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ABSTRACT 

 

Advances in computer networks and rendering systems facilitate the creation of distributed 

collaborative environments in which the distribution of information at remote locations allows 

efficient communication. Particularly challenging are distributed interactive Virtual 

Environments (VE) that allow knowledge sharing through 3D information.  

 

In a distributed interactive VE the dynamic shared state represents the changing information that 

multiple machines must maintain about the shared virtual components. One of the challenges in 

such environments is maintaining a consistent view of the dynamic shared state in the presence 

of inevitable network latency and jitter. A consistent view of the shared scene will significantly 

increase the sense of presence among participants and facilitate their interactive collaboration.  

 

The purpose of this work is to address the problem of latency in distributed interactive VE and to 

develop a conceptual model for consistency maintenance in these environments based on the 

participant interaction model. 

 

A review of the literature illustrates that the techniques for consistency maintenance in 

distributed Virtual Reality (VR) environments can be roughly grouped into three categories: 

centralized information management, prediction through dead reckoning algorithms, and 

frequent state regeneration. Additional resource management methods can be applied across 

these techniques for shared state consistency improvement. Some of these techniques are related 
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to the systems infrastructure, others are related to the human nature of the participants (e.g., 

human perceptual limitations, area of interest management, and visual and temporal perception). 

 

An area that needs to be explored is the relationship between the dynamic shared state and the 

interaction with the virtual entities present in the shared scene. Mixed Reality (MR) and VR 

environments must bring the human participant interaction into the loop through a wide range of 

electronic motion sensors, and haptic devices. Part of the work presented here defines a novel 

criterion for categorization of distributed interactive VE and introduces, as well as analyzes, an 

adaptive synchronization algorithm for consistency maintenance in such environments.  

 

As part of the work, a distributed interactive Augmented Reality (AR) testbed and the algorithm 

implementation details are presented. Currently the testbed is part of several research efforts at 

the Optical Diagnostics and Applications Laboratory including 3D visualization applications 

using custom built head-mounted displays (HMDs) with optical motion tracking and a medical 

training prototype for endotracheal intubation and medical prognostics. An objective method 

using quaternion calculus is applied for the algorithm assessment. In spite of significant network 

latency, results show that the dynamic shared state can be maintained consistent at multiple 

remotely located sites. In further consideration of the latency problems and in the light of the 

current trends in interactive distributed VE applications, we propose a hybrid distributed system 

architecture for sensor-based distributed VE that has the potential to improve the system real-

time behavior and scalability. 
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1. INTRODUCTION 

 

Computers and computer networks are the main ingredients in the current development of 

powerful information systems bound to be completely transformed in the near future into 

knowledge sharing systems. 

 

Knowledge is embedded in people and unlike information, knowledge creation occurs in a 

process of social interaction. As our service-based society is evolving into a knowledge-based 

society, there is an acute need for more effective collaboration and more effective knowledge 

sharing systems for use by geographically scattered people. The current communication systems 

are limited by physical factors (e.g., signal propagation time, noise) and make distributed 

interactive application challenging. The heterogeneity of the application deployment 

environment, the packet loss rate, the bandwidth limitations, traffic collisions and congestions 

are several factors that influence the latency.  

 

1.1 Remote Collaboration 

 

Current technological advances have led to an increased interest in distributed collaborative 

environments. These environments have the potential to significantly change the way activities 

(e.g. research, business, education etc.) are carried out. The latest trends in distributed 

1 



collaboration technologies allow people to move across organizational boundaries and to 

collaborate with others within/between organizations and communities. 

 

"Collaboration" is a broad area of research involving wide-reaching issues such as knowledge 

representation, interaction methods, and many others. Through collaboration individuals gain 

maximum benefit from the community of users who share similar goals.  

 

Technological advances in optical projection and computer graphics allow us to augment reality 

with computer generated three-dimensional objects. Moreover the distribution of these three-

dimensional objects at dispersed locations allows efficient communication of ideas and concepts. 

A distributed interactive virtual environment (VE) can enhance the level of this communication 

by transforming current computer networks into navigable and populated 3D spaces.  

 

As the pioneer of computer supported collaborative environments, D. C. Engelbart mentioned 

[1]: "Three people working together in this augmented mode seem to be more than three times as 

effective in solving a complex problem as is one augmented person working alone--and perhaps 

ten times as effective as three similar men working together without this computer-based 

augmentation. It is a new and exhilarating experience to be working in this independent-parallel 

fashion with some good men. We feel that the effect of these augmentation developments upon 

group methods and group capability is actually going to be more pronounced than the effect 

upon individuals methods and capabilities." 
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This research concentrates on a subset of computer supported collaborative environments, 

particularly environments in which collaboration is achieved through interactive mixed and 

virtual reality paradigms i.e. distributed interactive VE. The application domain for these 

environments range from entertainment and business to engineering and medicine including the 

entire virtuality continuum [2] and evolving into potential infospaces [3]. 

 

1.2 Synchronicity - Consistent Dynamic Shared State 

 

Have you ever been amazed by the perfect flight formation of a flock of birds? Where does the 

power of a set of small entities come when they act together as one, at a particular moment in 

time? Synchronicity is the answer and the examples are unlimited. 

  

Restricting the synchronization application domain to remote collaboration and furthermore to 

distributed interactive VE we can replace the synchronization paradigm with another one, the 

consistent dynamic shared state.  From a virtual environment perspective the dynamic shared 

state constitutes the changing information that multiple, distributed machines must maintain 

about the shared virtual components of the environment. From a distributed systems perspective 

consistency is an inherent problem due to data replication. Several consistency models have been 

proposed in the literature and will be investigated on the course of this work.  

 

Now, let's briefly analyze these words: "interactive remote collaboration". The fact that we talk 

about "collaboration" implies that two or more entities will be involved in the experience. From 
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the perspective of this work we will restrict these entities to human beings, which bring in 

important issues related to human factors (e.g. perceptual, conceptual, and motor cycle time) [4]. 

"Remote" comes into play and brings in the main advantages and the motivations for building 

such systems (e.g. reduced travel time and costs, as well as reduced risks). "Interactive" implies 

that each participant is able to make its actions visible to the other participants in real time and 

hence the need for consistency. Actions based on inconsistency judgments are undoubtedly 

inconsistent. 

 

1.3 Inconsistency Factors 

 

The interactive and dynamic nature of a collaborative VE is constrained by many factors 

including latency.  Latency generators in distributed interactive VE can be roughly grouped in 

two categories: computing system latency and network infrastructure latency. 

 

In a VE, in describing the equipment (e.g. head-mounted display) that provides stereoscopic 

visualization and body parts tracking, the latency is increased with the time elapsed from 

detecting the body part motion to the time the appropriate image is displayed on the appropriate 

interface. The computing system latency includes rendering delays (e.g. image-generation delay, 

video sync delay, frame delay and internal display delay), mismatches in data speed between the 

microprocessor and input/output devices, sensor delays (e.g. tracker delays) and inadequate data 

buffers [5]. However, rapid advances in hardware technology are making computing system 
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latency much smaller than the one caused by the network infrastructure. Hence, one of our 

focuses is reducing the network's contribution to potential inconsistencies. 

 

In a network, latency a synonym for delay, is an expression of how much time it takes for a 

packet of data to get from one designated point to another. The contributors to network latency 

include:  

 

• Propagation time: This is simply the time it takes for a packet to travel between one place 

and another, close to the speed of light. Today and probably in the near future it will be 

impossible for the signal to travel at the speed of light. Even if that would be possible it 

would take 16 ms for the light to make the trip from coast to coast.   

• Transmission time: The medium itself (whether optical fiber, wireless, or some other) 

introduces some delay. The size of the packet introduces delay in a round trip since a large 

packet will take longer to receive and return than a short one.  

• Router and other processing times: Each gateway node takes time to examine and possibly 

change the header in a packet (e.g. changing the hop count in the time-to-live field).  

• Other computer and storage delays: Within networks at each end of the journey, a packet 

may be subject to storage and hard disk access delays at intermediate devices such as 

switches and bridges. (in backbone statistics, however, this kind of latency is probably not 

considered.)  
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Table 1 gives the MCI (UUnet) average backbone latency between US and different countries for 

the past year [6]. 

 

Table 1. MCI Backbone Latency Statistics in (ms) 

 2004 2003       

  

 
  

 
 

 
  

Hong Kong to US 196.031 200.98 179.865 168.785 153.485 157.28 159.3 152.79 
Singapore to US 214.553 206.62 208.585 217.085 211.80 207.80 207.075 206.375
Australia to US 165.816 169.49 173.155 160.55 162.615 163.27 163.935 163.69 

Panama to US 59.997 66.45 66.27 68.51 64.99 64.19 69.69 72.9 
Argentina to US 147.991 150.37 151.65 155.36 153.13 153.46 151.07 150.89 

Chile to US 114.597 118.76 125.07 119.18 120.26 120.43 148.64 169.17 
 

 

Factors that affect latency are the network infrastructure bandwidth, traffic congestion, error 

rates and communication protocol characteristics.  

 

The theoretical bandwidth is the maximum capacity of a communication line. While theoretical 

peak bandwidth is fixed, actual or effective bandwidth varies and can be affected by high 

latencies. Too much latency in a short period of time can create a bottleneck that prevents data 

from "filling the pipe", thus decreasing effective bandwidth.   

 

Another latency factor is congestion. In the points of congestion, packets will be stored for 

limited periods of time in the communication infrastructure (i.e. buffers) and sometimes dropped 
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if the storing space is exceeded. The latency resulting in such cases is very hard to predict and 

compensate.  

 

Latency is affected by the signal-noise ratio which translates to errors. Errors influence the 

packet loss at different levels from the physical level up to the application level in the protocol 

stack. Error detection and correction algorithms are implemented at different levels and have a 

major impact on latency.  

 

The higher level protocols used for communication influence the latency too. Over IP networks 

the UDP (User Datagram Protocol) simulates a packet switching connection with best effort. The 

packets are sent from source to destination without acknowledgement, thus they may arrive out 

of order or they might not arrive at all (packets may take different paths to arrive at the 

destination). Some applications can cope with this scenario (e.g. video streaming, chat etc.) The 

TCP simulates circuit switching (similar to a phone connection). Once the connection is 

established all packets from source to destination follow the same path and each packet is 

acknowledged by the destination. If a packet is not acknowledged it must be resent. TCP 

provides a more reliable connection at the expense of latency if the connection between the 

source and destination is not reliable. 

 

Closely related to the network latency is the network jitter which refers to the variation in 

network latency. Under high jitter conditions, packets are not received at a steady rate at the 

destination even if they were transmitted at fixed intervals from the source. 
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1.4 Motivation 

 

Envision a world where people from remote locations actively participate in a live three-

dimensional experience instead of just watching a broadcast. Imagine being able to learn 

concepts by manipulating three-dimensional objects that represent those concepts. 

 

One of the challenges in distributed interactive VEs is maintaining a consistent view of the 

shared state. It is only recently that researchers have begun to examine systematically the effects 

of consistency on the sense of presence. A consistent view in a shared scene may facilitate 

participants interaction and thus significantly increase the sense of presence among them [7, 8]. 

One way in which interaction is related to presence is its ability to strengthen participant's 

attention and involvement [9].  

 

Virtual Reality (VR) environments and more importantly Mixed Reality (MR) (i.e. including 

Augmented Reality) environments must bring in the loop human users which interact through a 

wide range of electronic motion sensors and devices. This work aims at improving distributed 

interactive VE spanning the entire virtuality continuum by proposing a novel criterion for 

categorization of distributed VE applications as well as an algorithm and a distributed system 

architecture for ameliorating the effects of latency. 
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1.5 Research Summary 

 

We address the problem of latency in distributed interactive VE and develop a conceptual model 

for consistency maintenance in these environments based on the participant's interaction model. 

 

Our specific objectives are: 

• A classification of the distributed interactive virtual (MR/VR) applications based on the 

participant interaction frequency. 

• The design, implementation and assessment of a distributed dynamic shared maintenance 

algorithm for latency compensation. 

• A hybrid distributed system architecture and data distribution scheme for interactive VE 

containing real-time sensors. 

 

1.6 Dissertation Overview 

 

Chapter 2 gives an overview of distributed systems paradigms and of the technologies for 

building VEs. We advance the notion of dynamic shared state in distributed VR environments 

and the related research efforts. A brief description of the fundamental models and paradigms for 

distributed systems is provided in Section 2.1. The most relevant architectural systems models 

are further investigated. Section 2.2 concentrates on the technologies involved in the 

development of VEs. The state of the art in three dimensional display devices and tracking 
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systems as well as the challenges for building interactive VEs are synthesized. The research 

towards shared state maintenance in distributed interactive VEs has passed through various 

stages in its development. Section 2.3 contains a survey of the dynamic shared state maintenance 

techniques for VE. 

 

A theoretical formulation of the consistency problem within a distributed interactive simulation 

is presented in Chapter 3 which leads to a broader conceptualization of the consistency paradigm 

and a novel categorization criterion for participant interaction in distributed VEs. We analyze a 

distributed interactive environment from two perspectives: the application perspective Section 

3.1 and the overall system perspective Section 3.2. A classification of the interactive VE 

applications is proposed based on the participants' interaction patterns. The proposed adaptive 

synchronization algorithm follows as well as a conceptual architecture for sensor-based 

distributed interactive VE. 

 

Chapter 4 is dedicated to the hardware and software implementation and starts with a system 

overview in Section 4.1, followed by the testbed hardware and software description in Sections 

4.2 and 4.3, respectively.  

 

The experimental design and setup is described in Chapter 5 followed by the experimental results 

and analysis in Chapter 6. 
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The research contributions, the implications and limitations of the work as well as proposed 

directions for further research are summarized in Chapter 7, together with a medical training 

application prototype that would benefit from this work. 
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2. BACKGROUND AND RELATED WORK 

 

2.1 Distributed Systems 

 

A distributed system is a collection of (possibly heterogeneous) nodes whose distribution is 

transparent to the user so that the system appears as one local machine. The distribution 

transparency is in contrast to a network, where the user is aware that there are several machines, 

and their location, storage replication, load balancing and functionality are not transparent. 

 

It is hard to capture all aspects of a distributed system in one definition. A more feasible 

approach is to discuss distributed systems referring to specific characteristics of distribution. One 

characteristic is the presence of a computer network. Such a system is built up from components 

that communicate and coordinate their actions by passing messages. The main characteristics of 

distributed systems are: openness, resource sharing, concurrency, modularity, scalability, 

transparency and graceful degradation [10]. The concurrency of components, the lack of a global 

clock and the independent failure of components relate the concept of distribution to disciplines 

such as fault-tolerance, security, real-time, system management. 

 

As distributed networks become faster and parallel machines tend to look more like fault-tolerant 

distributed systems, distributed computing and parallel computing tend to be viewed as one 

concept characterized by concurrency. 
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2.1.1 Interaction Models 

 

Interacting processes perform all the activity in a heterogeneous distributed system [11]. At each 

point in time there are an arbitrary number of active processes over a fixed or variable number of 

physical nodes. Each of these processes has a set of data that it can access. The communication 

performance and the lack of a global clock are the most important limiting factors that have an 

impact on the processes’ interactions.  Two important interaction models can be distinguished: 

synchronous and asynchronous. We can also consider a hybrid, quasi-synchronous model. 

 

Synchronous distributed systems have several important constraints [12]: 

• Each message exchanged among the distributed system's nodes is received within a known 

bounded time 

• The time to execute each step of a process has a known lower and upper bound 

• There is a local clock for each process with a known drift rate from the real time due to 

hardware differences. 

 

At the other end on an asynchronous distributed system: 

• There is no bound on the message transmission delays 

• From the process execution point of view each process may take an arbitrary amount of 

time 

• There are no bounds on the clocks’ drift rates. 
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A synchronous distributed system has several advantages over the asynchronous one. First the 

processes are kept in synchronization with each other; they are progressing in a lockstep fashion. 

Second, more robust algorithms can be designed since the level of determinism is higher than in 

an asynchronous system. On the other end the asynchronous design is an attractive model 

because it has no timing constraints. Timing constraints are sometimes hard to meet because of 

the infrastructure limitations (e.g. limited network bandwidth and network latency). However, 

the weakness of the model consists in the fact that it does not allow interaction in real-time. 

Quasi-synchronous design is a hybrid design in which synchronization does not occur at a fixed 

time interval as in the fully synchronous one. Each node runs asynchronously until it needs to 

coordinate its activity with another node.  At this point synchronization is necessary.  

 

Since the research described in this dissertation revolves around distributed interactive virtual 

environments the synchronous and the quasi-synchronous design are of particular interest. 

 

2.1.2 Coordination Models 

  

Besides interaction, another fundamental model of a distributed system is the coordination 

model. The coordination model is closely linked with several characteristics of a system like 

scalability, architecture and performance. A distributed system brings the advantages of data 

and/or computation distribution. Any computation aspect is transparently viewed by the user as a 

service. While centralized services, data and algorithms impose scalability limitations [13], 

distribution ameliorates these problems at the expense of increased system complexity. 
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Centralized services are implemented by means of a single server running on a specific node in 

the system. Obviously the server will become a bottleneck as the number of users grows. 

Centralized data has the same effect on the scalability potential of a system. In a large 

distributed system, a significant number of messages are routed over many lines. From a 

theoretical point of view, the optimal way is to collect information about the load on all nodes 

and lines, and then run a graph theory algorithm to compute the optimal routes. However 

collecting and transporting all the input and output information would overload the system and 

would lead to performance degradation. Distributed services and data approach allows the 

improvement of the scalability attribute of a system. However in this case, the coordination 

model is the source of the increased system complexity. 

 

A taxonomy of the coordination models for mobile agents is given by [14]. The taxonomy can be 

applied on a general distributed system if we view each process as being an agent. 

 

Table 2. Coordination Models 

 Temporal 
 Coupled Uncoupled 

Coupled Direct Mailbox 
 

Referential 
Uncoupled Meeting -oriented Generative communication 

 

 

• In the direct coordination model the processes are coupled from the referential and 

temporal aspect, i.e. the processes that are communicating know about each other and they 

run at the same time. This is the “strongest” coordination model. 
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• The Mailbox coordination model allows temporal uncoupling of processes, i.e. even if the 

processes know about each other, they do not have to run at the same time hence they 

exchange messages in a mailbox fashion. 

• Meeting based systems are usually implemented using events in a publish/subscribe 

fashion, i.e. even if the processes do not know about each other (are anonymous), they 

participate at the same time in a communication session. 

• Generative communication is the “weakest” coordination model from the referential and 

temporal point of view. Generative communication was introduced in the Linda 

programming environments [15, 16]. In this case processes make use of a shared persistent 

data space of tuples. Later IBM released an implementation of the tuple-space IBM T-

Spaces [17]. Other implementations are JavaSpaces [18] and GigaSpaces [19] sometimes 

referred as space based middleware.  

 

A distributed interactive VE will most likely use a direct (strong) model in which coordination is 

achieved through message passing.  

 

2.1.3 Consistency Models 

  

Data replication is one of the most important issues in distributed systems. Particularly in a 

distributed VE data are replicated to enhance reliability and improve performance. Two issues 

arise, the first issue is related to the actual distribution of updates, which concerns placement of 

replicas and the second issue is how replicas are kept consistent. 
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2.1.3.1 Data-Centric Consistency Models 

 

Data-centric consistency models aim at providing a system wide consistent view on a data store 

on which several concurrent processes may perform updates. The consistency models range from 

strict consistency, where any "read" operation on a data item returns a value corresponding to the 

result of the most recent "write", to weak consistency which enforces consistency on a group of 

operations not on individual "reads" and "writes". 

 

An important model in-between is the causal consistency [20] which makes a distinction 

between events that are potentially causally related and those that are not. In other words, actions 

(i.e. "writes") that are potentially causally related must be seen by all participants in the same 

order. Concurrent actions (i.e. "writes") may be seen in a different order by different participants. 

Implementing causal consistency requires keeping track of which participants (i.e. processes) 

have seen which actions (i.e. "writes"). It means that a dependency graph of which action is 

dependent on which other action must be constructed and maintained. 

 

2.1.3.2 Client-Centric Consistency Models 

 

Client-centric consistency models originate from the work on the Bayou database system [21]. In 

essence, this model of consistency provides guarantees for a single client concerning the 

consistency of access to a data store by that client. No guarantees are given concerning 

concurrent accesses by different clients. The client centric model enhances the eventual 
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consistency using "Monotonic Reads and Writes" as well as "Writes Follow Read" and "Read 

Your Writes" consistency. Since the constraints on consistency are relaxed the client centric 

consistency model may be used in a mobile environment. 

 

2.1.4 Architectural System Models 

 

The architectural models are closely linked with the coordination and consistency models. The 

strong coordination model is usually implemented on client-server architectures while the weak 

coordination model is associated with the atomistic peer-to-peer architectures. The diversity of 

applications makes developers take an architectural approach that falls in between these ranges. 

 

In Chapter 3 we propose a novel architecture and data distribution scheme for sensor-based 

distributed interactive VE that falls in-between the atomistic peer-to-peer model and the 

traditional client-server model.  Each node is autonomous and fully manages its resources and 

connectivity. The dynamic behavior of the nodes can be dictated by the participants that 

manipulate the virtual components of the environment through these sensors (e.g. motion 

tracking sensors). 

 

In what follows we briefly discuss the most popular architectural approaches. The scope of this 

discussion is to give an overview of the advantages and disadvantages brought by different 

architectures as they pertain to the development of distributed interactive applications.  
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2.1.4.1 From Client-Server to Distributed Object Model 

 

An ideal system architecture does not exist; it is usually driven by the application domain and 

users requirements. The Information Technology (IT) industry has been practicing a simple form 

of client/server (C/S) computing since the initial foundation of the mainframe. A mainframe host 

and a directly connected terminal represent a one-tier C/S system. In the two-tier C/S 

architecture, the client communicates directly with the server, commonly a database server. The 

application or business logic either resides on the client side or on the database server in the form 

of stored procedures. Discussions on the C/S model can be found in [22].Two-tier C/S model 

first began to emerge with the applications developed for local area networks in the late eighties 

and early nineties, and was primarily based upon simple file sharing techniques. C/S based 

systems for file sharing like: SUN Network file Systems, Andrew File Systems (AFS) as well as 

a variation of AFS called CODA, developed at Carnegie Mellon University are compared in 

[13]. 

 

Fat Clients and Fat Servers  

The two-tier model initially involved a non-mainframe host, (a network file server) and an 

intelligent "fat" client where most of the processing occurred. This configuration did not scale 

well however it was enough to facilitate large or even mid-size information systems. With the 

emergence of the Graphical User Interfaces (GUIs), client component became more complex 

("fat") and required additional computational power. Moreover, the network "footprint" using fat 
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clients, became very large affecting the scalability of the systems running on a limited 

bandwidth.  

 

An alternative "thin" client / "fat" server configuration was introduced. The user invokes 

procedures stored at the database server. The "fat" server model, is more effective in gaining 

performance, because the network footprint, although still heavy, is lighter than the fat client 

approach. The down side of this approach is the stored procedure dependency. This dependency 

had a negative impact on the business logic's flexibility since a change in the business logic 

implies changes in each database containing the procedure. Two-tier (C/S) systems could not 

scale beyond several hundred users. Overall, these architectures are typically not well suited for 

distributed interactive applications.  

 

The N-Tire Model, Middleware 

As the C/S model continued to evolve, more sophisticated multi-tier solutions appeared where 

client-side computers began to operate as both clients and servers. Currently, the industry 

appears to be rapidly moving toward N-Tier architectures. N-Tier computing accomplishes a 

synergistic combination of computing models, by providing centralized common services in a 

distributed environment. The architecture typically leans heavily upon object oriented 

methodologies to gain as much flexibility and interchangeability as possible. The distributed 

object systems represent the ultimate generalization of the C/S model [23] and a multitude of 

frameworks and tools have been proposed and have evolved in what is known today as 

middleware. 
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Middleware is connectivity software that consists of a set of enabling services that allow multiple 

processes running on one or more machines to interact across a network. In a way, middleware 

has evolved from a software point of view in the same manner as the client-server applications 

have evolved from 2-tier to N-tier architectures. This evolution was necessary for supporting the 

development of complex applications on top of heterogeneous networks. Middleware can be 

divided into three classes: 

• Event-Based Middleware where the focus is on distributed systems exhibiting event-based 

architectural style. This class is particularly suited to the construction of non-centralized 

distributed applications that must monitor and react to changes in their environment. A 

taxonomy of the event-based middleware can be found in [24] and descriptions of the 

issues with event-based middleware are presented in [25] .  

• Message Oriented Middleware is a specific class of middleware that supports the 

exchange of general-purpose messages in a distributed application environment. MOM 

supports data exchange and request/reply style interaction by publishing messages and/or 

message queuing in a synchronous and asynchronous manner [26]. 

• Object Based Middleware offers synchronous, typed communication between components 

of a distributed program. Developed out of the need to extend the Object-Oriented 

programming paradigm to distributed systems, the middleware consists of a mechanism to 

allow methods to be invoked on remote objects, plus services to support the naming and 

location of objects in a system-wide manner (e.g. Java RMI/JINI, CORBA, Microsoft’s 

DCOM).  
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The evolution from simple client-server to complex middleware is the effect of the proliferation 

of distributed applications is a wide range of domains. While numerous lessons can be learned 

from the latter developments, distributed interactive VEs design entail particular attention.  The 

interactivity of such an environment is affected by the overall system latency. The latency is 

increased by the software complexity; therefore a middleware approach might not be the best 

solution for a distributed interactive VE. 

  

We continue our system architecture review with a brief discussion of the controversial peer-to-

peer architecture and the advantages/disadvantages brought to the distributed collaborative 

environments arena. 

 

2.1.4.2 Peer-to-Peer architectures 

 

The peer-to-peer (P2P) technology enables a combination of distributed storage to meet peak 

demands without saturation and the replication of frequently requested information in locations 

nearer larger groups of users. P2P assumes end-to-end connectivity, whether this connection is 

entirely unmediated or partially assisted by centralized services. A P2P distributed system 

containing "n" nodes requires (n2-n)/2 connections hence it has an upper bound on the number of 

connections of O(n2). 

 

Applications based on peer-to-peer (i.e. point-to-point) (P2P) architectures came into existence 

relatively late, even if the potential to build them on such architectures existed since ISO/OSI 
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[27] was defined. Some of the most successful examples are Gnutella, Napster, Pointera, 

FreeNet, Chord [28] used mainly for file distribution. A comparison is available in [29]  and a 

comprehensive taxonomy of P2P applications and platforms is introduced in [30]. An analytical 

model for P2P file sharing system, based on random-graph theory, is proposed in [31].  

 

From an architectural point of view Leuf [32] categorizes P2P platforms on a scale ranging from 

the Atomistic (AP2P) model to the User Centric (UCP2P) and Data Centric (DCP2P) models. In 

the AP2P each node is autonomous and fully manages its own resources and connectivity. For 

peer-discovery a broadcast protocol is used to send a query to join while awaiting a response. 

The UCP2P adds to the basic atomistic model a form of central server mediation. In its simplistic 

form the server component adds a directory based on unique user identifier to simplify the way 

nodes find each other. Clients register with the directory service to announce their availability. 

The DCP2P is similar with the UCP2P with the distinction that the central server maintains an 

index over available resources, not individual users. 

  

Some of the advantages of P2P architectures as related to distributed interactive VEs are: 

geographical locality, they can provide data, resources and services where they are needed; less 

resource and central administration bottlenecks, initial setup of peer workgroups by the 

participants is easy, project groups can form and change quickly. Moreover the network 

fragmentation attribute allows direct peer connectivity, dynamically forming virtually connected 

interest groups as users gravitate towards a common purpose. 
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The main disadvantage of the peer-to-peer model is the complexity of the control. Since 

resources and users are distributed it is difficult to collect and generate a unified view of the 

entire system at particular moments in time. As related to distributed interactive VEs, issues with 

consistency are inherent in systems that lack central control. A recent study of consistency issues 

in P2P systems can be found in [33]. 

 

In spite of the disadvantages that the peer-to-peer architecture carries, its use in distributed 

interactive VEs comes from the potential of direct communication between two nodes. The fact 

that the information does not have to pass through a central server is in favor of the 

interactive/near real-time behavior of the environment.  

 

2.1.5 Real-Time Distributed Systems 

 

In interactive applications participants make their judgments according to the situation presented 

to them by the human-computer interfaces. Their actions are spontaneous and random which 

implies that these applications should run in real-time or at least at interactive speeds. In such a 

system, the correctness of a computation is defined both in terms of the logical results and the 

time at which they are provided.  

 

“A Real-Time System is a system whose progression is specified in terms of timeliness 

requirements dictated by the environment. Real-Time is not about having a lot of bandwidth and 

computational power, and even if it were, we would always find ways of exhausting it.” [10]  
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There is confusion in associating real-time concept with performance. That is because real-time 

is not necessarily about performance but more about predictability. If a system executes all its 

actions within the necessary (i.e. predetermined) amount of time and if its behavior is consistent, 

then the system is real-time. 

 

Advances in sensors and computer networks have triggered an increase in the number of 

potential interactive VEs that entail large amounts of information from external devices (e.g. 

motion tracking systems). These sensors capture information in real time and for interactive 

behavior the distributed system has to disseminate the data in real-time. As we pointed out in 

Section 1.3 the latency inherent in the system infrastructure does not allow real-time data 

distribution however we can take advantage of the human perceptual limitations to develop 

useful distributed interactive VEs. 

 

2.2 Virtual Environments - Mixed, Augmented and Virtual Reality  

 

2.2.1 Background 

 

Introduced by Milgram [2] in 1994 the Reality-Virtuality Continuum paradigm allows 

categorizations of systems which employ virtual reality techniques. Systems based on this 
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paradigm range from those that completely create and/or recreate an environment to those that 

augment the real environment with synthetic (virtual) components. 

 

Definition: "Virtual Reality (VR) paradigm defines a computer simulation of a real or imaginary 

system (a virtual world) that enables a user to perform operations on the simulated system and 

shows the effects in real time"  [34].  

 

VR environments require immersive displays, which only provide a synthetic view of the world 

[35-38]. On the other hand, the Mixed Reality (MR) paradigm is associated with systems used to 

enhance the perception of the real world (Augmented Reality, AR) or the perception of the virtual 

world (Augmented Virtuality, AV). Visually, AR means that the real scene a person sees is 

augmented with computer-generated objects. These virtual objects are seen by the participant 

(e.g. using special displays) in such a way that the computer generated information appears in a 

specific location (e.g. superimposed or attached) with respect to the real objects in the scene. 

 

On the other hand, AV means that the virtual scene a person sees is augmented with real objects. 

A common technique for AV is blue-screening or chroma-keying [39]. Chroma keying is used to 

create an overlay effect e.g. to insert a false background, such as a weather map or scenic view, 

behind the real object. The real object is filmed against a background having a single color or a 

relatively narrow range of colors, usually in the blue or green. When the phase of the chroma 

signal corresponds to the preprogrammed state or states associated with the background color, or 

range of colors, behind the real object, the signal from the alternate i.e. false, background is 
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inserted in the composite signal and presented at the output. In this way the virtual scene is 

augmented with a real object. Figure 1 describes how real and virtual worlds can be combined in 

different proportions.   

 

Mixed Reality (MR) 

Real 
 Environment 

Augmented 
 Reality (AR) 

Augmented 
 Virtuality (AV) 

Virtual 
Environment  

 Figure 1. Virtuality Continuum 

 

Since MR is an open interval between completely real and completely virtual, to capture the 

entire spectrum of applications that involve virtual components we refer to MR/VR 

environments as VEs. In what follows we describe the main hardware components used in the 

development of an interactive distributed VE.  

 

2.2.2 Hardware Components for Interactive VEs 

 

The first design decision in building an interactive VE is finding the way to accomplish the 

combination of real and virtual. We are providing a brief review on the main hardware 

components for the development of such environments. 
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2.2.2.1 3D Display Systems 

 

One way to implement MR and particularly AR is with a see-through Head Mounted Display 

(HMD). Two types of HMDs that let the participant see the real world with virtual objects 

superimposed are: optical see-through and video see-through HMDs  [40]. 

 

The video see-through HMD combines a closed-view HMD with one or two head-mounted 

cameras. The video cameras provide the user’s view of the real world. The video from these 

cameras is combined with the graphic images created by a scene generator, merging the real and 

virtual as illustrated in Figure 2. 
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 Figure 2. Video See-through HMD 
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Optical see-through HMDs work by placing optical combiners in front of the user’s eyes. These 

combiners are partially transparent so that the user can look directly through them to see the real 

world. The combiners are also partially reflective, so the user sees virtual images bounced off the 

combiners from the head-mounted monitors as illustrated in Figure 3. 
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 Figure 3. Optical See-through HMD 

 

 

Alternative approaches to visualization are the projection-based systems. In early 90's, Carolina 

Cruz-Neira created what will become the most popular 3D projection based visualization system, 

the project-based Cave Automated Virtual Environment or the CAVE™ [37]. The CAVE™ is a 

room-sized, high-resolution, 3D video and audio environment. It is often implemented as a cube 

of approximately 12 feet on each side (Figure 4) and it uses four CRT projection systems and 

Crystal Eyes shutter glasses. Stereoscopic images are projected on the front and on the two 

sidewalls. 
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 Figure 4. The CAVE 

 

 

In addition to these, the CAVE™ usually uses a tracking system to dynamically adjust the 

computed viewpoint according to the tracked head’s location in the 123 cubic foot volume. As a 

viewer moves within its display boundaries, the correct perspective and stereo projections of the 

environment are updated, and the image moves with and surrounds the viewer. 

 

Two major disadvantages of the CAVE™ system are its high cost and the fact that in the case of 

multiple users only the user tracked sees the correct stereo perspective. Several projects have 

tried to diminish these disadvantages [41]. In the PlatoCAVE project, the cost of the system is 

decreased by using only one wall for projection. To address the second problem, a nominal fixed 

viewpoint is selected in the middle of the room. Hence all the users will have a slightly distorted 

stereo perspective but the extreme distortion perspective cases are avoided. 
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2.2.2.2 Sensors for Motion Tracking 

 

Tracking systems are important components especially in an MR/AR environment. These 

systems are able to provide (with some accuracy) the position and/or orientation of different 

objects in the real world scene. Feeding their output data to algorithms, one is able to register the 

computer-generated objects at the correct position and orientation in the real scene. Tracking 

systems have been classified in a number of surveys [42-44].  

 

Several types of tracking are available on the market today. The most widely spread commercial 

sensor based tracking systems are based on: 

• Magnetic tracking. By circulating an electric current in a coil, a magnetic field is 

generated. To measure the position and orientation of a receiver in space, the emitter must 

be composed of three coils with orthogonal magnetic fields. These systems have 

traditionally been prone to large amounts of error and jitter due to interference from 

metallic structures in the environment; however they are popular because of their 

robustness and the lack of constraints on user motion. 

• Optical tracking. Optical tracking systems have been separated into two categories:  

- Pattern recognition systems [45] that sense an artificial pattern of lights and use 

this information to determine position and/or orientation. 

- Image-based systems [46] that determine the position by using multiple cameras 

to track predetermined points on the moving objects within a working volume. 
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• Inertial tracking [47]. Inertial sensors use physical phenomena to measure acceleration 

and rotation relative to the inertial reference frame of the earth.  

• Acoustic tracking [48]. These can determine the position through either time-of-flight and 

triangulation or phase-coherence. Phase-coherence trackers determine distance by 

measuring the difference in phase of a reference signal and an emitted signal detected by 

sensors. 

• Hybrid tracking [49-51]. These consist of combinations of the above approaches.  

 

In most MR/AR applications, the dynamic superimposition procedures that bring the virtual 

objects in register with particular regions in the real scene use one of these types of tracking 

sometimes combined with vision techniques to increase the registration accuracy. 

 

2.2.3 Distributed Interactive VEs Survey 

 

A distributed interactive VE is a computer supported environment that provides an advanced 

form of collaboration. Collaboration can be roughly categorized on the following two 

dimensions: space and time both playing a determinant role in the system architecture and 

consistency: 

• Time-wise collaboration can be synchronous when the participants involved are active at 

the same time or asynchronous when the participants involved are not active at the same 

time. 
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• Space-wise collaboration can be local if the participants are sharing the local environment 

or remote if the participants are sharing a distributed environment. The most popular ways 

in which synchronous computer supported collaboration is achieved are through video 

conferencing, chat channels and more recent, interactive virtual environments. 

 

In reviewing the research literature attention is being devoted to distributed interactive 

environments developed using VR paradigms. The review of the literature is edifying in 

understanding the evolution of these environments in different domains as well as the evolution 

of the methods employed for consistency maintenance. There is a growing body of research in 

distributed collaborative environments which forces us to state that this is not an exhaustive 

review as new systems and methods are developed daily. 

 

2.2.3.1 Distributed Interactive VEs in the Defense Industry 

 

The most important initiator in distributed interactive environments based on the VR paradigms 

was the US Department of Defense (DoD). The primary objectives of these systems were 

training and strategy evaluation. The systems had to be scalable and exhibit a real-time behavior. 

 

One of the first and most intensive efforts in this direction was the SIMNET project started in 

1983 [52] followed a few years later by the Naval Postgraduate School's NPSNet [53]. Important 

contributions of these systems included the object-event architecture, which means that objects 

generate update events, the protocol data unit (PDU) that allowed the distribution of simulation 
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data among participants and dead-reckoning algorithms to reduce the number of packet updates. 

Later the Distributed Interactive Simulation (DIS) project improved the PDU and led to the 

emergence of the IEEE 1278 Standards for Distributed Interactive Simulation and its follow-on 

IEEE P1516 (see  [54] for a discussion of these efforts). DIS also extended the dead reckoning 

mechanism, and the DIS standard defines nine dead reckoning algorithms. 

 

2.2.3.2 Distributed Interactive VEs in the Entertainment Industry 

 

The entertainment industry has been the second early player in the distributed environments 

through the development of networked games such as SGI Flight simulators. ID Software 

(www.idsoftware.com) has been an early promoter of distributed interactive games like DoomTM 

and the QuakeTM series. Released in 1996, Quake was the first game to provide true six-degrees 

of freedom distributed interactive environment. 

 

Recently, the interest has focused on multiplayer games giving birth to a new genre known as the 

Massively Multiplayer Online Role Playing Games (MMORPG) [55]. These games (e.g. Ultima 

Online, www.origin.com) allow development of social structures in which people can cooperate 

in large numbers and can form guilds and complex relationships. Ultimately players can share 

knowledge. 
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2.2.3.3 Distributed Interactive VEs in the Academia  

 

The DoDs distributed environments had two major drawbacks: lack of generality, most of the 

simulations involved military vehicles and lack of availability, since most of the development 

efforts had to be kept secret. 

 

The transition to desktop based VR started in early 90's when the academic community 

reinvented some of the systems used by the military, documented the systems and made the 

results available to the research community. A review of the most preeminent distributed 

collaborative environments based on VR paradigms follows. 

 

One of the most important and longest running academic group is the NPSNET research group. 

Spawn from a military background, NPSNET covers all areas of research including consistency, 

scalability, dynamic extensibility, composability and interoperability. The latest version is the 

NPSNET V [56]. 

 

Early research efforts in collaborative environments were merged in the "Model, Architecture 

and System for Spatial Interaction in Virtual Environments" (MASSIVE) project developed at 

University of Nottingham [57]. Several versions have been developed in the last fifteen years. 

One of the goals of the last version MASSIVE-3 was to improve data consistency by 

ameliorating the effects of network latency using algorithms developed at the University of 
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Reading [58].  Each environment database is fully replicated and consistency is maintained 

through effective combinations of centralized updates and ownership transfers. 

 

Another milestone, the  "Distributed Interactive Virtual Environment" (DIVE) [59] developed at 

the Swedish Institute of Computer Science is an internet-based multi-user VR system where 

participants navigate in 3D space and see, meet and interact with other users and applications. 

The first DIVE version appeared in 1991 and concentrates on consistency and concurrency. 

 

In the DEVA3 VR [60] each entity is composed of a single "object" that represents what the 

entity does, and a set of "subjects" that represents how the entity looks, sounds, and feels. The 

object position is updated only when the subject has moved a certain distance from its previously 

synchronized location. 

 

Other academic implementation of note: SPLINE, developed at Mitsubishi Research 

Laboratories, introduced the idea of subdividing the world into smaller, more manageable areas 

known as locales [61];  ATLAS [62, 63] which introduces the ideas of personalized information 

filtering and self-reconfigurability, PARADISE [64], Bricknet [65]. Several research initiatives 

in Europe (e.g. COVEN) have underlined the importance of distributed collaboration based on 

VR paradigms. 

 

The early Distributed Virtual Environments (DVEs) provided a custom solution for distributing 

the application state.  Subsequent research efforts have been directed towards distributed scene 
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graphs, where the graphical scene description is used to encode the application state. Examples 

of such frameworks in an object oriented approach are Repo-3D [66] and AVOCADO [67]. 

 

In recent work, Schmalstieg and Hesina presented Studierstube, which uses a distributed shared 

scene graph to keep track of the actions applied on the shared scene by multiple participants [68]. 

The authors show that multiple concurrent operations on the objects in the scene may lead to 

inconsistent views. As communication delays increase, the inconsistency among remote 

participants grows even further.  

 

Previous research has investigated the impact of network latency upon the consistency of 

distributed VEs. A review the research efforts for consistency maintenance as well as the most 

important groups of techniques available follow. 

 

2.3 Survey of Consistency Maintenance Techniques in VEs 

 

The main challenge encountered by distributed collaborative environments designers is the 

dynamic nature of the environment. The attributes of the virtual and/or real components of the 

scene are changed as an effect of the participants' interactions.  The interactions and information 

exchanges generate a state referred to as the dynamic shared state that has to be maintained 

consistent on all sites. 
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The consistency-throughput tradeoff states that:  “It is impossible to allow dynamic shared state 

to change frequently and guarantee that all hosts simultaneously access identical versions of the 

state.” [69] 

 

The diversity of the application field makes distributed applications span over a large spectrum. 

At one end of this spectrum are applications that attempt to guarantee shared state consistency at 

all participants while at the other end are applications that attempt to maximize the potential rate 

of the shared state updates in spite of some inconsistencies. 

 

Table 3 summarizes how the consistency-throughput tradeoff affects the characteristics of a 

distributed VR system [69]. 

 

Table 3. Spectrum of Dynamic Shared State Management 

System Characteristics  Absolute Consistency High Update Rate 
View Consistency Identical at all hosts Determined by data 

received at each host 
Dynamic data support Low: Limited by 

consistency protocol 
High: Limited only by 
available bandwidth 

Network infrastructure 
requirements 

Low latency, high 
reliability, limited 

variability. 

Heterogeneous network 
possible 

Number of participants supported Low Potentially high 
 

 

Shared state consistency can be decoupled based on the application characteristics in positional 

accuracy, behavioral accuracy and structural accuracy [70]. Positional accuracy implies that 
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virtual shared entities have synchronized position and orientation. Behavioral accuracy implies 

that the animation of the shared entities should be alike at each participant. And finally structural 

accuracy means that the remote rendering reflects real-time changes to the shape of non-rigid 

shared entities. 

 

The next sections contain a review of the research efforts and techniques for managing the 

shared state. We discuss these techniques in the context of entity position however these 

principles apply to any other type of information maintained in a virtual environment. The 

techniques can be roughly grouped in three categories: centralized information repositories, dead 

reckoning algorithms, and frequent state regeneration. 

 

2.3.1 Centralized Information Repositories 

 

The approaches grouped in this category attempt to provide absolute consistency among the 

participants in a distributed interactive VE by ensuring that all the participating nodes contain the 

same values for the shared state at all times. 

 

A common approach is to keep the state for each participant in a file. A networked file system 

can be employed to provide distributed access to the centralized information. Examples of such 

systems can be found in [71],[72]. The concurrency problem arises when two or more 

participants wish to change some attributes of the shared state simultaneously. The concurrency 

issue is solved in these cases by the networked file systems' locks. The main disadvantage of the 
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networked file system is the access time and the scalability of the approach. When remote 

participants access or modify the shared state the system performs disk input/output operations to 

read/write the data in the file system. These operations are very slow compared with memory 

access. Therefore another approach to deal with data access is to keep the information in a shared 

memory. 

 

The server approach is an improvement over the networked file system in terms of data access 

speed; however this approach is still limited by the centralized data access and by the fact that 

the server is the single point of failure. If the server fails, the entire state of the virtual 

environment is lost. The server approach is exemplified and discussed in [73]. 

 

An important aspect of the centralized information repositories is the state update initiator. There 

are two major strategies, the pull strategy when each participant pulls state updated from the 

central repository and the push strategy when the server regularly pushes state updates to the 

participants. The push strategy has been employed in the Shastra system [74]. In this approach 

each participant node maintains a cache that preserves the shared state. When a participant 

updates the shared state, the server pushes the data to all the other participants. An advantage of 

this approach is an enhanced scalability by the reduction of the bottleneck given that the data is 

stored at each node. 

 

All the above approaches consider a traditional client-server architecture. The centralization 

disadvantages could be eliminated using a peer-to-peer architecture. In such a system the state 
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maintenance is accomplished through a distributed consistency protocol. An example of such a 

system is the early versions of DIVE [75] . DIVE uses a distributed data management model 

implemented on top of the ISIS communications library [76] and offers enhanced fault tolerance 

since it eliminates the single point of failure.  DIVE uses distributed locking and reliable 

multicast protocols to maintain a consistent view of all the entities in the virtual environment. A 

participant can directly update the position of any object by performing the following operations: 

obtain a distributed lock on that object in the database, update the local copy, multicast the 

change and release the lock. The major drawback is the significant communication overhead 

caused by the locking mechanism. 

 

Enhancements of the centralized approach are presented in the BrickNet toolkit [77]. The toolkit 

offers different levels of data consistency ranging from reliable, in-order updates to unreliable, 

unordered updates. The central server ensures that data is forwarded to receivers according to 

their consistency requirements. 

 

While traditional distributed VEs separate graphical and application state, several research 

projects like Studierstube [68], Repo-3D [66] and Avocado [67] try to simplify the development 

of  such systems by unifying the graphical and non-graphical state into a single data structure 

shared over the network. In DIV [78] for example, distribution is performed implicitly through a 

mechanism that keeps multiple local replicas of a scene graph synchronized without exposing 

this process to the application programmer. The scene graph changes are propagated using 

reliable multicast. 
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2.3.2 Dead Reckoning Algorithms 

 

Several research efforts have been directed towards dead-reckoning algorithms to address the 

update rate problem by maintaining a loose consistency of the shared state. The idea behind 

dead-reckoning is to transmit state updates less frequently and to use the information contained 

in the available updates to approximate the true shared state. These state prediction techniques 

enhance the scalability of the distributed VE at the expense of the accuracy of the shared state. 

 

Dead-reckoning protocols for distributed VE imply two phases: prediction and convergence. In 

the prediction phase the current state is computed at each participant based on the previous 

information. In the convergence phase the inaccuracies in the predicted state are corrected and a 

smooth transition is assured. 

 

In the first phase, derivative polynomials are commonly use to predict the shared state attribute 

values [79]. For example first order, second order or third order polynomials can be used to 

predict the position of a component of the shared scene based on its previous location, velocity 

or acceleration. Large distributed VEs like SIMNET [80], NPSNet [81] and the DIS protocol rely 

on position, velocity and acceleration updates to produce remote animations. An improvement 

over the polynomial prediction method is the hybrid polynomial prediction. The Position 

History-Based Dead Reckoning [70] employed in the PARADISE (Performance Architecture for 

Advanced Distributed Interactive Simulation Environments) system represents an example of the 
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hybrid approach that dynamically chooses between first-order and second-order derivative 

polynomials based on the information available in the preceding updates. 

 

To obtain better prediction results several research efforts have been concentrating on matching 

the virtual entity characteristics with the prediction algorithm to obtain an object-specialized 

prediction. Examples of such approaches can be found in [82] (specialized prediction for 

aircrafts making military maneuvers), [83] (specialized prediction for ground based military 

vehicles), and [84] (a specialized protocol to remotely predict the position of drumsticks played 

above a sensor pad). 

In the second phase convergence algorithms are employed to correct the predicted state without 

creating noticeable visual distortions to the participant. The simplest form of convergence is the 

zero-order or the snap convergence, in which the prediction is corrected immediately without any 

regard to the visual distortion seen by the participant. The zero-order convergence has 

undesirable visual effects. For example the entities in the shared scene seem to change position 

abruptly defying the laws of physics. An improvement over the zero-order convergence is the 

linear convergence. The linear approach results in a slower convergence on the convergence path 

providing the participant with continuity along the visual path.  

 

The linear approach does not take into account the entity acceleration. For improved transition 

smoothness, the "quadratic" method can be employed to account for acceleration a, and velocity 

v. The entity's location at a particular time t can be approximated using the well known quadratic 

function: 
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Instantaneous acceleration can be computed as: 
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The quadratic method also fails because even though an entity's motion is represented more 

realistically, its final velocity is likely to be incorrect. The quadratic function employs 

instantaneous acceleration and does not consider the variation in acceleration or "jerk" defined 

as: 
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In spite of the additional computational complexity, the "cubic spline" approach offers one of the 

most realistic methods for convergence by accounting for the entity's starting and ending position 

and velocity. As a result, the entities that follow a cubic spline path have no jitter, unless network 

lag is especially severe.  Using a cubic spline to create a path is a matter of simple algebraic 

equations. The input for these equations are four (x,y) coordinates. The first coordinate 

represents the object's starting position (x0,y0). Similarly, the fourth coordinate (x3,y3)  signifies 

the object's ending position. Usually the end position is a new (x,y) coordinate that has just 
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arrived in a data packet. The most important coordinates are the second and third; they represent 

the object's velocity. For the second coordinate (x1,y1), we calculate where the object will appear 

after 1 second with its current velocity. For the third coordinate (x2,y2), we reverse the object's 

end velocity, and calculate where it would appear after 1 second. Below is the set of parametric 

equations defining the spline: 

 

yyyy

xxxx

DtCtBtAy

DtCtBtAx

+++=

+++=
23

23

  Equation 4   

where 

0

01

012

0123

0

01

012

0123

33

363

33

33
363
33

yD

yyC

yyyB

yyyyA
and

xD
xxC

xxxB
xxxxA

y

y

y

y

x

x

x

x

=

−=

+−=

−+−=

=

−=
+−=

−+−=

  Equation 5 

 

With the increase of the distributed system's nodes processing power we see an increase potential 

for dead reckoning algorithms as an improvement to network traffic. However dead reckoning 

introduces several limitations. First of all it does not guarantee that all participants share identical 

state about each entity; second, simulations that rely on dead reckoning protocols are more 

complex to develop, maintain, and evaluate. Furthermore, dead reckoning algorithms must be 

customized based on the object behavior to obtain precise remote modeling. 
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2.3.3 Frequent State Regeneration 

 

For some distributed VEs absolute consistency is not required. The consistency protocol can be 

replaced in these cases with a frequent state update system based on the fact that if slight 

inconsistencies in the shared state appear they will be temporary and limited. One example of 

such an application is remote video streaming. Video streaming could be compared with a 

frequent state regeneration system where each frame is a new update. Loosing some frames in a 

30 FPS (frames per second) video stream would be almost imperceptible for a human [85].  

 

2.3.4 Resources Management Strategies  

 

Resource utilization is directly related to consistency maintenance in interactive VEs. The 

amount of data and computation that has to be distributed in such an environment will affect the 

interactivity of the application and the environment consistency. Resource management 

strategies can be grouped in four categories as described in the following section. An in depth 

discussion of these strategies can be found in [86]. 

 

2.3.4.1 Communication Protocol Optimization 

 
Communication protocol optimization can be achieved through packet compression and packet 

aggregation. Through packet compression, the size of the packets transmitted in the virtual 
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environment is reduced. Compression might be either lossless, i.e. the information is 

compressed/decompressed without loss (e.g. run-length encoding, RLE algorithm), or lossy i.e. 

some of the data is lost in the process of compression. Another division in compression 

techniques is external vs. internal compression. While external compression manipulates the 

packet data considering the content of the previous packets, internal compression manipulates a 

packet based only on its internal content. 

 

Another general strategy for optimization is packet aggregation which seeks to reduce the 

number of packets that are actually transmitted by combining information from several packets 

into one packet, assuring bandwidth savings. On the other hand packet aggregation introduces 

tradeoffs between the bandwidth reduction and the interactivity of the system since the first 

packet in the aggregation queue has to wait for the last packet in the queue before the 

aggregation process can proceed. 

  

2.3.4.2 Visibility of Data Management 

 

The optimization techniques in this category reduce the bandwidth consumption in the 

distributed system by reducing the number of message received. Data flow optimization 

techniques like area-of-interest (AOI) filtering [57] and multicasting (e.g. PARADISE [87], 

Diamond Park [61]) allow packets to travel only to parts of the network that contain interested 

participants. 
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These techniques impose a tradeoff between data partitioning and multicast grouping. A 

significant body of research has been developed to create a balance between a fine-grain data 

partitioning and multicast grouping, and hybrid multicast aggregation techniques have been 

proposed [88]. Multicasting protocols can be designed at the application level, allowing the 

development of overlay networks on top of the current network protocol stack. 

 

2.3.4.3 Human Perception Limitation 

 

Humans have limited perceptual abilities in space and time. Such limitations can be exploited in 

a tradeoff between ideal consistency and perceived consistency. In Chapter 3 we will discuss in 

more depth a time-space consistency model that takes into account human perceptual limitations. 

 

Information about the virtual entities in the environment can be provided at different levels of 

detail (LOD) and different rates (i.e. exploiting visual perception limitation). The timeliness 

characteristic of information received by participants can be improved exploiting the temporal 

perception.  

  

Particularly interesting is the temporal contour technique [89] that creates a temporal map in 

which every point P in the virtual space has a t value assigned corresponding to the network 

latency experienced by the local participant L for updates originating at P. The t value at any 

point P can be computed as 
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There are n remote participants. Each remote participant i has a locally perceived network delay 

di and is located at position Pi relatively to user L. ΦL is a constant that assures that t(P) is null at 

the local participant position L. ri is the distance between point P and point Pi, and vi  is a 

variance value that affects the flatness of the contour around Pi. The contour equation calculates 

a composite of the participants' network latencies by weighting each one by the corresponding 

entity's distance from the active participant. The main limitation of this technique is the 

considerable computation requirements particularly in the presence of many active participants. 

 

2.3.4.4 Systems Architecture 

 

An important decision in designing a distributed interactive environment is the system 

architecture. While the system architecture is driven by the application requirements and the 

current evolution of systems architectures (see Section 2.1.4), two major trends exist. The first 

trend investigates clustering and partitioning techniques evolving mainly around the client-server 

paradigm, while the second trend investigates combinations between the atomistic peer-to-peer 

and the client server paradigms. 
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3. SHARED STATE MAINTENANCE 

 

A number of problems arise when designing algorithms for distributed interactive VEs. Current 

applications tend to employ and are more dependent on sensory information. As discussed in 

Section 2.2.2, a VE might include a variety of position sensors. Sensor data is especially required 

to render the position and orientation of the virtual components of the scene in applications 

where a soft blending of the real and virtual is desired. To obtain an enhanced view of the real 

environment, participants could wear HMDs to observe three-dimensional computer-generated 

objects superimposed on their real-world view or vice versa.  The position and orientation of 

each participant’s head must be obtained to render the computer-generated objects from the 

correct viewpoint, at the correct depth [90].  Because virtual and real objects must be placed into 

register, i.e., spatial coincidence, we require accurate motion tracking not only for the head of the 

participant but also for other objects.  

 

From an application perspective, the need for real-time sensors that update the environment at 

high rates is associated with several problems. The distributed system nodes must collect and 

distribute each sensor's data in real-time and at the same time maintain a consistent view of the 

environment. While interaction with the virtual components of the shared scene is still discrete, 

new levels of interaction arise through the use of sensor-based interfaces. 
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From a system perspective the dynamic membership properties of a VE have an impact on the 

system architecture. New data distribution schemes are necessary to cope with the interactivity 

and the dynamic properties of these environments. 

 

In the next sections we explore two viewpoints of distributed interactive VEs. The first 

viewpoint is an application perspective in which we present a formulation of the consistency 

problem and propose a new categorization criterion for applications, as well as a dynamic shared 

state maintenance algorithm. The second viewpoint is a system perspective in which, modeling 

the distributed interactive system as a graph, we propose an approach to derive the minimum 

delay communication sub-graph. We then present and analyze a novel data distribution 

architecture targeted towards sensor-based interactive VEs. 

  

3.1 Distributed Interactive Virtual Environments - Application Perspective 

 

3.1.1 Consistency Model 

 

There is no general solution for dynamic shared state maintenance in interactive VEs. Currently, 

the combination of techniques employed is dictated by the distributed application characteristics. 

A formal categorization [91] divides distributed interactive applications based on two 

characteristics/criteria: the way an entity in the application changes its state, continuous vs. 

discrete and the way the participants apply actions, turn-based vs. concurrent. The cross product 
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of these characteristics leads to four categories: continuous concurrent applications, continuous 

turn-based applications, discrete concurrent applications and discrete turn-based applications. 

From this perspective an interactive VE application can be seen most of the times as a 

continuous concurrent application.  

 

The dynamic shared state inconsistency problem can be translated to a Time-Space inconsistency 

problem. For example, because of message transmission delays, different participants may see 

the same moving virtual object located at different positions at the same (i.e. reference or wall-

clock) time t. In what follows we will expand on the definitions and theorems from [92] to 

provide a theoretical framework for reasoning about consistency as it pertains to distributed 

interactive VEs.   

  

Let's consider a distributed system consisting of n nodes for a defined time interval (we assume 

static membership, i.e. the number of participants in the environment does not change; the 

dynamic membership property will be discussed later). We assume that each node is associated 

with one and only one participant. The participants at each node can apply consecutive actions 

on the virtual objects in the shared scene.  

 

A collaborative VE is populated by one or more virtual objects (e.g., a tree is one object, an 

avatar might be another). Each object has a set of attributes (e.g., position, color, velocity), and 

each attribute has a set of possible values.  The state of an object at a particular time is defined 

by the values of the object's attributes at that time. Each object can be categorized as static or 
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dynamic. While the attribute values of a static object are fixed, the attribute values of a dynamic 

object change over time.  

 

Definition: State of an object 

Given an object θ, the state of θ is defined by its attributes (e.g., position, orientation, color) at a 

particular moment in the reference time t. Let   be the state of the object θ at node i at time t, 

where 1≤ i ≤ n. 

)(tS i
θ

 

One of the reasons for the existence of dynamic objects is the participants' interaction. The 

participants interact on the shared scene by applying a set of actions on the objects. The effect of 

these actions propagates in the entire system and affects other participants' judgment and other 

objects' behavior. 

 

Definition: Action times 

Let a denote an action. The action applied by the participant has defined attributes (e.g., if we 

consider orientation or position change, the action may have a particular direction, velocity and 

acceleration).  Let u(a) be the node where the action is generated, τi(a) the time at which the 

action is generated at site i ( i.e. i=u(a) ), and o(a) the shared object on which the action is 

applied. Moreover we denote by arrivei(a) and executei(a) the arrival time and execution time, 

respectively, of action a at node i. 
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For example, to express the fact that the action is generated at the same site we can use the 

following notation:  τi(a)→ u(a)=i. To express the fact that actions having an arrival time were 

generated at a remote site we can use:  arrivei(a) → u(a)≠ i. 

 

Further we define the causal precedence relation, a powerful concept for reasoning, analyzing, 

and describing inferences about a distributed computation. 

 

Definition: Happened-Before 

Given two actions ai and aj we define the causal order of precedence (or happened-before 

relation) as ai happened-before aj denoted as ai →aj if and only if one of the following occurs: 

• u(ai)=u(aj)=k and τk(ai) <τk(aj); in other words, both actions were instantiated at the same 

node k and ai was instantiated first. 

• u(ai)≠u(aj) and arrivek(ai)<τk(aj) where k=u(aj); in other words the actions were 

instantiated at different nodes, however the action ai arrives at node k before action aj is 

instantiated at this node. 

• there exists an action am such that ai→am and am→aj 

From the definitions above we can describe the absolute consistency for the distributed VE. 

 

Definition: Absolute Consistency 

Given an object θ, the object is absolute consistent at any time t, if and only if (∀) 1≤i,j≤n, i≠j, 

= . We say that the system is absolute consistent if and only if (∀) θ and t>0, θ is (t)i
θS )(tj

θS
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absolute consistent. In other words, a distributed VE is absolute consistent if and only if all the 

shared objects are consistent at all times. 

 

Definition: Average Delay 

Let tij represent the average delay from node i to node j. Since the nodes are interconnected on an 

arbitrary network we make here the assumption that the messages experience similar delays on 

the path from i to j and on the path from j to i. 

 

Given the above definition, several significant theorems follow. These theorems will help us 

reason and categorize distributed interactive VEs based on the action frequencies applied on the 

objects in the scene.  

 

Theorem 3.1. A distributed system, starting from an initial consistent state, is absolute consistent 

if and only if any action generated by a participant is executed simultaneously at all nodes.  

 

Proof. (→) We shall prove that if any action is executed at the same time at all nodes, then the 

system is consistent. The initial state is consistent and each operation is executed at all nodes at 

the same time, so each participant sees the updates at the same time. Therefore, the system is 

absolute consistent. 

 

(←) We prove by contradiction that if the system is absolute consistent, then any action must be 

executed at the same time at all sites. We assume there exists an action a applied on an object θ, 
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where  u(a)=i and t=τi(a), which is not executed simultaneously at all sites. If node i executes 

action a at time t1 and node j executes the same action at time t2, t1>t2, then  ≠  or 

≠ , that contradicts the assumption that the system is consistent. Q.E.D. 

)(ti
θS 1 )1(tj

θS

)(ti
θS 2 )(tj

θS 2

 

Theorem 3.2. Given an action a issued on object θ, where u(a)=i, if action a is executed at site i 

immediately after it is issued, then the system is not absolute consistent at time τi(a).  

 

Proof. The theorem states that indeed the inherent delays in a distributed system are non null. To 

prove it, suppose t = τi(a) and (∃) δ >0 such that the system is absolute consistent at time t-δ. If 

at time t one node j updates the state of an object θ with action a'≠a, then (∀) 1≤i,j≤n, i≠j, 

≠  hence the system is not absolute consistent at time t.  (t)i
θS (t)j

θS

 

Secondly we prove that at time t all other nodes (i≠j) do not change the state of the object θ so 

they become inconsistent. Since action a will update the state of object θ at time t, we have ≠ 

. Because the message takes time t

(t)i
θS

δ)(ti
θS − ij to propagate between two nodes, the state at another 

node j remains unchanged at time t, i.e.  (∀)1≤i,j≤n, i≠j, = = , and from here, 

≠ . Hence the system is not absolute consistent at time t. Q.E.D. 

(t)j
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Theorem 3.3. Given an action a issued on object θ, to keep the system absolute consistent 
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executei(a) ≥ τi(a)+    Equation 7 )(1 ij
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The proof of this theorem follows from the previous one.  

 

Continuing our reasoning about distributed interactive VEs, it is clear that a method for 

maintaining a consistent shared state would be to delay the application of the action on the local 

scene until all nodes have been notified. Such a synchronization barrier will have negative 

impact on the responsiveness of the application, since the local participant will perceive his local 

actions as delayed. Clearly, there is a tradeoff between responsiveness and consistency, and thus 

between interactivity as perceived by the participants and consistency. The key to this problem 

lies in the delays among the nodes of the system, tij. These delays are inherent in a distributed 

system infrastructure.  

 

Importantly this work proves that, by combining a distributed monitoring system with an 

interactive distributed VE, the consistency can be significantly improved. The Adaptive 

Synchronization Algorithm (ASA) described in Section 3.1.4 represents our proposed, and we 

believe, elegant solution. Prior to presenting this contribution we discuss the time-space 

inconsistency model and the associated human factors issues. 
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3.1.2 Human Factors - Response Times & Sensors  

 

The time-space inconsistency [91] for distributed interactive applications can be defined as 
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where ∆(t) represents the difference between a shared object's local attribute (e.g., position/ 

orientation) and the value of this attribute as estimated on a remote node. ε is the minimum 

difference between attribute values (e.g. a position drift) that the human player can distinguish in 

the application. In the above expression, ∆ is a variable over the reference time t, while t0 is the 

instance at which the difference starts, and τ is the duration for which the difference persists. 

  

If ∆(t) is constant over time, the time-space inconsistency, Equation 8, can be simplified to 
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In a distributed VE the ∆(t) value can be influenced by the rendering characteristics of the nodes, 

as well as by the nature of the action's attributes. For example, if we take into consideration the 

time derivatives (e.g. acceleration) as an action's attribute, then ∆(t) will not be constant; 
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however it will be predictable. Given the preceding context, the ε variable has particular 

relevance to our discussion. ε is dependent on human-computer interaction factors and human 

perception. If |∆(t)| ≤ε, the difference in the attributes cannot be perceived by the participants, so 

it does not influence their judgments. The values of ε are dependent on the object's attributes 

(e.g. speed, size) as defined by the application domain. As an example, in a distributed aircraft 

battle application ε might be several tens of meters while in a distributed running competition ε 

might be several centimeters.  

 

It is conceivable that there are other factors that influence the time-space inconsistency. We 

hypothesize that time-space consistency is also related to additional human-computer interaction 

factors. For example, the fastest human-computer response time includes perceptual (i.e., user 

perceives the items on the display or auditory signals), cognitive (i.e., user retrieves information 

from his own memory) and motor cycle times, which can add up to an average of 240ms [4]. In 

the next sections we extend this model and provide a novel categorization of distributed 

interactive VE applications based on the interaction frequency. 

 

3.1.3 Classifying Interactive VE Applications - Action Frequency Patterns 

 

Let's consider the following application scenario. A surgeon located in an office building is 

analyzing a 3D model of the mandible of a patient. This physician would like to discuss the 

surgical procedure that will follow shortly with a colleague, whose office is in another building.  

59 



As part of their discussion, they have to analyze the 3D model of the patient's mandible. They 

use the 3D distributed visualization platform implemented on the hospital's local area network. 

For stereoscopic visualization, each office is equipped with HMD [93] and a sensing glove [94]. 

In this scenario, the distributed visualization platform allows one participant to modify the 

position and orientation of the 3D model from a mouse-driven graphical user interface (GUI, 

Figure 5) or through the sensing glove shown in Figure 6. 

 

 

Figure 5. GUI based interaction 

 
 

Figure 6. Sensor based interaction 

 

 

There are two problems that arise in this scenario. The first is related to the network latency. As 

one of the participants manipulates the 3D model, the network latency desynchronizes their 

common viewpoints. Moreover, since network jitter is also present, the position/orientation drift 

among the views increases in time, while the participants are not aware of the inconsistency of 

their viewpoints. The second problem pertains to the nature of the interaction with the objects in 

the shared scene. The 3D model can be manipulated either from the GUI through discrete and 

predictable actions, or using the glove-like peripheral device, which updates the environment at a 
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higher rate and allows relatively unpredictable actions. The participant acting on the GUI 

through the mouse, for example, cannot exceed a certain frequency of actions mainly because of 

his motor reaction time. At the same time, since the position and the orientation of the object are 

set through the interface, predictable actions are applied on the object (e.g. by pressing the GUI's 

"Rotate around OX axis" button). In contrast to the GUI, the glove-like peripheral device is 

usually tracked at high frequencies (e.g. a P5™ glove [95] has an optical tracking system 

attached that has a refresh rate of 60Hz) which is going to capture the participant actions at a 

higher frequency than the one attainable through the GUI. As a result, we have two types of 

interaction with the 3D model that have distinct patterns. While the network latency problem is 

well known in distributed interactive simulations, the second problem is more subtle and requires 

further analysis. Based on the above observations, we propose a novel criterion for 

categorization of distributed interactive VE applications.  

 

Two cases can be established; the actions frequency is either lower or higher than the inverse of 

the network delay between two interacting nodes. To study these issues, we define two 

frequencies in the following paragraph: the upshot frequency and the action frequency. We then 

show how these frequencies can be used to categorize distributed interactive VE applications as 

high or low frequency applications.  

 

Let txy be the average network delay between two participating nodes X and Y, as defined in the 

previous sections. We assume, for now, that there is no jitter.  The jitter compensation is 

described later. Let's consider an instance of a distributed VE that allows interaction with m 
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virtual 3D objects. The shared scene produced must be displayed at all the participating nodes. 

Let n be the number of participating nodes. We assume that all virtual objects are rigid and we 

restrict the actions applied on them to rotations and translations. The discussion can be further 

extended to arbitrary affine transforms and non-rigid, deformable 2D/3D objects.  

 

The participants interact with the virtual objects in the scene. Each participant's interaction can 

be seen as a sequence of actions applied on the objects in the scene. An action is identified by a 

name, a direction described by a vector, and a velocity. The model can be extended to higher 

order space-time derivatives. Since real-life interactions are spontaneous, the action duration is 

not known when the action is applied. As defined in the previous sections we know only τi(a), 

arrivei(a) and executei(a). The action duration is known only after the next action is initiated, the 

actions being generated in a consecutive sequence. Considering two consecutive actions a1 and 

a2 the duration of a1 can be computed as τi(a2)- τi(a1).  

 

Definition: Action Frequency 

We define the action frequency, νk(θ) of a node k, as the number of actions performed by node k 

on one object θ in the shared scene per unit time (i.e. 1 second).  

 

The action frequency is measured in actions per second and can be estimated in the following 

way. Let   be the number of actions applied on the object θ  in the scene by participant k 

during ∆t. Participant k may interact with any object in the shared scene. The total number of 

actions applied by k on all m objects in the scene during ∆t will be given by 

θkb
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Definition: Average Action Frequency 

Let νk be the average action frequency obtained by computing the average number of actions 

applied by k on an object in the scene, given by 

 

∆tm

b
 kν

m
k

⋅

∑
= =1θ

θ

  Equation 10 

 

νk can be used as an estimate of the action frequency for participant k on an object in the shared 

scene, i.e. νk(θ) 

 

k
ν

k
ν ≅)(θ   Equation 11 

 

The longer the ∆t, the more accurate is the action frequency estimation. Moreover this estimation 

can be done for each participant in the distributed VE application.  

 

As an observation, in the estimation of the average action frequency, only objects on which the 

participants interact are considered. Another observation is that the interaction pattern on the 
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objects in the environments is fairly uniform (i.e., the participant interaction frequency on a 

particular object is not very high as compared to his/her interaction on the rest of the objects). If 

this is not the case, the maximum interaction frequency on a particular object might be used for 

determining the application's characteristics.  

 

Definition: Upshot Frequency 

Furthermore, let ν0 be the upshot frequency between two nodes X and Y defined as 

 

xyt
 actionν 1

0 =   Equation 12 

 

with actions per second as measurement unit.  

 

The upshot frequency is dependent on the network delay between two participating nodes and 

limits the interactivity potential between two nodes. For example, if txy is 100 milliseconds, the 

upshot frequency between the nodes will be 1/0.1 or 10 actions per second.  Computing the 

average network delay between each pair of participants, the corresponding upshot frequency 

(ν0) can be computed. Based on the above definitions, two cases can be distinguished: the action 

frequency is less than the upshot frequency, (νk< ν0), or the action frequency is greater than or 

equal to the upshot frequency, (νk ≥ ν0).  
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To illustrate the discussion above, consider a simple case in which there is only one virtual 3D 

object in the shared scene and two participants, node X and node Y, located on a network. Node 

X can change the object orientation by applying arbitrary rotations around the object coordinate 

axes. Since it is a distributed application, the shared scene must be maintained consistent (i.e. 

both participants should see the same orientation for the object). The first case (νk< ν0) usually 

corresponds to a distributed interactive VE application involving either low update frequency 

devices (i.e. when compared with the upshot frequency) or participants who perform actions on 

the objects in the shared scene through a GUI. The fastest human-computer response time adds 

up to an average of about 240ms [4]. Under the later assumptions, distributed VE applications 

that fall in this category should not be deployed on a network that has an upshot frequency lower 

than 4.16 (actions/second), in other words the network delay has to be lower than 240ms.   

 

In most of the cases when the distributed VE application is deployed on a local area network, the 

frequency of the actions applied by the participant through a GUI on the objects in the shared 

scene will be below the upshot frequency.  Moreover, some actions will generate continuous 

movements that can be predicted. For example, the participant might spin an object for an 

indefinite time period with a specific velocity around a specific axis. In this case, ν0/νk tends to 

infinity and once the nodes are synchronized no additional network traffic is necessary until 

another action is applied. The drift can be accurately computed if we know the network delay txy 

and the action (e.g. rotation) attributes (e.g. direction, velocity).  
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We emphasize this scenario with an example. A timing diagram is shown in Figure 7 that 

contains two actions applied by node X on an object in the shared scene and the propagation of 

these actions to another participant, node Y. The first action, a1, takes 14 time units, the second 

action, a2, takes 8 time units, and the network delay between nodes X and Y is 1 time unit. The 

synchronization algorithm proposed in Section 3.1.4 accounts for the network latency. In Figure 

7, the shaded areas represent the time intervals when X and Y are synchronized. 

 

 

Figure 7. Action frequency is less than the Upshot frequency (ν< ν0), delay txy=1 

 

The second case (νk≥ν0) corresponds to a distributed VE application containing a fast updating 

device like a tracking system or a high latency network connection. In this case, a sequence of 

actions might take place at node X before node Y is notified about the first action in this 

sequence. This scenario can be described with a simple example. Below is a timing diagram that 

contains 10 actions and their respective durations: actions a1, a2, a3, a5, a6, a7, take 1 time unit; 

action a4 takes 2 time units, and actions a8, a9, a10 take 3 time units. The network delay between 

nodes X and Y is 3 time units. 
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In this case, high quality of synchronization cannot be reached since node Y will continuously try 

to "catch up" with node X. By the time node Y has compensated for the drift, node X has applied 

new actions on the object. Node Y is not aware of those actions at that time. 

 

 

Figure 8. Action frequency is greater or equal than the Upshot frequency (ν≥ ν0), delay txy=3  

 

3.1.4 The Adaptive Synchronization Algorithm 

 

The Adaptive Synchronization Algorithm proposed is targeted towards distributed interactive VE 

applications which fall in the first category (ν<ν0) as defined in the previous section. In other 

words, the algorithm assumes an event-based mechanism, triggered either by the participant 

actions on the shared scene or by a sensor (e.g. a motion tracking system) whose update cycle 

time is comparable or higher than the network latency. Such assumption is generally true as 

high-speed networks and optical routing are becoming increasingly available. 

 

To control the position and orientation of the objects in the shared scene, each 3D virtual object 

has a control packet (CPO) associated with it. The CPO contains information about the position 

and orientation, as well as information regarding the actions associated with each object: 
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rotation, translation or scaling. The small size of the CPO ensures low transmission delays. As 

the CPOs flow through the network, the ASA uses their information to keep the shared scene 

among participants consistent. In other words, the information carried by the CPOs is distributed 

to each participating node allowing them to compensate for the network latency.  

 

Definition: Drift Value 

Let's define the drift value for a particular object θ in the shared scene and a remote observer (i.e. 

the node that does not apply an action on the object), node k as the product between the action's 

velocity applied on the object by the node u(a) and the network delay tu(a)k  , i.e. the delay 

between the node where the action was initiated u(a) and the node k. 

 

The fact that the action is generated at a remote site can be expressed as 

arrivek(a) → u(a) ≠ k 

Also actions are executed as they are received at both nodes 

arrivek(a) = executek(a)  

and  

executei(a) = τi(a)  

 

If we denote Mt as the number of virtual objects in a shared scene of Nt participating nodes, all at 

the same time t, a drift matrix D(Mt,Nt) can be associated with the distributed VE system at a 

particular time t and it can be computed as 
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transpose
tt TSNMD ⋅=),(  Equation 13 

 

where S and T are both column vectors, S containing the action velocities for each object 

currently in the shared scene, and T the network delays vector from  each action/update producer 

node i to each participating node j. T transpose represents the transpose of T. The action velocity is 

extracted from each object’s CPO, while the network delay is measured by each observer node 

(i.e. the node that does not apply an action on that object) using an adaptive probe. The S matrix 

is stored locally at each node and updated when the scene changes. 

 

A decentralized computational approach partitions the drift matrix into N column vectors, 

denoted here drift vectors, which contain the drift values of all the virtual objects in the shared 

scene for each node. The drift vectors are updated when a new 3D object is inserted or removed 

from the shared scene by adding or removing the entry associated with it from all nodes. The 

drift vectors are also updated when the participants perform actions on the objects. Whenever an 

action is applied to an object (e.g. a rotation), a CPO is broadcasted to all the nodes.  

The information (e.g. action velocity) from the CPO is the first component used for 

synchronization. The second component accounts for the network latency. At specific intervals, 

each node "pings" the other nodes to estimate the average network delay (i.e. tij) and computes 

the drift vectors associated with the objects in the scene as the product between the propagation 

delay and the objects' actions velocities. Each delay measurement between nodes triggers a local 

node's drift vector update. 
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A pseudo-code sketch of the ASA is described in what follows. The ComputeNodeDelay() 

function returns the delay between two nodes tij. The UpdateDrift() function updates the drift 

values for the objects in the scene on each node. Three Boolean variables are used: 

changedScene that accounts for the changes in the scene, newClientRequest which is set if a new 

participant has joined, and trigger, used in accounting for the network behavior as described in 

the next section. Finally, the functions ReceiveChanges() and BroadcastChanges() ensure correct 

shared state updates among the nodes of the system. A consistent dynamic shared state is 

maintained over all the participants. 

 

 

 Observer (Consumer) node:  
 
  Initialization: 
   Tn ← ComputeNodeDelay() 
   Sn ← UpdateAction(); 
   Dn ← UpdateDrift() 
   UpdateLocalScene(); 
 
  Main: 
   if (trigger)  
    Tn ← ComputeNodeDelay() 
    Dn ← UpdateDrift() 
   end if  
   if (changedScene) 
    Sn← ReceiveChanges() 
    Dn ← UpdateDrift() 
   end if 
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 Action Producer node: 
 
  for ever listen 
   if (newParticipantRequest)  
    SendToNewParticipant(Sn); 
   end if 
   if (changedScene) 
    BroadcastChanges(); 
   end if 
  end for 
 
 

3.1.4.1 Fixed Threshold vs. Adaptive Threshold  

 

As the traffic in the network changes, the round trip times between different nodes vary. To 

improve the shared state maintenance, delay measurements must be triggered at different time 

intervals. The delay measurements must follow the network jitter behavior yet this distributed 

monitoring scheme must be maintained at low levels of intrusiveness. The goal is to obtain an 

accurate estimate of the average delay between each pair of participants.  

 

The algorithm uses two approaches to trigger the information collection. In the first approach, 

the measurements are triggered by each node at regular time intervals. We denoted this approach 

the fixed threshold one. Triggering these measurements too often increases the intrusiveness of 

the software monitoring scheme. Moreover, if the network jitter is very low, measurements are 

redundant. An alternative approach consists of adaptively triggering the delay measurements 
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based on the delay history, which better characterizes the network traffic and the interactive 

application behavior, as illustrated in Figure 9. 

 

Fixed threshold Adaptive threshold 

Delay 

Time 

Sample points 

 

 Figure 9. Adaptive vs. Fixed threshold 

 

In the adaptive approach, a fixed threshold is initially used at each node to build the delay history 

denoted here Hp. The delay history is a sequence of p delay measurements hi where i=1,p. 

Furthermore let σ be the standard deviation of Hp and hmean the mean of Hp, in other words 
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Let h0 be the most recent delay, i.e. the last number in the Hp sequence, and γ0 the current 

frequency of delay measurements, expressed as the number of measurements per second. The 

adaptive strategy is to decrease γ0  with 1 unit if  h0∈ [ hmean - σ , hmean + σ ] and to increase γ0  

with 1 if h0 does not belong to this interval. Of course the values of all these variables are 

application dependent and can be tuned to best fit the application. 
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3.2 Distributed Interactive VEs - System Perspective 

 

An important characteristic of collaborative VEs is the membership property. Most collaborative 

VEs have a dynamic membership property, i.e., the number of participants can change at any 

time (e.g., participants can join or leave the environment at any time). Other VEs have a static 

membership property, i.e., once the distributed session is initialized the number of participants 

does not change (e.g. a collaborative environment for business meetings). 

 

3.2.1 A Distributed System Model 

 

An interactive distributed VE can be deployed over a LAN, a private network or over a WAN 

infrastructure (e.g. the Internet). To provide an abstraction for the underlying infrastructure, as 

well as a reasoning anchor for the system, we use graph theory notation.  

 

The entire network can be represented as a directed weighted graph G=(V,E), where V denotes 

the set of nodes in the network and |V| = n. Some of these nodes can only serve as message 

routers while others are direct interfaces for the participants. Let V' be the set of nodes that can 

participate in a collaborative session, |V'| = m, and obviously V'⊆ V and m ≤ n. 

 

Because of the dynamic membership property at a particular moment in time t, the set of nodes 

participating P(t) will be equal to or smaller than the set of nodes that have the potential to 
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participate, i.e. P(t)⊆V'. Hence the distributed interactive VE will communicate for finite periods 

of time using only a sub-graph of G denoted G'(t) = (P(t), E'), where E' represents the set of 

edges used for communication. 

 

Let spi,j be a loop-free shortest path between two participating nodes vi and vj, and delay(spi,j) be 

the communication delay on this path. If we denote by delaymax(G'(t)) the upper bound on the 

delay in the environment at a particular moment in time, we have 

   

delaymax(G'(t)) = max {delay(spij)},  where  vi,vj ∈P(t)

 

Knowing the upper bound between any two participants in the graph allows us to control the 

delays in the environment by accepting or rejecting other participants. Moreover, since there are 

multiple possible sub-graphs, we can optimize communication based on different metrics. Since 

our primary interest is to minimize the end-to-end delay, in the following section we will focus 

on a theoretical approach to perform such minimization. 

  

3.2.2 Core-Based Tree - Minimizing the Delays among Participants  

 

Reducing the maximum end-to-end delay between two participants will naturally improve the 

synchronization capabilities of the ASA. Minimizing the maximum end-to-end delay can be 

achieved by finding the connected sub-graph H(t) = (W,F) that satisfies the condition: 
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delaymax(H(t)) = min{delaymaxH'(t) | H'(t)⊆G'}  

 

where H'(t) is a connected sub-graph of G' .  

 

Consider a weighted graph in which the weights represent the delays between nodes. The Core-

Based Tree (CBT) [96] method guarantees that the path between any joining/new node and the 

core is the shortest. However it does not guarantee the optimal path between any two nodes. In 

Section 3.2.4.1 we introduce an additional rule to further bound the delay between two 

participants. A major advantage of the CBT approach is that only one multicast tree is created 

per group which reduces the overhead in the distributed VE. 

 

A CBT is constructed incrementally. Initially, a node is chosen (i.e. the core) via a bootstrap 

mechanism. Each interested participant will send a JoinRequest message to the core. The address 

of the core node is advertised and is well known.  The message is sent through the shortest path 

from the new participant to the core node, using the existing routing protocols. Along the 

shortest path the message can reach either nodes which are already part of the current 

communication sub-graph (i.e. the CBT) or nodes that are not part of the tree. If the message 

reaches a node k that is part of the CBT, the forwarding process will stop and the incoming link 

will be added to the forwarding cache of node k. An acknowledgement message will be sent 

back to the new participant and it will become part of the CBT. When the message reaches a 

node k that is not part of the CBT, k will redirect the message to the next hop along the shortest 

path toward the core node and will cache the incoming node and incoming interface (e.g. port 
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number) in a temporary storage, waiting for an acknowledgement message. Once k receives an 

acknowledgement it adds the incoming interface to the forwarding cache and redirects the 

acknowledgement to all nodes listed in the temporary storage. k also sets the node who sent the 

acknowledgment to be its parent node and becomes part of the CBT. 

 

The CBT algorithm assures that each interested node can reach the core node using the shortest 

path. Moreover, the communication sub-graph is a tree due to its method of construction (i.e., all 

nodes are connected and each one has just one parent, except the initial core node which has no 

parent). 

 

In what follows we describe the CBT algorithm. The initial CBT consists of one core node, i.e. 

the communication sub-graph is G'(t0)=(P(t0),E'), where P(t0) = {vcore} and E'=∅. When a 

participant v joins the environment, it will send a JoinRequest to the adjacent node v' which is 

along the shortest path (i.e. in terms of delay) from v to the core node vcore. Below is the pseudo 

code for the procedure: 

 

if (v'∈V')  

 add v to the forwarding cache 

 send JoinAck to v 

else 

 tempv' ← tempv' ∪ {v}; 

 send JoinRequest to first node along the shortest path to vcore

end if 
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When the node v receives a JoinAck from node v' the following procedure is executed: 

 

V' ← V' ∪ {v} 

E' ←E'∪ {e}, where e is the edge connecting v and v' 

add v' to the forwarding cache in v 

set v' to be the parent of v 

send JoinAck  to  ∀ u∈ tempv 

tempv ←∅

 

An example of the CBT construction is depicted in Figure 10. Participant p3 wants to join the 

environment and sends a JoinRequest towards the core pcore. Intermediary node p2 processes the 

request and sends the message towards pcore (Figure 10a). The core replies with an 

acknowledgement and it is added in the forwarding cache of p2. In turn p2 sends the 

acknowledgement to p3.  p3 marks p2 as its parent and also p2 marks pcore as its parent as 

illustrated in Figure 10b. The forwarding caches of p3, p2 and pcore will be {p2}, {p3, pcore} and 

{p2} respectively. When p1 wants to join, its message will be captured by p2 who is already part 

of the CBT. p2 replies to p1 directly and adds it to its forwarding cache. In turns p1 marks p2 as its 

parent as shown in Figure 10c. 
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a)                                    b)                                    c)    

 Figure 10. Core-Based Tree construction 

 

In the next section we look at distributed interactive VE participants' behaviors and define 

several types of nodes based on their functionality. The generality of these definitions makes 

them applicable to any distributed interactive environment or simulation. 

 

3.2.3 Hybrid Nodes with Real-Time Sensors 

  

Distributed interactive VEs involve the interaction of several remote participants.  With advances 

in sensor technology, we envision that in future systems a significant amount of data will be 

collected from sensors and devices attached to the participants. While some of the participants 

actively modify the shared scene, other participants are passive, in the sense that they do not 

interact with the shared scene. We define two categories of participants: active participants and 

passive participants.  
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An active participant triggers changes in a virtual object state from an interface (e.g., GUI or 

through a sensor). Passive participants do not trigger any modifications of the shared scene; they 

just receive visual, haptic and/or audio feedback from the environment. The active or passive 

attributes of the participants can dynamically change in time. An active participant may become 

passive and vice-versa depending on the collaboration needs. 

 

A node in the distributed system allows a participant to interact with the components of the VE. 

Without loss of generality, we will consider that each node has a set of sensors that provide 

position and orientation information and other peripheral devices that allow state changes for the 

objects in the shared scene. The discussion can easily be extended to other types of sensors (e.g., 

haptic) that can be part of the distributed system's resources. The system must ensure that the 

data captured by each node's sensors is distributed with minimum delay to all interested 

participants to maintain the shared state consistency. Moreover, each node in the system will 

need to exchange its sensory data with all or a predefined subset of nodes.  

 

A pure centralized data distribution approach (e.g., client-server) would not be efficient because 

of the additional delay associated with the data collection stage, followed by the data 

distribution. An atomistic peer-to-peer approach would not fit either because of the additional 

overhead in data distribution (see Related Work). Each node would have to exchange data with 

all the other nodes. As a fundamental property, the nodes in a sensor-based distributed system 

may act as data producers, consumers and distributors, simultaneously. Based on the above 

discussion we define four types or running modes for the distributed system's nodes: 
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• Active nodes - An Active (A) node represents an active participant in the virtual 

environment. Each active node collects data from its sensors and is responsible for making 

the data available to interested peers as quickly as possible. 

• Passive nodes - A Passive (P) node does not inject any information into the virtual 

environment. The node uses the information provided by active and forward nodes to 

render the shared scene. 

• Active Forward node - As the name indicates, a forward node forwards data.  The forward 

node can be active or passive. An Active Forward (AF) node injects its own data into the 

system, as well as forwards other nodes' data. 

• Passive Forward node - A Passive Forward (PF) node does not inject new information in 

the system. These nodes act as pure data forwarders. 

 

In what follows we propose an investigation of the possible states and transitions of a node in a 

distributed interactive VE. Let's denote the states of a node as: {A, P, AF, PF} (i.e. "A" stands 

for "Active", "P" for "Passive", "AF" for "Active Forwarder" and "PF" for "Passive Forwarder"). 

Let's denote the conditions that trigger the change in state using a binary representation  

• 00 - the state changes from inactive to active   

• 01 - the state changes from active to inactive  

• 10 - the state change from forwarding off to on 

• 11 - the state change from forwarding on to off. 
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Twelve transitions may occur. Table 4 summarizes the possible transitions and the triggering 

conditions. 

 

Table 4. Possible transitions for a hybrid node 

Current State Next State Condition(s) 
A P 01 
A AF 10 
A PF 01 followed by 10 
P A 00 
P AF 00 followed by 10 
P PF 10 

AF A 11 
AF P 01 followed by 11 
AF PF 01 
PF A 00 followed by 11 
PF P 11 
PF AF 00 

 

The behavior of a node can be represented as a state machine as illustrated in Figure 11. 

 

 

 

Figure 11. State machine representing the hybrid node behavior 
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Based on the above discussions, we now introduce a data distribution scheme targeted towards 

the development of sensor-based distributed interactive VEs. 

 

3.2.4 Hybrid Data Distribution Scheme 

 

The dynamic membership property of the environment, as well as the constraints of the 

interactive environment, pointed us towards a hybrid between a client-server and peer-to-peer 

model. The data distribution scheme is driven by the assumption that each active node manages a 

small network of potentially real-time sensors as illustrated in Figure 12.  We build an overlay 

network at the application level, in which we employ the CBT techniques for multicast tree 

construction as discussed in the previous section. 

 

Network 
WAN/LAN

Real-Time 
Sensors

 

 Figure 12. Distributed interactive VEs nodes and sensors 
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The first node that becomes active (i.e., an "A" node) will advertise the availability of 

information to all participants. Interested participants will join the multicast tree cored at the 

active node. At a particular moment in time the distributed interactive environment may contain 

several active nodes and one core. Figure 13 provides a snapshot in time of the distributed 

system. 

 

"A" node 

"PF" node

"A" node 
 & Core

"P" node  

Figure 13. Snapshot of a distributed interactive sensor-based VE 

 

3.2.4.1 The Control Protocol 

 

To maintain its position and connections in the multicast tree, each node periodically sends a 

heartbeat message to its parent node. This keep-alive mechanism operating between adjacent on-

tree nodes, allows the management of the dynamic membership behavior, as well as failure 

recovery. A node that is leaving the environment will inform its adjacent neighbors.  
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To improve the real-time behavior of the system we must maintain the minimum possible 

communication delay between any pair of nodes. An approach is to create an overlay network 

using the CBTs.  The CBT approach guarantees the shortest path between the core and the other 

nodes. However to maintain a bound on the delay between participants we propose the following 

rule: 

 

Rule. A node "i" cannot change its state from "P" to "PF" or from "A" to "AF" and become a 

forwarder for an active node "j" if the accumulated delay on the path to the core exceeds 

MaxValue, where MaxValue is an application dependent parameter. 

 

In other words a new participant can not join the tree if the accumulated delay from the node 

where he will connect to the core falls over a certain threshold. This threshold is an application 

domain and communication infrastructure dependant value and can be obtained empirically 

through experiments. 

 

3.2.4.2 Participant Joining the Interactive VE 

 

The above model has a fundamental bootstrap problem: How to join? Without a central server 

there is no easy way of determining resource availability in advance. To solve the peer-discovery 

situation, a new node broadcasts a query (i.e. a JoinRequest) and awaits response. If the node that 
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replies is not already a forwarder (i.e. "AF" or "PF") it will become one as long as the Rule is not 

violated. Otherwise the new node will have to wait until the constraints are met. 

 

A complementary problem is: How does a node register itself to receive data from an active 

participant? To do that the node will join the current CBT. 

 

3.2.4.3 Participant Leaving the Interactive VE 

 

While joining does not cause massive distortions in the environment, leaving might cause major 

problems, especially when it is not premeditated, e.g. in case of a node crash or a link failure. In 

what follows we analyze the situation for each potential state of a node. We'll start with the 

easier cases first. 

 

If a "P" node leaves the environment it will notify its parent so that its entry can be removed 

from the forwarding cache. If the "P" node crashes, its parent will detect the absence of the 

heart-beat message and will remove it from its cache. The "P" nodes are always leaves in the 

trees so their removal does no incur any overhead. 

  

Things become more complex with "A" nodes. If an "A" node intentionally leaves the 

environment or if the following state changes occur, A→P or A→PF, it will send a signal to all 

its children. The message will propagate in the CBT allowing all the listeners to remove the 

unnecessary entries from their caches. If a crash or link failure occurs, it will be detected by its 
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children through the heart-beat mechanism. The changes will be propagated in the tree to all the 

listeners. 

 

Let's analyze the scenario when an "A" node leaves or crashes. If there is only one "A" node in 

the VE the interaction in the environment is null, hence the virtual environment degenerates into 

a non-interactive one (i.e. of course with the potential to become interactive again). 

 

A more interesting situation is the removal of "AF" or "PF" nodes. The "AF"/"PF" node crash or 

intentional leaving incurs additional complexity since the forwarding aspect implies that they 

have a non-null set of children. As in the "A" node case, the children will detect the node failure.  

Each child node has two options for failure recovery: it can either attempt to re-join the tree by 

sending a JoinRequest message to its core nodes, thus keeping the failure transparent to the rest 

of the down-stream branch, if any; alternatively as a result of the above mechanism failing, the 

child node can send a FlushTree message downstream allowing each node to independently 

attempt to re-attach itself to the tree, possibly via a better route than before. 
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4. TESTBED COMPONENTS AND IMPLEMENTATION 

 

4.1 Overview 

 

The proposed ASA and the data distribution scheme were deployed in a testbed specifically 

designed and implemented for carrying out research on distributed interactive VEs. In the 

following sections we present the testbed hardware and software components. 

 

The testbed was implemented for two reasons. First, the available network simulators (e.g. NS-

2[97], PARSEC[98], SSF[99], NetSim, NEST, Gosip) are limited in their design to protocol 

simulations on different topologies and do not support the integration of an interactive VE 

application. Secondly, in order to use these simulators in our experimental context an abstraction 

of the distributed VE must be done and assumptions must be made. These abstractions and 

assumptions would result in non-deterministic behavior and diminish the significance of the 

experimental results. 

 

4.2 Testbed - Hardware Components 

 

Each node consists of a HMD, a Linux based desktop/laptop, and a quasi-cylindrical room, 

called an Artificial Reality Center (ARC), having walls covered with retroreflective material. 
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4.2.1 3D Visualization Hardware Setup - HMD & ARC 

 

The HMDs designed and integrated in the Optical Diagnostics and Applications Laboratory 

employ extremely lightweight (< 8g per eye) and compact custom-designed projection optics to 

provide computer-generated images to the participant with a field of view (FOV) that may be as 

large as 90 degrees. The displays were designed and intended for indoor settings. The use of 

projection optics as opposed to eyepiece optics is the key to compactness and negligible 

distortion. Optics with no distortion helps increasing image quality while keeping low cost. 

Figure 14 shows the HMD technology evolution since 1999 when it was first conceived [100].  

 

 

 

The first prototype (a) suffered from bulky electronics, relatively low resolution (i.e. 4 arc min), 

low brightness due to the use of 640 x 480 pixels backlight LCDs, and a weight of 750g which is 

high compared to the 8g optics per eye.  The “heavy” weight was imposed by the shell of the 

 

(a) (b) (c) (d) 
 

Figure 14.  Head-Mounted Displays 
(a) First prototype; (b) 2001 AR Display & Face Recording; (c) 2003 Side Mounted AR 

display; (d) 2004 Ultra-compact model 
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HMD required to package the bulky electronics.  The second prototype (b) added a teleportal 

capability (THMD) [101], which consisted of about 1 inch convex mirrors mounted side-frontal 

of the user’s head and coupled with temple-mounted lipstick cameras to capture stereoscopic 

images of the face. A recently engineered more compact system with more compact electronics 

and side-mounted optics is shown in (c). An even more compact prototype (<600g) based on 

Organic Light Emitting Displays (OLED) and extremely compact electronics is shown in (d).  

 

The optical material placed in the real environment allows users to view computer-generated 

objects embedded in the environment. The material (e.g., manufactured by 3M) is retroreflective. 

In this manner, the material directs the stereoscopic image pairs projected from the HMD back to 

the eyes of the user, as shown in Figure 15, allowing stereoscopic visualization.  The material is 

flexible and can be used to partially or completely surround users or to cover surfaces or objects 

of various shapes within the environment.  

 

 

 

 

 

Figure 15. Image formation 
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In this case we have designed an Artificial Reality Center (ARC) [102], with walls consisting of 

a set of panels covered by the optical material as illustrated in Figure16 and Figure 17. 

 

 
 

Figure 16. The ARC concept 

 
 

Figure 17. The ARC implementation 
 

 

Several ARC rooms can be interconnected on a network as described in Fig. 18. This setup 

enables remote collaboration through distributed applications that span the entire virtuality 

continuum [103]. 

 

 
ARC 

 
 Internet 
Extranet
Intranet 

 
ARC  

ARC  

 
 Figure 18. Artificial Reality Center 
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4.2.2 Sensors - Polaris NDI Optical Motion Tracking System 

 

The sensor used is an optical motion tracking system built by Northern Digital™. Polaris© [104] 

is a deployable optical tracking system that provides accurate orientation and positioning (6DOF) 

information in real-time. The system has an update rate of up to 60 Hz.  

 

By tracking probe we denote a rigid configuration of markers, as illustrated in Figure 19, that are 

attached on the real objects in the scene to track their position and orientation in 3D space [105]. 

 

 

 

 

 

 

The position sensor shown in Figure 20 detects the position of the tracking probe while in its 

tracking volume. The tracking volume has a conical shape with height 1.5 meters and a base 

radius of 0.5 meters.  Newer versions of this system provide a position sensor with a larger 

pyramidal tracking volume. The sensor has two infrared cameras that detect the position of the 

active markers (IRED) or the position of the passive markers by reflection.  

Figure 19. Tracking probe with 4 active markers 
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Figure 20. Polaris position sensor 

4.2.3 Nodes - Heterogeneous Workstations 

 

The nodes in the system are composed of desktops and laptops. The network cards on all nodes 

maintained up to 100Mbps connections. The table below contains a brief specification of each 

node’s hardware components. 

 

Table 5. Hardware systems attributes 

Node 

No. 

Arch. CPU (GHz) RAM 

(MB) 

GPU 

(GeForce)

Network Card 

(10/100 Mbps) 

1 Desktop 1.5  AMDx2 1024 4 Ti 4600 3Com 3C920 

2 Desktop 1.7  AMDx2 1024 4 Ti 4600  3Com 3C920 

3 Desktop 1 AMD 512 2 Mx Netgear FA310 TX 

4 Desktop 1.7 Intel 512 4 Mx 440 C.Net Pro200WL 

5 Laptop 2 Intel 1024 4 Go 440 3Com 3C920 

6 Desktop 2.8 AMD 512 4 Ti 4200 3Com 3C996-BT 

92 



4.3 Testbed - Software Components 

 

The algorithm performance is slightly affected by the platform where the implementation is 

deployed.  The Windows™ OS is challenging to control at a fine granularity level, therefore we 

have deployed the algorithm implementation on a Linux based platform. To create a virtual 

scene we are using Open GL Performer 2.5 on a Red Hat 8.0 OS platform. The GUI was 

developed using the GIMP Tool Kit (GTK 2.0). For a brief description of the APIs and SDKs 

involved see APPENDIX B. 

 

4.3.1 Software Components Developed 

 

We have developed a set of object oriented libraries under the name Distributed 

Augmented/Artificial Reality Environment (DARE) [102] see APPENDIX B. 

 

Delay Measurement Probe 

The delay measurement probe is a software module that allows inter-node delay computation. It 

is an important component of the ASA algorithm. Upon joining the environment, each node uses 

this module to compose and transmit an EchoRequest packet. The message contains an ID field, 

which is the Linux process ID, and a sequence number, which is an ascending integer.  The first 

eight bytes of the data portion are used to hold a Linux "timeval" structure for round-trip time 

delay computation. 
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Control Package Objects 

The synchronization is achieved through message exchanges. We have implemented a control 

package object (CPO) class that contains the attributes of each virtual object in the shared scene 

like position, orientation, color and actions (i.e. the set of actions applied on the object and the 

current values of its attributes). Whenever a new virtual object becomes part of the shared scene, 

an associated CPO is instantiated. If the object is composed of several parts linked by 

articulations, each part has its own CPO. 

 

The CPOs circulate in the distributed system triggered by the participant's interaction on the 

virtual components of the scene. An event based mechanism is used. Whenever the participant 

interacts on the shared scene from a GUI, an event triggers the distribution of the associated CPO 

to all the interested participants using the data distribution scheme described previously. 

 

Data Collection Module 

To assess the ASA efficiency we employ a quaternion analysis method described in APPENDIX 

A. Initially, a script based on the Network Time Protocol (NTP) [106] is executed to synchronize 

the internal clock on each node within millisecond accuracy. Furthermore, to reduce 

intrusiveness, the data (e.g. quaternion components) is collected in memory during the 

experiments and dropped to a file at the end. This process is executed independently on each 

node during the simulation. 
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4.3.2 Hybrid Nodes Design 

 

The proposed design falls in-between the atomistic peer-to-peer and client-server model. Each 

node is autonomous and fully manages its resources and connectivity through a set of software 

agents:  a GUI agent, a sensor agent, a rendering agent and a behavior agent. These agents run on 

each node and trigger the node behavior, i.e. a node can switch among any of the four modes 

described in the previous chapter, i.e. A, AF, P, PF.  

 

 

 

 

 

 

 

We consider two interaction scenarios common in distributed interactive VE applications: the 

participant uses a GUI for interaction or the participant interacts through the motion tracking 

sensor. In the first case, the GUI agent becomes active and makes the data available to the 

behavior agent; while in the second case the sensor agent pulls data from the sensor(s) attached 

to the node, converts it into an appropriate format and makes it available to the behavior agent. If 

Figure 21. Distributed interactive VE deployed on a LAN 
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requested by other participants, the behavior agent will spawn a server thread making the data 

available to other nodes, hence propagating the local modifications to the shared scene. 

Otherwise, the participant's interaction will affect only the local copy of the shared scene. 

Regardless of the node mode, the rendering agent is active all the time, given that the scene has 

to be continuously rendered. In what follows we briefly describe each agent. 

 

The GUI Agent 

The GUI agent is responsible for displaying the GUI (illustrated in Figure 22) at the active nodes 

and collecting the participant interaction on the VE using an event-based mechanism. 

 

 

 

The Sensor Agent 

The sensor agent is responsible for collecting information given by the participant through the 

sensor(s) attached to the node (e.g. motion tracking sensor). The sensor agent is listening to 

specific ports for sensor activity. We have used the sensor agent in conjunction with the Polaris™ 

 

Figure 22. The GUI allows manipulation of the virtual objects and mouse based 3D pointing 
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System to change the position and orientation of a 3D object in the scene by linking the object 

position in the virtual world with a tracking probe position in the real world. 

 

The Rendering Agent 

The rendering agent is responsible for rendering the shared scene on the output device (e.g. 

HMD) using the data collected from the participating nodes. The rendering is done using NVidia 

GeForce4 based cards on two channels, independently for the right and for the left eye, providing 

the inter-pupilary distance (IPD) as illustrated in Figure 23. Such rendering allows visualization 

of the virtual 3D objects through the HMD. 

 

 

 

The Behavior Agent 

The behavior agent handles new incoming data requests for the "A" nodes and allows the node to 

switch among the four modes. When a participant interacts with the shared scene, the associated 

node becomes active.   

 

Figure 23. Virtual cameras for the left and right eye: zone 3 stereo view 
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The behavior agent spawns a thread that controls the activation of the server component of the 

node. A passive node runs in client mode "consuming" incoming data from the participating 

nodes. When a passive node becomes active, it means that it acts as a data producer and 

distributor for the local participant and for the other nodes interested in its data. It is the 

responsibility of the behavior agent to advertise that the node has available data from a particular 

sensor by a short broadcast to all the nodes. If a new participant is interested it will be added by 

the behavior agent to the node's consumers list based on the CBT algorithm, as discussed in the 

previous section. Each level on the path to the core implies additional delays, potentially leading 

to an unacceptable behavior since the system has to respond to the participant's actions at 

interactive speeds. Therefore the depth of the CBT can be limited based on the application 

requirements. If the core node cannot handle the request, or the depth of the tree is too high, the 

new request will be rejected and the potential participant may try joining the VE at a later time. 

 

The behavior agent is activated by the participant interaction; hence, it maps the participant 

behavior onto the participant's associated node. In other words, if the participant is active, the 

associated node becomes active and ready to distribute interaction data. If the participant is 

passive, the associated node becomes passive. Figure 24 illustrates the various agents and their 

states on a passive as well as on an active node.  
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Figure 24. Dark shaded represents inactive agents, light shaded represents active agents  

 

When the participant does not interact with the shared scene, the GUI agent and the sensor agent 

are deactivated and the node becomes passive. 
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5. EXPERIMENTAL DESIGN AND SETUP 

 

5.1 Overview 

 

We have performed several experiments to quantify the dependence of the algorithm efficiency 

on the number of participants and on the action velocities (i.e. indirectly communication 

latency). In what follows we describe the experimental scenario, the relationship between 

network latency and action velocity as it pertains to the experiments, the scalability investigation 

scenario as it relates to the number and type of participants and finally the assessment method.   

 

5.2 Experimental Scenario 

 

As participants wearing HMDs enter the ARC [103], they gradually start immersing themselves 

in virtuality. Initially, the participant's reality is augmented with 3D computer-generated objects; 

however, they can be also immersed in Virtual Reality. The virtual objects may appear to 

multiple remotely located participants, if they share the same scene. The participants are 

interconnected on a local area network. 

 

Participants can interact with the virtual objects in two ways. Using a GUI with 3D pointing 

capabilities, they can manipulate these objects and they can point in the virtual space to different 
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parts of the objects (e.g., in the experiments we have used 3D medical models of mandibles and 

several 3D crosses) as illustrated in Figures 25, 26 and 27. 

 

Figure 25. GUI 

 

Figure 26. Local collaboration Figure 27. Remote participant 

 

 

An alternative way of manipulation is through the motion tracking sensor. The participant has a 

tracking probe attached to his/her hand, and the position and location of the tracking probe is 

associated with the position and location of a virtual object in the scene. 

 

Without loss of generality we limit the participant interaction to rotations of the object around its 

coordinate axis. An assumption of the experiments is that object ownership is not changeable. 

Active participants apply a set of consecutive actions (i.e. rotations of the object around its 

coordinate axis) using the GUI. The action's attributes (i.e. angular speed) are set using the 

interface. Each new action triggers a CPO modification that is distributed in the system.  

 

We have compared three scenarios: 
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1. The information from the CPO is not used at all. As a consequence the orientation drift 

among different views of the participants accumulates, confirming the importance of 

consistency maintenance algorithms, as well as the drift level achieved with this 

configuration. 

2. The orientation of the virtual object is corrected at each remote participant using the 

information from the CPO after each event is generated. 

3. The orientation of the virtual object is corrected using the proposed ASA. 

 

Chapter 6 presents the experimental results for these scenarios. Prior to describing these, we need 

to discuss an additional parameter that allows us to simulate the behavior of the algorithm on a 

higher delay infrastructure. 

 

5.3 Network Latency vs. Action Velocity 

 

To investigate the outcome of the network latency, we repeated the experiments at different 

action velocities, given that the drift value for an object is the product between the action 

velocity applied on that object and the network latency. For example, let's assume a simple 

scenario consisting of two nodes, an A node and a P node, representing an active and a passive 

participant. Suppose the average delay between these nodes is tij=0.2ms and the active 

participant applies an action (e.g. a rotation around axis) on a 3D object in the shared scene with 

the angular velocity ω = 10 degrees/sec. The angular drift in this case will be given by 
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αij = ω tij= 0.002 degrees 

 

On a higher delay infrastructure in which the delay is 20ms, the same action would produce a 

drift of 

α'ij = ω t'ij= 0.02 degrees 

 

While keeping the same delay (e.g. tij= 0.2 ms), the drift increase can be simulated by increasing 

the action velocity, i.e., ω=100 degrees/sec. Therefore, in order to simulate higher latency 

networks in our experiments, we vary the action angular velocity from 1 degree/sec to 100 

degrees/sec. In this way, we can simulate the behavior of the ASA under latencies of up to 20 ms 

on a 0.2 ms average delay network. 

 

5.4 Active vs. Passive Participants, Scalability 

 

To investigate the scalability of the algorithm as regards the number of passive participants, 

several sets of experiments were performed. The first set contained two nodes, an A node and a P 

node. The second set contained three nodes, one A node and two P nodes We gradually increased 

the number of passive participants to five nodes, as illustrated in  Figure 29.  
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These experiments allow us to see how the number of participants affects the synchronization 

results. Since the algorithm is distributed and the drift computation is done remotely by each 

participant, we expect only a slight degradation as the number of passive participants increases. 

 

 

 
 
 
 

Figure 28. Two-node setup  

 

 
 

Figure 29. Six-node setup 
 

 

Furthermore, to investigate the data distribution scheme we increase the number of active 

participants consecutively from one to six. In the last experiment the interactions of the 

participants at nodes 3 and 5 are captured through the optical motion tracking sensors attached to 

the nodes, as shown in Figure 30. The participants at nodes 1, 2, 4, 6 interact on the objects in the 

shared scene through a GUI. They act on different virtual objects in the shared scene, i.e., 

concurrent access to a virtual object is not considered. 
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The experiment consists of seven steps: 

Figure 30. Six-active-participant setup 

1. All five users join the distributed interactive VE. 

2. The participant at node 1 starts interacting with the virtual objects in the scene using 

the GUI. 

3. The participant at node 2 starts interacting with the virtual objects in the scene 

through its GUI. 

4. The participant at node 3 starts interacting with the virtual objects in the scene using 

the tracking probe attached to Sensor 1. 

5. The participant at node 4 starts interacting with the virtual objects in the scene 

through its GUI. 

6. The participant at node 5 starts interacting with the virtual objects in the scene using 

the tracking probe attached to Sensor 2. 
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7. The participant at node 6 starts interacting with the virtual objects in the scene 

through its GUI. 

 

In each step, fifty angular drifts of one of the shared virtual objects are recorded at each node. 

This procedure is repeated, resulting in a total of 250 angular drift measurements between two 

nodes (i.e. for measurements we collect data for an arbitrary pair of nodes) for the entire 

simulation. 

 

5.5 Distributed Measurements, Assessment Method  

 

Data collection imposes additional problems. To be able to objectively compare the drift as seen 

by the VE participants, the data must be time-stamped. Since the data at each node is time-

stamped with the local clock and since these clocks drift from each other in time, the initial step 

in data collection is to synchronize the clocks on the nodes. We employ the NTP to synchronize 

the distributed system clocks at millisecond accuracy just before the measurements are taken. 

 

Another issue is the frequency of measurements. Taking the measurements too often will affect 

the distributed VE. Our strategy regarding measurements is to collect in memory the components 

of the orientation of the 3D object at each participating node after the participant interaction (i.e., 

after each new action is applied).   
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To assess the efficiency of the ASA, the amount of orientation drift for a shared 3D object is 

computed. The drift between the node that acts on the object (the A node) and each of the other 

participating nodes (nodes that see the interaction) is computed. We have focused our 

experiments on the assessment of the orientation drift. A similar assessment can be done for the 

object's position.  

 

To emphasize the process we describe a simple scenario. We use two nodes (participants) 

sharing the same virtual 3D scene, with one acting as an A node and the other as a P node. The 

GUI available at the A node allows the participant to change the object orientation by applying 

rotations around the Cartesian axes. The participant at the A node generates events from the 

interface, and each time an event is generated, the object's orientation at both sites is recorded. 

Because of the network latency, different vectors at each node will describe the orientation of the 

object. The rotations can be easily expressed using quaternion notation. 

 

Let qs express the rotation of an object at the A node and let qc express the rotation of the same 

object at the P node. Both participants see the same virtual scene and the object should have 

exactly the same orientation. To quantify the difference between the orientations of the object as 

rendered on the A and P nodes, we can compute the correction quaternion qE, as shown in 

Appendix A, every time the user triggers a new action. The correction can be expressed as: 

 

cEs qqq =   Equation 15 

and thus,    

107 



1−= csE qqq   Equation 16 

where 

)(cos2 1
Eωα −=  Equation 17 

 

The angle α represents the drift between the orientations of a 3D object as rendered by the nodes. 
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6. RESULTS AND ANALYSIS 

 

In this chapter we present and discuss the experimental results. Two sets of experiments were 

performed. In the first set we investigate the behavior of the ASA as the number of passive 

participants increases while in the second set we perform the same analysis as the number of 

active participants increases. In each set we examine three scenarios. In the first scenario there is 

no compensation for drift correction since we try to observe the behavior of the drift in our 

experimental setup. In the second scenario, the CPOs update the orientation of the shared virtual 

objects after each action initiated on them by the participants. The third scenario consists of 

employing the proposed Adaptive Synchronization Algorithm (ASA) consequently the 

communication latency between each pair of participants is taken into consideration. 

 

6.1 Varying the Number of Passive Participants 

 

6.1.1 Two Node-Setup 

 

In the two-node setup a participant (node 1) rotates the shared virtual object by applying 

consecutive actions from a GUI. A remote participant (node 2) visualizes the same shared object. 

To simulate higher latencies the participant interactions (rotations) on the object are performed at 

different speeds (10, 50, 100 degrees/second). In the first set of experiments we've computed the 
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orientation drift as the participant applies actions on the virtual object without any compensation. 

The reason for the measurements is to obtain a reference for the drift magnitude and observe its 

behavior as a participant interacts on the shared scene. Figure 31 illustrates the variation of the 

orientation drift value and its trend line, while a set of fifty consecutive actions (random 

rotations) were applied on the virtual object. 
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Figure 31. Drift behavior at node 2 with no drift compensation 

 

In the second set of experiments we use the information in the CPO to update the position of the 

virtual object after each change in action attributes (Event Update method). These changes are 

generated by the participant while interacting on the virtual object. As seen in Figure 32, the 

orientation drift is maintained at a fairly constant value. The trend lines use a high order (sixth 

degree) polynomial fit. 
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In the third set of experiments, we have employed the ASA to compensate for the 

communication delay and jitter. The information from the CPO is combined with the information 

carried by the delay measurement probe to compensate for the drift. As seen in Figure 33 the 

drift value is significantly decreased and kept at a constant level. A higher order polynomial fit 

was used for the trend lines. As in the case of Event Update, the trend line has a sinusoidal shape 

which has a negative effect on the correlation coefficient (R). The sinusoidal shape of the trend 

line can be explained as an effect of the buffering and other system threads at the network and 

operating system (OS) level. Moreover such a sinusoidal behavior can be associated with the 

result of applying a low-pass filter on a signal with noise. In this case the noise is the drift and 

the low-pass filter is the ASA trying to block the drift accumulation. 

  

Figure 32. Drift behavior at node 2 using the Event Updates method 
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When the ASA is used, the drift angle is maintained at a constant value that is two orders of 

magnitude lower than the average drifts without update and approximately four times smaller 

than the average drift when the Event Update strategy is employed. 

 

Figure 33. Drift behavior at node 2 using the Adaptive Synchronization Algorithm (ASA) 

6.1.2 Three, Four, Five and Six Nodes Setup 

 

We have increased the number of passive participants consecutively to two, three, four and five 

while maintaining the same active node (i.e. node 1, recall the hardware configuration from 

Section. 4.2.3). Table 6 represents the average orientation drift observed on node 2, as the 

number of passive participants increases. A slight increase in the drift value with the number of 

passive participants can be seen. The ASA keeps the drift value at constant levels. 
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Table 6. Node 2 drift comparison in the 2,3,4,5,6 nodes configurations 
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6.1.3 Scalability Regarding the Number of Passive Participants 

 

To investigate the scalability of the ASA, regarding the number of passive nodes, we define a 

metric analyzing the relationship between the number of nodes in the system and the measured 

orientation drift values.  

 

Let ψi be the average drift value over all the participants, when i+1 participants are in the 

system.  Without loss of generality, let us consider an action velocity of 100 degrees per second.  

In the case of a two-participant setup, results show that the average drift, ψ1 equals 2.83 degrees, 

while in the case of a six-participant setup the average drift, ψ5 equals 3.17 degrees. An 

algorithm with a low degree of scalability would have at least a linear increase in drift, i.e., ψn 

would equal n* ψ1.  On the other extreme, a high degree of scalability would mean ψn ≈ ψ1. 

Using this metric, in the six-participant setup, a low degree of scalability would translate to ψ5 

equaling 5*ψ1 or 14.15 degrees. However, the experimental results and trend lines in Figure 34 

show that ψ5 ≈ ψ1. Thus, the algorithm gives promising results in terms of scalability regarding 

the number of passive participants. 
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Figure 34. Orientation drift behavior as the number of passive participants increases (ASA) 

 

In Figure 34, the average drift is potted as a function of the number of participants in the 

collaborative VE. The trend lines have been plotted using linear regression. The slope of the 

regression line increases slightly with the action speed. At 100 degrees/sec the slope value is 

0.105 and it decreases to 0.097 and further to 0.021 for action speeds of 50 and 10 degrees/sec 

respectively. In the current scope of the experimental results, this shows that the ASA algorithm 

and the data distribution scheme are slightly sensitive to the network delay. 

 

6.2 Varying the Number of Active Participants 

 

Starting with the same configuration of six nodes, we have triggered active participants one by 

one, up to the extreme case when each node was active. Two of the participants were modifying 

115 



the position of the 3D virtual objects using Polaris position tracking sensors while the other four 

were manipulating the objects using GUIs. Each participant manipulates its own object. 

 

6.2.1 Two, Three, Four, Five and Six Active Participants 

 

Figure 35 illustrates the orientation drift value for a virtual object, as the number of active 

participants in the distributed environment increases, without any consistency management 

scheme. To be able to compare the results when active nodes join the VE, we have computed the 

orientation drift for one virtual object as displayed by node 2. This is then the drift between node 

1 and node 2 experienced as a consequence of an increase in the number of active participants. 
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Figure 35. Orientation drifts between node 1 and node 2 without compensation when the number 

of active participants increases from 2 to 6. 
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The drift behavior on node 2, while the number of active participants increases, can be compared 

with the drift behavior on node 2 in the passive-participant setup (see Table 6. first column). As 

we can see the drift accumulates faster and reaches higher levels when the participants become 

active. Moreover, the drift variations are also higher compared with the passive-participant setup. 
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Using the information from the CPO to update the orientation of the 3D object, the value of the 

drift is significantly reduced as illustrated in Figure 37. 

Figure 36 Drift behavior No Compensation: 6 active (left) vs. 6 passive participants (right) 
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Figure 37. Event Update; 2, 3, 4, 5, and 6 active nodes 

Figure 38. Event Update; 1 active + 1, 2, 3, 4, and 5 passive nodes 
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In comparison with the behavior of the algorithms on passive nodes setup (Figure 38), when the 

nodes become active (Figure 37) the amount of data exchanged in the network creates a certain 

amount of jitter. Since the Event Update method does not compensate for jitter, the drift 

variation increases. 

 

Employing the ASA algorithm the drift is maintained at an almost constant average value as the 

number of active participants increases. The algorithm behavior, when the number of active 

participants increases, is similar to the behavior when the number of passive participants 

increases. 

 

R2 = 0.1411

R2 = 0.1647

R2 = 0.4472

0

1

2

3

4

5

6

0 50 100 150 200 250
Sample Number

D
rif

t A
ng

le
 (d

eg
re

es
)

ASA (speed=10 degrees/sec)
ASA (speed=50 degrees/sec)
ASA (speed=100 degrees/sec)

 
 

 

 

Figure 39. ASA with 2,3,4,5, and 6 active nodes 
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Figure 39 represents a plot of the drift values as the number of active participants increases from 

2 to 6 while the ASA delay compensation algorithm is employed. For comparison, Figure 40 

represents a plot of the drift values as the number of passive participants increases in the VE. 
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Figure 40 ASA with 1 active + 1,2,3,4 and 5 passive nodes 

6.2.2 Scalability Regarding the Number of Active Participants 

 

When the participants become active they produce and distribute data at the same time. In other 

words each active node is a server and other nodes interested (i.e. in the extreme case all) 

become its clients. In our experimental setup, the extreme case is made up of 6 active nodes that 

are interested in each other's data. Hence, each node is a server for the other nodes and a client 
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for them. Even if the experiment was deployed on a 100Mbps network, the amount of data 

exchanged in the VE creates some jitter. This is clearly visible in the drift behavior when no 

compensation is applied and when the Event Update method for compensation is used. Using the 

ASA algorithm, the effects of the jitter are compensated to a significant extent.   

 

In the case of a two-participant setup, results show that the average drift, ψ1, equals 3.2 degrees, 

while in the case of a six-participant setup the average drift, ψ5, equals 3.7 degrees. In terms of 

scalability regarding active participants, using the metric from Section 6.1.3, in the six-

participant setup, a low degree of scalability would translate to ψ5 equaling 5*ψ1 or 16 degrees. 

However, the experimental results and trend lines in Figure 41 show that ψ5 ≈ ψ1 when ASA is 

employed. 
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Figure 41. Orientation drift behavior as the number of active participants increases (ASA) 
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The slope of the regression line increases slightly with the action speed. At 100 degrees/sec the 

slope value is 0.123 and it decreases to 0.083 and further to 0.036 for action speeds of 50 and 10 

degrees/sec, respectively. In the current scope of the experimental results, this shows that the 

ASA algorithm and the data distribution scheme are slightly sensitive to the active nodes, 

however, the sensitivity is less pronounced than in the Event Update method. 
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7. CONCLUSIONS AND OPEN PROBLEMS 

 

7.1 Contributions and Implications of the Work 

 

We have presented a survey of the current efforts in distributed systems architectures and in 

dynamic shared state maintenance for distributed interactive VEs. We have proposed a novel 

criterion for categorization of applications based on the participant interaction pattern with the 

virtual components of the shared scene. Such a categorization will help system designers to make 

the right choices in merging the domain requirements with the application and deployment 

infrastructure capabilities. 

 

We have proposed a consistency maintenance algorithm, denoted ASA, that combines 

distributed monitoring with a distributed compensation method to maintain a consistent view of 

the shared scene in a distributed VE. The ASA addresses the impact of network latency on the 

shared state, in distributed interactive VE applications. By taking into account the measurement 

history of the end-to-end network delays among participants, the network jitter is taken into 

consideration. The decentralized computation approach for the drift values, carried out 

independently at each node, improves the system’s scalability and its real-time behavior as 

compared to traditional delay compensation approaches. 
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Based on the observation that the trend of VEs is to employ an increasing number of sensors and 

that the sensor information must be delivered in near real-time to be useful, we have deployed 

the algorithm on a customized hybrid architecture. 

 

7.2 Potential Applications - A Distributed AR Training Prototype 

 

In an effort to improve airway management training and respiratory system prognostics we have 

developed the AR based simulator illustrated in Figure 42. Utilizing a human patient simulator 

(HPS) from Medical Education Technologies Inc. (METI) combined with 3D AR visualization 

of the airway anatomy and the (endotracheal tube) ETT, paramedics will be able to obtain a 

visual and tactile sense of proper endotracheal intubation (ETI) procedure.  

 

   

(a) (b) (c) 
 

Figure 42. Illustration of the AR tool for training paramedics on ETI  

A trainee (a-concept, b-implementation) performing a medical procedure remotely supervised by 

the trainer(s) in (c). 
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The system consists of a HPS dressed with retroreflective material, an optical position tracking 

system, desktop computers, a lightweight HMD worn by the participants, and the intubation 

tools. 

 

In medical training and simulation the learning potential of AR is significantly amplified by the 

capability of the system to present 3D medical models in real-time, at remote locations.  An in-

depth discussion of this prototype can be found in [107].  

 

Such a system could allow paramedics, pre-hospital personnel and students to practice their skills 

without touching a real patient and will provide them with the visual feedback they could not 

obtain otherwise. Such a distributed AR training tool has the potential to: 

• Allow an instructor to simultaneously train local and remotely located students. 

• Allow students to actually "see" the internal anatomy and therefore better understand their 

actions on the HPS. 

 

An extension of the above distributed prototype, that includes deformable 3D anatomical models 

[108] is under investigation. 

 

7.3 Open Problems 

 

The proposed algorithm is based on the assumption that the distributed system nodes are 

homogeneous. This assumption is particularly important when rendering complex graphics. 
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Since the system delays are directly dependent on the type of hardware involved at each site, in 

the case of a heterogeneous distributed system, additional measures must be taken. 

 

The ASA is based on a distributed software monitoring scheme that is intrusive in its nature. We 

have taken additional steps in keeping the intrusiveness at low levels by avoiding I/O operations 

and keeping the measurements frequency at low. 

 

Regarding the experiments, configurations of up to six participants were tested on the 100 Mbps 

network infrastructure. It is important to mention that even if the traffic increases significantly 

with each active node, the bandwidth limit has not been reached. For deployment on a wide area 

network, additional testing is required.  

  

7.4 Research Horizons 

 

The ASA can be combined with existing prediction (e.g. convergence) algorithms to improve the 

smoothness of the virtual object movement. Convergence algorithms are usually employed as a 

second phase of the dead-reckoning. 

 

An immediate improvement would be the adaptation of the algorithm for heterogeneous 

distributed systems. We have presented a method to collect information from a node using the 

underlying operating system calls [109]. Such a system can be combined with the ASA to 

enhance the synchronization capabilities of a distributed interactive VE. 
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The ASA algorithm can be employed in new contexts. An interesting path would be the 

investigation of the ASA algorithm for haptic and audio cues in a distributed VE that includes 

haptic and 3D sound capabilities. Such an investigation could answer questions regarding how 

auditory and haptic cues enhance distributed collaboration and multimodal perception [110]. 

 

The combination of Distributed Systems with Virtual Environments poses many open questions, 

and consequently a great number of scientific challenges and opportunities. 
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APPENDIX A. QUATERNION BASICS, CORRECTION QUATERNION 
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Quaternions can be regarded as a 4-tuple consisting of a scalar component and a vector 

component denoted as , where w is the scalar component of the quaternion and 

 is the vector component. 

z)]ky,jx,i[w,(q
rrr

=

z)ky,jx,i(
rrr

 

A unit quaternion q specifies a 3D rotation (Figure 43) as an axis of rotation given by the vector 

component  and an angle α about that axis indirectly determined by the scalar component 

as:  

z)ky,jx,i(
rrr

)(cos2 1 w−=α

 

 

 

 

 

 

Inverse of a quaternion 

 

If we designate the inverse of the quaternion q as q-1
, 

q-1 = 1−z)]ky,jx,i[w,(
rrr  = )],,(,[

||
1

2 zkyjxiw
q

rrr
−−− ,  

Figure 43. Rotation represented with quaternions 
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where |q| is the norm of q sometimes called the length of q, and can be computed as 

 

|q| = 2222 wzyx +++  

 

Quaternion correction 

 

Quaternions were applied by NASA for satellite rotational maneuvers correction [111]. To 

express the error between the actual orientation of a 3D object and the desired orientation, the 

following equation can be used: 

dae qqq 1−=   

 

where qe, qa and qd represent the error, actual, and desired rotation respectively.  

 

qe = [we, (i xe ,j ye, k ze)] 

qa= [wa, (i xa ,j ya, k za)] 

qd= [wd, (i xd ,j yd, k zd)] 

 

Furthermore knowing that qe = [cos(αe/2), sin(αe/2)(x1, y1, z1)], the angular error can be inferred: 

 

)]([cos2)(cos2 11
dadadadaee zzyyxxwww ++−== −−α  
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APPENDIX B. APIS AND SDKS 
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OpenGL 
 

Since its introduction in 1992, OpenGL®  has become one of the most widely used, 2D/3D 

graphics API that allows development of graphical applications in hardware and software. The 

version used for this project was OpenGL® v.1.2 [112]. At the time of this writing OpenGL® 

v.1.5 is available. The relationship with other libraries and the VE application on a Linux based 

platform is described in Figure 44. 

 

  

 

 

In the development of the testbed application OpenGL was used indirectly through OpenGL 

Performer™ 2.5 toolkit. 

 

Virtual Environment Software Sandbox  

 

The Virtual Environment Software Sandbox (VESS) is a suite of libraries developed by the 

University of Central Florida's Institute for Simulation and Training [113]. VESS provides a 

high-level library allowing complex virtual entities (e.g. avatars), complete with geometry and 

Figure 44. Relationship between OpenGL, GLU and Linux windowing APIs 

132 



motion/articulation models, to be generated with a few simple lines of code. This is useful for 

dynamic networked VEs, which may involve many participants. VESS provides the developer 

with the ability to handle avatars at a high level and leave the details of movement, articulations, 

and behaviors to the system.  VESS is also designed for easy portability. Its multi-layered 

architecture allows the developer to focus on the details of the application, without worrying 

about the specifics of the graphics API or hardware interfaces. Thus, applications built using the 

VESS libraries will be easily portable to any other platform. For this project VESS 2.0 was used. 

Currently, VESS 3.0 [114] is available. 

 

OpenGL Performer 

 

OpenGL Performer™ [115] is a powerful and comprehensive programming interface for 

developers creating real-time visual simulation and performance-oriented 3D graphics 

applications. The toolkit simplifies development of applications used for visual simulation, 

manufacturing, simulation-based design, virtual reality, scientific visualization, interactive 

entertainment, broadcast video, architectural walk-through, and computer aided design. For this 

work Open GL Performer™ 2.5 was employed. The latest major release, OpenGL Performer™ 

3.1.1, is built atop the industry standard OpenGL® graphics library, interoperates with OpenGL 

Volumizer™, OpenGL Multipipe™ SDK, and OpenGL Vizserver™, includes both ANSI C and 

C++ bindings, and is available for the IRIX® operating system, Linux®, Windows® XP and 

Windows® 2000.  
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Distributed Augmented Reality Environment 

 

DARE (Distributed Augmented/Artificial Reality Environment) is an object oriented library 

which uses AR paradigms to improve human-to-human interaction, enhancing the real scene that 

a person sees, with 3D computer generated objects. The initial targets of the library were AR 

applications. Later, the scope was expanded to the entire Virtuality Continuum spectrum. 

Currently a Beta version has been released for in-house use. The library is organized in several 

packages: 

• Networking. The Networking package provides a set of classes for fast development of 

scalable, real-time applications on a local area network. It facilitates development of real-

time synchronization algorithms and load balancing schemes in a real-time distributed VE.  

• 3D Deformation. The Deformation package provides an interface to deform 3D models. 

This package is designed for anatomical models that deform based on user inputs and 

interaction in order to provide enhanced interactive simulations.  

• Calibration. The Calibration package provides algorithms for determining the 

transformations necessary to accurately display virtual objects within a VE application. 

The algorithms include eye-point determination, camera calibration, and optical distortion 

calculation. The calibration algorithms can be adapted for use with any two-channel 

stereoscopic display.  

• Registration. The Registration package provides algorithms for placing real and virtual 

objects into spatial coincidence (registration) and assessing the quality of registration. The 
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package aids in achieving superior registration by using robust optimization procedures 

for pose estimation.  

• Assessment. The HMD prototype assessment battery includes visual perception tests 

aimed at assessing VE system parameters such as the resolution of the HMD. The human-

in-the-loop test battery currently includes a modified Landolt C Visual Acuity test as well 

as a perceived contrast test (i.e. tests perceived luminance changes between a target and 

background). Both these tests assess the limits of the small spatial frequency channels of 

the human retina. Future tests will allow mapping of the contrast sensitivity function for 

the HMD display across all spatial frequency channels of the retina.  

 

GIMP Tool Kit 

 

GTK+ [116] is a multi-platform toolkit for creating graphical user interfaces. Offering a 

complete set of widgets, GTK+ is suitable for projects ranging from small one-off projects to 

complete application suites. It's called the GIMP toolkit because it was originally written for 

developing the GNU Image Manipulation Program (GIMP), but GTK has now been used in a 

large number of software projects, including the GNU Network Object Model Environment 

(GNOME) project. GTK is built on top of GDK (GIMP Drawing Kit) which is basically a 

wrapper around the low-level functions for accessing the underlying windowing functions (Xlib 

in the case of the X windows system), and gdk-pixbuf, a library for client-side image 

manipulation.  
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