
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2006

Synthesis Of Self-resetting Stage Logic Pipelines Synthesis Of Self-resetting Stage Logic Pipelines

Rashad Oreifej
University of Central Florida

 Part of the Computer Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Oreifej, Rashad, "Synthesis Of Self-resetting Stage Logic Pipelines" (2006). Electronic Theses and
Dissertations, 2004-2019. 1108.
https://stars.library.ucf.edu/etd/1108

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/258?utm_source=stars.library.ucf.edu%2Fetd%2F1108&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/1108?utm_source=stars.library.ucf.edu%2Fetd%2F1108&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

SYNTHESIS OF SELF-RESETTING STAGE LOGIC PIPELINES

by

RASHAD OREIFEJ
B.S. University of Jordan, 2000

A thesis submitted in partial fulfillment of the requirements
for the degree of Masters of Science

in the School of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Summer Term
2006

© 2006 Rashad Oreifej

ii

ABSTRACT

As designers began to pack multi-million transistors onto a single chip, their reliance on a global

clocking signal to orchestrate the operations of the chip has started to face almost insurmountable

difficulties. As a result, designers started to explore clockless circuits to avoid the global

clocking problem. Recently, self-resetting circuits implemented in dynamic logic families have

been proposed as viable clockless alternatives. While these circuits can produce excellent

performances, they display serious limitations in terms of area cost and power consumption. A

middle-of-the-road alternative, which can provide a good performance and avoid the limitations

seen in dynamic self-resetting circuits, would be to implement self-resetting behavior in static

circuits. This alternative has been introduced recently as Self-Resetting Stage Logic and used to

propose three types of clockless pipelines. Experimental studies show that these pipelines have

the potential to produce high throughputs with a minimum area overhead if a suitable synthesis

methodology is available.

This thesis proposes a novel synthesis methodology to design and verify clockless pipelines

implemented in SRSL by taking advantage of the maturity of current CAD tools. This

methodology formulates the synthesis problem as a combinatorial analytical problem for which a

run-time efficient exact solution is difficult to derive. Consequently, a two-phase algorithm is

proposed to synthesize these pipelines from gate netlists subject to user-specified constraints.

The first phase is a heuristic based on the as-soon-as-possible scheduling strategy in which each

gate of the netlist is assigned to a single pipeline stage without violating the period constraint of

each pipeline stage. On the other hand, the second phase consists of a heuristic, based on the

iii

Kernighan-Lin partitioning strategy, to minimize the number of nets crossing each pair of

adjacent pipeline stages. The objective of this optimization is to reduce the number of latches

separating pipeline stages since these latches tend to occupy large areas.

Experiments conducted on a prototype of the synthesis algorithm reveal that these self-resetting

stage logic pipelines can easily reach throughputs higher than 1 GHz. Furthermore, these

experiments reveal that the area overhead needed to implement the self-resetting circuitry of

these pipelines can be easily amortized over the area of the logic embedded in the pipeline

stages. In the overall, the synthesis methods developed for SRSL produce low area overhead

pipelines for wide and deep gate netlists while it tends to produce high throughput pipelines for

wide and shallow gate netlists. This shows that these pipelines are mostly suitable for coarse-

grain datapaths.

iv

ACKNOWLEDGMENTS

I would like to thank all who made this possible either directly by their contribution in this

project, or indirectly by their support and love.

I wish to express my sincere gratitude to Dr. Abdel Ejnioui for his great support, continuous

supervision, and valuable contribution in this thesis.

I also would like to thank my friend Abdelhalim Alsharqawi for the great team-spirit and

professional atmosphere we experienced in working together through the many challenges in this

project.

I’d like to thank my family in Jordan and my family in Orlando for their copious support, love,

and care for which I am so grateful, and without which, it would have not been possible.

Finally, I’d like to thank all my friends here in Orlando who by their earnest friendship

encouraged me to carry out this achievement.

v

TABLE OF CONTENTS

LIST OF FIGURES ... ix

LIST OF TABLES.. xii

CHAPTER ONE: INTRODUCTION... 1

1.1 Limitations of Clocked Circuits.. 1

1.2 Self-Resetting Circuits .. 3

1.3 Self-Resetting Stage Logic and Its Synthesis Methodology... 6

1.4 Thesis Contributions ... 7

1.5 Thesis Overview ... 8

CHAPTER TWO: RELATED WORK... 10

2.1 Delayed Reset Logic ... 10

2.2 Global/Local Self-Resetting CMOS ... 12

2.3 Local Self-Resetting CMOS ... 15

2.4 Dual-Rail Self-Reset Logic with Input Disable .. 18

2.5 Summary of Self-Resetting Techniques ... 20

CHAPTER THREE: SELF-RESETTING STAGE LOGIC... 23

3.1 Self-Resetting Stage Logic ... 23

3.2 Stage-to-Stage Self-Resetting Stage Logic... 25

3.3 Pipeline-Controlled Self-Resetting Stage Logic... 32

3.4 Delay-Tolerant Self-Resetting Stage Logic .. 37

3.4.1 Pipeline Structure... 38

3.4.2 Phase Control Block .. 40

vi

3.4.3 Latch Control Block... 41

3.5 Summary ... 43

CHAPTER FOUR: SYNTHESIS OF SRSL PIPELINES.. 44

4.1 SRSL Pipeline Design Methodology.. 44

4.2 Synthesis of SRSL Pipelines... 46

4.3 Preliminaries ... 47

4.4 Analytical Formulation of the Pipelining Problem... 51

4.5 Heuristic SRSL Pipelining.. 58

4.5.1 Stage Assignment Phase .. 58

4.5.1.1 Phase I Approach .. 59

4.5.1.2 Phase I Algorithm ... 60

4.5.2 Vertex Shuffling Phase .. 61

4.5.2.1 Phase II Approach... 61

4.5.2.2 Phase II Algorithm.. 68

CHAPTER FIVE: EXPERIMENTAL RESULTS ... 71

5.1. Experimental Setup.. 71

5.2. P-SRSL Experiments ... 73

5.2.1. P-SRSL Area Cost .. 73

5.2.2. P-SRSL Throughput.. 76

5.3. D-SRSL Experiments... 78

5.3.1. D-SRSL Area Cost.. 78

5.3.2. D-SRSL Throughput... 80

5.4. Summary .. 82

vii

CHAPTER SIX: SUMMARY AND CONCLUSION.. 84

LIST OF REFERENCES.. 87

viii

LIST OF FIGURES

Figure 1.1: Area cost of an add-compare-select unit implemented in three logic families. 4

Figure 1.2: Power consumption of an add-compare-select unit implemented in three logic

families.. 4

Figure 1.3: Rough padding in a carry generator block of a self-resetting carry lookahead adder

[7]. ... 5

Figure 2.1: DSRL pipeline and its self-resetting circuitry.. 11

Figure 2.2: Timing chart of DSRL control signals of a pipeline stage. .. 11

Figure 2.3: Basic SRCMOS gate. ... 13

Figure 2.4: SRCMOS macro... 14

Figure 2.5: Local self-resetting CMOS... 16

Figure 2.6: Latch-free pipeline based in LSRCMOS.. 17

Figure 2.7: Pulse stretcher... 17

Figure 2.8: Basic DRSRL-ID gate. ... 19

Figure 3.1: Reset network of an SRSL stage. ... 23

Figure 3.2: STG of the SRSL reset network. .. 24

Figure 3.3: Four-stage S-SRSL pipeline... 26

Figure 3.4: STG of the S-SRSL pipeline shown in Figure 3.3. .. 27

Figure 3.5: Assertion of the stage reset signals... 28

Figure 3.6: Reset phase of all stages... 28

Figure 3.7: Evaluate phase of stage 4. .. 29

Figure 3.8: Evaluate phase of stage 3. .. 29

ix

Figure 3.9: Evaluate phase of stage 2 and 4.. 30

Figure 3.10: Evaluate phase of stage 1 and 3.. 30

Figure 3.11: Evaluate phase of stage 2 and 4.. 31

Figure 3.12: Evaluate phase of stage 1 and 3.. 31

Figure 3.13: Four-stage P-SRSL pipeline... 32

Figure 3.14: STG of the four-stage P-SRSL pipeline shown in Figure 3.13. 34

Figure 3.15: Assertion of the stage reset signals... 35

Figure 3.16: Reset phase of all stages... 35

Figure 3.17: Evaluate phase of all stages.. 36

Figure 3.18: Evaluate phase of stage 3 and 1.. 36

Figure 3.19: Evaluate phase of stage 4 and 2.. 37

Figure 3.20: Evaluate phase of Stage 1 and 3... 37

Figure 3.21: Four-stage D-SRSL pipeline. ... 38

Figure 3.22: STG of the D-SRSL pipeline. .. 39

Figure 3.23: PC block. .. 40

Figure 3.24: State graph of the PC block.. 41

Figure 3.25: LC block. .. 42

Figure 3.26: State graph of the LC block.. 42

Figure 4.1: SRSL design flow... 45

Figure 4.2: Example of a Boolean network. ... 48

Figure 4.3: Boolean graph of the Boolean network shown in Figure 4.2. 51

Figure 4.4: Latch placement two Boolean graph partitions. ... 62

Figure 5.1: SRSL pipelining procedure of the benchmark circuits. ... 73

x

Figure 5.2: P-SRSL area as a percentage of the pipeline area across different pipelines of the

C6822 benchmark circuit.. 74

Figure 5.3: P-SRSL area as a percentage of the pipeline area across various depth pipelines. 75

Figure 5.4: Pipeline throughputs for various P-SRSL pipeline depths... 77

Figure 5.5: D-SRSL area as a percentage of the pipeline area across different pipelines of the

C5135 benchmark circuit.. 79

Figure 5.6: Pipeline throughputs for various D-SRSL pipeline depths. 81

xi

LIST OF TABLES

Table 2.1: Summary of self-resetting techniques. .. 21

Table 5.1: Experimental circuits. .. 72

Table 5.2: Area cost and throughput summary of the experimental circuits. 83

xii

CHAPTER ONE: INTRODUCTION

This chapter describes the problems caused by the reliance on global clocking to

synchronize the operations of digital circuits. Faced with these problems, designers are

exploring other classes of circuits which do not rely on clocking. In this context, the

chapter discusses a class of clockless circuits known as self-resetting circuits. Because

these circuits suffer from serious limitations in spite of their high performances, the

chapter introduces briefly self-resetting stage logic and its pipelining schemes. Based on

this new self-resetting technique, it argues for a synthesis methodology that is suitable to

support clockless pipelines.

1.1 Limitations of Clocked Circuits

Clocked circuits have been dominating digital design for some time. Because they are

synchronized by a global signal, these circuits are easy to build and verify. By

abstracting away the complex interactions between circuit signals in the time domain, the

timing analysis of these circuits is greatly simplified [1]. This simplification is narrowed

to the analysis of delays on the critical path of the underlying gate netlist of the circuit.

In essence, the design process of digital circuits is reduced to embedding combinational

logic between clocked registers. This approach simplifies further the timing analysis by

ignoring completely the impact of unwanted signal transitions between clock events. As

time went by, interest grew in designing larger clocked circuit to meet new emerging

applications. At the same time, market forces began to compel designers to reduce the

1

time-to-market of newly introduced technology products in order to maximize potential

profits in the market. The combination of these factors contributed significantly to the

development of automatic tools to design and verify these clocked circuits. This

development effort culminated in the wide acceptance of a unified design methodology

supported by widely available CAD tools. While these change were taking place, the

quick pace of innovation in CMOS technology made the integration of multi-million

transistors onto the same die possible. As designers kept packing more devices into chips

to take advantage of these large scales of integration, significant challenges have emerged

of which the reliance on a clock signal to orchestrate logic operations across an entire

chip seems to be the most important [2]. This problem is considered the primary cause of

three consequential obstacles in current VLSI design [3]:

(i) Design cycle time: Design time can be extended significantly by unexpected

clocking problems. These extensions can disturb product schedules and shrink

potential market profits.

(ii) Power budget: The power budget allocated for a design initially may be

completely underestimated if clocking problems are not addressed early in the

design cycle. Even if they are, there is no guarantee that the power budget will

remain within initial estimates. Getting the power budget right is critical since

excessive power consumption may disrupt the correct operations of the

circuit.

(iii) Chip area: To overcome the technical difficulties imposed by the distribution

of the clock to different parts of a chip, substantial silicon area has to be

2

sacrificed to support this distribution. This additional area can increase

significantly the final cost of the circuit.

1.2 Self-Resetting Circuits

As global clocking is causing these problems, designers are exploring the alternative of

asynchronous circuits [4]. Recently, a special family of dynamic circuit, known as self-

resetting logic, has been exploited successfully in memory design [5, 6]. Only a few

attempts have been made to study the effectiveness of this logic family in implementing

asynchronous datapath circuits [7, 8]. Self-resetting behavior can be described as the

ability of a logic block to reset its output pulse a short time after it has been asserted. The

reset signal is often generated within the block based on the output pulse. Depending on

the implementation of the self-resetting behavior, the granularity of the block can range

from a single gate to a large macro. Most self-resetting dynamic circuits are fine-grain

implementations targeted to high performance arithmetic circuits. Since the majority of

these circuits are pulse-mode circuits, they are usually organized into pulsed latch-free

pipelines. These pipelines can produce high throughputs that are made possible by the

fast cycle time of self-resetting dynamic circuits. Although dynamic circuits exhibit

smaller area overhead than static circuits, the implementation of self-resetting dynamic

circuits tend to occupy larger areas as shown in Figure 1.1 [9]. This area overhead is

primarily caused by the self-resetting circuitry and additional buffering to equalize signal

delay on various logic paths.

3

Number of Transistors

0

500

1000

1500

2000

2500

Static CMOS Two-Phase Domino Self-Resetting CMOS

Logic Families

N
um

be
r o

f T
ra

ns
is

to
rs

Figure 1.1: Area cost of an add-compare-select unit of a Viterbi Decoder implemented in

three logic families.

While it is known that dynamic circuits can be power hungrier than static circuits, self-

resetting dynamic circuits tend to consume substantially more power than even their

clocked dynamic counterparts as shown in Figure 1.2 [10].

0

50

100

150

200

250

300

Static CMOS Two-Phase Domino Self-Resetting CMOS

Logic Families

Po
w

er
 (m

W
)

Average Power Maximum Power

Figure 1.2: Power consumption of an add-compare-select unit of a Viterbi Decoder

implemented in three logic families.

4

As for timing requirements, with the exception of a few self-resetting approaches [9, 11],

most self-resetting circuits rely heavily on equalization of path delays [8, 12]. In fact,

because some self-resetting circuits are intended for wave pipelining [7], rough padding

is extensively applied on all paths in order to minimize the difference between fast and

slow paths [13] as shown in Figure 1.3.

Figure 1.3: Rough padding in a carry generator block of a self-resetting carry lookahead

adder [7].

Buffers can occupy up to 40% of the circuit area in some cases [10]. As a result,

additional effort must be invested in meeting timing constraints that are specific to these

circuits. This significant demand on maintaining signal integrity is exacerbated further

by the pulse-driven nature of self-resetting circuits.

Since self-resetting behavior can be realized using any circuit family, one can opt to use

static CMOS instead. Doing so presents several advantages. In static circuits, signals do

not have to be pulses. Instead, voltage levels are sufficient to support self-resetting

5

behavior. If voltage levels are used, the stringent timing constraints encountered in pulse

mode circuits can be relaxed without affecting circuit robustness. In addition, significant

power savings can be realized by using static circuits. While static circuits are not as fast

as dynamic circuits, one can overcome more or less effectively this difficulty by adopting

performance-enhancing techniques such as aggressive pipelining and the exclusion of the

reset circuitry from the critical path of the datapath. Moreover, the use of static self-

resetting latch-based pipelines is particularly beneficial since their timing verification is

reduced to the verification process encountered in synchronous logic. Furthermore, these

self-resetting circuits can be synthesized and verified using current synthesis and

verification tools. It is worth noting that there are no mature synthesis and verification

tools available for dynamic circuits [14]. In fact, the design community ought to exploit

the maturity of current CAD tools to build large asynchronous architectures which go

beyond proof-of-concepts designs. To do so, this community can pursue a design

methodology which adopts as much as possible the existing CAD design flow and

deviates from it as little as possible [15].

1.3 Self-Resetting Stage Logic and Its Synthesis Methodology

Following the objective of maximum adoption of the current design methodology, a

novel coarse-grain self-resetting technique, called self-resetting stage logic implemented

in static CMOS, has been recently proposed [16]. Based on this self-resetting stage logic

(SRSL) technique, three pipelining schemes have been proposed where the first and

second pipelines require that stages have equal delays while the third pipeline can tolerate

6

any arbitrary stage delay [17-21]. This thesis proposes a synthesis methodology to build

these SRSL pipelines [22-24]. This methodology operates on flat gate netlists

synthesized by current CAD tools and implemented in standard library cells used in

ASIC design. The synthesis methodology is assessed through experimentation on

benchmark circuits with various depths and breadths. As an experimental requirement,

these SRSL pipelines have been synthesized and verified using current CAD tools, then

implemented using a standard static CMOS cell library [25, 26].

1.4 Thesis Contributions

This thesis presents a new synthesis methodology specifically designed for pipelining

SRSL logic. As mentioned before, this methodology is highly suitable for existing CAD

tools. Specifically, the contributions of this thesis are as follows:

(i) A novel design methodology based on synthesizing SRSL pipelines using

current CAD tools and standard cell libraries. Designing clockless circuits

using this methodology is highly similar to designing digital synchronous

circuits.

(ii) Graph-theoretic and analytical formulations of a combinatorial problem

encountered in the synthesis of SRSL pipelines. Specifically, this problem

consists of synthesizing an SRSL pipeline from a gate netlist with a minimum

area overhead based on a specified data rate. The analytical formulation

consists primarily of an integer programming problem.

7

(iii) Since the size of the integer programming problem formulation is significantly

large, a new heuristic algorithm is proposed to solve it. Because latches tend

to occupy a large silicon area, the main goal of the algorithm is to minimize

the area occupied by inter-stage latches without violating any timing

constraints. This is accomplished by executing two successive phases where

phase I assigns each gate in the gate netlist to a specific pipeline stage whereas

phase II minimizes the number of inter-stage latches between every pair of

neighboring pipeline stages.

(iv) Pipelining experiments conducted on the SRSL pipeline show that they can

reach throughputs above the GHz range without incurring an excessive area

overhead.

(v) The same pipelining experiments reveal that the area overhead remain

beneficial as long as it represents a small fraction of the logic area embedded

in a pipeline stage. This requirement makes SRSL pipelines highly suitable

for pipelining coarse-grain datapaths.

1.5 Thesis Overview

This thesis consists of six chapters in which the current chapter presents the motivation

behind the synthesis methodology of SRSL pipelines by drawing attention to the global

clocking problem. Chapter 2 reviews the self-resetting circuit techniques previously

described. These techniques are all implemented in dynamic CMOS. Chapter 3

introduces SRSL and describes the operations of the three pipelines based on SRSL.

8

Chapter 4 describes the synthesis methodology that is proposed to support the design and

verification of SRSL pipelines, presents the formulation of the combinatorial problem

stemming from the synthesis of SRSL pipelines, and describes the synthesis algorithm

implemented for this purpose. Chapter 5 presents the experiments conducted on

benchmark circuits in order to evaluate the performance profiles of each SRSL pipeline.

Finally, Chapter 6 concludes the thesis and suggests avenues for future work.

9

CHAPTER TWO: RELATED WORK

In this chapter, a review of the different design techniques based on self-resetting logic is presented.

Section 2.1 presents delayed reset logic while section 2.2 describes a self-resetting technique

controlled by local and global reset signals. Section 2.3 describes a self-resetting technique driven

by local reset signals while section 2.4 describes a dual rail self-resetting technique with input

disable. Section 2.5 concludes the chapter by presenting a summary of the reviewed techniques and

contrasting them to SRSL.

2.1 Delayed Reset Logic

In [11] , the authors propose a pipelined technique based on delayed self-reset logic (DSRL). The

refinement of this technique is inspired from the self-reset technique proposed in [27]. DSRL is a

single rail logic optimized for pipelining memory access in multimedia processors. This reset

technique is driven by pulses and can be modified to accommodate voltage levels. Figure 2.1 shows

the structure of a DSRL pipeline while Figure 2.2 shows timing charts of control signals within the

pipeline. In DSRL, a stage can transition through three states: evaluate, reset, and recover. Before

computation begins, a stage is in a quiescent state. When the inputs (in_a and in_b) are absorbed,

the stage enters the evaluate state as shown in Figure 2.2. The evaluation time depends on the delay

within the NMOS and PMOS networks. At the end of this state, the output (out_n or out_p)

becomes stable at which point the stage enters the reset state. The stage remains in this state as long

as the reset signal (rst_in) has not arrived from the previous stage. Note that this signal is also

labeled rst_out on the output side of the same stage.

10

Figure 2.1: DSRL pipeline and its self-resetting circuitry.

.

Figure 2.2: Timing chart of DSRL control signals of a pipeline stage.

As Figure 2.1 shows, the reset signal (rst_in) travels between every two adjacent stages. When the

latter signal arrives, the stage enters the recovery state. This state is locally timed in each stage by

11

insuring that transistor n3 is turned off before transistor n4 is turned on in the beginning of the

evaluate state. This signal control allows the stages to have arbitrary different delays.

Implemented in domino logic, DSRL pipelines consist of alternating NMOS and PMOS stages

without any latches between the stages. Although these pipelines are suitable for memory cell

design, it is doubtful whether they are also suitable for datapaths or not given their fine-grain nature.

In addition, their design requires that careful calibration be applied to the pulse generator located in

the first pipeline stage as shown in Figure 2.1. This calibration is needed to compensate for

environmental variations. Furthermore, since these pipelines are mainly custom circuits, their design

and verification can be time-consuming and error-prone.

2.2 Global/Local Self-Resetting CMOS

In [8, 12], the authors propose a single-rail self-resetting technique in which the gates are reset

locally (LSRCMOS). However, the gates within a large macro are reset through a global reset signal

(GLSRCMOS). Figure 2.3 shows a basic GLSRCMOS gate. This gate has active-high pulsed

inputs and outputs. Its non-inverting logic evaluation depends on the logic function of the NMOS

tree. If the right input combination occurs at the right time, a conducting path from the TL node

emerges, which leads to discharging the capacitance at the output side of the gate. This brings TL to

logic 0 while the output goes up to logic 1, thus creating the leading edge of the output pulse. When

the input pulse ends, the RL signal arrives by falling to logic 0, thus resetting the TL node to logic 1.

After TL becomes asserted, the RH signal arrives, by rising to logic 1, to terminate the output pulse.

12

Figure 2.3: Basic SRCMOS gate.

These basic GLSRCMOS gates are incorporated within macros. An SRCMOS macro consists of a

number of gates whose reset signals drive a reset generator circuit located inside the macro. Figure

2.4 shows a GLSRCMOS macro. The triggering of this generator can be realized through ORing of

reset signals, majority circuits, or interlocking signals from multiple paths. As a rule, the reset

generator must be triggered when the macro is active. A delay chain generates the required signals

within the reset generator. Initially, a macro is in standby mode. Once it receives its triggering

pulses, it enters the evaluate mode, then resets its outputs before returning to the standby mode.

In [8], the designs of a number of macros are assembled to implement a 64-bit carry lookahead adder

in a 0.25 µm CMOS process. This adder can reach a throughput of 400 MHz. Since this adder uses

a pipelined pulsed approach to increase its throughput, a number of buffers have been added to the

adder in order to control delay on logic evaluation paths.

13

Figure 2.4: SRCMOS macro.

While the authors refer to pulse pipelining, they do not clearly describe how macros are pipelined

within the adder. This omission does not clarify how two adjacent macros synchronize their state

transition in order to exchange data safely. Whereas the insertion of buffers can help in overcoming

timing issues, it can become quite unwieldy when dealing with large datapaths with large numbers of

logic paths. At best, buffer insertion bloats the datapaths leading to a large area overhead. In

addition, if macro size increases to accommodate deep logic, it may require increasing the length of

the reset chains within a macro. This can be achieved by inserting inverters in this chain, which in

turn complicates the timing verification of the macro. These ensuing timing difficulties explain the

motivation of the authors in [12] to propose a special tool for performing accurate timing verification

of GLSRCMOS circuits.

14

2.3 Local Self-Resetting CMOS

In [9], the authors propose a single-rail input dual-rail output self-resetting technique in dynamic

CMOS. In this technique, the reset signal is generated within the stage by NORing the stage output

and its complement. As a result, two NMOS networks are required to generate the output and its

complement. Figure 2.5 shows the local self-resetting CMOS (LSRCMOS). In this circuit, node 1

will switch to low or high depending on the input. At the same time, node 2 will switch to the

complement logic level of node 1 given the same input. At this time, both NMOS networks are in

the evaluate state. Subsequently, signal f and f’ go through the NOR gate whose output switches to

low. The low output of the NOR gate turns on both precharge transistors connected to the reset node

thus charging the capacitance at the outputs of both NMOS networks. As a result, nodes 1 and 2

switch to high to propel both NMOS networks in the reset state. At this moment, both NMOS

networks are ready to accept new input pulses. Following this, signal f and f’ switch both to low

thus forcing the output of the NOR gate to switch to high. This in turn turns off both precharge

transistors to allow both NMOS networks to evaluate the newly arrived input pulses.

Contrary to GLSRCMOS presented in the previous section, the reset signal in LSRCMOS does not

go through any timing chain. As shown in Figure 2.5, the reset time remains constant regardless of

the evaluation time of both NMOS networks. However, the delay through the loop consisting of an

output node, the NOR gate, and the reset node should be longer than the duration of the input pulses

to avoid in-fighting between the precharge transistors. This technique can be used to build latch-free

pipelines in dynamic CMOS as shown in Figure 2.6.

15

Figure 2.5: Local self-resetting CMOS.

In [10], the authors apply LSRCMOS to design an add-compare-select (ACS) unit of a Viterbi

decoder. While the ACS unit is 1.71 faster than its counterpart in clocked static CMOS, it is 110

times power hungrier than its static counterpart. In addition, it occupies 2.35 times more area than

its static counterpart in spite of the effort of the authors in using pulse stretchers to control path

delay. While the authors claim that these stretchers reduce area overhead in contrast to buffers, they

do not specify how many pulse stretchers they used within the ACS unit and how much area they

occupy. In fact, a pulse stretcher consists of an SR latch whose R input is connected to a NOR gate

as shown in Figure 2.7.

16

Figure 2.6: Latch-free pipeline based in LSRCMOS.

Based on popular latch layouts, an SR latch in static CMOS can easily occupy three to seven times

more area than a two-input NAND gate. To scale to dynamic CMOS implementations, a rough

estimate can be obtained by halving the area estimates in static CMOS. Based on this estimate, even

pulse stretchers may add a substantial area overhead although it is doubtful it would be on the order

of the area overhead caused by buffer insertion.

Figure 2.7: Pulse stretcher.

17

2.4 Dual-Rail Self-Reset Logic with Input Disable

In [7], the authors propose a dual-rail self-resetting technique, called DRSRL-ID, in which the reset

signal is generated locally. Figure 2.8 shows a basic DRSRL-ID gate. The ID initials represent the

input disable block shown in Figure 2.8. This block consists of an extra NMOS transistor NMe in

series with the NMOS transistor NM1. When the gate is in standby mode, capacitance is pulled

down to ground switching the node outn to high. In return, this makes the node rst1n switch to high

to turn on the NMe transistor. At this point, the gate is ready to absorb the D input. If D becomes

high, node outn switches to low, which turns on and off the PMa and NMa transistors respectively.

After a short time, node rst1 switches to low to turn off the NMe transistor. When the latter device is

off, the input is disabled. The discharging of the node outn causes output Y to rise, thus generating

the leading edge of the output. Y is fed through inverter invFB to turn on the PM1 transistor in

charge of pulling up node outn. This brings back the gate to its standby mode. As node outn starts

going high, its voltage switches the transistors of the output stage forcing the Y output to go low.

When Y becomes low, it deactivates the reset signal to enable input readout. As such, the gate re-

enables the inputs only when the output pulse is completely formed. The layout of the basic

DRSRL-ID gate forces the width of the output pulse to remain constant regardless of fanout. The

width of the output pulse depends only on the output stage and the feedback loop that controls the

reset signal. It is completely independent of the implementation of the NMOS network in charge of

evaluating logic.

18

Figure 2.8: Basic DRSRL-ID gate.

The authors use this design technique to build a 16-bit wave-pipelined carry propagate adder in a

0.18 µm CMOS process which can reach 2.5 GHz throughput. Because wave pipelining aims at

reducing the delay differences between long and short paths, the authors resort to extensive rough

padding to reach this objective.

While timing calibration seems to be straightforward at gate level, it is not clear how it can be

achieved at datapath level. In fact, if buffer insertion is used for path delay equalization, this

indicates that substantial effort must be invested in timing calibration at datapath level. In addition,

buffer insertion contributes to bloating datapath size. By considering the number of transistors

needed to support input disabling and resetting behavior on a cell basis, it is clear that area overhead

can be incurred also at cell level. In fact, some basic two-input gates can incur a penalty of 12 to 16

transistors to support their input-disabling and reset behavior.

19

2.5 Summary of Self-Resetting Techniques

Table 2.1 shows a summary of the self-resetting techniques reviewed in this chapter. The table

shows that all the reviewed techniques are implemented in custom dynamic CMOS using pulse-

driven circuits. Pulse driven circuits require precise sequencing of the input pulses. In contrast,

voltage level circuits do not require such sequencing. In addition, custom circuits using dynamic

CMOS require a substantial effort in verification. This effort is further hampered by a total lack of

mature CAD tools destined for synthesis and verification of circuits implemented in dynamic

CMOS. In the reviewed circuits, the reset signal is always tied to the output pulse making the reset

signal tightly coupled to the path of evaluated logic. If glitches affect the output signals, these

glitches will propagate to the reset signals resulting in a temporary or permanent disruption of the

state transitions in these circuits. None of the reviewed papers speculate on the consequences of

such glitches. To build datapaths, these circuits are assembled into fine-grain latch-free pipelines.

While these pipelines tend to be small in area, their verification is not a trivial task. This situation is

further exacerbated in the reviewed techniques that require equal stage delay across the pipeline.

In contrast to the reviewed self-resetting techniques, this thesis proposes a design technique to

support SRSL which has been previously reported in [16]. Implemented in static CMOS, SRSL has

adequate coarse granularity to make it suitable for implementing large datapaths.

Static circuits consume less power than dynamic circuits. Furthermore, since SRSL exploits self-

resetting at datapath level, its area overhead is significantly smaller than the area overhead seen in

the reviewed self-resetting techniques. The latter techniques implement self-resetting behavior at

gate level instead. While dynamic circuits can display a superior performance, static circuits can

20

provide similar performance levels if aggressive pipelining is applied in a disciplined manner. SRSL

uses voltage levels instead of pulsed inputs and outputs. For circuit robustness, SRSL separates the

path of self-resetting circuitry from that of logic circuitry. Since SRSL is implemented in static

circuits, its pipelines use latches to separate logic stages. The insertion of latches facilitates the

control of the cycle time and subsequently the timing validation of these pipelines.

Table 2.1: Summary of self-resetting techniques.

 DSRL LGSRCMOS LSRCMOS DRSRL-ID SRSL
Pulse vs.
voltage level

Pulse Pulse Pulse Pulse Voltage levels

Source of
reset signal

● Incoming
reset from
previous stage

● Outgoing
reset in current
stage

● Local reset
in current gate

● Global reset
in macro

Current stage Current stage ● Current
stage (S/P-
SRSL)

● Previous
stage (D-
SRSL)

Destination of
reset signal

Next stage In macro Current stage Current stage Previous stage

Tying of reset
signal to
output

Yes Yes Yes Yes No

Signal delay
handling

None Buffering Pulse
stretching

Buffering Buffering

Path of reset
signal

Logic path Logic path Logic path Logic path Control path

Stage delay Arbitrary Equal Arbitrary Equal ● Equal (S/P-
SRSL)

● Arbitrary
(D-SRSL)

Pipelining No Latches No Latches No Latches No Latches Latches
CMOS Dynamic Dynamic Dynamic Dynamic Static
Granularity Fine Fine Fine Fine Coarse
Tools None Proprietary None None Current CAD

21

This thesis proposes a design methodology which leverages the maturity of current CAD tools to

synthesize and verify SRSL pipelines. The methodology does not deviate from the established

design methodology used in synchronous logic. At the core of this methodology is a synthesis flow

which transforms a synchronous gate netlist into an SRSL netlist before the latter is placed and

routed.

22

CHAPTER THREE: SELF-RESETTING STAGE LOGIC

This chapter presents self-resetting stage logic, which is a digital design technique that is

characterized by periodic oscillations. This technique can be used to establish

handshaking exchanges between two computational stages in a dataflow pipeline. Its

underlying concept is introduced in section 3.1. Section 3.2 describes the stage-to-stage

self-resetting stage logic pipeline followed by the description of the pipeline-controlled

self-resetting stage logic pipeline in section 3.3. Section 3.4 describes delay-tolerant

self-resetting stage logic pipeline before section 3.5 concludes the chapter.

3.1 Self-Resetting Stage Logic

Self-resetting stage logic (SRSL) is a design approach which can be used to synchronize

data flow between neighboring computing blocks without relying on a global clock

signal. In the SRSL pipeline, each stage consists of two distinctive networks: a

combinational network and a reset network. The combinational network represents the

combinational logic embedded in a given stage while the reset network represents an

oscillating loop used to control data transfer from one combinational network to another.

The reset network consists of a two-input NOR gate whose output O feeds back one of its

inputs I, while its other input is tied to the Reset global signal as shown in Figure 3.

Figure 3.1: Reset network of an SRSL stage.

23

As long as the Reset signal is asserted, O remains 0. When the Reset signal is de-asserted,

O oscillates between 0 and 1. The oscillation frequency is controlled by the delay block

∆ embedded in the feedback loop between the NOR output and its input. When O is 0,

the reset network is in the reset phase. Later, when O switches to 1, the reset network is

in the evaluate phase. As such, a reset network oscillates between two distinct phases in

an autonomous fashion. The duration of these two phases constitutes a single oscillation

cycle or period. This autonomous oscillation is illustrated with the state transition graph

(STG) shown in Figure 3.2.

Figure 3.2: STG of the SRSL reset network.

In the above STG, O, I, and R are the three signals shown in Figure 3.1. O+, I+, and R+

represent the rising transitions on those signals respectively while O−, I−, and R− represent

the falling transition on the same signals respectively. In addition, a directed edge

connecting two transitions means that the transition at the tail of the edge precedes in

time the transition at the head of the edge. The oscillations of a reset network can be

used to synchronize data transfer between neighboring stages in a pipeline. To allow the

combinational network of a stage sufficient time to absorb and process its inputs, SRSL

24

prepares a stage to (i) receive inputs from the preceding stage when it is in the reset

phase, and (ii) send its outputs to the following stage when it is in the evaluate phase.

3.2 Stage-to-Stage Self-Resetting Stage Logic

In stage-to-stage self-resetting stage logic (S-SRSL), the synchronization is realized

between each pair of stages in the pipeline. In this pipeline, each stage is ready to absorb

inputs when it enters the reset phase and produce an output when it enters its evaluate

phase. As a result, data transfer occurs between two neighboring stages when the left

stage is in the evaluate phase while the right stage is in the reset phase.

Figure 3.3 shows the interconnection structure of a four-stage S-SRSL pipeline where

each stage consists of a combinational and a reset network. In addition to the reset

network, SRSL relies on inter-stage latches to capture data moving from one stage to

another. These latches are enabled when the left stage is ready to push data to the right

stage in a pipeline. This occurs when the left and right stages are in the evaluate and

reset phases respectively. As shown in Figure 3.3, the enable (Li) of each inter-stage

latch is tied to the output of an AND gate whose inputs are connected to the phase lines

of the left and right stages. These phase lines represent the outputs of the NOR gates

embedded in the reset networks of both stages. Note that the right input of the AND gate

is inverted. Because the control of these inter-stage latches is exercised between each

pair of pipeline stages, this synchronization technique is qualified as a stage-to-stage

25

SRSL. It is worth emphasizing the fact that all the stages in the pipeline should have

equal cycles in order to insure correct data flow throughout the pipeline.

Figure 3.3: Four-stage S-SRSL pipeline.

At any oscillation cycle, the latch on the left side of a stage in the reset phase will be

enabled while the latch on its right side will be disabled. The latter will be enabled only

when the stage enters its evaluate phase. This periodic oscillation forces every other stage

to enter the evaluate phase while the remaining stages enter their reset phase. A cycle

later, the stages that were in the reset phase start their evaluate phases while the stages

that were in the evaluate phase start their reset phase.

The STG for the four-stage S-SRSL pipeline shown in Figure 3.3 is shown in Figure 3.4.

In Figure 3.4, the STG shows that the rising transition of L3 occurs after O2 and O3

experience a rising and falling transition respectively. This means that latch 3 is enabled

only when stage 2 is in the evaluate phase while stage 3 is in the reset phase. If O3

26

experiences a falling transition, this forces another falling transition on L4. This shows

that while latch 3 is enabled, latch 4 is disabled.

Figure 3.4: STG of the S-SRSL pipeline shown in Figure 3.3.

Figure 3.5 through Figure 3.12 show how the stages alternate between phases as data

flows across the pipeline by depicting two execution cycles of a four-stage S-SRSL

pipeline. The asserted and de-asserted signals are represented as solid and dashed lines

respectively in these figures.

27

Figure 3.5: Assertion of the stage reset signals.

Figure 3.6: Reset phase of all stages.

28

Figure 3.7: Evaluate phase of stage 4.

Figure 3.8: Evaluate phase of stage 3.

29

Figure 3.9: Evaluate phase of stage 2 and 4.

Figure 3.10: Evaluate phase of stage 1 and 3.

30

Figure 3.11: Evaluate phase of stage 2 and 4.

Figure 3.12: Evaluate phase of stage 1 and 3.

31

3.3 Pipeline-Controlled Self-Resetting Stage Logic

In pipeline-controlled self-resetting stage logic (P-SRSL), synchronization occurs

between the last stage and any other stage in the pipeline. Similarly to S-SRSL, each

stage is ready to absorb inputs when it enters the reset phase and produce an output when

it enters its evaluate phase. As a result, data transfer occurs between two neighboring

stages when the left stage is in the evaluate phase while the right stage is in the reset

phase. Figure 3.13 shows the interconnection structure of a four-stage S-SRSL pipeline

where each stage contains a combinational and a reset network. In addition to the two

networks, each pair of stages is separated by a latch whose enable port is tied to the

output of an AND gate. This AND gates has two inputs where the first is tied to the

phase line of the last stage while the second is tied to the phase line of the stage located

on the left side of the latch. Note that the right input of the AND gate is inverted in some

while it is not in others.

Figure 3.13: Four-stage P-SRSL pipeline.

32

Definition 3.1: A pipeline stage is said to be of type A if the phase signal of the last stage

is inverted when it reaches the AND gate controlling the latch of the stage.

Definition 3.2: A pipeline stage is said to be of type B if the phase signal of the last stage

is not inverted when it reaches the AND gate controlling the latch of the stage.

Based on these two definitions, stage 1 and 3 are of type B while stage 2 and 4 are of type

A in Figure 3.13. Stages of the same type oscillate in the same phase while stages of

opposite types oscillate in opposite phases. When the last stage enters its reset phase,

every stage of type B starts its own evaluate phase while every stage of type A starts its

own reset phase. As soon as the last stage transitions to its evaluate phase, all the stages

switch phase. During the reset phase of a stage of type A, the stage’s left latch is enabled

while the stage’s right latch is disabled. Both latches are driven by the reset phase of the

last stage in the pipeline. The latter latch will be enabled only when the stage switches

phase, which occurs when the last stage enters its evaluate phase. At any cycle, every

other stage will be in the reset phase while the remaining stages will be in the evaluate

phase. A cycle later, the stages that were in the reset phase start their evaluate phases

while the stages that were in the evaluate phase start their reset phases. Similarly to the

S-SRSL pipeline, the P-SRSL pipeline requires that all stages in the pipeline have equal

cycles to guarantee correct data flow. The STG for the four-stage P-SRSL pipeline

shown in Figure 3.13 is shown in Figure 3.14. This STG shows that the rising transition

of L3 occurs after O2 and O4 experience both rising transitions. This means that latch 3 is

enabled when both stages 2 and 4 are in the evaluate phase. However when O4

33

experiences a rising transition, L2 and L4 experience falling transitions. This shows that

when latch 3 is enabled, latch 2 and 4 are disabled. Figure 4.3 shows how the stages

alternate between phases as data flows across the pipeline by representing asserted and

de-asserted signals as solid and dashed lines respectively.

Figure 3.14: STG of the four-stage P-SRSL pipeline shown in Figure 3.13.

Figure 3.15 through Figure 3.20 show how the stages alternate between phases as data

flows across the pipeline by depicting two execution cycles of a four-stage P-SRSL

pipeline. The asserted and de-asserted signals are represented as solid and dashed lines

respectively.

34

Figure 3.15: Assertion of the stage reset signals.

Figure 3.16: Reset phase of all stages.

35

Figure 3.17: Evaluate phase of all stages.

Figure 3.18: Evaluate phase of stage 3 and 1.

36

Figure 3.19: Evaluate phase of stage 4 and 2.

Figure 3.20: Evaluate phase of Stage 1 and 3.

3.4 Delay-Tolerant Self-Resetting Stage Logic

Whereas correct operation rests on stage having equal cycles in the S-SRSL and P-SRSL

pipelines, this requirement is completely unnecessary in delay-tolerant self-resetting stage

37

logic (D-SRSL) pipelines. In fact, stages can have arbitrary delays without affecting the

correct data flow across the pipeline. Hence, the delay-tolerant property of these

pipelines as implied by their name. In this approach, stages communicate with each other

through their respective phases. Figure 3.21 shows a four-stage D-SRSL pipeline.

Figure 3.21: Four-stage D-SRSL pipeline.

3.4.1 Pipeline Structure

In D-SRSL pipelines, the latches are controlled by a latch control (LC) block. The phase

oscillation of each stage is indicated by the signal φ as shown in Figure 3.21. A stage is

ready to take in new inputs when it is in the reset phase while it produces outputs when it

is the evaluate phase. The evaluation of the incoming inputs is performed by a

combinational network (CN) embedded within the stage. The control of this phase

oscillation is performed by a phase control (PC) block, which can be reset at any moment

by the reset signal R. In each stage, the CN is completely decoupled from the PC block,

38

and can have an arbitrary delay. Similarly to S-SRSL and P-SRSL pipelines, data flows

from one stage to another when the first stage is in the evaluate phase while the second

stage is in the reset phase.

Figure 3.22 shows the STG of the D-SRSL linear pipeline shown in Figure 3.21.

Although the (Clr) signal in Figure 3.22 is not shown in Figure 3.21, its function within

the LC block is described in the coming few paragraphs. The STG shows that the rising

transition of L3 occurs after both φ2 and φ3 experience a rising and falling transition

respectively. This means that latch 3 is enabled only when stage 2 is in the evaluate

phase while stage 3 is in the reset phase. Since L3 is asserted while stage 3 is in the reset

phase, this guarantees that latch 4 will not be enabled until φ3 experiences a rising

transition.

Figure 3.22: STG of the D-SRSL pipeline.

39

3.4.2 Phase Control Block

Figure 3.23 shows that the PC block receives three inputs: (i) the reset signal, R, which

resets the PC block output to 0, (ii) Li which is the latch enable of the left latch of stage i,

and (iii) Li+1, which is the latch enable of the right stage i+1. In turn, it produces an

output, φi, which is the phase signal of stage i.

Figure 3.23: PC block.

To illustrate the behavior of the PC block, Figure 3.24 shows its state graph which

consists of two states: (i) the reset state, SR, in which the phase signal becomes 0, and (ii)

the evaluate state, SV, in which the phase signal becomes 1. As shown in Figure 3.24, the

PC block enters the reset state after the reset signal is de-asserted. In this state, φi is de-

asserted, which indicates that the stage is in the reset phase. The PC block remains in this

state as long as R and Li are de-asserted while Li+1 is asserted. Once Li+1 is de-asserted

while Li becomes asserted, the PC block transitions to the evaluate state in which φi is

asserted. This means that the stage is in the evaluate phase. As long as Li+1 remains de-

asserted, the PC block remains in the evaluate state until Li+1 become both asserted, in

which case the PC block returns to the reset state. As φi switches back and forth, a stage

40

can oscillate between a reset and evaluate phase in a single execution cycle. Given this

oscillation, a stage is ready to absorb inputs when it is in the reset phase.

Figure 3.24: State graph of the PC block.

While the inputs are traveling along the critical path of the CN, φi is similarly traveling

along a path that is extended by a delay equal to the critical path delay in the CN. This

extended delay is implemented by a buffer which delays the reset phase long enough to

allow CN outputs to stabilize. Based on this oscillation, a PC block can be embedded in

a pipeline stage forcing the stage to oscillate between two phases. This oscillation can be

used to synchronize data transfer between neighboring stages in a D-SRSL pipeline.

3.4.3 Latch Control Block

Figure 3.25 shows the block diagram of the LC block. This block has three inputs, φi and

φi-1, which are the phases of the current and previous stages respectively, and the reset (R)

signal. In addition, it has one output Li, as defined above, which feeds back into the clear

port (Clr) of the LC block. Li is the enable signal of the latch between stage i and its

predecessor stage i-1.

41

Figure 3.25: LC block.

To show the behavior of the LC block, Figure 3.26 shows its state graph which consist of

two states, namely the enabled state SE, and the disabled state SD. When the reset signal

is asserted, the LC block enters the disabled state in which Li gets de-asserted. As long as

φi-1 is de-asserted while φi is asserted, the block remains in the disabled state. The LC

block waits until φi-1 gets asserted while φi becomes de-asserted to transition to the

enabled state. In this state, Li gets asserted in order to allow the latch of stage i to capture

the incoming data from stage i-1. After a delay, sufficiently long to allow the data to go

through the latch, has elapsed, the LC block returns automatically to the disabled state,

thus disabling the latch.

Figure 3.26: State graph of the LC block.

42

3.5 Summary

This chapter introduces SRSL and shows how this technique can be used to establish

handshake signaling between two specific stages in a clockless pipeline. SRSL is used as

a foundation to propose three different pipelining techniques: (i) S-SRSL pipelines in

which synchronization takes place between two neighboring stages using a fine grain

approach, (ii) P-SRSL pipelines in which the oscillation of the pipeline stages are driven

by the oscillation of the last stage in the pipeline, and (iii) D-SRSL pipelines where

synchronization occurs between each pair of neighboring stages using a coarse-grain

approach. While S-SRSL and P-SRSL pipelines require that the stages display equal

cycles in the pipeline, D-SRSL can handle individual pipeline stages with arbitrary

delays. Although this chapter presents only the linear variants of these three pipelines,

the examination of their non-linear variants and the presentation of a detailed timing

analysis for each pipeline is presented in [16].

43

CHAPTER FOUR: SYNTHESIS OF SRSL PIPELINES

This chapter presents a specific SRSL design methodology in section 4.1 while section

4.2 presents the synthesis of SRSL pipelines. This design methodology has been

formulated in [16]. Section 4.3 reviews the preliminary concepts used to formulate the

synthesis of the SRSL pipeline synthesis problem. The modeling and the formulation of

this problem is presented in section 4.4 while section 4.5 explains the proposed heuristic

solution.

4.1 SRSL Pipeline Design Methodology

In order to leverage the investment spent on current commercial design tools used in

clocked logic, it would make sense to adopt the same design methodology and flow

supported by these tools to synthesize SRSL pipelines as argued in [16]. Figure 4.1

proposes the adopted design flow for SRSL logic. In the figure, a parser extracts the

clocked gate netlist in order to build a Boolean graph. Next, an SRSL pipeline synthesizer

partitions the graph into stages and inserts the latches and the reset network of each stage

in appropriate places inside the graph without violating performance constraints. At the

end, the synthesizer produces an SRSL pipeline represented as a gate netlist. The SRSL

gate netlist can be simulated with any commercial simulator. It can also be mapped onto a

standard cell library using any commercial technology mapper in order to produce a cell

netlist. The latter can be placed and routed using conventional physical synthesis tools by

propagating the same performance constraints used in high level synthesis to the physical

synthesis tools.

44

Figure 4.1: SRSL design flow.

45

4.2 Synthesis of SRSL Pipelines

The synthesis of SRSL pipelines consist of transforming a clocked gate netlist into an

SRSL pipeline characterized by a data rate and an area cost. Note that by area cost, it is

meant the gate area needed to support an SRSL pipeline structure. This gate area consists

primarily of (i) latches located between pipeline stages, and (ii) delay elements needed

for the reset network of each stage. As such, this synthesis requires (i) the availability of

specific gate resources, and (ii) the specification of performance constraints. The gate

resources consist of primitive combinational gates, latches, and delay elements. Each

resource is characterized by a function, area, and delay attributes. On the other hand,

performance constraints can be area or timing constraints. The former refers to a

specified upper limit on gate area needed to convert a gate netlist into an SRSL pipeline

while the latter refers to a specified lower limit on data rates that can be achieved by

converting a gate netlist into an SRSL pipeline.

To transform a gate netlist into an SRSL pipeline, three problems emerge:

Problem 1 (P1): Given a gate netlist and a data rate, transform the gate netlist into an

SRSL pipeline by incurring the smallest area cost. P1 can be called the data rate

constrained minimum area SRSL pipelining problem.

46

Problem 2 (P2): Given a gate netlist and an area cost, transform the gate netlist into an

SRSL pipeline by achieving the highest data rate. P2 can be called the area constrained

maximum data rate SRSL pipelining problem.

Problem 3 (P3): Given a gate netlist, transform the netlist into an SRSL pipeline with the

smallest area cost and the highest data rate. P3 can be called the unconstrained maximum

data rate minimum area SRSL pipelining problem.

Based on their formulations, both P1 and P2 are dual problems. From a practical

perspective, P1 is more relevant to designers than P2 and P3.

4.3 Preliminaries

In order to transform a gate netlist into an SRSL pipeline, a gate netlist is abstracted into

an algebraic representation suitable for computation.

Definition 4.1: An incidence structure consists of a set of modules, a set of nets, and an

incidence relation among modules and nets [28].

For instance, an incidence structure can be specified by representing each module with its

terminals, also called pins or ports, and to describe the incidence among nets and pins.

The incidence relationship can be represented by a matrix.

47

Definition 4.2: A Boolean network is an incidence structure where:

• Each module performs a Boolean function.

• Each module has multiple inputs and a single output.

• Pins are partitioned into input and output pins.

• Pins that do not belong to modules are primary inputs and primary outputs.

• Each net has a terminal, called source and an orientation from the source to the other

terminals, called sinks.

• The source of a net can be either a primary input or the output of a module.

• The sink of a net can be either a module input or a primary output.

• The relation induced by the nets on the module is a partial order [28].

Figure 4.2 shows a Boolean network with 10 primary inputs, 10 modules, and four

primary outputs [28].

Figure 4.2: Example of a Boolean network.

48

Boolean networks can be represented in abstract algebraic structures such as graphs.

Definition 4.3: A graph G(V, E) is a pair (V, E) where V is a set and E is a binary relation

on V.

Two vertices in V are neighbors or adjacent if they are connected by an edge in E. In this

thesis, only finite graphs are considered, meaning graphs with finite sets V. The elements

of V are vertices while the elements of E are edges.

Definition 4.4: A directed graph is graph G(V, E) where E is a set of ordered pairs of

vertices.

In a directed graph, if two vertices, vi and vj, are adjacent, meaning (vi, vj) ∈ E, the

predecessor is the vertex located at the tail of the edge, namely vi, while the successor is

the vertex located at the head of the same edge, namely vj. In contrast, the edges are

unordered pairs in an undirected graph.

Definition 4.5: A path from vertex v to w in a graph G(V, E) is a sequence of edges v0v1,

v1v2, …, vk-1vk, such that v = v0 and vk = w. The length of the path is k.

49

Such a path can also be represented as an ordered (k+1)-tuple: π = (v0, v1, v2, …, vk). In

directed graphs, paths follow the direction of the edges.

Definition 4.6: A cycle in a directed graph is a nonempty path such that the first vertex

and the last vertex are identical.

Definition 4.7: A graph is acyclic if it has no cycles.

Definition 4.8: A Boolean graph G(V, E) is a directed graph where:

• The vertex set V is a one-to-one correspondence with the primary inputs, modules, and

 primary outputs of a Boolean network.

• The directed edge set E represents the decomposition of the multi-terminal nets of the

 Boolean network into two-terminal nets.

Figure 4.3 shows a Boolean graph based on the Boolean network of Figure 4.2. Note that

the Boolean graph is acyclic since the nets induce a partial order on the modules.

50

Figure 4.3: Boolean graph of the Boolean network shown in Figure 4.2.

The modules of a Boolean network can be mapped to Boolean gates. In this case, its

resulting Boolean graph is a mapped or bound Boolean graph. The gate netlist produced

by the compiler is a mapped Boolean network. Before it is transformed into an SRSL

pipeline, it is translated into a Boolean graph.

4.4 Analytical Formulation of the Pipelining Problem

It is assumed that a clocked gate netlist is specified by a mapped Boolean graph which is

subject to a set of constraints. In addition, it is assumed that the function, area, and delay

of each gate representing each vertex in the Boolean graph G(V, E) are known. The

constraints can be either data rates or area costs. Transforming a gate netlist into an SRSL

pipeline is equivalent to partitioning the Boolean graph of the gate netlist into partitions

51

and assigning each partition to a distinct pipeline stage. Let S = {s1, s2, …, s|S|} be the set

of pipeline stages where the size of this set, |S|, is some positive integer. Let V = {vi ; i =

1, 2, …, |V|} and E = {(vi, vj) ; i, j = 1, 2, …, |E|}.

Definition 4.9: A pipelining of a Boolean graph is a function :V Zϕ +→ where

()iv skϕ = denotes the gate assignment to a stage such

that .

ks S∈

() () (), ,i j i jv v v vϕ ϕ≤ ∀ ∈E

Since each vertex in V has a delay, D = {di; i = 1, 2, …, |V|}. It is assumed that there are

no delays on edges in E beside the delays on the vertices in V. Adding delays to the edges

will not disturb the modeling of the synthesis problem; in fact, it will improve the quality

of its solution. Obviously, such a graph, in which a delay is attributed to each vertex, will

have a critical path.

Definition 4.10: The delay of a path p in a graph G, denoted by dp, is the sum of the

delays of the vertices in p, i.e.,
: i

p i
i v p

d d
∈

= ∑ .

Definition 4.11: Let Π be the set of all paths in a Boolean graph G(V, E). A critical path

in G is a path π whose delay is the largest path delay in Π, i.e., { }max :pd d pπ = ∈Π .

52

In P1, a data rate f is given and the objective is to minimize the area cost incurred by

partitioning the Boolean graph into stage partitions. The period P of a single stage can be

obtained from f as 1P
f

= . Surely, there is a critical path π in the Boolean graph G whose

delay is dπ. An upper bound on the number of stages in the pipeline, called maximum

pipeline depth, can be obtained from P and dπ. If |S| is the cardinality of S, the maximum

pipeline depth is dS
P
π

π
⎡ ⎤= = d f⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥

. Moreover, |S| can be refined further by using an

alternative upper bound if the synthesized pipeline is an S-SRSL pipeline as discussed in

[16]. In this case, ()1
1min , 1

2
d PS d
P
π

δ
+⎧ ⎫

L⎢ ⎥⎡ ⎤ ⎛= + −⎨ ⎬⎜
⎞
⎟⎢ ⎥⎢ ⎥ ⎝ ⎠⎢ ⎥ ⎣ ⎦⎩ ⎭

 based on [16].

Definition 4.12: A binary variable xi,s is associated with each vertex vi in V of G(V, E)

where:

(i) xi,s = 1 iff the gate i, represented by vi, is assigned to stage s

(ii) xi,s = 0 otherwise.

In order to realize a correct partitioning, it is imperative that each vertex in the Boolean

graph be assigned to a single stage. This requirement is the foundation for a set of

constraints called assignment constraints:

(),
1

1, 1, 2, ..., 4.1
S

i s
s

x i V
=

= =∑

53

There are V such constraints in the problem. It also imperative to observe the condition

stated in Definition 4.9, namely that the successor of a vertex should be assigned to (i) the

same stage as its predecessor, or (ii) a stage located after the stage of its predecessor. This

requirement is the foundation for a set of constraints called precedence constraints:

() (), ,
1 1

, , 4.2
S S

i s j s i j
s s

sx sx v v E
= =

≤ ∀ ∈∑ ∑

These constraints can be rewritten as:

() (), ,
1 1

0, , 4.3
S S

j s i s i j
s s

sx sx v v E
= =

− ≥ ∀ ∈∑ ∑

There are E such constraints in the problem. Since P can be obtained from the given data

rate, it is important that the delay through each stage does not exceed P:

(),
:

, 1, 2, ..., 4.4
i

i i s
i v

d x p s S
π∈

≤ =∑

There are S such constraints in the problem. By partitioning the Boolean graph into

stages, segments of the critical path, or subpaths, are assigned to different stages. The

delay on these subpaths determines primarily the period of the stage in which they are

included. Constraint (4.4) can be rewritten as an equality if a balanced pipeline is desired.

A balanced pipelined is a pipeline in which all the stages have the same period, i.e.,

, 1, 2, ..., iP P i S= = . Balancing a pipeline is relevant only when synthesizing S-SRSL

and P-SRSL pipelines. The partitioning of the gate netlist into stages requires the

insertion of (i) latches to separate neighboring stages, and (ii) delay elements to realize

the reset network of each pipeline stage. In general, the number of latches inserted

between two adjacent vertices, (vi, vj) ∈ E, depend on the stages, sk and sl ∈ S, to which

54

both vertices are assigned respectively. Two cases are possible based on the precedence

constraints (4.2):

(i) k = l: This means that both stages represent the same stage. In this case, vi and

vj are assigned to the same stage.

(ii) k ≠ l: This means that both stages are different. In this case, vi and vj are

assigned to distinct stages. However, there is no indication that both stages, sk

and sl are neighbors.

In fact, it is possible that two adjacent vertices may be assigned to two non-neighboring

stages. For example, if vi is assigned to stage 3 and vj is assigned to stage 7, the edge

between the two vertices has to cross the latches of stage 3, 4, 6, and 7, which may

require the insertion of four latches to accommodate this case.

Definition 4.13: If two adjacent vertices, (vi, vj) ∈ E, are assigned to stages sk and sl ∈ S

respectively, the pipeline distance between vi and vj, denoted by δi,j, is ,i j l kδ = − .

Depending on the bit width of the combinational network in a given stage, latches of

different bit widths can be used to separate a stage from its neighbor. It would make

sense to quantify the area of the inter-stage latches by multiplying the area of a single-bit

latch by the number of output bit lines crossing from stage to stage. These lines

correspond to edges in the Boolean graph. Assume that al is the area of a single-bit latch.

If n bit lines are crossing from a stage to another, n latches are needed adding up to an

55

area of nal. Using the definition of pipeline distance, the number of 1-bit latches between

two adjacent vertices can be determined as:

() (), , ,
1 1

, , 4.5
S S

i j j s i s i j
s s

sx sx v v Eδ
= =

= − ∈∑ ∑

If applied to a single edge, (4.5) is similar to the left-hand side of (4.3). The latch area

needed to support the stages between vi and vj is ,i j laδ . By considering all the edges in

the Boolean graph, the total latch area needed in an entire pipeline can be determined as

follows:

()
()

, ,
1 1,

4.6
i j

S S

l j s i s
s sv v E

a sx sx
= =∀ ∈

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑

Beside the insertion of latches, the insertion of delay elements is also needed to realize

the reset network of a stage. These delay elements can be inverters, buffers, or gates.

Since the role of the matching delay of a reset network in SRSL is to provide a delay

equal to the delay of the critical path of the combinational network, it would make sense

to use gates as delay elements to realize the matching delay of the reset network. In fact,

the critical path of the combinational network can be merely duplicated and the obtained

copy can be used as a matching delay in the reset network. In this case, the area of the

matching delay to be inserted in the reset network of a stage can be determined by

obtaining the area of the critical path of the combinational network in the stage. Since

each vertex in V has an area, A = {ai; i = 1, 2, …, |V|}. If the area of the matching delay of

a stage s is as, then:

56

(),
:

, 1, 2, ..., 4.7
i

s i i s
i v

a a x s S
π∈

= =∑

By considering all the stages in the pipeline, the total area of matching delays can be

determined as:

(),
1 :

 4.8
i

S

i i s
s i v

a x
π= ∈

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑

By summing the total area needed for latches shown in (4.6), and matching delays shown

in (4.8), the minimization of the area cost can be expressed as the following objective

function:

()
(), , ,

1 1 1 :,

min 4.9
ii j

S S S

l j s i s i i s
s s s i vv v E

a sx sx a x
π= = = ∈∀ ∈

⎛ ⎞ ⎛ ⎞
− +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∑ ∑ ∑ ∑ ∑

In summary, P1 can be formulated as the following integer programming (IP) problem

[29]:

()
(), , ,

1 1 1 :,

min 4.9
ii j

S S S

l j s i s i i s
s s s i vv v E

a sx sx a x
π= = = ∈∀ ∈

⎛ ⎞ ⎛ ⎞
− +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∑ ∑ ∑ ∑ ∑

(),
1

1, 1, 2, ..., 4.1
S

i s
s

x i V
=

= =∑

() (), ,
1 1

0, , 4.3
S S

j s i s i j
s s

sx sx v v E
= =

− ≥ ∀ ∈∑ ∑

(),
:

, 1, 2, ..., 4.4
i

i i s
i v

d x p s S
π∈

≤ =∑

57

4.5 Heuristic SRSL Pipelining

Although it is possible to solve P1 using standard combinatorial approaches suitable for

general IPs, using such methods may not be efficient due to the size of P1’s IP

formulation in some cases [29, 30]. For example the IP formulation of C6822 circuit,

which is an ISCAS benchmark circuit consisting of 6,656 gates and a 245-gate long

critical path, can generate 6,656 constraints (4.1), 9,082 constraints (4.2), and 245

constraints (4.3). In total, the matrix of the IP has 15,983 rows and 245 columns. As a

result, a two-phase efficient heuristic solution is proposed to obtain the solution of P1

instead. The first phase is a stage-assignment algorithm which assigns each gate to a

single stage by partitioning the Boolean graph of the gate netlist into subgraphs that meet

specific timing constraints. On the other hand, the second phase is a vertex-shuffling

algorithm which minimizes the area occupied by inter-stage latches through the shuffling

of nearby vertices from the Boolean graph between adjacent stages without violating

timing constraints.

4.5.1 Stage Assignment Phase

This section explains the graph-theoretic approach behind the stage assignment

performed in phase I. This explanation is followed by a presentation of the algorithm

used in phase I.

58

4.5.1.1 Phase I Approach

In order to pipeline the gate netlist, the Boolean graph of the netlist has to be partitioned

into subgraphs whose critical path delays do not exceed a pre-defined value. Each

subgraph represents a subnetlist that is assigned to a distinct pipeline stage. Assume that

the Boolean graph G(V, E) can be partitioned into n partitions or subgraphs where

. In order to construct an operationally correct

pipeline, the pipeline stages have to be connected through proper insertion of latches

between the stages and duplication of the critical path in each stage. This is equivalent to

inserting vertices to represent inserted pipeline latches and duplicated critical paths. In

fact, the pipeline distance δ between two adjacent vertices in G(V, E) determines the

number of latches that needs to be inserted. The edge connecting these two adjacent

vertices in E has to be broken in δ edges to accommodate the insertion of δ vertices

whereby each vertex represents a latch. The resulting graph is an augmented graph G’(V’,

E’) where . The objective is to add as few vertices

as possible in order to realize the smallest area cost possible. For each partition, its

critical path delay is determined and a delay block matching the partition’s critical path

delay is inserted at the appropriate places in the partition. In addition, for each edge

crossing one or more partition in the partitioned graph, the pipeline distance δ is

computed and δ vertices representing latches are inserted in the appropriate places in the

partitioned graph. The final graph G’(V’, E’) represents the Boolean graph of the pipeline

gate netlist with inserted latches and matching delays. The following heuristic procedure

1 1 1

 such that and
n

i
i

n n

i
i i

G G V V E
= = =

= = =U U iEU

⊆' such that ' and 'G G V V E E⊆ ⊆

59

can be used to an initial assignment of every gate in the gate netlist to a given pipeline

stage:

4.5.1.2 Phase I Algorithm

The pseudocode of the graph partitioning algorithm is as follows:

Input: G(V, E)
 D = {di ; i = 1, 2, …, |V|}
 A = {ai ; i = 1, 2, …, |V|}
 f
Output: Partitioned graph G’(V’, E’)

1. Let
1

P
f

= ;

2. While there are unassigned vertices in V
3. Select a vertex v in V whose predecessors are all assigned to
 the current or previous partition;
4. Get the critical path of the vertices within the current
 partition including v;
5. If the delay of the critical path is less than or equal to P
6. Assign v to the current partition;
7. Else
8. Add another partition;
 Assign v to the newly added partition;
9. Endif
10. Endwhile

In line 1, the stage delay is obtained. The algorithm starts with partition 1 which does not

contain any vertices at this point. Line 2 shows a loop which looks for vertices in V which

have not been assigned to any partition. Line 3 shows that the first step in assigning a

vertex from V to the vertex set of the current partition is to select a vertex whose

predecessors have been already assigned to the vertex set of the current or previous

partition. This heuristic rule is based on the as-soon-as-possible scheduling strategy [31].

Next, the critical path of the Boolean graph including vertex v is obtained in line 4. In

60

line 5 through 9, the algorithm checks if the critical path of the Boolean graph obtained in

line 4 is less than or equal to the period of the partition. If the check result is true the

selected vertex is added to the vertex set of the current partition. Otherwise, a new graph

partition is created to which the selected vertex is subsequently added. The algorithm

repeats the line 3 through 9 until there is no unassigned vertices in V. At the end, each

vertex in V is assigned to a distinct vertex set Vi which belongs to a subgraph Gi (Vi, Ei)

as defined above.

4.5.2 Vertex Shuffling Phase

This section explains the graph-theoretic approach behind the vertex shuffling performed

in phase II. This explanation is followed by a presentation of the algorithm used in phase

II. Finally, a step-by-step of the trace of the proposed algorithm on a sample partitioned

graph is presented for purpose of illustration.

4.5.2.1 Phase II Approach

The input to phase II is the augmented partitioned graph G’(V’, E’) where each partition

represents the portion of the gate netlist embedded in a single pipeline stage. Thus, the

number of partitions in the graph represents the number of stages in the pipeline. Every

edge that crosses from a partition to another represents a single 1-bit latch in the pipeline.

Because latches tend to occupy a significant portion of the overall area of the pipeline, it

makes sense to invest additional effort in minimizing the number of latches used in the

pipeline. As a result, the objective of phase II is to minimize the number of edges

61

crossing each inter-partition boundary in G’(V’, E’). Note that each inter-partition

boundary in G’(V’, E’) represents the set of latches separating two adjacent stages in the

pipeline corresponding to the two adjacent partitions in G’(V’, E’). Figure 4.4 shows two

adjacent partitions where the left partition contains vertices labeled 1 through 10 while

the right partition contains vertices labeled 11 through 17.

Figure 4.4: Latch placement two Boolean graph partitions.

Definition 4.14: Let u be a vertex in the left partition GL(VL, EL), i.e. u ∈ VL. u is called a

left cut vertex if it does not have any successors in the left partition, i.e.,

∃ (): and ,L Lv v V u v E∈ ∈ .

For example, vertices 6, 7, 8, 9, and 10 in Figure 4.4 are all left cut vertices.

62

Definition 4.15: Let GL (VL, EL) be the left partition. A subset CL of VL, i.e., CL ⊆ VL, is

called a left cut vertex set if every vertex in CL is a left cut vertex, i.e.,

, Lu C∀ ∈ ∃ (): and ,L Lv v V u v E∈ ∈ .

Since vertices 6, 7, 8, 9, and 10 in Figure 4.4 are all left cut vertices, they make up a left

cut vertex set.

Definition 4.16: Let w be a vertex in the right partition GR(VR, ER), i.e. w ∈ VR. w is

called a right cut vertex if it does not have any predecessors in the right partition, i.e.,

∃ (): and ,R Rv v V v w E∈ ∈ .

For example, vertices 11, 12, 13, and 14 in Figure 4.4 are all right cut vertices.

Definition 4.17: Let GR (VR, ER) be the right partition. A subset CR of VR, i.e., CR ⊆ VR, is

called a right cut vertex set if every vertex in CR is a right cut vertex, i.e.,

, Rv C∀ ∈ ∃ (): and ,R Rw w V v w E∈ ∈ .

Since vertices 11, 12, 13, and 14 in Figure 4.4 are all right cut vertices, they make up a

right cut vertex set.

63

Definition 4.18: Let CL and CR be the left and right cut vertex sets respectively. The set

Cv, called the cut vertex set, is the union of the left and right cut vertex sets, i.e.,

. v LC C C= ∪ R

While the set of vertices 6, 7, 8, 9, and 10 in Figure 4.4 make up the left cut vertex set,

the set of vertices 11, 12, 13, and 14 make up the right cut vertex set. The union of these

two sets, namely vertices 6, 7, 8, 9, 10, 11, 12, 13, and 14 makes up a cut vertex set.

Definition 4.19: Let edge e = (u, v) ∈ E’ in the initial partitioned graph G’(V’, E’). e is

called a cut edge if u is a vertex in CL and v is a vertex in CR, i.e.,

(), ' and and L Ru v E u C v C∈ ∈ ∈ .

For example, the edge between vertex 6 and 11 in Figure 4.4 is a cut edge.

Definition 4.20: Let CL and CR be the left and right cut vertex sets respectively. A set Ce

is called a cut edge set if every edge in Ce is a cut edge, i.e.,

. () (), , , ' and and e Lu v C u v E u C v C∀ ∈ ∈ ∈ ∈ R

In Figure 4.4, the set of edges between vertices 6 and 11, 7 and 11, 8 and 12, 8 and 13, 9

and 12, 9 and 13, 10 and 13, and 10 and 14 make up the cut edge set.

64

Definition 4.21: Let edge e = (u, v) ∈ E’ in the initial partitioned graph G’(V’, E’). e is

called an internal edge if e is not a cut edge, i.e.,

() () (), ' and , and ,L Ru v E u v C u v C∈ ∉ ∉ .

For example, the edges between vertices 1 and 6, 2 and 6, 11 and 15, and 12 and 15 are

all internal edges in Figure 4.4. Consider a vertex v in the initial partitioned graph G’(V’,

E’). It is possible that a number of internal edges may be incident to v. In this case, let

I(v) denote the set of these internal edges. It is also possible that a number of cut edges

may be incident to v. Let C(v) denotes the set of these cut edges. Note that, depending on

where v is located in G’(V’, E’), it is possible that I(v) = ∅ or C(v) = ∅. The proposed

vertex shuffling algorithm uses a gain function to guide how it shuffles cut vertices from

one partition to another.

Definition 4.22: Let v be a cut vertex in a partition H(VH, EH) where H can be a left or

right partition, i.e., v ∈ VH. The gain function of v, denoted as g(v), is the difference

between the sizes of the set of cut edges and the set of internal edges of all the edges

incident to v, i.e., () () ()g v C v I v= − .

Given that no matter how many edges are connected to the output of any vertex, only one

latch is needed to latch its signal. Consequently, it is always the case that C(vi) = 1 for

the vertices in the left cut vertex set, while it is always the case that I(vi) = 1 , and for the

vertices in the right cut vertex set. Based on this observation, vertex 6 in Figure 4.4 has

65

two internal edges and one cut edge. Its gain is () () ()6 6 6 1 2 1g v C v I v= − = − = − . On

the other hand, since vertex 12 has three internal that can be latched by only one latch and

two cut edges, its gain is () () ()12 12 12 2 1 1g v C v I v= − = − = .

The ultimate objective of the vertex shuffling algorithm is to minimize the number of cut

edges. After shuffling a number of cut vertices, the algorithm evaluates the overall cost

of these shuffling moves by using a move cost function. This move function is based on

the size of the cut edge set and resembles closely the move function proposed in [32].

Note that after a cut vertex is moved from one partition to another, its predecessors and

successors in G’(V’, E’) will have to be added or removed from a given cut vertex set

depending on which cut vertex set contains the moved vertex.

Definition 4.23: Let v be a left cut vertex (i.e., v ∈ CL). If v is moved to the right cut

vertex set (i.e., CL = CL – {v} and CR = CR ∪ {v}), (i) each predecessor of v in G’(V’, E’)

must be added to the left cut vertex set (i.e., {u | u ∈ V’ and (u, v) ∈ E’} ∪ CL), and (ii)

each successor of v in G’(V’, E’) must be removed from the right cut vertex set (i.e., {w |

w ∈ V’ and (v, w) ∈ E’} – CR). The set of these moves is called the set of induced moves

by v.

In Figure 4.4, if vertex 6 is moved to the right cut vertex set, (i) all its predecessors,

namely vertices 1 and 2, must be added to the left cut vertex set, and (ii) its sole

successor, namely vertex 11, must be removed from the right cut vertex set. These three

66

moves make up the set of induced moves by vertex 6. The effect of these moves leaves

the left cut vertex set consisting of vertices 1, 2, 7, 8, 9, and 10, while the right cut vertex

set consisting of vertices 6, 12, 13, and 14.

Definition 4.24: Let v be a right cut vertex (i.e., v ∈ CR). If v is moved to the left cut

vertex set, (i) each successor of v in G’(V’, E’) must be added to the right cut vertex set

(i.e., {w | w ∈ V’ and (v, w) ∈ E’} ∪ CR), and (ii) each predecessor of v in G’(V’, E’)

must be removed from the left cut vertex set (i.e., {u | u ∈ V’ and (u, v) ∈ E’} – CL). The

set of these moves is called the set of induced moves by v.

In Figure 4.4, if vertex 11 is moved to the left cut vertex set, (i) its sole successor, namely

vertex 15, must be added to the right cut vertex set, and (ii) all its predecessors, namely

vertices 6 and 7, must be removed from the left cut vertex set. These three moves make

up the set of induced moves by vertex 7. The effect of these moves leaves the left cut

vertex set consisting of vertices 8, 9, 10, and 11, while the right cut vertex set consisting

of vertices 12, 13, 14, and 15.

Definition 4.25: Assume that the shuffling algorithm is on the point of moving a cut

vertex v from one partition to another. The cost function of this move, denoted by m(v),

is the size of the left cut vertex set if this move and the set of induced moves by v are

completed, i.e., () Lm v C= .

67

Since moving vertex 6 in Figure 4.4 leaves the left cut vertex set consisting of vertices 1,

2, 7, 8, 9, and 10 after the set of its induced moves is completed,

() { }6 1, 2, 7, 8, 9, 10 6Lm v C= = = . Note that the number of latches between the two

pipeline stages represented by the two partitions shown in Figure 4.4 is equal to the size

of the left vertex cut set.

4.5.2.2 Phase II Algorithm

The pseudocode of the vertex shuffling algorithm is as follows:

Input: G’(V’, E’) SRSL pipelined graph that meets p
 D = {di ; i = 1, 2, …, |V|}
 A = {ai ; i = 1, 2, …, |V|}

Output: Partitioned graph G’’(V’’, E’’) with minimum cost function
 between each pair of partitions.

1. For every pair of adjacent partitions in G’(V’, E’)
2. While the minimum move cost function in the current pass is less
 than the minimum move cost function in the previous pass
3. While there are unmarked vertices in the left and right cut
 vertex sets
4. For every unmarked vertex in this cut vertex set
5. Compute its gain function;
6. Endfor
7. Get the vertex with the next highest gain function and
 whose delay does not violate the period constraint in
 its opposite partition;
8. Compute the move cost function of this vertex;
9. Mark this vertex and insert it into a queue;
10. Endwhile
11. For every cut vertex in the queue starting from the first
 vertex to the vertex with the minimum move cost function
12. If this vertex is a left cut vertex
13. Move it to the right cut vertex set;
14. Perform the set of its induced moves;
15. Else
16. Move it to the left cut vertex set;
17. Perform the set of its induced moves;
18. Endif
19. Endfor
20. For every cut vertex in the queue starting from the vertex
 following the minimum move cost function vertex to the
 last vertex

68

21. Unmark this vertex;
22. Endfor
23. Endwhile
24. Endfor
25. For each edge in E’’
26. Compute the pipeline distance δ;
27. Add δ vertices to V’’;
28. δ edges to E’’; Add
29. Endfor
30. For each partition in V’’;
31. Get the critical path in the current partition;
32. Duplicate the path and insert it into the current partition;
33. Endfor
34. The final obtained graph is G’’(V’’, E’’);

Line 1 shows that phase II algorithm executes for every pair of adjacent partitions in

G’(V’, E’). A minimum cost function from a given cut vertex, that is selected to be

moved from one partition to another, will be computed in every pass of the procedure,

whereby a pass consists of the pseudocode shown in lines 2 through 23. As long as this

cost functions is less than the cost function computed in the previous pass as shown in

line 2, another pass is executed. In line 3, all the unmarked vertices in the left and right

cut vertex sets will be processed. This processing starts first by computing the gain

function for each vertex in these two sets as shown in lines 4 through 6. Next, the move

cost function of the vertex with the highest gain function is computed as shown in lines 7

and 8, after which the vertex is marked and inserted in a queue as shown in line 9. This

procedure is repeated for every unmarked vertex with the next highest gain function until

there are no more unmarked vertices in the left and cut vertex sets as shown in line 3

through 10. Note that from the current iteration to the next, computing the gain function

of the remaining unmarked vertices assumes that the induced moves by the marked

vertex in the current iteration have been completed. After all unmarked vertices in the

vertex cut set are processed; the queue is searched to find the vertex with the minimum

69

move cost function. As shown in lines 11 through 19, every vertex in the queue, starting

from the vertex in the first entry of the queue until the vertex with the minimum move

cost function in the queue, is moved to the opposite partition followed by the completion

of the set of its induced moves. The remaining vertices in the queue are unmarked as

shown in lines 20 through 22 to be possibly processed in another pass starting from line

2. To give the unmarked vertices an opportunity to reduce the minimum cost function

further, the pseudocode between lines 3 and 22 is re-executed with a different ordering in

picking the vertices to compute their move cost functions. To this end, the vertices are

processed in non-decreasing order of gain function instead of non-increasing order of

gain function as shown in line 7. For simplicity, this pseudocode is omitted from the

pseudocode shown above. After the partitioned graph G’’(V’’, E’’) is obtained, the next

step consists of adding vertices between the partitions to represent latches between

pipeline stages as shown in line 25 through 29. For each edge in E’’ crossing two

neighboring partitions, a vertex is added followed by the addition of an edge to connect

the newly added vertex to its predecessor. This step is followed by a second step in which

the portion of the critical path contained in a partition is duplicated and added to that

partition as shown in line 30 through 33. This duplicated path represents the matching

delay of the reset network which will be attached to the combinational network of the

stage represented by the partition. At the end, the streamlined graph G’’(V’’, E’’) is

obtained as shown in line 34.

70

CHAPTER FIVE: EXPERIMENTAL RESULTS

In this chapter, the experimental results of applying the two phase heuristic to synthesize

P-SRSL and D-SRSL pipelines are presented. For the sake of brevity, S-SRSL pipelines

were omitted for the experiments since they resemble closely P-SRSL pipelines. As a

result, the results obtained from P-SRSL pipelines can be easily extended to S-SRSL

pipelines. Section 5.1 describes the experimental setup to evaluate the synthesis

algorithm while section 5.2 presents the results obtained from the conducted experiments

and their interpretations. Section 5.3 concludes this chapter.

5.1. Experimental Setup

The computing resources used in the experimental setup consist of:

(i) Sun server: This server houses Synopsys software tools, which are used for

synthesis and simulation of the synthesized SRSL pipelines.

(ii) Sun Workstation: A Sun-Blade 1000 is used to run the synthesis and

simulation experiments by pulling netlist files from the server to the

workstation. The simulation runs are performed to verify the functional

correctness of the synthesized SRSL pipelines.

(iii) Dell Personal Computer (PC): This PC is used to transform a gate netlist into

an SRSL pipeline by applying the two-phase heuristic algorithm. This

algorithm has been implemented in a Java tool “SRSL Synthesizer” on this PC.

The executable of this algorithm runs also on this PC.

71

The two-phase heuristic algorithm has been applied on a set of six circuits shown in

Table 5.1. The benchmark circuits were selected to exhibit a variety of depth and breadth

in order to see how these circuits characteristic affect pipeline performance.

Table 5.1: Experimental circuits.

Circuit
Functionality

Gates

Critical Path
Delay
(ps)

C6288 16x16 Multiplier (Largest and deepest) 6656 25355

C7552 34-bit adder and magnitude comparator with input parity
checking (Large and shallowest)

3569 4957

C5135 9-bit ALU (Medium size and shallow) 2332 6026
16_Bit_Multiplier 16x16 Multiplier (Medium size and medium depth) 1456 12658

32_Bit_Adder 32 Bit Adder (Small and deep) 160 18850
16_Bit_Adder 16 Bit Adder (Smallest and medium depth) 80 9380

In Table 5.1, column 1 shows the six circuits where the top three are borrowed from the

ISCAS-85 benchmark suite [33]. Column 2 shows the functionality of each circuit while

column 3 shows the number of gates in the netlist of each circuit. Column 4 shows the

delay on the critical path of each circuit. The step-by-step detailed procedure of the

SRSL Synthesizer’s heuristic algorithm is shown in Figure 5.1 where the gate netlist is

translated into a Boolean graph on which the two-phase heuristic is applied. The

obtained graph is a partitioned graph in which each partition represents a pipeline stage.

The partitions of the graphs are glued with SRSL components such as delay buffers and

latches after which the graph is translated back into a gate netlist. This netlist serves to

generate a synthesis report showing the throughput and area cost of the pipelined gate

netlist.

72

Figure 5.1: Java SRSL Synthesizer’s pipelining procedure of the benchmark circuits.

5.2. P-SRSL Experiments

In order to profile the performance of the P-SRSL pipelines, two sets of experiments

were conducted to evaluate the impact of pipelining on area cost and throughput.

5.2.1. P-SRSL Area Cost

To study the cost of the P-SRSL area, the largest benchmark circuit, namely C6288, was

chosen for experimentation since it can accommodate deeper pipelines. It is meant by the

73

P-SRSL area the area that includes the area of the inter-stage latches, intra-stage delay

buffers, and NOR and AND gates used for synchronization. Figure 5.2 shows the P-

SRSL area as a percentage of the overall pipeline circuit area including the P-SRSL area.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4 8 12 16 25 31 35

Stages

P
-S

R
S

L
A

re
a

Latches Delay Buffers NOR Gates AND Gates Pipelined Circuit

Figure 5.2: P-SRSL area as a percentage of the pipeline area across different pipelines of

the C6822 benchmark circuit.

In the figure, as the number of the stages increases the percentage of the P-SRSL area

increases too. For example, the P-SRSL area represents only 26% of the pipeline area in

the four-stage pipeline. However, this percentage reaches 81% in the 35-stage pipeline.

In addition, the figure shows that most P-SRSL area is occupied by the latches. For

example, the area of the latches alone consumes 23% of the pipeline area of a four-stage

pipeline, and can grow up to 79% of the pipeline area of the 35-stage pipeline. On the

other hand, the area of the NOR, AND gates and delay buffers barely consume 5% of the

74

pipeline area across all the pipelines. In fact, a basic latch in our standard cell library can

take up to seven times the area of a two-input AND gate. Figure 5.3 shows the P-SRSL

area as a percentage of the total area of a pipeline for each circuit across different pipeline

depths.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Stages

P
-S

R
S

L
A

re
a

16_Bit_Adder 32_Bit_Adder 16_Bit_Multiplier C6288 c7552 c5315

Figure 5.3: P-SRSL area as a percentage of the pipeline area across various depth

pipelines.

It is clear that the area of each pipeline increases as the circuit is partitioned into a deeper

pipeline. However, the largest increases in areas tend to occur in larger circuits

75

partitioned into deeper pipelines. For example, C6288 shows an increase in P-SRSL area

from 26% in a four-stage pipeline to 80% into its maximum depth 35-stage P-SRSL

pipeline. On the other hand, slightly smaller area increases can occur in shallow circuits

partitioned into shallower pipelines. For example, C5315 shows an increase in P-SRSL

area from 42% in a two-stage pipeline to 81% in its maximum depth 12-stage pipeline.

Furthermore, it is clear from the figure that the area occupied by P-SRSL circuitry tends

to be smaller in general for large and deep circuits than for large and shallow circuits or

small and deep circuits. For example, the P-SRSL area of C6288 occupies around 62% of

the total area of its 12-stage pipeline while it can occupy up to 92% of the total area of

the 12-stage pipeline in 32_Bit_Adder. In any case, small circuits tend to experience

high P-SRSL areas regardless of pipeline depth.

5.2.2. P-SRSL Throughput

In order to study how P-SRSL pipelining affects the throughput of a circuit, the

pipelining algorithm is applied on the six circuits for different pipeline depths as shown

in Figure 5.4. For each circuit, the pipeline depth is increased until the circuit ceases to

operate correctly. This situation occurs when the delay in a given stage is so small that

the duration of its reset phase is just as small. Note that the inter-stage latches are

enabled as long as the stage reset phase lasts. If this duration is smaller than the required

enable of the latches used in the actual implementation of the pipeline, these latches will

not have sufficient time to capture incoming data, and subsequently the pipeline ceases to

operate correctly.

76

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Stages

Th
ro

ug
hp

ut
 (M

eg
a

O
pe

ra
tio

n/
se

c)

16_Bit_Adder 32_Bit_Adder 16_Bit_Multiplier c6288 c7552 c5315

Figure 5.4: Pipeline throughputs for various P-SRSL pipeline depths.

In Figure 5.4, one stage represents the circuit in its non-pipelined version. This figure

shows that the throughput of a circuit can increase significantly depending on the pipeline

depth. Indeed, for a shallow circuit, such as C7552, the throughput goes from 201

Megaoperations/sec in its non-pipelined version to 1327.79 Megaoperations/sec in its 10-

stage SRSL pipeline. This increase is equivalent to a 6.6 times improvement in

throughput. This improvement is even more pronounced in deep circuits. For example,

the throughput of C6288 goes from 39.44 Megaoperations/sec in its non-pipelined

version to 875.66 Megaoperations/sec in its 35-stage SRSL pipeline. This increase

77

represents 22.2 fold in throughput improvement. While the throughput increases as more

stages are added to the pipeline, it is obvious that the rate of throughput increase is not

the same for all circuits. It seems that shallow circuits, such as C7552 and C5315,

display the fastest throughput increase as opposed to deep circuits such as C6288 and

32_Bit_Adder. In fact, shallow circuits have lower latency before they are pipelined.

This can be seen by examining stage delays in equal depth pipelines where the delay of a

single stage is usually higher in deep circuits than the delay of a single stage in shallow

circuits. As a result, the throughput will be higher in shallow circuits as opposed to deep

circuits for the same pipeline depth. Furthermore, it is obvious that the maximum

possible pipeline depth will be higher in deep circuits than in shallow circuits. Deep

circuits can be partitioned into large numbers of stages before the partitioning renders the

pipeline inoperable as opposed to shallow circuits.

5.3. D-SRSL Experiments

The same two sets of experiments were conducted to evaluate the impact of pipelining on

area cost and throughput in D-SRSL pipelines.

5.3.1. D-SRSL Area Cost

To study the cost of the additional area that is required to synchronize the D-SRSL

pipeline, Circuit C5135 is chosen as an example. The D-SRSL area includes the area of

the PC blocks, the LC blocks, inter-stage latches, and the intra-stage delay buffers.

78

Figure 5.5 shows the area percentage of each component that contributes to D-SRSL

area.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 4 6 8 10 12

Stages

D
-S

R
S

L
A

re
a

Latches Delay Buffers Phase Control Latch Control Original Circuit

Figure 5.5: D-SRSL area as a percentage of the pipeline area across different pipelines of

the C5135 benchmark circuit.

This figure shows that as the number of stages increases, the percentage of the D-SRSL

area increases too. For example, the D-SRSL area is around 43 % of the overall all area

of a four-stage pipeline. This percentage can go up to 81 % in a 12-stage pipeline.

Among the components used in D-SRSL pipelines, the area of inter-stage latches is

significantly large since it occupies around 41% of the overall area of a four-stage

pipeline. This percentage can go up to 80.3% in a 12-stage pipeline. However, the entire

area of the PC blocks, LC blocks, and delay buffers occupies barely 2% of the overall

79

area of a four-stage pipeline, and 0.7 % in a 12-stage pipeline. This shows that most of

the area occupied is consumed by latches.

With regard to the area as a percentage of the total area of a pipeline for each circuit

across different pipeline depths, the same observations made regarding the P-SRSL

pipelines in Figure 5.3 are valid also for the D-SRSL pipelines.

5.3.2. D-SRSL Throughput

In order to study how D-SRSL pipelining affects the throughput of a circuit, the

pipelining algorithm is applied to the six experimental circuits for different pipeline

depths as shown in Figure 5.6. For each circuit, the pipeline depth is increased until the

circuit throughput cannot be improved any more. In Figure 5.6, one stage represents a

circuit in its non-pipelined version. This figure shows that the throughput of a pipeline

can increase significantly depending on the pipeline depth. In the case of C7552, which

is the shallowest circuit in the benchmark set, the throughput goes from 200

Megaoperations/sec in its non-pipelined version to 1088.14 Megaoperations/sec in its

eight-stage D-SRSL pipeline. This increase is equivalent to a 5.44 times throughput

improvement. This improvement is even more pronounced in deep circuits. For example,

the throughput of C6288 goes from 39.44 Megaoperations/sec in its non-pipelined

version to 1088.14 Megaoperations/sec in its 35-stage D-SRSL pipeline. This increase

represents 27.58 fold in throughput improvement.

80

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Stages

Th
ro

ug
hp

ut
 (M

eg
a

O
pe

ra
tio

n/
se

c)

16_Bit_Adder 32_Bit_Adder 16_Bit_Multiplier c6288 c7552 c5315

Figure 5.6: Pipeline throughputs for various D-SRSL pipeline depths.

While some circuits, such as C7552, can reach their maximum throughput in a few

stages, other circuits, such as C6288, do not seem to reach a maximum throughput even

when partitioned into deeper pipelines of 35 stages. In fact, the throughput of shallow

circuits, such as C7552, seems to level off after they have been partitioned into short

pipelines. On the other hand, the throughputs of deep circuits, such as C6288, do not

display this leveled-off curve. In a smaller number of stages, shallow circuits can get

81

partitioned so much that their intra-stage CNs are quite small. As a result, the delay of

these CNs becomes smaller than the delay of the LC block. By partitioning these circuits

further after this point, the delay of the LC block is not affected, and subsequently, the

duration of the latch and reset phase remain constant. This has the effect of keeping the

period constant, which results in a leveling off of the throughput. In deeper circuits, this

throughput improvement limit does not appear so quickly, and consequently these circuits

display a continuous increase in throughput improvement even when partitioned in

deeper pipelines. Note that, similarly to P-SRSL pipelines, shallow circuits tend to have

a higher throughput than deep circuits for the same pipeline depth. This can be attributed

to the fact that the delay of a single stage is usually higher in deep circuits than the delay

of a single stage in shallow circuits. As a result, the throughput will be higher in shallow

circuits as opposed to deep circuits for the same pipeline depth.

5.4. Summary

The heuristic algorithm has been implemented and applied to six different circuits for the

purpose of producing P-SRSL and D-SRSL pipelines with different depths. As shown in

Table 5.2, the experimental results reveal that P-SRSL and D-SRSL pipelines can reach

higher throughput in wide and shallow pipelines for a relatively small number of stages in

general. Furthermore, both pipelines can produce higher throughputs if wide and deep

circuits are pipelined into deeper pipelines. With regard to area cost, it tends to be higher

in narrow and shallow circuits for P-SRSL and D-SRSL pipelines. This shows that both

pipelining techniques are suitable for coarse-grain datapaths.

82

Table 5.2: Area cost and throughput summary of the experimental circuits.

Circuit Area Throughput
Breadth Depth P-SRSL D-SRSL P-SRSL D-SRSL

Shallow High High Moderate ModerateNarrow
Deep High High Moderate Moderate

Shallow Moderate Moderate High High Wide
Deep Low Low Low Low

83

CHAPTER SIX: SUMMARY AND CONCLUSION

This thesis presents a synthesis methodology for SRSL pipelines based on SRSL logic.

Since SRSL is totally implementable in static CMOS, the proposed synthesis

methodology takes maximum advantage of the maturity of current CAD tools and the

availability of standard cell CMOS libraries to synthesize and verify these SRSL

pipelines. This methodology formulates the synthesis problems as an integer

programming problem whose size is too large for a time-efficient solution. As a result, a

two-phase algorithm is proposed instead to solve this synthesis problem. The first phase

of this algorithm assigns each gate of the netlist to a specific pipeline stage without

violating the pipeline period constraint while the second phase minimizes the number of

inter-stag latches between every pair of adjacent stages in the pipeline. The second phase

is necessary since latches in our standard cell library tend to occupy an area that is two to

seven times larger than a two-input gate. The experiments conducted to validate SRSL

pipelining show that SRSL pipelines can easily reach a throughput above 1 GHz although

this throughput depends mainly on the pipeline depth and the standard cell library used in

the implementation. Pipeline depth can be limited only by the duration of the reset phase

of a single stage and the minimum time required for a latch to be transparent in order to

capture data [16]. The pipelining experiments reveal also that the ratio of area overhead

needed for SRSL and the area of the logic embedded within a single stage is relatively

low. This shows that in the overall SRSL pipelining incurs a lower cost when applied to

coarse-grain datpaths.

84

While the proposed synthesis methodology is a first step toward supporting the design

and verification of SRSL pipelines, it still does not address in its current form the

following issues:

(i) How can the interconnect effects be incorporated in the delay model used by

the synthesis methodology? These effects are increasingly dominant in the

nanometer range of CMOS and subsequently cannot be ignored [34].

(ii) How can power effects be incorporated in the synthesis methodology? By

taking account of power consumption, the methodology can synthesize

pipelines that are optimal in terms of area, throughput, and power. Similarly

to interconnect effects, power is becoming a critical factor in the performance

and reliability of circuits implemented in nanometer CMOS devices [35].

(iii) How would SRSL fare in comparison to previous self-resetting circuits

implemented in dynamic circuits? The answer to this question can be

addressed only after addressing issue (i) and (ii). In fact, by incorporating

interconnect and power effects in the proposed synthesis methodology,

additional experiments can be conducted in order to tally power and

throughput numbers for comparison purposes.

(iv) How can the synthesis algorithm be modified to handle different

implementations with a high degree of flexibility? It is worth noting that the

primary goal of the second phase of the synthesis algorithm is to minimize the

area occupied by the latches in the pipeline. As stated before, this

optimization is necessary since the latches of the cell library used in the

implementation tend to occupy a sizable area. What if a new cell library is

85

used whose latches have comparable sizes to gates? What if the design is

implemented on a FPGA chip which is already populated with copious

amount of latches that can be used in the SRSL pipeline with no additional

area cost? In that case, the optimization in the second phase may have to be

completely bypassed. At first consideration, it seems that a multi-objective

optimization approach would be highly suitable for the second phase of the

synthesis algorithm.

(v) How can the optimality of the second phase of the synthesis algorithm be

evaluated? Since this phase is totally heuristic, it would be interesting from a

practical perspective to quantify how sub-optimal this phase is. Its sub-

optimality can have a significant impact the area cost of the synthesized SRSL

pipeline.

(vi) How can this synthesis methodology be extended to sequential circuits?

Because the experimental benchmarks are all combinational circuits, it would

be interesting to consider how to extend this methodology to handle sequential

circuits. A straightforward approach would be to (1) replace the clocked flip-

flops of a sequential circuit by latches and (2) pad the feedback loops,

encountered in sequential machines, with delay buffers as suggested in [36].

86

LIST OF REFERENCES

[1] K. Emerson, "Asynchronous design: an interesting alternative," Proc. Tenth

International Conference on VLSI Design, 4-7 January 1997, pp. 318-320.

[2] C. H. V. Berkel, M. B. Josephs, and S. M. Nowick, "Scanning the technology:

applications of asynchronous circuits," Proceedings of the IEEE, vol. 87, no. 2,

pp. 223-233, February 1999.

[3] Fulcrum Microsystems, "Asynchronous circuit technology: An alternative for

high-speed semiconductors," available at

http://www.fulcrummicro.com/Library/async_wp.htm, 2004.

[4] I. E. Sutherland and J. Ebergen, "Computers without clocks," Scientific American,

pp. 62-69, August 2002.

[5] T. I. Chappell, B. A. Chappell, S. E. Schuster, A. J. W., S. P. Klepner, R. V. Joshi,

and R. L. Franch, "A 2-ns cycle, 3.8 ns access 512-Kb CMOS ECL SRAM with a

fully pipelined architecture," IEEE Journal of Solid-State Circuits, vol. 26, no. 11,

pp. 1577-1585, November 1991.

[6] R. A. Heald and J. C. Hols, "A 6-ns Cycle 256-kb cache memory and memory

management unit," IEEE Journal of Solid-State Circuits, vol. 28, no. 11, pp.

1078-1083, November 1993.

[7] M. E. Litvin and S. Mourad, "Self-reset logic for fast arithmetic applications,"

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 13, no.

4, pp. 462-475, April 2005.

87

http://www.fulcrummicro.com/Library/async_wp.htm

[8] W. Hwang, G. D. Gristede, P. Sanda, S. Y. Wang, and D. F. Heidel,

"Implementation of a self-resetting CMOS 64-bit parallel adder with enhanced

testability," IEEE Journal of Solid-State Circuits, vol. 34, no. 8, pp. 1108-1117,

August 1999.

[9] G. Jung, V. Sundarajan, and G. E. Sobelman, "A robust self-resetting CMOS 32-

bit parallel adder," Proc. IEEE International Symposium on Circuits and Systems,

26-29 May 2002, pp. 473-476.

[10] G. Jung, J. Kong, G. E. Sobelman, and K. K. Parhi, "High-speed add-compare-

select units using locally self-resetting CMOS," Proc. International Symposium

on Circuits and Systems, 26-29 May 2002, pp. 889-892.

[11] A. L. Lavi, A. Charnas, M. Tremblay, A. R. Dalal, B. A. Frederick, C. R.

Srivasta, D. Greenhill, D. L. Wendell, D. D. Pham, E. Anderson, H. K. Hingarh, I.

Razzack, J. M. Kaku, K. Shin, M. E. Levitt, M. Allen, P. A. Ferolito, R. L.

Bartolotti, R. K. Yu, R. J. Melanson, S. I. Shah, S. Nguyen, S. S. Mitra, V. Reddy,

V. Ganesan, and W. J. d. Lange, "A 64-b microprocessor with multimedia

support," IEEE Journal of Solid-State Circuits, vol. 30, no. 11, pp. 1227-1238,

November 1995.

[12] V. Narayanan, B. A. Chappell, and B. M. Chappell, "Static timing analysis for

self-resetting circuits," Proc. IEEE/ACM International Conference on Computer-

Aided Design, San Jose, CA, November 1996, pp. 119-126.

[13] F. Klass, M. J. Flynn, and A. J. v. d. Goor, "16x16-bit Static CMOS wave-

pipelined multiplier," Proc. IEEE International Symposium on Circuits and

Systems, June 1994, pp. 143-146.

88

[14] T. J. Thorp, G. S. Yee, and C. M. Sechen, "Design and synthesis of dynamic

circuits," IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 11, no. 1, pp. 141-149, February 2003.

[15] C. P. Soitriou, "Implementing asynchronous circuits using a conventional EDA

tool-flow," Proc. Design Automation Conference, New Orleans, LA, 10-14 June

2002, pp. 415-418.

[16] A. Sharqawi, "DESIGN AND SYNTHESIS OF CLOCKLESS PIPELINES

BASED ON SELF-RESETTING STAGE LOGIC," Ph.D. Dissertation,

Department of Electrical and Computer Engineering, University of Central

Florida, Orlando, Florida, 2005.

[17] A. Ejnioui and A. Alsharqawi, "A clockless reconfigurable array based on self-

resetting logic," Proc. Multi-conference on Systemics, Cybernetics, and

Informatics, Orlando, Florida, vol. 11, June 2004, pp. 61-66.

[18] A. Ejnioui and A. Alsharqawi, "Self-resetting stage logic pipelines," Proc. ACM

Great Lakes Symposium on VLSI, Boston, Massachusetts, April 2004, pp. 174-

177.

[19] A. Ejnioui and A. Alsharqawi, "Pipeline design based on self-resetting stage

logic," Proc. IEEE Computer Society Annual Symposium on VLSI, Lafayette,

Louisiana, February 2004, pp. 254-257.

[20] A. Ejnioui and A. Alsharqawi, "Pipeline-level control of self-resetting pipelines,"

Proc. Euromicro Symposium on Digital System Design, Rennes, France,

September 2004, pp. 342-349.

89

[21] A. Ejnioui and A. Alsharqawi, "Pipeline level control of self-resetting stage logic

pipelines," Proc. IEEE Northeast Workshop on Circuits and Systems, Montreal,

Canada, June 2004, pp. 389-392.

[22] R. Oreifej, A. Alsharqawi, and A. Ejnioui, "Pipeline synthesis of SRSL circuits,"

Proc. IEEE International Conference on Electronics, Circuits and Systems,

Gammarth, Tunisia, December 2005.

[23] A. Alsharqawi and A. Ejnioui, "Synthesis of self-resetting stage logic pipelines,"

Proc. IEEE Computer Society Annual Symposium on VLSI, 2005, St. Petersburg,

Florida, May 2005, pp. 260-263.

[24] R. Oreifej, A. Alsharqawi, and A. Ejnioui, "Synthesis of Pipelined SRSL

Circuits," Proc. IEEE Computer Society Annual Symposium on VLSI, Karlsruhe,

Germany, March 2006, pp. 71 - 76.

[25] J. B. Sulistyo and D. S. Ha, "A new characterization method for delay and power

dissipation of standard library cells," VLSI Design, vol. 15, no. 3, pp. 667-678,

2002.

[26] J. B. Sulistyo, J. Perry, and D. S. Ha, "Developing standard cells for TSMC

0.25um technology under MOSIS deep rules," Department of Electrical and

Computer Engineering, Virginia Tech Technical Report VISC-2003-01,

November 2003.

[27] D. Wendell, "Reset logic circuit and method." U.S. Patent 5,430,283.

[28] G. DeMicheli, Synthesis and optimization of digital circuits: McGraw-Hill, 1994.

[29] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization:

John Wiley and Sons, 1988.

90

[30] M. Minoux, Mathematical Programming: Theory and Algorithms: John Wiley

and Sons, 1986.

[31] D. Gajski, N. Dutt, A. Wu, and S. Lin, High-Level Synthesis: Introduction to Chip

and System Design: Kluwer Academic Publishers, 1992.

[32] B. Kernighan and S. Lin, "An efficient heuristic procedure for partitioning

graphs," Bell System Technical Journal, vol. 49, no. 2, pp. 291-307, February

1970.

[33] M. Hansen, H. Yalcin, and J. P. Hayes, "Unveiling the ISCAS-85 benchmarks: A

case study in reverse engineering," IEEE Design & Test of Computers, vol. 16,

no. 3, pp. 72-80, July-September 1999.

[34] Y. Taur, D. A. Buchanan, W. Chen, D. J. Frank, K. E. Ismail, S.-H. Lo, G. A. Sai-

Halasz, R. G. Viswanathan, H.-J. C. Wann, S. J. Wind, and H.-S. Wong, "CMOS

scaling into the nanometer regime," Proceedings of the IEEE, vol. 85, no. 4, pp.

486-504, April 1997.

[35] G. Yeap, Practical Low Power Digital VLSI Design: Kluwer Academic

Publishers, 1998.

[36] R. O. Ozdag and P. A. Beerel, "High-speed QDI asynchronous pipelines," Proc.

Eighth International Symposium on Asynchronous Circuits and Systems, 8-11

April 2002, pp. 13-22.

91

	Synthesis Of Self-resetting Stage Logic Pipelines
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER ONE: INTRODUCTION
	1.1 Limitations of Clocked Circuits
	1.2 Self-Resetting Circuits
	1.3 Self-Resetting Stage Logic and Its Synthesis Methodology
	1.4 Thesis Contributions
	1.5 Thesis Overview

	CHAPTER TWO: RELATED WORK
	2.1 Delayed Reset Logic
	2.2 Global/Local Self-Resetting CMOS
	2.3 Local Self-Resetting CMOS
	2.4 Dual-Rail Self-Reset Logic with Input Disable
	2.5 Summary of Self-Resetting Techniques

	CHAPTER THREE: SELF-RESETTING STAGE LOGIC
	3.1 Self-Resetting Stage Logic
	3.2 Stage-to-Stage Self-Resetting Stage Logic
	3.3 Pipeline-Controlled Self-Resetting Stage Logic
	3.4 Delay-Tolerant Self-Resetting Stage Logic
	3.4.1 Pipeline Structure
	3.4.2 Phase Control Block
	3.4.3 Latch Control Block

	3.5 Summary

	CHAPTER FOUR: SYNTHESIS OF SRSL PIPELINES
	4.1 SRSL Pipeline Design Methodology
	4.2 Synthesis of SRSL Pipelines
	4.3 Preliminaries
	4.4 Analytical Formulation of the Pipelining Problem
	4.5 Heuristic SRSL Pipelining
	4.5.1 Stage Assignment Phase
	4.5.1.1 Phase I Approach
	4.5.1.2 Phase I Algorithm

	4.5.2 Vertex Shuffling Phase
	4.5.2.1 Phase II Approach
	4.5.2.2 Phase II Algorithm

	CHAPTER FIVE: EXPERIMENTAL RESULTS
	5.1. Experimental Setup
	5.2. P-SRSL Experiments
	5.2.1. P-SRSL Area Cost
	5.2.2. P-SRSL Throughput

	5.3. D-SRSL Experiments
	5.3.1. D-SRSL Area Cost
	5.3.2. D-SRSL Throughput

	5.4. Summary

	CHAPTER SIX: SUMMARY AND CONCLUSION
	LIST OF REFERENCES

