server. The "fat" server model, is more effective in gaining

performance, because the network footprint, although still heavy, is lighter than the fat client

approach. The down side of this approach is the stored procedure dependency. This dependency

had a negative impact on the business logic's flexibility since a change in the business logic

implies changes in each database containing the procedure. Two-tier (C/S) systems could not

scale beyond several hundred users. Overall, these architectures are typically not well suited for

distributed interactive applications.

The N-Tire Model, Middleware

As the C/S model continued to evolve, more sophisticated multi-tier solutions appeared where

client-side computers began to operate as both clients and servers. Currently, the industry

appears to be rapidly moving toward N-Tier architectures. N-Tier computing accomplishes a

synergistic combination of computing models, by providing centralized common services in a

distributed environment. The architecture typically leans heavily upon object oriented

methodologies to gain as much flexibility and interchangeability as possible. The distributed

object systems represent the ultimate generalization of the C/S model [23] and a multitude of

frameworks and tools have been proposed and have evolved in what is known today as

middleware.

20

Middleware is connectivity software that consists of a set of enabling services that allow multiple

processes running on one or more machines to interact across a network. In a way, middleware

has evolved from a software point of view in the same manner as the client-server applications

have evolved from 2-tier to N-tier architectures. This evolution was necessary for supporting the

development of complex applications on top of heterogeneous networks. Middleware can be

divided into three classes:

• Event-Based Middleware where the focus is on distributed systems exhibiting event-based

architectural style. This class is particularly suited to the construction of non-centralized

distributed applications that must monitor and react to changes in their environment. A

taxonomy of the event-based middleware can be found in [24] and descriptions of the

issues with event-based middleware are presented in [25] .

• Message Oriented Middleware is a specific class of middleware that supports the

exchange of general-purpose messages in a distributed application environment. MOM

supports data exchange and request/reply style interaction by publishing messages and/or

message queuing in a synchronous and asynchronous manner [26].

• Object Based Middleware offers synchronous, typed communication between components

of a distributed program. Developed out of the need to extend the Object-Oriented

programming paradigm to distributed systems, the middleware consists of a mechanism to

allow methods to be invoked on remote objects, plus services to support the naming and

location of objects in a system-wide manner (e.g. Java RMI/JINI, CORBA, Microsoft’s

DCOM).

21

The evolution from simple client-server to complex middleware is the effect of the proliferation

of distributed applications is a wide range of domains. While numerous lessons can be learned

from the latter developments, distributed interactive VEs design entail particular attention. The

interactivity of such an environment is affected by the overall system latency. The latency is

increased by the software complexity; therefore a middleware approach might not be the best

solution for a distributed interactive VE.

We continue our system architecture review with a brief discussion of the controversial peer-to-

peer architecture and the advantages/disadvantages brought to the distributed collaborative

environments arena.

2.1.4.2 Peer-to-Peer architectures

The peer-to-peer (P2P) technology enables a combination of distributed storage to meet peak

demands without saturation and the replication of frequently requested information in locations

nearer larger groups of users. P2P assumes end-to-end connectivity, whether this connection is

entirely unmediated or partially assisted by centralized services. A P2P distributed system

containing "n" nodes requires (n2-n)/2 connections hence it has an upper bound on the number of

connections of O(n2).

Applications based on peer-to-peer (i.e. point-to-point) (P2P) architectures came into existence

relatively late, even if the potential to build them on such architectures existed since ISO/OSI

22

[27] was defined. Some of the most successful examples are Gnutella, Napster, Pointera,

FreeNet, Chord [28] used mainly for file distribution. A comparison is available in [29] and a

comprehensive taxonomy of P2P applications and platforms is introduced in [30]. An analytical

model for P2P file sharing system, based on random-graph theory, is proposed in [31].

From an architectural point of view Leuf [32] categorizes P2P platforms on a scale ranging from

the Atomistic (AP2P) model to the User Centric (UCP2P) and Data Centric (DCP2P) models. In

the AP2P each node is autonomous and fully manages its own resources and connectivity. For

peer-discovery a broadcast protocol is used to send a query to join while awaiting a response.

The UCP2P adds to the basic atomistic model a form of central server mediation. In its simplistic

form the server component adds a directory based on unique user identifier to simplify the way

nodes find each other. Clients register with the directory service to announce their availability.

The DCP2P is similar with the UCP2P with the distinction that the central server maintains an

index over available resources, not individual users.

Some of the advantages of P2P architectures as related to distributed interactive VEs are:

geographical locality, they can provide data, resources and services where they are needed; less

resource and central administration bottlenecks, initial setup of peer workgroups by the

participants is easy, project groups can form and change quickly. Moreover the network

fragmentation attribute allows direct peer connectivity, dynamically forming virtually connected

interest groups as users gravitate towards a common purpose.

23

The main disadvantage of the peer-to-peer model is the complexity of the control. Since

resources and users are distributed it is difficult to collect and generate a unified view of the

entire system at particular moments in time. As related to distributed interactive VEs, issues with

consistency are inherent in systems that lack central control. A recent study of consistency issues

in P2P systems can be found in [33].

In spite of the disadvantages that the peer-to-peer architecture carries, its use in distributed

interactive VEs comes from the potential of direct communication between two nodes. The fact

that the information does not have to pass through a central server is in favor of the

interactive/near real-time behavior of the environment.

2.1.5 Real-Time Distributed Systems

In interactive applications participants make their judgments according to the situation presented

to them by the human-computer interfaces. Their actions are spontaneous and random which

implies that these applications should run in real-time or at least at interactive speeds. In such a

system, the correctness of a computation is defined both in terms of the logical results and the

time at which they are provided.

“A Real-Time System is a system whose progression is specified in terms of timeliness

requirements dictated by the environment. Real-Time is not about having a lot of bandwidth and

computational power, and even if it were, we would always find ways of exhausting it.” [10]

24

There is confusion in associating real-time concept with performance. That is because real-time

is not necessarily about performance but more about predictability. If a system executes all its

actions within the necessary (i.e. predetermined) amount of time and if its behavior is consistent,

then the system is real-time.

Advances in sensors and computer networks have triggered an increase in the number of

potential interactive VEs that entail large amounts of information from external devices (e.g.

motion tracking systems). These sensors capture information in real time and for interactive

behavior the distributed system has to disseminate the data in real-time. As we pointed out in

Section 1.3 the latency inherent in the system infrastructure does not allow real-time data

distribution however we can take advantage of the human perceptual limitations to develop

useful distributed interactive VEs.

2.2 Virtual Environments - Mixed, Augmented and Virtual Reality

2.2.1 Background

Introduced by Milgram [2] in 1994 the Reality-Virtuality Continuum paradigm allows

categorizations of systems which employ virtual reality techniques. Systems based on this

25

paradigm range from those that completely create and/or recreate an environment to those that

augment the real environment with synthetic (virtual) components.

Definition: "Virtual Reality (VR) paradigm defines a computer simulation of a real or imaginary

system (a virtual world) that enables a user to perform operations on the simulated system and

shows the effects in real time" [34].

VR environments require immersive displays, which only provide a synthetic view of the world

[35-38]. On the other hand, the Mixed Reality (MR) paradigm is associated with systems used to

enhance the perception of the real world (Augmented Reality, AR) or the perception of the virtual

world (Augmented Virtuality, AV). Visually, AR means that the real scene a person sees is

augmented with computer-generated objects. These virtual objects are seen by the participant

(e.g. using special displays) in such a way that the computer generated information appears in a

specific location (e.g. superimposed or attached) with respect to the real objects in the scene.

On the other hand, AV means that the virtual scene a person sees is augmented with real objects.

A common technique for AV is blue-screening or chroma-keying [39]. Chroma keying is used to

create an overlay effect e.g. to insert a false background, such as a weather map or scenic view,

behind the real object. The real object is filmed against a background having a single color or a

relatively narrow range of colors, usually in the blue or green. When the phase of the chroma

signal corresponds to the preprogrammed state or states associated with the background color, or

range of colors, behind the real object, the signal from the alternate i.e. false, background is

26

inserted in the composite signal and presented at the output. In this way the virtual scene is

augmented with a real object. Figure 1 describes how real and virtual worlds can be combined in

different proportions.

Mixed Reality (MR)

Real
 Environment

Augmented
 Reality (AR)

Augmented
 Virtuality (AV)

Virtual
Environment

 Figure 1. Virtuality Continuum

Since MR is an open interval between completely real and completely virtual, to capture the

entire spectrum of applications that involve virtual components we refer to MR/VR

environments as VEs. In what follows we describe the main hardware components used in the

development of an interactive distributed VE.

2.2.2 Hardware Components for Interactive VEs

The first design decision in building an interactive VE is finding the way to accomplish the

combination of real and virtual. We are providing a brief review on the main hardware

components for the development of such environments.

27

2.2.2.1 3D Display Systems

One way to implement MR and particularly AR is with a see-through Head Mounted Display

(HMD). Two types of HMDs that let the participant see the real world with virtual objects

superimposed are: optical see-through and video see-through HMDs [40].

The video see-through HMD combines a closed-view HMD with one or two head-mounted

cameras. The video cameras provide the user’s view of the real world. The video from these

cameras is combined with the graphic images created by a scene generator, merging the real and

virtual as illustrated in Figure 2.

Graphics
System

Video
Merging

Video Camera

Monitors

Real
Scene

Head
Position Video of

real scene

User’s view

Virtual
objects

HMD

 Figure 2. Video See-through HMD

28

Optical see-through HMDs work by placing optical combiners in front of the user’s eyes. These

combiners are partially transparent so that the user can look directly through them to see the real

world. The combiners are also partially reflective, so the user sees virtual images bounced off the

combiners from the head-mounted monitors as illustrated in Figure 3.

Graphics
System

Monitors
(LCD)

Real

Scene

Head

Position

User’s view

Virtual Objects

HMD

Optical
Merging

 Figure 3. Optical See-through HMD

Alternative approaches to visualization are the projection-based systems. In early 90's, Carolina

Cruz-Neira created what will become the most popular 3D projection based visualization system,

the project-based Cave Automated Virtual Environment or the CAVE™ [37]. The CAVE™ is a

room-sized, high-resolution, 3D video and audio environment. It is often implemented as a cube

of approximately 12 feet on each side (Figure 4) and it uses four CRT projection systems and

Crystal Eyes shutter glasses. Stereoscopic images are projected on the front and on the two

sidewalls.

29

 Figure 4. The CAVE

In addition to these, the CAVE™ usually uses a tracking system to dynamically adjust the

computed viewpoint according to the tracked head’s location in the 123 cubic foot volume. As a

viewer moves within its display boundaries, the correct perspective and stereo projections of the

environment are updated, and the image moves with and surrounds the viewer.

Two major disadvantages of the CAVE™ system are its high cost and the fact that in the case of

multiple users only the user tracked sees the correct stereo perspective. Several projects have

tried to diminish these disadvantages [41]. In the PlatoCAVE project, the cost of the system is

decreased by using only one wall for projection. To address the second problem, a nominal fixed

viewpoint is selected in the middle of the room. Hence all the users will have a slightly distorted

stereo perspective but the extreme distortion perspective cases are avoided.

30

2.2.2.2 Sensors for Motion Tracking

Tracking systems are important components especially in an MR/AR environment. These

systems are able to provide (with some accuracy) the position and/or orientation of different

objects in the real world scene. Feeding their output data to algorithms, one is able to register the

computer-generated objects at the correct position and orientation in the real scene. Tracking

systems have been classified in a number of surveys [42-44].

Several types of tracking are available on the market today. The most widely spread commercial

sensor based tracking systems are based on:

• Magnetic tracking. By circulating an electric current in a coil, a magnetic field is

generated. To measure the position and orientation of a receiver in space, the emitter must

be composed of three coils with orthogonal magnetic fields. These systems have

traditionally been prone to large amounts of error and jitter due to interference from

metallic structures in the environment; however they are popular because of their

robustness and the lack of constraints on user motion.

• Optical tracking. Optical tracking systems have been separated into two categories:

- Pattern recognition systems [45] that sense an artificial pattern of lights and use

this information to determine position and/or orientation.

- Image-based systems [46] that determine the position by using multiple cameras

to track predetermined points on the moving objects within a working volume.

31

• Inertial tracking [47]. Inertial sensors use physical phenomena to measure acceleration

and rotation relative to the inertial reference frame of the earth.

• Acoustic tracking [48]. These can determine the position through either time-of-flight and

triangulation or phase-coherence. Phase-coherence trackers determine distance by

measuring the difference in phase of a reference signal and an emitted signal detected by

sensors.

• Hybrid tracking [49-51]. These consist of combinations of the above approaches.

In most MR/AR applications, the dynamic superimposition procedures that bring the virtual

objects in register with particular regions in the real scene use one of these types of tracking

sometimes combined with vision techniques to increase the registration accuracy.

2.2.3 Distributed Interactive VEs Survey

A distributed interactive VE is a computer supported environment that provides an advanced

form of collaboration. Collaboration can be roughly categorized on the following two

dimensions: space and time both playing a determinant role in the system architecture and

consistency:

• Time-wise collaboration can be synchronous when the participants involved are active at

the same time or asynchronous when the participants involved are not active at the same

time.

32

• Space-wise collaboration can be local if the participants are sharing the local environment

or remote if the participants are sharing a distributed environment. The most popular ways

in which synchronous computer supported collaboration is achieved are through video

conferencing, chat channels and more recent, interactive virtual environments.

In reviewing the research literature attention is being devoted to distributed interactive

environments developed using VR paradigms. The review of the literature is edifying in

understanding the evolution of these environments in different domains as well as the evolution

of the methods employed for consistency maintenance. There is a growing body of research in

distributed collaborative environments which forces us to state that this is not an exhaustive

review as new systems and methods are developed daily.

2.2.3.1 Distributed Interactive VEs in the Defense Industry

The most important initiator in distributed interactive environments based on the VR paradigms

was the US Department of Defense (DoD). The primary objectives of these systems were

training and strategy evaluation. The systems had to be scalable and exhibit a real-time behavior.

One of the first and most intensive efforts in this direction was the SIMNET project started in

1983 [52] followed a few years later by the Naval Postgraduate School's NPSNet [53]. Important

contributions of these systems included the object-event architecture, which means that objects

generate update events, the protocol data unit (PDU) that allowed the distribution of simulation

33

data among participants and dead-reckoning algorithms to reduce the number of packet updates.

Later the Distributed Interactive Simulation (DIS) project improved the PDU and led to the

emergence of the IEEE 1278 Standards for Distributed Interactive Simulation and its follow-on

IEEE P1516 (see [54] for a discussion of these efforts). DIS also extended the dead reckoning

mechanism, and the DIS standard defines nine dead reckoning algorithms.

2.2.3.2 Distributed Interactive VEs in the Entertainment Industry

The entertainment industry has been the second early player in the distributed environments

through the development of networked games such as SGI Flight simulators. ID Software

(www.idsoftware.com) has been an early promoter of distributed interactive games like DoomTM

and the QuakeTM series. Released in 1996, Quake was the first game to provide true six-degrees

of freedom distributed interactive environment.

Recently, the interest has focused on multiplayer games giving birth to a new genre known as the

Massively Multiplayer Online Role Playing Games (MMORPG) [55]. These games (e.g. Ultima

Online, www.origin.com) allow development of social structures in which people can cooperate

in large numbers and can form guilds and complex relationships. Ultimately players can share

knowledge.

34

2.2.3.3 Distributed Interactive VEs in the Academia

The DoDs distributed environments had two major drawbacks: lack of generality, most of the

simulations involved military vehicles and lack of availability, since most of the development

efforts had to be kept secret.

The transition to desktop based VR started in early 90's when the academic community

reinvented some of the systems used by the military, documented the systems and made the

results available to the research community. A review of the most preeminent distributed

collaborative environments based on VR paradigms follows.

One of the most important and longest running academic group is the NPSNET research group.

Spawn from a military background, NPSNET covers all areas of research including consistency,

scalability, dynamic extensibility, composability and interoperability. The latest version is the

NPSNET V [56].

Early research efforts in collaborative environments were merged in the "Model, Architecture

and System for Spatial Interaction in Virtual Environments" (MASSIVE) project developed at

University of Nottingham [57]. Several versions have been developed in the last fifteen years.

One of the goals of the last version MASSIVE-3 was to improve data consistency by

ameliorating the effects of network latency using algorithms developed at the University of

35

Reading [58]. Each environment database is fully replicated and consistency is maintained

through effective combinations of centralized updates and ownership transfers.

Another milestone, the "Distributed Interactive Virtual Environment" (DIVE) [59] developed at

the Swedish Institute of Computer Science is an internet-based multi-user VR system where

participants navigate in 3D space and see, meet and interact with other users and applications.

The first DIVE version appeared in 1991 and concentrates on consistency and concurrency.

In the DEVA3 VR [60] each entity is composed of a single "object" that represents what the

entity does, and a set of "subjects" that represents how the entity looks, sounds, and feels. The

object position is updated only when the subject has moved a certain distance from its previously

synchronized location.

Other academic implementation of note: SPLINE, developed at Mitsubishi Research

Laboratories, introduced the idea of subdividing the world into smaller, more manageable areas

known as locales [61]; ATLAS [62, 63] which introduces the ideas of personalized information

filtering and self-reconfigurability, PARADISE [64], Bricknet [65]. Several research initiatives

in Europe (e.g. COVEN) have underlined the importance of distributed collaboration based on

VR paradigms.

The early Distributed Virtual Environments (DVEs) provided a custom solution for distributing

the application state. Subsequent research efforts have been directed towards distributed scene

36

graphs, where the graphical scene description is used to encode the application state. Examples

of such frameworks in an object oriented approach are Repo-3D [66] and AVOCADO [67].

In recent work, Schmalstieg and Hesina presented Studierstube, which uses a distributed shared

scene graph to keep track of the actions applied on the shared scene by multiple participants [68].

The authors show that multiple concurrent operations on the objects in the scene may lead to

inconsistent views. As communication delays increase, the inconsistency among remote

participants grows even further.

Previous research has investigated the impact of network latency upon the consistency of

distributed VEs. A review the research efforts for consistency maintenance as well as the most

important groups of techniques available follow.

2.3 Survey of Consistency Maintenance Techniques in VEs

The main challenge encountered by distributed collaborative environments designers is the

dynamic nature of the environment. The attributes of the virtual and/or real components of the

scene are changed as an effect of the participants' interactions. The interactions and information

exchanges generate a state referred to as the dynamic shared state that has to be maintained

consistent on all sites.

37

The consistency-throughput tradeoff states that: “It is impossible to allow dynamic shared state

to change frequently and guarantee that all hosts simultaneously access identical versions of the

state.” [69]

The diversity of the application field makes distributed applications span over a large spectrum.

At one end of this spectrum are applications that attempt to guarantee shared state consistency at

all participants while at the other end are applications that attempt to maximize the potential rate

of the shared state updates in spite of some inconsistencies.

Table 3 summarizes how the consistency-throughput tradeoff affects the characteristics of a

distributed VR system [69].

Table 3. Spectrum of Dynamic Shared State Management

System Characteristics Absolute Consistency High Update Rate
View Consistency Identical at all hosts Determined by data

received at each host
Dynamic data support Low: Limited by

consistency protocol
High: Limited only by
available bandwidth

Network infrastructure
requirements

Low latency, high
reliability, limited

variability.

Heterogeneous network
possible

Number of participants supported Low Potentially high

Shared state consistency can be decoupled based on the application characteristics in positional

accuracy, behavioral accuracy and structural accuracy [70]. Positional accuracy implies that

38

virtual shared entities have synchronized position and orientation. Behavioral accuracy implies

that the animation of the shared entities should be alike at each participant. And finally structural

accuracy means that the remote rendering reflects real-time changes to the shape of non-rigid

shared entities.

The next sections contain a review of the research efforts and techniques for managing the

shared state. We discuss these techniques in the context of entity position however these

principles apply to any other type of information maintained in a virtual environment. The

techniques can be roughly grouped in three categories: centralized information repositories, dead

reckoning algorithms, and frequent state regeneration.

2.3.1 Centralized Information Repositories

The approaches grouped in this category attempt to provide absolute consistency among the

participants in a distributed interactive VE by ensuring that all the participating nodes contain the

same values for the shared state at all times.

A common approach is to keep the state for each participant in a file. A networked file system

can be employed to provide distributed access to the centralized information. Examples of such

systems can be found in [71],[72]. The concurrency problem arises when two or more

participants wish to change some attributes of the shared state simultaneously. The concurrency

issue is solved in these cases by the networked file systems' locks. The main disadvantage of the

39

networked file system is the access time and the scalability of the approach. When remote

participants access or modify the shared state the system performs disk input/output operations to

read/write the data in the file system. These operations are very slow compared with memory

access. Therefore another approach to deal with data access is to keep the information in a shared

memory.

The server approach is an improvement over the networked file system in terms of data access

speed; however this approach is still limited by the centralized data access and by the fact that

the server is the single point of failure. If the server fails, the entire state of the virtual

environment is lost. The server approach is exemplified and discussed in [73].

An important aspect of the centralized information repositories is the state update initiator. There

are two major strategies, the pull strategy when each participant pulls state updated from the

central repository and the push strategy when the server regularly pushes state updates to the

participants. The push strategy has been employed in the Shastra system [74]. In this approach

each participant node maintains a cache that preserves the shared state. When a participant

updates the shared state, the server pushes the data to all the other participants. An advantage of

this approach is an enhanced scalability by the reduction of the bottleneck given that the data is

stored at each node.

All the above approaches consider a traditional client-server architecture. The centralization

disadvantages could be eliminated using a peer-to-peer architecture. In such a system the state

40

maintenance is accomplished through a distributed consistency protocol. An example of such a

system is the early versions of DIVE [75] . DIVE uses a distributed data management model

implemented on top of the ISIS communications library [76] and offers enhanced fault tolerance

since it eliminates the single point of failure. DIVE uses distributed locking and reliable

multicast protocols to maintain a consistent view of all the entities in the virtual environment. A

participant can directly update the position of any object by performing the following operations:

obtain a distributed lock on that object in the database, update the local copy, multicast the

change and release the lock. The major drawback is the significant communication overhead

caused by the locking mechanism.

Enhancements of the centralized approach are presented in the BrickNet toolkit [77]. The toolkit

offers different levels of data consistency ranging from reliable, in-order updates to unreliable,

unordered updates. The central server ensures that data is forwarded to receivers according to

their consistency requirements.

While traditional distributed VEs separate graphical and application state, several research

projects like Studierstube [68], Repo-3D [66] and Avocado [67] try to simplify the development

of such systems by unifying the graphical and non-graphical state into a single data structure

shared over the network. In DIV [78] for example, distribution is performed implicitly through a

mechanism that keeps multiple local replicas of a scene graph synchronized without exposing

this process to the application programmer. The scene graph changes are propagated using

reliable multicast.

41

2.3.2 Dead Reckoning Algorithms

Several research efforts have been directed towards dead-reckoning algorithms to address the

update rate problem by maintaining a loose consistency of the shared state. The idea behind

dead-reckoning is to transmit state updates less frequently and to use the information contained

in the available updates to approximate the true shared state. These state prediction techniques

enhance the scalability of the distributed VE at the expense of the accuracy of the shared state.

Dead-reckoning protocols for distributed VE imply two phases: prediction and convergence. In

the prediction phase the current state is computed at each participant based on the previous

information. In the convergence phase the inaccuracies in the predicted state are corrected and a

smooth transition is assured.

In the first phase, derivative polynomials are commonly use to predict the shared state attribute

values [79]. For example first order, second order or third order polynomials can be used to

predict the position of a component of the shared scene based on its previous location, velocity

or acceleration. Large distributed VEs like SIMNET [80], NPSNet [81] and the DIS protocol rely

on position, velocity and acceleration updates to produce remote animations. An improvement

over the polynomial prediction method is the hybrid polynomial prediction. The Position

History-Based Dead Reckoning [70] employed in the PARADISE (Performance Architecture for

Advanced Distributed Interactive Simulation Environments) system represents an example of the

42

hybrid approach that dynamically chooses between first-order and second-order derivative

polynomials based on the information available in the preceding updates.

To obtain better prediction results several research efforts have been concentrating on matching

the virtual entity characteristics with the prediction algorithm to obtain an object-specialized

prediction. Examples of such approaches can be found in [82] (specialized prediction for

aircrafts making military maneuvers), [83] (specialized prediction for ground based military

vehicles), and [84] (a specialized protocol to remotely predict the position of drumsticks played

above a sensor pad).

In the second phase convergence algorithms are employed to correct the predicted state without

creating noticeable visual distortions to the participant. The simplest form of convergence is the

zero-order or the snap convergence, in which the prediction is corrected immediately without any

regard to the visual distortion seen by the participant. The zero-order convergence has

undesirable visual effects. For example the entities in the shared scene seem to change position

abruptly defying the laws of physics. An improvement over the zero-order convergence is the

linear convergence. The linear approach results in a slower convergence on the convergence path

providing the participant with continuity along the visual path.

The linear approach does not take into account the entity acceleration. For improved transition

smoothness, the "quadratic" method can be employed to account for acceleration a, and velocity

v. The entity's location at a particular time t can be approximated using the well known quadratic

function:

43

2
)()()(

2

0
ttattvxtx ∆

+∆+= Equation 1

Instantaneous acceleration can be computed as:

2

2
)(

dt
xd

dt
dvta == Equation 2

The quadratic method also fails because even though an entity's motion is represented more

realistically, its final velocity is likely to be incorrect. The quadratic function employs

instantaneous acceleration and does not consider the variation in acceleration or "jerk" defined

as:

3

3
)(

dt
xd

dt
datj == Equation 3

In spite of the additional computational complexity, the "cubic spline" approach offers one of the

most realistic methods for convergence by accounting for the entity's starting and ending position

and velocity. As a result, the entities that follow a cubic spline path have no jitter, unless network

lag is especially severe. Using a cubic spline to create a path is a matter of simple algebraic

equations. The input for these equations are four (x,y) coordinates. The first coordinate

represents the object's starting position (x0,y0). Similarly, the fourth coordinate (x3,y3) signifies

the object's ending position. Usually the end position is a new (x,y) coordinate that has just

44

arrived in a data packet. The most important coordinates are the second and third; they represent

the object's velocity. For the second coordinate (x1,y1), we calculate where the object will appear

after 1 second with its current velocity. For the third coordinate (x2,y2), we reverse the object's

end velocity, and calculate where it would appear after 1 second. Below is the set of parametric

equations defining the spline:

yyyy

xxxx

DtCtBtAy

DtCtBtAx

+++=

+++=
23

23

 Equation 4

where

0

01

012

0123

0

01

012

0123

33

363

33

33
363
33

yD

yyC

yyyB

yyyyA
and

xD
xxC

xxxB
xxxxA

y

y

y

y

x

x

x

x

=

−=

+−=

−+−=

=

−=
+−=

−+−=

 Equation 5

With the increase of the distributed system's nodes processing power we see an increase potential

for dead reckoning algorithms as an improvement to network traffic. However dead reckoning

introduces several limitations. First of all it does not guarantee that all participants share identical

state about each entity; second, simulations that rely on dead reckoning protocols are more

complex to develop, maintain, and evaluate. Furthermore, dead reckoning algorithms must be

customized based on the object behavior to obtain precise remote modeling.

45

2.3.3 Frequent State Regeneration

For some distributed VEs absolute consistency is not required. The consistency protocol can be

replaced in these cases with a frequent state update system based on the fact that if slight

inconsistencies in the shared state appear they will be temporary and limited. One example of

such an application is remote video streaming. Video streaming could be compared with a

frequent state regeneration system where each frame is a new update. Loosing some frames in a

30 FPS (frames per second) video stream would be almost imperceptible for a human [85].

2.3.4 Resources Management Strategies

Resource utilization is directly related to consistency maintenance in interactive VEs. The

amount of data and computation that has to be distributed in such an environment will affect the

interactivity of the application and the environment consistency. Resource management

strategies can be grouped in four categories as described in the following section. An in depth

discussion of these strategies can be found in [86].

2.3.4.1 Communication Protocol Optimization

Communication protocol optimization can be achieved through packet compression and packet

aggregation. Through packet compression, the size of the packets transmitted in the virtual

46

environment is reduced. Compression might be either lossless, i.e. the information is

compressed/decompressed without loss (e.g. run-length encoding, RLE algorithm), or lossy i.e.

some of the data is lost in the process of compression. Another division in compression

techniques is external vs. internal compression. While external compression manipulates the

packet data considering the content of the previous packets, internal compression manipulates a

packet based only on its internal content.

Another general strategy for optimization is packet aggregation which seeks to reduce the

number of packets that are actually transmitted by combining information from several packets

into one packet, assuring bandwidth savings. On the other hand packet aggregation introduces

tradeoffs between the bandwidth reduction and the interactivity of the system since the first

packet in the aggregation queue has to wait for the last packet in the queue before the

aggregation process can proceed.

2.3.4.2 Visibility of Data Management

The optimization techniques in this category reduce the bandwidth consumption in the

distributed system by reducing the number of message received. Data flow optimization

techniques like area-of-interest (AOI) filtering [57] and multicasting (e.g. PARADISE [87],

Diamond Park [61]) allow packets to travel only to parts of the network that contain interested

participants.

47

These techniques impose a tradeoff between data partitioning and multicast grouping. A

significant body of research has been developed to create a balance between a fine-grain data

partitioning and multicast grouping, and hybrid multicast aggregation techniques have been

proposed [88]. Multicasting protocols can be designed at the application level, allowing the

development of overlay networks on top of the current network protocol stack.

2.3.4.3 Human Perception Limitation

Humans have limited perceptual abilities in space and time. Such limitations can be exploited in

a tradeoff between ideal consistency and perceived consistency. In Chapter 3 we will discuss in

more depth a time-space consistency model that takes into account human perceptual limitations.

Information about the virtual entities in the environment can be provided at different levels of

detail (LOD) and different rates (i.e. exploiting visual perception limitation). The timeliness

characteristic of information received by participants can be improved exploiting the temporal

perception.

Particularly interesting is the temporal contour technique [89] that creates a temporal map in

which every point P in the virtual space has a t value assigned corresponding to the network

latency experienced by the local participant L for updates originating at P. The t value at any

point P can be computed as

48

)()(2

1

2

i

i

v
r

i

n

i
L edPt

−

=
∑×Φ= Equation 6

There are n remote participants. Each remote participant i has a locally perceived network delay

di and is located at position Pi relatively to user L. ΦL is a constant that assures that t(P) is null at

the local participant position L. ri is the distance between point P and point Pi, and vi is a

variance value that affects the flatness of the contour around Pi. The contour equation calculates

a composite of the participants' network latencies by weighting each one by the corresponding

entity's distance from the active participant. The main limitation of this technique is the

considerable computation requirements particularly in the presence of many active participants.

2.3.4.4 Systems Architecture

An important decision in designing a distributed interactive environment is the system

architecture. While the system architecture is driven by the application requirements and the

current evolution of systems architectures (see Section 2.1.4), two major trends exist. The first

trend investigates clustering and partitioning techniques evolving mainly around the client-server

paradigm, while the second trend investigates combinations between the atomistic peer-to-peer

and the client server paradigms.

49

3. SHARED STATE MAINTENANCE

A number of problems arise when designing algorithms for distributed interactive VEs. Current

applications tend to employ and are more dependent on sensory information. As discussed in

Section 2.2.2, a VE might include a variety of position sensors. Sensor data is especially required

to render the position and orientation of the virtual components of the scene in applications

where a soft blending of the real and virtual is desired. To obtain an enhanced view of the real

environment, participants could wear HMDs to observe three-dimensional computer-generated

objects superimposed on their real-world view or vice versa. The position and orientation of

each participant’s head must be obtained to render the computer-generated objects from the

correct viewpoint, at the correct depth [90]. Because virtual and real objects must be placed into

register, i.e., spatial coincidence, we require accurate motion tracking not only for the head of the

participant but also for other objects.

From an application perspective, the need for real-time sensors that update the environment at

high rates is associated with several problems. The distributed system nodes must collect and

distribute each sensor's data in real-time and at the same time maintain a consistent view of the

environment. While interaction with the virtual components of the shared scene is still discrete,

new levels of interaction arise through the use of sensor-based interfaces.

50

From a system perspective the dynamic membership properties of a VE have an impact on the

system architecture. New data distribution schemes are necessary to cope with the interactivity

and the dynamic properties of these environments.

In the next sections we explore two viewpoints of distributed interactive VEs. The first

viewpoint is an application perspective in which we present a formulation of the consistency

problem and propose a new categorization criterion for applications, as well as a dynamic shared

state maintenance algorithm. The second viewpoint is a system perspective in which, modeling

the distributed interactive system as a graph, we propose an approach to derive the minimum

delay communication sub-graph. We then present and analyze a novel data distribution

architecture targeted towards sensor-based interactive VEs.

3.1 Distributed Interactive Virtual Environments - Application Perspective

3.1.1 Consistency Model

There is no general solution for dynamic shared state maintenance in interactive VEs. Currently,

the combination of techniques employed is dictated by the distributed application characteristics.

A formal categorization [91] divides distributed interactive applications based on two

characteristics/criteria: the way an entity in the application changes its state, continuous vs.

discrete and the way the participants apply actions, turn-based vs. concurrent. The cross product

51

of these characteristics leads to four categories: continuous concurrent applications, continuous

turn-based applications, discrete concurrent applications and discrete turn-based applications.

From this perspective an interactive VE application can be seen most of the times as a

continuous concurrent application.

The dynamic shared state inconsistency problem can be translated to a Time-Space inconsistency

problem. For example, because of message transmission delays, different participants may see

the same moving virtual object located at different positions at the same (i.e. reference or wall-

clock) time t. In what follows we will expand on the definitions and theorems from [92] to

provide a theoretical framework for reasoning about consistency as it pertains to distributed

interactive VEs.

Let's consider a distributed system consisting of n nodes for a defined time interval (we assume

static membership, i.e. the number of participants in the environment does not change; the

dynamic membership property will be discussed later). We assume that each node is associated

with one and only one participant. The participants at each node can apply consecutive actions

on the virtual objects in the shared scene.

A collaborative VE is populated by one or more virtual objects (e.g., a tree is one object, an

avatar might be another). Each object has a set of attributes (e.g., position, color, velocity), and

each attribute has a set of possible values. The state of an object at a particular time is defined

by the values of the object's attributes at that time. Each object can be categorized as static or

52

dynamic. While the attribute values of a static object are fixed, the attribute values of a dynamic

object change over time.

Definition: State of an object

Given an object θ, the state of θ is defined by its attributes (e.g., position, orientation, color) at a

particular moment in the reference time t. Let be the state of the object θ at node i at time t,

where 1≤ i ≤ n.

)(tS i
θ

One of the reasons for the existence of dynamic objects is the participants' interaction. The

participants interact on the shared scene by applying a set of actions on the objects. The effect of

these actions propagates in the entire system and affects other participants' judgment and other

objects' behavior.

Definition: Action times

Let a denote an action. The action applied by the participant has defined attributes (e.g., if we

consider orientation or position change, the action may have a particular direction, velocity and

acceleration). Let u(a) be the node where the action is generated, τi(a) the time at which the

action is generated at site i (i.e. i=u(a)), and o(a) the shared object on which the action is

applied. Moreover we denote by arrivei(a) and executei(a) the arrival time and execution time,

respectively, of action a at node i.

53

For example, to express the fact that the action is generated at the same site we can use the

following notation: τi(a)→ u(a)=i. To express the fact that actions having an arrival time were

generated at a remote site we can use: arrivei(a) → u(a)≠ i.

Further we define the causal precedence relation, a powerful concept for reasoning, analyzing,

and describing inferences about a distributed computation.

Definition: Happened-Before

Given two actions ai and aj we define the causal order of precedence (or happened-before

relation) as ai happened-before aj denoted as ai →aj if and only if one of the following occurs:

• u(ai)=u(aj)=k and τk(ai) <τk(aj); in other words, both actions were instantiated at the same

node k and ai was instantiated first.

• u(ai)≠u(aj) and arrivek(ai)<τk(aj) where k=u(aj); in other words the actions were

instantiated at different nodes, however the action ai arrives at node k before action aj is

instantiated at this node.

• there exists an action am such that ai→am and am→aj

From the definitions above we can describe the absolute consistency for the distributed VE.

Definition: Absolute Consistency

Given an object θ, the object is absolute consistent at any time t, if and only if (∀) 1≤i,j≤n, i≠j,

= . We say that the system is absolute consistent if and only if (∀) θ and t>0, θ is (t)i
θS)(tj

θS

54

absolute consistent. In other words, a distributed VE is absolute consistent if and only if all the

shared objects are consistent at all times.

Definition: Average Delay

Let tij represent the average delay from node i to node j. Since the nodes are interconnected on an

arbitrary network we make here the assumption that the messages experience similar delays on

the path from i to j and on the path from j to i.

Given the above definition, several significant theorems follow. These theorems will help us

reason and categorize distributed interactive VEs based on the action frequencies applied on the

objects in the scene.

Theorem 3.1. A distributed system, starting from an initial consistent state, is absolute consistent

if and only if any action generated by a participant is executed simultaneously at all nodes.

Proof. (→) We shall prove that if any action is executed at the same time at all nodes, then the

system is consistent. The initial state is consistent and each operation is executed at all nodes at

the same time, so each participant sees the updates at the same time. Therefore, the system is

absolute consistent.

(←) We prove by contradiction that if the system is absolute consistent, then any action must be

executed at the same time at all sites. We assume there exists an action a applied on an object θ,

55

where u(a)=i and t=τi(a), which is not executed simultaneously at all sites. If node i executes

action a at time t1 and node j executes the same action at time t2, t1>t2, then ≠ or

≠ , that contradicts the assumption that the system is consistent. Q.E.D.

)(ti
θS 1)1(tj

θS

)(ti
θS 2)(tj

θS 2

Theorem 3.2. Given an action a issued on object θ, where u(a)=i, if action a is executed at site i

immediately after it is issued, then the system is not absolute consistent at time τi(a).

Proof. The theorem states that indeed the inherent delays in a distributed system are non null. To

prove it, suppose t = τi(a) and (∃) δ >0 such that the system is absolute consistent at time t-δ. If

at time t one node j updates the state of an object θ with action a'≠a, then (∀) 1≤i,j≤n, i≠j,

≠ hence the system is not absolute consistent at time t. (t)i
θS (t)j

θS

Secondly we prove that at time t all other nodes (i≠j) do not change the state of the object θ so

they become inconsistent. Since action a will update the state of object θ at time t, we have ≠

. Because the message takes time t

(t)i
θS

δ)(ti
θS − ij to propagate between two nodes, the state at another

node j remains unchanged at time t, i.e. (∀)1≤i,j≤n, i≠j, = = , and from here,

≠ . Hence the system is not absolute consistent at time t. Q.E.D.

(t)j
θS δ)(tj

θS − δ)(ti
θS −

(t)j
θS (t)i

θS

Theorem 3.3. Given an action a issued on object θ, to keep the system absolute consistent

56

executei(a) ≥ τi(a)+ Equation 7)(1 ij
n

ij
j tMAX
≠
=

The proof of this theorem follows from the previous one.

Continuing our reasoning about distributed interactive VEs, it is clear that a method for

maintaining a consistent shared state would be to delay the application of the action on the local

scene until all nodes have been notified. Such a synchronization barrier will have negative

impact on the responsiveness of the application, since the local participant will perceive his local

actions as delayed. Clearly, there is a tradeoff between responsiveness and consistency, and thus

between interactivity as perceived by the participants and consistency. The key to this problem

lies in the delays among the nodes of the system, tij. These delays are inherent in a distributed

system infrastructure.

Importantly this work proves that, by combining a distributed monitoring system with an

interactive distributed VE, the consistency can be significantly improved. The Adaptive

Synchronization Algorithm (ASA) described in Section 3.1.4 represents our proposed, and we

believe, elegant solution. Prior to presenting this contribution we discuss the time-space

inconsistency model and the associated human factors issues.

57

3.1.2 Human Factors - Response Times & Sensors

The time-space inconsistency [91] for distributed interactive applications can be defined as

⎪
⎩

⎪
⎨

⎧

∫ ≥∆∆

∆
=Ω +τ

ε

ε
0

0

||,|)(|

||,0
t

t
ifdtt

if <
 Equation 8

where ∆(t) represents the difference between a shared object's local attribute (e.g., position/

orientation) and the value of this attribute as estimated on a remote node. ε is the minimum

difference between attribute values (e.g. a position drift) that the human player can distinguish in

the application. In the above expression, ∆ is a variable over the reference time t, while t0 is the

instance at which the difference starts, and τ is the duration for which the difference persists.

If ∆(t) is constant over time, the time-space inconsistency, Equation 8, can be simplified to

⎩
⎨
⎧

≥∆∆
∆

=Ω
ετ

ε
||,||

||,0
if

if <
 Equation 9

In a distributed VE the ∆(t) value can be influenced by the rendering characteristics of the nodes,

as well as by the nature of the action's attributes. For example, if we take into consideration the

time derivatives (e.g. acceleration) as an action's attribute, then ∆(t) will not be constant;

58

however it will be predictable. Given the preceding context, the ε variable has particular

relevance to our discussion. ε is dependent on human-computer interaction factors and human

perception. If |∆(t)| ≤ε, the difference in the attributes cannot be perceived by the participants, so

it does not influence their judgments. The values of ε are dependent on the object's attributes

(e.g. speed, size) as defined by the application domain. As an example, in a distributed aircraft

battle application ε might be several tens of meters while in a distributed running competition ε

might be several centimeters.

It is conceivable that there are other factors that influence the time-space inconsistency. We

hypothesize that time-space consistency is also related to additional human-computer interaction

factors. For example, the fastest human-computer response time includes perceptual (i.e., user

perceives the items on the display or auditory signals), cognitive (i.e., user retrieves information

from his own memory) and motor cycle times, which can add up to an average of 240ms [4]. In

the next sections we extend this model and provide a novel categorization of distributed

interactive VE applications based on the interaction frequency.

3.1.3 Classifying Interactive VE Applications - Action Frequency Patterns

Let's consider the following application scenario. A surgeon located in an office building is

analyzing a 3D model of the mandible of a patient. This physician would like to discuss the

surgical procedure that will follow shortly with a colleague, whose office is in another building.

59

As part of their discussion, they have to analyze the 3D model of the patient's mandible. They

use the 3D distributed visualization platform implemented on the hospital's local area network.

For stereoscopic visualization, each office is equipped with HMD [93] and a sensing glove [94].

In this scenario, the distributed visualization platform allows one participant to modify the

position and orientation of the 3D model from a mouse-driven graphical user interface (GUI,

Figure 5) or through the sensing glove shown in Figure 6.

Figure 5. GUI based interaction

Figure 6. Sensor based interaction

There are two problems that arise in this scenario. The first is related to the network latency. As

one of the participants manipulates the 3D model, the network latency desynchronizes their

common viewpoints. Moreover, since network jitter is also present, the position/orientation drift

among the views increases in time, while the participants are not aware of the inconsistency of

their viewpoints. The second problem pertains to the nature of the interaction with the objects in

the shared scene. The 3D model can be manipulated either from the GUI through discrete and

predictable actions, or using the glove-like peripheral device, which updates the environment at a

60

higher rate and allows relatively unpredictable actions. The participant acting on the GUI

through the mouse, for example, cannot exceed a certain frequency of actions mainly because of

his motor reaction time. At the same time, since the position and the orientation of the object are

set through the interface, predictable actions are applied on the object (e.g. by pressing the GUI's

"Rotate around OX axis" button). In contrast to the GUI, the glove-like peripheral device is

usually tracked at high frequencies (e.g. a P5™ glove [95] has an optical tracking system

attached that has a refresh rate of 60Hz) which is going to capture the participant actions at a

higher frequency than the one attainable through the GUI. As a result, we have two types of

interaction with the 3D model that have distinct patterns. While the network latency problem is

well known in distributed interactive simulations, the second problem is more subtle and requires

further analysis. Based on the above observations, we propose a novel criterion for

categorization of distributed interactive VE applications.

Two cases can be established; the actions frequency is either lower or higher than the inverse of

the network delay between two interacting nodes. To study these issues, we define two

frequencies in the following paragraph: the upshot frequency and the action frequency. We then

show how these frequencies can be used to categorize distributed interactive VE applications as

high or low frequency applications.

Let txy be the average network delay between two participating nodes X and Y, as defined in the

previous sections. We assume, for now, that there is no jitter. The jitter compensation is

described later. Let's consider an instance of a distributed VE that allows interaction with m

61

virtual 3D objects. The shared scene produced must be displayed at all the participating nodes.

Let n be the number of participating nodes. We assume that all virtual objects are rigid and we

restrict the actions applied on them to rotations and translations. The discussion can be further

extended to arbitrary affine transforms and non-rigid, deformable 2D/3D objects.

The participants interact with the virtual objects in the scene. Each participant's interaction can

be seen as a sequence of actions applied on the objects in the scene. An action is identified by a

name, a direction described by a vector, and a velocity. The model can be extended to higher

order space-time derivatives. Since real-life interactions are spontaneous, the action duration is

not known when the action is applied. As defined in the previous sections we know only τi(a),

arrivei(a) and executei(a). The action duration is known only after the next action is initiated, the

actions being generated in a consecutive sequence. Considering two consecutive actions a1 and

a2 the duration of a1 can be computed as τi(a2)- τi(a1).

Definition: Action Frequency

We define the action frequency, νk(θ) of a node k, as the number of actions performed by node k

on one object θ in the shared scene per unit time (i.e. 1 second).

The action frequency is measured in actions per second and can be estimated in the following

way. Let be the number of actions applied on the object θ in the scene by participant k

during ∆t. Participant k may interact with any object in the shared scene. The total number of

actions applied by k on all m objects in the scene during ∆t will be given by

θkb

62

∑
=

m

θ
θkb

1 .

Definition: Average Action Frequency

Let νk be the average action frequency obtained by computing the average number of actions

applied by k on an object in the scene, given by

∆tm

b
 kν

m
k

⋅

∑
= =1θ

θ

 Equation 10

νk can be used as an estimate of the action frequency for participant k on an object in the shared

scene, i.e. νk(θ)

k
ν

k
ν ≅)(θ Equation 11

The longer the ∆t, the more accurate is the action frequency estimation. Moreover this estimation

can be done for each participant in the distributed VE application.

As an observation, in the estimation of the average action frequency, only objects on which the

participants interact are considered. Another observation is that the interaction pattern on the

63

objects in the environments is fairly uniform (i.e., the participant interaction frequency on a

particular object is not very high as compared to his/her interaction on the rest of the objects). If

this is not the case, the maximum interaction frequency on a particular object might be used for

determining the application's characteristics.

Definition: Upshot Frequency

Furthermore, let ν0 be the upshot frequency between two nodes X and Y defined as

xyt
 actionν 1

0 = Equation 12

with actions per second as measurement unit.

The upshot frequency is dependent on the network delay between two participating nodes and

limits the interactivity potential between two nodes. For example, if txy is 100 milliseconds, the

upshot frequency between the nodes will be 1/0.1 or 10 actions per second. Computing the

average network delay between each pair of participants, the corresponding upshot frequency

(ν0) can be computed. Based on the above definitions, two cases can be distinguished: the action

frequency is less than the upshot frequency, (νk< ν0), or the action frequency is greater than or

equal to the upshot frequency, (νk ≥ ν0).

64

To illustrate the discussion above, consider a simple case in which there is only one virtual 3D

object in the shared scene and two participants, node X and node Y, located on a network. Node

X can change the object orientation by applying arbitrary rotations around the object coordinate

axes. Since it is a distributed application, the shared scene must be maintained consistent (i.e.

both participants should see the same orientation for the object). The first case (νk< ν0) usually

corresponds to a distributed interactive VE application involving either low update frequency

devices (i.e. when compared with the upshot frequency) or participants who perform actions on

the objects in the shared scene through a GUI. The fastest human-computer response time adds

up to an average of about 240ms [4]. Under the later assumptions, distributed VE applications

that fall in this category should not be deployed on a network that has an upshot frequency lower

than 4.16 (actions/second), in other words the network delay has to be lower than 240ms.

In most of the cases when the distributed VE application is deployed on a local area network, the

frequency of the actions applied by the participant through a GUI on the objects in the shared

scene will be below the upshot frequency. Moreover, some actions will generate continuous

movements that can be predicted. For example, the participant might spin an object for an

indefinite time period with a specific velocity around a specific axis. In this case, ν0/νk tends to

infinity and once the nodes are synchronized no additional network traffic is necessary until

another action is applied. The drift can be accurately computed if we know the network delay txy

and the action (e.g. rotation) attributes (e.g. direction, velocity).

65

We emphasize this scenario with an example. A timing diagram is shown in Figure 7 that

contains two actions applied by node X on an object in the shared scene and the propagation of

these actions to another participant, node Y. The first action, a1, takes 14 time units, the second

action, a2, takes 8 time units, and the network delay between nodes X and Y is 1 time unit. The

synchronization algorithm proposed in Section 3.1.4 accounts for the network latency. In Figure

7, the shaded areas represent the time intervals when X and Y are synchronized.

Figure 7. Action frequency is less than the Upshot frequency (ν< ν0), delay txy=1

The second case (νk≥ν0) corresponds to a distributed VE application containing a fast updating

device like a tracking system or a high latency network connection. In this case, a sequence of

actions might take place at node X before node Y is notified about the first action in this

sequence. This scenario can be described with a simple example. Below is a timing diagram that

contains 10 actions and their respective durations: actions a1, a2, a3, a5, a6, a7, take 1 time unit;

action a4 takes 2 time units, and actions a8, a9, a10 take 3 time units. The network delay between

nodes X and Y is 3 time units.

66

In this case, high quality of synchronization cannot be reached since node Y will continuously try

to "catch up" with node X. By the time node Y has compensated for the drift, node X has applied

new actions on the object. Node Y is not aware of those actions at that time.

Figure 8. Action frequency is greater or equal than the Upshot frequency (ν≥ ν0), delay txy=3

3.1.4 The Adaptive Synchronization Algorithm

The Adaptive Synchronization Algorithm proposed is targeted towards distributed interactive VE

applications which fall in the first category (ν<ν0) as defined in the previous section. In other

words, the algorithm assumes an event-based mechanism, triggered either by the participant

actions on the shared scene or by a sensor (e.g. a motion tracking system) whose update cycle

time is comparable or higher than the network latency. Such assumption is generally true as

high-speed networks and optical routing are becoming increasingly available.

To control the position and orientation of the objects in the shared scene, each 3D virtual object

has a control packet (CPO) associated with it. The CPO contains information about the position

and orientation, as well as information regarding the actions associated with each object:

67

rotation, translation or scaling. The small size of the CPO ensures low transmission delays. As

the CPOs flow through the network, the ASA uses their information to keep the shared scene

among participants consistent. In other words, the information carried by the CPOs is distributed

to each participating node allowing them to compensate for the network latency.

Definition: Drift Value

Let's define the drift value for a particular object θ in the shared scene and a remote observer (i.e.

the node that does not apply an action on the object), node k as the product between the action's

velocity applied on the object by the node u(a) and the network delay tu(a)k , i.e. the delay

between the node where the action was initiated u(a) and the node k.

The fact that the action is generated at a remote site can be expressed as

arrivek(a) → u(a) ≠ k

Also actions are executed as they are received at both nodes

arrivek(a) = executek(a)

and

executei(a) = τi(a)

If we denote Mt as the number of virtual objects in a shared scene of Nt participating nodes, all at

the same time t, a drift matrix D(Mt,Nt) can be associated with the distributed VE system at a

particular time t and it can be computed as

68

transpose
tt TSNMD ⋅=),(Equation 13

where S and T are both column vectors, S containing the action velocities for each object

currently in the shared scene, and T the network delays vector from each action/update producer

node i to each participating node j. T transpose represents the transpose of T. The action velocity is

extracted from each object’s CPO, while the network delay is measured by each observer node

(i.e. the node that does not apply an action on that object) using an adaptive probe. The S matrix

is stored locally at each node and updated when the scene changes.

A decentralized computational approach partitions the drift matrix into N column vectors,

denoted here drift vectors, which contain the drift values of all the virtual objects in the shared

scene for each node. The drift vectors are updated when a new 3D object is inserted or removed

from the shared scene by adding or removing the entry associated with it from all nodes. The

drift vectors are also updated when the participants perform actions on the objects. Whenever an

action is applied to an object (e.g. a rotation), a CPO is broadcasted to all the nodes.

The information (e.g. action velocity) from the CPO is the first component used for

synchronization. The second component accounts for the network latency. At specific intervals,

each node "pings" the other nodes to estimate the average network delay (i.e. tij) and computes

the drift vectors associated with the objects in the scene as the product between the propagation

delay and the objects' actions velocities. Each delay measurement between nodes triggers a local

node's drift vector update.

69

A pseudo-code sketch of the ASA is described in what follows. The ComputeNodeDelay()

function returns the delay between two nodes tij. The UpdateDrift() function updates the drift

values for the objects in the scene on each node. Three Boolean variables are used:

changedScene that accounts for the changes in the scene, newClientRequest which is set if a new

participant has joined, and trigger, used in accounting for the network behavior as described in

the next section. Finally, the functions ReceiveChanges() and BroadcastChanges() ensure correct

shared state updates among the nodes of the system. A consistent dynamic shared state is

maintained over all the participants.

 Observer (Consumer) node:

 Initialization:
 Tn ← ComputeNodeDelay()
 Sn ← UpdateAction();
 Dn ← UpdateDrift()
 UpdateLocalScene();

 Main:
 if (trigger)
 Tn ← ComputeNodeDelay()
 Dn ← UpdateDrift()
 end if
 if (changedScene)
 Sn← ReceiveChanges()
 Dn ← UpdateDrift()
 end if

70

 Action Producer node:

 for ever listen
 if (newParticipantRequest)
 SendToNewParticipant(Sn);
 end if
 if (changedScene)
 BroadcastChanges();
 end if
 end for

3.1.4.1 Fixed Threshold vs. Adaptive Threshold

As the traffic in the network changes, the round trip times between different nodes vary. To

improve the shared state maintenance, delay measurements must be triggered at different time

intervals. The delay measurements must follow the network jitter behavior yet this distributed

monitoring scheme must be maintained at low levels of intrusiveness. The goal is to obtain an

accurate estimate of the average delay between each pair of participants.

The algorithm uses two approaches to trigger the information collection. In the first approach,

the measurements are triggered by each node at regular time intervals. We denoted this approach

the fixed threshold one. Triggering these measurements too often increases the intrusiveness of

the software monitoring scheme. Moreover, if the network jitter is very low, measurements are

redundant. An alternative approach consists of adaptively triggering the delay measurements

71

based on the delay history, which better characterizes the network traffic and the interactive

application behavior, as illustrated in Figure 9.

Fixed threshold Adaptive threshold

Delay

Time

Sample points

 Figure 9. Adaptive vs. Fixed threshold

In the adaptive approach, a fixed threshold is initially used at each node to build the delay history

denoted here Hp. The delay history is a sequence of p delay measurements hi where i=1,p.

Furthermore let σ be the standard deviation of Hp and hmean the mean of Hp, in other words

p

h
h

p

i
i

mean

∑
== 1 ,

p

hh
p

i
meani∑ −

= =1

2)(
σ Equation 14

Let h0 be the most recent delay, i.e. the last number in the Hp sequence, and γ0 the current

frequency of delay measurements, expressed as the number of measurements per second. The

adaptive strategy is to decrease γ0 with 1 unit if h0∈ [hmean - σ , hmean + σ] and to increase γ0

with 1 if h0 does not belong to this interval. Of course the values of all these variables are

application dependent and can be tuned to best fit the application.

72

3.2 Distributed Interactive VEs - System Perspective

An important characteristic of collaborative VEs is the membership property. Most collaborative

VEs have a dynamic membership property, i.e., the number of participants can change at any

time (e.g., participants can join or leave the environment at any time). Other VEs have a static

membership property, i.e., once the distributed session is initialized the number of participants

does not change (e.g. a collaborative environment for business meetings).

3.2.1 A Distributed System Model

An interactive distributed VE can be deployed over a LAN, a private network or over a WAN

infrastructure (e.g. the Internet). To provide an abstraction for the underlying infrastructure, as

well as a reasoning anchor for the system, we use graph theory notation.

The entire network can be represented as a directed weighted graph G=(V,E), where V denotes

the set of nodes in the network and |V| = n. Some of these nodes can only serve as message

routers while others are direct interfaces for the participants. Let V' be the set of nodes that can

participate in a collaborative session, |V'| = m, and obviously V'⊆ V and m ≤ n.

Because of the dynamic membership property at a particular moment in time t, the set of nodes

participating P(t) will be equal to or smaller than the set of nodes that have the potential to

73

participate, i.e. P(t)⊆V'. Hence the distributed interactive VE will communicate for finite periods

of time using only a sub-graph of G denoted G'(t) = (P(t), E'), where E' represents the set of

edges used for communication.

Let spi,j be a loop-free shortest path between two participating nodes vi and vj, and delay(spi,j) be

the communication delay on this path. If we denote by delaymax(G'(t)) the upper bound on the

delay in the environment at a particular moment in time, we have

delaymax(G'(t)) = max {delay(spij)}, where vi,vj ∈P(t)

Knowing the upper bound between any two participants in the graph allows us to control the

delays in the environment by accepting or rejecting other participants. Moreover, since there are

multiple possible sub-graphs, we can optimize communication based on different metrics. Since

our primary interest is to minimize the end-to-end delay, in the following section we will focus

on a theoretical approach to perform such minimization.

3.2.2 Core-Based Tree - Minimizing the Delays among Participants

Reducing the maximum end-to-end delay between two participants will naturally improve the

synchronization capabilities of the ASA. Minimizing the maximum end-to-end delay can be

achieved by finding the connected sub-graph H(t) = (W,F) that satisfies the condition:

74

delaymax(H(t)) = min{delaymaxH'(t) | H'(t)⊆G'}

where H'(t) is a connected sub-graph of G' .

Consider a weighted graph in which the weights represent the delays between nodes. The Core-

Based Tree (CBT) [96] method guarantees that the path between any joining/new node and the

core is the shortest. However it does not guarantee the optimal path between any two nodes. In

Section 3.2.4.1 we introduce an additional rule to further bound the delay between two

participants. A major advantage of the CBT approach is that only one multicast tree is created

per group which reduces the overhead in the distributed VE.

A CBT is constructed incrementally. Initially, a node is chosen (i.e. the core) via a bootstrap

mechanism. Each interested participant will send a JoinRequest message to the core. The address

of the core node is advertised and is well known. The message is sent through the shortest path

from the new participant to the core node, using the existing routing protocols. Along the

shortest path the message can reach either nodes which are already part of the current

communication sub-graph (i.e. the CBT) or nodes that are not part of the tree. If the message

reaches a node k that is part of the CBT, the forwarding process will stop and the incoming link

will be added to the forwarding cache of node k. An acknowledgement message will be sent

back to the new participant and it will become part of the CBT. When the message reaches a

node k that is not part of the CBT, k will redirect the message to the next hop along the shortest

path toward the core node and will cache the incoming node and incoming interface (e.g. port

75

number) in a temporary storage, waiting for an acknowledgement message. Once k receives an

acknowledgement it adds the incoming interface to the forwarding cache and redirects the

acknowledgement to all nodes listed in the temporary storage. k also sets the node who sent the

acknowledgment to be its parent node and becomes part of the CBT.

The CBT algorithm assures that each interested node can reach the core node using the shortest

path. Moreover, the communication sub-graph is a tree due to its method of construction (i.e., all

nodes are connected and each one has just one parent, except the initial core node which has no

parent).

In what follows we describe the CBT algorithm. The initial CBT consists of one core node, i.e.

the communication sub-graph is G'(t0)=(P(t0),E'), where P(t0) = {vcore} and E'=∅. When a

participant v joins the environment, it will send a JoinRequest to the adjacent node v' which is

along the shortest path (i.e. in terms of delay) from v to the core node vcore. Below is the pseudo

code for the procedure:

if (v'∈V')

 add v to the forwarding cache

 send JoinAck to v

else

 tempv' ← tempv' ∪ {v};

 send JoinRequest to first node along the shortest path to vcore

end if

76

When the node v receives a JoinAck from node v' the following procedure is executed:

V' ← V' ∪ {v}

E' ←E'∪ {e}, where e is the edge connecting v and v'

add v' to the forwarding cache in v

set v' to be the parent of v

send JoinAck to ∀ u∈ tempv

tempv ←∅

An example of the CBT construction is depicted in Figure 10. Participant p3 wants to join the

environment and sends a JoinRequest towards the core pcore. Intermediary node p2 processes the

request and sends the message towards pcore (Figure 10a). The core replies with an

acknowledgement and it is added in the forwarding cache of p2. In turn p2 sends the

acknowledgement to p3. p3 marks p2 as its parent and also p2 marks pcore as its parent as

illustrated in Figure 10b. The forwarding caches of p3, p2 and pcore will be {p2}, {p3, pcore} and

{p2} respectively. When p1 wants to join, its message will be captured by p2 who is already part

of the CBT. p2 replies to p1 directly and adds it to its forwarding cache. In turns p1 marks p2 as its

parent as shown in Figure 10c.

77

a) b) c)

 Figure 10. Core-Based Tree construction

In the next section we look at distributed interactive VE participants' behaviors and define

several types of nodes based on their functionality. The generality of these definitions makes

them applicable to any distributed interactive environment or simulation.

3.2.3 Hybrid Nodes with Real-Time Sensors

Distributed interactive VEs involve the interaction of several remote participants. With advances

in sensor technology, we envision that in future systems a significant amount of data will be

collected from sensors and devices attached to the participants. While some of the participants

actively modify the shared scene, other participants are passive, in the sense that they do not

interact with the shared scene. We define two categories of participants: active participants and

passive participants.

78

An active participant triggers changes in a virtual object state from an interface (e.g., GUI or

through a sensor). Passive participants do not trigger any modifications of the shared scene; they

just receive visual, haptic and/or audio feedback from the environment. The active or passive

attributes of the participants can dynamically change in time. An active participant may become

passive and vice-versa depending on the collaboration needs.

A node in the distributed system allows a participant to interact with the components of the VE.

Without loss of generality, we will consider that each node has a set of sensors that provide

position and orientation information and other peripheral devices that allow state changes for the

objects in the shared scene. The discussion can easily be extended to other types of sensors (e.g.,

haptic) that can be part of the distributed system's resources. The system must ensure that the

data captured by each node's sensors is distributed with minimum delay to all interested

participants to maintain the shared state consistency. Moreover, each node in the system will

need to exchange its sensory data with all or a predefined subset of nodes.

A pure centralized data distribution approach (e.g., client-server) would not be efficient because

of the additional delay associated with the data collection stage, followed by the data

distribution. An atomistic peer-to-peer approach would not fit either because of the additional

overhead in data distribution (see Related Work). Each node would have to exchange data with

all the other nodes. As a fundamental property, the nodes in a sensor-based distributed system

may act as data producers, consumers and distributors, simultaneously. Based on the above

discussion we define four types or running modes for the distributed system's nodes:

79

• Active nodes - An Active (A) node represents an active participant in the virtual

environment. Each active node collects data from its sensors and is responsible for making

the data available to interested peers as quickly as possible.

• Passive nodes - A Passive (P) node does not inject any information into the virtual

environment. The node uses the information provided by active and forward nodes to

render the shared scene.

• Active Forward node - As the name indicates, a forward node forwards data. The forward

node can be active or passive. An Active Forward (AF) node injects its own data into the

system, as well as forwards other nodes' data.

• Passive Forward node - A Passive Forward (PF) node does not inject new information in

the system. These nodes act as pure data forwarders.

In what follows we propose an investigation of the possible states and transitions of a node in a

distributed interactive VE. Let's denote the states of a node as: {A, P, AF, PF} (i.e. "A" stands

for "Active", "P" for "Passive", "AF" for "Active Forwarder" and "PF" for "Passive Forwarder").

Let's denote the conditions that trigger the change in state using a binary representation

• 00 - the state changes from inactive to active

• 01 - the state changes from active to inactive

• 10 - the state change from forwarding off to on

• 11 - the state change from forwarding on to off.

80

Twelve transitions may occur. Table 4 summarizes the possible transitions and the triggering

conditions.

Table 4. Possible transitions for a hybrid node

Current State Next State Condition(s)
A P 01
A AF 10
A PF 01 followed by 10
P A 00
P AF 00 followed by 10
P PF 10

AF A 11
AF P 01 followed by 11
AF PF 01
PF A 00 followed by 11
PF P 11
PF AF 00

The behavior of a node can be represented as a state machine as illustrated in Figure 11.

Figure 11. State machine representing the hybrid node behavior

81

Based on the above discussions, we now introduce a data distribution scheme targeted towards

the development of sensor-based distributed interactive VEs.

3.2.4 Hybrid Data Distribution Scheme

The dynamic membership property of the environment, as well as the constraints of the

interactive environment, pointed us towards a hybrid between a client-server and peer-to-peer

model. The data distribution scheme is driven by the assumption that each active node manages a

small network of potentially real-time sensors as illustrated in Figure 12. We build an overlay

network at the application level, in which we employ the CBT techniques for multicast tree

construction as discussed in the previous section.

Network
WAN/LAN

Real-Time
Sensors

 Figure 12. Distributed interactive VEs nodes and sensors

82

The first node that becomes active (i.e., an "A" node) will advertise the availability of

information to all participants. Interested participants will join the multicast tree cored at the

active node. At a particular moment in time the distributed interactive environment may contain

several active nodes and one core. Figure 13 provides a snapshot in time of the distributed

system.

"A" node

"PF" node

"A" node
 & Core

"P" node

Figure 13. Snapshot of a distributed interactive sensor-based VE

3.2.4.1 The Control Protocol

To maintain its position and connections in the multicast tree, each node periodically sends a

heartbeat message to its parent node. This keep-alive mechanism operating between adjacent on-

tree nodes, allows the management of the dynamic membership behavior, as well as failure

recovery. A node that is leaving the environment will inform its adjacent neighbors.

83

To improve the real-time behavior of the system we must maintain the minimum possible

communication delay between any pair of nodes. An approach is to create an overlay network

using the CBTs. The CBT approach guarantees the shortest path between the core and the other

nodes. However to maintain a bound on the delay between participants we propose the following

rule:

Rule. A node "i" cannot change its state from "P" to "PF" or from "A" to "AF" and become a

forwarder for an active node "j" if the accumulated delay on the path to the core exceeds

MaxValue, where MaxValue is an application dependent parameter.

In other words a new participant can not join the tree if the accumulated delay from the node

where he will connect to the core falls over a certain threshold. This threshold is an application

domain and communication infrastructure dependant value and can be obtained empirically

through experiments.

3.2.4.2 Participant Joining the Interactive VE

The above model has a fundamental bootstrap problem: How to join? Without a central server

there is no easy way of determining resource availability in advance. To solve the peer-discovery

situation, a new node broadcasts a query (i.e. a JoinRequest) and awaits response. If the node that

84

replies is not already a forwarder (i.e. "AF" or "PF") it will become one as long as the Rule is not

violated. Otherwise the new node will have to wait until the constraints are met.

A complementary problem is: How does a node register itself to receive data from an active

participant? To do that the node will join the current CBT.

3.2.4.3 Participant Leaving the Interactive VE

While joining does not cause massive distortions in the environment, leaving might cause major

problems, especially when it is not premeditated, e.g. in case of a node crash or a link failure. In

what follows we analyze the situation for each potential state of a node. We'll start with the

easier cases first.

If a "P" node leaves the environment it will notify its parent so that its entry can be removed

from the forwarding cache. If the "P" node crashes, its parent will detect the absence of the

heart-beat message and will remove it from its cache. The "P" nodes are always leaves in the

trees so their removal does no incur any overhead.

Things become more complex with "A" nodes. If an "A" node intentionally leaves the

environment or if the following state changes occur, A→P or A→PF, it will send a signal to all

its children. The message will propagate in the CBT allowing all the listeners to remove the

unnecessary entries from their caches. If a crash or link failure occurs, it will be detected by its

85

children through the heart-beat mechanism. The changes will be propagated in the tree to all the

listeners.

Let's analyze the scenario when an "A" node leaves or crashes. If there is only one "A" node in

the VE the interaction in the environment is null, hence the virtual environment degenerates into

a non-interactive one (i.e. of course with the potential to become interactive again).

A more interesting situation is the removal of "AF" or "PF" nodes. The "AF"/"PF" node crash or

intentional leaving incurs additional complexity since the forwarding aspect implies that they

have a non-null set of children. As in the "A" node case, the children will detect the node failure.

Each child node has two options for failure recovery: it can either attempt to re-join the tree by

sending a JoinRequest message to its core nodes, thus keeping the failure transparent to the rest

of the down-stream branch, if any; alternatively as a result of the above mechanism failing, the

child node can send a FlushTree message downstream allowing each node to independently

attempt to re-attach itself to the tree, possibly via a better route than before.

86

4. TESTBED COMPONENTS AND IMPLEMENTATION

4.1 Overview

The proposed ASA and the data distribution scheme were deployed in a testbed specifically

designed and implemented for carrying out research on distributed interactive VEs. In the

following sections we present the testbed hardware and software components.

The testbed was implemented for two reasons. First, the available network simulators (e.g. NS-

2[97], PARSEC[98], SSF[99], NetSim, NEST, Gosip) are limited in their design to protocol

simulations on different topologies and do not support the integration of an interactive VE

application. Secondly, in order to use these simulators in our experimental context an abstraction

of the distributed VE must be done and assumptions must be made. These abstractions and

assumptions would result in non-deterministic behavior and diminish the significance of the

experimental results.

4.2 Testbed - Hardware Components

Each node consists of a HMD, a Linux based desktop/laptop, and a quasi-cylindrical room,

called an Artificial Reality Center (ARC), having walls covered with retroreflective material.

87

4.2.1 3D Visualization Hardware Setup - HMD & ARC

The HMDs designed and integrated in the Optical Diagnostics and Applications Laboratory

employ extremely lightweight (< 8g per eye) and compact custom-designed projection optics to

provide computer-generated images to the participant with a field of view (FOV) that may be as

large as 90 degrees. The displays were designed and intended for indoor settings. The use of

projection optics as opposed to eyepiece optics is the key to compactness and negligible

distortion. Optics with no distortion helps increasing image quality while keeping low cost.

Figure 14 shows the HMD technology evolution since 1999 when it was first conceived [100].

The first prototype (a) suffered from bulky electronics, relatively low resolution (i.e. 4 arc min),

low brightness due to the use of 640 x 480 pixels backlight LCDs, and a weight of 750g which is

high compared to the 8g optics per eye. The “heavy” weight was imposed by the shell of the

(a) (b) (c) (d)

Figure 14. Head-Mounted Displays
(a) First prototype; (b) 2001 AR Display & Face Recording; (c) 2003 Side Mounted AR

display; (d) 2004 Ultra-compact model

88

HMD required to package the bulky electronics. The second prototype (b) added a teleportal

capability (THMD) [101], which consisted of about 1 inch convex mirrors mounted side-frontal

of the user’s head and coupled with temple-mounted lipstick cameras to capture stereoscopic

images of the face. A recently engineered more compact system with more compact electronics

and side-mounted optics is shown in (c). An even more compact prototype (<600g) based on

Organic Light Emitting Displays (OLED) and extremely compact electronics is shown in (d).

The optical material placed in the real environment allows users to view computer-generated

objects embedded in the environment. The material (e.g., manufactured by 3M) is retroreflective.

In this manner, the material directs the stereoscopic image pairs projected from the HMD back to

the eyes of the user, as shown in Figure 15, allowing stereoscopic visualization. The material is

flexible and can be used to partially or completely surround users or to cover surfaces or objects

of various shapes within the environment.

Figure 15. Image formation

89

In this case we have designed an Artificial Reality Center (ARC) [102], with walls consisting of

a set of panels covered by the optical material as illustrated in Figure16 and Figure 17.

Figure 16. The ARC concept

Figure 17. The ARC implementation

Several ARC rooms can be interconnected on a network as described in Fig. 18. This setup

enables remote collaboration through distributed applications that span the entire virtuality

continuum [103].

ARC

 Internet
Extranet
Intranet

ARC

ARC

 Figure 18. Artificial Reality Center

90

4.2.2 Sensors - Polaris NDI Optical Motion Tracking System

The sensor used is an optical motion tracking system built by Northern Digital™. Polaris© [104]

is a deployable optical tracking system that provides accurate orientation and positioning (6DOF)

information in real-time. The system has an update rate of up to 60 Hz.

By tracking probe we denote a rigid configuration of markers, as illustrated in Figure 19, that are

attached on the real objects in the scene to track their position and orientation in 3D space [105].

The position sensor shown in Figure 20 detects the position of the tracking probe while in its

tracking volume. The tracking volume has a conical shape with height 1.5 meters and a base

radius of 0.5 meters. Newer versions of this system provide a position sensor with a larger

pyramidal tracking volume. The sensor has two infrared cameras that detect the position of the

active markers (IRED) or the position of the passive markers by reflection.

Figure 19. Tracking probe with 4 active markers

91

Figure 20. Polaris position sensor

4.2.3 Nodes - Heterogeneous Workstations

The nodes in the system are composed of desktops and laptops. The network cards on all nodes

maintained up to 100Mbps connections. The table below contains a brief specification of each

node’s hardware components.

Table 5. Hardware systems attributes

Node

No.

Arch. CPU (GHz) RAM

(MB)

GPU

(GeForce)

Network Card

(10/100 Mbps)

1 Desktop 1.5 AMDx2 1024 4 Ti 4600 3Com 3C920

2 Desktop 1.7 AMDx2 1024 4 Ti 4600 3Com 3C920

3 Desktop 1 AMD 512 2 Mx Netgear FA310 TX

4 Desktop 1.7 Intel 512 4 Mx 440 C.Net Pro200WL

5 Laptop 2 Intel 1024 4 Go 440 3Com 3C920

6 Desktop 2.8 AMD 512 4 Ti 4200 3Com 3C996-BT

92

4.3 Testbed - Software Components

The algorithm performance is slightly affected by the platform where the implementation is

deployed. The Windows™ OS is challenging to control at a fine granularity level, therefore we

have deployed the algorithm implementation on a Linux based platform. To create a virtual

scene we are using Open GL Performer 2.5 on a Red Hat 8.0 OS platform. The GUI was

developed using the GIMP Tool Kit (GTK 2.0). For a brief description of the APIs and SDKs

involved see APPENDIX B.

4.3.1 Software Components Developed

We have developed a set of object oriented libraries under the name Distributed

Augmented/Artificial Reality Environment (DARE) [102] see APPENDIX B.

Delay Measurement Probe

The delay measurement probe is a software module that allows inter-node delay computation. It

is an important component of the ASA algorithm. Upon joining the environment, each node uses

this module to compose and transmit an EchoRequest packet. The message contains an ID field,

which is the Linux process ID, and a sequence number, which is an ascending integer. The first

eight bytes of the data portion are used to hold a Linux "timeval" structure for round-trip time

delay computation.

93

Control Package Objects

The synchronization is achieved through message exchanges. We have implemented a control

package object (CPO) class that contains the attributes of each virtual object in the shared scene

like position, orientation, color and actions (i.e. the set of actions applied on the object and the

current values of its attributes). Whenever a new virtual object becomes part of the shared scene,

an associated CPO is instantiated. If the object is composed of several parts linked by

articulations, each part has its own CPO.

The CPOs circulate in the distributed system triggered by the participant's interaction on the

virtual components of the scene. An event based mechanism is used. Whenever the participant

interacts on the shared scene from a GUI, an event triggers the distribution of the associated CPO

to all the interested participants using the data distribution scheme described previously.

Data Collection Module

To assess the ASA efficiency we employ a quaternion analysis method described in APPENDIX

A. Initially, a script based on the Network Time Protocol (NTP) [106] is executed to synchronize

the internal clock on each node within millisecond accuracy. Furthermore, to reduce

intrusiveness, the data (e.g. quaternion components) is collected in memory during the

experiments and dropped to a file at the end. This process is executed independently on each

node during the simulation.

94

4.3.2 Hybrid Nodes Design

The proposed design falls in-between the atomistic peer-to-peer and client-server model. Each

node is autonomous and fully manages its resources and connectivity through a set of software

agents: a GUI agent, a sensor agent, a rendering agent and a behavior agent. These agents run on

each node and trigger the node behavior, i.e. a node can switch among any of the four modes

described in the previous chapter, i.e. A, AF, P, PF.

We consider two interaction scenarios common in distributed interactive VE applications: the

participant uses a GUI for interaction or the participant interacts through the motion tracking

sensor. In the first case, the GUI agent becomes active and makes the data available to the

behavior agent; while in the second case the sensor agent pulls data from the sensor(s) attached

to the node, converts it into an appropriate format and makes it available to the behavior agent. If

Figure 21. Distributed interactive VE deployed on a LAN

95

requested by other participants, the behavior agent will spawn a server thread making the data

available to other nodes, hence propagating the local modifications to the shared scene.

Otherwise, the participant's interaction will affect only the local copy of the shared scene.

Regardless of the node mode, the rendering agent is active all the time, given that the scene has

to be continuously rendered. In what follows we briefly describe each agent.

The GUI Agent

The GUI agent is responsible for displaying the GUI (illustrated in Figure 22) at the active nodes

and collecting the participant interaction on the VE using an event-based mechanism.

The Sensor Agent

The sensor agent is responsible for collecting information given by the participant through the

sensor(s) attached to the node (e.g. motion tracking sensor). The sensor agent is listening to

specific ports for sensor activity. We have used the sensor agent in conjunction with the Polaris™

Figure 22. The GUI allows manipulation of the virtual objects and mouse based 3D pointing

96

System to change the position and orientation of a 3D object in the scene by linking the object

position in the virtual world with a tracking probe position in the real world.

The Rendering Agent

The rendering agent is responsible for rendering the shared scene on the output device (e.g.

HMD) using the data collected from the participating nodes. The rendering is done using NVidia

GeForce4 based cards on two channels, independently for the right and for the left eye, providing

the inter-pupilary distance (IPD) as illustrated in Figure 23. Such rendering allows visualization

of the virtual 3D objects through the HMD.

The Behavior Agent

The behavior agent handles new incoming data requests for the "A" nodes and allows the node to

switch among the four modes. When a participant interacts with the shared scene, the associated

node becomes active.

Figure 23. Virtual cameras for the left and right eye: zone 3 stereo view

97

The behavior agent spawns a thread that controls the activation of the server component of the

node. A passive node runs in client mode "consuming" incoming data from the participating

nodes. When a passive node becomes active, it means that it acts as a data producer and

distributor for the local participant and for the other nodes interested in its data. It is the

responsibility of the behavior agent to advertise that the node has available data from a particular

sensor by a short broadcast to all the nodes. If a new participant is interested it will be added by

the behavior agent to the node's consumers list based on the CBT algorithm, as discussed in the

previous section. Each level on the path to the core implies additional delays, potentially leading

to an unacceptable behavior since the system has to respond to the participant's actions at

interactive speeds. Therefore the depth of the CBT can be limited based on the application

requirements. If the core node cannot handle the request, or the depth of the tree is too high, the

new request will be rejected and the potential participant may try joining the VE at a later time.

The behavior agent is activated by the participant interaction; hence, it maps the participant

behavior onto the participant's associated node. In other words, if the participant is active, the

associated node becomes active and ready to distribute interaction data. If the participant is

passive, the associated node becomes passive. Figure 24 illustrates the various agents and their

states on a passive as well as on an active node.

98

Figure 24. Dark shaded represents inactive agents, light shaded represents active agents

When the participant does not interact with the shared scene, the GUI agent and the sensor agent

are deactivated and the node becomes passive.

99

5. EXPERIMENTAL DESIGN AND SETUP

5.1 Overview

We have performed several experiments to quantify the dependence of the algorithm efficiency

on the number of participants and on the action velocities (i.e. indirectly communication

latency). In what follows we describe the experimental scenario, the relationship between

network latency and action velocity as it pertains to the experiments, the scalability investigation

scenario as it relates to the number and type of participants and finally the assessment method.

5.2 Experimental Scenario

As participants wearing HMDs enter the ARC [103], they gradually start immersing themselves

in virtuality. Initially, the participant's reality is augmented with 3D computer-generated objects;

however, they can be also immersed in Virtual Reality. The virtual objects may appear to

multiple remotely located participants, if they share the same scene. The participants are

interconnected on a local area network.

Participants can interact with the virtual objects in two ways. Using a GUI with 3D pointing

capabilities, they can manipulate these objects and they can point in the virtual space to different

100

parts of the objects (e.g., in the experiments we have used 3D medical models of mandibles and

several 3D crosses) as illustrated in Figures 25, 26 and 27.

Figure 25. GUI

Figure 26. Local collaboration Figure 27. Remote participant

An alternative way of manipulation is through the motion tracking sensor. The participant has a

tracking probe attached to his/her hand, and the position and location of the tracking probe is

associated with the position and location of a virtual object in the scene.

Without loss of generality we limit the participant interaction to rotations of the object around its

coordinate axis. An assumption of the experiments is that object ownership is not changeable.

Active participants apply a set of consecutive actions (i.e. rotations of the object around its

coordinate axis) using the GUI. The action's attributes (i.e. angular speed) are set using the

interface. Each new action triggers a CPO modification that is distributed in the system.

We have compared three scenarios:

101

1. The information from the CPO is not used at all. As a consequence the orientation drift

among different views of the participants accumulates, confirming the importance of

consistency maintenance algorithms, as well as the drift level achieved with this

configuration.

2. The orientation of the virtual object is corrected at each remote participant using the

information from the CPO after each event is generated.

3. The orientation of the virtual object is corrected using the proposed ASA.

Chapter 6 presents the experimental results for these scenarios. Prior to describing these, we need

to discuss an additional parameter that allows us to simulate the behavior of the algorithm on a

higher delay infrastructure.

5.3 Network Latency vs. Action Velocity

To investigate the outcome of the network latency, we repeated the experiments at different

action velocities, given that the drift value for an object is the product between the action

velocity applied on that object and the network latency. For example, let's assume a simple

scenario consisting of two nodes, an A node and a P node, representing an active and a passive

participant. Suppose the average delay between these nodes is tij=0.2ms and the active

participant applies an action (e.g. a rotation around axis) on a 3D object in the shared scene with

the angular velocity ω = 10 degrees/sec. The angular drift in this case will be given by

102

αij = ω tij= 0.002 degrees

On a higher delay infrastructure in which the delay is 20ms, the same action would produce a

drift of

α'ij = ω t'ij= 0.02 degrees

While keeping the same delay (e.g. tij= 0.2 ms), the drift increase can be simulated by increasing

the action velocity, i.e., ω=100 degrees/sec. Therefore, in order to simulate higher latency

networks in our experiments, we vary the action angular velocity from 1 degree/sec to 100

degrees/sec. In this way, we can simulate the behavior of the ASA under latencies of up to 20 ms

on a 0.2 ms average delay network.

5.4 Active vs. Passive Participants, Scalability

To investigate the scalability of the algorithm as regards the number of passive participants,

several sets of experiments were performed. The first set contained two nodes, an A node and a P

node. The second set contained three nodes, one A node and two P nodes We gradually increased

the number of passive participants to five nodes, as illustrated in Figure 29.

103

These experiments allow us to see how the number of participants affects the synchronization

results. Since the algorithm is distributed and the drift computation is done remotely by each

participant, we expect only a slight degradation as the number of passive participants increases.

Figure 28. Two-node setup

Figure 29. Six-node setup

Furthermore, to investigate the data distribution scheme we increase the number of active

participants consecutively from one to six. In the last experiment the interactions of the

participants at nodes 3 and 5 are captured through the optical motion tracking sensors attached to

the nodes, as shown in Figure 30. The participants at nodes 1, 2, 4, 6 interact on the objects in the

shared scene through a GUI. They act on different virtual objects in the shared scene, i.e.,

concurrent access to a virtual object is not considered.

104

The experiment consists of seven steps:

Figure 30. Six-active-participant setup

1. All five users join the distributed interactive VE.

2. The participant at node 1 starts interacting with the virtual objects in the scene using

the GUI.

3. The participant at node 2 starts interacting with the virtual objects in the scene

through its GUI.

4. The participant at node 3 starts interacting with the virtual objects in the scene using

the tracking probe attached to Sensor 1.

5. The participant at node 4 starts interacting with the virtual objects in the scene

through its GUI.

6. The participant at node 5 starts interacting with the virtual objects in the scene using

the tracking probe attached to Sensor 2.

105

7. The participant at node 6 starts interacting with the virtual objects in the scene

through its GUI.

In each step, fifty angular drifts of one of the shared virtual objects are recorded at each node.

This procedure is repeated, resulting in a total of 250 angular drift measurements between two

nodes (i.e. for measurements we collect data for an arbitrary pair of nodes) for the entire

simulation.

5.5 Distributed Measurements, Assessment Method

Data collection imposes additional problems. To be able to objectively compare the drift as seen

by the VE participants, the data must be time-stamped. Since the data at each node is time-

stamped with the local clock and since these clocks drift from each other in time, the initial step

in data collection is to synchronize the clocks on the nodes. We employ the NTP to synchronize

the distributed system clocks at millisecond accuracy just before the measurements are taken.

Another issue is the frequency of measurements. Taking the measurements too often will affect

the distributed VE. Our strategy regarding measurements is to collect in memory the components

of the orientation of the 3D object at each participating node after the participant interaction (i.e.,

after each new action is applied).

106

To assess the efficiency of the ASA, the amount of orientation drift for a shared 3D object is

computed. The drift between the node that acts on the object (the A node) and each of the other

participating nodes (nodes that see the interaction) is computed. We have focused our

experiments on the assessment of the orientation drift. A similar assessment can be done for the

object's position.

To emphasize the process we describe a simple scenario. We use two nodes (participants)

sharing the same virtual 3D scene, with one acting as an A node and the other as a P node. The

GUI available at the A node allows the participant to change the object orientation by applying

rotations around the Cartesian axes. The participant at the A node generates events from the

interface, and each time an event is generated, the object's orientation at both sites is recorded.

Because of the network latency, different vectors at each node will describe the orientation of the

object. The rotations can be easily expressed using quaternion notation.

Let qs express the rotation of an object at the A node and let qc express the rotation of the same

object at the P node. Both participants see the same virtual scene and the object should have

exactly the same orientation. To quantify the difference between the orientations of the object as

rendered on the A and P nodes, we can compute the correction quaternion qE, as shown in

Appendix A, every time the user triggers a new action. The correction can be expressed as:

cEs qqq = Equation 15

and thus,

107

1−= csE qqq Equation 16

where

)(cos2 1
Eωα −= Equation 17

The angle α represents the drift between the orientations of a 3D object as rendered by the nodes.

108

6. RESULTS AND ANALYSIS

In this chapter we present and discuss the experimental results. Two sets of experiments were

performed. In the first set we investigate the behavior of the ASA as the number of passive

participants increases while in the second set we perform the same analysis as the number of

active participants increases. In each set we examine three scenarios. In the first scenario there is

no compensation for drift correction since we try to observe the behavior of the drift in our

experimental setup. In the second scenario, the CPOs update the orientation of the shared virtual

objects after each action initiated on them by the participants. The third scenario consists of

employing the proposed Adaptive Synchronization Algorithm (ASA) consequently the

communication latency between each pair of participants is taken into consideration.

6.1 Varying the Number of Passive Participants

6.1.1 Two Node-Setup

In the two-node setup a participant (node 1) rotates the shared virtual object by applying

consecutive actions from a GUI. A remote participant (node 2) visualizes the same shared object.

To simulate higher latencies the participant interactions (rotations) on the object are performed at

different speeds (10, 50, 100 degrees/second). In the first set of experiments we've computed the

109

orientation drift as the participant applies actions on the virtual object without any compensation.

The reason for the measurements is to obtain a reference for the drift magnitude and observe its

behavior as a participant interacts on the shared scene. Figure 31 illustrates the variation of the

orientation drift value and its trend line, while a set of fifty consecutive actions (random

rotations) were applied on the virtual object.

R2 = 0.9829

R2 = 0.9735

R2 = 0.9534

0

30

60

90

120

150

180

210

240

0 10 20 30 40
Sample Number

D
rif

t A
ng

le
 (d

eg
re

es
)

50

No Update (speed=10 degrees/sec)

No Update (speed=50 degrees/sec)

No Update (speed=100 degrees/sec)

Figure 31. Drift behavior at node 2 with no drift compensation

In the second set of experiments we use the information in the CPO to update the position of the

virtual object after each change in action attributes (Event Update method). These changes are

generated by the participant while interacting on the virtual object. As seen in Figure 32, the

orientation drift is maintained at a fairly constant value. The trend lines use a high order (sixth

degree) polynomial fit.

110

R2 = 0.511

R2 = 0.6713

R2 = 0.3671

0

2

4

6

8

10

12

14

0 10 20 30 40 5
Sample Number

D
rif

t A
ng

le
 (d

eg
re

es
)

0

Event U. (speed=10 degrees/sec)
Event U. (speed=50 degrees/sec)
Event U. (speed=100 degrees/sec)

In the third set of experiments, we have employed the ASA to compensate for the

communication delay and jitter. The information from the CPO is combined with the information

carried by the delay measurement probe to compensate for the drift. As seen in Figure 33 the

drift value is significantly decreased and kept at a constant level. A higher order polynomial fit

was used for the trend lines. As in the case of Event Update, the trend line has a sinusoidal shape

which has a negative effect on the correlation coefficient (R). The sinusoidal shape of the trend

line can be explained as an effect of the buffering and other system threads at the network and

operating system (OS) level. Moreover such a sinusoidal behavior can be associated with the

result of applying a low-pass filter on a signal with noise. In this case the noise is the drift and

the low-pass filter is the ASA trying to block the drift accumulation.

Figure 32. Drift behavior at node 2 using the Event Updates method

111

R2 = 0.7342

R2 = 0.4422

R2 = 0.5003

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 5
Sample Number

D
rif

t A
ng

le
 (d

eg
re

es
)

0

ASA (speed=10 degrees/sec)
ASA (speed=50 degrees/sec)

ASA (speed=100 degrees/sec)

When the ASA is used, the drift angle is maintained at a constant value that is two orders of

magnitude lower than the average drifts without update and approximately four times smaller

than the average drift when the Event Update strategy is employed.

Figure 33. Drift behavior at node 2 using the Adaptive Synchronization Algorithm (ASA)

6.1.2 Three, Four, Five and Six Nodes Setup

We have increased the number of passive participants consecutively to two, three, four and five

while maintaining the same active node (i.e. node 1, recall the hardware configuration from

Section. 4.2.3). Table 6 represents the average orientation drift observed on node 2, as the

number of passive participants increases. A slight increase in the drift value with the number of

passive participants can be seen. The ASA keeps the drift value at constant levels.

112

Table 6. Node 2 drift comparison in the 2,3,4,5,6 nodes configurations

 No Update Event Update ASA

2
R2 = 0.9829

R2 = 0.9735

R2 = 0.9534

0

30

60

90

120

150

180

210

240

0 10 20 30 40 5
Sample Number

D
rif

t A
ng

le
 (d

eg
re

es
)

No Update (speed=10 degrees/sec)

No Update (speed=50 degrees/sec)

No Update (speed=100 degrees/sec)

0

R2 = 0.511

R2 = 0.6713

R2 = 0.3671

0

2

4

6

8

10

12

14

0 10 20 30 40 50
Sample Number

D
rif

t A
ng

le
 (d

eg
re

es
)

Event U. (speed=10 degrees/sec)
Event U. (speed=50 degrees/sec)
Event U. (speed=100 degrees/sec) R2 = 0.7342

R2 = 0.4422

R2 = 0.5003

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50
Sample Number

D
rif

t A
ng

le
 (d

eg
re

es
)

ASA (speed=10 degrees/sec)

ASA (speed=50 degrees/sec)

ASA (speed=100 degrees/sec)

3
R2 = 0.9771

R2 = 0.9621

R2 = 0.9064

0

30

60

90

120

150

180

210

240

0 10 20 30 40
Sample Number

D
rif

t A
ng

le
 (d

eg
re

es
)

50

R2 = 0.6378

R2 = 0.6143

R2 = 0.4325

0

2

4

6

8

10

12

14

16

0 10 20 30 40
Sample Number

D
rif

t A
ng

le
 (d

eg
re

es
)

50

R2 = 0.5245

R2 = 0.2634

R2 = 0.472

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50
Sample Number

D
rif

t A
ng

le
 (d

eg
re

es
)

4 R2 = 0.9736

R2 = 0.948

R2 = 0.9138

0

30

60

90

120

150

180

210

240

0 10 20 30 40

D
rif

t A
ng

le
 (d

eg
re

es
)

50
Sample Number

R2 = 0.3773

R2 = 0.5351

R2 = 0.3673

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50
Sample Number

D
rif

t A
ng

le
 (d

eg
re

es
)

R2 = 0.3703

R2 = 0.296

R2 = 0.5973

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40 50
Sample Number

D
rif

t A
ng

le
 (d

eg
re

es
)

5

R2 = 0.7671

R2 = 0.7604

R2 = 0.7627

0

30

60

90

120

150

180

210

240

0 10 20 30 40 5
Sample Number

D
rif

t A
ng

le
 (d

eg
re

es
)

0

R2 = 0.3635

R2 = 0.463

R2 = 0.2591

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 5
Sample Number

D
rif

t A
ng

le
 (d

eg
re

es
)

0

R2 = 0.1966

R2 = 0.2148

R2 = 0.4343

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40 50
Sample Number

D
rif

t A
ng

le
 (d

eg
re

es
)

6 R2 = 0.9711

R2 = 0.9578

R2 = 0.8759

0

30

60

90

120

150

180

210

240

0 10 20 30 40
Sample Number

D
rif

t A
ng

le
 (d

eg
re

es
)

50

R2 = 0.6224

R2 = 0.8544

R2 = 0.5461

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 5
Sample Number

D
rif

t A
ng

le
 (d

eg
re

es
)

0

R2 = 0.6762

R2 = 0.5028

R2 = 0.7524

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40 50
Sample Number

D
rif

t A
ng

le
 (d

eg
re

es
)

113

6.1.3 Scalability Regarding the Number of Passive Participants

To investigate the scalability of the ASA, regarding the number of passive nodes, we define a

metric analyzing the relationship between the number of nodes in the system and the measured

orientation drift values.

Let ψi be the average drift value over all the participants, when i+1 participants are in the

system. Without loss of generality, let us consider an action velocity of 100 degrees per second.

In the case of a two-participant setup, results show that the average drift, ψ1 equals 2.83 degrees,

while in the case of a six-participant setup the average drift, ψ5 equals 3.17 degrees. An

algorithm with a low degree of scalability would have at least a linear increase in drift, i.e., ψn

would equal n* ψ1. On the other extreme, a high degree of scalability would mean ψn ≈ ψ1.

Using this metric, in the six-participant setup, a low degree of scalability would translate to ψ5

equaling 5*ψ1 or 14.15 degrees. However, the experimental results and trend lines in Figure 34

show that ψ5 ≈ ψ1. Thus, the algorithm gives promising results in terms of scalability regarding

the number of passive participants.

114

R2 = 0.7858

R2 = 0.7352

R2 = 0.8953

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7

Number of Nodes

A
ve

ra
ge

 D
rif

t A
ng

le
 (d

eg
re

es
)

ASA (speed=10 degrees/sec)
ASA (speed=50 degrees/sec)
ASA (speed=100 degrees/sec)

Figure 34. Orientation drift behavior as the number of passive participants increases (ASA)

In Figure 34, the average drift is potted as a function of the number of participants in the

collaborative VE. The trend lines have been plotted using linear regression. The slope of the

regression line increases slightly with the action speed. At 100 degrees/sec the slope value is

0.105 and it decreases to 0.097 and further to 0.021 for action speeds of 50 and 10 degrees/sec

respectively. In the current scope of the experimental results, this shows that the ASA algorithm

and the data distribution scheme are slightly sensitive to the network delay.

6.2 Varying the Number of Active Participants

Starting with the same configuration of six nodes, we have triggered active participants one by

one, up to the extreme case when each node was active. Two of the participants were modifying

115

the position of the 3D virtual objects using Polaris position tracking sensors while the other four

were manipulating the objects using GUIs. Each participant manipulates its own object.

6.2.1 Two, Three, Four, Five and Six Active Participants

Figure 35 illustrates the orientation drift value for a virtual object, as the number of active

participants in the distributed environment increases, without any consistency management

scheme. To be able to compare the results when active nodes join the VE, we have computed the

orientation drift for one virtual object as displayed by node 2. This is then the drift between node

1 and node 2 experienced as a consequence of an increase in the number of active participants.

0

30

60

90

120

150

180

210

240

270

300

330

0 50 100 150 200 250
Sample Number

D
rif

t A
ng

le
 (d

eg
re

es
)

No Update (speed=10 degrees/sec)
No Update (speed=50 degrees/sec)
No Update (speed=100 degrees/sec)

Figure 35. Orientation drifts between node 1 and node 2 without compensation when the number

of active participants increases from 2 to 6.

116

The drift behavior on node 2, while the number of active participants increases, can be compared

with the drift behavior on node 2 in the passive-participant setup (see Table 6. first column). As

we can see the drift accumulates faster and reaches higher levels when the participants become

active. Moreover, the drift variations are also higher compared with the passive-participant setup.

0

30

60

90

120

150

180

210

240

270

300

330

0 25 50 75 100

Sample Number

D
rif

t A
ng

le
 (d

eg
re

es
)

Speed=10 degrees/sec
Speed=50 degrees/sec
Speed=100 degreees/sec

Using the information from the CPO to update the orientation of the 3D object, the value of the

drift is significantly reduced as illustrated in Figure 37.

Figure 36 Drift behavior No Compensation: 6 active (left) vs. 6 passive participants (right)

117

R2 = 0.6027

R2 = 0.6758

R2 = 0.6559

0

3

6

9

12

15

18

21

24

0 50 100 150 200 250
Sample Number

D
rif

t A
ng

le
 (d

eg
re

es
)

Event U. (speed=10 degrees/sec)
Event U. (speed=50 degrees/sec)
Event U. (speed=100 degrees/sec)

R2 = 0.2835

R2 = 0.4801

R2 = 0.4476

0

3

6

9

12

15

18

21

24

0 50 100 150 200 250
Sample Number

D
rif

t A
ng

le
 (d

eg
re

es
)

Event U. (speed=10 degrees/sec)
Event U. (speed=50 degrees/sec)
Event U. (speed=100 degrees/sec)

Figure 37. Event Update; 2, 3, 4, 5, and 6 active nodes

Figure 38. Event Update; 1 active + 1, 2, 3, 4, and 5 passive nodes

118

In comparison with the behavior of the algorithms on passive nodes setup (Figure 38), when the

nodes become active (Figure 37) the amount of data exchanged in the network creates a certain

amount of jitter. Since the Event Update method does not compensate for jitter, the drift

variation increases.

Employing the ASA algorithm the drift is maintained at an almost constant average value as the

number of active participants increases. The algorithm behavior, when the number of active

participants increases, is similar to the behavior when the number of passive participants

increases.

R2 = 0.1411

R2 = 0.1647

R2 = 0.4472

0

1

2

3

4

5

6

0 50 100 150 200 250
Sample Number

D
rif

t A
ng

le
 (d

eg
re

es
)

ASA (speed=10 degrees/sec)
ASA (speed=50 degrees/sec)
ASA (speed=100 degrees/sec)

Figure 39. ASA with 2,3,4,5, and 6 active nodes

119

Figure 39 represents a plot of the drift values as the number of active participants increases from

2 to 6 while the ASA delay compensation algorithm is employed. For comparison, Figure 40

represents a plot of the drift values as the number of passive participants increases in the VE.

R2 = 0.1485

R2 = 0.1833

R2 = 0.2855

0

1

2

3

4

5

6

0 50 100 150 200 250
Sample Number

D
rif

t A
ng

le
 (d

eg
re

es
)

ASA (speed=10 degrees/sec)
ASA (speed=50 degrees/sec)
ASA (speed=100 degrees/sec)

Figure 40 ASA with 1 active + 1,2,3,4 and 5 passive nodes

6.2.2 Scalability Regarding the Number of Active Participants

When the participants become active they produce and distribute data at the same time. In other

words each active node is a server and other nodes interested (i.e. in the extreme case all)

become its clients. In our experimental setup, the extreme case is made up of 6 active nodes that

are interested in each other's data. Hence, each node is a server for the other nodes and a client

120

for them. Even if the experiment was deployed on a 100Mbps network, the amount of data

exchanged in the VE creates some jitter. This is clearly visible in the drift behavior when no

compensation is applied and when the Event Update method for compensation is used. Using the

ASA algorithm, the effects of the jitter are compensated to a significant extent.

In the case of a two-participant setup, results show that the average drift, ψ1, equals 3.2 degrees,

while in the case of a six-participant setup the average drift, ψ5, equals 3.7 degrees. In terms of

scalability regarding active participants, using the metric from Section 6.1.3, in the six-

participant setup, a low degree of scalability would translate to ψ5 equaling 5*ψ1 or 16 degrees.

However, the experimental results and trend lines in Figure 41 show that ψ5 ≈ ψ1 when ASA is

employed.

R2 = 0.9019

R2 = 0.7187

R2 = 0.8893

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 1 2 3 4 5 6 7
Number of Nodes

A
ve

ra
ge

 D
rif

t A
ng

le
 (d

eg
re

es
)

ASA (speed=10 degrees/sec)
ASA (speed=50 degrees/sec)
ASA (speed=100 degrees/sec)

Figure 41. Orientation drift behavior as the number of active participants increases (ASA)

121

The slope of the regression line increases slightly with the action speed. At 100 degrees/sec the

slope value is 0.123 and it decreases to 0.083 and further to 0.036 for action speeds of 50 and 10

degrees/sec, respectively. In the current scope of the experimental results, this shows that the

ASA algorithm and the data distribution scheme are slightly sensitive to the active nodes,

however, the sensitivity is less pronounced than in the Event Update method.

122

7. CONCLUSIONS AND OPEN PROBLEMS

7.1 Contributions and Implications of the Work

We have presented a survey of the current efforts in distributed systems architectures and in

dynamic shared state maintenance for distributed interactive VEs. We have proposed a novel

criterion for categorization of applications based on the participant interaction pattern with the

virtual components of the shared scene. Such a categorization will help system designers to make

the right choices in merging the domain requirements with the application and deployment

infrastructure capabilities.

We have proposed a consistency maintenance algorithm, denoted ASA, that combines

distributed monitoring with a distributed compensation method to maintain a consistent view of

the shared scene in a distributed VE. The ASA addresses the impact of network latency on the

shared state, in distributed interactive VE applications. By taking into account the measurement

history of the end-to-end network delays among participants, the network jitter is taken into

consideration. The decentralized computation approach for the drift values, carried out

independently at each node, improves the system’s scalability and its real-time behavior as

compared to traditional delay compensation approaches.

123

Based on the observation that the trend of VEs is to employ an increasing number of sensors and

that the sensor information must be delivered in near real-time to be useful, we have deployed

the algorithm on a customized hybrid architecture.

7.2 Potential Applications - A Distributed AR Training Prototype

In an effort to improve airway management training and respiratory system prognostics we have

developed the AR based simulator illustrated in Figure 42. Utilizing a human patient simulator

(HPS) from Medical Education Technologies Inc. (METI) combined with 3D AR visualization

of the airway anatomy and the (endotracheal tube) ETT, paramedics will be able to obtain a

visual and tactile sense of proper endotracheal intubation (ETI) procedure.

(a) (b) (c)

Figure 42. Illustration of the AR tool for training paramedics on ETI

A trainee (a-concept, b-implementation) performing a medical procedure remotely supervised by

the trainer(s) in (c).

124

The system consists of a HPS dressed with retroreflective material, an optical position tracking

system, desktop computers, a lightweight HMD worn by the participants, and the intubation

tools.

In medical training and simulation the learning potential of AR is significantly amplified by the

capability of the system to present 3D medical models in real-time, at remote locations. An in-

depth discussion of this prototype can be found in [107].

Such a system could allow paramedics, pre-hospital personnel and students to practice their skills

without touching a real patient and will provide them with the visual feedback they could not

obtain otherwise. Such a distributed AR training tool has the potential to:

• Allow an instructor to simultaneously train local and remotely located students.

• Allow students to actually "see" the internal anatomy and therefore better understand their

actions on the HPS.

An extension of the above distributed prototype, that includes deformable 3D anatomical models

[108] is under investigation.

7.3 Open Problems

The proposed algorithm is based on the assumption that the distributed system nodes are

homogeneous. This assumption is particularly important when rendering complex graphics.

125

Since the system delays are directly dependent on the type of hardware involved at each site, in

the case of a heterogeneous distributed system, additional measures must be taken.

The ASA is based on a distributed software monitoring scheme that is intrusive in its nature. We

have taken additional steps in keeping the intrusiveness at low levels by avoiding I/O operations

and keeping the measurements frequency at low.

Regarding the experiments, configurations of up to six participants were tested on the 100 Mbps

network infrastructure. It is important to mention that even if the traffic increases significantly

with each active node, the bandwidth limit has not been reached. For deployment on a wide area

network, additional testing is required.

7.4 Research Horizons

The ASA can be combined with existing prediction (e.g. convergence) algorithms to improve the

smoothness of the virtual object movement. Convergence algorithms are usually employed as a

second phase of the dead-reckoning.

An immediate improvement would be the adaptation of the algorithm for heterogeneous

distributed systems. We have presented a method to collect information from a node using the

underlying operating system calls [109]. Such a system can be combined with the ASA to

enhance the synchronization capabilities of a distributed interactive VE.

126

The ASA algorithm can be employed in new contexts. An interesting path would be the

investigation of the ASA algorithm for haptic and audio cues in a distributed VE that includes

haptic and 3D sound capabilities. Such an investigation could answer questions regarding how

auditory and haptic cues enhance distributed collaboration and multimodal perception [110].

The combination of Distributed Systems with Virtual Environments poses many open questions,

and consequently a great number of scientific challenges and opportunities.

127

APPENDIX A. QUATERNION BASICS, CORRECTION QUATERNION

128

Quaternions can be regarded as a 4-tuple consisting of a scalar component and a vector

component denoted as , where w is the scalar component of the quaternion and

 is the vector component.

z)]ky,jx,i[w,(q
rrr

=

z)ky,jx,i(
rrr

A unit quaternion q specifies a 3D rotation (Figure 43) as an axis of rotation given by the vector

component and an angle α about that axis indirectly determined by the scalar component

as:

z)ky,jx,i(
rrr

)(cos2 1 w−=α

Inverse of a quaternion

If we designate the inverse of the quaternion q as q-1
,

q-1 = 1−z)]ky,jx,i[w,(
rrr =)],,(,[

||
1

2 zkyjxiw
q

rrr
−−− ,

Figure 43. Rotation represented with quaternions

129

where |q| is the norm of q sometimes called the length of q, and can be computed as

|q| = 2222 wzyx +++

Quaternion correction

Quaternions were applied by NASA for satellite rotational maneuvers correction [111]. To

express the error between the actual orientation of a 3D object and the desired orientation, the

following equation can be used:

dae qqq 1−=

where qe, qa and qd represent the error, actual, and desired rotation respectively.

qe = [we, (i xe ,j ye, k ze)]

qa= [wa, (i xa ,j ya, k za)]

qd= [wd, (i xd ,j yd, k zd)]

Furthermore knowing that qe = [cos(αe/2), sin(αe/2)(x1, y1, z1)], the angular error can be inferred:

)]([cos2)(cos2 11
dadadadaee zzyyxxwww ++−== −−α

130

APPENDIX B. APIS AND SDKS

131

OpenGL

Since its introduction in 1992, OpenGL® has become one of the most widely used, 2D/3D

graphics API that allows development of graphical applications in hardware and software. The

version used for this project was OpenGL® v.1.2 [112]. At the time of this writing OpenGL®

v.1.5 is available. The relationship with other libraries and the VE application on a Linux based

platform is described in Figure 44.

In the development of the testbed application OpenGL was used indirectly through OpenGL

Performer™ 2.5 toolkit.

Virtual Environment Software Sandbox

The Virtual Environment Software Sandbox (VESS) is a suite of libraries developed by the

University of Central Florida's Institute for Simulation and Training [113]. VESS provides a

high-level library allowing complex virtual entities (e.g. avatars), complete with geometry and

Figure 44. Relationship between OpenGL, GLU and Linux windowing APIs

132

motion/articulation models, to be generated with a few simple lines of code. This is useful for

dynamic networked VEs, which may involve many participants. VESS provides the developer

with the ability to handle avatars at a high level and leave the details of movement, articulations,

and behaviors to the system. VESS is also designed for easy portability. Its multi-layered

architecture allows the developer to focus on the details of the application, without worrying

about the specifics of the graphics API or hardware interfaces. Thus, applications built using the

VESS libraries will be easily portable to any other platform. For this project VESS 2.0 was used.

Currently, VESS 3.0 [114] is available.

OpenGL Performer

OpenGL Performer™ [115] is a powerful and comprehensive programming interface for

developers creating real-time visual simulation and performance-oriented 3D graphics

applications. The toolkit simplifies development of applications used for visual simulation,

manufacturing, simulation-based design, virtual reality, scientific visualization, interactive

entertainment, broadcast video, architectural walk-through, and computer aided design. For this

work Open GL Performer™ 2.5 was employed. The latest major release, OpenGL Performer™

3.1.1, is built atop the industry standard OpenGL® graphics library, interoperates with OpenGL

Volumizer™, OpenGL Multipipe™ SDK, and OpenGL Vizserver™, includes both ANSI C and

C++ bindings, and is available for the IRIX® operating system, Linux®, Windows® XP and

Windows® 2000.

133

Distributed Augmented Reality Environment

DARE (Distributed Augmented/Artificial Reality Environment) is an object oriented library

which uses AR paradigms to improve human-to-human interaction, enhancing the real scene that

a person sees, with 3D computer generated objects. The initial targets of the library were AR

applications. Later, the scope was expanded to the entire Virtuality Continuum spectrum.

Currently a Beta version has been released for in-house use. The library is organized in several

packages:

• Networking. The Networking package provides a set of classes for fast development of

scalable, real-time applications on a local area network. It facilitates development of real-

time synchronization algorithms and load balancing schemes in a real-time distributed VE.

• 3D Deformation. The Deformation package provides an interface to deform 3D models.

This package is designed for anatomical models that deform based on user inputs and

interaction in order to provide enhanced interactive simulations.

• Calibration. The Calibration package provides algorithms for determining the

transformations necessary to accurately display virtual objects within a VE application.

The algorithms include eye-point determination, camera calibration, and optical distortion

calculation. The calibration algorithms can be adapted for use with any two-channel

stereoscopic display.

• Registration. The Registration package provides algorithms for placing real and virtual

objects into spatial coincidence (registration) and assessing the quality of registration. The

134

package aids in achieving superior registration by using robust optimization procedures

for pose estimation.

• Assessment. The HMD prototype assessment battery includes visual perception tests

aimed at assessing VE system parameters such as the resolution of the HMD. The human-

in-the-loop test battery currently includes a modified Landolt C Visual Acuity test as well

as a perceived contrast test (i.e. tests perceived luminance changes between a target and

background). Both these tests assess the limits of the small spatial frequency channels of

the human retina. Future tests will allow mapping of the contrast sensitivity function for

the HMD display across all spatial frequency channels of the retina.

GIMP Tool Kit

GTK+ [116] is a multi-platform toolkit for creating graphical user interfaces. Offering a

complete set of widgets, GTK+ is suitable for projects ranging from small one-off projects to

complete application suites. It's called the GIMP toolkit because it was originally written for

developing the GNU Image Manipulation Program (GIMP), but GTK has now been used in a

large number of software projects, including the GNU Network Object Model Environment

(GNOME) project. GTK is built on top of GDK (GIMP Drawing Kit) which is basically a

wrapper around the low-level functions for accessing the underlying windowing functions (Xlib

in the case of the X windows system), and gdk-pixbuf, a library for client-side image

manipulation.

135

LIST OF REFERENCES

[1] D. C. Engelbart, "Augmenting Human Intelect: A Conceptual Framework," Stanford

Research Institute SRI Project No. 3578, 1962.

[2] P. Milgram and F. Kishino, "A Taxonomy of Mixed Reality Visual Displays," IECE

Transactions on Information and Systems, vol. E77-D, No.12, pp. 1321-1329, 1994.

[3] F. Biocca, A. Tang, and D. Lamas, "Evolution of the Mobile Infosphere: Iterative design

of a high information-bandwidth, mobile augmented reality interface," presented at

International Conference on Augmented, Virtual Environments and Three-Dimensional

Imaging, ICAV3D’2001, Mykonos, Greece, 2001.

[4] R. E. Eberts and C. G. Eberts, "Four Approaches to Human Computer Interaction," in

Intelligent interfaces: theory, research, and design, P. A. Hancock and M. H. Chignell,

Eds.: North-Holland, 69-127, 1989.

[5] C. Swindells, J. C. Dill, and K. S. Booth, "System Lag Tests for Augmented and Virtual

Environments," presented at 13st ACM Symposium on User Interface Software and

Technology, San Diego, CA, 2000.

[6] MCI, "Latency statistics," vol. 2004: MCI, 2004.

[7] R. Held and N. Durlach, "Telepresence, time delay and adoption.," in Pictorial

communication in virtual and real environments, S. Ellis, K. Kaiser, and A. C. Grunwald,

Eds. London: Taylor & Francis, 232-245, 1991.

136

[8] M. Meehan, S. Razzaque, M. C. Whitton, and F. P. J. Brooks, "Effect of Latency on

Presence in Stressful Virtual Environments," presented at IEEE Virtual Reality, Los

Angeles, CA, 2003.

[9] M. Lombard and T. Ditton, "At the Heart of it all: The concept of presence.," Journal of

Computer-Mediated Communication, vol. 3, 1997.

[10] P. Verissimo and L. Rodrigues, Distributed Systems for System Architects: Kluwer

Academic, 2001.

[11] G. Coulouris and J. Dollimore, Distributed Systems Concepts and Design, 3 ed: Addison

Wesley, 2001.

[12] V. Hadzilacos and S. Toueg, "A Modular Approach to Fault-tolerant Broadcasts and

Related Problems," 1994.

[13] A. S. Tanenbaum and v. M. Steen, Distributed Systems, Principles and Paradigms. New

Jersey: Prentice Hall, 2002.

[14] G. Cabri and L. Leonardi, "Mobile-Agent Coordination Models for Internet

Applications," IEEE Computer, vol. 33, pp. 82-89, 2000.

[15] D. Gelernter, "Generative communication in Linda," ACM Transactions on Programming

Languages and Systems, vol. 7, pp. 80-112, 1985.

[16] N. Carriero and D. Gelernter, "A Computational Model of Everything," Communications

of the ACM, vol. 44, pp. 77-81, 2001.

[17] P. Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A. Ford, "TSpaces," IBM Systems

Journal, vol. 37, pp. 454-474, 1998.

[18] Sun Microsystems, "JavaSpaces Specification," Sun Microsystems 1998.

137

[19] A. Kariv, "GigaSpaces Cluster White Paper," G. T. Ltd., Ed., 2002.

[20] P. Hutto and M. Ahamad, "Slow Memory: Weakening Consistency to Enhance

Concurrency in Distributed Shared Memories," presented at 10th Int'l Conference on

Distributed Computing Systems, 1990.

[21] D. Terry, K. Petersen, M. Spreitzer, and M. Theimer, "The Case for Non-transparent

Replication: Examples from Bayou.," IEEE Data Engineering, vol. 21, pp. 12-20, 1998.

[22] A. Goscinski and W. Zhou, "The Client-Server Model and Systems," in Wiley

Encyclopedia of Electrical and Electronics Engineering, vol. 3. New York: John Wiley

& Sons, 431-451, 1999.

[23] R. L. Hyde and B. D. Fleisch, "A Case for Virtual Distributed Objects," International

Journal on Parallel and Distributed Computing, vol. 1, 1998.

[24] R. Meier and V. Cahill, "Taxonomy of Distributed Event-Based Programming Systems,"

presented at 22nd International Conference on Distributed Computing Systems

Workshops, Viena, Austria, 2002.

[25] A. Carzaniga, E. Di Nitto, D. S. Rosenblum, and A. L. Wolf, "Issues in Supporting

Event-Based Architectural Styles," presented at 3 rd International Software Architecture

Workshop, Orlando, Florida, 1998.

[26] D. Marinescu, L. Boloni, K. K. Jun, K. Palacz, and R. Sion, "The Bond Agent System

and Applications," in Agent Systems, Mobile Agents, and Applications, vol. 1882, D.

Kotz and F. Mattern, Eds.: Springer Verlag, 99-112, 2000.

[27] I. S. O. ISO, "Open systems interconnection (OSI)," 1987.

138

[28] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan, "Chord: A scalable

content-addressable network," presented at ACM SIGCOMM 2001 Technical

Conference, San Diego, CA, 2001.

[29] B. Yang and H. Garcia-Molina, "Comparing Hybrid Peer-to-Peer Systems," presented at

Proceedings of the 27th International Conference on Very Large Data Bases, San

Francisco, CA, 2001.

[30] K. Kant, R. Iyer, and V. Tewari, "On the Potential of Peer-to-Peer Computing:

Classification and Evaluation," presented at CCGrid, Berlin, Germany, 2002.

[31] K. Kant, "An Analytic Model for Peer to Peer File Sharing Networks," presented at

International Conference on Communications, Anchorage, Alaska, 2003.

[32] B. Leuf, Peer to Peer Collaboration and Sharing over the Internet: Addison Wesley,

2002.

[33] J. Lan, X. Liu, P. Shenoy, and K. Ramamritham, "Consistency maintenance in peer-to-

peer file sharing networks," presented at Workshop on Internet Applications. WIAPP

2003, San Jose, CA, 2003.

[34] Dictionary, The American Heritage® Dictionary of the English Language, fourth ed,

2000.

[35] A. Lippman, "Movie-maps: An application of the optical videodisc to computer

graphics," ACM SIGGRAPH Computer Graphics, vol. 14, pp. 32-42, 1980.

[36] S. Fisher, "Viewpoint Dependent Imaging: An Interactive Stereoscopic Display,"

presented at SPIE, 1982.

139

[37] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti, "Surround-Screen Projection-Based

Virtual Reality: The Design and Implementation of the CAVE," presented at

SIGGRAPH, 1993.

[38] M. Czernuszenko, D. Pape, D. J. Sandin, T. DeFanti, G. Dawe, and M. Brown, "The

ImmersaDesk and Infinity Wall Projection-Based Virtual Reality Displays," Computer

Graphics, vol. 31, pp. 46-49, 1997.

[39] A. R. Smith and J. F. Blinn, "Blue screen matting," presented at International Conference

on Computer Graphics and Interactive Techniques SIGGRAPH'96, New Orleans, LA,

1996.

[40] J. Rolland and H. Fuchs, "Optical Versus Video See-Through Head-Mounted Displays in

Medical Visualization," Presence: Teleoperators and Virtual Environments, vol. 9, pp.

287-309, 2000.

[41] E. Wegman, "Affordable Environments for 3D Collaborative Data Visualization," IEEE

Computing in Science & Engineering, vol. 2, pp. 68-72, 2000.

[42] F. J. Ferrin, "Survey of helmet tracking technologies," SPIE - The International Society

for Optical Engineering - Large-Screen Projection, Avionic, and Helmet-Mounted

Displays, vol. 1456, pp. 86-94, 1991.

[43] K. Meyer, H. L. Applewhite, and F. Biocca, "A survey of position trackers," Presence:

Teleoperators and Virtual Environments, vol. 1, pp. 173-200, 1992.

[44] G. Burdea and P. Coiffet, Virtual Reality Technology: Wiley Interscience, 1994.

140

[45] J. Rolland, L. Davis, and Y. Baillot, "A Survey of Tracking Technology for Virtual

Environments," in Augmented Reality and Wearable Computers, T. C. W. Barfield, Ed.:

Lawrence Erlbaum Press, 2000.

[46] J.-F. Wang, V. Chi, and H. Fuchs, "A Real-Time Optical 3D Tracker for Head-Mounted

Display Systems," presented at Symposium on Interactive 3D Graphics, Snowbird,

UTAH, 1990.

[47] E. Foxlin and N. Durlach, "An Inertial Head-Orientation Tracker with Automatic Drift

Compensation for use with HMDs," presented at VRST - Virtual Reality Software and

Technology, 1994.

[48] J. A. Farrell and M. Barth, The Global Positioning System & Inertial Navigation:

McGrawHd99 New York, 1998.

[49] A. State, G. Hirota, D. T. Chen, W. F. Garrett, and M. A. Livingston, "Superior

Augmented Reality Registration by Integrating Landmark Tracking and Magnetic

Tracking," presented at SIGGRAPH, 1996.

[50] E. Foxlin, M. Harrington, and G. Pfeipffer, "Constellation: A Wide-Range Wireless

Motion-Tracking System for Augmented Reality an Virtual Set Applications," presented

at SIGGRAPH, 1998.

[51] U. Neumann, S. You, Y. Cho, J. Lee, and J. Park, "Augmented Reality Tracking in

Natural Environments," presented at International Symposium on Mixed Reality, 1999.

[52] D. Miller and J. A. Thorpe, "SIMNET: The advent of simulator networking,"

Proceedings of IEEE, vol. 83, pp. 1114-1123, 1995.

141

[53] M. J. Zyda, D. R. Pratt, J. G. Monahan, and K. P. Wilson, "NPSNET: Constructing a 3D

Virtual World," presented at ACM Symp. on Interactive 3D Graphics, 1992.

[54] M. Zyda and S. Singhal, "The origin of Networked Virtual Environments," in Networked

Virtual Environments: Design and Implementation, S. Spencer, Ed. New York: Addison

Wesley, 19-53, 1999.

[55] GameSpy, "Massively Multiplayer Online Games The Past, The Present, and The

Future," in GameSpy, 2003.

[56] M. Capps, D. McGregor, D. Brutzman, and M. J. Zyda, "NPSNET-V: A New Begining

for Dynamically Extensible Virtual Environments," IEEE Computer Graphics &

Applications, vol. 20, pp. 12-15, 2000.

[57] C. M. Greenhalgh, J. Purbrick, and D. Snowdon, "Inside MASSIVE3: Flexible Support

for Data Consistency and World Structuring," presented at Collaborative Virtual

Environments 2000, San Francisco, CA, 2000.

[58] D. J. Roberts and P. M. Sharkey, "Maximizing Concurrency and Scalability in a

Consistent, Causal, Distributed Virtual Reality System, whilst Minimizing the Effect of

Network Delays," presented at 6th International Workshop on Enabling Technologies:

Infrastructure for Collaborative Enterprises (WET-ICE), Cambridge, Massachussetts,

1997.

[59] E. Frecon and M. Stenius, "DIVE: A scaleable network architecture for distributed virtual

environments," Distributed Systems Engineering Journal, vol. 5, pp. 91-100, 1998.

142

[60] S. Pettifer, J. Cook, J. Marsh, and A. West, "DEVA3: Architecture for a Large-Scale

Distributed Virtual Reality System," presented at ACM Virtual Reality Software and

Technology, Seoul, Korea, 2000.

[61] J. W. Barrus, R. C. Waters, and D. B. Anderson, "Locales: Supporting Large Multiuser

Virtual Environments," IEEE Computer Graphics and Applications, vol. 16, pp. 50-57,

1996.

[62] M. Fairen and A. Vinacua, "ATLAS, A Platform for Distributed Graphics Applications.,"

presented at Proc. VI Eurographics Workshop on Programming Paradigms in Graphics,

1997.

[63] D. Lee, M. Lim, and S. Han, "ATLAS - A Scalable Network Framework for Distributed

Virtual Environments," presented at 4th International Conference on Collaborative

Virtual Environments, Bonn, Germany, 2002.

[64] H. W. Holbrook, S. K. Singhal, and D. R. Cheriton, "Log-Based Receiver-Reliable

Multicast for Distributed Interactive Simulation.," presented at ACM SIGCOMM'95,

1995.

[65] G. Singh, L. Serra, W. Png, A. Wong, and H. Ng, "BrickNet: Sharing Object Behaviors

on the Net.," presented at Virtual Reality Annual International Symposium (VRAIS'95),

Research Triangle Park, North Carolina, 1995.

[66] B. MacIntyre and S. Feiner, "A Distributed 3D Graphics Library," presented at ACM

SIGGRAPH, 1998.

[67] H. Tramberend, "Avocado: A Distributed Virtual Reality Framework," presented at IEEE

Virtual Reality, Houston, TX, 1999.

143

[68] D. Schmalstieg and G. Hesina, "Distributed Applications for Collaborative Augmented

Reality," presented at IEEE Virtual Reality 2002, Orlando, Florida, 2002.

[69] M. Zyda and S. Singhal, Networked Virtual Environments, Design and Implementation.

New York: Addison Wesley, 1999.

[70] S. Singhal and M. Zyda, "Exploiting position history for efficient remote rendering in

networked virtual reality," Presence: Teleoperators and Virtual Environments, vol. 4,

1995.

[71] B. Callaghan, B. Pawlowski, and P. Staubach, "NFS version 3 protocol specification.

Request for Comments (RFC) 1813," Information Sciences Institute, Marina del Rey, CA

1995.

[72] R. Campbell, "Managing AFS: The Andrew File System," Saddle River, NJ, 1998.

[73] N. Nakamura, K. Nemoto, and K. Shinohara, "Distributed virtual reality system for

cooperative work.," NEC Research and Developement 35(4), 1994.

[74] V. Anupam and C. Bajaj, "Distributed and collaborative visualization," IEEE

Multimedia, vol. 1, pp. 39-49, 1994.

[75] C. Carlsson and O. Hagsand, "DIVE- A platform for multi-user virtual environments.,"

Computers and Graphics, vol. 17, pp. 663-669, 1993.

[76] K. Birman and K. Marzullo, "The ISIS distributed programming toolkit and the META

distributed operating system: A brief overview.," in Mission Critical Operating Systems:

Amsterdam: IOS Press, 1992.

144

[77] G. Singh, L. Serra, W. Prg, and H. Ng, "BrickNet: A software toolkit for network-based

virtual worlds.," Presence: Teleoperators and Virtual Environments, vol. 3, pp. 19-34,

1994.

[78] G. Hesina, D. Schmalstieg, A. Fuhrmann, and W. Purgathofer, "Distributed Open

Inventor: A Practical Approach to Distributed 3D Graphics," presented at ACM Virtual

Reality Software and Technology, London, 1999.

[79] E. Berglund and D. Cheriton, "Amaze: A multiplayer computer game.," IEEE Software,

vol. 2, pp. 30-39, 1985.

[80] J. A. Thrope, "The New Technology of Large Scale Simulator Networking: Implications

for Mastering the Art of Warfighting," presented at 9th Interservice/Industry Training

System Conference, 1987.

[81] M. R. Macedonia, M. J. Zyda, D. R. Pratt, P. T. Barham, and Z. Steven, "NPSNET: A

Network Software Architecture For Large Scale Virtual Environments," Presence:

Teleoperators and Virtual Environments, vol. 3, pp. 265-287, 1994.

[82] A. Katz and K. Graham, "Dead reckoning for airplanes in coordinated flight.," presented

at Tenth Workshop on Standards for the Interoperability of Defense Simulations,

Orlando, FL, 1994.

[83] D. R. Pratt, "A software architecture for the construction and management of real-time

virtual worlds.," in Computer Science. Monterey, CA: Naval Postgraduate School, 1993.

[84] M. Friedman, T. Starner, and A. Pentland, "Device Synchronization using an optimal

linear filter.," presented at Symposium on Interactive 3D graphics, Cambridge, MA,

1992.

145

[85] J. Escobar, C. Partridge, and D. Deuch, "Flow synchronization protocol.," ACM/IEEE

Transactions on Networking, vol. 2, pp. 111-121, 1994.

[86] M. Zyda and S. Singhal, "Resource Management for Scalability and Performance," in

Networked Virtual Environments: Design and Implementation, S. Spencer, Ed. New

York: Addison Wesley, 181-249, 1999.

[87] S. K. Singhal and D. R. Cheriton, "Using projection aggregations to support scalability in

distributed simulation.," presented at 16th International Conference on Distributed

Computing Systems (ICDCS), Hong Kong, 1996.

[88] H. Abrams, K. Watsen, and M. J. Zyda, "Three tiered interest management for large-scale

virtual environments.," presented at Virtual Reality Systems and Technology, Taipei,

Taiwan, 1998.

[89] P. M. Sharkey, M. D. Ryan, and D. J. Roberts, "A local perception filter for distributed

virtual environments.," presented at Virtual Reality Annual International Symposium

(VRAIS), Atlanta, GA, 1998.

[90] S. R. Ellis and B. M. Menges, "Studies of the localization of virtual objects in the near

visual field," in Wearable Computers and Augmented Reality, T. Caudell and W.

Barfield, Eds.: Lawrence Erlbaum Associates, 263-293, 2001.

[91] S. Zhou, W. Cai, F. Lee, and S. Turner, "Consistency in Distributed Interactive

Applications," presented at European Simulation Interoperability Workshop, England,

UK, 2001.

[92] X. Qin, "Delayed Consistency Model for Distributed Interactive Systems with Real-time

Continuous Media," Griffith University, Brisbane, Australia 2003.

146

[93] J. P. Rolland, F. Biocca, H. Hua, Y. Ha, C. Gao, and O. Harrisson, "Teleportal

Augmented Reality System: Integrating virtual objects, remote collaborators, and

physical reality for distributed networked manufacturing.," in Virtual and Augmented

Reality Applications in Manufacturing, S. K. Ong and A. Y. Nee, Eds.: Springer-Verlag

London Ltd, 400, 2004.

[94] D. J. Sturman and D. Zeltzer, "A survey of glove-based input," IEEE Computer Graphics

and Applications, vol. 14, pp. 30-39, 1994.

[95] i. Essential Reality, "P5 Manual," 2002.

[96] A. J. Ballardie, P. F. Francis, and J. Crowcroft, "Core Based Trees," presented at ACM

SIGCOMM, 1993.

[97] "NS-2 Network Simulator," K. Fall and K. Varadhan, Eds., 2004.

[98] "PARSEC - Parallel Simulation Environment for Complex Systems," 2004.

[99] "SSF - Scalable Simulation Framework," 2004.

[100] J. Rolland, F. Biocca, F. G. Hamza-Lup, and R. Martins, "Development of Head-

Mounted Projection Displays for Distributed, Collaborative, Augmented Reality.

Applications," MIT Presence (in press), 2005.

[101] F. Biocca and J. Rolland, "Teleportal Face-to-Face system: Teleconferencing and tele-

work augmented reality system." USA, 2000.

[102] F. G. Hamza-Lup, L. Davis, and J. Rolland, "The ARC Display: An Augmented Reality

Visualization Center," presented at International Symposium on Mixed and Augmented

Reality, Darmstadt, Germany, 2002.

147

[103] L. Davis, J. P. Rolland, F. G. Hamza-Lup, Y. Ha, J. Norfleet, B. Pettitt, and C.

Imielinska, "Enabling a Continuum of Virtual Environment Experiences," IEEE

Computer Graphics & Applications, vol. 23, pp. 10-12, 2003.

[104] N. D. I. Polaris, "Northern Digital Polaris tracking system," 2004.

[105] L. Davis, F. G. Hamza-Lup, and J. P. Rolland, "A Method for Designing Marker-Based

Tracking Probes," presented at International Symposium on Mixed and Augmented

Reality, Arlington, VA., 2004.

[106] D. Mills, "Internet Time Synchronization: The Network Time Protocol," IEEE Trans.

Communications, vol. 39, pp. 1482-1493, 1991.

[107] J. P. Rolland, L. Davis, and F. G. Hamza-Lup, "Development of a training tool for

endotracheal intubation: Distributed Augmented Reality," presented at Medicine Meets

Virtual Reality (MMVR), 2003.

[108] A. Santhanam, C. Fidopiastis, F. G. Hamza-Lup, and J. P. Rolland, "Physically-based

Deformation of High-Resolution 3D Models for Augmented Reality based Medical

Visualization," presented at 7th International Conference on Medical Image Computing

and Computer Assisted Intervention, Rennes Saint-Malo, France, 2004.

[109] F. Hamza-Lup, "A Less Intrusive System Monitoring Scheme," University of Central

Florida, School of Computer Science, Orlando, Technical Report CS-TR-04-08, 2004.

[110] M. P. Hollier, A. N. Rimell, D. S. Hands, and R. M. Voelcker, "Multi-modal

perception.," BT Technological Journal, vol. 17, pp. 35-46, 1999.

[111] J. B. Kuipers, Quaternions and Rotation Sequences. A Primer with Applications to

Orbits, Aerospace and Virtual Reality. Princeton: Princeton Univ. Press, 1998.

148

[112] M. Woo, J. Neider, T. Davis, and D. Shreiner, OpenGL(R) Programming Guide: The

Official Guide to Learning OpenGL, Version 1.2. Reading, MA: Addison Wesley, 1999.

[113] J. Daly, B. Kline, and G. Martin, "VESS: Coordinating Graphics, Audio, and User

Interaction in Virtual Reality Applications," presented at IEEE Virtual Reality, Orlando,

FL, 2002.

[114] J. Daly, B. Kline, D. Cope, and G. Martin, "Virtual Environment Software Sandbox -

User's Guide," Institute for Simulation and Training, Orlando IST-TR-03-06, 2003.

[115] SGI, "OpenGL Performer™ Programmer's Guide," SGI, Ed., 2004.

[116] T. Gale, "GTK+ 2.0 Tutorial," 2002.

149

	Dynamic Shared State Maintenance In Distributed Virtual Environments
	STARS Citation

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ACRONYMS
	INTRODUCTION
	Remote Collaboration
	Synchronicity - Consistent Dynamic Shared State
	Inconsistency Factors
	Motivation
	Research Summary
	Dissertation Overview

	BACKGROUND AND RELATED WORK
	Distributed Systems
	Interaction Models
	Coordination Models
	Consistency Models
	Data-Centric Consistency Models
	Client-Centric Consistency Models

	Architectural System Models
	From Client-Server to Distributed Object Model
	Peer-to-Peer architectures

	Real-Time Distributed Systems

	Virtual Environments - Mixed, Augmented and Virtual Reality
	Background
	Hardware Components for Interactive VEs
	3D Display Systems
	Sensors for Motion Tracking

	Distributed Interactive VEs Survey
	Distributed Interactive VEs in the Defense Industry
	Distributed Interactive VEs in the Entertainment Industry
	Distributed Interactive VEs in the Academia

	Survey of Consistency Maintenance Techniques in VEs
	Centralized Information Repositories
	Dead Reckoning Algorithms
	Frequent State Regeneration
	Resources Management Strategies
	Communication Protocol Optimization
	Visibility of Data Management
	Human Perception Limitation
	Systems Architecture

	SHARED STATE MAINTENANCE
	Distributed Interactive Virtual Environments - Application P
	Consistency Model
	Human Factors - Response Times & Sensors
	Classifying Interactive VE Applications - Action Frequency P
	The Adaptive Synchronization Algorithm
	Fixed Threshold vs. Adaptive Threshold

	Distributed Interactive VEs - System Perspective
	A Distributed System Model
	Core-Based Tree - Minimizing the Delays among Participants
	Hybrid Nodes with Real-Time Sensors
	Hybrid Data Distribution Scheme
	The Control Protocol
	Participant Joining the Interactive VE
	Participant Leaving the Interactive VE

	TESTBED COMPONENTS AND IMPLEMENTATION
	Overview
	Testbed - Hardware Components
	3D Visualization Hardware Setup - HMD & ARC
	Sensors - Polaris NDI Optical Motion Tracking System
	Nodes - Heterogeneous Workstations

	Testbed - Software Components
	Software Components Developed
	Hybrid Nodes Design

	EXPERIMENTAL DESIGN AND SETUP
	Overview
	Experimental Scenario
	Network Latency vs. Action Velocity
	Active vs. Passive Participants, Scalability
	Distributed Measurements, Assessment Method

	RESULTS AND ANALYSIS
	Varying the Number of Passive Participants
	Two Node-Setup
	Three, Four, Five and Six Nodes Setup
	Scalability Regarding the Number of Passive Participants

	Varying the Number of Active Participants
	Two, Three, Four, Five and Six Active Participants
	Scalability Regarding the Number of Active Participants

	CONCLUSIONS AND OPEN PROBLEMS
	Contributions and Implications of the Work
	Potential Applications - A Distributed AR Training Prototype
	Open Problems
	Research Horizons

	APPENDIX A. QUATERNION BASICS, CORRECTION QUATERNION
	APPENDIX B. APIS AND SDKS
	LIST OF REFERENCES

