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ABSTRACT 

As designers began to pack multi-million transistors onto a single chip, their reliance on a global 

clocking signal to orchestrate the operations of the chip has started to face almost insurmountable 

difficulties.  As a result, designers started to explore clockless circuits to avoid the global 

clocking problem.  Recently, self-resetting circuits implemented in dynamic logic families have 

been proposed as viable clockless alternatives.  While these circuits can produce excellent 

performances, they display serious limitations in terms of area cost and power consumption.  A 

middle-of-the-road alternative, which can provide a good performance and avoid the limitations 

seen in dynamic self-resetting circuits, would be to implement self-resetting behavior in static 

circuits.  This alternative has been introduced recently as Self-Resetting Stage Logic and used to 

propose three types of clockless pipelines.  Experimental studies show that these pipelines have 

the potential to produce high throughputs with a minimum area overhead if a suitable synthesis 

methodology is available.   

 

This thesis proposes a novel synthesis methodology to design and verify clockless pipelines 

implemented in SRSL by taking advantage of the maturity of current CAD tools.  This 

methodology formulates the synthesis problem as a combinatorial analytical problem for which a 

run-time efficient exact solution is difficult to derive.  Consequently, a two-phase algorithm is 

proposed to synthesize these pipelines from gate netlists subject to user-specified constraints.  

The first phase is a heuristic based on the as-soon-as-possible scheduling strategy in which each 

gate of the netlist is assigned to a single pipeline stage without violating the period constraint of 

each pipeline stage.  On the other hand, the second phase consists of a heuristic, based on the 
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Kernighan-Lin partitioning strategy, to minimize the number of nets crossing each pair of 

adjacent pipeline stages.  The objective of this optimization is to reduce the number of latches 

separating pipeline stages since these latches tend to occupy large areas.   

                   

Experiments conducted on a prototype of the synthesis algorithm reveal that these self-resetting 

stage logic pipelines can easily reach throughputs higher than 1 GHz.  Furthermore, these 

experiments reveal that the area overhead needed to implement the self-resetting circuitry of 

these pipelines can be easily amortized over the area of the logic embedded in the pipeline 

stages.  In the overall, the synthesis methods developed for SRSL produce low area overhead 

pipelines for wide and deep gate netlists while it tends to produce high throughput pipelines for 

wide and shallow gate netlists.  This shows that these pipelines are mostly suitable for coarse-

grain datapaths.    
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CHAPTER ONE: INTRODUCTION 

This chapter describes the problems caused by the reliance on global clocking to 

synchronize the operations of digital circuits.  Faced with these problems, designers are 

exploring other classes of circuits which do not rely on clocking.  In this context, the 

chapter discusses a class of clockless circuits known as self-resetting circuits.  Because 

these circuits suffer from serious limitations in spite of their high performances, the 

chapter introduces briefly self-resetting stage logic and its pipelining schemes.  Based on 

this new self-resetting technique, it argues for a synthesis methodology that is suitable to 

support clockless pipelines.             

 

1.1 Limitations of Clocked Circuits 

Clocked circuits have been dominating digital design for some time.  Because they are 

synchronized by a global signal, these circuits are easy to build and verify.  By 

abstracting away the complex interactions between circuit signals in the time domain, the 

timing analysis of these circuits is greatly simplified [1].  This simplification is narrowed 

to the analysis of delays on the critical path of the underlying gate netlist of the circuit.  

In essence, the design process of digital circuits is reduced to embedding combinational 

logic between clocked registers.  This approach simplifies further the timing analysis by 

ignoring completely the impact of unwanted signal transitions between clock events.  As 

time went by, interest grew in designing larger clocked circuit to meet new emerging 

applications.  At the same time, market forces began to compel designers to reduce the 

1 



time-to-market of newly introduced technology products in order to maximize potential 

profits in the market.  The combination of these factors contributed significantly to the 

development of automatic tools to design and verify these clocked circuits.  This 

development effort culminated in the wide acceptance of a unified design methodology 

supported by widely available CAD tools.  While these change were taking place, the 

quick pace of innovation in CMOS technology made the integration of multi-million 

transistors onto the same die possible.  As designers kept packing more devices into chips 

to take advantage of these large scales of integration, significant challenges have emerged 

of which the reliance on a clock signal to orchestrate logic operations across an entire 

chip seems to be the most important [2].  This problem is considered the primary cause of 

three consequential obstacles in current VLSI design [3]: 

(i) Design cycle time: Design time can be extended significantly by unexpected 

clocking problems. These extensions can disturb product schedules and shrink 

potential market profits.  

(ii) Power budget: The power budget allocated for a design initially may be 

completely underestimated if clocking problems are not addressed early in the 

design cycle. Even if they are, there is no guarantee that the power budget will 

remain within initial estimates.  Getting the power budget right is critical since 

excessive power consumption may disrupt the correct operations of the 

circuit.   

(iii) Chip area: To overcome the technical difficulties imposed by the distribution 

of the clock to different parts of a chip, substantial silicon area has to be 
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sacrificed to support this distribution.  This additional area can increase 

significantly the final cost of the circuit.  

1.2 Self-Resetting Circuits 

As global clocking is causing these problems, designers are exploring the alternative of 

asynchronous circuits [4].  Recently, a special family of dynamic circuit, known as self-

resetting logic, has been exploited successfully in memory design [5, 6]. Only a few 

attempts have been made to study the effectiveness of this logic family in implementing 

asynchronous datapath circuits [7, 8].  Self-resetting behavior can be described as the 

ability of a logic block to reset its output pulse a short time after it has been asserted.  The 

reset signal is often generated within the block based on the output pulse.  Depending on 

the implementation of the self-resetting behavior, the granularity of the block can range 

from a single gate to a large macro.  Most self-resetting dynamic circuits are fine-grain 

implementations targeted to high performance arithmetic circuits.  Since the majority of 

these circuits are pulse-mode circuits, they are usually organized into pulsed latch-free 

pipelines.  These pipelines can produce high throughputs that are made possible by the 

fast cycle time of self-resetting dynamic circuits.  Although dynamic circuits exhibit 

smaller area overhead than static circuits, the implementation of self-resetting dynamic 

circuits tend to occupy larger areas as shown in Figure 1.1 [9].  This area overhead is 

primarily caused by the self-resetting circuitry and additional buffering to equalize signal 

delay on various logic paths.   
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Figure 1.1: Area cost of an add-compare-select unit of a Viterbi Decoder implemented in 

three logic families. 

 

While it is known that dynamic circuits can be power hungrier than static circuits, self-

resetting dynamic circuits tend to consume substantially more power than even their 

clocked dynamic counterparts as shown in Figure 1.2 [10 ].   
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Figure 1.2: Power consumption of an add-compare-select unit of a Viterbi Decoder 

implemented in three logic families. 
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As for timing requirements, with the exception of a few self-resetting approaches [9, 11], 

most self-resetting circuits rely heavily on equalization of path delays [8, 12].  In fact, 

because some self-resetting circuits are intended for wave pipelining [7], rough padding 

is extensively applied on all paths in order to minimize the difference between fast and 

slow paths [13] as shown in Figure 1.3.   

 
Figure 1.3: Rough padding in a carry generator block of a self-resetting carry lookahead 

adder [7]. 

 

Buffers can occupy up to 40% of the circuit area in some cases [10].  As a result, 

additional effort must be invested in meeting timing constraints that are specific to these 

circuits.    This significant demand on maintaining signal integrity is exacerbated further 

by the pulse-driven nature of self-resetting circuits.   

 

Since self-resetting behavior can be realized using any circuit family, one can opt to use 

static CMOS instead.  Doing so presents several advantages.  In static circuits, signals do 

not have to be pulses.  Instead, voltage levels are sufficient to support self-resetting 
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behavior.  If voltage levels are used, the stringent timing constraints encountered in pulse 

mode circuits can be relaxed without affecting circuit robustness.  In addition, significant 

power savings can be realized by using static circuits.  While static circuits are not as fast 

as dynamic circuits, one can overcome more or less effectively this difficulty by adopting 

performance-enhancing techniques such as aggressive pipelining and the exclusion of the 

reset circuitry from the critical path of the datapath.  Moreover, the use of static self-

resetting latch-based pipelines is particularly beneficial since their timing verification is 

reduced to the verification process encountered in synchronous logic.  Furthermore, these 

self-resetting circuits can be synthesized and verified using current synthesis and 

verification tools.  It is worth noting that there are no mature synthesis and verification 

tools available for dynamic circuits [14].  In fact, the design community ought to exploit 

the maturity of current CAD tools to build large asynchronous architectures which go 

beyond proof-of-concepts designs.  To do so, this community can pursue a design 

methodology which adopts as much as possible the existing CAD design flow and 

deviates from it as little as possible [15].   

 

1.3 Self-Resetting Stage Logic and Its Synthesis Methodology 

Following the objective of maximum adoption of the current design methodology, a 

novel coarse-grain self-resetting technique, called self-resetting stage logic implemented 

in static CMOS, has been recently proposed [16].  Based on this self-resetting stage logic 

(SRSL) technique, three pipelining schemes have been proposed where the first and 

second pipelines require that stages have equal delays while the third pipeline can tolerate 
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any arbitrary stage delay [17-21].  This thesis proposes a synthesis methodology to build 

these SRSL pipelines [22-24].  This methodology operates on flat gate netlists 

synthesized by current CAD tools and implemented in standard library cells used in 

ASIC design.  The synthesis methodology is assessed through experimentation on 

benchmark circuits with various depths and breadths.  As an experimental requirement, 

these SRSL pipelines have been synthesized and verified using current CAD tools, then 

implemented using a standard static CMOS cell library [25, 26]. 

 

1.4 Thesis Contributions 

This thesis presents a new synthesis methodology specifically designed for pipelining 

SRSL logic.  As mentioned before, this methodology is highly suitable for existing CAD 

tools.  Specifically, the contributions of this thesis are as follows: 

(i) A novel design methodology based on synthesizing SRSL pipelines using 

current CAD tools and standard cell libraries.  Designing clockless circuits 

using this methodology is highly similar to designing digital synchronous 

circuits.      

(ii) Graph-theoretic and analytical formulations of a combinatorial problem 

encountered in the synthesis of SRSL pipelines. Specifically, this problem 

consists of synthesizing an SRSL pipeline from a gate netlist with a minimum 

area overhead based on a specified data rate.  The analytical formulation 

consists primarily of an integer programming problem.   
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(iii) Since the size of the integer programming problem formulation is significantly 

large, a new heuristic algorithm is proposed to solve it.  Because latches tend 

to occupy a large silicon area, the main goal of the algorithm is to minimize 

the area occupied by inter-stage latches without violating any timing 

constraints. This is accomplished by executing two successive phases where 

phase I assigns each gate in the gate netlist to a specific pipeline stage whereas 

phase II minimizes the number of inter-stage latches between every pair of 

neighboring pipeline stages. 

(iv) Pipelining experiments conducted on the SRSL pipeline show that they can 

reach throughputs above the GHz range without incurring an excessive area 

overhead.   

(v) The same pipelining experiments reveal that the area overhead remain 

beneficial as long as it represents a small fraction of the logic area embedded 

in a pipeline stage.  This requirement makes SRSL pipelines highly suitable 

for pipelining coarse-grain datapaths.   

 

1.5 Thesis Overview 

This thesis consists of six chapters in which the current chapter presents the motivation 

behind the synthesis methodology of SRSL pipelines by drawing attention to the global 

clocking problem.  Chapter 2 reviews the self-resetting circuit techniques previously 

described.  These techniques are all implemented in dynamic CMOS.  Chapter 3 

introduces SRSL and describes the operations of the three pipelines based on SRSL.  
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Chapter 4 describes the synthesis methodology that is proposed to support the design and 

verification of SRSL pipelines, presents the formulation of the combinatorial problem 

stemming from the synthesis of SRSL pipelines, and describes the synthesis algorithm 

implemented for this purpose.  Chapter 5 presents the experiments conducted on 

benchmark circuits in order to evaluate the performance profiles of each SRSL pipeline.  

Finally, Chapter 6 concludes the thesis and suggests avenues for future work.   
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CHAPTER TWO: RELATED WORK 

In this chapter, a review of the different design techniques based on self-resetting logic is presented.  

Section 2.1 presents delayed reset logic while section 2.2 describes a self-resetting technique 

controlled by local and global reset signals.  Section 2.3 describes a self-resetting technique driven 

by local reset signals while section 2.4 describes a dual rail self-resetting technique with input 

disable.  Section 2.5 concludes the chapter by presenting a summary of the reviewed techniques and 

contrasting them to SRSL.  

2.1 Delayed Reset Logic  

In [11] , the authors propose a pipelined technique based on delayed self-reset logic (DSRL).  The 

refinement of this technique is inspired from the self-reset technique proposed in [27].  DSRL is a 

single rail logic optimized for pipelining memory access in multimedia processors.  This reset 

technique is driven by pulses and can be modified to accommodate voltage levels. Figure 2.1 shows 

the structure of a DSRL pipeline while Figure 2.2 shows timing charts of control signals within the 

pipeline.  In DSRL, a stage can transition through three states: evaluate, reset, and recover.  Before 

computation begins, a stage is in a quiescent state.  When the inputs (in_a and in_b) are absorbed, 

the stage enters the evaluate state as shown in Figure 2.2.  The evaluation time depends on the delay 

within the NMOS and PMOS networks.  At the end of this state, the output (out_n or out_p) 

becomes stable at which point the stage enters the reset state.  The stage remains in this state as long 

as the reset signal (rst_in) has not arrived from the previous stage.  Note that this signal is also 

labeled rst_out on the output side of the same stage.   
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Figure 2.1: DSRL pipeline and its self-resetting circuitry. 

.  

 
Figure 2.2: Timing chart of DSRL control signals of a pipeline stage. 

 

As Figure 2.1 shows, the reset signal (rst_in) travels between every two adjacent stages.  When the 

latter signal arrives, the stage enters the recovery state.  This state is locally timed in each stage by 
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insuring that transistor n3 is turned off before transistor n4 is turned on in the beginning of the 

evaluate state.  This signal control allows the stages to have arbitrary different delays. 

 

Implemented in domino logic, DSRL pipelines consist of alternating NMOS and PMOS stages 

without any latches between the stages.  Although these pipelines are suitable for memory cell 

design, it is doubtful whether they are also suitable for datapaths or not given their fine-grain nature.  

In addition, their design requires that careful calibration be applied to the pulse generator located in 

the first pipeline stage as shown in Figure 2.1.  This calibration is needed to compensate for 

environmental variations.  Furthermore, since these pipelines are mainly custom circuits, their design 

and verification can be time-consuming and error-prone.               

2.2 Global/Local Self-Resetting CMOS 

In [8, 12], the authors propose a single-rail self-resetting technique in which the gates are reset 

locally (LSRCMOS).  However, the gates within a large macro are reset through a global reset signal 

(GLSRCMOS).  Figure 2.3 shows a basic GLSRCMOS gate.  This gate has active-high pulsed 

inputs and outputs.  Its non-inverting logic evaluation depends on the logic function of the NMOS 

tree.  If the right input combination occurs at the right time, a conducting path from the TL node 

emerges, which leads to discharging the capacitance at the output side of the gate. This brings TL to 

logic 0 while the output goes up to logic 1, thus creating the leading edge of the output pulse.  When 

the input pulse ends, the RL signal arrives by falling to logic 0, thus resetting the TL node to logic 1. 

After TL becomes asserted, the RH signal arrives, by rising to logic 1, to terminate the output pulse. 
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Figure 2.3: Basic SRCMOS gate. 

 

These basic GLSRCMOS gates are incorporated within macros.  An SRCMOS macro consists of a 

number of gates whose reset signals drive a reset generator circuit located inside the macro.  Figure 

2.4 shows a GLSRCMOS macro.  The triggering of this generator can be realized through ORing of 

reset signals, majority circuits, or interlocking signals from multiple paths.  As a rule, the reset 

generator must be triggered when the macro is active.  A delay chain generates the required signals 

within the reset generator.  Initially, a macro is in standby mode.  Once it receives its triggering 

pulses, it enters the evaluate mode, then resets its outputs before returning to the standby mode.  

 

In [8], the designs of a number of macros are assembled to implement a 64-bit carry lookahead adder 

in a 0.25 µm CMOS process.  This adder can reach a throughput of 400 MHz.  Since this adder uses 

a pipelined pulsed approach to increase its throughput, a number of buffers have been added to the 

adder in order to control delay on logic evaluation paths. 
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Figure 2.4: SRCMOS macro. 

 

While the authors refer to pulse pipelining, they do not clearly describe how macros are pipelined 

within the adder.  This omission does not clarify how two adjacent macros synchronize their state 

transition in order to exchange data safely.  Whereas the insertion of buffers can help in overcoming 

timing issues, it can become quite unwieldy when dealing with large datapaths with large numbers of 

logic paths.  At best, buffer insertion bloats the datapaths leading to a large area overhead.  In 

addition, if macro size increases to accommodate deep logic, it may require increasing the length of 

the reset chains within a macro.  This can be achieved by inserting inverters in this chain, which in 

turn complicates the timing verification of the macro.  These ensuing timing difficulties explain the 

motivation of the authors in [12] to propose a special tool for performing accurate timing verification 

of GLSRCMOS circuits.    
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2.3 Local Self-Resetting CMOS 

In [9], the authors propose a single-rail input dual-rail output self-resetting technique in dynamic 

CMOS.  In this technique, the reset signal is generated within the stage by NORing the stage output 

and its complement.  As a result, two NMOS networks are required to generate the output and its 

complement. Figure 2.5 shows the local self-resetting CMOS (LSRCMOS).  In this circuit, node 1 

will switch to low or high depending on the input.  At the same time, node 2 will switch to the 

complement logic level of node 1 given the same input.  At this time, both NMOS networks are in 

the evaluate state.  Subsequently, signal f and f’ go through the NOR gate whose output switches to 

low.  The low output of the NOR gate turns on both precharge transistors connected to the reset node 

thus charging the capacitance at the outputs of both NMOS networks.  As a result, nodes 1 and 2 

switch to high to propel both NMOS networks in the reset state.  At this moment, both NMOS 

networks are ready to accept new input pulses.  Following this, signal f and f’ switch both to low 

thus forcing the output of the NOR gate to switch to high.  This in turn turns off both precharge 

transistors to allow both NMOS networks to evaluate the newly arrived input pulses.     

 

Contrary to GLSRCMOS presented in the previous section, the reset signal in LSRCMOS does not 

go through any timing chain.  As shown in Figure 2.5, the reset time remains constant regardless of 

the evaluation time of both NMOS networks.  However, the delay through the loop consisting of an 

output node, the NOR gate, and the reset node should be longer than the duration of the input pulses 

to avoid in-fighting between the precharge transistors.  This technique can be used to build latch-free 

pipelines in dynamic CMOS as shown in Figure 2.6.   
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Figure 2.5: Local self-resetting CMOS. 

 

In [10], the authors apply LSRCMOS to design an add-compare-select (ACS) unit of a Viterbi 

decoder.  While the ACS unit is 1.71 faster than its counterpart in clocked static CMOS, it is 110 

times power hungrier than its static counterpart.  In addition, it occupies 2.35 times more area than 

its static counterpart in spite of the effort of the authors in using pulse stretchers to control path 

delay.  While the authors claim that these stretchers reduce area overhead in contrast to buffers, they 

do not specify how many pulse stretchers they used within the ACS unit and how much area they 

occupy.  In fact, a pulse stretcher consists of an SR latch whose R input is connected to a NOR gate 

as shown in Figure 2.7.   
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Figure 2.6: Latch-free pipeline based in LSRCMOS. 

 

Based on popular latch layouts, an SR latch in static CMOS can easily occupy three to seven times 

more area than a two-input NAND gate.  To scale to dynamic CMOS implementations, a rough 

estimate can be obtained by halving the area estimates in static CMOS.  Based on this estimate, even 

pulse stretchers may add a substantial area overhead although it is doubtful it would be on the order 

of the area overhead caused by buffer insertion. 

 
Figure 2.7: Pulse stretcher. 
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2.4 Dual-Rail Self-Reset Logic with Input Disable 

In [7], the authors propose a dual-rail self-resetting technique, called DRSRL-ID, in which the reset 

signal is generated locally.  Figure 2.8 shows a basic DRSRL-ID gate.  The ID initials represent the 

input disable block shown in Figure 2.8.  This block consists of an extra NMOS transistor NMe in 

series with the NMOS transistor NM1.  When the gate is in standby mode, capacitance is pulled 

down to ground switching the node outn to high.  In return, this makes the node rst1n switch to high 

to turn on the NMe transistor.  At this point, the gate is ready to absorb the D input.  If D becomes 

high, node outn switches to low, which turns on and off the PMa and NMa transistors respectively.  

After a short time, node rst1 switches to low to turn off the NMe transistor.  When the latter device is 

off, the input is disabled.  The discharging of the node outn causes output Y to rise, thus generating 

the leading edge of the output.  Y is fed through inverter invFB to turn on the PM1 transistor in 

charge of pulling up node outn.  This brings back the gate to its standby mode.  As node outn starts 

going high, its voltage switches the transistors of the output stage forcing the Y output to go low.  

When Y becomes low, it deactivates the reset signal to enable input readout.  As such, the gate re-

enables the inputs only when the output pulse is completely formed.  The layout of the basic 

DRSRL-ID gate forces the width of the output pulse to remain constant regardless of fanout.  The 

width of the output pulse depends only on the output stage and the feedback loop that controls the 

reset signal.  It is completely independent of the implementation of the NMOS network in charge of 

evaluating logic.     
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Figure 2.8: Basic DRSRL-ID gate. 

   

The authors use this design technique to build a 16-bit wave-pipelined carry propagate adder in a 

0.18 µm CMOS process which can reach 2.5 GHz throughput.  Because wave pipelining aims at 

reducing the delay differences between long and short paths, the authors resort to extensive rough 

padding to reach this objective.   

 

While timing calibration seems to be straightforward at gate level, it is not clear how it can be 

achieved at datapath level.  In fact, if buffer insertion is used for path delay equalization, this 

indicates that substantial effort must be invested in timing calibration at datapath level.  In addition, 

buffer insertion contributes to bloating datapath size.  By considering the number of transistors 

needed to support input disabling and resetting behavior on a cell basis, it is clear that area overhead 

can be incurred also at cell level.  In fact, some basic two-input gates can incur a penalty of 12 to 16 

transistors to support their input-disabling and reset behavior.       
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2.5 Summary of Self-Resetting Techniques 

Table 2.1 shows a summary of the self-resetting techniques reviewed in this chapter.  The table 

shows that all the reviewed techniques are implemented in custom dynamic CMOS using pulse-

driven circuits.  Pulse driven circuits require precise sequencing of the input pulses.  In contrast, 

voltage level circuits do not require such sequencing.  In addition, custom circuits using dynamic 

CMOS require a substantial effort in verification.  This effort is further hampered by a total lack of 

mature CAD tools destined for synthesis and verification of circuits implemented in dynamic 

CMOS.  In the reviewed circuits, the reset signal is always tied to the output pulse making the reset 

signal tightly coupled to the path of evaluated logic.  If glitches affect the output signals, these 

glitches will propagate to the reset signals resulting in a temporary or permanent disruption of the 

state transitions in these circuits.  None of the reviewed papers speculate on the consequences of 

such glitches.  To build datapaths, these circuits are assembled into fine-grain latch-free pipelines.  

While these pipelines tend to be small in area, their verification is not a trivial task.  This situation is 

further exacerbated in the reviewed techniques that require equal stage delay across the pipeline.     

      

In contrast to the reviewed self-resetting techniques, this thesis proposes a design technique to 

support SRSL which has been previously reported in [16].  Implemented in static CMOS, SRSL has 

adequate coarse granularity to make it suitable for implementing large datapaths.             

 

Static circuits consume less power than dynamic circuits.  Furthermore, since SRSL exploits self-

resetting at datapath level, its area overhead is significantly smaller than the area overhead seen in 

the reviewed self-resetting techniques.  The latter techniques implement self-resetting behavior at 

gate level instead.  While dynamic circuits can display a superior performance, static circuits can 
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provide similar performance levels if aggressive pipelining is applied in a disciplined manner.  SRSL 

uses voltage levels instead of pulsed inputs and outputs.  For circuit robustness, SRSL separates the 

path of self-resetting circuitry from that of logic circuitry.  Since SRSL is implemented in static 

circuits, its pipelines use latches to separate logic stages.  The insertion of latches facilitates the 

control of the cycle time and subsequently the timing validation of these pipelines.         

  

Table 2.1: Summary of self-resetting techniques. 

 DSRL LGSRCMOS LSRCMOS DRSRL-ID SRSL 
Pulse vs. 
voltage level 

Pulse Pulse Pulse Pulse Voltage levels 

Source of 
reset signal 

● Incoming 
reset from 
previous stage 
 
● Outgoing 
reset in current 
stage 

● Local reset 
in current gate 
 
● Global reset 
in macro 

Current stage Current stage ● Current 
stage (S/P-
SRSL) 
 
● Previous 
stage (D-
SRSL) 

Destination of 
reset signal 

Next stage In macro Current stage Current stage Previous stage 

Tying of reset 
signal to 
output  

Yes Yes Yes Yes No 

Signal delay 
handling 

None Buffering Pulse 
stretching 

Buffering Buffering 

Path of reset 
signal 

Logic path Logic path Logic path Logic path Control path 

Stage delay Arbitrary Equal Arbitrary Equal ● Equal (S/P-
SRSL) 
 
● Arbitrary 
(D-SRSL) 

Pipelining No Latches No Latches No Latches No Latches Latches 
CMOS Dynamic Dynamic Dynamic Dynamic Static 
Granularity Fine Fine Fine Fine Coarse 
Tools None Proprietary None None Current CAD 
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This thesis proposes a design methodology which leverages the maturity of current CAD tools to 

synthesize and verify SRSL pipelines.  The methodology does not deviate from the established 

design methodology used in synchronous logic.  At the core of this methodology is a synthesis flow 

which transforms a synchronous gate netlist into an SRSL netlist before the latter is placed and 

routed. 
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CHAPTER THREE: SELF-RESETTING STAGE LOGIC 

This chapter presents self-resetting stage logic, which is a digital design technique that is 

characterized by periodic oscillations.  This technique can be used to establish 

handshaking exchanges between two computational stages in a dataflow pipeline.  Its 

underlying concept is introduced in section 3.1.  Section 3.2 describes the stage-to-stage 

self-resetting stage logic pipeline followed by the description of the pipeline-controlled 

self-resetting stage logic pipeline in section 3.3.  Section 3.4 describes delay-tolerant 

self-resetting stage logic pipeline before section 3.5 concludes the chapter.  

3.1 Self-Resetting Stage Logic  

Self-resetting stage logic (SRSL) is a design approach which can be used to synchronize 

data flow between neighboring computing blocks without relying on a global clock 

signal.  In the SRSL pipeline, each stage consists of two distinctive networks: a 

combinational network and a reset network. The combinational network represents the 

combinational logic embedded in a given stage while the reset network represents an 

oscillating loop used to control data transfer from one combinational network to another.  

The reset network consists of a two-input NOR gate whose output O feeds back one of its 

inputs I, while its other input is tied to the Reset global signal as shown in Figure 3. 

 
Figure 3.1: Reset network of an SRSL stage. 
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As long as the Reset signal is asserted, O remains 0. When the Reset signal is de-asserted, 

O oscillates between 0 and 1.  The oscillation frequency is controlled by the delay block 

∆ embedded in the feedback loop between the NOR output and its input. When O is 0, 

the reset network is in the reset phase. Later, when O switches to 1, the reset network is 

in the evaluate phase.  As such, a reset network oscillates between two distinct phases in 

an autonomous fashion.  The duration of these two phases constitutes a single oscillation 

cycle or period.  This autonomous oscillation is illustrated with the state transition graph 

(STG) shown in Figure 3.2. 

 
Figure 3.2: STG of the SRSL reset network. 

 

In the above STG, O, I, and R are the three signals shown in Figure 3.1.  O+, I+, and R+ 

represent the rising transitions on those signals respectively while O−, I−, and R− represent 

the falling transition on the same signals respectively.  In addition, a directed edge 

connecting two transitions means that the transition at the tail of the edge precedes in 

time the transition at the head of the edge.  The oscillations of a reset network can be 

used to synchronize data transfer between neighboring stages in a pipeline. To allow the 

combinational network of  a stage sufficient time to absorb and process its inputs, SRSL 
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prepares a stage to (i) receive inputs from the preceding stage when it is in the reset 

phase, and (ii) send its outputs to the following stage when it is in the evaluate phase. 

 

3.2 Stage-to-Stage Self-Resetting Stage Logic 

In stage-to-stage self-resetting stage logic (S-SRSL), the synchronization is realized 

between each pair of stages in the pipeline.  In this pipeline, each stage is ready to absorb 

inputs when it enters the reset phase and produce an output when it enters its evaluate 

phase.  As a result, data transfer occurs between two neighboring stages when the left 

stage is in the evaluate phase while the right stage is in the reset phase.   

Figure 3.3 shows the interconnection structure of a four-stage S-SRSL pipeline where 

each stage consists of a combinational and a reset network.  In addition to the reset 

network, SRSL relies on inter-stage latches to capture data moving from one stage to 

another.  These latches are enabled when the left stage is ready to push data to the right 

stage in a pipeline.  This occurs when the left and right stages are in the evaluate and 

reset phases respectively.  As shown in Figure 3.3, the enable (Li) of each inter-stage 

latch is tied to the output of an AND gate whose inputs are connected to the phase lines 

of the left and right stages.  These phase lines represent the outputs of the NOR gates 

embedded in the reset networks of both stages.  Note that the right input of the AND gate 

is inverted.  Because the control of these inter-stage latches is exercised between each 

pair of pipeline stages, this synchronization technique is qualified as a stage-to-stage 
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SRSL.  It is worth emphasizing the fact that all the stages in the pipeline should have 

equal cycles in order to insure correct data flow throughout the pipeline.    

 
Figure 3.3: Four-stage S-SRSL pipeline. 

 
At any oscillation cycle, the latch on the left side of a stage in the reset phase will be 

enabled while the latch on its right side will be disabled. The latter will be enabled only 

when the stage enters its evaluate phase. This periodic oscillation forces every other stage 

to enter the evaluate phase while the remaining stages enter their reset phase.  A cycle 

later, the stages that were in the reset phase start their evaluate phases while the stages 

that were in the evaluate phase start their reset phase. 

 

The STG for the four-stage S-SRSL pipeline shown in Figure 3.3 is shown in Figure 3.4.  

In Figure 3.4, the STG shows that the rising transition of L3 occurs after O2 and O3 

experience a rising and falling transition respectively. This means that latch 3 is enabled 

only when stage 2 is in the evaluate phase while stage 3 is in the reset phase. If O3 
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experiences a falling transition, this forces another falling transition on L4. This shows 

that while latch 3 is enabled, latch 4 is disabled. 

 
Figure 3.4: STG of the S-SRSL pipeline shown in Figure 3.3. 

 

Figure 3.5 through Figure 3.12 show how the stages alternate between phases as data 

flows across the pipeline by depicting two execution cycles of a four-stage S-SRSL 

pipeline. The asserted and de-asserted signals are represented as solid and dashed lines 

respectively in these figures. 
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Figure 3.5: Assertion of the stage reset signals. 

 

 
Figure 3.6: Reset phase of all stages. 
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Figure 3.7: Evaluate phase of stage 4. 

 

 
Figure 3.8: Evaluate phase of stage 3. 
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Figure 3.9: Evaluate phase of stage 2 and 4. 

 

 
Figure 3.10: Evaluate phase of stage 1 and 3. 
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Figure 3.11: Evaluate phase of stage 2 and 4. 

 

 
Figure 3.12: Evaluate phase of stage 1 and 3. 
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3.3 Pipeline-Controlled Self-Resetting Stage Logic 

In pipeline-controlled self-resetting stage logic (P-SRSL), synchronization occurs 

between the last stage and any other stage in the pipeline.  Similarly to S-SRSL, each 

stage is ready to absorb inputs when it enters the reset phase and produce an output when 

it enters its evaluate phase.  As a result, data transfer occurs between two neighboring 

stages when the left stage is in the evaluate phase while the right stage is in the reset 

phase.  Figure 3.13 shows the interconnection structure of a four-stage S-SRSL pipeline 

where each stage contains a combinational and a reset network. In addition to the two 

networks, each pair of stages is separated by a latch whose enable port is tied to the 

output of an AND gate.  This AND gates has two inputs where the first is tied to the 

phase line of the last stage while the second is tied to the phase line of the stage located 

on the left side of the latch.  Note that the right input of the AND gate is inverted in some 

while it is not in others.  

 
Figure 3.13: Four-stage P-SRSL pipeline. 
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Definition 3.1: A pipeline stage is said to be of type A if the phase signal of the last stage 

is inverted when it reaches the AND gate controlling the latch of the stage. 

 

Definition 3.2: A pipeline stage is said to be of type B if the phase signal of the last stage 

is not inverted when it reaches the AND gate controlling the latch of the stage.   

 

Based on these two definitions, stage 1 and 3 are of type B while stage 2 and 4 are of type 

A in Figure 3.13.  Stages of the same type oscillate in the same phase while stages of 

opposite types oscillate in opposite phases. When the last stage enters its reset phase, 

every stage of type B starts its own evaluate phase while every stage of type A starts its 

own reset phase. As soon as the last stage transitions to its evaluate phase, all the stages 

switch phase. During the reset phase of a stage of type A, the stage’s left latch is enabled 

while the stage’s right latch is disabled. Both latches are driven by the reset phase of the 

last stage in the pipeline. The latter latch will be enabled only when the stage switches 

phase, which occurs when the last stage enters its evaluate phase. At any cycle, every 

other stage will be in the reset phase while the remaining stages will be in the evaluate 

phase. A cycle later, the stages that were in the reset phase start their evaluate phases 

while the stages that were in the evaluate phase start their reset phases.  Similarly to the 

S-SRSL pipeline, the P-SRSL pipeline requires that all stages in the pipeline have equal 

cycles to guarantee correct data flow.  The STG for the four-stage P-SRSL pipeline 

shown in Figure 3.13 is shown in Figure 3.14. This STG shows that the rising transition 

of L3 occurs after O2 and O4 experience both rising transitions.  This means that latch 3 is 

enabled when both stages 2 and 4 are in the evaluate phase.  However when O4 
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experiences a rising transition, L2 and L4 experience falling transitions.  This shows that 

when latch 3 is enabled, latch 2 and 4 are disabled. Figure 4.3 shows how the stages 

alternate between phases as data flows across the pipeline by representing asserted and 

de-asserted signals as solid and dashed lines respectively. 

 
Figure 3.14: STG of the four-stage P-SRSL pipeline shown in Figure 3.13. 

 

Figure 3.15 through Figure 3.20 show how the stages alternate between phases as data 

flows across the pipeline by depicting two execution cycles of a four-stage P-SRSL 

pipeline. The asserted and de-asserted signals are represented as solid and dashed lines 

respectively. 

 

34 



 
Figure 3.15: Assertion of the stage reset signals. 

 

 
Figure 3.16: Reset phase of all stages. 
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Figure 3.17: Evaluate phase of all stages. 

 

 
Figure 3.18: Evaluate phase of stage 3 and 1. 
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Figure 3.19: Evaluate phase of stage 4 and 2. 

 

 
Figure 3.20: Evaluate phase of Stage 1 and 3. 

3.4 Delay-Tolerant Self-Resetting Stage Logic 

Whereas correct operation rests on stage having equal cycles in the S-SRSL and P-SRSL 

pipelines, this requirement is completely unnecessary in delay-tolerant self-resetting stage 
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logic (D-SRSL) pipelines.  In fact, stages can have arbitrary delays without affecting the 

correct data flow across the pipeline.  Hence, the delay-tolerant property of these 

pipelines as implied by their name.  In this approach, stages communicate with each other 

through their respective phases.  Figure 3.21 shows a four-stage D-SRSL pipeline.   

 

 
Figure 3.21: Four-stage D-SRSL pipeline. 

 

3.4.1 Pipeline Structure 

In D-SRSL pipelines, the latches are controlled by a latch control (LC) block.  The phase 

oscillation of each stage is indicated by the signal φ as shown in Figure 3.21.  A stage is 

ready to take in new inputs when it is in the reset phase while it produces outputs when it 

is the evaluate phase.  The evaluation of the incoming inputs is performed by a 

combinational network (CN) embedded within the stage.  The control of this phase 

oscillation is performed by a phase control (PC) block, which can be reset at any moment 

by the reset signal R.  In each stage, the CN is completely decoupled from the PC block, 
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and can have an arbitrary delay.  Similarly to S-SRSL and P-SRSL pipelines, data flows 

from one stage to another when the first stage is in the evaluate phase while the second 

stage is in the reset phase.         

 

Figure 3.22 shows the STG of the D-SRSL linear pipeline shown in Figure 3.21.  

Although the (Clr) signal in Figure 3.22 is not shown in Figure 3.21, its function within 

the LC block is described in the coming few paragraphs.  The STG shows that the rising 

transition of L3 occurs after both φ2 and φ3 experience a rising and falling transition 

respectively.  This means that latch 3 is enabled only when stage 2 is in the evaluate 

phase while stage 3 is in the reset phase.  Since L3 is asserted while stage 3 is in the reset 

phase, this guarantees that latch 4 will not be enabled until φ3 experiences a rising 

transition.   

 
Figure 3.22: STG of the D-SRSL pipeline. 
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3.4.2 Phase Control Block 

Figure 3.23 shows that the PC block receives three inputs: (i) the reset signal, R, which 

resets the PC block output to 0, (ii) Li which is the latch enable of the left latch of stage i, 

and (iii) Li+1, which is the latch enable of the right stage i+1.  In turn, it produces an 

output, φi, which is the phase signal of stage i.   

 

 
Figure 3.23: PC block. 

 

To illustrate the behavior of the PC block, Figure 3.24 shows its state graph which 

consists of two states: (i) the reset state, SR, in which the phase signal becomes 0, and (ii) 

the evaluate state, SV, in which the phase signal becomes 1.  As shown in Figure 3.24, the 

PC block enters the reset state after the reset signal is de-asserted.  In this state, φi is de-

asserted, which indicates that the stage is in the reset phase.  The PC block remains in this 

state as long as R and Li are de-asserted while Li+1 is asserted.  Once Li+1 is de-asserted 

while Li becomes asserted, the PC block transitions to the evaluate state in which φi is 

asserted.  This means that the stage is in the evaluate phase.  As long as Li+1 remains de-

asserted, the PC block remains in the evaluate state until Li+1 become both asserted, in 

which case the PC block returns to the reset state.  As φi switches back and forth, a stage 
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can oscillate between a reset and evaluate phase in a single execution cycle. Given this 

oscillation, a stage is ready to absorb inputs when it is in the reset phase. 

 

 
Figure 3.24: State graph of the PC block. 

 

While the inputs are traveling along the critical path of the CN, φi is similarly traveling 

along a path that is extended by a delay equal to the critical path delay in the CN.  This 

extended delay is implemented by a buffer which delays the reset phase long enough to 

allow CN outputs to stabilize.  Based on this oscillation, a PC block can be embedded in 

a pipeline stage forcing the stage to oscillate between two phases.  This oscillation can be 

used to synchronize data transfer between neighboring stages in a D-SRSL pipeline.   

3.4.3 Latch Control Block 

Figure 3.25 shows the block diagram of the LC block.  This block has three inputs, φi and 

φi-1, which are the phases of the current and previous stages respectively, and the reset (R) 

signal.  In addition, it has one output Li, as defined above, which feeds back into the clear 

port (Clr) of the LC block.  Li is the enable signal of the latch between stage i and its 

predecessor stage i-1.   
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Figure 3.25: LC block. 

 

To show the behavior of the LC block, Figure 3.26 shows its state graph which consist of 

two states, namely the enabled state SE, and the disabled state SD.  When the reset signal 

is asserted, the LC block enters the disabled state in which Li gets de-asserted.  As long as 

φi-1 is de-asserted while φi is asserted, the block remains in the disabled state.  The LC 

block waits until φi-1 gets asserted while φi becomes de-asserted to transition to the 

enabled state.  In this state, Li gets asserted in order to allow the latch of stage i to capture 

the incoming data from stage i-1.  After a delay, sufficiently long to allow the data to go 

through the latch, has elapsed, the LC block returns automatically to the disabled state, 

thus disabling the latch. 

 

 
Figure 3.26: State graph of the LC block. 
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3.5 Summary 

This chapter introduces SRSL and shows how this technique can be used to establish 

handshake signaling between two specific stages in a clockless pipeline.  SRSL is used as 

a foundation to propose three different pipelining techniques: (i) S-SRSL pipelines in 

which synchronization takes place between two neighboring stages using a fine grain 

approach, (ii) P-SRSL pipelines in which the oscillation of the pipeline stages are driven 

by the oscillation of the last stage in the pipeline, and (iii) D-SRSL pipelines where 

synchronization occurs between each pair of neighboring stages using a coarse-grain 

approach.  While S-SRSL and P-SRSL pipelines require that the stages display equal 

cycles in the pipeline, D-SRSL can handle individual pipeline stages with arbitrary 

delays.  Although this chapter presents only the linear variants of these three pipelines, 

the examination of their non-linear variants and the presentation of a detailed timing 

analysis for each pipeline is presented in [16].     
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CHAPTER FOUR: SYNTHESIS OF SRSL PIPELINES 

This chapter presents a specific SRSL design methodology in section 4.1 while section 

4.2 presents the synthesis of SRSL pipelines. This design methodology has been 

formulated in [16].  Section 4.3 reviews the preliminary concepts used to formulate the 

synthesis of the SRSL pipeline synthesis problem. The modeling and the formulation of 

this problem is presented in section 4.4 while section 4.5 explains the proposed heuristic 

solution. 

4.1 SRSL Pipeline Design Methodology  

In order to leverage the investment spent on current commercial design tools used in 

clocked logic, it would make sense to adopt the same design methodology and flow 

supported by these tools to synthesize SRSL pipelines as argued in [16]. Figure 4.1 

proposes the adopted design flow for SRSL logic. In the figure, a parser extracts the 

clocked gate netlist in order to build a Boolean graph. Next, an SRSL pipeline synthesizer 

partitions the graph into stages and inserts the latches and the reset network of each stage 

in appropriate places inside the graph without violating performance constraints. At the 

end, the synthesizer produces an SRSL pipeline represented as a gate netlist. The SRSL 

gate netlist can be simulated with any commercial simulator. It can also be mapped onto a 

standard cell library using any commercial technology mapper in order to produce a cell 

netlist. The latter can be placed and routed using conventional physical synthesis tools by 

propagating the same performance constraints used in high level synthesis to the physical 

synthesis tools. 
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Figure 4.1: SRSL design flow. 
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4.2 Synthesis of SRSL Pipelines 

The synthesis of SRSL pipelines consist of transforming a clocked gate netlist into an 

SRSL pipeline characterized by a data rate and an area cost. Note that by area cost, it is 

meant the gate area needed to support an SRSL pipeline structure. This gate area consists 

primarily of (i) latches located between pipeline stages, and (ii) delay elements needed 

for the reset network of each stage. As such, this synthesis requires (i) the availability of 

specific gate resources, and (ii) the specification of performance constraints. The gate 

resources consist of primitive combinational gates, latches, and delay elements. Each 

resource is characterized by a function, area, and delay attributes. On the other hand, 

performance constraints can be area or timing constraints. The former refers to a 

specified upper limit on gate area needed to convert a gate netlist into an SRSL pipeline 

while the latter refers to a specified lower limit on data rates that can be achieved by 

converting a gate netlist into an SRSL pipeline.   

 

To transform a gate netlist into an SRSL pipeline, three problems emerge: 

 

Problem 1 (P1): Given a gate netlist and a data rate, transform the gate netlist into an 

SRSL pipeline by incurring the smallest area cost. P1 can be called the data rate 

constrained minimum area SRSL pipelining problem. 
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Problem 2 (P2): Given a gate netlist and an area cost, transform the gate netlist into an 

SRSL pipeline by achieving the highest data rate. P2 can be called the area constrained 

maximum data rate SRSL pipelining problem.  

 

Problem 3 (P3): Given a gate netlist, transform the netlist into an SRSL pipeline with the 

smallest area cost and the highest data rate. P3 can be called the unconstrained maximum 

data rate minimum area SRSL pipelining problem.  

 

Based on their formulations, both P1 and P2 are dual problems. From a practical 

perspective, P1 is more relevant to designers than P2 and P3. 

4.3 Preliminaries 

In order to transform a gate netlist into an SRSL pipeline, a gate netlist is abstracted into 

an algebraic representation suitable for computation.   

 

Definition 4.1: An incidence structure consists of a set of modules, a set of nets, and an 

incidence relation among modules and nets [28]. 

 

For instance, an incidence structure can be specified by representing each module with its 

terminals, also called pins or ports, and to describe the incidence among nets and pins. 

The incidence relationship can be represented by a matrix.  
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Definition 4.2: A Boolean network is an incidence structure where: 

• Each module performs a Boolean function. 

• Each module has multiple inputs and a single output. 

• Pins are partitioned into input and output pins. 

• Pins that do not belong to modules are primary inputs and primary outputs. 

• Each net has a terminal, called source and an orientation from the source to the other 

terminals, called sinks.  

• The source of a net can be either a primary input or the output of a module. 

• The sink of a net can be either a module input or a primary output. 

• The relation induced by the nets on the module is a partial order [28]. 

 

Figure 4.2 shows a Boolean network with 10 primary inputs, 10 modules, and four 

primary outputs [28].  

 
Figure 4.2: Example of a Boolean network. 
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Boolean networks can be represented in abstract algebraic structures such as graphs.  

 

Definition 4.3: A graph G(V, E) is a pair (V, E) where V is a set and E is a binary relation 

on V. 

 

Two vertices in V are neighbors or adjacent if they are connected by an edge in E. In this 

thesis, only finite graphs are considered, meaning graphs with finite sets V. The elements 

of V are vertices while the elements of E are edges.  

 

Definition 4.4: A directed graph is graph G(V, E) where E is a set of ordered pairs of 

vertices.  

 

In a directed graph, if two vertices, vi and vj, are adjacent, meaning (vi, vj) ∈ E, the 

predecessor is the vertex located at the tail of the edge, namely vi, while the successor is 

the vertex located at the head of the same edge, namely vj. In contrast, the edges are 

unordered pairs in an undirected graph.  

 

Definition 4.5: A path from vertex v to w in a graph G(V, E) is a sequence of edges v0v1, 

v1v2, …, vk-1vk, such that v = v0 and vk = w. The length of the path is k. 
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Such a path can also be represented as an ordered (k+1)-tuple: π = (v0, v1, v2, …, vk). In 

directed graphs, paths follow the direction of the edges.  

 

Definition 4.6: A cycle in a directed graph is a nonempty path such that the first vertex 

and the last vertex are identical. 

 

Definition 4.7: A graph is acyclic if it has no cycles.  

 

Definition 4.8: A Boolean graph G(V, E) is a directed graph where: 

• The vertex set V is a one-to-one correspondence with the primary inputs, modules, and  

   primary outputs of a Boolean network.    

• The directed edge set E represents the decomposition of the multi-terminal nets of the  

   Boolean network into two-terminal nets.   

 

Figure 4.3 shows a Boolean graph based on the Boolean network of Figure 4.2. Note that 

the Boolean graph is acyclic since the nets induce a partial order on the modules.  
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Figure 4.3: Boolean graph of the Boolean network shown in Figure 4.2. 

 

The modules of a Boolean network can be mapped to Boolean gates. In this case, its 

resulting Boolean graph is a mapped or bound Boolean graph. The gate netlist produced 

by the compiler is a mapped Boolean network. Before it is transformed into an SRSL 

pipeline, it is translated into a Boolean graph.   

4.4 Analytical Formulation of the Pipelining Problem 

It is assumed that a clocked gate netlist is specified by a mapped Boolean graph which is 

subject to a set of constraints. In addition, it is assumed that the function, area, and delay 

of each gate representing each vertex in the Boolean graph G(V, E) are known. The 

constraints can be either data rates or area costs. Transforming a gate netlist into an SRSL 

pipeline is equivalent to partitioning the Boolean graph of the gate netlist into partitions 
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and assigning each partition to a distinct pipeline stage. Let S = {s1, s2, …, s|S|} be the set 

of pipeline stages where the size of this set, |S|, is some positive integer. Let V = {vi ; i = 

1, 2, …, |V|} and E = {(vi, vj) ; i, j = 1, 2, …, |E|}. 

 

Definition 4.9: A pipelining of a Boolean graph is a function :V Zϕ +→ where 

( )iv skϕ = denotes the gate assignment to a stage  such 

that .   

ks S∈

( ) ( ) ( ), ,i j i jv v v vϕ ϕ≤ ∀ ∈E

 

Since each vertex in V has a delay, D = {di; i = 1, 2, …, |V|}. It is assumed that there are 

no delays on edges in E beside the delays on the vertices in V. Adding delays to the edges 

will not disturb the modeling of the synthesis problem; in fact, it will improve the quality 

of its solution. Obviously, such a graph, in which a delay is attributed to each vertex, will 

have a critical path.  

 

Definition 4.10: The delay of a path p in a graph G, denoted by dp, is the sum of the 

delays of the vertices in p, i.e., 
: i

p i
i v p

d d
∈

= ∑ .  

 

Definition 4.11: Let Π be the set of all paths in a Boolean graph G(V, E). A critical path 

in G is a path π whose delay is the largest path delay in Π, i.e., { }max :pd d pπ = ∈Π .   
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In P1, a data rate f is given and the objective is to minimize the area cost incurred by 

partitioning the Boolean graph into stage partitions. The period P of a single stage can be 

obtained from f as 1P
f

= . Surely, there is a critical path π in the Boolean graph G whose 

delay is dπ. An upper bound on the number of stages in the pipeline, called maximum 

pipeline depth, can be obtained from P and dπ. If |S| is the cardinality of S, the maximum 

pipeline depth is dS
P
π

π
⎡ ⎤= = d f⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥

. Moreover, |S| can be refined further by using an 

alternative upper bound if the synthesized pipeline is an S-SRSL pipeline as discussed in 

[16]. In this case, ( )1
1min , 1

2
d PS d
P
π

δ
+⎧ ⎫

L⎢ ⎥⎡ ⎤ ⎛= + −⎨ ⎬⎜
⎞
⎟⎢ ⎥⎢ ⎥ ⎝ ⎠⎢ ⎥ ⎣ ⎦⎩ ⎭

 based on [16].    

 

Definition 4.12: A binary variable xi,s is associated with each vertex vi in V of G(V, E) 

where: 

(i) xi,s = 1 iff the gate i, represented by vi, is assigned to stage s 

(ii) xi,s = 0 otherwise. 

 

In order to realize a correct partitioning, it is imperative that each vertex in the Boolean 

graph be assigned to a single stage. This requirement is the foundation for a set of 

constraints called assignment constraints: 

( ),
1

1,     1, 2, ...,           4.1
S

i s
s

x i V
=

= =∑  
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There are V such constraints in the problem. It also imperative to observe the condition 

stated in Definition 4.9, namely that the successor of a vertex should be assigned to (i) the 

same stage as its predecessor, or (ii) a stage located after the stage of its predecessor. This 

requirement is the foundation for a set of constraints called precedence constraints: 

( ) ( ), ,
1 1

,      ,           4.2
S S

i s j s i j
s s

sx sx v v E
= =

≤ ∀ ∈∑ ∑  

These constraints can be rewritten as: 

( ) ( ), ,
1 1

0,      ,           4.3
S S

j s i s i j
s s

sx sx v v E
= =

− ≥ ∀ ∈∑ ∑  

There are E such constraints in the problem. Since P can be obtained from the given data 

rate, it is important that the delay through each stage does not exceed P:  

( ),
:

, 1, 2, ..., 4.4
i

i i s
i v

d x p s S
π∈

≤ =∑  

There are S such constraints in the problem. By partitioning the Boolean graph into 

stages, segments of the critical path, or subpaths, are assigned to different stages. The 

delay on these subpaths determines primarily the period of the stage in which they are 

included. Constraint (4.4) can be rewritten as an equality if a balanced pipeline is desired. 

A balanced pipelined is a pipeline in which all the stages have the same period, i.e., 

,  1, 2, ..., iP P i S= = .  Balancing a pipeline is relevant only when synthesizing S-SRSL 

and P-SRSL pipelines.  The partitioning of the gate netlist into stages requires the 

insertion of (i) latches to separate neighboring stages, and (ii) delay elements to realize 

the reset network of each pipeline stage. In general, the number of latches inserted 

between two adjacent vertices, (vi, vj) ∈ E, depend on the stages, sk and sl ∈ S, to which 
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both vertices are assigned respectively. Two cases are possible based on the precedence 

constraints (4.2): 

(i) k = l: This means that both stages represent the same stage. In this case, vi and 

vj are assigned to the same stage.  

(ii) k ≠ l: This means that both stages are different. In this case, vi and vj are 

assigned to distinct stages. However, there is no indication that both stages, sk 

and sl are neighbors.  

 

In fact, it is possible that two adjacent vertices may be assigned to two non-neighboring 

stages. For example, if vi is assigned to stage 3 and vj is assigned to stage 7, the edge 

between the two vertices has to cross the latches of stage 3, 4, 6, and 7, which may 

require the insertion of four latches to accommodate this case.  

 

Definition 4.13: If two adjacent vertices, (vi, vj) ∈ E, are assigned to stages sk and sl ∈ S 

respectively, the pipeline distance between vi and vj, denoted by δi,j, is ,i j l kδ = − .    

 

Depending on the bit width of the combinational network in a given stage, latches of 

different bit widths can be used to separate a stage from its neighbor. It would make 

sense to quantify the area of the inter-stage latches by multiplying the area of a single-bit 

latch by the number of output bit lines crossing from stage to stage. These lines 

correspond to edges in the Boolean graph. Assume that al is the area of a single-bit latch. 

If n bit lines are crossing from a stage to another, n latches are needed adding up to an 
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area of nal. Using the definition of pipeline distance, the number of 1-bit latches between 

two adjacent vertices can be determined as: 

( ) ( ), , ,
1 1

,      ,           4.5
S S

i j j s i s i j
s s

sx sx v v Eδ
= =

= − ∈∑ ∑  

 

If applied to a single edge, (4.5) is similar to the left-hand side of (4.3). The latch area 

needed to support the stages between vi and vj is ,i j laδ . By considering all the edges in 

the Boolean graph, the total latch area needed in an entire pipeline can be determined as 

follows:  

( )
( )

, ,
1 1,

4.6
i j

S S

l j s i s
s sv v E

a sx sx
= =∀ ∈

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑  

 

Beside the insertion of latches, the insertion of delay elements is also needed to realize 

the reset network of a stage. These delay elements can be inverters, buffers, or gates. 

Since the role of the matching delay of a reset network in SRSL is to provide a delay 

equal to the delay of the critical path of the combinational network, it would make sense 

to use gates as delay elements to realize the matching delay of the reset network. In fact, 

the critical path of the combinational network can be merely duplicated and the obtained 

copy can be used as a matching delay in the reset network. In this case, the area of the 

matching delay to be inserted in the reset network of a stage can be determined by 

obtaining the area of the critical path of the combinational network in the stage. Since 

each vertex in V has an area, A = {ai; i = 1, 2, …, |V|}. If the area of the matching delay of 

a stage s is as, then: 
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( ),
:

,      1, 2, ...,           4.7
i

s i i s
i v

a a x s S
π∈

= =∑  

 

By considering all the stages in the pipeline, the total area of matching delays can be 

determined as: 

( ),
1 :

         4.8
i

S

i i s
s i v

a x
π= ∈

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑  

 

By summing the total area needed for latches shown in (4.6), and matching delays shown 

in (4.8), the minimization of the area cost can be expressed as the following objective 

function: 

( )
( ), , ,

1 1 1 :,

min            4.9
ii j

S S S

l j s i s i i s
s s s i vv v E

a sx sx a x
π= = = ∈∀ ∈

⎛ ⎞ ⎛ ⎞
− +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∑ ∑ ∑ ∑ ∑  

 

In summary, P1 can be formulated as the following integer programming (IP) problem 

[29]: 

( )
( ), , ,

1 1 1 :,

min            4.9
ii j

S S S

l j s i s i i s
s s s i vv v E

a sx sx a x
π= = = ∈∀ ∈

⎛ ⎞ ⎛ ⎞
− +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∑ ∑ ∑ ∑ ∑  

( ),
1

1,     1, 2, ...,           4.1
S

i s
s

x i V
=

= =∑  

( ) ( ), ,
1 1

0,      ,           4.3
S S

j s i s i j
s s

sx sx v v E
= =

− ≥ ∀ ∈∑ ∑  

( ),
:

, 1, 2, ..., 4.4
i

i i s
i v

d x p s S
π∈

≤ =∑  
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4.5 Heuristic SRSL Pipelining 

Although it is possible to solve P1 using standard combinatorial approaches suitable for 

general IPs, using such methods may not be efficient due to the size of P1’s IP 

formulation in some cases [29, 30]. For example the IP formulation of C6822 circuit, 

which is an ISCAS benchmark circuit consisting of 6,656 gates and a 245-gate long 

critical path, can generate 6,656 constraints (4.1), 9,082 constraints (4.2), and 245 

constraints (4.3).  In total, the matrix of the IP has 15,983 rows and 245 columns.  As a 

result, a two-phase efficient heuristic solution is proposed to obtain the solution of P1 

instead.  The first phase is a stage-assignment algorithm which assigns each gate to a 

single stage by partitioning the Boolean graph of the gate netlist into subgraphs that meet 

specific timing constraints.  On the other hand, the second phase is a vertex-shuffling 

algorithm which minimizes the area occupied by inter-stage latches through the shuffling 

of nearby vertices from the Boolean graph between adjacent stages without violating 

timing constraints.     

4.5.1 Stage Assignment Phase 

This section explains the graph-theoretic approach behind the stage assignment 

performed in phase I.  This explanation is followed by a presentation of the algorithm 

used in phase I.  
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4.5.1.1 Phase I Approach 

In order to pipeline the gate netlist, the Boolean graph of the netlist has to be partitioned 

into subgraphs whose critical path delays do not exceed a pre-defined value. Each 

subgraph represents a subnetlist that is assigned to a distinct pipeline stage. Assume that 

the Boolean graph G(V, E) can be partitioned into n partitions or subgraphs where 

. In order to construct an operationally correct 

pipeline, the pipeline stages have to be connected through proper insertion of latches 

between the stages and duplication of the critical path in each stage. This is equivalent to 

inserting vertices to represent inserted pipeline latches and duplicated critical paths. In 

fact, the pipeline distance δ between two adjacent vertices in G(V, E) determines the 

number of latches that needs to be inserted. The edge connecting these two adjacent 

vertices in E has to be broken in δ edges to accommodate the insertion of δ vertices 

whereby each vertex represents a latch. The resulting graph is an augmented graph G’(V’, 

E’) where . The objective is to add as few vertices 

as possible in order to realize the smallest area cost possible.  For each partition, its 

critical path delay is determined and a delay block matching the partition’s critical path 

delay is inserted at the appropriate places in the partition. In addition, for each edge 

crossing one or more partition in the partitioned graph, the pipeline distance δ is 

computed and δ vertices representing latches are inserted in the appropriate places in the 

partitioned graph. The final graph G’(V’, E’) represents the Boolean graph of the pipeline 

gate netlist with inserted latches and matching delays. The following heuristic procedure 

1 1 1

 such that  and 
n

i
i

n n

i
i i

G G V V E
= = =

= = =U U iEU

⊆'  such that '  and 'G G V V E E⊆ ⊆
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can be used to an initial assignment of every gate in the gate netlist to a given pipeline 

stage: 

4.5.1.2 Phase I Algorithm 

The pseudocode of the graph partitioning algorithm is as follows: 

Input:  G(V, E) 
        D = {di ; i = 1, 2, …, |V|}            
        A = {ai ; i = 1, 2, …, |V|} 
        f 
Output: Partitioned graph G’(V’, E’) 
 

1.  Let 
1

P
f

= ; 

2.  While there are unassigned vertices in V 
3.     Select a vertex v in V whose predecessors are all assigned to     
        the current or previous partition; 
4.     Get the critical path of the vertices within the current 
        partition including v; 
5.     If the delay of the critical path is less than or equal to P 
6.        Assign v to the current partition; 
7.     Else 
8.        Add another partition; 
          Assign v to the newly added partition; 
9.  Endif    
10. Endwhile 
 

 

In line 1, the stage delay is obtained. The algorithm starts with partition 1 which does not 

contain any vertices at this point. Line 2 shows a loop which looks for vertices in V which 

have not been assigned to any partition. Line 3 shows that the first step in assigning a 

vertex from V to the vertex set of the current partition is to select a vertex whose 

predecessors have been already assigned to the vertex set of the current or previous 

partition. This heuristic rule is based on the as-soon-as-possible scheduling strategy [31].  

Next, the critical path of the Boolean graph including vertex v is obtained in line 4. In 
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line 5 through 9, the algorithm checks if the critical path of the Boolean graph obtained in 

line 4 is less than or equal to the period of the partition. If the check result is true the 

selected vertex is added to the vertex set of the current partition. Otherwise, a new graph 

partition is created to which the selected vertex is subsequently added. The algorithm 

repeats the line 3 through 9 until there is no unassigned vertices in V. At the end, each 

vertex in V is assigned to a distinct vertex set Vi which belongs to a subgraph Gi (Vi, Ei) 

as defined above.       

4.5.2 Vertex Shuffling Phase 

This section explains the graph-theoretic approach behind the vertex shuffling performed 

in phase II.  This explanation is followed by a presentation of the algorithm used in phase 

II.  Finally, a step-by-step of the trace of the proposed algorithm on a sample partitioned 

graph is presented for purpose of illustration.  

4.5.2.1 Phase II Approach 

The input to phase II is the augmented partitioned graph G’(V’, E’) where each partition 

represents the portion of the gate netlist embedded in a single pipeline stage.  Thus, the 

number of partitions in the graph represents the number of stages in the pipeline.  Every 

edge that crosses from a partition to another represents a single 1-bit latch in the pipeline.  

Because latches tend to occupy a significant portion of the overall area of the pipeline, it 

makes sense to invest additional effort in minimizing the number of latches used in the 

pipeline.  As a result, the objective of phase II is to minimize the number of edges 
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crossing each inter-partition boundary in G’(V’, E’).  Note that each inter-partition 

boundary in G’(V’, E’) represents the set of latches separating two adjacent stages in the 

pipeline corresponding to the two adjacent partitions in G’(V’, E’).  Figure 4.4 shows two 

adjacent partitions where the left partition contains vertices labeled 1 through 10 while 

the right partition contains vertices labeled 11 through 17.   

 
Figure 4.4: Latch placement two Boolean graph partitions. 

 

Definition 4.14: Let u be a vertex in the left partition GL(VL, EL), i.e. u ∈ VL.  u is called a 

left cut vertex if it does not have any successors in the left partition, i.e., 

∃ ( ):  and ,L Lv v V u v E∈ ∈ .   

 

For example, vertices 6, 7, 8, 9, and 10 in Figure 4.4 are all left cut vertices.  
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Definition 4.15: Let GL (VL, EL) be the left partition.  A subset CL of VL, i.e., CL ⊆ VL, is 

called a left cut vertex set if every vertex in CL is a left cut vertex, i.e., 

, Lu C∀ ∈ ∃ ( ):  and ,L Lv v V u v E∈ ∈ .  

 

Since vertices 6, 7, 8, 9, and 10 in Figure 4.4 are all left cut vertices, they make up a left 

cut vertex set.   

 

Definition 4.16: Let w be a vertex in the right partition GR(VR, ER), i.e. w ∈ VR.  w is 

called a right cut vertex if it does not have any predecessors in the right partition, i.e.,  

∃ ( ):  and ,R Rv v V v w E∈ ∈ . 

 

For example, vertices 11, 12, 13, and 14 in Figure 4.4 are all right cut vertices. 

 

Definition 4.17: Let GR (VR, ER) be the right partition.  A subset CR of VR, i.e., CR ⊆ VR, is 

called a right cut vertex set if every vertex in CR is a right cut vertex, i.e., 

, Rv C∀ ∈ ∃ ( ):  and ,R Rw w V v w E∈ ∈ . 

 

Since vertices 11, 12, 13, and 14 in Figure 4.4 are all right cut vertices, they make up a 

right cut vertex set. 
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Definition 4.18: Let CL and CR be the left and right cut vertex sets respectively.  The set 

Cv, called the cut vertex set, is the union of the left and right cut vertex sets, i.e., 

.    v LC C C= ∪ R

 

While the set of vertices 6, 7, 8, 9, and 10 in Figure 4.4 make up the left cut vertex set, 

the set of vertices 11, 12, 13, and 14 make up the right cut vertex set.  The union of these 

two sets, namely vertices 6, 7, 8, 9, 10, 11, 12, 13, and 14 makes up a cut vertex set.   

 

Definition 4.19: Let edge e = (u, v) ∈ E’ in the initial partitioned graph G’(V’, E’).  e is 

called a cut edge if u is a vertex in CL and v is a vertex in CR, i.e.,  

( ), '  and  and L Ru v E u C v C∈ ∈ ∈ .     

 

For example, the edge between vertex 6 and 11 in Figure 4.4 is a cut edge.  

 

Definition 4.20: Let CL and CR be the left and right cut vertex sets respectively.  A set Ce 

is called a cut edge set if every edge in Ce is a cut edge, i.e., 

.     ( ) ( ), , , '  and  and e Lu v C u v E u C v C∀ ∈ ∈ ∈ ∈ R

 

In Figure 4.4, the set of edges between vertices 6 and 11, 7 and 11, 8 and 12, 8 and 13, 9 

and 12, 9 and 13, 10 and 13, and 10 and 14 make up the cut edge set. 
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Definition 4.21: Let edge e = (u, v) ∈ E’ in the initial partitioned graph G’(V’, E’).  e is 

called an internal edge if e is not a cut edge, i.e., 

( ) ( ) ( ), '  and ,  and ,L Ru v E u v C u v C∈ ∉ ∉ .  

 

For example, the edges between vertices 1 and 6, 2 and 6, 11 and 15, and 12 and 15 are 

all internal edges in Figure 4.4. Consider a vertex v in the initial partitioned graph G’(V’, 

E’).  It is possible that a number of internal edges may be incident to v.  In this case, let 

I(v) denote the set of these internal edges.  It is also possible that a number of cut edges 

may be incident to v. Let C(v) denotes the set of these cut edges.  Note that, depending on 

where v is located in G’(V’, E’), it is possible that I(v) = ∅ or C(v) = ∅.  The proposed 

vertex shuffling algorithm uses a gain function to guide how it shuffles cut vertices from 

one partition to another.             

 

Definition 4.22: Let v be a cut vertex in a partition H(VH, EH) where H can be a left or 

right partition, i.e., v ∈ VH.  The gain function of v, denoted as g(v), is the difference 

between the sizes of the set of cut edges and the set of internal edges of all the edges 

incident to v, i.e., ( ) ( ) ( )g v C v I v= − .    

 

Given that no matter how many edges are connected to the output of any vertex, only one 

latch is needed to latch its signal.  Consequently, it is always the case that C(vi) = 1 for 

the vertices in the left cut vertex set, while it is always the case that I(vi) = 1 , and for the 

vertices in the right cut vertex set.   Based on this observation, vertex 6 in Figure 4.4 has 
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two internal edges and one cut edge.  Its gain is ( ) ( ) ( )6 6 6 1 2 1g v C v I v= − = − = − . On 

the other hand, since vertex 12 has three internal that can be latched by only one latch and 

two cut edges, its gain is ( ) ( ) ( )12 12 12 2 1 1g v C v I v= − = − = .    

 

The ultimate objective of the vertex shuffling algorithm is to minimize the number of cut 

edges.  After shuffling a number of cut vertices, the algorithm evaluates the overall cost 

of these shuffling moves by using a move cost function.  This move function is based on 

the size of the cut edge set and resembles closely the move function proposed in [32].  

Note that after a cut vertex is moved from one partition to another, its predecessors and 

successors in G’(V’, E’) will have to be added or removed from a given cut vertex set 

depending on which cut vertex set contains the moved vertex.   

 

Definition 4.23: Let v be a left cut vertex (i.e., v ∈ CL). If v is moved to the right cut 

vertex set (i.e., CL = CL – {v} and CR = CR ∪ {v}), (i) each predecessor of v in G’(V’, E’) 

must be added to the left cut vertex set (i.e., {u | u ∈ V’ and (u, v) ∈ E’} ∪ CL), and (ii) 

each successor of v in G’(V’, E’) must be removed from the right cut vertex set (i.e., {w | 

w ∈ V’ and (v, w) ∈ E’} – CR).  The set of these moves is called the set of induced moves 

by v.   

 

In Figure 4.4, if vertex 6 is moved to the right cut vertex set, (i) all its predecessors, 

namely vertices 1 and 2, must be added to the left cut vertex set, and (ii) its sole 

successor, namely vertex 11, must be removed from the right cut vertex set.  These three 
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moves make up the set of induced moves by vertex 6.  The effect of these moves leaves 

the left cut vertex set consisting of vertices 1, 2, 7, 8, 9, and 10, while the right cut vertex 

set consisting of vertices 6, 12, 13, and 14.    

 

Definition 4.24: Let v be a right cut vertex (i.e., v ∈ CR). If v is moved to the left cut 

vertex set, (i) each successor of v in G’(V’, E’) must be added to the right cut vertex set 

(i.e., {w | w ∈ V’ and (v, w) ∈ E’} ∪ CR), and (ii) each predecessor of v in G’(V’, E’) 

must be removed from the left cut vertex set (i.e., {u | u ∈ V’ and (u, v) ∈ E’} – CL).  The 

set of these moves is called the set of induced moves by v. 

 

In Figure 4.4, if vertex 11 is moved to the left cut vertex set, (i) its sole successor, namely 

vertex 15, must be added to the right cut vertex set, and (ii) all its predecessors, namely 

vertices 6 and 7, must be removed from the left cut vertex set.  These three moves make 

up the set of induced moves by vertex 7.  The effect of these moves leaves the left cut 

vertex set consisting of vertices 8, 9, 10, and 11, while the right cut vertex set consisting 

of vertices 12, 13, 14, and 15.     

 

Definition 4.25: Assume that the shuffling algorithm is on the point of moving a cut 

vertex v from one partition to another.  The cost function of this move, denoted by m(v), 

is the size of the left cut vertex set if this move and the set of induced moves by v are 

completed, i.e., ( ) Lm v C= .      
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Since moving vertex 6 in Figure 4.4 leaves the left cut vertex set consisting of vertices 1, 

2, 7, 8, 9, and 10 after the set of its induced moves is completed, 

( ) { }6 1, 2, 7, 8, 9, 10 6Lm v C= = = .  Note that the number of latches between the two 

pipeline stages represented by the two partitions shown in Figure 4.4 is equal to the size 

of the left vertex cut set.   

4.5.2.2 Phase II Algorithm 

The pseudocode of the vertex shuffling algorithm is as follows: 

Input: G’(V’, E’) SRSL pipelined graph that meets p 
       D = {di ; i = 1, 2, …, |V|} 
       A = {ai ; i = 1, 2, …, |V|}  
        
Output: Partitioned graph G’’(V’’, E’’) with minimum cost function  
        between each pair of partitions. 
 
1.  For every pair of adjacent partitions in G’(V’, E’) 
2.     While the minimum move cost function in the current pass is less  
             than the minimum move cost function in the previous pass 
3.        While there are unmarked vertices in the left and right cut  
                vertex sets 
4.           For every unmarked vertex in this cut vertex set 
5.              Compute its gain function; 
6.           Endfor 
7.           Get the vertex with the next highest gain function and  
               whose delay does not violate the period constraint in  
               its opposite partition; 
8.           Compute the move cost function of this vertex; 
9.           Mark this vertex and insert it into a queue; 
10.       Endwhile 
11.       For every cut vertex in the queue starting from the first  
              vertex to the vertex with the minimum move cost function    
12.          If this vertex is a left cut vertex 
13.             Move it to the right cut vertex set; 
14.             Perform the set of its induced moves; 
15.          Else 
16.             Move it to the left cut vertex set; 
17.             Perform the set of its induced moves; 
18.          Endif 
19.       Endfor         
20.       For every cut vertex in the queue starting from the vertex  
              following the minimum move cost function vertex to the  
              last vertex 
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21.          Unmark this vertex; 
22.       Endfor 
23.    Endwhile 
24. Endfor 
25. For each edge in E’’ 
26.   Compute the pipeline distance δ; 
27.   Add δ vertices to V’’;  
28. δ edges to E’’;   Add 
29. Endfor 
30. For each partition in V’’;        
31.    Get the critical path in the current partition; 
32.    Duplicate the path and insert it into the current partition; 
33. Endfor  
34. The final obtained graph is G’’(V’’, E’’); 
 
    
Line 1 shows that phase II algorithm executes for every pair of adjacent partitions in 

G’(V’, E’).  A minimum cost function from a given cut vertex, that is selected to be 

moved from one partition to another, will be computed in every pass of the procedure, 

whereby a pass consists of the pseudocode shown in lines 2 through 23.  As long as this 

cost functions is less than the cost function computed in the previous pass as shown in 

line 2, another pass is executed.  In line 3, all the unmarked vertices in the left and right 

cut vertex sets will be processed.  This processing starts first by computing the gain 

function for each vertex in these two sets as shown in lines 4 through 6.  Next, the move 

cost function of the vertex with the highest gain function is computed as shown in lines 7 

and 8, after which the vertex is marked and inserted in a queue as shown in line 9.  This 

procedure is repeated for every unmarked vertex with the next highest gain function until 

there are no more unmarked vertices in the left and cut vertex sets as shown in line 3 

through 10.  Note that from the current iteration to the next, computing the gain function 

of the remaining unmarked vertices assumes that the induced moves by the marked 

vertex in the current iteration have been completed.  After all unmarked vertices in the 

vertex cut set are processed; the queue is searched to find the vertex with the minimum 

69 



move cost function.  As shown in lines 11 through 19, every vertex in the queue, starting 

from the vertex in the first entry of the queue until the vertex with the minimum move 

cost function in the queue, is moved to the opposite partition followed by the completion 

of the set of its induced moves.  The remaining vertices in the queue are unmarked as 

shown in lines 20 through 22 to be possibly processed in another pass starting from line 

2.  To give the unmarked vertices an opportunity to reduce the minimum cost function 

further, the pseudocode between lines 3 and 22 is re-executed with a different ordering in 

picking the vertices to compute their move cost functions.  To this end, the vertices are 

processed in non-decreasing order of gain function instead of non-increasing order of 

gain function as shown in line 7. For simplicity, this pseudocode is omitted from the 

pseudocode shown above.  After the partitioned graph G’’(V’’, E’’) is obtained, the next 

step consists of adding vertices between the partitions to represent latches between 

pipeline stages as shown in line 25 through 29. For each edge in E’’ crossing two 

neighboring partitions, a vertex is added followed by the addition of an edge to connect 

the newly added vertex to its predecessor. This step is followed by a second step in which 

the portion of the critical path contained in a partition is duplicated and added to that 

partition as shown in line 30 through 33. This duplicated path represents the matching 

delay of the reset network which will be attached to the combinational network of the 

stage represented by the partition. At the end, the streamlined graph G’’(V’’, E’’) is 

obtained as shown in line 34.   
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CHAPTER FIVE: EXPERIMENTAL RESULTS 

In this chapter, the experimental results of applying the two phase heuristic to synthesize 

P-SRSL and D-SRSL pipelines are presented.  For the sake of brevity, S-SRSL pipelines 

were omitted for the experiments since they resemble closely P-SRSL pipelines.  As a 

result, the results obtained from P-SRSL pipelines can be easily extended to S-SRSL 

pipelines.  Section 5.1 describes the experimental setup to evaluate the synthesis 

algorithm while section 5.2 presents the results obtained from the conducted experiments 

and their interpretations.  Section 5.3 concludes this chapter. 

5.1. Experimental Setup 

The computing resources used in the experimental setup consist of: 

(i) Sun server:  This server houses Synopsys software tools, which are used for 

synthesis and simulation of the synthesized SRSL pipelines.  

(ii) Sun Workstation:  A Sun-Blade 1000 is used to run the synthesis and 

simulation experiments by pulling netlist files from the server to the 

workstation.  The simulation runs are performed to verify the functional 

correctness of the synthesized SRSL pipelines.   

(iii) Dell Personal Computer (PC):  This PC is used to transform a gate netlist into 

an SRSL pipeline by applying the two-phase heuristic algorithm.  This 

algorithm has been implemented in a Java tool “SRSL Synthesizer” on this PC.  

The executable of this algorithm runs also on this PC. 
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The two-phase heuristic algorithm has been applied on a set of six circuits shown in 

Table 5.1.  The benchmark circuits were selected to exhibit a variety of depth and breadth 

in order to see how these circuits characteristic affect pipeline performance.  

Table 5.1: Experimental circuits. 

Circuit  
Functionality 

 
 

Gates 

Critical Path 
Delay 
(ps) 

C6288 16x16 Multiplier (Largest and deepest) 6656 25355 

C7552 34-bit adder and magnitude comparator with input parity 
checking (Large and shallowest) 

3569 4957 

C5135 9-bit ALU (Medium size and shallow) 2332 6026 
16_Bit_Multiplier 16x16 Multiplier (Medium size and medium depth) 1456 12658 

32_Bit_Adder 32 Bit Adder (Small and deep) 160 18850 
16_Bit_Adder 16 Bit Adder (Smallest and medium depth) 80 9380 

 

In Table 5.1, column 1 shows the six circuits where the top three are borrowed from the 

ISCAS-85 benchmark suite [33].  Column 2 shows the functionality of each circuit while 

column 3 shows the number of gates in the netlist of each circuit.  Column 4 shows the 

delay on the critical path of each circuit.  The step-by-step detailed procedure of the 

SRSL Synthesizer’s heuristic algorithm is shown in Figure 5.1 where the gate netlist is 

translated into a Boolean graph on which the two-phase heuristic is applied.  The 

obtained graph is a partitioned graph in which each partition represents a pipeline stage.  

The partitions of the graphs are glued with SRSL components such as delay buffers and 

latches after which the graph is translated back into a gate netlist.  This netlist serves to 

generate a synthesis report showing the throughput and area cost of the pipelined gate 

netlist.  
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Figure 5.1: Java SRSL Synthesizer’s pipelining procedure of the benchmark circuits. 

5.2. P-SRSL Experiments  

In order to profile the performance of the P-SRSL pipelines, two sets of experiments 

were conducted to evaluate the impact of pipelining on area cost and throughput.   

5.2.1. P-SRSL Area Cost 

To study the cost of the P-SRSL area, the largest benchmark circuit, namely C6288, was 

chosen for experimentation since it can accommodate deeper pipelines.  It is meant by the 
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P-SRSL area the area that includes the area of the inter-stage latches, intra-stage delay 

buffers, and NOR and AND gates used for synchronization. Figure 5.2 shows the P-

SRSL area as a percentage of the overall pipeline circuit area including the P-SRSL area.  
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Figure 5.2: P-SRSL area as a percentage of the pipeline area across different pipelines of 

the C6822 benchmark circuit. 

 

In the figure, as the number of the stages increases the percentage of the P-SRSL area 

increases too. For example, the P-SRSL area represents only 26% of the pipeline area in 

the four-stage pipeline.  However, this percentage reaches 81% in the 35-stage pipeline.  

In addition, the figure shows that most P-SRSL area is occupied by the latches. For 

example, the area of the latches alone consumes 23% of the pipeline area of a four-stage 

pipeline, and can grow up to 79% of the pipeline area of the 35-stage pipeline. On the 

other hand, the area of the NOR, AND gates and delay buffers barely consume 5% of the 
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pipeline area across all the pipelines.  In fact, a basic latch in our standard cell library can 

take up to seven times the area of a two-input AND gate. Figure 5.3 shows the P-SRSL 

area as a percentage of the total area of a pipeline for each circuit across different pipeline 

depths. 
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Figure 5.3: P-SRSL area as a percentage of the pipeline area across various depth 

pipelines. 

 

It is clear that the area of each pipeline increases as the circuit is partitioned into a deeper 

pipeline. However, the largest increases in areas tend to occur in larger circuits 
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partitioned into deeper pipelines.  For example, C6288 shows an increase in P-SRSL area 

from 26% in a four-stage pipeline to 80% into its maximum depth 35-stage P-SRSL 

pipeline.  On the other hand, slightly smaller area increases can occur in shallow circuits 

partitioned into shallower pipelines. For example, C5315 shows an increase in P-SRSL 

area from 42% in a two-stage pipeline to 81% in its maximum depth 12-stage pipeline. 

Furthermore, it is clear from the figure that the area occupied by P-SRSL circuitry tends 

to be smaller in general for large and deep circuits than for large and shallow circuits or 

small and deep circuits. For example, the P-SRSL area of C6288 occupies around 62% of 

the total area of its 12-stage pipeline while it can occupy up to 92% of the total area of 

the 12-stage pipeline in 32_Bit_Adder.  In any case, small circuits tend to experience 

high P-SRSL areas regardless of pipeline depth.   

5.2.2. P-SRSL Throughput 

In order to study how P-SRSL pipelining affects the throughput of a circuit, the 

pipelining algorithm is applied on the six circuits for different pipeline depths as shown 

in Figure 5.4. For each circuit, the pipeline depth is increased until the circuit ceases to 

operate correctly. This situation occurs when the delay in a given stage is so small that 

the duration of its reset phase is just as small.  Note that the inter-stage latches are 

enabled as long as the stage reset phase lasts.  If this duration is smaller than the required 

enable of the latches used in the actual implementation of the pipeline, these latches will 

not have sufficient time to capture incoming data, and subsequently the pipeline ceases to 

operate correctly.   
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Figure 5.4: Pipeline throughputs for various P-SRSL pipeline depths. 

 

In Figure 5.4, one stage represents the circuit in its non-pipelined version.  This figure 

shows that the throughput of a circuit can increase significantly depending on the pipeline 

depth.  Indeed, for a shallow circuit, such as C7552, the throughput goes from 201 

Megaoperations/sec in its non-pipelined version to 1327.79 Megaoperations/sec in its 10-

stage SRSL pipeline. This increase is equivalent to a 6.6 times improvement in 

throughput. This improvement is even more pronounced in deep circuits. For example, 

the throughput of C6288 goes from 39.44 Megaoperations/sec in its non-pipelined 

version to 875.66 Megaoperations/sec in its 35-stage SRSL pipeline. This increase 
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represents 22.2 fold in throughput improvement.  While the throughput increases as more 

stages are added to the pipeline, it is obvious that the rate of throughput increase is not 

the same for all circuits.  It seems that shallow circuits, such as C7552 and C5315, 

display the fastest throughput increase as opposed to deep circuits such as C6288 and 

32_Bit_Adder.  In fact, shallow circuits have lower latency before they are pipelined.  

This can be seen by examining stage delays in equal depth pipelines where the delay of a 

single stage is usually higher in deep circuits than the delay of a single stage in shallow 

circuits.  As a result, the throughput will be higher in shallow circuits as opposed to deep 

circuits for the same pipeline depth. Furthermore, it is obvious that the maximum 

possible pipeline depth will be higher in deep circuits than in shallow circuits. Deep 

circuits can be partitioned into large numbers of stages before the partitioning renders the 

pipeline inoperable as opposed to shallow circuits. 

5.3. D-SRSL Experiments  

The same two sets of experiments were conducted to evaluate the impact of pipelining on 

area cost and throughput in D-SRSL pipelines. 

5.3.1. D-SRSL Area Cost 

To study the cost of the additional area that is required to synchronize the D-SRSL 

pipeline, Circuit C5135 is chosen as an example. The D-SRSL area includes the area of 

the PC blocks, the LC blocks, inter-stage latches, and the intra-stage delay buffers.  
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Figure 5.5 shows the area percentage of each component that contributes to D-SRSL 

area.   
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Figure 5.5: D-SRSL area as a percentage of the pipeline area across different pipelines of 

the C5135 benchmark circuit. 

 

This figure shows that as the number of stages increases, the percentage of the D-SRSL 

area increases too. For example, the D-SRSL area is around 43 % of the overall all area 

of a four-stage pipeline.  This percentage can go up to 81 % in a 12-stage pipeline.  

Among the components used in D-SRSL pipelines, the area of inter-stage latches is 

significantly large since it occupies around 41% of the overall area of a four-stage 

pipeline.  This percentage can go up to 80.3% in a 12-stage pipeline.  However, the entire 

area of the PC blocks, LC blocks, and delay buffers occupies barely 2% of the overall 
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area of a four-stage pipeline, and 0.7 % in a 12-stage pipeline.  This shows that most of 

the area occupied is consumed by latches.   

 

With regard to the area as a percentage of the total area of a pipeline for each circuit 

across different pipeline depths, the same observations made regarding the P-SRSL 

pipelines in Figure 5.3 are valid also for the D-SRSL pipelines.    

 

5.3.2. D-SRSL Throughput 

In order to study how D-SRSL pipelining affects the throughput of a circuit, the 

pipelining algorithm is applied to the six experimental circuits for different pipeline 

depths as shown in Figure 5.6. For each circuit, the pipeline depth is increased until the 

circuit throughput cannot be improved any more.  In Figure 5.6, one stage represents a 

circuit in its non-pipelined version. This figure shows that the throughput of a pipeline 

can increase significantly depending on the pipeline depth.  In the case of C7552, which 

is the shallowest circuit in the benchmark set, the throughput goes from 200 

Megaoperations/sec in its non-pipelined version to 1088.14 Megaoperations/sec in its 

eight-stage D-SRSL pipeline. This increase is equivalent to a 5.44 times throughput 

improvement.  This improvement is even more pronounced in deep circuits. For example, 

the throughput of C6288 goes from 39.44 Megaoperations/sec in its non-pipelined 

version to 1088.14 Megaoperations/sec in its 35-stage D-SRSL pipeline. This increase 

represents 27.58 fold in throughput improvement. 
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Figure 5.6: Pipeline throughputs for various D-SRSL pipeline depths. 

 

While some circuits, such as C7552, can reach their maximum throughput in a few 

stages, other circuits, such as C6288, do not seem to reach a maximum throughput even 

when partitioned into deeper pipelines of 35 stages.  In fact, the throughput of shallow 

circuits, such as C7552, seems to level off after they have been partitioned into short 

pipelines.  On the other hand, the throughputs of deep circuits, such as C6288, do not 

display this leveled-off curve.  In a smaller number of stages, shallow circuits can get 
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partitioned so much that their intra-stage CNs are quite small.  As a result, the delay of 

these CNs becomes smaller than the delay of the LC block.  By partitioning these circuits 

further after this point, the delay of the LC block is not affected, and subsequently, the 

duration of the latch and reset phase remain constant.  This has the effect of keeping the 

period constant, which results in a leveling off of the throughput.  In deeper circuits, this 

throughput improvement limit does not appear so quickly, and consequently these circuits 

display a continuous increase in throughput improvement even when partitioned in 

deeper pipelines.  Note that, similarly to P-SRSL pipelines, shallow circuits tend to have 

a higher throughput than deep circuits for the same pipeline depth.  This can be attributed 

to the fact that the delay of a single stage is usually higher in deep circuits than the delay 

of a single stage in shallow circuits.  As a result, the throughput will be higher in shallow 

circuits as opposed to deep circuits for the same pipeline depth. 

5.4. Summary  

The heuristic algorithm has been implemented and applied to six different circuits for the 

purpose of producing P-SRSL and D-SRSL pipelines with different depths.  As shown in 

Table 5.2, the experimental results reveal that P-SRSL and D-SRSL pipelines can reach 

higher throughput in wide and shallow pipelines for a relatively small number of stages in 

general.  Furthermore, both pipelines can produce higher throughputs if wide and deep 

circuits are pipelined into deeper pipelines.  With regard to area cost, it tends to be higher 

in narrow and shallow circuits for P-SRSL and D-SRSL pipelines.  This shows that both 

pipelining techniques are suitable for coarse-grain datapaths.    
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Table 5.2: Area cost and throughput summary of the experimental circuits. 

Circuit Area Throughput 
Breadth Depth P-SRSL D-SRSL P-SRSL D-SRSL 

Shallow High High Moderate ModerateNarrow 
Deep High High Moderate Moderate

Shallow Moderate Moderate High High Wide 
Deep Low Low Low Low 
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CHAPTER SIX: SUMMARY AND CONCLUSION  

This thesis presents a synthesis methodology for SRSL pipelines based on SRSL logic.  

Since SRSL is totally implementable in static CMOS, the proposed synthesis 

methodology takes maximum advantage of the maturity of current CAD tools and the 

availability of standard cell CMOS libraries to synthesize and verify these SRSL 

pipelines.  This methodology formulates the synthesis problems as an integer 

programming problem whose size is too large for a time-efficient solution.  As a result, a 

two-phase algorithm is proposed instead to solve this synthesis problem.  The first phase 

of this algorithm assigns each gate of the netlist to a specific pipeline stage without 

violating the pipeline period constraint while the second phase minimizes the number of 

inter-stag latches between every pair of adjacent stages in the pipeline.  The second phase 

is necessary since latches in our standard cell library tend to occupy an area that is two to 

seven times larger than a two-input gate.  The experiments conducted to validate SRSL 

pipelining show that SRSL pipelines can easily reach a throughput above 1 GHz although 

this throughput depends mainly on the pipeline depth and the standard cell library used in 

the implementation.  Pipeline depth can be limited only by the duration of the reset phase 

of a single stage and the minimum time required for a latch to be transparent in order to 

capture data [16].  The pipelining experiments reveal also that the ratio of area overhead 

needed for SRSL and the area of the logic embedded within a single stage is relatively 

low.  This shows that in the overall SRSL pipelining incurs a lower cost when applied to 

coarse-grain datpaths.   
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While the proposed synthesis methodology is a first step toward supporting the design 

and verification of SRSL pipelines, it still does not address in its current form the 

following issues: 

(i) How can the interconnect effects be incorporated in the delay model used by 

the synthesis methodology? These effects are increasingly dominant in the 

nanometer range of CMOS and subsequently cannot be ignored [34].    

(ii) How can power effects be incorporated in the synthesis methodology?  By 

taking account of power consumption, the methodology can synthesize 

pipelines that are optimal in terms of area, throughput, and power.  Similarly 

to interconnect effects, power is becoming a critical factor in the performance 

and reliability of circuits implemented in nanometer CMOS devices [35].  

(iii) How would SRSL fare in comparison to previous self-resetting circuits 

implemented in dynamic circuits?  The answer to this question can be 

addressed only after addressing issue (i) and (ii).  In fact, by incorporating 

interconnect and power effects in the proposed synthesis methodology, 

additional experiments can be conducted in order to tally power and 

throughput numbers for comparison purposes.  

(iv) How can the synthesis algorithm be modified to handle different 

implementations with a high degree of flexibility? It is worth noting that the 

primary goal of the second phase of the synthesis algorithm is to minimize the 

area occupied by the latches in the pipeline.  As stated before, this 

optimization is necessary since the latches of the cell library used in the 

implementation tend to occupy a sizable area.  What if a new cell library is 
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used whose latches have comparable sizes to gates? What if the design is 

implemented on a FPGA chip which is already populated with copious 

amount of latches that can be used in the SRSL pipeline with no additional 

area cost?  In that case, the optimization in the second phase may have to be 

completely bypassed.  At first consideration, it seems that a multi-objective 

optimization approach would be highly suitable for the second phase of the 

synthesis algorithm.  

(v) How can the optimality of the second phase of the synthesis algorithm be 

evaluated?  Since this phase is totally heuristic, it would be interesting from a 

practical perspective to quantify how sub-optimal this phase is.  Its sub-

optimality can have a significant impact the area cost of the synthesized SRSL 

pipeline.    

(vi) How can this synthesis methodology be extended to sequential circuits? 

Because the experimental benchmarks are all combinational circuits, it would 

be interesting to consider how to extend this methodology to handle sequential 

circuits.  A straightforward approach would be to (1) replace the clocked flip-

flops of a sequential circuit by latches and (2) pad the feedback loops, 

encountered in sequential machines, with delay buffers as suggested in [36].  
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