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ABSTRACT 
 

Currently, a debate exists between the strengths and weaknesses of direct and inquiry 

instruction. Inquiry instruction is related to positive effect on learner motivation whereas 

supporters of direct instruction point to its ability to adequately support learners’ working 

memories (Hmelo-Silver, Duncan, & Chinn, 2007; Kirschner, Sweller, & Clark, 2006; Kuhn, 

2007; Sweller, 1988). This study examined the possibility of combining the best features of both 

inquiry and direct instruction by sequencing them together. A two-part lesson on electrical 

circuits was presented in three separate sequences of instruction to middle school students to 

determine if differences in student motivation and academic achievement emerge depending on 

whether a guided inquiry lab followed or preceded direct instruction.  Results indicated equal 

levels of perceived competence by students across all instructional sequences and greater 

interest/enjoyment and perceived autonomy support when the instructional sequence began with 

a guided inquiry lesson. No significant differences in achievement were reported among the 

sequences.  

 Keywords: direct instruction, inquiry instruction, sequencing, motivation, working 
memory 
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CHAPTER ONE: INTRODUCTION 

The question of how instructional design affects student learning has fueled a 

controversial debate within the field of educational psychology between the benefits and 

weaknesses of direct and inquiry instruction (Hmelo-Silver, Duncan, & Chinn, 2007; Kirschner, 

Sweller, & Clark, 2006; Kuhn, 2007; Schmidt, Loyens, van Gog, & Paas, 2007). National calls 

for reform in science education seek to improve science literacy through the use of inquiry-based 

learning environments (American Association for the Advancement of Science [AAAS], 1993; 

National Research Council [NRC], 1996). Inquiry-based learning utilizes an investigative 

approach where students develop experiments to collect data in an attempt to construct 

knowledge and understanding prior to learning concrete facts about a science concept (Minner, 

Jurist Levy, & Century, 2009). Simply, the goal of inquiry is to have students actively participate 

in discovering the nature of science in addition to learning science content. Proponents of inquiry 

tout its ability to motivate and engage students while increasing achievement in science (Hall & 

McCudy, 1990; Kyle, Bonnstetter, & Gadsden, 1988; Leonard, 1983). Research has shown that 

motivated students demonstrate greater cognitive engagement which is related to deeper 

conceptual understanding (Ames, 1990; Hidi & Renninger, 2006; Komarraju & Karau, 2008; 

Pintrich, 2003; Pintrich & Schunk, 2002).  

However, recent studies have shown that more traditional direct instructional techniques 

such as lectures and textbook assignments continue to dominate the majority of science teaching 

(Hudson, McMahon, & Overstreet, 2002; Weiss, Pasley, Smith, Banilower, & Heck, 2003). 

Reasons for this may include financial commitments to more traditional instructional materials, 

lack of professional development for educators, inability to implement the generally more time-

intensive inquiry activities, inadequate classroom management skills, as well as a tendency to 
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teach as one has been taught (Anderson, 2002; Beck, Czerniak & Lumpe, 2000; Eslinger, 

Hofstein & Walberg, 1995; Lawson et al., 2002; Welch, Klopper, Aitkenhead, & Robinson, 

1981; White & Frederiksen, 2008). Some critics of inquiry instruction have also questioned its 

ability to adequately support student learning based on its heavy reliance on problem solving 

(Kalyuga, 2007; Kalyuga, Chandler, Touvin, & Sweller, 2001; Kirschner, et al., 2006; Paas & 

Van Merrienboer, 1994; Sweller & Cooper, 1985). Such researchers feel students’ working 

memories are overtaxed in attempting to design scientific investigations while also 

simultaneously trying to learn new science content during inquiry activities.  

Past work comparing direct and inquiry instructional methods often pit one technique 

against the other in an attempt to determine a clear winner and have delivered mixed results 

(Blanchard, 2006; Chen & Khlar, 1999; Kirschner et al., 2006; Klahr & Nigham, 2004). Such 

direct comparisons do little to advance the field to a deeper understanding of how such 

techniques work separately to achieve similar goals. Often, contrasting perspectives of 

instruction have much to offer and the goal is to use the advantages of both techniques to work 

toward an integrative approach of improved learning and instruction. This study suggests that the 

strengths associated with both direct and inquiry instruction can be maximized through specific 

sequencing of techniques rather than selecting one over the other. The current research seeks to 

answer the question as to whether the motivation and critical thinking associated with inquiry-

based learning and the heavy guidance during learning in direct instruction can somehow be used 

together to maximize achievement and understanding.  

From a practical perspective, classroom educators would benefit from empirically 

supported and well-reasoned arguments on whether instructional techniques can be used in 

sequence to influence motivation and achievement. Any significant findings on the potential 
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effectiveness of sequencing in influencing students’ motivation and achievement would not 

require educators to abandon their current pedagogies as would be the case in research that looks 

to find a single superior teaching method. Additionally, field researchers would also benefit from 

the theoretical perspective that the simple sequencing of instruction itself might lead to 

differences in motivation and achievement as directions for future research. This study seeks to 

determine how direct and inquiry instruction can be used together in varying sequences to 

maximize the benefits associated with both instructional methods. The following section reviews 

the literature on direct and inquiry instruction. 
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CHAPTER TWO: LITERATURE REVIEW 

Guidance in Direct and Inquiry Instruction 
 

Instructional techniques cover a wide spectrum of guidance, with direct instruction 

considered most structural as students’ behaviors are usually controlled by specific instructions 

from the teacher. Common direct instructional techniques include the use of lectures, note-

taking, textbook readings, and worked examples with learning goals often being seen as product-

oriented (Anderson, 2002; Kyle et al., 1988; Von Secker & Lissitz, 1999).  Product-oriented 

instruction is concerned with an end result or an outcome as evidence that learning has occurred 

(Merriam & Caffarella, 1991). In direct instruction, teachers act as transmitters of information 

and students play the role of passive recipients of knowledge or direction followers. A typical 

scenario of product-based direct instruction may be represented by a teacher conducting a lecture 

on how sunlight helps plants grow through the process of photosynthesis. Students may take 

notes, complete worksheets or watch videos on the topic. A test may then be given on that 

material and students will demonstrate their ability to recall and apply material covered in class.  

It is important to note that while direct instruction is often pictured as passive, it can also 

be represented in a more active environment (Cobern et al., 2010). “Hands-on” lab experiences 

are highly guided in nature as they often ask students to follow predetermined set problem-

solving procedures. For example, a scripted or procedural lab would include a set list of 

materials to be used and a cookbook-like recipe that students would follow. To use the example 

from before, a highly guided hands-on lab on plant growth may ask students to determine 

whether the amount of sunlight affects how high a plant will grow in 30 days time. Procedures 

may look like this: “Plant one bean seed in three identical pots that contain the same amounts 
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and type of soil and label them Plant #1, Plant #2 and Plant #3. Put Plant #1 out in direct sunlight 

for four hours each day and Plant #2 out in direct sunlight for only two hours each day. Plant #3 

should receive no sunlight on any day. Give each plant 10mL of water each day for 30 days. 

Record the height of each plant every day at the same time for 30 days.” In this example, all 

students would replicate identical experiments based on the instructions provided and would all 

collect the same data regarding the specific question of how the amount of sunlight affects plant 

growth. 

Learners in direct instruction are often all treated as “blank slates” that possess no 

existing foundation for a given domain (Kayluga, 2007; Lord, 1997). In contrast, inquiry-based 

learning falls within the theoretical jurisdiction of constructivism, in which learners are thought 

to actively create knowledge through experiences and must work to integrate new information 

with their own level of existing prior knowledge (Lord, 1997; Minner et al., 2009). While inquiry 

activities commonly contain specific learning objectives just as in direct instruction, they are also 

process-oriented in that they value the experiences by which students come to understand and 

investigate these ideas rather than just focus on the outcome (Merriam & Caffarella, 1991). 

Students participating in inquiry learning may be asked to design testable questions, formulate 

hypotheses, develop valid investigative approaches, make observations, and synthesize data to 

develop and defend evidence-based conclusions (Anderson, 2002; Ertpinar & Geban, 1996; 

Hofstein, Nahum, & Shore, 2001). Inquiry activities are unique in that they places the student in 

the center of the problem-solving space and ask them to develop their own solution method 

without relying on specific, step by step directions (Egleston, 1973).  

It is also important to acknowledge that the degree of guidance within the inquiry 

spectrum varies dramatically with pure discovery being the least guided interpretation of the 
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pedagogy (Minner et al., 2009). Pure discovery learning is best exemplified through a science 

fair project scenario where students select their own research question, design their own 

experiment, obtain relevant data, analyze results, and make their own conclusions. For example, 

students may decide to conduct an experiment to see if the type of music played to a plant will 

affect the rate at which it grows. It is up to the student to determine the independent, dependent 

and controlled variables, as well as interpret their results. Students in pure discovery situations 

sometimes fail to observe or internalize the desired concepts given the invalidity of their 

experimental design or because of a lack of discussion, feedback and reflection (Klahr & Nigam, 

2004; Mayer, 2004). Pure discovery is also typically very time-intensive when compared with 

more guided instruction in order to allow students to explore at their own pace. Often, teachers 

are required to follow set curriculum guidelines as set forth by their school districts and do not 

have the option to extend instruction on a particular topic based on the rate at which students 

learn. 

Teachers who embrace inquiry in their classrooms more commonly choose guided 

inquiry activities over pure discovery learning (Hmelo-Silver et al., 2007). Guided inquiry is just 

as it sounds; it provides students with more structure and guidance in an effort to lessen the 

amount of solution methods a student may choose when solving a problem. Generally, this 

allows guided inquiry activities to take less time to implement than pure discover activities. 

Using the example of the music and plant experiment, a guided inquiry version of the 

investigation is exemplified by the following mission: Students are asked to design an 

experiment to determine whether the type of music played to a pea plant will affect its rate of 

growth over a 30 day period. Here, students are given a dependent variable to measure (plant 

height) as well as the length of time the experiment will last. However, it will still be up to the 
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student to make choices in their design. For example, will they use seeds or plants that have 

already sprouted? Will they think to control all other variables other than music (sun light, water, 

soil)? Will they decide to have a control plant in which no music is played? In this example, it is 

important to note that teachers who tend to use guided inquiry often do not intend, nor do they 

want identical experimental designs or even successful designs from each student or lab group in 

the class. Often, discussion of such successes and failures in the varying experimental designs of 

students that encourage and develop critical thinking skills which is one of the main goals of 

inquiry learning (Martin-Hansen, 2010).  

The issue of amount of guidance during instruction is important in that individuals have a 

very limited capacity of actively processing and making sense of new information in their 

working memories (Sweller, 1988). The working memory is best described as the place where 

conscious processing of information occurs. When individuals attempt to learn new information, 

much of their working memory capacity is used for the construction of schemas. Schemas are 

domain-specific, mental representations of concepts and ideas that learners construct and 

continuously rearrange as they gain knowledge (Chi, Feltovich, & Glaser, 1981).  One strength 

of direct instruction is its ability to support individuals who are learning new material as they can 

use the majority of their working memory resources on schema construction rather than using 

them for other activities such as problem-solving (Kalyuga et al., 2001). The heart of inquiry, 

even guided inquiry, is embedded in the act of problem solving which some researchers feel is 

the major weakness associated with inquiry instruction (Kalyuga, 2007; Kalyuga et al., 2001; 

Kirschner, et al., 2006; Paas & Van Merrienboer, 1994; Sweller & Cooper, 1985). Learners in 

inquiry-based environments, they argue, must allocate the majority of their working memory 

resources for problem solving, rather than for schema construction of the new material hoping to 
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be learned. Students who attempt to solve problems without having sophisticated schemas to 

draw knowledge must use their limited working memory resources for both selecting and 

implementing problem solving strategies as well as for attempting to make sense and organize 

the new information behind the learning objective. Learning under such conditions can a 

frustrating experience for the learner as the task may simply be out of reach (Sweller, 1988).  

This scenario is often the case in pure discovery learning, given that students do not have 

the skills or background knowledge to apply to the situation and therefore are unable to 

adequately grasp the concepts being presented (Mayer, 2004). However, proponents of guided 

inquiry do not consider it to be minimally guided due to the large and flexible amount of 

scaffolding available within the instruction (Hiebert, Fennema, Fuson, Human, & Murray, 1996; 

Hmelo-Silver et al., 2007; Schmidt, et al., 2007). Unlike in pure discovery learning, guided 

inquiry commonly uses deliberate instructional scaffolding strategies such as the designing of 

manageable tasks that fit within students’ zones of proximal development (Hardy, Jonen, Möller, 

& Stern, 2006; Hmelo-Silver et al., 2007; Vygotsky, 1978). Quality guided inquiry tasks are 

purposefully designed to be as specific and clear as possible so students are aware of the 

expectations and limits associated with each task as well as being difficult enough to engage 

learners’ sense of challenge. Other scaffolding strategies include providing a pre-determined 

selection of materials to be made available to students while problem solving in an effort to limit 

possible solution methods. Teacher interaction is also a commonly used scaffolding strategy in 

guided inquiry tasks as instructors can use questioning techniques to help uncover student 

thinking, model appropriate and useful questioning, and provide guidance to those students who 

may need it (Hmelo-Silver et al., 2007).  



 

 9 

In summary, instruction matters in its effect on student achievement (Von Secker & 

Lissitz, 1999). Direct instruction better supports working memory when compared with pure 

discovery learning but inquiry that is appropriately guided has also be shown to support working 

memory. However, the debate of how much guidance should be used during instruction will only 

be truly beneficial if students are willing to actively engage with the material being presented. 

The issue of how to best support the working memory during learning is suddenly of no value to 

a student who is unmotivated to participate in the lesson. Acknowledging that learning does not 

occur within a cognitive vacuum, areas beyond guidance and working memory must be 

considered when discussing the strengths and weaknesses of instructional techniques. The 

following section will compare motivational differences across the pedagogies. 

The Influence of Direct and Inquiry Instructional Methods on Motivation 
 

Motivational research has evolved from being seen as solely a characteristic of the 

learner to being seen as a reciprocal relationship between learner behavior, their environment, 

and the task at hand (Kuhn, 2007). Kuhn (2007) described motivation as “not residing within the 

individual but in the interaction between the individual and the subject matter” (p. 109). In other 

words, motivation is not a fixed trait that a learner will decide to turn on or off at their liking, 

rather, motivation can be activated or stifled depending on the educational context and task at 

hand. However, it is not just the content itself that is or is not inherently motivating; more 

relevant to this study is that the way in which content is presented to the learners can also have 

have strong motivational implications (Ames, 1992; Hiebert et al., 1996).  

Research has shown that motivated students demonstrate greater cognitive engagement 

often leading to deeper conceptual understanding when compared with those students who are 
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not motivated (Ames, 1990; Hidi & Renninger, 2006; Komarraju & Karau, 2008; Pintrich, 2003; 

Pintrich & Schunk, 2002). Direct instructional techniques such as lectured note-taking or worked 

examples are often based on a “teacher-centered instructional agenda” that defines not only what 

students should think or do but when and how (Reeve, Jang, Carrell, Jeon, & Barch, 2004, p. 

148). As a result of the lack of intrinsic motivation in students in controlling environments, 

teachers generally rely on the use of extrinsic means of motivation such as controlling, directive 

language. While direct instruction is beneficial in that it places a low demand on working 

memory during learning, it can also fail to motivate students at the same time due to the 

controlling nature of the technique.  

Autonomy is one component of the triarchic self-determination theory, which proposes 

that individuals are most motivated when they feel they are acting out of their own will (Ryan & 

Deci, 2000). Teachers who are autonomy-supportive work to nurture students’ inner 

motivational resources by focusing on student interests and providing opportunities for choice-

making (Reeve et al., 2004). Characteristics of autonomy-supportive instructional behaviors 

include taking time to hear students’ perspective and encouraging students to work at their own 

pace (Reeve et al., 2004). Students who perceive their teachers as providing autonomy-

supportive classrooms have been found to demonstrate higher conceptual understanding and 

academic achievement as well as have increased student curiosity, interest and appetite for 

academic rigor in class (Boggiano, Flink, Shields, Seelbach, & Barrett, 1993; Grolnick & Ryan, 

1987; Ryan & Grolnick, 1986; Tsai et al., 2008).  

Learner autonomy is stifled in classrooms where instructors are perceived to be 

controlling as these instructional behaviors interfere with a student’s natural desire to work at 

their own pace (Assor, Kaplan, Kanat-Maymon, & Roth, 2005; Tsai, Kunter, Ludtke, Trautwein, 
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& Ryan, 2008). Direct instructional techniques fail to meet students’ inner need for choice by 

binding them to specific pacing or directions. Inquiry activities, on the other hand, release 

students from set problem-solving procedures by encouraging creative thinking and alternate 

explanations. However, while motivation may be higher during inquiry instruction due to 

increased levels of perceived autonomy, that same increased level of freedom may prevent 

students from finding adequate solution methods on their own due to the sheer number of 

solution methods possible. Failure to adequately find a favorable solution method may cause 

students to become frustrated and de-motivated due to its interference with another component of 

self-determination theory, perceived competence. Deci and Ryan (2000) suggested that 

individuals are most motivated when they believe they posses the ability to be successful at a 

given task. If there is no guidance given to a student who is unable to find an acceptable solution 

method on their own, they are likely to feel incompetent to solve the problem, become de-

motivated, and ultimately give up. Here again, it is important to acknowledge that guided inquiry 

activities use scaffolding techniques to try to find the motivational balance between increasing a 

students’ sense of perceived autonomy while still helping them feel capable of the given 

problem. 

 The role of interest is related to self-determination theory (Reeve, 2002). Interest is 

defined as a state of positive affect and concentration and fuels intrinsic motivation. Intrinsic 

motivation resides within the individual as opposed to some external source such as the promise 

of reward or threat of consequence (Hidi & Renninger, 2006). Students who are interested in 

what they are learning report higher levels of autonomy, pay greater attention, process 

information more deeply, and demonstrate greater academic achievement (Mayer, 1998; 

Renninger, Hidi, & Krapp, 1992). While interests do vary from individual to individual, certain 
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environmental aspects have been found to increase situational interest in learners regardless of 

differences in individual preference, which makes it relevant to the discussion of instruction 

(Ames, 2002; Tsai et al., 2008). Students in low autonomy-supported environments are 

associated with lower levels of reported interest and enjoyment whereas autonomy-supportive 

environments have been found to be one of the main factors in increasing interest and enjoyment 

(Reeve, 2002; Ryan & Deci, 2000). The tendency for direct instruction to use controlling or 

directive language has been found to result in lower interest and enjoyment among students and 

have even been known to cause negative emotions such as anxiety and frustration (Assor et al., 

2002; Assor et al., 2005; Reeve & Jang, 2006). 

In summary, students are most motivated to learn in classes in which they perceive 

instructors to be autonomy-supportive and report interest in classes in which they do not feel 

controlled (Deci & Ryan, 2000). Student-centered inquiry instruction works by facilitating 

students’ need for autonomy in the classroom, whereas the controlling aspects associated with 

most direct instruction stifle student motivation. However, the same freedom associated with 

inquiry-oriented activities may not provide enough guidance and place too heavy a demand on 

students’ working memories thereby lowering their levels of perceived competence for the task. 

The questions remain: Is the increased autonomy and interest associated with inquiry instruction 

of greater benefit in producing higher academic achievement than direct instruction? Do students 

feel more competent during direct instruction due to its low demand on the working memory?  

Or better yet, can both direct and inquiry instruction be combined in an effort to benefit from 

both the cognitive and motivational aspects associated with each technique? The following study 

attempts to answer such questions. 
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CHAPTER THREE: METHODOLOGY 

The following study compared three instructional sequences for a middle school science 

lesson on electrical circuits by using varying sequences of lecture, scripted and guided inquiry 

labs (see Table 1). Each sequence covered the same amount of class time, used the same lab 

materials, had identical learning objectives and completed identical pre and post assessments on 

electrical circuits (see Appendix A). Sequence 1 (S1) began with a 45-minute lecture comparing 

series and electrical circuits followed by a 45-minute scripted lab the following day that directed 

students to create and compare series and parallel circuits. Sequence 2 (S2) was done in the 

reverse order with the scripted lab occurring on the first day followed by the lecture on day two 

(see Appendix B). Sequence 3 (S3) began with an inquiry lab on the first day where students 

were given missions to solve but did not give directions for how to go about solving them (see 

Appendix C). Students then listened to the same lecture as the other sequences on day two. 

Identical lab materials were made available to students regardless of whether they were 

participating in the inquiry or scripted lab. Materials included two light bulbs, one wires, and two 

D batteries in battery holders. 

Table 1: Instructional Sequences for Circuits Lesson 
 

 Day 1 of lesson 
(45 minutes) 

Day 2 of lesson 
(45 minutes) 

 
Instructional Sequence 1 (S1) 

 
Lecture 

Scripted Lab 
(set procedures 

provided) 
 

Instructional Sequence 2 (S2) 
Scripted Lab  

(set procedures 
provided) 

 
Lecture 

 
Instructional Sequence 3 (S3) 

Inquiry Lab 
(no set procedures 

provided) 

 
Lecture 
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The instructional sequences were designed in such a way that all science content and time 

on teaching were identical with the independent variable being the sequence in which the 

instruction is presented. S1 (lecture prior to scripted lab) reflects the way science is done in the 

majority of public schools where students receive information on the material during the lecture 

and then apply such knowledge to a lab environment afterwards. S2 (scripted lab prior to lecture) 

was created in order to determine whether it is merely the hands-on experience prior to the 

lecture that makes any potential difference in motivation or achievement or if it is truly the 

aspect of inquiry prior to direct instruction that is the cause. S3 (inquiry lab prior to lecture) was 

developed to represent how most guided inquiry is done in the classroom today, where students 

will only be presented with detailed information regarding a concept after they have had a 

chance to investigate and consider the ideas for themselves beforehand (Hastings, 2006).  

Research questions included: 

1) Does variation in instructional sequence influence perceived autonomy support, 

perceived competence and interest/enjoyment? 

2) When controlling for existing knowledge, does instructional sequence influences 

achievement?  

It was predicted that higher levels of perceived autonomy support would be reported during 

the inquiry lab in S3 when compared with the scripted lab in S1 and S2. However, this lack of 

direction and subsequent larger toll on working memory may cause students to report lower 

levels of perceived competence during the inquiry activity when compared with the highly 

guided nature of the scripted lab in S1 and S2. Additionally, it is hypothesized that the highest 

levels of interest/enjoyment will also be reported in S3 during the inquiry lab due to the predicted 
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heightened levels of perceived autonomy.  Finally, I predicted that students in S3 will 

demonstrate the highest academic growth due t enhanced motivation.  

Participants 
 

The study took place in two 7th grade physical science teacher’s classroom at a public 

middle school in central Florida. A total of 12 intact class periods (six advanced and six regular) 

were used in the study for a total sample of n =178. One advanced class and one regular class 

were randomly assigned to each instructional sequence. Both teachers have taught for the same 

number of years and have both participated in similar professional development workshops 

during their teaching careers. Both teachers instructed a total of six class periods a day, three of 

which were advanced class periods and three of which were considered regular class periods. 

Both teachers had previous experience in teaching electrical circuits to 7th graders and were 

comfortable with the scientific content of the material as well as with common student 

misconceptions pertaining to circuits. At the time of the study, students had not had any formal 

school training on the topic of electrical circuits. 

Procedures and Instrumentation 
 

Students were given a seven-item pretest the day before instruction began that covered 

characteristics of series and parallel circuits (see Appendix A). The assessment was pre-

evaluated and approved by a county science representative. For each sequence, two 45-minute 

class periods were used in consecutive days to present the materials on circuits in three separate 

instructional sequences. S1 (n= 60) consisted of a lecture on day one, followed by a scripted lab 

on day two. S2 (n=60) was done in the reverse order and consisted of the scripted lab on day one, 
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followed by the lecture on day two. S3 (n=58) has students participate in an inquiry lab on day 

one, followed by a lecture on day two. On both days and immediately following instruction, 

students were given a 17-item motivational self-survey (see Appendix D) developed using 

questions from Deci and Ryan’s Intrinsic Motivation Inventory (IMI) and Learning Climate 

Questionnaire (LCQ). The survey sought to assess self-reported levels of perceived autonomy 

support, perceived competency and level of interest/enjoyment after each portion of the 

instructional sequence. The reliability for the motivation battery showed a Cronbach’s alpha = 

0.84 for perceived autonomy support; 0.84 for perceived competence; 0.94 for 

interest/enjoyment. Students were then given the post assessment at the beginning of the class 

period on the day after instruction ended for all sequences.  

A school coworker with no previous knowledge of the study completed a formal 

observation of both teachers during each sequence to control for fidelity in teacher behavior. A 

checklist developed by a local school district determined that no difference was reported among 

teachers or among sequences for enthusiasm, subject matter knowledge, clarity of instruction, or 

standard of student behavior (see Appendix E). 

Curriculum 
 

Electrical circuitry is considered to be part of the standard 7th grade science district 

curriculum regardless of whether students are in advanced or regular science classes. All three 

sequences shared identical learning objectives relating to the material as determined by Orange 

County Public School science task analyses and the Sunshine State Standard (SC.7.P.11.2). The 

lecture given on day one for S1 and on day two for S2 and S3 were identical as were the scripted 

labs given on day two of S1 and day one of S2 (see Appendix B). The inquiry lab (see Appendix 
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C) contained no set procedures for how to construct each type of circuit though it provided the 

same materials from the scripted lab for the students to use. Based on Cohen’s moderate to large 

effect size of 0.33, a level of significance of .05, and a power of 80%, a sample size of 95 

participants were required to detect practical significance of learning gains as detected by pre and 

posttest scores. 
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CHAPTER FOUR: RESULTS 

Motivation 
 

A MANCOVA analysis was conducted for day one and day two separately, both 

controlling for the effect of teacher as covariate to test whether the combination of instructional 

sequencing and teacher have an effect on motivation. There was a significant effect for 

sequences at the multivariate level for day one, Wilks’s λ = .91, F(6, 344) = 2.89, p = .009 as 

well as day two, Wilks’s λ = .88, F(6, 344) = 3.96, p = .001. There was no effect found in 

motivation between teachers at the multivariate level, Wilks’s λ = .96, F(3, 172) = 2.58, p = .06). 

For day one, there were significant differences found among teachers for perceived autonomy, 

F(1, 174) = 4.62, p = 0.33 but not for perceived competence or interest/enjoyment. For day two, 

there was a small effect found among teachers on perceived competence, F(1, 174) = 7.57, p = 

.007, η2 = 0.04 but not for perceived autonomy or interest/enjoyment. 

For day one, there were significant differences found among sequences, F(2, 174) = 2.77, 

p = .048, for perceived autonomy. Post hoc analysis for day one showed that S2 (MeanS2 = 5.19, 

SDS2 = 0.99) and S3 (MeanS3 = 5.62, SDS3 = 0.96) were different in their effect on student 

perceived autonomy, p = .014; CI(95%) = -.81, -.09, with students in S3 reporting higher 

perceived autonomy than students in S2. There was no effect found for perceived autonomy 

between S1 (MeanS1 = 5.45, SDS1 = 1.03) and S2 or between S1 and S3. Significant differences 

were also found among sequences for interest/enjoyment, F(2,174) = 6.82, p = .001. Post hoc 

analysis for day one showed that both S1 (MeanS1 = 5.11, SDS1 = 1.27) and S3 (MeanS3= 5.80, 

SDS3 = 1.15) were different in their effect on student interest/enjoyment, p = .005; CI(95%) = -

1.12, -.20, with students S3 reporting higher interest/enjoyment than students in S1. S2 (MeanS2 
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= 5.20, SDS2 = 1.33) and S3 were also different in their effect on interest/enjoyment, p = .014; 

CI(95%) = -1.03, -.12, with students in S3 again reporting higher interest/enjoyment levels when 

compared with students in S2. There were no significant differences found for interest/enjoyment 

between S1 and S2. Figure 1 shows students’ reported perceived autonomy support (PAS) and 

interest/enjoyment (IE) levels among the instructional sequences for day and day two. Perceived 

competence was not included in the graph as no significant difference was reported among 

sequences for either day. 

For day two, there was a effect of less than .07 found among sequences, F(2, 174) = 2.77, 

p = .06, found for perceived autonomy. Post hoc analysis for day two showed that S2 (MeanS2 = 

4.86, SDS2 = 1.44) and S3 (MeanS3 = 5.40; SDS3 = 1.13) were different in their effect on student 

perceived autonomy, p = .02; CI(95%) = -1.03, -.09, with students in S3 reporting higher 

perceived autonomy than students in S2. There was no effect found for perceived autonomy 

among S1 (MeanS1 = 5.14, SDS1 = 1.29) and S2 or among S1 and S3. As in day one, there were 

no significant differences found among sequences for perceived competence for day two. 

Significant differences were found among sequences, F(2,174) = 6.82, p = .001, for student 

interest/enjoyment. Post hoc analysis indicated that S1 (MeanS1 = 5.11, SDS1 = 1.63) and S2 

(MeanS2 = 4.08, SDS2 = 1.66) were different in their affect on student interest/enjoyment, p = 

.001; CI(95%) = .44, 1.61, with students in S1 reporting higher levels on interest/enjoyment than 

students in S2. S2 and S3 (MeanS3 = 4.90, SDS3 = 1.56) also had an affect on student 

interest/enjoyment, p = .005; CI(95%) = -1.43, -.25, with students in S3 reporting higher 

interest/enjoyment than students n S2. There were no significant differences in 

interest/enjoyment found between S1 and S3.  
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Figure 1: Student perceived autonomy support (PAS) and interest/enjoyment (IE) for day one 
and two of each instructional. S1 = lecture prior to scripted lab; S2 = scripted lab prior to lecture; 

S3 = inquiry lab prior to lecture. 
 

Achievement 
 

An ANCOVA analysis was conducted controlling for the effect of the pretest as a 

covariate to test whether the combination of instructional sequencing and teacher have an effect 

on posttest scores. While there was a significant difference found among teachers, F(1, 171) = 

4.72, p = .03, the combination of sequence and teacher did not have a significant effect on 

posttest scores, F(2,171) = 1.11, p =.33. There were significant differences found between 

sequences, F(2, 171) = 4.56, p = .01, for posttest scores. Post hoc analysis indicated that S1 

(MeanS1 = 6.08, SDS1 = 1.10) and S2 (MeanS2 = 5.52, SDS2 = 1.07) were different in their effect 

on posttest scores, p = .003; CI(95%) = .21, .98, with students in S1 reporting higher posttest 

averages than students in S2. No significance was reported for the difference in posttest scores 

between S2 and S3 (MeanS3 = 5.84, SDS3 = 1.09) or S1 and S3. There were no significant 
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differences between either teacher’s classes in regards to school environment, socioeconomic 

status, male-female ratio, or prior achievement scores in math and reading.   
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CHAPTER FIVE: DISCUSSION 

Past studies have shown that strengths associated with inquiry instruction include 

increased achievement, enhanced critical thinking skills and promotion of positive attitudes 

toward science when compared with varying direct instructional techniques such as lectures, 

worksheet or textbook-oriented classes (Ertpinar & Geban, 1996; Hall & McCudy, 1990; 

Hofstein, et al., 2001; Kyle et al., 1988; Leonard, 1983). As was confirmed in this study, students 

participating in autonomy-supportive classrooms in S3 reported higher interest than in classroom 

environments where they feel more controlled in S1 and S2 (Tsai et al., 2008).  On day one, 

students participating in the inquiry lab (S3) reported higher levels of perceived autonomy 

support than did students working on the procedural lab (S2). Students in the inquiry lab (S3) 

also reported the highest levels of student interest and enjoyment among all of the sequences. It 

is, perhaps, unsurprising that students participating in the inquiry lab (S3) would report higher 

interest or enjoyment when compared with students who are sitting more passively while 

listening to a lecture (S1). However, it is interesting to note that while two sequences of students 

were participating in hands-on lab activities (S2 and S3) and that both activities contained 

identical learning objectives and materials, the students participating in the inquiry lab (S3) 

reported significantly higher interest/enjoyment levels than the students working in the scripted 

lab (S2). This confirms the hypothesis that students enjoy activities more when they are not 

restricted to following set problem-solving procedures and are able to experiment more freely 

(Ryan & Deci, 2000).  

On day two, students in S2 and S3 listened to identical lectures on circuits. The students 

who had participated in the inquiry lab the day prior (S3) reported significantly higher 

interest/enjoyment and perceived autonomy support during the lecture than the students who had 
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participated in the scripted lab the day before (S2). This means that not only did students enjoy 

the inquiry version of the lab more than the procedural version but that the students in the inquiry 

group enjoyed the exact same lecture more as well. Again, and perhaps unsurprisingly, students 

working on the scripted lab (S1) reported significantly higher interest and enjoyment than the 

students who were listening to the lecture in S2. However, no significant difference was reported 

in perceived autonomy support or in interest/enjoyment between the students participating in the 

scripted lab (S1) and the students in S3 who were listening to the lecture and had previously 

participated in the inquiry lab the day prior.  

Additionally, on either day and among all of the sequences, no significant difference in 

perceived competence was found. Unlike what many cognitive theorists have found in previous 

studies comparing inquiry to direct instruction, students reported feeling as capable of success 

during the guided inquiry lab as they did during the lecture and scripted lab (Kalyuga, et al., 

2001; Kirschner et al., 2006; Paas & Van Merrienboer, 1994). These results suggest educators 

should not avoid inquiry in the classroom based on the idea that students will feel not feel 

capable of reaching the learning goals associated with the activity due to the over taxation of 

their working memory. Rather, this finding lends support to the idea that guided inquiry activities 

that are appropriately scaffolded allow students to feel just as competent during the activity as 

they would during direct instruction. Scaffolding techniques used in this study during the inquiry 

activity include specific wording of the mission to be solved, restricting use of available 

materials, use of peer support and interaction with the instructor during problem solving.  

These findings highlight the main goal of the study which sought to discover whether 

specific sequencing of instruction alone could positively affect student enjoyment. Should an 

educator wish to edit their curriculum given these findings, they would not have to add or 
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eliminate any content from their teaching objectives nor would they have to find extra time 

during the school year to attempt to use guided inquiry in the classroom. Having to adjust either 

of those factors would likely result in a teacher simply deciding not to implement the 

recommended finding as such changes are often impossible to make given the large amount of 

outside demands in public education. Rather, the significance of this study is the idea that a 

simple adjustment to the order in which a lesson is presented can significantly affect student 

enjoyment and interest. This finding is highly practical in the sense that the same amount of 

material can be covered in the same amount of time but result in a more positive effect on 

student motivation.   

Despite the fact that students report higher levels of motivation during guided inquiry 

activities, teachers are often reluctant to shift their teaching styles from traditional to inquiry-

based for a variety of reasons (Lord, 1997). One main reason is that while teachers may read and 

even agree with theoretical findings, teachers often make decisions based on the day-to-day 

practical factors associated with running a classroom (Anderson, 2002). Inquiry-based classroom 

environments are often more demanding in terms of classroom management as students are often 

participating more actively in debate while problem solving (Anderson, 2002; Hofstein 

&Walberg, 1995). Appropriate debating techniques must be explained and modeled for students 

before jumping into an inquiry-style curriculum. Teachers must feel comfortable and have 

practice with these practical classroom management matters before they are likely to adopt a new 

pedagogy (Anderson, 2002). Even more, switching teaching styles often requires a shift in 

deeply-held beliefs about the purpose a teacher serves. Teachers who view themselves in the 

traditional role as dispensers of information may have a hard time shifting to the belief that 

students should uncover and experiment with concepts themselves through experimentation. 
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Additionally, teachers in inquiry-based classroom environments often face unforeseen 

questions from students that may make the teacher uncomfortable if they do not feel capable of 

answering the questions (Welch et al., 1981). In inquiry situations, as control is shifted from the 

teacher to the student, teachers must be more flexible and willing to expect the unexpected than 

they would during direct instruction. If a teacher is not completely comfortable in understanding 

the content they are teaching, releasing this control is a formidable task.  

The results of this study showed that the students who began with the lecture and 

followed up with the scripted lab (S1) demonstrated significantly higher gains on posttest scores 

when compared with the instruction done in the reverse order (S2). No significant differences in 

posttest gains were reported between students who received an inquiry lab followed by a lecture 

(S3) with either of the other sequences. These results suggest that while students may achieve the 

smallest gains when participating in a scripted lab before a lecture, it would not make a 

significant difference should a teacher begin a lesson with a lecture or with an inquiry lab 

depending on their particular preference. Though the results of this study did not indicate that 

students in the inquiry group demonstrated higher academic gains despite their increased 

perception of choice and interest and enjoyment, previous studies have shown that students with 

autonomously supportive teachers (rather than controlling ones) demonstrated higher conceptual 

understanding and academic achievement (Boggiano, et al., 1993; Grolnick & Ryan, 1987; Ryan 

& Grolnick, 1986).  

One factor that may have influences the observed results is the brevity of student 

exposure to the particular instructional sequence each student was assigned to. Future research 

comparing the effects of instructional sequencing on students’ motivation and achievement 

would benefit from a lengthier version of this study where students are exposed to multiple 
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repetitions of their assigned instructional sequence within a broader unit of curriculum as 

opposed to a single lesson. For example, instead of one lesson comparing series and parallel 

circuits, it may be of greater benefit to see how students report motivation and perform 

academically after experiencing an entire unit on electricity containing multiple but related 

lessons. In that scenario, students would participate in a continuous experience within their 

particular instructional sequence. A longer study covering more instructional content would also 

allow for a lengthier and more comprehensive pre and post assessment than was used in the 

current study which may reveal clearer distinctions in achievement among the sequences. 

Additionally, a small effect among the two teachers was found with students performing higher 

for one teacher over the other regardless of which sequence they were in.  
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CHAPTER SIX: CONCLUSION 

The findings of this study are highly practical in that they do not advise educators to 

somehow find more time during the school year in order to implement recommendations; often 

an impossibility for some educators. Rather, greater student enjoyment can be achieved in the 

same amount of class time by sequencing the order in which instruction is presented. Teachers 

who previously lectured before lab could simply reverse the order and conduct an inquiry lab 

prior to a lecture potentially increasing student enjoyment and achievement without needing to 

use any more valuable class time. As students often report decreasing levels of motivation and 

achievement as they enter adolescence, teachers and researchers must find ways to align 

instruction, keep students engaged in their learning, and create a positive classroom experience 

for students (Anderman & Maehr, 1994; Eccles, Midgley, Wigfield, Buchanan, Reuman, 

Flanagan, & Iver, 1993). As Dewey (1913) put best, “our whole policy of compulsory education 

rises or falls with our ability to make school an interesting and absorbing experience to the 

child’’ (p. ix).  
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APPENDIX A: PRE AND POST ASSESSMENT 
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1. Three bulbs are lit in an electrical circuit. When one bulb is removed, the rest of the bulbs go 
out. Identify the type of circuit that is being described. 
 

a) complete 
b) parallel 
c) series 
d) short 

 
 
 
2. Which of the following changes would increase the electrical current in a series circuit? 
 

a) adding more light bulbs 
b) removing one light bulb 
c) adding another fuel cells 
d) removing one of the wires 
 

 
 
3. Below are two identical bulbs (W and X). They are connected to the same C-cell battery as 
shown in the illustration below. Assuming that the bulbs are equal, which of the following 
statements best describes what will happen when the circuit is turned on? 
 

a) The W-bulb will be brighter than the X-bulb. 
b) The X-bulb will be brighter than the W-bulb. 
c) Neither bulbs will be lit because the circuit is open. 
d) Both bulbs will be lit at an equal level of brightness. 

 
 
 
 
 
 
4. Examine the closed circuit diagram below. DRAW ARROWS on the diagram to show how 
electrons are moving through the circuit. 
 
 
 
 
 
 
 
 
 
 
Use the following scenario and answer questions 5-7. 
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Mark arranged two identical light bulbs in a series circuit and two other identical light bulbs in a 
parallel circuit. Both circuits use two, identical C-cell batteries. He notices that the light bulbs in 
one of the circuits are brighter than in the other circuit.  
 
 
 
 
 
 
 
 
 
 
       Circuit  1        Circuit 2 
 
 
 
5. In which circuit are the light bulbs brighter? ___________________ 

 
6. Explain what causes the light bulbs in this circuit to be brighter.  
 

 
 
 
 
 

7. In which circuit would the batteries drain the most quickly? __________________ 
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APPENDIX B: SCRIPTED LAB FOR SEQUENCE TWO (S2) 
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Materials: 
2 D Batteries    2 light bulbs with wires on each side   
2 Battery holders   1 wire    
    
 
PART A: 
 
1. Arrange the materials into the following SERIES circuit  
    arrangement so that both bulbs are lit. Notice how ALL 
    wires are touching each other or a battery! 
 

a) Describe what you think the purpose of each 
of the following materials is: 
 

Battery:  _____________________________ 
 

Wire: ________________________________ 
 

Light bulb: ____________________________ 
 
 
2. DRAW ARROWS on the diagram to show how you think electrons are moving through the 
SERIES circuit.  
 
 

 

 

 

 

 

3. Remove ONE of the batteries and reconnect the SERIES circuit with only ONE D battery. 
What happens to the brightness of the lights when one of the batteries is removed? 
 
 
4. Add the battery again so that the circuit is lit with BOTH batteries. Now, make a break in the 
circuit by disconnecting one of the wires touching the battery. What happens to both lights when 
the wire is disconnected? Why do you think this happens? 
 
 
 
 

 

 

 

 

Series Circuit 
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PART B: 
 
5. Arrange the materials into the following  
    PARALLEL circuit arrangement so that both  
    bulbs are lit. Notice how ALL wires are  
    touching each other or a battery! 
 
 
 
 
 
 
6. DRAW ARROWS on the diagram to show how you think electrons are moving through the 
PARALLEL circuit.  
 
 

 

 

 

 
 
 
7. a) Does the PARALLEL circuit have more or less light than the SERIES circuit? __________ 
 
 
    b) Why do you think the level of brightness is different between the PARALLEL and SERIES 
circuits? Explain your thinking. 
 
 
 
 
 
8. Remove ONE of the batteries and reconnect the PARALLEL circuit with only ONE D 
battery. What happens to the brightness of the lights when one of the batteries is removed? 
 
 
 
 
9. Add the battery again so that the circuit is lit with BOTH batteries. Now, make a break in the 
circuit by disconnecting ONLY ONE of the light bulb’s wires from the battery (the other light 
bulb’s wires should continue to touch the battery) What happens to the bulbs when the one wire 
is disconnected? Why do you think this happens? 
 

  

Parallel Circuit 
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APPENDIX C: INQUIRY LAB FOR SEQUENCE 3 (S3) 
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Materials: 
2 D Batteries    2 light bulbs with wires on each side   
2 Battery holders   1 wire  
 
 
Missions: 
 

1) Find a way to make BOTH bulbs light up at the same time. 
 

2) Find a way to make BOTH light bulbs go out by disconnecting ONLY ONE wire. 
 

3) Make one light bulb GO OUT and the other light bulb STAY ON by disconnecting  
    ONLY ONE wire. 

 
 
Draw and label your arrangements for each of the missions above. 
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APPENDIX D: MOTIVATION SELF-SURVEY 



 

 37 

Please indicate how true each statement below is for you by circling 7 for “very true” and 1 for 
“not true at all.” 
 
 
1. I feel that my teacher provides me choices and options. 
 
2. After working at this lesson for a while, I felt pretty confident I understood it. 
 
3. While I was doing this lesson, I was thinking about how much I enjoyed it. 
 
4. My teacher tries to understand how I see things before suggesting a new way to do things. 
 
5. This activity did not hold my attention at all. 
 
6. I am satisfied with my performance in this lesson. 
 
7. I would describe this lesson as very interesting. 
 
8. My teacher showed confidence in my ability to do well in the lesson. 
 
9. I was pretty skilled at this lesson. 
 
10. I enjoyed doing this lesson very much. 
 
11. This was an activity that I couldn’t do very well. 
 
12. My teacher encouraged me to ask questions. 
 
13. I think I did pretty well at this lesson, compared to other students. 
 
14. I thought this lesson was enjoyable. 
 
15. My teacher listens to how I would like to do things. 
 
16. I think I am pretty good at this lesson. 
 
17. This lesson was fun to do. 
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APPENDIX E: TEACHER OBSERVATION CHECKLIST 
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1.  Does the teacher establish and maintain standards for student behavior? 
 

1   2   3   4   5 
Rarely    Occasionally    Consistently 

 
 
 
2.  Does the teacher demonstrate knowledge of subject matter content? 
 

1   2   3   4   5 
Rarely    Occasionally    Consistently 

 
 
 
3.  Does the teacher provide clear directions and explanations for students?   
 

1   2   3   4   5 
Rarely    Occasionally    Consistently 

 
 
 
4. Does the teacher make the purposes for instruction clear to the student? 
  

1   2   3   4   5 
Rarely    Occasionally    Consistently 

 
 
 
5. Does the teacher attempt to engage students through enthusiasm? 
 

1   2   3   4   5 
Rarely    Occasionally    Consistently 
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