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ABSTRACT

When purchasing durable goods, consumers not only pay for current but also fu-

ture consumption; consequently, forward looking behavior is an important consideration in

durable goods markets. For example, anticipating that prices will go down in the future,

consumers may delay the purchase today; such behavior has a significant impact on the

firm’s marketing strategies. This dissertation investigates the impact of durability on two

marketing strategies: new product introductions and supply chain design.

The first part of this dissertation (Chapter 3) examines a durable goods manufac-

turer’s new product introduction strategy under different market environments where net-

work effects and product compatibility are important. More specifically, this part explores

the incentives of a firm to use either a replacement strategy or a skipping strategy—in the

former, the firm commercializes the existing technology, while in the latter, it does not;

in either case, an improved technology will be available in the future and the firm will in-

troduce a new product at that time. Using a two-period analytical model with network

effects, the analysis shows how the level of improvement in the new product, along with the

type of compatibility between the products, interacts with network strength to determine

the manufacturer’s optimal strategy. Under gradual new product improvement, there is a

strict preference for replacement. In contrast, under rapid new product improvement, that

preference only holds in markets with relatively high levels of the network strength; at lower

levels of the network strength, skipping is preferred; interestingly, for moderate values of

the network strength, the level of product improvement affects the manufacturer’s optimal

choice differently under varying types of compatibility.

The second part of this dissertation (Chapters 4 and 5) focuses on the supply chain

design decisions of a durable goods manufacturer who is a sole supplier of an essential

proprietary component for making the end product. Three different supply chain structures
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are considered. In the first, the manufacturer operates as a “component supplier” and sells

the component to a downstream firm who then makes the end product. In the second

structure, the manufacturer produces the end product using its component but does not

make that component available to any other firms; here, the manufacturer operates as a

“sole entrant”. Finally, the manufacturer can operate as a “dual distributor” who not only

makes the end product using its own component, but sells the component to a downstream

firm who then competes against the manufacturer in the end product market.

The extant literature on the optimal choice among the above supply chain structures

has focused mainly on static settings in a framework of price competition. By contrast,

researchers predominantly use quantity competition to examine durable goods markets in

dynamic (i.e., multiple time period) settings. Moreover, the literature notes diversity in

optimal firm behavior under the two types of (i.e., price and quantity) competition. There-

fore, to transition from supply chain design in a static setting to a more dynamic one where

consumers are forward-looking, this part utilizes Chapter 4 to analyze the manufacturer’s

choice using quantity competition in a static setting. This analysis (in Chapter 4) identifies

precisely the shift in the manufacturer’s choice of supply chain structure when moving from

price competition to a quantity competition framework.

With that analysis as a benchmark, the next chapter focuses on the manufacturer’s

choice in a dynamic setting. More specifically, Chapter 5 investigates the impact of dura-

bility on the optimality of the supply chain structures identified above. Using a two period

setting, the analysis explores how the manufacturer’s preference for different supply chain

structures is modified. The findings reveal that, e.g., when durability is taken into account,

the manufacturer’s preference for the sole entrant role goes up, while the preference for the

component supplier role goes down. Further, under certain conditions, the manufacturer

may opt to be a dual distributor in the first period and then choose to become only a com-

ponent supplier in the second period. The underlying rationale for such shifts in preference
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is directly linked to durability, which creates future competition and substantially reduces

the manufacturer’s profitability in the long run. Interestingly, this negative impact varies

across different supply chain structures.

Overall, this dissertation contributes to the current literature on durable goods and

enhances our understanding of the impact of durability on the optimality of distinct mar-

keting strategies, and provides insights that are valuable to both academics and managers.
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CHAPTER 1: INTRODUCTION

Durable goods such as automobiles, aircraft, and consumer electronics are consumed

over a long period of time and frequently require sizable investment from both consumers

and producers. They also constitute a significant part of the economy, with annual personal

consumption expenditures exceeding $1 trillion (The Bureau of Economic Analysis). In par-

ticular, since durable goods are often big-ticket items, when purchasing them, consumers take

into account not only current but also future consumption. This forward looking behavior

has been shown in the literature to be detrimental to the manufacturer’s profitability. There-

fore, understanding the behavior of consumers and developing suitable marketing strategies

are critical for a durable goods manufacturer. This dissertation investigates the impact of

durability on two marketing strategies: new product introductions and supply chain design.

The first part of this dissertation (Chapter 3) examines a durable goods manufac-

turer’s new product introduction strategy under different market environments where net-

work effects and product compatibility are important. More specifically, this part explores

the incentives of a firm to use either a replacement strategy or a skipping strategy—in the

former, the firm commercializes the existing technology, while in the latter, it does not; in

either case, an improved technology will be available in the future and the firm will introduce

a new product at that time.

The extant literature suggests that when the level of improvement in the newer prod-

uct is relatively high, the durable goods manufacturer is better off not introducing the older

product (Choi 1994, Purohit 1994); the rationale is that the presence of the older product

suppresses the margin and subsequently lowers the profit from the newer product. Interest-

ingly, when the durable product has a network effect associated with it as in the smart-phone

and tablet-computer categories, research shows that the firm’s price can go up over time as

the size of the network builds up (see e.g., Liu and Chintagunta 2009). Consequently, when
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network effects are significant, the impact on the total profit may not be substantial and

the manufacturer’s incentive to not introduce the older version of the product may be cor-

respondingly attenuated. Further, the products made by a firm using the newer technology

are often not fully compatible with that firm’s older products; because distinct types of

compatibility will generate different network effects, they are likely to influence the manu-

facturer’s preferences differently. In light of this, there is a need for researchers to reevaluate

the durable goods manufacturer’s product introduction decisions while accounting for the

type of compatibility and the associated network effect.

Chapter 3 of this dissertation takes a step towards bridging the above gap in the

literature and tackles the following research questions while considering network effects: (1)

When is it optimal for a firm to not commercialize an existing technology, given that it will

introduce an improved product in the future? (2) What is the role of product compatibility

in shaping the firm’s preferences in this context?

When the firm follows a replacement strategy, profit accrues from both the older

and the newer products. This contrasts with the skipping strategy, where only the newer

product contributes to the profit stream. Skipping, however, can help attenuate any effects

of intra-brand competition that arise inter-temporally. For instance, in the absence of any

network effect, when the older product is not very different from the newer product (as in

the case of gradual improvement), conventional wisdom may suggest that there is likely to

be more intense intra-brand competition; and consequently, skipping may be preferred. Our

goal is to explore whether such intuition is valid and gain a better understanding of how the

firm optimally resolves the above trade-off under different market settings.

Using a two-period model, our analysis characterizes when the firm will select skipping

over replacement for different levels of product improvement (we consider two levels: rapid

and gradual improvement) and compatibility between the new and old products (we consider

three types: full, forward and backward compatibility). We find that the relative preference
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for skipping and replacement indeed depends on the level of product improvement and the

type of compatibility. Under gradual improvement, for instance, our finding is contrary to the

conventional wisdom suggested above. When consumers are heterogeneous in their valuation

for the product, if the difference in the two products is not too large (i.e., as in the case of

gradual improvement), then the segment with the relatively higher valuation has less of an

incentive to wait for the newer product. Consequently, if the older product were available,

such consumers will purchase it. Given the behavior of this higher valuation segment, the

firm can charge a relatively higher price for the older product (if it were introduced). That

gain in price more than compensates the firm for any loss accruing in the profit from the

newer product (due to intra-brand competition). Therefore, under gradual improvement,

replacement dominates skipping.

By contrast, if the difference in the two products is relatively large (i.e., as in the

case of rapid improvement) and the future is particularly valuable (i.e., the discount factor

is relatively high), then the higher valuation segment has an incentive to wait for the new

product; consequently, the firm now has an incentive to select skipping to extract a larger

surplus from this segment via the new product. In this setting, we characterize the precise

conditions when skipping may be preferred to replacement.

We find that product compatibility—by influencing the relative attractiveness of the

two products—affects the level of intra-brand competition between the older and the newer

products. Under full compatibility, for example, adopters of the older product are able to

enjoy the network benefit sooner (since they join the market earlier). When the strength of

the network is relatively large, there is a significant raise in the desire to consume the older

product, which in turn motivates the firm to commercialize it despite the ensuing impact

of intra-brand competition. Therefore, under full compatibility and rapid improvement, the

firm will follow a replacement strategy at higher values of the network effect; under gradual

improvement, the analogous incentive is even stronger.
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Under forward compatibility, as noted earlier, consumers appreciate the older product

more; this puts a downward pressure on the newer product’s price and adoption—essentially,

it weakens the advantage arising from the level of improvement in the newer product. Under

rapid improvement, at higher levels of the network effect, the downward pressure affects

the firm’s profitability significantly and the firm is better off not commercializing the older

product.

Under backward compatibility, recall that the newer product’s value to consumers is

enhanced by the network size of the older product. By the same token, however, consumers

are less inclined to buy the older product. Therefore, in order to accrue the benefit from

backward compatibility of the newer product, the firm has to offer an incentive to consumers

to induce enough purchases of the older product. Such an inducement can prove too costly

to the firm, depending on the magnitude of the network effect and the relative improvement

level across the two products. Consequently, if the older product were introduced, the firm’s

profitability under backward compatibility (vis a vis full compatibility) can either be higher

or lower depending on the parametric regime. This contrasts with the corresponding shift

under the forward compatibility setting noted earlier. In the above sense, our analysis

highlights the role of product improvement and compatibility on the product strategies of

durable goods manufacturers.

Next, the second part of this dissertation focuses on the supply chain design decisions

of a durable goods manufacturer who is a sole supplier of an essential proprietary component

for making the end product. Three different supply chain structures are considered. In the

first, the manufacturer operates as a “component supplier” and sells the component to a

downstream firm who then makes the end product. In the second structure, the manufac-

turer produces the end product using its component but does not make that component

available to any other firms; here, the manufacturer operates as a “sole entrant”. Finally,

the manufacturer can operate as a “dual distributor” who not only makes the end product
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using its own component, but sells the component to a downstream firm who then competes

against the manufacturer in the end product market.

In practice, we observe different supply chain structures utilized in durable goods

markets. Firms such as Intel, Bosch Automotive Group, ARM Holdings, Dolby follow a

component supplier structure. A sole entrant structure is employed by other firms like

Bose Corporation, and Apple. Finally, firms may follow a dual structure as in the case of

Cannon which produces the laser printer using its print engine and supplies that engine to

its competitor in the end market HP; or Sony provides its Trinitron TV picture tube to its

competitor Toshiba.

Given different structures observed in different industries, extant literature has inves-

tigated their optimality in the context of static spacial competition (e.g. Venkatesh et al.

2006, Xu et al. 2010). However, little effort has been dedicated to incorporate the impact

of durability on the choice of different supply chain structures despite its detrimental effect

on the firm’s profitability as noticed by the literature. Chapters 4 and 5 take a step towards

examining that impact.

More specifically, we notice that most durable goods are made via significant time

consuming production processes. Hence, there is a friction in changing product quantities,

i.e., companies are capacity constrained when selecting prices. For this reason, the majority

of work in the durable goods literature takes quantity as an important decision variable (e.g.,

Bulow 1982, 1986, Purohit and Staelin 1994, Purohit 1995, Desai et al. 2004). However, the

extant literature on the optimal choice among supply chain structures has focused mainly on

price competition (e.g. Venkatesh et al. 2006, Xu et al. 2010). Further, there is a diversity

in optimal firm behavior under price and quantity competition (Singh and Vives 1984, Arya

et al. 2008c). Consequently, the purposes of Chapter 4 are: (1) to compare and contrast the

optimal supply chain design under price vis-a-vis quantity competition; (2) to link the above
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comparison with the findings from the existing work; (3) to provide a useful benchmark for

the design of supply chain in a dynamic setting in Chapter 5.

Extant literature (e.g., Venkatesh et al. 2006, Xu et al. 2010) shows that when

the proprietary component manufacturer is a sole entrant, it could avoid the effect of double

marginalization but suffers from a cost disadvantage due to lack of expertise in producing and

selling the end products (Xu et al. 2010). Alternatively, a component supplier can leverage

the expertise of the downstream firm in producing and marketing the end product but its

market coverage is restricted due to double marginalization. Finally, the dual structure seems

to lower the effect of double marginalization because the end market is more competitive

(and has higher coverage); however, channel conflicts may dampen this advantage because

the manufacturer has to reconcile between wholesale and end product profits.

Our analysis in Chapter 4 shows that the relative preference for different structures

depends on the level of cost disadvantage and the level of product differentiation between

the end products of the manufacturer and the downstream firm. More importantly, these

preferences change from price to quantity competition, especially between the component

supplier role and the dual distributor role. Compared to price competition, the firm’s prof-

itability is less disruptive under quantity competition in the following sense: when the firm

incurs a higher level of cost disadvantage in producing the end product, there is a steep

drop in profitability as the firm transitions to a component supplier structure from a dual

distribution structure under price competition. By contrast, under quantity competition, the

transition is more gradual. Interestingly, this feature allows the firm to gain higher profits

in a certain parametric range of cost disadvantage under quantity competition.

The rationale of the findings is as follows. Under the dual distributor role, managing

the wholesale and end product profits forces the manufacturer to lower its component’s price

offered to the downstream firm (compared to a component supplier structure). This effect

is more detrimental under quantity competition; consequently, the dual distributor obtains
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lower profits here, than under price competition. However, the higher profitability of the

dual distribution under price competition goes with an inability to sustain the structure at

higher levels of cost disadvantage. In other words, a dual structure can arise for a range of

the cost disadvantage under quantity competition but not under price competition; in that

range, the quantity competition setting gives the manufacturer higher profits.

Next, we link our results to the existing work by conducting the analysis using their

setting but employing quantity competition. We show how our results fit into the context

of their models. This exercise helps us reconcile the differences in moving from a horizontal

differentiation to a vertical differentiation setting in Chapter 5.

In Chapter 5, we address the research question on how durability impacts the long-

term profitability of different supply chain structures by building a two-period analytical

model in which the manufacturer selects among being: (a) a sole entrant, (b) a component

supplier, and (c) a dual distributor. This two-period setup helps capture the durable nature

of the product (i.e., the future competition created by durability). In particular, a new

product in the first period becomes a used product in the second period; hence, durability

is captured through the valuation of the used product in the second period. If a product

is a nondurable, the used product has no value; if the product does not depreciate, the

used product’s valuation is the same as that of the new product sold in period 2. The

competition between the used product and the new product in period 2 is captured via a

perfectly competitive secondary market. It is worth noting that when the product in this

setting has zero durability, or when the future is not valuable (i.e., the discount factor is

zero), the analysis collapses to the one discussed in Chapter 4.

We examine the impact of durability on the profitability of different supply chain

structures by conducting comparative statics analysis on key decisions. Our analysis reveals

that the optimality of each of the alternatives is changed significantly (from the results in

Chapter 4) when the product’s durability is taken into account. More specifically, the sole
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entrant role becomes more preferred to a dual distributor role, while the component supplier

role becomes less preferred. Further, under certain conditions, the manufacturer may opt to

be a dual distributor in the first period and then become a component supplier in the second

period. These results help explain, for instance, why certain companies like Apple may be

better off embracing a sole entrant structure in the long-run.

Overall, this dissertation contributes to the current literature on durable goods and

enhances our understanding of the impact of durability on the optimality of distinct mar-

keting strategies, and provides insights that are valuable to both academics and managers.
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CHAPTER 2: LITERATURE REVIEW

This dissertation generally builds upon the prior literature on durable goods. We

explore two major marketing strategies in such markets: new product introductions and

supply chain design. The first section will review general issues in durable goods markets,

followed by the literature that addresses the topics related to the interest of this dissertation.

The literature on durable goods (see Waldman 2003 for an overview) has highlighted

the impact of product durability on the firm’s profitability. In a seminal paper published in

1972, Coase conjectured that a durable goods monopolist could lose its market power since

the price would go down over time. The rationale is as follows: After serving consumers in

a given time period, the monopolist will have an incentive to lower the price of the product

to capture the residual demand; anticipating this, consumers will rationally delay their

purchase. Successive application of this logic propels the price to the firm’s marginal-cost

level.

This conjecture is formalized and elaborated in Stokey (1981) using both continuous-

and discrete-time models. With the former model, Stokey demonstrates that Coase’s conjec-

ture holds in a perfect rational-expectations equilibrium (i.e., consumer’s expectations are

fulfilled at all times). With the discrete-time version, Stokey shows how the length of the

discrete period affects prices (with prices approaching the competitive level as the duration

of the period becomes smaller). Using a discrete two-period framework, Bulow (1982) pro-

poses how the monopolist can improve its profit by implementing a leasing policy (also see

Purohit 1995, Bhaskaran and Gilbert 2005, Chien and Chu 2008 who examine when such a

preference for leasing may be modified). Subsequent work identifies further conditions under

which the Coase conjecture may not hold: discrete demand (Bagnoli et al. 1989), decreasing

return to scale (Kahn 1986), product depreciation (Bond and Samuelson 1984), and planned

obsolescence (Bulow 1986).
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2.1 Part I: New Product Introductions and Network Effects

The implications of durability are apparently broader than just the pricing trajectory

proposed in Coase (1972). More specifically, as highlighted by Waldman (2003), research

on new product introductions in durable goods markets has yielded valuable insights (e.g.,

Levinthal and Purohit 1989, Purohit 1994, Dhebar 1994, Fudenberg and Tirole 1998, Kornish

2001). Levinthal and Purohit (1989) examine different production strategies (e.g., separate

production, joint production, and buy-backs) when the firm introduces an improved prod-

uct and technological progress leads to the phenomenon of product obsolescence. With a

separate production strategy, the innovating firm stops producing the current product when

the improved version arrives. Joint production, on the other hand, maintains a product

line after the new product launch. Finally, the firm can buy-back the current product when

introducing a new one. The authors find that the innovating firm is better-off replacing

the current product with an improved version when the improvement level is moderate. By

contrast, the innovating firm will follow a buy-back strategy when the improvement level

is large. Purohit (1994) extends this framework by endogenizing the innovation level and

accommodating entry by a clone into the market. Purohit shows that a product replacement

strategy (i.e., separate production) dominates a line extension strategy (i.e., joint produc-

tion) whenever the firm introduces a new product. This is because maintaining a product

line hurts the firm’s profit more than the incremental contribution from the old product’s

sales.

Dhebar (1994) uses an individual level model to investigate the impact of product

improvement levels on the firm’s ability to commit to future prices. He shows that a relatively

high level of product improvement—referred to as rapid improvement (as opposed to gradual

improvement)—may lead to disequilibrium outcomes where some consumers feel regret about

their purchase. Said differently, under rapid improvement, the firm cannot credibly commit
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to future prices. The implication is that consumers disfavor rapid improvements that make

earlier purchase obsolete; and companies should be cautious when launching such rapidly

improved new products. Nevertheless, delaying such commercialization may not be an option

for companies at least in some industries (see Ramachandran and Krishnan 2008). Further,

Kornish (2001) generalizes the consumer utility function used in Dhebar (1994) and shows

that a durable goods monopolist can commit credibly even under rapid improvement. In

her model, the firm is not allowed to offer an upgrade price for the new product; consumers,

however, can make repeat purchases over time. More recent work (e.g., Ramachandran and

Krishnan 2008, Bala and Carr 2009) elaborates on the firm’s upgrade policy by considering

the roles of product architecture and upgrade costs. It is worth noting that this stream of

work does not consider the existence of a secondary market.

Fudenberg and Tirole (1998) focus on pricing the new and improved product when

the firm’s knowledge of consumer purchase history varies: (1) anonymous consumers (i.e.,

the firm does not know purchase history) in the presence of a secondary market, (2) no sec-

ondary market and identified consumers, and (3) no secondary market and semi-anonymous

consumers (i.e., consumers can prove their purchase history if they wish to do so). In (1),

they examine pricing under different product policies such as being inactive (i.e., replace-

ment), buybacks, and a product line and show the optimality of these policies under different

parametric regimes. In (2) and (3), under gradual improvement, an upgrade price is offered

to repeat purchase consumers.

Another important area relates to the excessive R&D investment phenomenon (e.g.,

Waldman 1996, Nahm 2004) or the excessive number of product upgrades phenomenon in

durable goods markets with network effects (e.,g., Ellison and Fudenberg 2000, Sankara-

narayanan 2007). This stream of research reveals that a durable good monopolist may face a

commitment problem with respect to introducing improved products under certain circum-

stances. More specifically, a monopolist may be better-off committing to limited R&D or a
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fewer number of product upgrades. The rationale is similar to the aforementioned Coase’s

conjecture; that is, the firm has too high of an incentive to introduce new products in later

periods that lowers earlier products’ value in consumers’ eyes, leading to a lower overall

profitability.

Research on network effects has recently drawn considerable attention among re-

searchers (see Liu and Chintagunta 2009, Birke 2009, Shy 2011 for detailed reviews). Since

several products—such as video game consoles, and software—have a network effect as-

sociated with them, it is natural to study the impact of the network in a durable goods

framework. In one of the early research efforts, Katz and Shapiro (1985)(KS) conclude that

consumer expectations play a crucial role when competing products are incompatible—in

the sense that multiple equilibria can arise and if consumers believe a firm to be dominant,

then that firm, in fact, will be the winner in equilibrium. KS also argue that firms with a

relatively large customer base tend to be against fostering product compatibility; by con-

trast, firms with smaller networks support product compatibility. Their argument highlights

a general trade-off that firms in network industries face: on the one hand, making compatible

products raises the products’ value to the consumer; on the other hand, incompatibility may

increase a firm’s monopoly power.

Later work, however, lends more support to the focal firm inviting compatible entry

(e.g., Xie and Sirbu 1995, Economides 1996, Baake and Boom 2001, Sun et al. 2004). Xie

and Sirbu (1995), for instance, show that an incumbent may be better off if it facilitates

entry in the early stages of the diffusion process. Economides (1996) obtains an analogous

result using a static model in which the leader firm has an incentive to invite compatible

entry at higher levels of the network effect. Such results arise because the incumbent can

benefit from a bigger network size; further, the increased competition can signal a higher

output level to the consumer. Baake and Boom (2001) conclude that both higher and lower

quality firms would agree on compatibility through an adapter, even though the former
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would prefer an equilibrium without an adapter. In their model, firms choose quality levels

prior to selecting compatibility (via consensus). In the absence of compatibility, the lower

quality firm selects its quality so that the firms are less differentiated, thus intensifying price

competition. Consequently, the higher quality firm prefers the lesser of two evils and agrees

on compatibility. More recently, Chen et al. (2009) point out that strategic pricing forces

firms to maintain compatibility in the long-run.

Sun et al. (2004) use a static model to characterize the conditions of optimality for

various product strategies of an innovator in markets with network effects. The strategies

include selling just a single product, licensing, line extension and a combination of licensing

and line extension. When there is a strong network effect, they show that the last three

strategies mentioned above are all feasible and that the optimal choice depends on the

marginal cost of the lower quality product.

Product compatibility is a fundamental issue in markets exhibiting network effects,

either for different products of a firm or for the ones from different firms. Apart from the

binary options of product compatibility which are usually examined (i.e., compatible vs.

incompatible), extant literature alludes to the notion of partial compatibility: “In reality

... compatibility should be regarded as a matter of degree, rather than as an all or nothing

decision. Additionally, it is useful to define two kinds of one-way compatibility—backward

and forward compatibility ...” (Choi 1994, footnote 7).

Intuitively, backward compatibility helps raise the value of the new technology, whereas,

forward compatibility makes the older technology more appreciated. However, it is not ob-

vious how compatibility and technology improvement impact the firm’s profitability in a

dynamic context when products based on different technologies can be introduced by the

same firm. Researchers have been exploring different facets of this issue: Choi (1994), for ex-

ample, studies a discrete choice of compatibility under new product improvement and shows

that incompatibility is desirable when product improvement is relatively large. Ellison and
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Fudenberg (2000) and Sankaranarayanan (2007) focus on backward compatibility and do

not consider other compatibility settings. Nahm (2008) examines backward compatibility

but does not consider the role of product improvement; he finds, for instance, that the profit

impact of making hardware backward compatible is always positive, whereas for software

the impact depends on the distribution of consumer types.

In Chapter 3 of this dissertation, we look at the choice of introducing a current tech-

nology (old) product, given that a new and improved version will be introduced later (i.e.,

skipping vs. replacement); hence, we complement the literature on both the commitment

problem in new product introductions (e.g., Ellison and Fudenberg 2000, Sankaranarayanan

2007), as well as on the rationale for sequential product introduction (e.g., Padmanabhan et

al 1997). Sequential innovation happens in our model because of exogenous technological evo-

lution; along with this technological progress, we incorporate different product-compatibility

regimes (full-, backward-, and forward-compatibility). Therefore, our work extends the anal-

ysis in Purohit (1994) and Choi (1994): Purohit (1994) examines the possibility of skipping

but does not focus on network effects; Choi (1994) uses a two-type discrete consumer model

with two levels of product compatibility (full- vs. in-compatibility). By contrast, we develop

a continuous-type consumer model, consider network effects along with full-, backward- and

forward- compatibility. Like Sun et al. (2004), we too look at product strategies, but our

model addresses different issues—we study a dynamic setting with different levels of com-

patibility between the products.

Overall, we draw upon the durable goods framework with disaggregate consumers

(e.g., Dhebar 1994, Kornish 2001, Fudenberg and Tirole 1998), as well as the work on network

effects and compatibility (e.g., Katz and Shapiro 1985, Choi 1994, Ellison and Fudenberg

2000) to develop our model in Chapter 3.
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2.2 Part II: Supply Chain Design

Supply chain design (or channel design) has been a major concern for marketers. Early

work focuses on the choice of decentralization vs. centralization in which the firm decides

whether to add an intermediary into its channel (e.g., McGuire and Staelin 1983, Coughlan

1985, Moorthy 1988) despite the effect of double marginalization (i.e., the intermediary

requires a margin when selling the product to consumers, leading to a higher price). Later

work considers more diverse structures (e.g., Choi 1991, Purohit 1995, Purohit and Staelin

1994, Purohit 1997, Desai et al. 2004, Arya and Mittendorf 2006, Bhaskaran and Gilbert

2009). More recently, dual distribution has drawn substantial attention in academia and

business, especially with the popularity of e-commerce (see Tsay and Agrawal 2004 for a

review). Further, with the advent of international outsourcing, particularly in manufacturing

section, firms start to embrace and make it a strategic consideration when designing their

supply chain (e.g. Kamien et al. 1989, Shy and Stenbacka 2003, Arya et al. 2008b, 2008c).

In what follows, we review each of these research areas.

McGuire and Staelin (1983) consider channel design of duopoly manufacturers with

differentiated products under three settings: completely integrated (both do not use an

intermediary), completely decentralized (both use their own exclusive intermediary), and

mixed (one manufacturer uses an exclusive intermediary while the other does not). It is

shown that both manufacturers prefer using an intermediary when the end market is highly

competitive. It happens because intense price competition lowers the products’ prices, and

thus, mitigating double marginalization under decentralization. Coughlan (1985) extends

this work with a general demand function and shows support for the above finding via an

empirical test using the context of the semiconductor industry.

15



Later, Moorthy (1988) enhances the understanding of decentralization decisions by

examining the combination of demand dependence and strategic dependence. More specif-

ically, demand dependence includes demand complementarity and demand substitutability;

strategic dependence includes strategic complementarity and strategic substitutability. For

example, with strategic complementarity, a player would reduce his price when the other

player does so; one the other hand, with strategic substitutability, a player would reduce his

price when the other player increases price. Moorthy shows that decentralization can be pre-

ferred under two scenarios. In the first, products are demand substitutes at retail level and

strategic complements at the manufacturer or retailer levels. In the second scenario, products

are demand complements at the retail level and strategic substitutes at the manufacturer or

retailer levels. The implication of this work is that the nature of strategic interaction among

firms plays a significant role in determining the optimality of decentralization.

While the above work only considers exclusive retailers under duopoly manufacturers,

Choi(1991) examines a different channel structure where there are two competing manufac-

turers and a common retailer. With this channel, he allows different structures to arise

including (i) Manufacturer-Stackelberg, (ii) Vertical Nash, and (iii) Retailer-Stackelberg. He

finds, for example, with a linear demand, the manufacturer makes highest profit with (i)

while the retailer gets highest profit with (iii). On the other hand, with nonlinear demand,

the manufacturer prefers (iii) while the retailer prefers (i). Compared to the exclusive re-

tailers structure of prior work, this channel structure gives the manufacturer lower profit;

however, the retailer in his channel obtains higher profit with linear demand and lower profit

with nonlinear demand. In general, Choi’s work evaluates another alternative channel struc-

ture and highlights the important role of the functional form of the demand in determining

the optimal channel design.

Next, we review the literature on channel structures with consideration of the durable

nature of the product. As mentioned earlier, this consideration implies the Coase’s conjecture
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(i.e., intra-brand competition between current and future sales leads to lower prices over

time). Although decentralized channels have been investigated mainly with the focus on

the selling vs. leasing policy (e.g., Purohit 1995, Purohit and Staelin 1994, Purohit 1997,

Bhaskaran and Gilbert 2009), recently the benefit of decentralization has also been explored

(e.g., Desai et. al 2004, Arya and Mittendorf 2006).

Purohit and Staelin (1994) use a two-period model to evaluate three different channel

settings: separate, overlapping, and buybacks among a manufacturer and his two retailers

called the renter and the dealer. With a separate channel, the renter and the dealer in-

dependently make decision on quantities. With an overlapping channel, the renter orders

additional cars from the manufacturer and sell the ones (i.e., program cars) bought in period

1 to the secondary market. Finally, the manufacturer buybacks the program cars and resells

them to the dealer. Notice that the renter is exogenous in these settings. The paper shows

that the dealer’s profits in separate and buyback channels are higher than in an overlapping

channel. The dealer attains highest sales of new cars in the separate channel, followed by the

overlapping and buyback channels. For the manufacturer, the quantities sold are highest in

the overlapping channel, followed by the buyback and separate channels. The authors also

explore the effect of product substitutability between new and used cars on the profitability

of the players. When program cars and new cars are more substitutable, the dealer is better

off and the manufacturer is worse off. This is because the manufacturer has to lower its

wholesale prices to compensate the dealer’s loss in sales due to the increase of product sub-

stitutability. The distinct feature of this work is the consideration of retail competition via

the existence of the secondary market as time passes. Unlike a static model, here, product

durability makes two seemingly (at first) independent channels become competitors when

the renter starts to sell his program cars to the secondary market which in turn strengthens

competition in the dealer’s new cars market.
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Purohit (1997) relaxes the assumption of an exogenous rental channel and allows

the renter to choose the quantities of new cars to purchase from the manufacturer and on

program cars to sell. The paper reveals many interesting results. Firstly, the renter receives

the highest wholesale price under the overlapping structure, while the dealer gets the lowest

wholesale price. This implies the manufacturer subsidizes the renter when shifting from an

overlapping to a buyback channel; and the dealer receives a subsidy under an overlapping

option. Secondly, the manufacturer and the renter are better off under the overlapping

channel, while the dealer is in the worst situation. This indicates the intense competition

under the overlapping channel benefits the former but harms the latter. Further, a separate

channel is the least profitable for both the manufacturer and the renter. As a result, this

work suggests that the existing buyback channel arrives as a compromise of different players’

interest in the automobile industry.

Purohit (1995) considers the choice of selling vs. renting in a decentralized channel.

He finds that if the manufacturer is unable to commit to prices in advance, it is better off with

selling via a dealer; otherwise, a renter is used to lease the product. Interestingly, a dealer

can obtain higher profit than a renter. This conclusion is counter to the typical finding

in the durable goods literature which asserts that renting is more profitable than selling.

The reason is as follows. When the manufacturer uses a dealer, double marginalization

restricts product quantities. Also, the dealer’s ability to lower the retail price in the future

is constrained by the wholesale price. Consequently, the time inconsistency is mitigated. On

the other hand, in the case of renting, time inconsistency is not an issue and the existence

of double marginalization lowers channel performance.

Bhaskaran and Gilbert (2009) extend Purohit (1995) by allowing the dealers to choose

its own product policy. When the manufacturer chooses to lease the product, dealers have

to lease it to customers. Alternatively, when the manufacturer chooses to sell the product,

dealers are able to sell, to lease, or to do both. In addition, competition at intermediate
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level is also taken into account. The authors demonstrate that competitive intensity plays

a critical role on selling/leasing decisions. At low and high levels of competition, leasing is

the optimal strategy. On the other hand, selling is the optimum at intermediate levels of

competition.

Desai et al. (2004) show the benefit of decentralization in durable goods markets from

another angle. In particular, without commitment, a decentralized channel can attain the

performance of an integrated channel, using two-part tariffs. However, this kind of contract

does not solve the Coase problem (i.e., time inconsistency). Subsequently, they suggest

a two-part contract with commitment. Interestingly, the result shows that a retailer in a

durable goods channel has an incentive to sell a quantity that is too high (proven by the

fact that the manufacturer sets wholesale prices higher than his marginal cost in a two-part

tariffs contract). This situation contrasts with the incentive to lower the quantity of a typical

retailer (by setting higher retail prices). Overall, this work contributes to the literature by

showing that decentralization can help soften the Coase problem in durable markets. Later,

Arya and Mittendorf (2006) sharpen the benefit of decentralization with a longer product

life cycle model. They find that even without commitment, decentralization could provide

higher profits than vertical integration. That is because a decentralized channel serves to

restrict sales in every period, compared to vertical integration. Though this contains a loss

of sales in the first period, it has a commitment benefit in the future (i.e., not ‘flooding’ the

market). It is this benefit that eventually raises the profitability of a decentralized channel

for longer time horizons.

While the above channel structures exclude the (horizontally) direct competition be-

tween the manufacturer and its own retailer, dual channel triggers such a conflict (see Tsay

and Agrawal 2004 for a review). With this structure, the manufacturer sells its end prod-

uct directly to the consumer and indirectly via an independent intermediary. Moriarty and

Moran (1990) observe this structure from many industrial practices as a mean to increase
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market coverage and reduce costs. Later, Balasubramanian (1998) models the competition

phenomenon of the direct marketers (e.g., catalog and Internet marketers) and conventional

retailers. Though it only examines the retail competition level (not the whole channel in-

teraction), the paper does show how the direct marketer can navigate the competition in

the market via disseminating its product information to the consumers. When information

of product from multiple channels are available to all consumers, direct marketers face se-

rious competition from conventional retailers (who otherwise compete against themselves).

Hence, by controlling the availability of its product information, the direct marketer may

obtain higher profit since retailers will compete against each other for the uninformed con-

sumers.

The literature on dual channels also outlines many benefits of such a structure; such as

better reaching a different market segment, benchmarking the performance of an independent

intermediary, and influencing the intermediary’s behavior (Bell et al. 2002, Coughlan and

Soberman 2005, Chiang et al. 2003, Kumar and Ruan 2006, Cattani et al. 2006, Arya et

al. 2007). The downside of dual channel includes excessive manufacturer encroachment, and

inability to direct traffic in the channel (Vinhas and Anderson 2005, Arya et al. 2008a).

Bell, Wang and Padmanabhan (2002) examine a specific dual channel where the

company store and the retailers are located in the same area such as in the same mall.

This research explains the benefit of adding a company store aside from market coverage

by considering marketing efforts put by different players in the channel to influence the

demand of each other. Here, marketing efforts of the company store relax the intensity

of price competition and actually benefit the retailers by raising retail prices. In contrast,

Coughlan and Soberman (2005) look at a dual channel in which company stores are located

far away from the retailer’s stores. They show that a dual system is preferred when the

service sensitivity across consumers is relatively lower than the price sensitivity. It occurs

because the company stores (outlets) attract price-sensitive, no-service-sensitive consumers,
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while retailers attract high-end consumers. Further, the retailers benefit from the existence

of company stores.

Chiang et al. (2003) model a direct online channel parallel with an independent

retailer; the authors show how a direct channel helps mitigate the double marginalization

problem even if no sales occur in the direct channel. The reason is that the introduction of a

direct channel puts a competitive pressure on the retail market, leading to lower retail prices.

As a result, the manufacturer compensates the price drop by offering a lower wholesale price.

By using the direct channel, the manufacturer is able to increase the channel efficiency. Later,

Arya et al. (2007) show when the direct channel is a real ‘threat’, adding it is still beneficial

to both parties, even though products in both direct and indirect channels are identical.

This work once again emphasizes the advantage of adding a direct channel: lower wholesale

price and increased retail competition help mitigate the double marginalization problem in

an indirect channel.

Cattani et al. (2006) examine different equal-pricing strategies to mitigate the con-

flicts within a dual system. In the first strategy, the manufacturer keeps the same wholesale

price (as in without a direct channel) and commit to not undercut the retailer’s price. In the

second, the manufacturer offers a lower wholesale price. Finally, the manufacturer commits

to not undercut the retail price. Surprisingly, the last strategy could be preferred by the

manufacturer, the retailer and even the end consumer.

Kumar and Ruan (2006) allow the retailer in the channel to carry a competing prod-

uct. The retailer sets prices and service levels for his two products. There are two types of

consumers in the market: retailer-store loyal and manufacturer-brand loyal; when the direct

channel is available, some consumers will buy products directly (here, direct channel is a

‘real’ threat to the retailer). They compare the proposed dual channel to the one without

a direct channel. When it is optimal to follow a dual distribution, having a direct channel

allows the manufacturer (1) to price discriminate and enhance profits when the retailer’s
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margin on the competing product is very small, or (2) to increase the level of retail service

when the retailer’s margin on the competing product is very large.

Despite the aforementioned benefits of a dual system, in reality, retailers commonly

oppose the presence of a direct channel (either online or company-owned store). Vinhas and

Anderson (2005) test the use of different channel structures using data in B2B market. The

authors find that severe channel conflict is unavoidable under certain circumstances and the

firm is better off not using the dual channel distribution, such as when the two channels

serve the same consumer, or when the customer is able to put the two channels to compete

against each other. Furthermore, the paper identifies different conditions favoring dual

distribution such as higher growth, greater variability in customers’ behavior over purchase

occasions, and higher perceived brand differentiation. Most importantly, it is shown that a

dual distributor does take effort to coordinate different channels. It does so by increasing

product differentiation among different channel offerings, setting rules to mitigate disputes

over encroachment, or compensating both channels whenever a sale is made.

When excessive encroachment occurs under dual distribution, Arya et al. (2008a)

propose an organizational solution. They show how decentralized control within the direct

channel can signal to the indirect channel the incentive to not aggressively encroach retail

market. In particular, using an affiliate, the manufacturer has an incentive to charge his

affiliate a positive wholesale price, thus restricting the number of products sold by the affili-

ate. This in turn allows the manufacturer to receive higher wholesale profit from the indirect

channel.

Our work is also related to the literature on strategic outsourcing (e.g., Kamien et

al. 1989, Shy and Stenbacka 2003, Arya et al. 2008b, 2008c). Our component supplier

structure, to some extent, relates to the one discussed in licensing (Katz and Shapiro 1985)

and franchising (Lal. 1990, Lafontaine 1992); however, we do not examine the contract

settings or any coordination issues. Hence, we exempt from the discussion of this research
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stream in details here (see Dant et al. 2011 for a review) and focus more on the strategic

outsourcing literature.

Kamien et al. (1989) investigate the subcontracting phenomenon found in many

industries such as insurance, electronics, and automobiles. In their model, subcontracting

reduces costs (since the cost function is strictly convex). By doing so, the firm maintains

a smaller capacity. It is showed that the possibility of subcontracting changes the firms’

behavior when competing (bidding) for a contract of producing products in the first place.

Under the context of Bertrand duopoly, if the loser of the bidding game dictates the terms

of the subcontract, then both firms are better off. By contrast, if the winner sets the terms

of the subcontract, both firms will receive zero profits. It happens because in the second

case, the desire to become the winner in the first place drives profits to zero.

Shy and Stenbacka (2003) show the strategic benefit of outsourcing as well as using

a common input supplier when two differentiated manufacturers compete in prices in the

end market. First, when both firms outsource, the competitive intensity in the end market

is less because outsourcing activities replace fixed costs of producing the input in-house by

variable costs (i.e., the wholesale price of the input purchased), which in turn motivates firms

to increase their prices. Second, using a common input supplier would exploit economies of

scale, and thus increasing social efficiency. The authors also consider horizontal outsourcing

(i.e., dual distribution) where one of the manufacturers produces the input in-house and

supplies that input to its competitor in the end market. However, this structure is not

socially optimal.

Arya et al. (2008b) further analyze the strategic impact of using a common supplier.

In their model, the input supplier is a monopolist with constant return to scale production.

The incumbent downstream manufacturer could either produce input in-house or outsource

the production. With the entry of a downstream competitor who will outsource its produc-

tion, the incumbent has an incentive to use the supplier’s input, even that action may cost
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him more than in-house production. The rationale is as follows. If the incumbent conducts

in-house production, the input supplier may offer the entrant a lower input’s price to help it

compete with the incumbent. To prevent such a subsidy, the incumbent purchases the input

from the supplier in the first place.

The closest work to ours is Venkatesh et al. (2006) and Xu et al. (2010). Using

spacial competition, these authors characterize different supply chain structures available to

manufacturers of proprietary component brands that possess a proprietary technology of an

essential component to make the end product. It is this proprietary nature that allows the

manufacturer to dictate how the end market is structured. In particular, the manufacturer

could operate as a component supplier and provide its component to a downstream firm

who then makes the end product. Alternatively, it could make its own end product as a

sole entrant. Finally, it could operate as a co-optor who makes the end product as well as

provides the component to a downstream firm who then competes against the co-optor in

the end market.

Venkatesh et al. (2006) characterize the optimality of each of the three structures

above. It is shown that the quality differential and product substitutability play an impor-

tant role in determining the optimal structure. In particular, the component supplier role

is optimal when the end product of the downstream firm is highly superior to the manufac-

turer’s end product and end products are strong substitutes. The sole entrant role is optimal

even when the manufacturer’s end product is moderately inferior under the condition that

end products are almost perfect substitutes. The optimality of the co-opter role spreads

for a wide range of quality differential and product substitutability; e.g., the co-optor role

is optimal even under strong substitutability (but not perfect substitutability). Further,

the popularity of this role is proven robust in different settings such as when an alternative

component available, or when there are two competing downstream firms in the end market

under the component supplier role. The reason for this outcome is that the co-optor is able
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to reduce the competitive intensity in the end market with appropriate pricing. Finally, the

implications of the model is testified empirically.

Xu et al. (2010) extend Venkatesh et al. (2006) by considering the impact of dif-

ferent factors such as branding, contracts, product valuation uncertainty on the optimality

of the three structures aforementioned. More specifically, they examine the impact of these

factors on the basic trade-offs described in Venkatesh et al. (2006): (1) the component sup-

plier structure suffers from double marginalization but the manufacturer can leverage the

expertise of the downstream firm in the end market; (2) the monopoly structure (i.e., the

sole entrant structure) avoids double marginalization but the manufacturer incurs capabil-

ity disadvantage when producing the end product; lastly, (3) dual distribution (the cooptor

structure) contains higher competition in the end market but the demand for the component

is expanded. First, compared to the dual distribution, the monopoly structure is more pre-

ferred under component branding, end product branding, and valuation uncertainty; while

this structure is less preferred under royalty contract. Second, compared to dual distribu-

tion, the component supplier structure is more preferred under end product branding but

less under valuation uncertainty. There is no clear cut for the shift of the component supplier

structure under component branding and royalty contract.

Focusing on the three structures above, while our model employs quantity competi-

tion, the closest work to ours employs price competition (Venkatesh et. al. 2006, Xu et al.

2010). Hence, it is helpful to review the literature that compares the outcomes under price

vs. quantity competition. Typically, in a duopoly when products are identical, marginal

costs are constant and equal for both firms, then the market price is equal marginal cost

under price competition and above it under quantity competition. Hence, price competi-

tion is typically thought to be more competitive than quantity competition. Kreps and

Scheinkman (1983) show that if production capacity is restricted in advance, the outcome

of price competition between firms duplicates the quantity competition outcomes.
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In a differentiated duopoly, without capacity constraint, Singh and Vives (1984)

demonstrate that compared to quantity competition, price competition yields (1) smaller

profits when products are substitutes, (2) larger profits when products are complements,

and (3) equal profits when products are independent. It happens because under product

substitutability, quantity competition keeps prices high. When products are complements,

firms want to maintain higher quantities to reinforce each other’s market, hence, a pricing

game suits this purpose by offering lower prices.

More recently, Arya et al. (2008c) reverse the above conclusion under dual distribu-

tion. Compared to quantity competition, the market prices as well as profits are higher under

price competition. Said differently, competition is less intense under price competition. This

happens because a dual distributor sets a higher input’s price under price competition than

under quantity competition. This behavior is derived from the fact that the dual distributor

is inclined to set a higher end product’s price to protect his wholesale profit, which in turn

induces the downstream competitor to increase its price. On the other hand, under quantity

competition, the dual distributor does not consider the wholesale profit when setting its end

product’s quantity. Anticipating this aggressive behavior, the downstream firm orders less

input; this forces the dual distributor to offer a much lower wholesale price (vis-a-vis price

competition). Consequently, the total profit of a dual distributor is reduced under quantity

competition.

Given the diverse outcomes may arise under different types of competition, it is

critical to justify the application of one or the other. Extant research suggests that quantity

competition is more applicable when there is a friction in changing quantities (Moorthy 1985,

Rey and Tirole 2007, Arya and Mittendorf 2011). For example, most durable goods such as

automobiles, and electronics are made via significant time consuming production processes.

Hence, firms are capacity constrained when marketing the end products. Another example
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is the wholesale markets, which often require long lead times; and most of the time, orders

are made in advance.

The second part of this dissertation examines different supply chain structures in a dy-

namic context of durable goods. Hence, we complement the literature on channel structures

(e.g., Purohit 1995, Desai et al. 2004, Arya and Mittendorf 2006) and strategic outsourcing

(e.g. Arya et al. 2008c). Our work extends the analysis in Venkatesh et al. (2006) and Xu

et al. (2010) by characterizing the optimal supply chain design of a proprietary component

manufacturer in a dynamic setting. While their model is based on horizontal product dif-

ferentiation with price competition; we develop a vertical differentiation model and focus on

quantity competition. Consequently, we devote Chapter 4 of this dissertation to reconcile

the changes between price and quantity competition and establish a useful benchmark for a

more dynamic model; Chapter 5 then focuses on the dynamic impact of durability on the

optimal supply chain design.

It is worth noting that the only work on dual distribution under dynamic context of

durable goods markets that we are aware of is Xiong et al. (2012). They consider a dual

channel where the manufacturer sells through an online channel and the independent dealer

adopts a mix of selling and leasing. They utilize a two-period model to demonstrate the

impact of direct channel (i.e., encroachment) on the profitability of both the manufacturer

and the dealer in a durable goods context. Here, encroachment happens sequentially in

every period; hence, the manufacturer sets his direct sales after observing the dealer’s deci-

sions. Compared to a single channel with indirect channel only, the dual structure gives the

manufacturer higher profit; while it may or may not be favored by the dealer. Our model

is different from theirs in many aspects. We do not allow leasing and sequential encroach-

ment. From Arya et al. (2007), we know that sequential encroachment always gives higher

profitability than simultaneous encroachment (which is used in our model). We consider the

impact of durability in a continuous scale while the product in their model is completely
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durable. Finally, we focus more on evaluating the relative strengths of different channel

structures rather than dual distribution.

Overall, we draw upon the existing supply chain structures (e.g., Venkatesh et al.

2006, Xu et al. 2010, Arya et al. 2008c) and the durable goods framework with disaggregate

consumers (e.g., Desai et al. 2004) to develop our model in Chapters 4 and 5.
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CHAPTER 3: SKIPPING VS. REPLACEMENT: THE ROLE
OF PRODUCT INNOVATION AND COMPATIBILITY

3.1 Introduction

Rapid technological innovations often serve to accelerate the life-cycle of durable

goods, especially in high-tech product categories such as software, smartphones, and tablet

computers. Many a time, the products made by a firm using the newer technology are not

fully compatible with that firm’s older products. When there are network-related benefits

that arise from an installed-base of users, such a lack of compatibility can affect consumers’

willingness to pay. Therefore, commercializing an existing technology and introducing a

product can be a challenging decision for these durable goods firms, particularly when ac-

counting for the value of an installed base of consumers.

Consider the following two examples: (a) Apple introduced the iPad in 2010 and then

introduced the improved version, iPad 2, a year later. (b) Nokia announced that its model-

7700 smartphone would be introduced in 2003; subsequently, though, retracted that decision

and instead introduced model 7710 a year later (see my-symbian.com). While a variety of

reasons may help explain the distinct choices of these two durable goods manufacturers, they

nevertheless raise questions such as “Would it have been optimal for Nokia to introduce the

7700 and then replace it with the 7710 (as Apple did with the iPad)? Or conversely, optimal

for Apple to wait till 2011 to introduce the iPad for the first time?” Such issues will arise in

other durable good categories as well, where network effects and compatibility play a role,

and help motivate our research questions in this chapter: (1) When is it optimal for the

firm to (not) commercialize an existing technology, given that it will introduce an improved

product in the future? (2) In that context, what is the role of product compatibility in

shaping the firm’s preferences?
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This chapter takes a step towards addressing these questions by building a two-

period analytical model in which the firm chooses whether to commercialize its available

technology (by commercializing, we mean that the firm introduces an “old” product) at

the beginning of the first period; irrespective of its decision in the first period, the firm will

introduce an improved version (referred as the “new” product) at the beginning of the second

period. When the firm does not commercialize its old product but only introduces the new

product, we say that the firm used a “skipping” strategy1; when both products are introduced

sequentially, we refer to the strategy as “replacement”. Our analysis characterizes when the

firm will select skipping over replacement for different levels of product improvement (we

consider two levels: rapid and gradual improvement) and compatibility between the new

and old products (we consider three types: full, forward and backward compatibility). This

approach helps highlight how our results add to those currently available in the literature

(e.g., Purohit 1994, Kornish 2001) on the product strategies of durable goods firms.

A network effect—either direct or indirect—refers to the phenomenon that a given

consumer’s utility from using a product goes up as the number of consumers using that or

other compatible products goes up (see e.g., Liu and Chintagunta 2009). This additional

utility essentially raises the amount consumers may be willing to pay for the product. Fur-

ther, the incremental utility to consumers will likely depend on both the importance of the

network as well as the size of the network. Since compatibility affects the effective size of the

network (in a manner that we will elaborate below), it affects consumers’ incremental utility

from the network. In other words, varying levels of compatibility lead to varying levels of

network size and consumers’ willingness to pay.

1In the context of different models, previous research refers to an analogous decision as leapfrogging (e.g.,
Purohit 1994) or delayed marketing (e.g., Choi 1994). However, leapfrogging is also used in the literature
on R&D (e.g. Fudenberg et al. 1983); further, marketing encompasses a wide variety of choices. Therefore,
to limit possible confusion, we use this term.
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In particular, when a product is backward compatible, all the users of the older

product (along with the consumers of the newer product) count towards the installed base

of the newer product; however, the newer product users do not count towards the network

size of the older product. For example, Microsoft Word 2007 is able to open files created in

an earlier version (e.g., Microsoft Word 2003), Blu-ray disc drives are able to play standard

DVD discs, and Wii is backward compatible with its earlier system, Nintendo GameCube.

With forward compatibility, by contrast, the above roles of the newer and the older products

are reversed—that is, the installed base of the newer product does not include the users of

the older product, but the newer product users contribute to the network size of the older

product. Finally, when the two products are fully compatible, their users contribute fully to

each other’s installed base.

Intuitively, in the absence of network effects, existing research (e.g., Dhebhar 1994,

Kornish 2001) notes that in making a purchase decision, strategic consumers will take into

account the level of product improvement between the older and newer versions of the durable

product. When there is a network benefit as well, adopters of the older product are likely

to accrue some ‘extra’ value since they join the market relatively early. Furthermore, the

discussion in the previous paragraph suggests that, compared to full-compatibility, back-

ward compatibility will likely make the newer product more attractive; by contrast, forward

compatibility makes the older product more appreciated. Therefore, in addition to the level

of product improvement between successive generations of the product, strategic consumers

will account for the impact of compatibility as well.

Notice that when the firm follows a replacement strategy, profit accrues from both

the older and the newer products. This contrasts with the skipping strategy, where only the

newer product contributes to the profit stream. Skipping, however, can help attenuate any

effects of intra-brand competition that arise inter-temporally. For instance, in the absence of

any network effect, when the older product is not very different from the newer product (as
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in the case of gradual improvement), conventional wisdom may suggest that there is likely

to be more intense intra-brand competition; and consequently, skipping may be preferred.

Our goal is to explore whether such intuition is valid and gain a better understanding of how

the firm optimally resolves the above trade-off under different market settings.

Our analysis shows that the relative preference for skipping and replacement indeed

depends on the level of product improvement and the type of compatibility. Under gradual

improvement, for instance, our finding is contrary to the conventional wisdom suggested

above. When consumers are heterogeneous in their valuation for the product, if the difference

in the two products is not too large (i.e., as in the case of gradual improvement), then the

segment with the relatively higher valuation has less of an incentive to wait for the newer

product. Consequently, if the older product were available, such consumers will purchase

it. Given the behavior of this higher valuation segment, the firm can charge a relatively

higher price for the older product (if it were introduced). That gain in price more than

compensates the firm for any loss accruing in the profit from the newer product (due to

intra-brand competition). Therefore, under gradual improvement, replacement dominates

skipping.

By contrast, if the difference in the two products is relatively large (i.e., as in the

case of rapid improvement) and the future is particularly valuable (i.e., the discount factor

is relatively high), then the higher valuation segment has an incentive to wait for the new

product; consequently, the firm now has an incentive to select skipping to extract a larger

surplus from this segment via the new product. In this setting, we characterize the precise

conditions when skipping may be preferred to replacement.

We find that product compatibility—by influencing the relative attractiveness of the

two products—affects the level of intra-brand competition between the older and the newer

products. Under full compatibility, for example, adopters of the older product are able to

enjoy the network benefit sooner (since they join the market earlier). When the strength of
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the network is relatively large, there is a significant raise in the desire to consume the older

product, which in turn motivates the firm to commercialize it despite the ensuing impact

of intra-brand competition. Therefore, under full compatibility and rapid improvement, the

firm will follow a replacement strategy at higher values of the network effect; under gradual

improvement, the analogous incentive is even stronger.

Under forward compatibility, as noted earlier, consumers appreciate the older product

more; this puts a downward pressure on the newer product’s price and adoption—essentially,

it weakens the advantage arising from the level of improvement in the newer product. Under

rapid improvement, at higher levels of the network effect, the downward pressure affects

the firm’s profitability significantly and the firm is better off not commercializing the older

product.

Under backward compatibility, recall that the newer product’s value to consumers is

enhanced by the network size of the older product. By the same token, however, consumers

are less inclined to buy the older product. Therefore, in order to accrue the benefit from

backward compatibility of the newer product, the firm has to offer an incentive to consumers

to induce enough purchases of the older product. Such an inducement can prove too costly

to the firm, depending on the magnitude of the network effect and the relative improvement

level across the two products. Consequently, if the older product were introduced, the firm’s

profitability under backward compatibility (vis a vis full compatibility) can either be higher

or lower depending on the parametric regime. This contrasts with the corresponding shift

under the forward compatibility setting noted earlier. In the above sense, our analysis

highlights the role of product improvement and compatibility on the product strategies of

durable goods manufacturers.

The rest of this chapter is organized as follows. The next section develops our model.

We report the results of our analysis in Section 3 and conclude the chapter in Section 4. All

proofs are confined to Appendix A.
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3.2 The Model

Our focus here is on an innovating firm, I, that produces durable goods. There are

two time periods in our model and at the beginning of the first period, using the available

technology, the innovating firm has the option of commercializing an old product (denoted

l ) of quality θl. Irrespective of its decision to (not) commercialize this product, the firm

continues to innovate during the first period. Consequently, at the beginning of the second

period, the firm is equipped with an improved technology which is commercialized and

introduced as a new product (denoted h) with a quality of θh (θh > θl > 0).

In addition to the intrinsic quality of the durable good, our model incorporates a

network effect (as in, e.g., Katz and Shapiro 1985, Choi 1994, Ellison and Fudenberg 2000).

In each period, consumers receive a benefit, denoted η, from the installed base (or network)

when they consume the product. For analytical convenience, we focus on a linear network

function; i.e., η(xi,t) = ωxi,t (where i = {l, h}, t = {1, 2}), and ω reflects the strength or

impact of the installed-base, xi,t, on the consumers’ willingness-to-pay. The installed-base

xi,t of product i in period t includes all (the consumers who bought) compatible products

available in that period after adjusting for the level of compatibility. For instance, if the

number of consumers who bought the old and new products in period t are Nl and Nh

respectively, then xl,t = Nl + µhNh and xh,t = µlNl +Nh, where µh and µl capture the level

of compatibility between the new and the old product, with 0 ≤ µh, µl ≤ 1. In particular,

under full compatibility, µh = µl = 1; under backward compatibility, µh = 0, µl = 1; and

under forward compatibility, µh = 1, µl = 0.

Consumers are heterogeneous in terms of their valuation of the product’s intrinsic

quality. We index consumers by v and assume that it is distributed uniformly along the

interval [−M, 1]. When M is sufficiently large, the market remains uncovered for a focal

range of the network strength, ω (i.e., ω ∈ [0, ωi,j]; see Assumption 1 a little later in the
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chapter). Consumers, however, value the network homogeneously. Therefore, a consumer

indexed v will derive a surplus θv + η− p when paying a price p for consuming a product of

quality θ, with an associated network benefit η.

We use δ to denote the discount factor, where δ ∈ (0, 1); for expositional ease, we

assume it to be the same for both the consumers and the firm. Over the two periods, keeping

δ in mind, consumers make their purchase decisions based on the prices, qualities and the

associated network benefit2. We assume that all consumers have the same expectations and

invoke sub-game perfection to characterize a consistent set of prices, beliefs, and consumption

decisions across time periods. There is no secondary market in our model. Further, to

highlight the main issues, we also assume that there is no depreciation and that the marginal

costs associated with producing the products are negligible.

Let pl, ph be the prices of old and new products respectively. And let ηl,1 and ηl,2

be the network benefit of the old product in periods 1 and 2, while ηh,2 is the network

benefit of the new product in period 2. Each consumer, indexed by v ∈ [−M, 1], maximizes

his/her surplus among four alternatives: (1) buy neither of the products and enjoy a surplus

denoted W0 (= 0), (2) purchase the old product only in period 1, with the surplus denoted

Wl, where Wl = θlv + ηl,1 + δηl,2 − pl, (3) purchase the new product only in period 2,

with a surplus Wh = δ(θhv + ηh,2 − ph), and (4) purchase in both periods, with a surplus

Wb = θlv + ηl,1 − pl + δ((θh − θl)v + ηh,2 − ph).

Denote S0, Sl, Sh, and Sb as the four consumer segments corresponding to the above

alternatives, and denote N0, Nl, Nh, and Nb as the respective number of consumers in

those segments. Accordingly, the network benefit for the old and new products in periods

1 and 2 can be written as follows: ηl,1 = ω(Nl + Nb), ηl,2 = ω(Nl + µh(Nh + Nb)), and

ηh,2 = ω(Nh +Nb + µlNl).

2This assumption seems reasonable since with the availability of online information such as news, blogs,
social media, nowadays, consumers are more knowledgeable about the state of technological evolution, and
the availability of related products.
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In this setting, depending on the relative qualities of the two products, two different

arrangements of consumer segments can arise. Following the extant literature (e.g. Dhebar

1994, Fudenberg and Tirole 1998, Kornish 2001, Bala and Carr 2009), we refer to the setting

in which the first arrangement arises as “rapid improvement,” where δθh > θl, and to the

second setting as “gradual improvement,” where δθh ≤ θl.

Under either setting, along the [−M, 1] interval, S0 is always the left most segment,

and Sb is always the right most segment, while the other segments are located in between

these two. With rapid improvement, segment Sl is to the left of segment Sh, whereas, the

opposite order arises under gradual improvement. These arrangements are illustrated in

Figures 3.1 and 3.2. Using vij to denote the marginal consumer who is indifferent between

being in segments Si and Sj, we have:

Under rapid improvement, the demand in period 1 is discontinuous along the [−M, 1]

interval, and includes two parts [v0l, vlh] and [vhb, 1]. Meanwhile, under gradual improvement,

the demand in period 1 is continuous. Subgame perfection requires that the optimal behavior

of the innovating firm in period 2 be consistent with the consumer’s beliefs and expectations.

Hence, the demand structure respects the pattern specified in the following lemma.

Lemma 3.1 Under rapid improvement, at least one of the two segments Sl and Sh must

vanish. Under gradual improvement, however, all segments may coexist in equilibrium.

In our model, the segmentation structure under rapid improvement arises for reasons

that are analogous to the ones discussed in Kornish (2001) and illustrated in Figure 3.3.

More specifically, suppose all the segments could coexist; at the beginning of period 2, when

maximizing its profit, the firm will price the new product such that the lowest valuation

consumer is indifferent between buying and not buying. At the same time, the discontinuity

in the demand along the [−M, 1] line in period 1 implies that the expected price of the new

product is set to make the lowest valuation consumer indifferent between buying the old and

new products. This leads to the nonexistence of segment Sl, which contradicts our earlier
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supposition. Hence, a subgame perfect pricing strategy cannot simultaneously sustain both

Sl and Sh in equilibrium.

Given the above, under rapid improvement, we consider two targeting schemes: (1)

the innovating firm does not serve segment Sh, and (2) the innovating firm does not serve

segment Sl, denoted T-l and T-h respectively. When the firm adopts one of these schemes,

as shown in Figure 3.3, the corresponding prices result in a relatively large installed base in

either period 1 or period 2 depending on the selected scheme. The size of that installed-base

serves as a credible commitment on the innovating firm’s part to behave consistently with

the consumer’s beliefs and expectations, and thus leads to a subgame-perfect equilibrium.

By contrast, under gradual improvement, the innovating firm is able to implement the

targeting scheme illustrated in Figure 3.2 (referred to as T-g hereafter). In particular, the

firm may serve all of the segments Sl, Sh and Sb together. Do note that although the above

targeting possibilities (under either rapid or gradual improvement) can arise in equilibrium,

we are yet to characterize their optimality.

We now consider the firm’s decision problem: The innovating firm follows either a

product replacement strategy (denoted r)—i.e., only one version of the product is sold in

each period—or, it may not commercialize the old product in period 1 and only introduce

the new one in period 2. We refer to this latter option as the skipping strategy (denoted

s); and by skipping, the innovating firm forgoes the profit of the old product. Our analysis

will show, however, that such an option can indeed be an optimal strategy under certain

conditions.

The sequence of events in the game is as follows. At the beginning of period 1,

the innovating firm selects one of the two product strategies, k = {r, s}; if it chooses a

replacement strategy, then the old product is introduced (under skipping it is not), and the

firm will announce the price of the old product. Consumers make purchases based on the

current price, and their expectations about the new product’s price and the appropriate
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network sizes (adjusted for compatibility). At the beginning of period 2, irrespective of the

decision in the first period, the firm introduces the new product and announces the price;

consumers then make their period 2 purchase decisions.

Under each of the strategies (i.e., r or s), we solve the firm’s problem in the standard

way, starting in the second period to find the optimal price of the new product, and then,

deriving the old product’s price (if introduced) in period 1 by maximizing the present value

of the total profit from both periods; all this is done while taking into account the relevant

constraints for the possible targeting schemes. We use an asterisk superscript to indicate the

product’s optimal price (i.e., p∗l , p
∗
h) in all the considered settings.

Consumers’ self-selection criteria are used to derive the demand, and the locations

of the marginal consumers are shown in Table 3.2. (Table 3.1 summarizes our notation.)

For reasons analogous to the ones in earlier research (e.g., Ellison and Fudenberg 2000,

Sankaranarayannan 2007), we confine our analysis to settings where the network effect is

not too large (see Ellision and Fudenberge 2000, page 264 and Sankaranarayannan 2007,

pages 778-779 for a discussion on the reasonableness of this assumption). More specifically,

we focus on a range of ω that ensures the concavity of the new product’s profit function,

and subsequently, a subgame-perfect pricing equilibrium. Further, our restriction on ω helps

streamline the presentation of the results in which the skipping strategy may arise. For

instance, we require that (1) the market be not fully covered, and (2) there exists a market

for the new product. (We conducted analysis while relaxing both these conditions, but no

new qualititative insights arise.)

Assumption 1: ω < ωi,j, where i = {h, l, g} with h, l, g corresponding to the different

targeting schemes, and j = {U,B, F} with U,B, F referring to full, backward, and forward

compatibility, respectively.3

3See Appendix A for specific values.
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It is worth noting that the upper bound on ω, that ensures our earlier stated objec-

tives, may change across different targeting schemes and product compatibilities. While one

could combine these different values for the upper bound (and only focus on the smallest

value), our approach will help isolate and discuss useful pricing practices that the firm can

pursue (e.g., the interior solution highlighted in Lemma 3.3, a little later in the chapter).

3.3 The Analysis and Results

3.3.1 Rapid Improvement

In this section, we examine two distinct targeting schemes, T-l and T-h, and consider

each of them under different product compatibility settings. Under T-h, three consumer

segments may coexist in the market: S0, Sh, and Sb, whereas, under T-l , segments S0, Sl,

and Sb may coexist (see Figures 3.3a and 3.3b). Our focus is on determining when skipping

may arise (i.e., when selling to only Sh is optimal). It is clear that such a segmentation

structure only arises as a boundary condition under T-h, where Nb = 0. By contrast, when

Nb > 0, the firm will follow a replacement strategy. Thus, these two strategies are mutually

exclusive under T-h.

Notice further that the targeting scheme T-l does not accommodate the skipping

strategy, because Sh (where only the new product is purchased in equilibrium) does not

exist. Instead, the existence of Sl and Sb imply that the old product is always introduced.

Between T-l and T-h, the optimal one is determined by comparing the profitability of the two

schemes. Therefore, in order to identify the conditions when skipping arises in equilibrium,

we first characterize first its optimality under T-h and then compare that setting with the

corresponding parametric regime under T-l .

The innovating firm does not serve segment Sl
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Under T-h, if replacement were implemented, then the firm will price the two products

such that segment Sb exists. By contrast, under skipping, there are only two consumer

segments, S0 and Sh, in the market. Accordingly, the firm’s problem under strategy k

(k ∈ {r, s}) is specified as follows:

max
pl

Πh,x,k
1 = plNb + δp̂h(Nh +Nb)

subject to:

p̂h ∈ arg max
ph

Πh,x,k
2 = ph(Nh +Nb) , (3.1)

Nh ≥ 0 ; Nb ≥ 0 ; vlh ≤ v0l , (3.2)

pl ≥ 0 ; and ph ≥ 0, (3.3)

where x = {U,B, F}, and U,B, F refer to full, backward, and forward compatibility respec-

tively. We have (using Table 3.2), when k = r, Nh = vhb − v0h and Nb = 1 − vhb; next,

when k = s, Nh = 1− v0h and Nb = 0 (i.e., vhb ≥ 1). Notice that under either strategy, the

demand in period 2 is Nh + Nb = 1 − v0h. Constraint (3.1) above indicates that the new

product’s price maximizes the second period’s profit. The constraints in (3.2) encompass a

nonnegative size for the two segments, Sh and Sb, and the nonexistence of segment Sl. The

constraints in (3.3) ensure nonnegative prices.

For expositional ease, let [P-hUk], [P-hBk], and [P-hFk] denote the firm’s problem

when selecting strategy k with scheme T-h, under full, backward, and forward compatibility

settings respectively. The solutions to these problems are summarized in Table 3.3. From

that table, notice first that the optimal price of the new product depends primarily on its own

quality. This arises because, given the relative locations of the segments, the new product’s

price is set to attract brand new consumers in period 2, rather than the existing users of the
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old product (i.e., consumers from segment Sb). Additionally, since segment Sl does not arise,

the existence of the buyers of the old product in period 1 puts no downward pressure on the

price of the new product. Put differently, there is no impact of intra-brand competition in

period 2.

Moreover, to sustain T-h, the old product’s price (in period 1) should be set such

that segment Sl vanishes, or equivalently, vlh ≤ v0l. Using Table 3.2, this constraint can be

rewritten as:

pl ≥
θl
θh
∗ [ph +

δθh
θl
ηl,2 − ηh,2] + ηl,1. (3.4)

We also have ηl,1 = ωNb, ηl,2 = ηh,2 = ω(Nh +Nb) under full/forward compatibilities,

and ηl,1 = ωNb, ηl,2 = 0, ηh,2 = ω(Nh + Nb) under backward compatibility. Hence, equation

(3.4) is equivalent to:

pl ≥ ω +
(θl(1− δ)− ω)(θl(θh − 2ω) + δθhω)

2θl(θh − ω)(1− δ)
, and (3.5)

pl ≥ ω +
(θh − 2ω)(θl(1− δ)− ω)

2(θh − ω)(1− δ)
, (3.6)

corresponding to full/forward compatibilities and backward compatibility respectively.

These inequalities imply that the old product’s price needs to be high enough to keep

consumers away from buying in period 1 only. Furthermore, such a high price may lead

to a situation in which there is no demand in period 1, i.e., Nb = 0 (for vhb ≥ 1). When

that setting arises in equilibrium, the firm follows a skipping strategy. With these above

considerations in mind, the following lemma characterizes different product strategies under

T-h:

Lemma 3.2 (Scheme T-h) When the firm does not serve segment Sl,

(i) Under full compatibility, i.e., µh = µl = 1, or forward compatibility, i.e., µh = 1 and
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µl = 0,

- if either δ ≥ 1/2, or δ < 1/2 and ω ≥ ωh,U1 , then it follows a skipping strategy; and

- if δ < 1/2 and ω < ωh,U1 , then it follows a replacement strategy .

(ii) Under backward compatibility, i.e., µh = 0 and µl = 1,

- if δ ≥ 1/2 and ω ≤ ωh,B1 , then it follows a skipping strategy; and

- if either δ ≥ 1/2 and ω > ωh,B1 , or δ < 1/2, then it follows a replacement strategy .

Part (i) of the above lemma states that when the future is relatively more valuable

(i.e., δ ≥ 1/2), under T-h, there is little to gain from commercializing the old product, since

consumers have an incentive to wait for the new product. By contrast, suppose that there

is demand in period 1; this can occur when future is not too valuable (i.e., δ < 1/2). With

a relatively low stream of discounted profit from period 2, as ω goes up, the firm gains by

extracting more surplus in period 1 from segment Sb via a higher price for the old product.

Notice, however, that the size of segment Sb decreases in ω; this occurs because in

period 1, the consumers in segment Sb have to pay a higher price for the old product which

includes its network benefit in period 2—see the presence of ηl,2 ≥ 0 on the right-hand side

of (3.4). Since consumers from this segment buy again in period 2, they not only give up

the old product’s quality but also its network benefit. As ω goes up, this burden becomes

larger and raises consumers’ incentive to wait for the new product. Next, note that the size

of segment Sh goes up with ω. Such growth arises from two sources: one is from consumers

who would not have bought under a relatively low (or no) network benefit; and the second

is from consumers who would otherwise be in Sb. So, a higher network strength ω motivates

the firm to extract more from consumers’ higher willingness to pay; simultaneously, though,

a higher ω can induce switching from Sb to Sh. The latter concern becomes more important

when the firm finds the revenue stream in period 1 is significant, i.e., the old product has

relatively high quality.
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If the quality of the old product is relatively high (i.e., θl/θh >
3δ−1−δ2
2δ(1−δ) ), then the firm

has an incentive to lower the old product’s price—to mitigate the declining size of segment

Sb. Otherwise, the old product’s price continues to rise up to ωh,U1 . At higher values of ω

(i.e., ω ≥ ωh,U1 ), all consumers in segment Sb switch to segment Sh, and commercializing the

old product is no longer a viable strategy.

The critical value ωh,U1 is increasing in the relative product quality θl/θh. That is

because when the old product becomes relatively more attractive, consumers are willing to

pay more for it, making skipping a less viable strategy. Figure 3.4 illustrates the different

regions of the optimal product strategy in the (δ, ω) plane, under T-h when θl/θh changes

from 1/4 to 1/3 (thus shrinking the skipping region).

Next, we examine Part (ii) of Lemma 3.2. Under backward compatibility, the network

benefit accruing to the old product in period 2 is zero (i.e., ηl,2 = 0); hence, keeping all else

the same, the old product’s price is not as high as the one under full/forward compatibilities.

As a result, the higher valuation consumers, who tend to wait for the new product in the

absence of network effects, have an incentive to buy the old product at higher levels of

network strength ω (because of a higher network benefit in period 1). Hence, under backward

compatibility, skipping is only optimal at lower levels of ω (i.e., ω ≤ ωh,B1 ) and higher levels

of the discount factor δ (i.e., δ ≥ 1/2); otherwise, replacement is the preferred strategy.

Once the old product is commercialized, as ω goes up, the size of Sb goes up, whereas,

the size of Sh goes down (contrary to the movement under full/forward compatibilities).

Although consumers join the market in period 2 because of a higher network benefit, that

increase in Sh cannot cover the decrease due to consumers switching from Sh to Sb. In fact,

at higher levels of ω (i.e., ω ≥ θh/2), segment Sh vanishes; and the firm only serves Sb.

It is worth noting how prices move under the replacement strategy. In general, the

old product’s price goes up with ω. However, when the network benefit is relatively low (i.e.,

ω < ωh,B2 ) and the old product is relatively attractive (i.e., θl/θh >
2δ−1

2δ(1−δ) for δ ≥ 1/2 or

43



θl/θh >
1−2δ
1−δ for δ < 1/2), price may not go up with ω. Notice that the former condition

(i.e., ω < ωh,B2 ) implies a lower incentive to raise price (as the network is not particularly

beneficial to consumers), while the latter condition generates a stronger incentive to serve

segment Sb (due to its higher profitability). Consequently, the old product’s price may go

down with ω; for instance, at relatively low levels of ω, the size of Sb is small, and the firm

may be inclined to lower the old product’s price (with ω) to quickly expand Sb.

Figure 3.5 illustrates different regions of product strategies in the (δ, ω) plane under

T-h (the numerical example uses θh = 1; and the boundary will shift up if θh goes up).

Compared to Figure 3.4, the region in which skipping arises is smaller under backward

compatibility.

The innovating firm does not serve segment Sh

Under T-l , the market segmentation is depicted in Figure 3.3b, where S0 = [−M, v0l),

Sl = [v0l, vlb) and Sb = [vlb, 1]. As mentioned earlier, this structure does not accommodate

the skipping strategy; consequently, replacement is always implemented under T-l . The

innovator’s problem is:

max
pl

Πl ,x
1 = pl(Nl +Nb) + δp̂hNb

subject to:

p̂h ∈ arg max
ph

Πl ,x
2 = phNb , (3.7)

Nl ≥ 0 ; Nb ≥ 0 ; vhb ≤ vlh , (3.8)

pl ≥ 0 ; ph ≥ 0, (3.9)

where x = {U,B, F}, and U,B, F refer to full, backward, and forward compatibility respec-

tively. Constraint (3.7) above indicates that the new product’s price maximizes the second

period’s profit. The constraints in (3.8) encompass a nonnegative size for the two segments,

44



Sl and Sb, and the nonexistence of segment Sh. The constraints in (3.9) ensure nonnegative

prices.

Let [P-lU], [P-lB], and [P-lF] denote the firm’s problem under full, backward, and

forward compatibility settings respectively. The solution to these problems is summarized

in Table 3.4. We follow the standard approach to solving such problems (e.g., see Fudenberg

and Tirole 1998): that is, first solve the unconstrained problem to obtain an interior solution

for the old product’s price in period 1. Subsequently, check whether all the constraints are

satisfied at that proposed solution; if the constraints are not satisfied, then the firm sets

the old product’s price based on the appropriate binding constraint, and a corner solution

arises. It helps to distinguish between the interior and corner solutions, as summarized in

the following lemma.

Lemma 3.3 (Scheme T-l) When it does not serve segment Sh, the firm follows a product

replacement strategy. More specifically (see Table 3.4 for the optimal prices),

(i) Under full compatibility (i.e., µh = µl = 1), when ω < ωl,U1 , the old product’s price is at

a corner solution; and when ω ≥ ωl,U1 , the old product’s price is at an interior solution.

(ii) Under backward compatibility (i.e., µh = 0, µl = 1), when either θl/θh ≥ 2+δ
4+δ

, or

θl/θh < 2+δ
4+δ

and ω < ωl,B1 , the old product’s price is at a corner solution; and when

θl/θh <
2+δ
4+δ

and ω ≥ ωl,B1 , the old product’s price is at an interior solution .

(iii) Under forward compatibility (i.e., µh = 1, µl = 0), when either θl/θh ≥ 2
1+2δ

, or

θl/θh < 2
1+2δ

and ω < ωl,F1 , the old product’s price is at a corner solution; and when

θl/θh <
2+δ
3+δ

and ω ≥ ωl,F1 , the old product’s price is at an interior solution.

Under all the three compatibility settings, a relatively high level of ω is necessary for

an interior solution to arise in equilibrium. Under full compatibility, this also serves as a
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sufficient condition. Forward and backward compatibility, by contrast, require an additional

sufficient condition on the relative qualities of the two products θl/θh (i.e., θl/θh is relatively

small). We now explain the intuition underlying Lemma 3.3 by considering each compati-

bility setting in turn.

Full Compatibility: When they are fully compatible, both the new and old products share

the same installed-base, and thus, provide the same network benefit to consumers in period

2. Consequently, the marginal consumer in period 2 is unaffected by the network size. More

specifically, since µl = µh = 1, we have ηl,1 = ηl,2 = ηh,2 = ω(Nl + Nb). In period 2, then,

the new product’s price is influenced by only the level of quality improvement in the new

product. This is because, consumers in segment Sb enjoy the same network benefit across

time periods; what matters to them is the quality increment that they may receive when

giving up the old product in period 2.

In period 1, in order to eliminate Sh, the firm has to price the old product such that

consumers are no better off waiting to buy the new product in period 2 (i.e., ensure vhb ≤ vlh).

This restriction translates into a relatively low price for the old product. Mathematically:

pl ≤
θl[θl(1− δ) + (1 + δ2)ω]

2(θl − δω)
. (3.10)

Our approach to dealing with the above constraint (as outlined earlier) is to solve

problem [P-lU] without (3.10), and then double checking its fulfillment. This leads to a

condition on the magnitude of the network strength ω: it should be relatively large (i.e.,

ω ≥ ωl,U1 ) for constraint (3.10) to be satisfied automatically. Put differently, when ω is

smaller than the lower bound ωl,U1 , constraint (3.10) is binding; and the firm will price the

old product so as to satisfy (3.10) exactly.
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Keeping the above in mind, the intuition underlying the firm’s optimal behavior can

be explained as follows. First, in the absence of network effects, a commitment to not serve

segment Sh is stringent (as in Kornish 2001). It forces the firm to penetrate the market in

period 1 with a lower price to induce consumers to buy immediately (and not wait for the

new product). Though a lower price helps the firm increase sales significantly, profit may

be improved only at a higher price (at the expense of a correspondingly lower market size).

Secondly, as the network effect comes into existence, consumers begin to benefit from the

installed base for the product. This in turn allows the firm to raise the barrier on pricing the

old product (cf. equation 3.10). Finally, at a relatively large value of network strength, i.e.,

ω = ωl,U1 , segment Sh vanishes without any restriction on the old product’s price (and we

obtain an interior solution). From that value of ω onwards, the firm prices the old product

at the interior solution, which is independent of network effect (market size in period 1,

however, is increasing in ω).

The implication here is that the network effect can serve as a tool to eliminate con-

sumers’ incentive to wait for the new product (i.e., Sh vanishes at higher levels of ω because

those in Sh switch to either Sl or Sb). By joining the market early, consumers are able to

enjoy the network benefit sooner. Now the value of ωl,U1 is increasing with the old product

quality θl and the discount factor δ; in other words, the region where the old product’s price

is at a corner solution expands with θl and δ. This is because at a higher quality, consumers

are willing to pay more, and the unconstrained solution for the price is larger; with a higher

discount factor, consumers value the new product in the future more, and thus force the firm

to offer an even lower price to induce them to buy the old product. Subsequently, for both

these reasons, it is that much harder for an unconstrained solution to arise.

Backward Compatibility: Here, the customer base of the old product contributes to the

installed-base for the new product, whereas the customer base of the new product does not
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contribute to the installed-base of the old, i.e., µh = 0, µl = 1. Hence, the network benefits

of the product are: ηl,1 = ηh,2 = ω(Nl +Nb), and ηl,2 = ωNl.

In period 2, the new product’s price is the same as in full compatibility. However,

the market size, Nb, is increasing in network strength ω (contrary to the full compatibility

setting, where the market size was independent of ω). This is because consumers in segment

Sb will have a network size related advantage when making repeat purchases; those who only

hold the old product in period 2 are restricted to enjoy a more limited network benefit.

Analogous to the full compatibility setting, here too, the firm will charge a relatively

low price for the old product at low levels of ω. This is because the demand-side constraint,

vhb ≤ vlh, forces the firm to lower the price of the old product to induce consumers to buy in

period 1 (rather than waiting for the new product). Here, too, the upper bound on the old

product’s price goes up with ω.

Further, the size of segment Sb increases in ω, whereas, the size of segment Sl may

increase or decrease in ω. The former happens because as ω goes up, consumers have an

incentive to switch from Sl to Sb; by switching, they are able to maintain the network benefit

in period 2. Next, the size of Sl can go up with ω when more consumers join this segment

than those who switch to Sb. Conversely, the decreasing trend in the size of Sl occurs

either because the number of consumers switching to Sb is larger than the number of those

joining segment Sl, or because the increment in the old product’s price, at higher levels of ω,

surpasses the network benefit from joining Sl; thus shrinking the segment size when ω goes

up.

Notice that when the two products are not too different (i.e., θl/θh ≥ 2+δ
4+δ

), the new

product’s price is very attractive (as p∗h = (θh − θl)/2 becomes smaller), giving consumers

in Sl a strong incentive to make repeat purchases. In fact, the size of segment Sl is rapidly

squeezed and vanishes at ω = (θh − θl)/2; at higher levels of ω (i.e., ω ≥ (θh − θl)/2), the

firm follows a pricing strategy that serves only segment Sb. When the two products are
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quite different (i.e., θl/θh <
2+δ
4+δ

), the upper bound on the old product’s price approaches the

optimal interior price at ω = ωl,B1 ; at higher levels of ω (i.e., ω ≥ ωl,B1 ), the constraints on

the firm’s problem are satisfied automatically, and the old product’s price is at the interior

solution.

Notice that at higher levels of ω—when either the firm serves only segment Sb, or

the old product’s price is at an interior solution—the price set in period 1 is not considered

“too low”. And the firm is inclined to lower the old product’s price as ω goes up. This is

because under backward compatibility, compared to the new product, the old product is at

a relative disadvantage (both from the level of quality and future network benefit). A lower

price could help trigger purchases in the first period, which in turn help the profit stream

from the new product due to backward compatibility.

Forward Compatibility: Here, µh = 1, µl = 0, and the network benefit values are: ηl,1 =

ηl,2 = ω(Nl + Nb), and ηh,2 = ωNb. In this case, the new product’s price depends on the

old’s price and the network strength. In equilibrium, this price is decreasing in the network

strength ω. This is because the new product’s purchasers come from the existing consumers;

by purchasing the new product, they give up not only the old product but also its bigger

network benefit (due to forward compatibility). Consequently, the firm is forced to lower the

new product’s price to induce existing consumers to purchase again.

The decrement in the new product’s price as ω goes up does help expand Sb for low

levels of ω. However, the size of Sb goes down with ω when the network benefit becomes

larger (and the size of Sl always increases with ω). This is mainly because fewer existing

consumers make repeat purchases at higher values of the network strength.

Further, the new product’s price is positively related to the old product’s price; and

this impact is increasing with ω (i.e. ∂2p̂h
∂ω∂pl

= θl
2(θl−(1+δ)ω)2

> 0). At low levels of ω, the impact

of pl on ph is very small; further, an interior solution for the old product’s price in period 1 is
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too high. (This combination can induce some consumers in Sl to wait for the new product in

period 2.) Consequently, the firm will lower the old product’s price; analogous to the other

compatibility settings, this restriction on the price of the old product (its upper bound) is

increasing in ω and is obtained when the condition vhb ≤ vlh holds exactly.

As ω goes up, the impact of pl on ph is bigger, leading to a larger increase in the new

product’s price. In this setting, suppose the two products are not too different (i.e., θl/θh ≥
2

1+2δ
); this feature, in addition to the more limited network size when buying the new product,

results in consumers having a lower incentive to make repeat purchases. Consequently, at

higher values of ω, segment Sb shrinks quickly (here, the upper bound of the old product’s

price never approaches the optimal interior price). By contrast, if the two products are quite

different (i.e., θl/θh <
2

1+2δ
), then consumers still have an incentive to make repeat purchases

despite the price increment for the new product. The upper bound of the old product’s price

then approaches the optimal interior price at ω = ωl,F1 ; the old product’s price is at the

interior solution.

The Optimal Product Strategy under Rapid Improvement

Up to this point, we have characterized different product strategies for different pricing

practices under rapid improvement. Our purpose in this section is to compare the profitabil-

ity under T-l and the one under skipping (within T-h), when both strategies are feasible.

Further, we want to highlight the impact of product compatibility on the above comparison.

Accordingly, we first characterize the optimal product strategy under full compatibility. Us-

ing those results as a base line, we will explore how the optimal strategy changes for other

levels of compatibility.

The optimal product strategy under full compatibility is summarized in the following

proposition. Define δ̂ =
√

5−1
2
≈ 0.62.

Proposition 3.1 Under rapid improvement and full compatibility,

(i) If δ < δ̂, then the innovating firm follows a product replacement strategy; and
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(ii) If δ ≥ δ̂, then the innovating firm follows: (a) a skipping strategy when either ω ≤ ω̂,

or ω̂ < ω < ω∗ and θh ≤ θ̂h; (b) a replacement strategy when either ω ≥ ω∗, or ω̂ < ω < ω∗

and θh > θ̂h.

When the firm follows a replacement strategy, profit accrues from both the old and

new products. This contrasts with the skipping strategy, where only the new product con-

tributes to the profit stream. Under T-l , the new product’s price is constrained by the

quality of the old product; in other words, intra-brand competition (read cannibalization)

has a significant impact on it. By contrast, under T-h, there is no cannibalization in period

2, and the new product is priced based on its own quality. As a result, though skipping forges

the first period profit, the profit from the new product is bigger. Of course, the discount

factor plays an important role in a skipping strategy because the total profit is discounted.

Consequently, at low levels of the discount factor (i.e., δ < δ̂), skipping is always dominated.

When the future is more valuable (i.e., δ ≥ δ̂), the skipping strategy becomes more

viable. At low levels of the network strength (i.e., ω ≤ ω̂), cannibalization is the main

reason that makes a replacement strategy under T-l be dominated by skipping. In contrast,

replacement is the dominant strategy when the loss from cannibalization is compensated by

a large network benefit (i.e., ω ≥ ω∗). This occurs because the pricing under T-l attracts a

larger installed-base of consumers than the one under T-h. Further, the sooner the consumers

enter the market, the larger the network benefit they enjoy, and the greater the surplus that

the firm is able to extract from them.

When the network strength is moderate (i.e., ω̂ < ω < ω∗), skipping is the dominant

strategy as long as the new product’s quality is not too high. This happens because, when

θh ≤ θ̂h, the impact of cannibalization in period 2 is relatively large under product replace-

ment; consequently, skipping dominates. This impact of intra-brand competition, however,

is mitigated at higher levels of new product’s quality, and the preference for replacement

goes up accordingly.
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Now recall the Series 90 Nokia smartphones (i.e. 7700 and 7710) example mentioned

in the Introduction. In November 2003, Nokia announced the release of its model 7700, but

never made it available commercially (some 7700s are in circulation, mainly as collectibles).

Instead, it cancelled the 7700 in mid-2004 and launched the 7710 at the end of 2004. While

Nokia’s reasons for its decision are not public, some potential explanations surfaced in the

media; for example, Technology Wire on November 8th, 2004 noted the unattractive design

of 7700.

We note that the two models, 7700 and 7710, were the only available Symbian OS

Series 90 smartphones from Nokia, and they did not work with other OS platforms within

Symbian 7.0 and 7.0s (e.g., Series 80, Series 60, UIQ). Further, any network benefit consumers

may have derived from these phones was likely to be very small—Nokia bundled most of the

applications with this platform and the availability of any third-party applications was quite

limited. Finally, while the two phones 7700 and 7710 have the same technology platform

(suggesting full compatibility4), the product designs5 were quite different.

Thus, in the context of a firm facing little network effects under a setting of full

compatibility, if Nokia considered the 7710 to be a significant improvement (in terms of

product design), then based on our analysis, Nokia’s decision would be optimal. By contrast,

in the iPad-iPad 2 example (mentioned in the introduction section), the products share a

huge network benefit (there are more than 500,000 iOS applications in the App Store!); so,

even though the products are not too different from one another, Apple’s decision to employ

a product replacement strategy is supported by our analysis.

4Typically, newer products contain features that make implementing forward compatibility a challenge;
therefore, full compatibility is likely to occur when the two products have the same technological base, as
in the case of Nokia 7700 and 7710, iPad and iPad 2, Xbox 360 S and the earlier Xbox 360 Elite, or Play
Station 3 Slim and its previous model Play Station 3.

5A comparison can be found at http://my-symbian.com.
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Figure 3.6 illustrates the product strategies described in Proposition 3.1 in the (δ, ω)

plane when θl = 2. Notice that ω∗ is increasing in θl; simulations also show that ω̂ goes up

with θl.

Next, we examine how the optimal strategy in Proposition 3.1 can change under for-

ward and backward compatibilities. Begin by recalling that the profit stream from skipping

remains unchanged across the three levels of compatibility. Consequently, any deviation in

the optimal strategy (from full compatibility) revolves around how the profitability from the

corner solution at vhb = vlh, under T-l , varies with compatibility6. When the old product is

forward compatible with the new product, we observe the following:

Observation 3.1 Under rapid improvement and forward compatibility, compared to the full

compatibility setting, the innovating firm is more likely to use a skipping strategy.

Since the profit from skipping is unchanged with compatibility, what makes it more

favorable in this setting is due to the change that arises under T-l . In particular, the impact

of cannibalization under T-l is now more severe (see the new product’s price in Table 3.4):

The new product’s price is decreasing with ω; further, the new product’s profit almost fades

out at higher levels of ω because of the decrement in both the price and the market size

(i.e., even the ‘low’ price is not low enough to induce repeat purchases). Though the new

product is improved significantly under rapid improvement, its advantages are canceled out

by the network effect associated with the old product (which is commercialized). The profit

stream from the old product is higher under forward compatibility; however, that cannot

compensate for the decrement in the new product’s profit. Consequently, at relatively high

levels of ω, the profitability under T-l is reduced significantly, and raises the firm’s incentive

to use skipping.

6First, under T-l , an interior solution always (weakly) dominates a corner solution. Next, under full
compatibility, at higher values of ω, the corner solution dominates skipping. Since the interior solution
arises at even higher values of ω, to conserve space, here we focus on the corner solution under T-l . Other
comparisons involving the interior solution are also available, but add little new qualitative insights.
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When the new product is backward compatible, the incentive for skipping is summa-

rized in the observation below:

Observation 3.2 Under rapid improvement and backward compatibility, compared to the

full compatibility setting, the innovating firm is less likely to use a skipping strategy when

the new product’s quality (i.e., θh) is relative large; alternatively, it is more likely to use a

skipping strategy when the new product’s quality is relatively small.

Interestingly, when compared to a setting of full compatibility, under backward com-

patibility, a skipping strategy can be either more favorable or less favorable. Here too, notice

the change in profitability under T-l when moving from a scenario of full to backward com-

patibility at the corner solution where vhb = vlh in period 1. From Table 3.4, note that the

new product’s price is unchanged; meanwhile, the market is expanding with ω. As a result,

the new product’s profit is unambiguously greater than the one in full compatibility. The

old product’s profit, however, is smaller due to its lower price and market size (market size

goes down because of a decline in Nl). Therefore, if the profit increment in period 2 (which

results from market expansion) surpasses the profit decrement in period 1, then replacement

becomes more attractive; otherwise, skipping is more preferred.

Intuitively, under backward compatibility, the new product’s adoption comes at the

expense of the old product’s adoption (recall that under T-l , the new product’s consumers

come from the existing buyers of the old product in period 1). The firm clearly has an

incentive to maintain the old product’s existence in order to extract more surplus from the

buyers of the new product (due to backward compatibility); hence, it lowers the old product’s

price to induce purchases in period 1. When providing such inducement proves too costly to

the firm, it is better off with the skipping strategy.

Using Table 3.4 we can compare, between full and backward compatibility, the solu-

tion in period 2 along with the corner solution at vhb = vlh in period 1. Notice that while

the old product’s price and demands in both periods are dependent on θh under backward
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compatibility, they are independent of θh under full compatibility. More specifically, under

backward compatibility, as the new product’s quality, θh, goes up, its market size goes down;

hence, in period 2, the new product’s profit is increasing slowly when θh is large (compared

to the one under full compatibility). Further, the old product’s price is going up in θh; and

at higher levels of ω (i.e., ω > θl(1−δ
δ

), the market size in period 1 also goes up with θh. This

happens because as θh goes up, the decrement in the market size of the new product allows

the firm to attract more consumers who are less price-sensitive into segment Sl, which in

turn motivates the firm to raise the old product’s price. When the network strength is small,

this price increment leads to a decrement in the market size in period 1; however, when the

network strength is large, more consumers will join the market, and this expansion surpasses

the impact of the price increment.

It then follows that under backward compatibility, the old product’s profit is decreas-

ing more slowly when θh is larger at higher levels of ω (compared to the one under full

compatibility). In other words, a relatively large improvement in the new product’s qual-

ity serves to mitigate the negative impact of backward compatibility on the old product’s

profit. Consequently, at higher levels of new product improvement and network strength,

even though the profit increment in period 2 is not too large, it becomes feasible to overcome

the profit decrement in period 1. Under these conditions, skipping becomes less preferred .

On the other hand, at higher levels of network strength, when the new product’s

quality is not too high, the new product’s profit goes up significantly, while the old product’s

profit goes down sharply (compared to the corresponding profit under full compatibility).

Such movements tend to hurt the profitability from replacement, and skipping becomes more

preferred.

We use numerical simulations to show how the optimal strategy changes when moving

from full to either forward or backward compatibility (see Tables 3.5 and 3.6). Each table

includes a column that shows the difference in profit from skipping and replacement under
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full, forward, and backward compatibility, for distinct values of ω; in that column, a positive

number indicates that skipping is optimal, while a negative number implies that replacement

is optimal.

For both tables, we set δ = 0.8 and θl = 2 (consequently, ω̂ = 0.25 and ω∗ = 0.255). In

Table 3.5 the new product’s quality is relatively low, with θh = 3 (the requirement for rapid

improvement is met); in Table 3.6, θh is relatively high with θh = 10. In either table, with

forward compatibility, the skipping strategy is optimal even when either ω̂ < ω < ω∗ and

θh > θ̂h, or ω > ω∗ (under full-compatibility, either of these conditions favors replacement).

Next, Table 3.5 also shows that an analogous result arises even under backward compatibility

(i.e., when θh is not too large); meanwhile, Table 3.6 contrasts with Table 3.5 in the preference

for skipping under backward compatibility—when θh is relatively large, the replacement

strategy is optimal even when either of the conditions ω̂ < ω < ω∗ and θh < θ̂h, or ω < ω̂ is

satisfied.

3.3.2 Gradual Improvement

Under gradual improvement, the four consumer segments—S0, Sl, Sh, and Sb—may

co-exist in the market. When product replacement is implemented, the market segmentation

(i.e., scheme T-g) is illustrated in Figure 3.2, where S0 = [−M, v0h), Sh = [v0h, vhl), Sl =

[vhl, vlb) and Sb = [vlb, 1]. Meanwhile, under skipping only segments S0 and Sh exist in the

market; this requirement makes skipping a special (restricted) case of replacement. Hence,

if replacement is viable, then it is also the optimal strategy. The innovating firm’s problem,

under strategy k (k ∈ {r, s}) is specified below.

max
pl

Πg,x,k
1 = pl(Nb +Nl) + δp̂h(Nh +Nb)

56



subject to:

p̂h ∈ arg max
ph

Πg,x,k
2 = ph(Nh +Nb) , (3.11)

Nl ≥ 0 ; Nh ≥ 0 ; Nb ≥ 0 , (3.12)

pl ≥ 0 ; ph ≥ 0, (3.13)

where x = {U,B, F}, and U,B, F refer to full, backward, and forward compatibility respec-

tively. We have (using Table 3.2), when k = r, Nh = vhl−v0h, Nl = vlb−vhl, and Nb = 1−vlb;

and when k = s, Nh = 1 − v0h, Nl = 0, and Nb = 0 (i.e., {vlb, vhl} ≥ 1). Constraint (3.11)

above indicates that the new product’s price maximizes the second period’s profit. The

constraints in (3.12) encompass a nonnegative size for the three segments, Sl, Sh and Sb

(with the sizes of Sl and Sb becoming zero when k = s). The constraints in (3.13) ensure

nonnegative prices.

Let [P-gUk], [P-gBk], and [P-gFk] denote the firm’s problem under full, backward,

and forward compatibility settings respectively. The manufacturer’s preference for skipping

and replacement in these problem settings is summarized in following proposition:

Proposition 3.2 Under gradual improvement, product replacement (weakly) dominates the

skipping strategy for all the three (i.e., U,B, F ) compatibility settings.

Unlike the rapid improvement setting, here, all consumer segments may coexist and

the firm does not face a binding demand-related constraint on pricing. When ω satisfies

Assumption 1, the innovating firm’s optimal price is at an interior solution and results in a

unique subgame perfect equilibrium. The intuition underlying Proposition 3.2 is as follows.

Under gradual improvement, compared to the old product, the new product’s quality has

not improved in terms of its present-value (i.e., θl ≥ δθh); this suggests that the segment

with the relatively high consumer valuations has less of an incentive to wait for the new
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product. Consequently, if the old product were available, then consumers will purchase it.

Given the interest of this high-valuation segment, in the absence of a network effect, the

firm can charge a relatively high price for the old product (if it were introduced). That gain

in price compensates for any loss in the profit from the new product that can arise due to

intra-brand competition.

In the presence of a network effect, the high-valuation segment’s desire to buy the

old product is further strengthened under both full and forward compatibility—since, these

consumers can enjoy the network benefit over both periods by joining the market early. And

given the attractiveness of the old product under gradual improvement, the firm’s incentive

to employ the replacement strategy is reinforced. Under backward compatibility, some high-

valuation consumers may choose to wait for the new product; but the firm can induce such

consumers to buy the old product (so as to enhance the value of backward compatibility for

the new product). Under gradual improvement, such inducement is never too costly for the

firm (given Assumption 1), and replacement is the optimal strategy.

3.4 Conclusion

The focus of our analysis has been on the optimality of skipping under alternative

settings for exogenous technological evolution and product compatibility. We examined

different product improvement levels and showed that skipping can be optimal only un-

der rapid improvement; further, the incentive to skip an existing product is mitigated by

network effects. Interestingly, product compatibility can change the firm’s preference for

skipping. For ease of exposition, we considered full-compatibility and two types of one-way

compatibility (forward and backward compatibility); our analysis reveals that their impact

on the optimality of skipping is asymmetric. In particular, compared to full compatibility,
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forward compatibility favors skipping, whereas, backward compatibility may or may not fa-

vor skipping; the relative favorability depends on the magnitude of improvement in the new

product.

We also show that for a durable goods manufacturer, the replacement strategy is

preferred to skipping at lower levels of product improvement (i.e., as in the case of gradual

improvement, where the successive generations are not too different from one another).

Further, at relatively high levels of network strength (e.g., as in the case of iPad with over

500,000 iOS applications in the App Store), it is optimal to implement replacement (over

skipping) regardless of the level of product improvement.

It is worth pointing out that while product replacement decisions are relatively easy

to observe by outsiders, skipping is often an internal consideration for the firm. Essentially,

there are limited reasons for the general public to become informed of skipping decisions

(unless the firm publicly confirms its decisions). Increased availability of data can certainly

help in this case, and in that context, our analysis helps in developing hypotheses for formal

empirical testing.

Overall, our purpose has been to underscore the importance of considering network-

related issues in the context of new product introduction strategies of durable goods manufac-

turers. We focused on skipping and product replacement strategies and provided conditions

where a focal firm’s preferences can change dramatically. Several opportunities seem to exist

for further exploration.

For instance, prior research points out that in the absence of any network effects,

skipping is less likely when there is an entry by a clone (Purohit 1994); using an aggregate

demand function, Chau and Desiraju (2011) show that may not be the case in the presence

of network effects. Incorporating competition in the context of an individual level consumer

model can help our understanding of such issues; but such a model setting invariably raises

the complexity of the analysis significantly. Similarly, it can help to consider the optimal
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choice of compatibility for the durable goods firm. These types of questions will benefit from

increased research attention. We hope that our effort here will spark further work in this

area.

60



Table 3.1: Notation
Symbol Description

θl, θh Qualities of the old (l) and new (h) products

η(.) Network benefit function

µo, µn Level of product compatibility

ω Network strength

δ Discount factor

pl, ph Prices of the old (l) and new (h) products

W (.) Consumer surplus function

Si Consumer segment, i = {0, l, h, b}
Ni The size of consumer segment i

vij Marginal consumer that is indifferent between being in segments Si
and Sj

T-l ,T-h Targeting schemes under rapid improvement

T-g Targeting scheme under gradual improvement

r, s Product strategies (replacement and skipping)

U,B, F Compatibility regimes (FU ll, Backward, and F orward)

ωi,j The upper bound of ω across different targeting schemes and com-
patibilities, where i = {h, l, g} and j = {U,B, F}; the specific
values are defined in the Appendix.

Πi,j,k
t The firm’s profit in period t (t ∈ {1, 2}), under targeting scheme T-

i (with i ∈ {l, h, g}) under compatibility regime j (j ∈ {U,B, F})
and product strategy k (k ∈ {r, s})

ω̂, ω∗ Critical values that determine the optimal strategies in the setting
with rapid improvement and full compatibility.
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Table 3.2: Locations of the Marginal Consumers

Segments S0 Sl Sh

Sl v0l =
pl − ηl,1 − δηl,2

θl
- -

Sh v0h =
ph − ηh,2

θh
vlh =

δph − pl + ηl,1 + δηl,2 − δηh,2

δθh − θl
-

Sb - vlb =
ph + ηl,2 − ηh,2

θh − θl
vhb =

pl − ηl,1

(1− δ)θl
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Table 3.3: Rapid Improvement - Scheme T-h

Full Compatibility Backward Compatibility Forward Compatibility
([P-hUk]) ([P-hBk]) ([P-hFk])

p∗h θh/2 θh/2 same as in [P-hUk]

Nh +Nb
θh

2(θh − ω)

θh
2(θh − ω)

same as in [P-hUk]

vlh = v0l

p∗l ω +
(θl(1− δ)− ω)(θl(θh − 2ω) + δθhω)

2θl(θh − ω)(1− δ)
ω +

(θh − 2ω)(θl(1− δ)− ω)

2(1− δ)(θh − ω)
same as in [P-hUk]

Nb max{θlθh(1− 2δ) + δ(2θl − θh)ω

2θl(1− δ)(θh − ω)
, 0} max{θh(1− 2δ) + 2δω

2(1− δ)(θh − ω)
, 0} same as in [P-hUk]

vhb = v0h

p∗l ω +
(θh − 2ω)(θl(1− δ)− ω)

2(θh − ω)

Nb
θh

2(θh − ω)

Scheme T-h with the following segmentation structure:

63



Table 3.4: Rapid Improvement - Scheme T-l
Full Compatibility Backward Compatibility Forward Compatibility

([P-lU]) ([P-lB]) ([P-lF])

p∗h
θh−θl

2
θh−θl

2
θh−θl

2
− ω(θl−p∗l )

2(θl−(1+δ)ω)

Nb 1/2 θh−θl
2(θh−θl−ω)

θh−θl
2(θh−θl−ω)

− ω(θl−p∗l )

2(θh−θl−ω)(θl−(1+δ)ω)

a. Interior solution

p∗l θl/2
θl
2
− δω(θh−θl)

4(θh−θl−ω)
θl
2

+ δω(2θl(θh−θl)−(2θh(1+δ)−θl(1+2δ))ω)
2((4+3δ)ω2+4(θlδ−θh(1+δ))ω+4θl(θh−θl))

Nl +Nb
θl

2(θl−(1+δ)ω)
2θl(θh−θl)−(δθh+θl(2−δ))ω

4(θh−θl−ω)(θl−(1−δ)ω)
2θl(θh−θl)−(δθh+θl(2−δ))ω

(4+3δ)ω2+4(θlδ−θh(1+δ))ω+4θl(θh−θl)
b. Corner solution

vhb = vlh

p∗l
θl(θl(1−δ)+ω(1+δ2))

2(θl−δω)
{ θl(θl(1−δ)+ω(1+δ2))

2(θl−δω)
{ θl(θl(1−δ)+ω(1+δ2))

2(θl−δω)

−ω(θl(1−δ)(θl−δω)+ω(δθh−θl))
2(θl−δω)(θh−θl−ω)

} − ωθl(1−δ)(θl(1−δ)−2δω)(θl−(1+δ)ω)
2(θl−δω)(2δω2−(θl(1−δ)+2θhδ)ω+2θl(θh−θl))

}

Nl +Nb
θl(1+δ)

2(θl−δω)
θl(1+δ)

2(θl−δω)
− ω(δθh−θl)

2(θl−δω)(θh−θl−ω)
θl(1+δ)

2(θl−δω)
+ ωθl(1−δ)(θl(1−δ)−2δω)

2(θl−δω)(2δω2−(θl(1−δ)+2θhδ)ω+2θl(θh−θl)))

vlb = v0l

p∗l
θl(θh−θl)−ω(3θl−θh)

2(θh−θl−ω)

Nl +Nb
θh−θl

2(θh−θl−ω)

Scheme T-l with the following segmentation structure:
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Table 3.5: Numerical Analysis with δ = 0.8, θl = 2, and θh = 3 (with these values, we obtain
ω̂ = 0.25 and ω∗ = 0.255)

Table 3.6: Numerical Analysis with δ = 0.8, θl = 2, and θh = 10 (with these values, we
obtain ω̂ = 0.25 and ω∗ = 0.255)
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Figure 3.1: Market Segmentation Under Rapid Improvement

Figure 3.2: Market Segmentation Under Gradual Improvement
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Figure 3.3: Segmentation Structure Under Rapid Improvement

Figure 3.4: Product Strategies Under T-h and Full/Forward Compatibilities

67



Figure 3.5: Product Strategies Under T-h and Backward Compatibility

Figure 3.6: Product Strategies Under Rapid Improvement and Full Compatibility
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CHAPTER 4: OPTIMAL SUPPLY CHAIN STRUCTURE:
IMPACT OF QUANTITY COMPETITION

4.1 Introduction

Durable goods such as automobiles, aircraft, and consumer electronics are consumed

over a long period of time and frequently require sizable investment from both consumers

and producers. Hence, the impact of market saturation and consumers’ forward looking has

been long noticed in the durable goods literature. The fact that automakers take actions

to influence the secondary market (Purohit and Staelin 1994, Purohit 1997) is a strong

indication of how powerful used products can be in affecting the profit of new products. For

other product categories like PCs, and iPads, although firms like Apple and HP do not try

hard to control the secondary market, the threat of saturation is always around as noted by

Wall Street Journal:

“The iPad used to be a novelty, but now every Tom, Jill and Nancy has them.

Although there has been frenzy and even a riot outside Apple stores in China, the

queues for new devices generated by Jobs’ aesthetic vision are getting shorter in

parts of Europe and the U.S.”(March 4, 2012).

In the extreme case of the Citizen’s Band radio, the market was fully saturated after ap-

proximately five years, causing a crash in CB radio sales in 1977 (McAfee 2002). Given the

unavoidable impact of saturation due to durability, and further, consumers are aware of that

when making purchases (i.e., they are strategic), our interest is on how the firm would adapt

to it by using supply chain design.

In practice, we observe different supply chain structures utilized in durable goods

markets. For example, Intel provides microprocessors to many PC makers such as HP,
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Dell, Lenovo, Sony, etc.; Bosch Automotive Group, the world’s largest supplier of automo-

tive components (Automotive News, June 13, 2011) with sales of 30.4 billion euros in 2011

(www.bosch-press.com), is the component supplier for many auto makers such as Volkswa-

gen, BMW, Audi, Porsche, Ford, GM, Chrysler, etc.; or ARM Holdings is the producer of

microchip blueprints found in most mobile phones including Apple’s iPhone (Wall Street

Journal, April 24, 2012); Dolby develops a variety of audio technologies (www.dolby.com)

that are used by many consumer electronics manufacturers, including Nokia, LG, HTC,

Acer, Fujitsu, Sony, HP, Lenovo, etc. Obviously, the suppliers in these examples follow a

component supplier structure.

Sometimes, the proprietary component manufacturer uses its component to make the

end product and enters that market. For example, Bose Corporation produces speakers

based on its proprietary technology; and Apple builds smartphones and iPads. Finally,

the manufacturer may follow a dual distribution structure as in the case of Cannon which

produces the laser printer using its print engine and supplies that engine to its competitor

HP to make laser printers; or Sony provides its Trinitron TV picture tube to its competitor

Toshiba.

Given different structures observed in different industries, extant literature has inves-

tigated their optimality in the context of static spacial competition (e.g. Venkatesh et al.

2006, Xu et al. 2010). However, little effort has been dedicated to incorporate the impact of

durability on the choice of different supply chain structures. This chapter and the next take

a step towards examining that impact.

More specifically, we notice that most durable goods are made via significant time

consuming production processes. Hence, there is a friction in changing product quantities,

i.e., companies are capacity constrained when selecting prices. For this reason, the majority

of work in the durable goods literature takes quantity as an important decision variable (e.g.,

Bulow 1982, 1986, Purohit and Staelin 1994, Purohit 1995, Desai et al. 2004). However, the
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extant literature on the optimal choice among supply chain structures has focused mainly on

price competition (e.g. Venkatesh et al. 2006, Xu et al. 2010). Further, there is a diversity in

optimal firm behavior under price and quantity competition (Singh and Vives 1984, Arya et

al. 2008c). Consequently, the purposes of this chapter are: (1) to compare and contrast the

optimal supply chain design under price vis-a-vis quantity competition; (2) to link the above

comparison with the findings from the existing work; (3) to provide a useful benchmark for

the design of supply chain in a dynamic setting in Chapter 5.

We address these goals by building a static model in which a proprietary component

manufacturer chooses among the three alternative supply chain structures outlined above.

In the first, the manufacturer operates as a “component supplier” and sells the component

to a downstream firm who then makes the end product. In the second structure, the manu-

facturer produces the end product using its component but does not make that component

available to any other firms; here, the manufacturer operates as a “sole entrant.” Finally,

the manufacturer can operate as a “dual distributor” who not only makes the end product

using its own component, but sells the component to a downstream firm who then competes

against the manufacturer in the end product market. The reason for using a new setting

(instead of existing model) is that we want to transition to utilize a vertical differentiation

model in Chapter 5 (this modeling approach is applied in the dynamic context of durable

goods) while existing work employs a horizontal differentiation model.

Extant literature (e.g., Venkatesh et al. 2006, Xu et al. 2010) shows that when

the proprietary component manufacturer is a sole entrant, it could avoid the effect of double

marginalization but suffers from a cost disadvantage due to lack of expertise in producing and

selling the end products (Xu et al. 2010). Alternatively, a component supplier can leverage

the expertise of the downstream firm in producing and marketing the end product but its

market coverage is restricted due to double marginalization. Finally, the dual structure seems

to lower the effect of double marginalization because the end market is more competitive
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(and has higher coverage); however, channel conflicts may dampen this advantage because

the manufacturer has to reconcile between wholesale and end product profits.

Our analysis shows that the relative preference for different structures depends on the

level of cost disadvantage and the level of product differentiation between the end products

of the manufacturer and the downstream firm. More importantly, these preferences change

from price to quantity competition, especially between the component supplier role and the

dual distributor role. Compared to price competition, the firm’s profitability is less disruptive

under quantity competition in the following sense: when the firm incurs a higher level of

cost disadvantage in producing the end product, under price competition, there is a steep

drop in profitability as the firm transitions to a component supplier structure from a dual

distribution structure. By contrast, under quantity competition, the change in profitability

is more gradual. This feature allows the firm to gain higher profits in a certain parametric

range of cost disadvantage under quantity competition.

The rationale of the findings is as follows. Under the distributor role, managing the

wholesale and end product profits forces the manufacturer to lower its component’s price

offered to the downstream firm (compared to a component supplier structure). This effect

is more detrimental under quantity competition; consequently, the dual distributor obtains

lower profits here, than under price competition. However, the higher profitability of the

dual distribution under price competition goes with an inability to sustain the structure at

higher levels of cost disadvantage. In other words, a dual structure can arise for a range of

the cost disadvantage under quantity competition but not under price competition; in that

range, the quantity competition setting gives the manufacturer higher profits.

Finally, we link our results to the existing work by conducting the analysis using their

setting but employing quantity competition. We show how our results fit into the context

of their models. This exercise helps us reconcile the differences in moving from a horizontal

differentiation to a vertical differentiation setting in the next chapter.
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The rest of the chapter is organized as follows. We develop our model in the next

section. The analysis and results are presented in Section 3. We link our results to the

existing work in section 4 and conclude the chapter in Section 5.

4.2 The Model

A firm, m, is the sole supplier of an essential proprietary component for making the

end product. To capture the value created by its component, m considers three different

supply chain structures, {E,C,D}. In the first, denoted E, m will produce the end product

using its component; when m implements E, we called it a sole entrant. In the second

structure, denoted C, m sells the component to a downstream firm n ,who will make the end

product; when m implements C, we call it a component supplier. Finally, m will operate as a

dual distributor under structure D; here, m makes the end product using its own component

as well as sells its component to n, who then becomes m’s competitor in the end product

market.

Let pj
i and dj

i be the end product’s price and quantity of firm i (i = {m,n}) under

structure j (j = {E,C,D}). When m is a sole entrant the end product’s inverse demand is

given by pE
m = a− bdE

m. When m is a component supplier, the end product’s inverse demand

of n is given by pC
n = a − bdC

n . When m is a dual distributor, the consumer demand of m

and n’s end products is given by the following inverse demand functions:

pD

m = a− b(dD

m + kdD

n ), and pD

n = a− b(dD

n + kdD

m) (4.1)

Where a and b are positive constants. The parameter k ∈ [0, 1] represents the degree of

product homogeneity. Said differently, (1−k) represents the degree of product differentiation;
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when k = 0, the end products of m and n are independent; on the other hand, when k = 1,

the two products are identical. 1

We assume that each unit of the end product requires one unit of the component.

The marginal cost of producing the component is assumed constant and normalized to zero.

The marginal cost of making the end product is τ + c and τ for m and n respectively, where

τ < a and τ + c < a. The marginal cost differential between the two firms c can be positive

or negative. If c > 0, m incurs a cost disadvantage when joining the end market; if c < 0, m

has a cost advantage; thus, −τ ≤ c < a− τ .

The timing of the game is as follows. There are two stages: (1) In the first stage, m

selects the supply chain structure among {E,C,D}; (2) In the second stage, if m is a sole

entrant, it will choose the end product’s quantity to sell under quantity competition (or price

under price competition) in the end market. If m is a component supplier, it will set the

component’s price; given that price, n then chooses the end product’s quantity to sell under

quantity competition (or price under price competition) in the end market. If m is a dual

distributor, it will set the component’s price; and given that price, n and m simultaneously

and noncollusively choose the end product’s quantities to sell under quantity competition

(or prices under price competition) in the end market. Finally, consumers make purchases

and the firms’ profits are realized.

1In fact, the above inverse demand specification can be derived from an individual model as follows. Let
a/b be the number of consumers on the market. Each consumer consumes at most one unit of product. The
consumer maximum reservation price x is uniformly distributed with density 1/b, along the interval [0, a],
0 ≤ x ≤ a. The reservation price for a product of firm i (i = {m,n}) of a consumer indexed x is x − kbqj ,
where qj is the quantity from firm j (j 6= i, j = {m,n}) on the market. Following Martin (2009), we obtain
the quantity demanded of i is

qi =
1

b

∫ a−kbqj

pi

dx =
a

b
− kqj −

1

b
pi. (4.2)

Analogously, we have the quantity demanded of j. Solving these two equations leads to the specification in
(4.1).
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4.3 The Analysis and Results

In this section, we derive the optimal supply chain structure under price competition

as the benchmark. The analysis on quantity competition follows and is compared with the

benchmark. It is important to notice that under either E or C, the end market is monopolized

by the end product providers (m or n). Hence, in those two cases, the nature of competition

does not change the equilibrium outcome.

4.3.1 The Benchmark

4.3.1.1 Sole Entrant

Under E, m’s problem is specified as follows:

max
pEm

ΠE

m = (pE

m − τ − c)dE

m (4.3)

subject to: pE

m ≥ 0 and dE

m ≥ 0 (4.4)

The demand function is given by dE
m = a−pEm

b
. Taking the first-order condition gives ∂ΠE

m

∂pEm
=

(pE
m−τ −c)(−1

b
)+dE

m = 0⇔ pE
m = a+τ+c

2
. This solution is also the optimal one as the second

order condition is satisfied ( ∂2ΠE
m

∂(pEm)2
= −2/b < 0). Hence, we obtain the following outcome:

pE

m =
a+ τ + c

2
(4.5)

dE

m =
a− τ − c

2b
(4.6)

ΠE

m =
(a− τ − c)2

4b
(4.7)
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4.3.1.2 Component Supplier

Let wC
m be the component’s price set by the component supplier m. The consumer

demand is given by dC
n = a−pCn

b
. Hence, m’s problem is:

max
wC

m

ΠC

m = wC

md
C

n (4.8)

subject to

max
pCn

ΠC

n = (pC

n − τ − wC

m)dC

n (4.9)

pC

n ≥ 0;wC

m ≥ 0; dC

n ≥ 0 (4.10)

We solve the problem backward, for a given wC
m, n’s problem is solved analogously to the

sole entrant’s problem. Therefore, we get pC
n = a+τ+wC

m

2
and dC

n = a−τ−wC
m

2b
. The component

supplier then sets wC
m via ∂ΠC

m

∂wC
m

= dC
n + wC

m(− 1
2b

) ⇔ wC
m = a−τ

2
. Since the second order

condition is satisfied (i.e., ∂2ΠC
m

∂(wC
m)2

= −1/b < 0), the above solution is indeed the optimal

solution. Hence, under C, we obtain:

pC

n =
3a+ τ

4
(4.11)

dC

n =
a− τ

4b
(4.12)

ΠC

m =
(a− τ)2

8b
(4.13)

ΠC

n =
(a− τ)2

16b
(4.14)

4.3.1.3 Dual Distributor

The demand system under D is obtained via (4.1). It follows that

dD

m =
a(1− k)− pD

m + kpD
n

b(1− k2)
, and dD

n =
a(1− k)− pD

n + kpD
m

b(1− k2)
, k 6= 1. (4.15)
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The dual distributor’s problem is defined as follows:

max
wD

m

ΠD

m = wD

md
D

n + (pD

m − τ − c)dD

m (4.16)

subject to

max
pDm

ΠD

m = wD

md
D

n + (pD

m − τ − c)dD

m (4.17)

max
pDn

ΠD

n = (pD

n − τ − wD

m)dD

n (4.18)

pD

m ≥ 0; pD

n ≥ 0;wD

m ≥ 0. (4.19)

In the above, m’s profit includes two parts: the wholesale profit from selling the component

to n (called the wholesale profit hereafter) and the end product profit. With backward

induction, we solve the pricing game in the end market first. The end product’s prices are

determined by the following first order conditions (the second order conditions are satisfied,

∂2ΠD
m

∂(pDm)2
= ∂2ΠD

n

∂(pDn )2
= −2

b(1−k2)
< 0 ):

∂ΠD
m

∂pD
m

= dD

m + (pD

m − τ − c)
[ −1

b(1− k2)

]
+ wD

m

[ k

b(1− k2)

]
= 0, and (4.20)

∂ΠD
n

∂pD
n

= dD

n + (pD

n − τ − wD

m)
[ −1

b(1− k2)

]
= 0, (4.21)

or equivalently,

a(1− k) + τ + c− 2pD

m + kpD

n + kwD

m = 0, and (4.22)

a(1− k) + τ − 2pD

n + kpD

m + wD

m = 0. (4.23)

Here, m considers two streams of profit when choosing its end product’s price: the wholesale

profit and its own end product profit. Subsequently, it has an incentive to raise its end

product’s price to a higher level than when it only maximizes the end product’s profit.
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Solving these above equations gives

pD

m =
a(2− k − k2) + τ(2 + k) + 2c+ 3kwD

m

4− k2
, (4.24)

pD

n =
a(2− k − k2) + τ(2 + k) + kc+ (2 + k2)wD

m

4− k2
. (4.25)

The quantities sold in the market are

dD

m =
(1− k)((a− τ)(2 + k)− k(1 + k)wD

m)− (2− k2)c

b(4− 5k2 + k4)
, (4.26)

dD

n =
(1− k)((a− τ)(2 + k)− 2(1 + k)wD

m) + kc

b(4− 5k2 + k4)
. (4.27)

It is worth noting that the component’s price wD
m (which is a part of n’s cost) negatively

affects m’s quantity; said differently, m sells less of the product when its competitor incurs

a higher cost. It happens because as wD
m goes up, m obtains higher wholesale profits, which

in turn motivates it to increase its end product’s price more (see the first order condition

above), and subsequently, lowering its own end product’s demand.

Next, m selects the component’s price offered to n. The price is set by solving

∂ΠD
m

∂wD
m

= 0; it follows that wD
m = (a−τ)(8+k3)−k3c

2(8+k2)
(the second order condition is satisfied, i.e.,

∂2ΠD
m

∂(wD
m)2

= −2(8+k2)
b(4−k2)2

< 0). The equilibrium outcome is provided in Table 4.1.

Notice that the dual distribution is feasible when dD
m > 0 and dD

n > 0; said differently,

it requires cDn < c < cDm, where cDm = (8−6k−k2−k4)(a−τ)
8−k2−k4 and cDn = − (1−k)(a−τ)

k
.

The following proposition characterizes the optimal supply chain structure under price

competition

Proposition 4.1 Under price competition, m is

(i) a sole entrant when c ≤ cDn ;

(ii) a component supplier when c ≥ cDm; and

(iii) a dual distributor whenever it is feasible, i.e., cDn < c < cDm.
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Proof: The profits of m under {E,C,D} are provided in Table 4.1. It follows that

ΠD

m − ΠE

m =
(ck + (1− k)(a− τ))2

b(8− k4 − 7k2)
≥ 0 (4.28)

ΠD

m − ΠC

m =
2c2(8− k4 − 3k2) + 4c(8− k(k3 + 3k + 4))(a− τ) + (1− k)(k3 + k2 + 16)(a− τ)2

8b(8− k4 − 7k2)
≥ 0

(4.29)

ΠE

m − ΠC

m =
2c2 − 4c(a− τ) + (a− τ)2

8b
≥ 0 for all c ≤ (2−

√
2)(a− τ)

2
. (4.30)

Hence, D is optimal whenever it is feasible. When D is not feasible, E is optimal for all

c ≤ cDn and C is optimal for all c ≥ cDm. �

The above results which are broadly consistent with those in the literature (e.g.,

Venkatesh et al. 2006) are illustrated by Figure 4.1. From there, we can see that for a

large parametric region, D is the dominant structure. It allows the firm to charge the end

product’s price even higher than the one of a sole entrant (i.e., pD
m ≥ pE

m), further, m puts

the highest number of the component in the market among all supply chain structures. The

downside of D is that the component’s price is lower than the one under C.

More importantly, the proposition also specifies the feasibility of D. When m incurs

a relatively high cost disadvantage, the end product’s price is boosted to a level such that

the market cannot bear; hence, m operates as a component supplier instead. Or conversely,

when m has a relatively high cost advantage, the gain from that advantage can overcome

the loss from not selling the component to n; consequently, m forecloses n and becomes a

sole entrant.

4.3.2 The Optimal Supply Chain Structure Under Quantity Competition

As noted above, the equilibrium outcome of E or C is unchanged by the nature

of competition. We therefore only analyze D under quantity competition. We use the
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superscript ‘q’ to denote the results under quantity competition. The inverse demand is:

pD,q

m = a− b(dD,q

m + kdD,q

n ), and pD,q

n = a− b(dD,q

n + kdD,q

m ) (4.31)

Starting from the last stage, quantities are chosen from the following first order conditions

(the second order conditions are satisfied, i.e., ∂2ΠD,q
m

∂(dD,q
m )2

= ∂2ΠD,q
n

∂(dD,q
n )2

= −2b < 0 ):

∂ΠD,q
m

∂dD,q
m

= (−b)dD,q

m + pD,q

m − τ − c = 0 (4.32)

∂ΠD,q
n

∂dD,q
n

= (−b)dD,q

n + pD,q

n − τ − wD,q

m = 0. (4.33)

Or equivalently,

dD,q

m =
(2− k)(a− τ)− 2c+ kwD,q

m

b(4− k2)
, and (4.34)

dD,q

n =
(2− k)(a− τ) + ck − 2wD,q

m

b(4− k2)
(4.35)

Notice that m does not consider its wholesale profit when choosing the end product’s quan-

tity. Substituting the above into ΠD,q
m and solving for wD,q

m yields wD,q
m = (k3−4k2+8)(a−τ)−ck3

16−6k2
.

The equilibrium outcome is in Table 4.1.

Note that the dual distribution structure is feasible whenever dD,q
m > 0 and dD,q

n > 0,

or equivalently, cD,q
n < c < cD,q

m , where cD,q
m = 8−k2−2k

8−k2 , and cD,q
n = − (1−k)(a−τ)

k
. Define

cD,q
dc =

2(k2−4k+8)−k
√

2(8−3k2)

2(k2+8)
(a− τ).

The following proposition characterizes the optimal supply chain structure:

Proposition 4.2 Under quantity competition, m is

(i) a sole entrant when c ≤ cD,q
n ;

(ii) a component supplier when c ≥ cD,q
dc ; and

(iii) a dual distributor when cD,q
n < c < cD,q

dc .
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Proof: The profits of m under {E,C,D} are provided in Table 4.1. It follows that

ΠD,q

m − ΠE

m =
(ck + (1− k)(a− τ))2

b(8− 3k2)
≥ 0 (4.36)

ΠD,q

m − ΠC

m =
2c2(k2 + 8)− 4c(k2 − 4k + 8)(a− τ) + (5k2 − 16k + 16)(a− τ)2

8b(8− 3k2)
. (4.37)

Combining with the feasibility region of D gives ΠD,q
m > ΠC

m whenever c < cD,q
dc (where

cD,q
dc ≤ cD,q

m ) and the other results. �

We use Figure 4.2 to illustrate the above proposition. Under quantity competition,

the profitability of D decreases at higher levels of c and eventually is dominated by C

before it becomes infeasible. This contrasts with what happens under price competition

where the dual distribution is optimal whenever it is feasible. Since the profit of C is

independent of c, the change occurs because the quantity competition setting lowers the

profitability of D. Recall that m ignores its wholesale profit when choosing the end product’s

quantity, which indicates that m becomes more aggressive in the end market; anticipating

this behavior, n lowers its quantity (as quantities are strategic substitutes), causing m to

lower the component’s price to induce n to buy more of the component (wD,q
m ≤ wD

m). Such

an inducement proves too costly for m. When m has a high cost advantage, analogous to

price competition, m forecloses n and becomes a sole entrant at higher levels of the cost

advantage.

Proposition 4.3 For cDm ≤ c ≤ cD,q
dc , m implements C under price competition but D under

quantity competition; further, m’s profitability under quantity competition is higher within

this region.

Proof: We have cDm ≤ cD,q
dc for all k ∈ [0, 1]. The higher profitability of m comes directly from

Proposition 4.2. �
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Although the profitability of D is reduced under quantity competition, D is sustained

at higher levels of cost disadvantage. In fact, consumers are worse off under price competition

and block this structure by not buying the product from m. In particular, m is inclined to

raise the end product’s price to protect wholesale profit, plus it lowers the wholesale’s price

(vis-a-vis the one under C); this behavior substantially restricts its own reach in the end

market, especially when the cost differential is large (as the impact of c on dD
m is larger than

on dD,q
m ).

In conclusion, when selecting D under either price or quantity competition, m sets a

lower component’s price (vis-a-vis the one under C). While raising its end product’s price

to secure the wholesale profit under price competition, m does not restrict its end product’s

quantity to protect the wholesale profit under quantity competition. Instead, it sets an even

lower component price later under quantity competition (vis-a-vis under price competition).

Though m’s behavior is different under the two settings, the purpose of its action is to secure

the wholesale profit. The consequence of this action is more detrimental under quantity

competition (i.e., lower profitability). However, this structure is sustained at higher levels

of cost disadvantage; in other words, m obtains higher profits under quantity competition

at these levels because m operates as a component supplier under price competition and

subsequently obtains lower profits.

4.4 Links to Existing Work

This section revisits the models in existing work (Venkatesh et al. 2006 and Xu et

al. 2010) and shows how the optimal supply chain design changes when the nature of com-

petition changes from price to quantity competition. Both papers employ price competition

in a horizontal differentiation context. To facilitate the comparison, we adopt most of the
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notation in their papers. We use the superscript ‘V’ to denote the values of key variables in

Veskatesh et al. (2006). Similarly, we use the superscript ‘X’ in Xu et al. (2010).

4.4.0.1 The Model from Venkatesh et al. (2006)

The demand structure is given by the following:

Sole Entrant: dE,V

m =
2(R− pE,V

m )

β
(4.38)

Component Supplier: dC,V

n =
2(R + q − pC,V

n )

β
(4.39)

Dual Distributor: dD,V

m =
2R− q + fβ − 3pD,V

m + pD,V
n

2β
, and (4.40)

dD,V

n =
2R + 3q + fβ − 3pD,V

n + pD,V
m

2β
(4.41)

where R is the consumer’s reservation of the end product of m; R + q is of n’s; β is the

transportation cost per unit length; f is the distance between m and n. Notice that the dual

distributor is called the ‘Co-opter’ in Venkatesh et al. (2006).

From the demand structure specified above, we obtain the equivalent inverse demand

system:

Sole Entrant: pE,V

m = R− βdE,V
m

2
(4.42)

Component Supplier: pC,V

n = R + q − βdC,V
n

2
(4.43)

Dual Distributor: pD,V

m = R +
fβ

2
− 3βdD,V

m

4
− βdD,V

n

4
, and (4.44)

pD,V

n = R + q +
fβ

2
− 3βdD,V

m

4
− βdD,V

n

4
(4.45)

Since the equilibrium outcome of the sole entrant and component supplier roles is

unchanged regardless of the nature of competition, we focus on the dual distributor role
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and compare the new result under quantity competition with the current work. The results

under price competition are (from Venkatesh et al. 2006):

Sole entrant:

pE,V

m = R/2 (4.46)

dE,V

m = R/β (4.47)

ΠE,V

m =
R2

2β
(4.48)

Component supplier:

wC,V

m = (R + q)/2 (4.49)

pC,V

n =
3(R + q)

4
(4.50)

dC,V

n =
R + q

2β
(4.51)

ΠC,V

m =
(R + q)2

4β
(4.52)

ΠC,V

n =
(R + q)2

8β
(4.53)

Dual distributor:

wD,V

m =
432q + 434R + 271fβ

876
(4.54)

pD,V

m =
12q + 77(2R + fβ)

292
(4.55)

pD,V

n =
660q + 293(2R + fβ)

876
(4.56)

dD,V

m =
−81q + 119(2R + fβ)

438β
(4.57)

dD,V

n =
19(3q + 2R + fβ)

146β
(4.58)
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ΠD,V

m =
162q2 + 108q(2R + fβ) + 91(2R + fβ)2

876β
(4.59)

ΠD,V

n =
361(3q + 2R + fβ)2

31974β
(4.60)

Notice that for dual distribution to arise, we require a lower bound and an upper

bound on fβ. The lower bound guarantees the stability of equilibrium by requiring: at

n’s location, the consumer’s surplus from buying n’s product is larger than from buying

m’s product; and the consumer’s surplus from buying m’s product is larger than that from

buying n’s product at m’s location. In other words, R + q − pD,V
n > R − pD,V

m − fβ and

R − pD,V
m > R + q − pD,V

n − fβ. It follows that fβ > {62R−162q
407

, 126q−62R
469

}. The upper bound

requires the distance between m and n cannot exceed the distance at which the indifferent

consumer x gets zero surplus, or equivalently, R− pD,V
m − βe = R + q − pD,V

n − β(f − e) = 0

(where e is the distance of x from m). It follows that fβ ≤ 45q+176R
350

. Hence, the feasibility

of the dual distributor role outcome is:

max{62R− 162q

407
,
126q − 62R

469
} < fβ ≤ 45q + 176R

350β
. (4.61)

It is important to point out that with the stability constraints, the firms’ demand never

approaches zero. So feasibility is not an issue in Venkatesh et al. (2006) (in contrast to

Proposition 4.1).

The optimal supply chain structure is summarized in the following lemma:

Lemma 4.1 Under price competition and (4.61), m will be

(1) a sole entrant when fβ ≤ fVed and q ≤ (
√

2− 1)R;

(2) a component supplier when fβ ≤ fVcd and q ≥ (
√

2− 1)R;

(3) a dual distributor when fβ > max{fVed, fVcd}.
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Proof: We have

ΠD,V

m − ΠE,V

m =
162q2 − 438R2 + 108q(2R + fβ) + 91(2R + fβ)2

876β
≥ 0 for all fβ ≥ fVed

(4.62)

ΠD,V

m − ΠC,V

m =
162q2 − 219(R + q)2 + 108q(2R + fβ) + 91(2R + fβ)2

876β
≥ 0 for all fβ ≥ fVcd

(4.63)

ΠE,V

m − ΠC,V

m = −q
2 + 2qR−R2

4β
≥ 0 for all q ≤ (

√
2− 1)R. (4.64)

where fVed =
−54q−182R+

√
438(91R2−27q2)

91
, and fVcd =

−54q−182R+
√

219(37q2+182qR+91R2)

91
. Conse-

quently, the dual distributor role is optimal when fβ > max{fVed, fVcd}. �

Now, we derive the dual distributor outcome under quantity competition based on

the inverse demand described above. m’s problem is defined as follows:

max
wC,V

m

ΠD,V

m = pD,V

m dD,V

m + wC,V

m dD,V

n (4.65)

subject to:

max
dD,V
m

ΠD,V

m = pD,V

m dD,V

m + wC,V

m dD,V

n (4.66)

max
dD,V
n

ΠD,V

n = (pD,V

n − wC,V

m )dD,V

n (4.67)

dD,V

n ≥ 0; dD,V

m ≥ 0;wC,V

m ≥ 0. (4.68)

Under backward induction, the quantities are chosen via the following first-order conditions:

∂ΠD,V
m

∂dD,V
m

=
[
− 3β

4

]
dD,V

m +
[
R +

fβ

2
− 3βdD,V

m

4
− βdD,V

n

4

]
= 0 (4.69)

∂ΠD,V
n

∂dD,V
n

=
[
− 3β

4

]
dD,V

n +
[
R + q +

fβ

2
− 3βdD,V

m

4
− βdD,V

n

4
− wC,V

m

]
= 0 (4.70)
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Analogous to our model, here, m does not consider the wholesale profit when choosing its

end product’s quantity. Solving the above gives:

dD,V

m =
2(10R− 2q + 5fβ + 2wC,V

m )

35β
(4.71)

dD,V

n =
2(10R + 12q + 5fβ − 12wC,V

m )

35β
. (4.72)

Substituting these expressions into ΠD,V
m and solving for wC,V

m gives wC,V
m = 408q+205(2R+fβ)

828
.

Hence, the equilibrium outcome is:

wD,V

m =
408q + 205(2R + fβ)

828
(4.73)

pD,V

m =
−12q + 65(2R + fβ)

276
(4.74)

pD,V

n =
624q + 277(2R + fβ)

828
(4.75)

dD,V

m =
−12q + 65(2R + fβ)

207β
(4.76)

dD,V

n =
8(3q + 2R + fβ)

69β
(4.77)

ΠD,V

m =
144q2 + 96q(2R + fβ) + 85(2R + fβ)2

828β
(4.78)

ΠD,V

n =
16(3q + 2R + fβ)2

1587β
. (4.79)

The lower and upper bounds of fβ include:

(1) R+ q − pD,V
n > R− pD,V

m − fβ and R− pD,V
m > R+ q − pD,V

n − fβ. It follows that

fβ > {2(42q−41R)
455

, 2(41R−42q
373

}.

(2) The condition on the distance f where n and m’s markets are overlapped is

obtained from the indifferent consumer x with zero surplus, or equivalently, R− pD,V
m −βe =

R+q−pD,V
n −β(f−e) = 0 (where e is the distance of x fromm). It follows that fβ ≤ 2(30q+89R)

325
.
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Hence, the feasibility of the dual distributor role outcome is:

max{2(42q − 41R)

455
,
2(41R− 42q)

373
} < fβ ≤ 2(30q + 89R)

325
. (4.80)

It is important to point out that with the stability constraints, the firms’ demand never

approaches zero.

The optimal supply chain structure is summarized in the following lemma:

Lemma 4.2 Under quantity competition and (4.80), m will be

(1) a sole entrant when fβ ≤ fV,qed and q ≤ (
√

2− 1)R;

(2) a component supplier when fβ ≤ fV,qcd and q ≥ (
√

2− 1)R;

(3) a dual distributor when fβ > max{fV,qed , f
V,q
cd }

Proof: We have

ΠD,V

m − ΠE,V

m =
144q2 − 414R2 + 96q(2R + fβ) + 85(2R + fβ)2

828β
≥ 0 for all fβ ≥ fV,qed

(4.81)

ΠD,V

m − ΠC,V

m =
144q2 − 207(R + q)2 + 96q(2R + fβ) + 85(2R + fβ)2

828β
≥ 0 for all fβ ≥ fV,qcd

(4.82)

ΠE,V

m − ΠC,V

m = −q
2 + 2qR−R2

4β
≥ 0 for all q ≤ (

√
2− 1)R. (4.83)

where fV,qed =
−48q−170R+3

√
46(85R2−24q2)

85
, and fV,qcd =

−48q−170R+3
√

23(37q2+170qR+85R2)

85
. Conse-

quently, the dual distributor role is optimal when fβ > max{fV,qed , f
V,q
cd }. �

Next, the following Proposition compares the optimal region of dual distribution

under price and quantity competition.
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Proposition 4.4 Under the conditions (4.61) and (4.80):

The optimal region of dual distribution is smaller under quantity competition than under

price competition, i.e., fV,qed ≥ fVed and fV,qcd ≥ fVcd.

Proof: The results come straightforward from fV,qed − fVed ≥ 0 and fV,qcd − fVcd ≥ 0.

4.4.0.2 The Model from Xu et al. (2010)

The demand structure is given by

Sole Entrant: dE,X

m =
2(V − pE,X

m )

t
(4.84)

Component Supplier: dC,X

n =
2(V − pC,X

n )

t
(4.85)

Dual Distributor: dD,X

m =
2V + ft− 3pD,X

m + pD,X
n

2t
, and (4.86)

dD,X

n =
2V + ft− 3pD,X

n + pD,X
m

2t
(4.87)

where V is the consumer’s reservation of the end product from both m and n; t is the

transportation cost per unit length; f is the distance between m and n. Notice that the sole

entrant is called the ‘Monopoly’ in Xu et al. (2010). m incurs a cost disadvantage c when

producing the end product. The equivalent inverse demand system is

Sole Entrant: pE,X

m = V − tdE,X
m

2
(4.88)

Component Supplier: pC,X

n = V − tdC,X
n

2
(4.89)

Dual Distributor: pD,X

m = V +
ft

2
− 3tdD,X

m

4
− tdD,X

n

4
, and (4.90)

pD,X

n = V +
ft

2
− 3tdD,X

m

4
− tdD,X

n

4
(4.91)
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Analogous to the model from Venkatesh et al. (2006), we focus on the dual distributor

role and compare the new result under quantity competition with the current work. The

results under price competition are (from Xu et al. 2010):

Sole entrant:

pE,X

m = (V + c)/2 (4.92)

dE,X

m = (V − c)/t (4.93)

ΠE,X

m =
(V − c)2

2t
(4.94)

Component supplier:

wC,X

m = V/2 (4.95)

pC,X

n =
3V

4
(4.96)

dC,X

n =
V

2t
(4.97)

ΠC,X

m =
V 2

4t
(4.98)

ΠC,X

n =
V 2

8t
(4.99)

Dual distributor:

wD,X

m =
−2c+ 217(2V + ft)

876
(4.100)

pD,X

m =
150c+ 77(2V + ft)

292
(4.101)

pD,X

n =
74c+ 293(2V + ft)

876
(4.102)

dD,X

m =
−319c+ 119(2V + ft)

438t
(4.103)

dD,X

n =
19(c+ 2V + ft)

146t
(4.104)
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ΠD,X

m =
310c2 − 256c(2V + ft) + 91(2V + ft)2

876t
(4.105)

ΠD,X

n =
361(c+ 2V + ft)2

31974t
(4.106)

Analogous to Venkatesh et al. (2006), the outcome of the dual distribution requires

a lower bound and an upper bound on ft. The lower bound guarantees the stability of

equilibrium by requiring: at n’s location, the consumer’s surplus from buying n’s product is

larger than from buying m’s product; and the consumer’s surplus from buying m’s product

is larger than that from buying n’s product at m’s location. In other words, V − pD,X
n >

V −pD,X
m −ft and V −pD,X

m > V −pD,X
n −ft. It follows that ft > {2(31V−94c)

407
, 2(94c−31V )

469
}. The

upper bound requires the distance between m and n cannot exceed the distance at which the

indifferent consumer x gets zero surplus, or equivalently, V −pD,X
m −te = V −pD,X

n −t(f−e) = 0

(where e is the distance of x from m). It follows that ft ≤ 176V−131c
350

. Hence, the feasibility

of the dual distributor role outcome is:

max{2(31V − 94c)

407
,
2(94c− 31V )

469
} < ft ≤ 176V − 131c

350
. (4.107)

It is important to point out that with the stability constraints, the firms’s demand never

approaches zero.

The optimal supply chain structure is summarized in the following lemma:

Lemma 4.3 Under price competition and (4.107), m will be

(1) a sole entrant when ft ≤ fXed and c ≤ (2−
√

2)V
2

;

(2) a component supplier when ft ≤ fXcd and c ≥ (2−
√

2)V
2

;

(3) a dual distributor when ft > max{fXed , fXcd}.

Proof: The profit comparison under price competition gives: ΠD,X
m −ΠE,X

m ≥ 0 when ft ≥ fXed ,

where fXed =
128c−182R+

√
438(64c2−182cV+91V 2)

91
; ΠD,X

m − ΠC,X
m ≥ 0 when ft ≥ fXcd , where fXcd =
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128c−182V+
√

219(91V 2−54c2)

91
; and ΠE,X

m − ΠC,X
m ≥ 0 when c ≤ (2−

√
2)V

2
. Consequently, the dual

distributor role is optimal when ft > max{fXed , fXcd}. �

Now, we derive the dual distributor outcome under quantity competition based on

the inverse demand described above. m’s problem is defined as follows:

max
wD,X

m

ΠD,X

m = pD,X

m dD,X

m + wD,X

m dD,X

n (4.108)

subject to:

max
dD,X
m

ΠD,X

m = pD,X

m dD,X

m + wD,X

m dD,X

n (4.109)

max
dD,X
n

ΠD,X

n = (pD,X

n − wD,X

m )dD,X

n (4.110)

dD,X

n ≥ 0; dD,X

m ≥ 0;wD,X

m ≥ 0. (4.111)

The equilibrium outcome is given by:

wD,X

m =
−2c+ 205(2V + ft)

828
(4.112)

pD,X

m =
134c+ 65(2V + ft)

276
(4.113)

pD,X

n =
70c+ 277(2V + ft)

828
(4.114)

dD,X

m =
−142c+ 65(2V + ft)

207t
(4.115)

dD,X

n =
8(c+ 2V + ft)

69t
(4.116)

ΠD,X

m =
292c2 − 244c(2V + ft) + 85(2V + ft)2

828t
(4.117)

ΠD,X

n =
16(c+ 2V + ft)2

1587t
. (4.118)

Analogous to Venkatesh et al. (2006), the restrictions on ft include

max{2(83c− 41V )

455
,
2(41V − 83c)

373
} < ft ≤ 2(−59c+ 89V )

325
. (4.119)
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It is important to point out that with these stability constraints, the firms’ demand under

dual distribution never approaches zero.

The optimal supply chain structure is summarized in the following lemma:

Lemma 4.4 Under quantity competition and (4.119), m will be

(1) a sole entrant when ft ≤ fX,qed and c ≤ (2−
√

2)V
2

;

(2) a component supplier when ft ≤ fX,qcd and c ≥ (2−
√

2)V
2

;

(3) a dual distributor when ft > max{fX,qed , fX,qcd }

Proof: The profit comparison under quantity competition gives: ΠD,X
m − ΠE,X

m ≥ 0 when

ft ≥ fX,qed ; ΠD,X
m − ΠC,X

m ≥ 0 when ft ≥ fX,qcd ; ΠE,X
m − ΠC,X

m ≥ 0 when c ≤ (2−
√

2)V
2

, where

fX,qed =
122c−170V+3

√
46(85V 2−170cV+61c2)

85
, and fX,qcd =

122c−170V+3
√

23(85V 2−48c2)

85
. Consequently,

the dual distributor role is optimal when ft > max{fX,qed , fX,qcd }. �

Next, the following Proposition compares the optimal region of dual distribution

under price and quantity competition.

Proposition 4.5 Under the conditions (4.107) and (4.119):

The optimal region of dual distribution is smaller under quantity competition than under

price competition, i.e., fX,qed > fXed and fX,qcd > fXcd .

Proof: The results come straightforward from fX,qed − fXed > 0 and fX,qcd − fXcd > 0.

The results from Propositions 4.4 and 4.5 seem to contradict Proposition 4.3. How-

ever, they are consistent. It is because feasibility is not an issue in Venkatesh et al. (2006)’s

model as well as Xu et al. (2010)’s; and these results are consistent with the finding that

the dual distributor obtains lower profits under quantity competition (vis-a-vis price com-

petition).
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4.5 Conclusion

This chapter focuses on showing the changes in the optimal supply chain structure

when moving from price to quantity competition in a static setting. We also link our findings

to the existing work (Venkatesh et al. 2006, Xu et al. 2010) to highlight the consistency of

our results across different settings. Our analysis reveals that compared to price competition,

the firm’s profitability is less disruptive under quantity competition. In particular, when the

firm incurs a higher level of cost disadvantage in producing the end product, under price

competition there is a steep drop in profitability as the firm transitions to a component

supplier structure from a dual distribution structure under price competition. On the other

hand, under quantity competition, the transition is more gradual. More importantly, this

feature allows the firm to gain higher profits in a certain range of cost disadvantage under

quantity competition.

The framework outlined in this chapter will serve as a benchmark for the next chapter

where we incorporate durability into the model.

94



Table 4.1: The Equilibrium Outcome of Different Supply Chain Structures

Dual Distributor

Price Competition Quantity Competition

wD
m = (8+k3)(a−τ)−k3c

2(8+k2)
wD,q

m = (k3−4k2+8)(a−τ)−ck3
2(8−3k2)

dD
m = (8−6k−k2−k4)(a−τ)−c(8−k2−k4)

2b(8−7k2−k4)
dD,q

m = (8−k2−2k)(a−τ)−c(8−k2)
2b(8−3k2)

dD
n = (2+k2)((1−k)(a−τ)+kc)

2b(8−7k2−k4)
dD,q

n = 2(1−k)(a−τ)+2ck
b(8−3k2)

pD
m = a(8+2k−k2)+c(8−2k+3k2)+c(8+3k2)

2(8+k2)
pD,q
m = a(8−k2−2k)+τ(8−5k2+2k)+c(8−5k2)

2(8−3k2)

pD
n = a(12−4k+2k2−k3)+τ(4+4k+k3)+ck(4+k2)

2(8+k2)
pD,q
n = a(k3−4k2−4k+12)+τ(4−k3−2k2+4k)+ck(4−k2)

2(8−3k2)

ΠD
m = c2(8−k4−3k2)−2c(8−k4−3k2−4k)(a−τ)+(12−k4−3k2−8k)(a−τ)2

4b(8−k4−7k2)
ΠD,q

m = c2(k2+8)−2c(k2−4k+8)(a−τ)+(k2−8k+12)(a−τ)2

4b(8−3k2)

ΠD
n = (k2+2)2(ck+(1−k)(a−τ))2

b(1−k2)(k2+8)2
ΠD,q

n = 4(ck+(1−k)(a−τ))2

b(8−3k2)2

Sole Entrant

pE
m = a+τ+c

2
; dE

m = a−τ−c
2b

; ΠE
m = (a−τ−c)2

4b

Component Supplier

wC
m = a−τ

2
; pC

n = 3a+τ
4

; dC
n = a−τ

4b
; ΠC

m = (a−τ)2

8b
; ΠC

n = (a−τ)2

16b
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Figure 4.1: Optimal Supply Chain Structure Under Price Competition
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Figure 4.2: Optimal Supply Chain Structure Under Quantity Competition
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CHAPTER 5: OPTIMAL SUPPLY CHAIN STRUCTURE:
IMPACT OF DURABILITY

5.1 Introduction

This chapter aims to accomplish the goal laid out in the Introduction section of

Chapter 4. We examine the impact of product durability on the supply chain design when

consumers are forward looking. The three supply chain structures are identified analogous

to those considered in Chapter 4. More specifically, our research question is: how does

durability impact the long-term profitability of different supply chain structures?

We address the research question by building a two-period analytical model in which

the manufacturer selects among being: (a) a sole entrant, (b) a component supplier, and (c)

a dual distributor. This two-period setup helps capture the durable nature of the product

(i.e., the future competition created by durability). In particular, a new product in the first

period becomes a used product in the second period; so durability is captured through the

valuation of the used product in the second period. If a product is a nondurable, the used

product has no value; if the product does not depreciate, the used product’s valuation is

the same as that of the new product sold in period 2. The competition between the used

product and the new product in period 2 is captured via a perfectly competitive secondary

market. It is worth noting that when the product in this setting has zero durability, or when

the future is not valuable (i.e., the discount factor is zero), the analysis collapses to the one

discussed in Chapter 4.

We examine the impact of durability on the profitability of different structures by

conducting comparative statics analysis on key decisions. Our analysis reveals that the

optimality of each of the alternatives is changed significantly (from the results in Chapter

4) when the product’s durability is taken into account. More specifically, the sole entrant

role becomes more preferred to a dual distributor role, while the component supplier role
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becomes less preferred. Further, under certain conditions, the manufacturer may opt to be

a dual distributor in the first period and then become a component supplier in the second

period. These results help explain, for instance, why certain companies like Apple may be

better off embracing a sole entrant structure in the long-run.

The rest of the chapter is organized as follows. We develop our model in the next

section. The analysis and results are presented in Section 3. We conclude the chapter in

Section 4. All proofs are confined to Appendix B.

5.2 The Model

There are two periods in our model. ‘New’ durable goods are sold in every period by

the firm(s). These products are assumed to provide a stream of services with a per-period

quality of θ. A product sold in period 1 lasts for two periods, while a product sold in period

2 lasts one period (since the game ends at the end of this period). Further, new products in

period 1 become used products in period 2; and the used product’s quality is downgraded

by a factor γ, γ ∈ [0, 1]. Here, γ represents the durability of the durable good; in particular,

if γ = 0, products sold in period 1 are nondurables, if γ = 1, then these products have no

depreciation.

Consumers who owned the used product have a choice of reselling it to a perfectly

competitive market in the second period. Said differently, only new products are available in

the first period; in period 2, however, both used and new products are available in the market.

Further, consumers are strategic (or rational) and have rational expectations about future

prices of the product when making purchase decisions. In what follows, we describe the

consumers’ decision problem, the firm’s problem, the sequence of events and the equilibrium

concept employed. For analytical convenience, we assume both the consumers and the firm(s)

discount the future by the same factor δ, δ ∈ [0, 1].
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5.2.1 Consumers’ Decisions

Consumers are heterogeneous in terms of their valuation of product quality and as-

sumed to be distributed uniformly along the interval [0, 1]. A consumer indexed v receives

a per-period utility θv when consuming a product of per-period quality θ in that period.

In particular, the utility of a new product in period 1 includes θv in the first period and

δγθv (discounted value) in the second period; a new product in period 2 has the discounted

utility of δθv. This form of consumer utility has been widely employed in the durable goods

literature (e.g., Fudenberg and Tirole 1998, Desai and Purohit 1998, Desai et al. 2004).

Denote p1 and p2 as the new product’s prices in periods 1 and 2 respectively. Since

consumers in our model can resell the used product to the secondary market, we denote

the price of the used product as pu. Each consumer consumes at most one unit of product

in every period. As mentioned earlier, consumers have rational expectations about the

future prices; hence, when making purchase in the first period, consumers are able to predict

correctly the used product’s price as well as the new product’s price in the second period. We

use a superscript ‘e’ to denote the consumer’s expected value in describing the consumers’

decisions.

Over the two periods, consumers have five purchase alternatives (denoted as b, h, n, u, o):

(b) Buy new product every period with the surplus Wb = θv − p1 + δ(θv − pe2 + peu),

(h) Buy new product in period 1 and hold with the surplus Wh = θv(1 + δγ)− p1,

(n) Buy new product in period 2 only with the surplus Wn = δ(θv − pe2),

(u) Buy used product in period 2 only with the surplus Wu = δ(γθv − peu), and

(o) Buy nothing Wo = 0.

Consumers maximize their surpluses across these purchase alternatives

max
b,h,n,u,o

{Wb,Wh,Wn,Wu,Wo} . (5.1)
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Notice that these surplus functions are linear functions of the consumer index v and that

their slopes decrease from the first alternative (b) to the last one (o). Let Si represent

the consumer segment that chooses purchase alternative i and vij represent the indifferent

consumer between alternatives i and j, i 6= j, i, j ∈ {b, h, n, u, o}; the values of vij are in

Table 5.1.

The market segmentation that arises from the above surplus maximization problem

has an interesting property which is summarized in the following lemma:

Lemma 5.1 When consumers maximize their surplus across {b, h, n, u, o}, both Sh and Sn

cannot coexist.

From the above lemma, it follows that there are two alternative segmentation struc-

tures S1 and S2 as shown in Figures 5.1 and 5.2. The first structure, S1 includes So = [0, vuo),

Su = [vuo, vhu), Sh = [vhu, vbh), and Sb = [vbh, 1], while the second S2 consists of So = [0, vuo),

Su = [vuo, vnu), Sn = [vnu, vbn), and Sb = [vbn, 1]. The reasoning for these structures to arise

is as follows. When consumers in the market select purchase alternative (h), option (n) is

automatically dominated; or conversely, when consumers choose purchase alternative (n),

option (h) becomes an inferior choice. Figures 5.3 and 5.4 illustrate such a rationale.

Let d1 and d2 be the demand of new purchases in periods 1 and 2 respectively. It

follows that d1 = 1− p1−δpeu
θ

and d2 = 1− pe2−peu
θ(1−γ)

under either S1 or S2. Since the secondary

market is perfectly competitive, the used product’s price is determined by the market clearing

condition which ensures that supply equals demand. In particular, in Figures 5.1 and 5.2,

the length of Su must equal to the length of Sb. It follows that the used product’s price is

peu =
γ(p1(1− γ) + pe2 − θ(1− γ))

1 + γδ − δγ2
. (5.2)

Define Ψ = (1+γ)p1−θγ(1−δ+γδ)
1+2γδ

. The following lemma characterizes the condition for

different segmentation structures to arise:
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Lemma 5.2 When consumers maximize their surplus across {b, h, n, u, o},

(i) If pe2 ≥ Ψ, then the market is segmented as in S1.

(ii) If pe2 < Ψ, then the market is segmented as in S2.

The above lemma implies that when consumers expect the future price of the new

product to be relatively high, then they will buy the new product in the first period and keep

it for using over both periods (instead of say, waiting to purchase a totally new product in

period 2). On the other hand, if they expect the future price to be relatively low, then they

would wait to buy the new product, rather than buying and holding it over two periods.

Using (5.2) and the definition of d1 and d2, we obtain the following inverse demand

structure under the condition of fulfilled consumer expectations about future prices (we will

revisit this condition later):

p1 = θ(1− d1) + δpu (5.3)

p2 = θ(1− d2 − γd1) (5.4)

pu = θγ(1− d1 − d2) (5.5)

5.2.2 The firm’s problem

A firm, m, is a sole supplier of an essential proprietary component for making the

end product. To capture the value created by its component, m considers three different

supply chain structures, {C,E,D}. In the first, m operates as a ‘component supplier’ and

sells the component to a downstream firm n who then makes the end product. In the

second structure, m produces the end product using its component but does not make that

component available to any other firms; here, m operates as a ‘sole entrant’. Finally, m can

operate as a ‘dual distributor’ who not only makes the end product using its own component,

but sells the component to n who then competes against m in the end product market.
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We assume that each unit of the end product utilizes one unit of the proprietary

component. The marginal cost of making the component is constant and normalized to zero.

The marginal cost of producing the end product is τ + c and τ for m and n respectively,

where 0 ≤ τ +c < θ. For analytical convenience, we normalize τ to zero. Though firms incur

different marginal costs when producing the end product, we assume that these products are

viewed identical in the consumers’ eye.

Let pi
j,1 and pi

j,2 be the prices of the new product in periods 1 and 2 respectively of

firm j under strategy i, where j = {m,n}, i = {E,C,D}; and let piu be the price of the

used product in period 2 under strategy i, i = {E,C,D}. Similarly, denote di
j,1 and di

j,2 as

the product quantities sold in periods 1 and 2 respectively by firm j under strategy i, where

j = {m,n}, i = {E,C,D}.

5.2.3 The Sequence of Events

As noticed earlier, there are two periods in the game. At the beginning of the first

period, m selects its supply chain structure from {E,C,D}.

• If m chooses E, it then selects the quantity of the end product to sell in the first period,

dE
m,1; and at the beginning of period 2, it sets the quantity provided to the market in

period 2, dE
m,2.

• If m chooses C, it then sets the component’s price wC
m,1 offered to n. Given this price,

n chooses the quantity to sell in the first period, dC
n,1. At the beginning of period 2, m

offers n the component at the price wC
m,2; given that price, n then selects the quantity

to sell in period 2, dC
n,2.

• If m chooses D, it then sets the component’s price wD
m,1 offered to n. Given this price,

m and n simultaneously and noncollusively choose the end product’s quantities in the

first period, dD
m,1 and dD

n,1. At the beginning of period 2, m offers n the component at
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the price wD
m,2; given that price, m and n then select the end product’s quantities in

period 2, dD
m,2 and dD

n,2.

5.2.4 The equilibrium

We seek a sub-game perfect equilibrium in this two period game. At the beginning of

period 2, there are two groups of consumers in the market: those (1) who have already bought

the product; and (2) who are non-buyers. Consumers in group (1) will choose whether to

hold the used product or repurchase a brand new product (and resell the used product to the

secondary market). Consumers in group (2) will choose whether to adopt the new product

or the used product (from the secondary market). Contingent on the firms’ quantities,

consumers make their purchase decisions based up on observing the market prices, p2 and

pu. These prices are determined by the market clearing conditions which ensure that demand

equals supply (demand includes the number of products that firms put in the market and

the number of used products that repeat purchasers resell in the secondary market).

In period 1, upon observing the market price of the new product p1, consumers form

expectations about future prices (of the used product and the new product in period 2) when

they determine whether to adopt the new product. In equilibrium, these expectations are

fulfilled, i.e., pe2 = p2 and peu = pu.

Given the above process, for each supply chain structure, the inverse demand system

is as follows:

Sole Entrant:

pE

m,1 = θ(1− dE

m,1) + δpE

u (5.6)

pE

m,2 = θ(1− dE

m,2 − γdE

m,1) (5.7)

pE

u = θγ(1− dE

m,1 − dE

m,2) (5.8)
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Component Supplier:

pC

n,1 = θ(1− dC

n,1) + δpC

u (5.9)

pC

n,2 = θ(1− dC

n,2 − γdC

n,1) (5.10)

pC

u = θγ(1− dC

n,1 − dC

n,2) (5.11)

Dual Distributor:

pD

m,1 = θ(1− dD

m,1 − dD

n,1) + δpD

u (5.12)

pD

m,2 = θ(1− dD

m,2 − dD

n,2 − γdD

m,1 − γdD

n,1) (5.13)

pD

u = θγ(1− dD

m,1 − dD

n,1 − dD

m,2 − dD

n,2) (5.14)

To solve for the equilibrium, we employ the standard backward induction approach.

Starting in the second period, m (and n) maximizes (maximize) the profit of selling the ‘new’

product in that period; and in the first period, m and n select their actions to maximize the

present value of the total profit over two periods.

5.3 The Analysis and Results

In this section, we first examine the change in the profitability of each supply chain

structure at varying levels of durability. We then compare the profitability across structures

and note any modifications (compared to Chapter 4) in the optimal choice of supply chain

structure. For the ease of discussion, let Πi
j,1 represent the profit of selling products in the

first period of firm j under strategy i, j ∈ {m,n} and i ∈ {E,C,D}. The specific expressions

of all critical values mentioned below are provided in Appendix B.
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5.3.1 Sole Entrant

As a sole entrant, m solves the following problem, denoted [m-E]:

max
dEm,1

ΠE

m = (pE

m,1 − c)dE

m,1 + δ(pE

m,2 − c)d̂E

m,2

subject to

d̂E

m,2 = arg max
dEm,2

ΠE

m,2 = (pE

m,2 − c)dE

m,2 (5.15)

dE

m,1 ≥ 0; dE

m,2 ≥ 0 (5.16)

The inverse demand structure is specified in The Model section. Under [m-E], the sole

entrant maximizes the present value of its total profit over two periods. Constraint (5.15)

indicates that the quantity to sell in period 2 is selected to maximize the sole entrant’s profit

in that period. The constraints in (5.16) ensure non-negative end product’s quantities. The

following lemma summarizes the equilibrium outcome of the problem:

Lemma 5.3 Under the sole entrant role,

(i) When c/θ < tE, m will sell new products in both periods; and

(ii) When c/θ ≥ tE, m will sell new products in period 1 only and there is no secondary

market in period 2.

More specifically, we solve the problem backward, starting from period 2, the firm

selects the quantity to sell dE
m,2 by maximizing the profit in this period ΠE

m,2. We obtain

d̂E

m,2 =
θ(1− γdE

m,1)− c
2θ

. (5.17)

Intuitively, the quantity in period 2 is affected by: (1) the effective leftover demand (i.e.,

1 − γdE
m,1), which is a function of the quantity sold in period 1 adjusted for durability, and

(2) the cost disadvantage per quality unit (c/θ). In particular, m sells more in the second
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period when it provides less of the product in the first period; here, a higher level of the

durability factor γ strengthens the impact of the quantity in period 1 on the quantity in

period 2.

Substituting d̂E
m,2 into ΠE

m and solving for dE
m,1 gives dE

m,1 = 2(θ−c(1−δγ))
θ(4+4δγ−3δγ2)

. Notice that

dE
m,2 > 0 when c/θ < tE. When c/θ ≥ tE, the sole entrant will not sell any new product

in the second period, i.e. dE
m,2 = 0. Therefore, m only maximizes the profit in period 1 by

choosing dE
m,1. Consumers then buy the product in period 1 for using over two periods; as a

result, there is no secondary market in period 2. Other details of the solution to [m-E] are

provided in Table 5.2.

5.3.1.1 The impact of durability

Lemma 5.4 For a sole entrant,

(i) The profit in period 2 is decreasing with both the durability γ and the cost disadvantage

c. However, the decrement from γ is less at a higher level of c, i.e.,
∂2ΠE

m,2

∂γ∂c
> 0.

(ii) The present value of the total profit is increasing with durability γ when either (γ ≥ 2/3)

or (γ < 2/3 and c/θ ≥ 2−3γ
6−3γ+2δγ

).

When the product in the first period does not depreciate by much (i.e., higher dura-

bility), the used product becomes a stronger competitor in period 2, and induces a lower

quantity of the new product to be sold in the second period; further, the new product’s price

is also lower. Consequently, m’s profit in period 2 is suitably reduced at higher levels of

durability. Next, as the cost disadvantage increases, m has an incentive to sell less of the

product; while this may raise the product’s price, the margin nevertheless goes down. In

other words, the profit in period 2 is decreasing with the cost disadvantage due to both the

decrease in the margin and the quantity sold.
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Now, the negative impact of durability on the second period profit is notably mitigated

by a higher level of cost disadvantage (i.e.
∂2ΠE

m,2

∂γ∂c
> 0). This happens because though a

higher level of cost disadvantage lowers the quantity sold, it increases the price insensitivity

of the marginal consumer; thus the degree that the price and quantity goes down with γ is

mitigated.

In period 1, when the product’s durability goes up, consumers are willing to pay more

for it, and of course, the used product becomes more valuable in period 2; consequently,

both the new product’s price and the used product’s price (realized in period 2) go up with

durability (i.e., ∂pEu
∂γ

> 0 and
∂pEm,1

∂γ
> 0). If the increase in new product’s price is smaller than

the present value of the increase in the used product’s price, then more consumers want to

buy the new product in period 1; subsequently, the firm sells more in period 1. This occurs

at either higher levels of durability (i.e. γ ≥ 2/3) or at higher levels of cost disadvantage

(for γ < 2/3).

Here too, the cost disadvantage serves to increase the price insensitivity of the marginal

consumer in period 1. As mentioned earlier, it also increases the price insensitivity of the

marginal consumer in period 2; subsequently, the marginal consumer in the secondary market

is less price sensitive. The change in the price insensitivity at higher levels of cost disad-

vantage helps explain the increase differentials in pE
m,1 and pE

u due to γ as described in the

previous paragraph.

With the increase of the new product’s price, the margin in the first period goes up

with γ; but the quantity sold may go down with γ. However, the decrease in the quantity

can be compensated by the increase in margin; and consequently, the profit of products sold

in period 1 (i.e., ΠE
m,1) goes up with γ.

In summary, as durability goes up, the profit in period 2 goes down, but the profit in

period 1 goes up. As a result, if the increase in period 1 surpasses the decrease in period 2,

then the present value of the total profit will increase with γ. This occurs at higher levels
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of durability (γ ≥ 2/3) or higher levels of cost disadvantage (for γ < 2/3). Though the

cost disadvantage lowers profits, its existence turns out to be helpful (via changing the price

sensitivity of the marginal consumers) by allowing the momentum for the profit to rise as γ

gradually increases from zero.

5.3.2 Component Supplier

Under this structure, in each period, m sets the component’s price and given that

price, n sets the quantity to sell in that period. In the second period, m’s problem is as

follows:

max
wC

m,2

ΠC

m,2 = wC

m,2d̂
C

n,2 (5.18)

subject to

d̂C

n,2 = arg max
dCn,2

ΠC

n,2 = (pC

n,2 − wC

m,2)d
C

n,2 (5.19)

dC

n,2 ≥ 0;wC

m,2 ≥ 0 (5.20)

In (5.18), m maximizes the wholesale profit (from selling its proprietary component) in

period 2. Constraint (5.19) indicates that n chooses the end product’s quantity to maximize

its profit in this period. The constraints in (5.20) ensure non-negative end product’s quantity

and non-negative component’s price.

With backward induction, solving n’s problem gives d̂C
n,2 =

θ(1−γdEm,1)−wC
m,2

2θ
. Substitut-

ing d̂C
n,2 into ΠC

m,2 and solving for wC
m,2 gives wC

m,2 =
θ(1−γdCn,1)

2
; and subsequently dC

n,2 =
1−γdCn,1

4
.

Here too, we see a negative impact of the number of product sold in period 1 on dC
n,2 (adjusted

for durability); and subsequently, m’s pricing of the component is affected.
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With the above in mind, in period 1, m’s problem, denoted [m-C], is:

max
wC

m,1

ΠC

m = wC

m,1
ˆdC
n,1 + δΠC

m,2

subject to

d̂C

n,1 = arg max
dCn,1

ΠC

n = (pC

n,1 − wC

m,1)d
C

n,1 + δΠC

n,2 (5.21)

dC

n,1 ≥ 0;wC

m,1 ≥ 0 (5.22)

Under [m-C], m maximizes the present value of the total profit (from selling its proprietary

component) over two periods. Constraint (5.21) indicates that n chooses the quantity to sell

in period 1 to maximize the present value of its total profit. The constraints in (5.22) ensure

non-negative end product’s quantity and non-negative component’s price.

Now solving n’s problem gives dC
n,1 =

θ(8+5δγ)−8wC
m,1

θ(16+16δγ−5δγ2)
. Intuitively, the component’s

price wC
m,1 negatively impacts the quantity sold by n. More importantly, this price helps

raise the component’s price as well as the quantity sold in period 2 (indirectly through the

negative impact on dC
n,1). Next, the component’s price is set via the first order condition

∂ΠC
m

∂wC
m,1

= 0. It follows that wC
m,1 = θ(128+240δγ−56δ(1−2δ)γ2−45δ2γ3)

32(8+8δγ−3δγ2)
. Other details of the solution

to [m-C] are in Table 5.3.

Here, it is important to point out the severity of double marginalization in problem

[m-C]. First, at the end product level, anticipating the downward pressure of its product

in period 1 on the profit in period 2, n tends to restrict its quantity in period 1 when

maximizing the total profit over two periods (compared to the case when n maximizes the

profit of period 1 only). Second, at the upstream level, knowing that its component’s price

in period 1 can restrict the quantity sold in this period (which in turn mitigates the pressure

on the wholesale profit in period 2), m adjusts its component’s price in period 1 upward
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(compared to the case when m maximizes the wholesale profit of period 1 only). Combining

these two forces leads to a more severe double marginalization in period 1.

5.3.2.1 The impact of durability

Lemma 5.5 Under the component supplier structure,

(i) The profits of m and n in period 2 are decreasing with durability γ.

(ii) The present value of the total profit of m and n is increasing with durability γ when γ is

relatively large, i.e., ∂ΠC
m

∂γ
≥ 0 when γ ≥ 2

3(2+δ)
, and ∂ΠC

n

∂γ
≥ 0 when γ ≥ g(δ).

Analogous to the sole entrant case, in period 2, a higher durability makes the used

product a stronger competitor of the new product, thus, n sells less of the product at a lower

price; because of this, m charges n a lower component’s price. Therefore, in period 2, both

m and n obtain less profit at higher levels of durability.

In period 1, when the product’s durability goes up, consumers are willing to pay more

for it, and of course, the used product becomes more valuable in period 2; consequently, both

the new product’s price and the used product’s price (realized in period 2) go up (∂p
C
u

∂γ
> 0

and
∂pCn,1

∂γ
> 0). Combining these effects with the forces discussed under problem [m-C], m

charges n a higher component’s price (
∂wC

m,1

∂γ
> 0).

Due to the strategic decision of m mentioned above, the market size in period 1 only

expands at relatively high levels of durability (i.e., the durability required for
∂dCn,1

∂γ
≥ 0 is

higher than the one under sole entrant; more specifically,
∂dCn,1

∂γ
≥ 0 when γ ≥ 2(−4+

√
2(8+5δ))

3δ
).

It happens because the increase in the component’s price under higher durability puts more

pressure on the new product’s price; subsequently, that the new product’s price increases

slower than the used product’s price when γ goes up (recall the discussion under Lemma

5.4, the movement of prices is the reason causing
∂dCn,1

∂γ
≥ 0) is less likely to occur under the

component supplier role.
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Furthermore, the profits from selling products in period 1, ΠC
m,1 and ΠC

n,1, are increas-

ing with γ. In other words, though the end product’s quantity may go down with durability,

the increase in the margins (of both firms) more than compensates any decrease in the quan-

tity (if any). The movement of profits here contrasts with the one in period 2. Consequently,

when the increase in period 1 exceeds the decrease in period 2, the present value of the total

profit is increasing in durability (∂ΠC
m

∂γ
≥ 0 when γ ≥ 2

3(2+δ)
and ∂ΠC

n

∂γ
≥ 0 when γ ≥ g(δ));

otherwise, it’s decreasing in durability.

5.3.3 Dual Distributor

Under this structure, in each period m sets the component’s price, and given that

price, n and m simultaneously and noncollusively set the quantities to sell in that period.

The following lemma summarizes the equilibrium outcome:

Lemma 5.6 Under the dual distributor role,

(i) When c/θ < tD, m will sell end products in both periods.

(ii) When tD ≤ c/θ < tD,0, m will sell end products in period 1 and act as a component

supplier in period 2.

(iii) When c/θ ≥ max{tD, tD,0}, m will act as a component supplier in both periods.

The above results are obtained via backward induction. In period 2, m’s problem is

max
wD

m,2

ΠD

m,2 = wD

m,2d̂
D

n,2 + (pD

m,2 − c)d̂D

m,2 (5.23)

subject to

d̂D

m,2 = arg max ΠD

m,2 = wD

m,2d
D

n,2 + (pD

m,2 − c)dD

m,2 (5.24)

d̂D

n,2 = arg max ΠD

n,2 = (pD

m,2 − wD

m,2)d
D

n,2 (5.25)

dD

m,2 ≥ 0; dD

n,2 ≥ 0;wD

m,2 ≥ 0 (5.26)
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In (5.23), m maximizes the profit from selling the component to n and the end product in

period 2. Constraints (5.24) and (5.25) indicate that m and n choose the end product’s

quantities to maximize their profits in this period. The constraints in (5.26) ensure non-

negative end product’s quantities and non-negative component’s price.

The optimal quantities in period 2 are set by

d̂D

m,2 =
θ(1− γ(dD

m,1 + dD
n,1))− 2c+ wD

m,2

3θ
(5.27)

d̂D

n,2 =
θ(1− γ(dD

m,1 + dD
n,1))− 2wD

m,2 + c

3θ
(5.28)

As expected, each firm’s quantity is increasing with the effective leftover demand in period

2 (i.e., 1 − γ(dD
m,1 + dD

n,1)) and decreasing with the marginal cost (i.e., c for m and wD
m,2 for

n). Intuitively, the dual distributor’s quantity increases with wD
m,2 because its competitive

position is strengthened by the competitor’s cost wD
m,2; however, due to the cost disadvantage

of the dual distributor, n is able to sell to customers outside m’s reach (this is confirmed

later via the equilibrium value of dD
n,2).

Substituting d̂D
m,2 and d̂D

n,2 into ΠE
m,2 and solving for wD

m,2 gives wD
m,2 =

5θ(1−γ(dDm,1+dDn,1))−c
10

,

and subsequently dD
m,2 =

5θ(1−γ(dDm,1+dDn,1))−7c

10θ
and dD

n,2 = 2c
5θ

. Here, for a given level of the ef-

fective leftover demand, m charges n a lower component’s price when it incurs a higher cost

disadvantage. More specifically, when c = 0, the wholesale price is the same as the one

in the component supplier structure; further, m sets the end product’s quantity as a sole

entrant and foreclosures n in period 2 (i.e., dD
n,2 = 0). When the cost disadvantage is higher,

m lowers the component’s price offered to n, indicating a lower double marginalization effect

compared to the component supplier structure. Plus, the market coverage in period 2 (i.e.,

dD
m,2 + dD

n,2 =
1−γ(dDm,1+dDn,1)

2
− 3c

10θ
) is higher than that under the sole entrant structure (for a

given level of the effective leftover demand).
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The above discussion shows the benefits of the dual structure for a given level of

the effective leftover demand: lower double marginalization and higher market coverage.

However, the effective leftover demand of different supply chain structures is determined

differently in period 1. In particular, under the dual structure, m’s problem in period 1,

denoted [m-D], is:

max
wD

m,1

ΠD

m = wD

m,1d̂
D

n,1 + (pD

m,1 − c)d̂D

m,1 + δΠD

m,2

subject to

d̂D

m,1 = arg max ΠD

m = wD

m,1d
D

n,1 + (pD

m,1 − c)dD

m,1 + δΠD

m,2 (5.29)

d̂D

n,1 = arg max ΠD

n = (pD

m,1 − wD

m,1)d
D

n,1 + δΠD

n,2 (5.30)

dD

m,1 ≥ 0; dD

n,1 ≥ 0;wD

m,1 ≥ 0 (5.31)

Under [m-D], m maximizes the present value of the total profit from selling the component

to n and the end product over two periods. Constraints (5.29) and (5.30) indicate that m

and n choose the end product’s quantities to maximize the present value of their profits over

two periods. The constraints in (5.31) ensure non-negative end product’s quantities and

non-negative component’s price.

Recall the results in period 2, m’s profit including both wholesale and end product

is negatively affected by the existence of the product in the first period; however, n’s profit

(we will see later) is independent of the quantities in period 1. Consequently, when m selects

dD
m,1 as in (5.29), it tends to lower the quantity in period 1 (compared to when it maximizes

the profit in period 1 only). On the other hand, when n chooses dD
n,1 as in (5.30), it will pick

the quantity as if when it maximizes the profit in period 1 only. Solving the quantity game
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gives us each firm’s quantity as a function of the component’s price:

d̂D

m,1 =
5θ(2 + δγ − δ2γ2 + δ2γ3) + 10wD

m,1(1 + δγ − δγ2)− c(20 + 7δγ − δ(10 + 13δ)γ2 + 5δ2γ3)

5θ(2 + 2δγ − δγ2)(3 + 3δγ − 2δγ2)

(5.32)

d̂D

n,1 =
1

10θ(2 + 2δγ − δγ2)(3 + 3δγ − 2δγ2)

[
5θ(4 + 8δγ − 4(1− δ)δ2γ2 − 3δ2γ3)

− 10wD

m,1(4 + 4δγ − 3δγ2) + c(20 + 16δγ − 2δ(5 + 2δ)γ2 − δ2γ3)
]
. (5.33)

It follows that the total quantity in period 1 is

d̂D

m,1 + d̂D

n,1 =
5θ(4 + δγ)− (10− 11δγ)c− 10wD

m,1

10(3θ + 3δγ − 2δγ2)
. (5.34)

Given the outcome of the quantity game, m will select the component’s price to

resolve the following forces. First, the negative impact of first period quantities on m’s

profit in period 2 can be mitigated by a higher component’s price (via a negative impact

of wD
m,1 on the total quantity in period 1). Second, though raising the component’s price

lowers the total quantity (in fact, it lowers n’s first period quantity), it induces m to sell

more in period 1 (see the expression of d̂D
m,1 above). Lastly, m has an incentive to lower the

component’s price to maintain the wholesale profit from selling the component to n.

The equilibrium outcome of problem [m-D] is in Table 5.4. Analogous to period 2,

the quantity of n in period 1 depends critically on c; in other words, because end products

are identical, the reason that n can make a profit is due to the cost disadvantage incurred

by m. When c = 0, the dual distributor becomes a sole entrant. Notice that dD
m,2 > 0 when

c/θ < tD.
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When c/θ ≥ tD, m does not sell any new product in period 2 (i.e., dD
m,2 = 0); that is,

it becomes a component supplier in period 2. Hence, analogous to the case of a component

supplier in period 2, n is the monopolist and sets the quantity to sell after receiving the

component’s price from m. The equilibrium outcome of this case is given in Table 5.4.

Denote this special supply chain structure as D0. Notice that D0 is feasible only when

tD ≤ c/θ < tD,0 as dD
m,1 > 0 ⇔ c/θ < tD,0. When c/θ ≥ tD,0, then dD

m,1 = 0 and the dual

distributor becomes a component supplier.

5.3.3.1 The impact of durability

Lemma 5.7 Under the dual distributor structure,

(i) In period 2, m’s profit decreases with γ; however, n’s profit is independent of γ.

(ii) The present value of the total profit of m increases with γ when ∆ ≥ 0 and max{0, t1} ≤

c/θ ≤ min{tD, t2} as well as increases with c when c/θ ≤ min{tD, t3}.

(iii) The present value of the total profit of n decreases with γ but increases with c.

In period 2, while m’s quantity decreases in durability (i.e.,
∂dDm,2

∂γ
< 0), n’s quantity is

independent of γ (i.e.,
∂dDn,2

∂γ
= 0). In other words, the downstream firm does not internalize

the existence of the secondary market; instead, it only focuses on the competition with m

(or its relative advantageous position in comparison with m). On the other hand, m absorbs

all the negative effect of the secondary market via its lower quantity.

Analogous to other supply chain structures, a higher durability makes the used prod-

uct a stronger competitor; thus, the market price of the new product is lower at higher

levels of durability (i.e.,
∂pDm,2

∂γ
< 0). Facing the decrease in the market’s price, m lowers the

component’s price (
∂wD

m,2

∂γ
< 0) such that n’s margin is unaffected by durability. As a result,

m’s profit decreases with durability, meanwhile, n’s profit is independent of γ due to the

subsidy from m.
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When the cost disadvantage goes up, m’s margin goes down; and it sells less of the

end product in period 2. Notice that though the market’s price goes up, that increment

cannot compensate for the surge of marginal cost. On the other hand, the increase in cost

disadvantage enhances the relative position of n, allowing it to increase its quantity in the

end market. Knowing this, m may raise the component’s price, especially at relatively high

levels of γ when the wholesale price decreases a lot (recall
∂wD

m,2

∂γ
< 0). This particular

outcome seems to contradict to the discussion on page 113; however, aside from the negative

direct effect of c on wD
m,2 as mentioned on page 113, there is an indirect effect of c on the

effective leftover demand. It is this indirect effect causing the increase in component’s price

as c goes up; more specifically
∂wD

m,2

∂c
> 0 for all 0 < δ <

40−19γ+20γ2−γ
√

4681−2860γ+400γ2

γ(35γ2−22γ−40)
.

With the above movements in mind, in period 2, m’s profit from the end product

goes down while the wholesale profit goes up when c goes up; n, however, benefits from both

the margin and the quantity, thus, its profit increases with c. Next, in period 1, as γ goes

up, both the new product’s price and the used product’s price (realized in period 2) go up

(∂p
D
u

∂γ
> 0 and

∂pDm,1

∂γ
> 0). Combining this with the forces discussed earlier (on page 114), in

equilibrium, m charges n a higher component’s price (
∂wD

m,1

∂γ
> 0); further, this increase is

higher than the increase in the market price. As a result, n purchases less of the component

(
∂dDn,1

∂γ
< 0); and its profit in period 1 (ΠD

n,1) also goes down with γ due to the decrease in

both the quantity and the margin.

On the other hand, m gains in both the wholesale and the end-product markets. In

particular, the increase in the component’s price surpasses the decrease in the component

order from n, and thus, the wholesale profit increases with γ; plus, the increase of the end

product’s margin offsets any decrease in the quantity sold, subsequently, the profit from

selling the end-product also increases in γ.

When the cost disadvantage increases, as in period 2, m’s margin and quantity go

down. Because of this pressure on the end product, m focuses on the wholesale profit by
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lowering the component’s price to induce n to buy more of the component. As a result, n

benefits from the quantity gained by its relative cost advantage as well as the component’s

price (or the margin); accordingly, its profit in period 1 (ΠD
n,1) goes up. For m, the wholesale

profit is going up with c due to the increase in the number of the component sold to n (which

more than compensates the price decrease). On the other hand, m’s profit from the selling

the end-product decreases with c as both the margin and the quantity go down.

Next, the present value of the total profit of m increases in durability under the

condition specified in Part (ii). As discussed earlier, when γ goes up, in both markets, m’s

profit stream in period 1 goes up; while the profit stream in period 2 goes down. Hence, any

increase in the present value of the total profit is due to the increase in first period profit

stream. With respect to the cost disadvantage, a higher level of c may help increase m’s profit

due to the increase in the wholesale profit; more specifically, the increase in the wholesale

profit helps compensate the loss in the end-product market. Accordingly, the present value

of the total profit of m increases when the loss in the end market is not too large as stated

in Part (ii).

Finally, n is never better off with higher levels of γ (i.e., ∂ΠD
n

∂γ
≤ 0). It is because both

the margin and the quantity sold in the first period is decreasing with durability while the

profit in the second period does not change with durability. Further, the discussion earlier

shows that the profit of n is increasing with the cost disadvantage (∂ΠD
n

∂c
≥ 0) as both margins

and quantities increase with c.

Market Segmentation Across Different Supply Chain Structures

As solved in the Model section, the market is segmented by either S1 or S2 (see

Figures 5.1 and 5.2). Based on the equilibrium outcome of different supply chain structures

discussed above, we summarize the optimal segmentation pattern in the following lemma:

Lemma 5.8 (Market Segmentation)

(i) When m is a sole entrant, the market is segmented as in S1 when either (γ ≥ 4δ−2
3δ

) or
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(γ < 4δ−2
3δ

and c/θ ≥ tEsegment). Otherwise, S2 emerges.

(ii) When m is a component supplier, the market is segmented as in S1 when γ ≥ 4(5δ−2)
15δ

.

Otherwise, S2 emerges.

(iii) When m is a dual distributor, the market is segmented as in S1 when either (γ ≥ 4δ−2
3δ

)

or (γ < 4δ−2
3δ

and c/θ ≥ tDsegment). Otherwise, S2 emerges.

The above Lemma is illustrated by Figure 5.5. It is shown that S2 is optimal when

the product is not highly durable; further, higher levels of the cost disadvantage will make

S2 less preferable under E and D. As seen in Figure 5.5, region 1 is where S2 occurs for all

structures; region 2 is where S2 occurs under C and D but not E; in region 3, S2 occurs

under C only; finally, S1 is optimal for all structures in region 4.

The implication of the above lemma is that a certain segmentation pattern may be

pursued by an appropriate choice of the supply chain structure, especially when the product

is not highly durable. For example, when the firm incurs a cost disadvantage c = 0.2 (given

θ = 1), and the durability factor is γ = 0.4 (in other words, the product’s depreciation rate

is 0.6), being a component supplier would be m’s choice when it wants to pursue S2.

5.3.4 The Optimal Channel Structure

Before characterizing the optimal structure, we compare the values of the key choice

variables. The end product’s quantity comparison across structures is provided in Propo-

sition 5.1; and the comparison of the component’s price is addressed in Proposition 5.2.

Proposition 5.1 (End Product’s Quantity) Under the feasibility of all supply chain

structures,

(i) dC
n,1 < dE

m,1 when c/θ < tEC
q,1 ; dC

n,2 < dE
m,2 when c/θ < tEC

q,2 ; and dC
n,1 + dC

n,2 < dE
m,1 + dE

m,2 when

c/θ < tEC
q .
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(ii) dD
m,1 < dE

m,1 < dD
m,1 + dD

n,1; and dD
m,2 < dE

m,2 < dD
m,2 + dD

n,2.

(iii) dD
m,1 + dD

n,1 > dC
n,1; and dD

m,2 + dD
n,2 > dC

n,2.

Part(i) demonstrates the trade-off of double marginalization effect and the cost dis-

advantage under C and E. More specifically, when m operates as a component supplier, the

end product’s price is escalated because of double marginalization; hence, less of the end

product is sold. On the other hand, m does not suffer from double marginalization when

operating as a sole entrant; however, it incurs a cost disadvantage when entering the end

market. Consequently, the pressure on the margin forces m to decrease the end product’s

quantity. Part(i) indicates that as long as the cost disadvantage is not too high (i.e., the

pressure on the margin is not too high), m’s can increase its market coverage by being a sole

entrant.

Part(ii) states that although m sells less of the end product under D than under E

in every period, the total quantity on the market under D is higher. In fact, combining with

Part(iii) leads to the conclusion that the dual structure gives the highest market coverage. It

happens because the end market under D is more competitive than under other structures,

and the market prices decrease accordingly. Here, the competitive pressure is helpful in two

ways. First, it erodes the added margin of n in the end product’s price. Second, it forces m

to produce less of the end product (under a less efficient production process); instead m can

benefit from the efficiency of n via the wholesale profit.

Proposition 5.2 (The Component’s Price)

In period 2, the optimal component’s price under D is smaller than under C. However, in

period 1, that price under D is larger than under C as long as 0 ≤ c/θ < tCD
w .

In a static model, a dual distributor tends to set a lower component’s price, compared

to a component supplier. This is because the dual distributor compensates n for its entering

n’s market; said differently, the dual distributor does so to protect its wholesale profit as n

120



will order less of the component when it faces more competition. That rationale is applicable

only in period 2 of our model. In period 1, when m is less inefficient in producing the end

product (i.e., 0 ≤ c/θ < tCD
w ), it becomes more aggressive in the end market despite the

reduction in the wholesale profit. This shift in focus is interesting because m incurs the same

level of cost disadvantage in every period. From the discussion under the dual distributor’s

problem (page 112), there are many forces under m’s decision on the component’s price in

period 1. The result from this Proposition implies that m may raise its component’s price

even higher than the one under a component supplier structure to restrict n’s quantity; in

order words, under certain conditions, double marginalization is strengthened under the dual

structure for the dual distributor’s sake, a result that cannot arise under a static setting.

Next, the comparison of profits in period 2 under different supply chain structures is

summarized in the following proposition:

Proposition 5.3 When {E,C,D} are feasible (i.e., c/θ < tD), in period 2,

(i) The sole entrant’s profit is highest when c/θ ≤ min{tEC
2 , tDE

2 }.

(ii) The component supplier’s profit is highest when c/θ ≥ max{tEC
2 , tDC

2 }.

(iii) The dual distributor’s profit is highest when tDE
2 < c/θ < tDC

2

Figure 5.6 illustrates different regions mentioned in the above Proposition. The ra-

tionale of this outcome is as follows. From m’s problem in period 2 under different supply

chain structures, we can obtain

ΠE

m,2 = θ
[1

2
(1− γdE

m,1)−
c

2θ

]2

(5.35)

ΠC

m,2 =
θ(1− γdC

n,1)
2

8
(5.36)

ΠD

m,2 =
[ c

5
(1− γ(dD

m,1 + dD

n,1))−
2c2

50θ

]
+ θ
[1

2
(1− γ(dD

m,1 + dD

n,1))−
7c

10θ

]2

(5.37)
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Expressions (5.35), (5.36), and (5.37) reveal the importance of the effective leftover demand

(i.e., 1 − γd1) in determining m’s profit in period 2, aside from the cost disadvantage c.

For a given level of durability, m’s profit in period 2 is depressed by its own product in the

past. Further, these effective leftover demands are decreasing with durability; said differently,

when the product is more durable, the future profit is squeezed (also see the discussion of the

impact of durability under different structures). However, the quantities in the first period

are different under different structures; hence, the effective leftover demand has different

values under {E,C,D}.

Let dil be the effective leftover demand under strategy i, i = {E,C,D}. From Propo-

sition 5.1, the number of the end product in period 1 under D is highest, thus, the effective

leftover demand is lowest under D. Furthermore, the negative impact of durability on dDl is

higher than on dEl (similar conclusion is obtained under C when γ is relatively large). That

is why when the durability goes up, the profit under D in period 2 goes down significantly;

and subsequently, D is completely dominated when the durability is large (see Figure 5.6).

At high levels of durability, when D is dominated, a comparison of profits under C

and E shows that the region for E to be higher is decreasing with durability γ. There are

two reasons. First, at lower levels of cost disadvantage c, m generally produces more of the

end product under E than under C (see Proposition 5.1), leading to a situation where m

produces more in period 2 but its effective leftover demand in period 2 is lower. Second,

the negative impact of durability on the effective leftover demand under E is stronger than

under C. Combining these two effects leads to a more and more restricted region for E to

dominate C when γ goes up.

Finally, we characterize the optimal channel structure over two periods in the follow-

ing proposition:

Proposition 5.4 When {E,C,D} are feasible (i.e., c/θ < tD), the optimal supply chain

structure is: (i) E when c/θ ≤ tDE, (ii) C when c/θ > tDC, and (iii) D when tDE < c/θ < tDC.
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Figure 5.7 illustrates m’s optimal supply chain structure as in the above Proposition.

The optimal structure is mainly determined by two factors: the durability γ and m’s relative

cost disadvantage c/θ. There are three regions by the boundary curves tDE and tDC such

that each corresponds to a particular structure being the optimal choice for m; the tD curve

ensures the feasibility of all structures.

Comparing Figure 5.7 with Figure 5.6, we can see the inconsistency of the long run

(over two periods) vis-a-vis future profitability of different supply chain structures. This

inconsistency only arises under durable goods markets with forward-looking consumers. If

the future is not valuable at all (or δ = 0), the optimal region coincides with the static

model’s outcome (as in Chapter 4) and durability has no impact on the optimal region.

When the future is more valuable (δ > 0), consumers start considering future benefit of a

durable good (when γ > 0) and the firms’ behavior (via expectations on future prices) when

making purchase decisions.

Recall the discussion under Proposition 5.1, a dual distributor may benefit from

a more competitive end market (i.e., leveraging n’s expertise while lowering its margin).

Interestingly, these two effects hurt the dual distributor at higher levels of durability. In

particular, the feasibility of D reduces (tD goes down with γ), and the region where D is

dominated by E is bigger (tDE goes up with γ). This happens because the largest market

coverage under D is detrimental in period 2 (see the discussion under Proposition 5.3); and

subsequently, D is not a very appealing structure with highly durable goods.

Furthermore, the optimality of E expands as γ goes up, but the optimal region of C

tends to be smaller (tDC increases with γ). It indicates that when feasibility is not a problem

of D (i.e., tDC < tD)1, the two aforementioned effects inside D (i.e., leveraging n’s expertise

while lowering its margin) appear to have different directions. More specifically, as durability

1It is worth noting that when D is not feasible, C is the optimal structure.
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goes up, the first effect does not seem to be helpful as E (with less efficient production)

dominates D more; while the latter helps strengthen the optimality of D (compared to C).

It is important to examine that when D is not feasible, whether m can increase

its profitability through a different design rather than being a component supplier. The

following proposition presents that option. Recall that we denote D0 as the supply chain

structure of a dual distributor when it does not produce the end product in period 2.

Proposition 5.5 At higher levels of cost disadvantage (i.e., c/θ > tD), m is better off under

D0 when c/θ < tDC′.

This above proposition proposes an interesting option for m when the products are

highly durable (i.e., tD < c/θ < tDC′). That is, m will be a strict dual distributor in

period 1 and a component supplier in period 2. This option follows straightforward from the

relative attractiveness of D compared to C when the product is more durable. Figure 5.8

illustrates the optimal region of D0, relative to other structures when feasibility condition

(i.e., c/θ < tD) is relaxed.

5.4 Conclusion

The purpose of this chapter has been on the optimality of different supply chain

structures in durable goods markets. In particular, we examine three alternatives for a

proprietary component manufacturer: being (a) a sole entrant, (b) a component supplier,

and (c) a dual distributor. Our analysis reveals that the optimality of each of the alternatives

is changed significantly (from the results in Chapter 4) when the product’s durability is

taken into account. More specifically, the sole entrant role becomes more preferred to a dual

distributor role, while the component supplier role becomes less preferred. Further, under

certain conditions, the manufacturer may opt to be a dual distributor in the first period

and then become a component supplier in the second period. These results help explain,
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for instance, why certain companies like Apple may be better off embracing a sole entrant

structure in the long-run.

Overall, our goal has been to underscore the importance of considering the impact

of durability when designing the supply chain for manufacturers of proprietary components.

Several opportunities seem to exist for further exploration. For example, companies often

introduce improve versions of the product as time passes; hence, it is worth exploring the

impact of such improvement on the optimal supply chain design. Another extension would

be incorporating product differentiation in the end market (the current analysis assumes

identical products). Finally, it is helpful to compare the optimal supply chain design under

quantity vis-a-vis price competition.
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Table 5.1: Marginal Consumers

Sb Sh Sn Su So

Sb -
p1+δpe2−δpeu
θ(1+δ)

Sh

pe2−peu
θ(1−γ)

- p1
θ(1+δγ)

Sn

p1−δpeu
θ

p1−δpe2
θ(1−δ+δγ)

-
pe2
θ

Su

p1+δpe2−2δpeu
θ(1+δ−δγ)

p1−δpeu
θ

p2−peu
θ(1−γ)

- peu
θγ

Table 5.2: The Optimal Solution For The Sole Entrant Setting

Solution Comparative Statics
∂
∂γ

∂
∂c

∂2

∂γ∂c

c/θ < tE

dE
m,1 = 2(θ−c(1−δγ))

θ(4+4δγ−3δγ2)
+/- - +

pE
m,1 = θ(4+8γδ−4δ(1−δ)γ2−3δ2γ3)+c(4+4γδ−2δγ2−δ2γ3)

2(4+4δγ−3δγ2)
+ + +/-

dE
m,2 = θ(4−γ(2−4δ)−3δγ2)−c(4−γ(2−4δ)−δγ2)

2θ(4+4δγ−3δγ2)
- - +/-

pE
m,2 = θ(4−γ(2−4δ)−3δγ2)+c(4+2γ(1+2δ)−5δγ2)

2(4+4δγ−3δγ2)
- + +/-

pE
u = γ θ(2+(4−3γ)δ)+c(8−2γ−δγ2)

2(4+4δγ−3δγ2)
+ + +

c/θ ≥ tE

dE
m,1 = 1

2
− c

2θ(1+δγ)
+ - +

pE
m,1 = θ(1+δγ)+c

2
+ + 0

Table 5.3: The Optimal Solution For The Component Supplier Setting

Solution Comparative Statics w.r.t γ

dC
n,1 = 8+3δγ

4(8+8δγ−3δγ2)
+/-

wC
m,1 = θ(128+240δγ−56δ(1−2δ)γ2−45δ2γ3)

32(8+8δγ−3δγ2)
+

pC
n,1 = θ(96+180δγ−4δ(10−21δ)γ2−33δ2γ3)

16(8+8δγ−3δγ2)
+

dC
n,2 = 32+8(4δ−1)γ−15δγ2

16(8+8δγ−3δγ2)
-

wC
m,2 = θ(32+8(4δ−1)γ−15δγ2)

8(8+8δγ−3δγ2)
-

pC
n,2 = 3θ(32−(8−32δ)γ−15δγ2)

16(8+8δγ−3δγ2)
-

pC
u = θγ(64+4(2+21δ)γ−33δγ2)

16(8+8δγ−3δγ2)
+
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Table 5.4: The Optimal Solution For The Dual Distributor Setting
Solution Comparative Statics

∂
∂γ

∂
∂c

c/θ < tD

dD
m,1 = 2

4+4δγ−3δγ2
−B ∗ c +/- -

dD
n,1 = 2c(4+4δγ−3δγ2)

θ(2+2δγ−δγ2)(10+10δγ−7δγ2)
- +

wD
m,1 = θ(4+8δγ−4δ(1−δ)γ2−3δ2γ3)

2(4+4δγ−3δγ2)
− E ∗ c + -

pD
m,1 = θ(4+8δγ−4δ(1−δ)γ2−3δ2γ3)

2(4+4δγ−3δγ2)
+H ∗ c + +

dD
m,2 = 4−2(1−2δ)γ−3δγ2

2(4+4δγ−3δγ2)
− F ∗ c - -

dD
n,2 = 2c

5θ
0 +

wD
m,2 = θ(4−2(1−2δ)γ−3δγ2)

2(4+4δγ−3δγ2)
−G ∗ c - +/-

pD
m,2 = θ(4−2(1−2δ)γ−3δγ2)

2(4+4δγ−3δγ2)
+K ∗ c - +

pD
u = θγ2(2+δ(4−3γ))

2(4+4δγ−3δγ2)
+ L ∗ c + +

tD ≤ c/θ < tD,0

dD
m,1 = θ(40+62δγ+2δ(11δ−6)γ2−7δ2γ3)−4c(14+14δγ−5δγ2)

4θ(4+4δγ−δγ2)(5+5δγ−2δγ2)
+ -

dD
n,1 = θδγ(5δγ2+4γ(1−2δ)−8)+c(64+64δγ−28δγ2)

4θ(4+4δγ−δγ2)(5+5δγ−2δγ2)
- +

wD
m,1 = θ(160+304δγ−4δ(19−36δ)γ2−63δ2γ3)−4c(8+8δγ−5δγ2)

64(5+5δγ−2δγ2)
+ -

pD
m,1 = θ(80+164δγ−4δ(11−21δ)γ2+39δ2γ3)+12c(4+4δγ−δγ2)

32(5+5δγ−2δγ2)
+ +

dD
m,2 = 0 0 0

dD
n,2 = 5θ(8−4(1−2δ)γ−5δγ2)+12γc

32θ(5+5δγ−2δγ2)
- +

wD
m,2 = 5θ(8−4(1−2δ)γ−5δγ2)+12γc

16(5+5δγ−2δγ2)
- +

pD
m,2 = 3(5θ(8−4(1−2δ)γ−5δγ2)+12cγ)

32(5+5δγ−2δγ2)
- +

pD
u = γ θ(40+4(5+21δ)γ−39δγ2)+12c(4−γ)

32(5+5δγ−2δγ2)
+ +

c/θ ≥ max{tD, tD,0}: Component Supplier
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Figure 5.1: Segmentation Structure S1

Figure 5.2: Segmentation Structure S2

Figure 5.3: Segmentation without Sh
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Figure 5.4: Segmentation without Sn

Figure 5.5: Segmentation under Different Channel Structures (δ = 0.9)
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Figure 5.6: Profit Comparison in Period 2 (δ = 0.9)

Figure 5.7: Optimal Channel Structure When There Are Product Sales in Both Periods
(δ = 0.9)
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Figure 5.8: Optimal Channel Structure (δ = 0.9)
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APPENDIX A: PROOFS OF RESULTS FROM CHAPTER 3
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Proof of Lemma 3.1

First, we derive the locations of the marginal consumers v0l, vlh, vhb and vlb from the

following indifference conditions: Wl(v = v0l) = 0, Wh(v = v0h) = 0, Wl(v = vlh) = Wh(v =

vlh), Wh(v = vhb) = Wb(v = vhb), and Wl(v = vlb) = Wb(v = vlb). Substituting for W (.)

gives:

v0lθl + ηl,1 + δηl,2 − pl = 0 , (A1)

δ(v0hθh + ηh,2 − ph) = 0 , (A2)

vlhθl + ηl,1 + δηl,2 − pl = δ(vlhθh + ηh,2 − ph) , (A3)

δ(vhbθh + ηh,2 − ph) = vhbθl + ηl,1 − pl + δ((θh − θl)vhb + ηh,2 − ph) , and (A4)

vlbθl + ηl,1 + δηl,2 − pl = vlbθl + ηl,1 − pl + δ((θh − θl)vlb + ηh,2 − ph). (A5)

The solution to the above set of equations is summarized in Table 3.2.

Next, from Figure 3.1, we can see that under rapid improvement (i.e., δθh > θl), the

new product demand in period 2 is made of consumers belonging to the interval [vlh, vhb];

consumers on either side of this interval have already purchased in period 1. Consequently,

in period 2 (which is the last period in the game), the firm optimally sets the new product’s

price such that the lowest valuation marginal consumer in this segment receives zero surplus,

i.e., ph = vlhθh + ηh,2. However, over the two periods, the arrangement of consumer segments

arises from the following conditions for the marginal consumers at v0l and vlh:

v0lθl + ηl,1 + δηl,2 − pl = 0 , and (A6)

vlhθl + ηl,1 + δηl,2 − pl = δ(vlhθh + ηh,2 − ph). (A7)
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Substituting ph = vlhθh + ηh,2 into the above equations and solving for pl gives

pl = v0lθl + ηl,1 + δηl,2 , and (A8)

pl = vlhθl + ηl,1 + δηl,2. (A9)

Equations (A8) and (A9) require that vlh = v0l. This is inconsistent with the starting as-

sumption that segment Sl exists. Hence, under a pricing strategy that constitutes a subgame-

perfect equilibrium, both Sl and Sh cannot arise simultaneously.

Under gradual improvement, by contrast, the relative location of the segments (see

Figure 3.2) is such that the above type of inconsistency does not arise. In period 2, the firm

optimally sets the price of the new product such that the marginal consumer makes zero

surplus. And all the segments can co-exist. �

Proof of Lemma 3.2

Full/Forward Compatibilities

Under rapid improvement with either full or forward compatibility, when the firm

does not serve segment Sl (i.e., uses targeting scheme T-h), under replacement strategy, we

have Nh = vhb−v0h, Nb = 1−vhb, ηl,1 = ω(1−vhb), and ηh,2 = ηl,2 = ω(1−v0h). From the main

text, we know that skipping arises as a boundary condition on replacement, and under T-h,

the new product’s price and profitability in period 2 are the same under either replacement

or skipping. Consequently, we focus on the segmentation structure under replacement and

identify the conditions when skipping can arise.
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Substituting the above expressions for the network values into the locations of the

marginal consumers (see Table 3.2) gives

v0l =
1

θl
[pl +

(ph − θh)δω

θh − ω
+

(pl − θl(1− δ))ω
θl(1− δ)− ω

] , (A10)

vlh =
1

δθh − θl
[δph − pl −

(pl − θl(1− δ))ω
θl(1− δ)− ω

] , (A11)

v0h =
ph − ω
θh − ω

, and (A12)

vhb =
pl − ω

θl(1− δ)− ω
. (A13)

Since the solution under forward and full compatibilities is exactly the same under

T-h, the solution under full compatibility derived below will also apply for forward compat-

ibility.

The profit function in period 2 is Πh,U,r
2 = ph(1 − ph−ω

θh−ω
). Notice that this function

is concave in ph for all ω < θh ( as
∂2Πh,U,r

2

∂p2h
= −2

θh−ω
). Further, the second period price that

satisfies the first-order condition
∂Πh,U,r

2

∂ph
= 0, is p̂h = θh

2
, and the corresponding demand is

Nh + Nb = θh
2(θh−ω)

. Our focus is on the uncovered market setting, i.e., Nh + Nb < 1 + M ;

this is equivalent to the condition ω < ω̃h,U = θh(1+2M)
2+2M

< θh, and it follows that ph = θh/2 is

the optimal solution for all ω < ω̃h,U .

Taking the second period behavior into account, the present value of the total profit

in period 1 is

Πh,U,r
1 = pl(1−

pl − ω
θl(1− δ)− ω

) + δ
θ2
h

4(θh − ω)
, (A14)

where Πh,U,r
1 is concave in pl for all ω < θl(1 − δ) (since

∂2Πh,U,r
1

∂p2l
= −2

θl(1−δ)−ω
< 0). The

unconstrained pl in this case would be given by solving
∂Πh,U,r

1

∂pl
= 0, or equivalently, pl =

θl(1 − δ)/2. However, if either ω is too large (i.e., ω > θl(1 − δ)), or the constraints that
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pl has to satisfy to engineer the required segmentation structure are binding, then a corner

solution for pl will arise. We now show that the interior solution will never arise and that

the optimal price is indeed at a corner solution.

If pl = θl(1− δ)/2, then

Nh = − (θh − θl(1− δ))ω
2(θh − ω)(θl(1− δ)− ω)

≤ 0 , and (A15)

vlh − v0l =
−δθh(θ2

l (1− δ2)ω − 2θlδω
2 − θh(θ2

l δ(1− δ) + θl(1− δ − δ2)ω − δω2))

2θl(δθh − θl)(θh − ω)(θl(1− δ)− ω)
. (A16)

When ω = 0, Nh = 0 and vlh − v0l > 0; and when ω > 0, Nh < 0. Either of these outcomes

violates the constraints required under T-h. Consequently, pl = θl(1− δ)/2 can never be an

optimal solution.

We now need to determine whether vlh− v0l ≤ 0 or Nh ≥ 0 is binding on the solution.

As shown in period 2 calculations, Nb + Nh > 0, thus, at least one of Nb and Nh is strictly

positive. Using Table 3.2, the first two constraints from above can be rewritten as ph ≤
θh
θl
∗ [pl − ηl,1] − δθhηl,2

θl
+ ηh,2 and ph ≤ ηh,2 + θh

θl
∗ [

pl−ηl,1
1−δ ]. If pl − ηl,1 ≥ 0, then the right

hand side of the first inequality is smaller than the right hand side of the second inequality;

and vlh − v0l ≤ 0 is the critical constraint. However, if pl − ηl,1 < 0, then vlh − v0l ≤ 0 is

never satisfied since the right-hand side of the corresponding condition above is negative.

Therefore, pl − ηl,1 < 0 cannot arise in equilibrium; and when pl − ηl,1 ≥ 0, Nh ≥ 0 cannot

bind; said differently, Nh is strictly positive.

Substituting the new product’s price into vlh − v0l ≤ 0 gives:

pl − ηl,1 ≥
θl
θh

[ph +
δθhηl,2

θl
− ηh,2] =

ω(δθh − θl)
2(θh − ω)

+
θl
2

(A17)

Since the right hand side of (A17) is strictly positive, p̂h derived earlier is consistent

with vlh−v0l ≤ 0 being the critical constraint. Further, any pl derived from vlh−v0l = 0 that
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satisfies Nb = 1− vhb > 0 will be the optimal price for a replacement strategy; by contrast,

at such a price if 1− vhb ≤ 0 then a skipping strategy would arise.

The old product’s price obtained from solving vlh − v0l = 0 is provided below:

pl = ω +
(θl(1− δ)− ω)(θl(θh − 2ω) + δθhω)

2θl(θh − ω)(1− δ)
. (A18)

It follows that Nh = δ(θl(θh−2ω)+θhω)
2θl(1−δ)(θh−ω)

and Nb = θlθh(1−2δ)+δ(2θl−θh)ω
2θl(1−δ)(θh−ω)

. Notice that the

numerator of Nh is always positive if θh ≥ 2θl. If θh < 2θl, then there is an upper bound on

ω; however, that upper bound is bigger than θh, and consequently Nh > 0 for all ω < θh.

Next, examine the numerator of Nb: if 2θl ≥ θh (and under rapid improvement δθh > θl),

then we need δ > 1/2; thus, Nb > 0 when there is a lower bound on ω (this number is

larger than θh) which violates the second order condition in period 2; it follows that Nb = 0

whenever 2θl ≥ θh. Next, when 2θl < θh, if δ ≥ 1/2, then the numerator is negative and

Nb = 0; otherwise, if δ < 1/2, then Nb > 0 requires an upper bound on ω. Therefore, when

δ < 1/2 and ω < ωh,U1 , where ωh,U1 = θlθh(2δ−1)
δ(2θl−θh)

, Nb > 0; otherwise—i.e., when either δ ≥ 1/2,

or δ < 1/2 and ω ≥ ωh,U1 —skipping arises.

Next, note that when ω ≥ ω̃h,U , market is covered and the firm optimally sets the new

product’s price such that the consumer indexed at −M receives zero surplus, i.e., p̃h
h,U =

−Mθh + (1 + M)ω. Furthermore, the order of ωh,U1 and ω̃h,U depends on the magnitude of

θl/θh. We then consider two cases when δ < 1/2: (1) ωh,U1 < ω̃h,U and (2) ωh,U1 ≥ ω̃h,U . When

δ ≥ 1/2, skipping always occurs; and the market is covered when ω ≥ ω̃h,U as mentioned

earlier.

If ωh,U1 < ω̃h,U , or equivalently θl/θh < δ(1+2M)
2(1−δ+M)

, then segment Sb vanishes when

ω ≥ ωh,U1 . Further, the market is covered as ω approaches ω̃h,U . The new product is

provided at p̃h
h,U ≥ θh

2
. In this case, too, segment Sb can not exist since the price net off
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the network benefit (i.e., pl− ηl,1) for the old product is required to be even higher, ensuring

that Wb −Wh is negative.

If ωh,U1 ≥ ω̃h,U , or equivalently θl/θh ≥ δ(1+2M)
2(1−δ+M)

, then when ω ≥ ω̃h,U , the new

product is priced higher than θh/2 (as argued above). Then the price net off the network

benefit (i.e., pl − ηl,1) of the old product will need to be higher than before, i.e., pl − ηl,1 =

θl
θh

[p̃h
h,U + ω(1+M)(δθh−θl)

θl
]. Consequently, segment Sb will vanish before ω approaches ωh,U1 .

We call that value ω̃h,U1 . Also notice that δ(1+2M)
2(1−δ+M)

∣∣∣
M−>∞

= δ, and θl/θh ≥ δ will never hold

under rapid improvement.

We assume that M is sufficiently large (so that ωh,U1 < ω̃h,U), and define ωh,U = ω̃h,U

for the statement of Assumption 1 in the main text.

The following comparative statics are useful:

∂Nb

∂ω
=

−θh(δθh − θl)
2θl(1− δ)(θh − ω)2

< 0 , (A19)

∂Nh

∂ω
=

δθh(θh − θl)
2θl(1− δ)(θh − ω)2

> 0, and (A20)

∂pl

∂ω
= −δ(2θl − θh)ω2 − 2δθh(2θl − θh)ω + θlθh(θl(1− δ) + θh(δ2 + δ − 1))

2θl(1− δ)(θh − ω)2
. (A21)

To sign the derivative in (A21), consider the roots of ∂pl
∂ω

= 0. We will focus on the

case δ < 1/2 (i.e., 2θl − θh < 0) when replacement arises. ∂pl
∂ω

= 0 when

ω = θh −
√
δθh(θh − θl(1− δ))(δθh − θl)(θh − 2θl)

δ(θh − 2θl)
, or (A22)

ω = θh +

√
δθh(θh − θl(1− δ))(δθh − θl)(θh − 2θl)

δ(θh − 2θl)
> θh. (A23)

Denote the smaller root as ωh,U2 (i.e., the first root given in A22). For the uncovered market,

recall that ω < ω̃h,U < θh; hence, ∂pl
∂ω
≤ 0 when ω > ωh,U2 , and ∂pl

∂ω
> 0 when ω < ωh,U2 .
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Also notice that when θl/θh ≤ 3δ−1−δ2
2δ(1−δ) , then ωh,U2 ≥ ωh,U1 ; hence, ∂pl

∂ω
> 0 whenever

replacement arises.

Backward Compatibility

Under rapid improvement with backward compatibility and T-h, we have Nh = vhb−

v0h, Nb = 1 − vhb, ηl,1 = ω(1 − vhb), ηl,2 = 0, and ηh,2 = ω(1 − v0h). The locations of the

marginal consumers are:

v0h =
ph − ω
θh − ω

, (A24)

vhb =
pl − ω

θl(1− δ)− ω
, (A25)

v0l =
(1− δ)(pl − ω)

θl(1− δ)− ω
, and (A26)

vlh =
1

δθh − θl
[
δph − pl +

δω(ph − θh)

θh − ω
+
ω((1− δ)θl − pl)

θl(1− δ)− ω
]
. (A27)

Analogous to full compatibility, the profit function in period 2 is Πh,B,r
2 = ph(1− ph−ω

θh−ω
)

and this function is concave in ph when ω < θh ( as
∂2Πh,B,r

2

∂p2h
= −2

θh−ω
). The solution to the first-

order condition
∂Πh,B,r

2

∂ph
= 0 is p̂h = θh

2
; and the corresponding demand is Nh +Nb = θh

2(θh−ω)
.

The market is uncovered if Nh+Nb < 1+M , or when ω < ω̃h,B = θh(1+2M)
2+2M

, where ω̃h,B < θh;

in this setting, ph = θh/2 is the optimal solution.

Taking the second period behavior into account, the present value of the total profit

in period 1 is

Πh,B,r
1 = pl(1−

pl − ω
θl(1− δ)− ω

) + δ
θ2
h

4(θh − ω)
, (A28)

where Πh,B,r
1 is concave in pl for all ω < θl(1 − δ) (since

∂2Πh,B,r
1

∂p2l
= −2

θl(1−δ)−ω
< 0). The

unconstrained pl in this case would be given by solving
∂Πh,B,r

1

∂pl
= 0, or equivalently, pl =
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θl(1 − δ)/2. However, if either ω is too large (i.e., ω > θl(1 − δ)), or the constraints that

pl has to satisfy to engineer the required segmentation structure are binding, then a corner

solution for pl will arise. We now show that the interior solution will never arise and that

the optimal price is indeed at a corner solution.

If pl = θl(1− δ)/2, then

Nh = − (θh − θl(1− δ))ω
2(θh − ω)(θl(1− δ)− ω)

≤ 0 , and (A29)

vlh − v0l =
−δθh(θl(1− δ2)ω − 2δω2 − θh(θlδ(1− δ) + ω − 2δω))

2(δθh − θl)(θh − ω)(θl(1− δ)− ω)
. (A30)

When ω = 0, vlh − v0l > 0; and when ω > 0, Nh < 0. Either of these outcomes violates

the constraints required under T-h. Consequently, pl = θl(1− δ)/2 can never be an optimal

solution.

Next, we need to determine whether vlh − v0l ≤ 0 or Nh ≥ 0 is binding on the

solution. From Table 3.2, these two constraints can be rewritten as ph ≤ ηh,2 + θh
θl
∗ [pl− ηl,1]

and ph ≤ ηh,2 + θh
θl
∗ [

pl−ηl,1
1−δ ]. If pl − ηl,1 ≥ 0 then the right hand side of the first inequality

is smaller than the right hand side of the second inequality; and vlh − v0l ≤ 0 is the critical

constraint. Otherwise, if pl− ηl,1 < 0, then the second inequality (i.e., Nh ≥ 0) is the critical

constraint. Since ph − ηh,2 (which equals θh(θh−2ω)
2(θh−ω)

) has the same sign as pl − ηl,1 regardless

of which constraint is binding, it follows that pl − ηl,1 ≥ 0 corresponds to ω ≤ θh/2, and

pl − ηl,1 < 0 corresponds to ω > θh/2.

If ω ≤ θh/2, then vlh − v0l ≤ 0 is binding; and the old product’s price is pl =

ω + (θh−2ω)(θl(1−δ)−ω)
2(1−δ)(θh−ω)

; the corresponding demand is Nb = θh(1−2δ)+2δω
2(1−δ)(θh−ω)

> 0 when ω > ωh,B1 ,

where ωh,B1 = θh(2δ−1)
2δ

. It follows that when δ ≥ 1/2 and ω ≤ ωh,B1 , Nb = 0, and skipping

arises.
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If ω > θh/2, then Nh = vhb − v0h ≥ 0 is binding; and the old product’s price is

pl = ω + (θh−2ω)(θl(1−δ)−ω)
2(θh−ω)

. Under this condition, the firm only serves segment Sb whose size

is determined in period 2 as Nb = θh
2(θh−ω)

.

We define ωh,B = ω̃h,B for the statement of Assumption 1 in the main text.

The following comparative statics results are useful:

When ω > θh/2,

∂pl

∂ω
=
θh(θh − θl(1− δ))

2(θh − ω)2
> 0 , and (A31)

∂Nb

∂ω
=

θh
2(θh − ω)2

> 0. (A32)

When ω ≤ θh/2,

∂Nb

∂ω
=

θh
2(1− δ)(θh − ω)2

> 0 , (A33)

∂Nh

∂ω
=

−δθh
2(1− δ)(θh − ω)2

< 0, and (A34)

∂pl

∂ω
=
θh(θh(1− 2δ)− θl(1− δ)) + 4θhδω − 2δω2

2(1− δ)(θh − ω)2
(A35)

To sign (A35), we need to know the sign of its numerator. We will focus on the case where

replacement arises. Now consider the roots of the equation θh(θh(1 − 2δ) − θl(1 − δ)) +

4θhδω − 2δω2 = 0, which are θh −
√

2δθh(θh−(1−δ)θl)
2δ

and θh +

√
2δθh(θh−(1−δ)θl)

2δ
> θh/2. Define

ωh,B2 = θh −
√

2δθh(θh−(1−δ)θl)
2δ

.

If δ ≥ 1/2 or (δ < 1/2 and θl/θh >
1−2δ
1−δ ), the two roots of θh(θh(1 − 2δ) − θl(1 −

δ)) + 4θhδω − 2δω2 = 0 are positive. Hence, when ω < ωh,B2 , the numerator is negative;

and when ωh,B2 ≤ ω ≤ θh/2, the numerator is positive. Notice that under δ ≥ 1/2, when

θl/θh ≤ 2δ−1
2δ(1−δ) , ω

h,B
1 ≥ ωh,B2 ; hence, ∂pl

∂ω
≥ 0 whenever replacement arises.
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If δ < 1/2 and θl/θh ≤ 1−2δ
1−δ , then θh(θh(1 − 2δ) − θl(1 − δ)) + 4θhδω − 2δω2 = 0 has

roots with opposite signs. Hence, the numerator is positive for all ω ≤ θh/2.�

Proof of Lemma 3.3

Full Compatibility

Under rapid improvement with full compatibility, when the firm does not serve seg-

ment Sh (i.e., uses targeting scheme T-l), we have Nl = vlb − v0l, Nb = 1 − vlb, ηl,1 = ηl,2 =

ηh,2 = ω(1− v0l). Substituting these into the marginal consumers provided in Table 3.2 gives

v0l =
pl − ω(1 + δ)

θl − ω(1 + δ)
, (A36)

vlh =
δph(θl − ω(1 + δ))− pl(θl − δω) + θlω)

(δθh − θl)(θl − ω(1 + δ))
, (A37)

vhb =
pl(θl − δω)− θlω

θl(1 + δ)(θl − ω(1 + δ))
, and (A38)

vlb =
ph

θh − θl
. (A39)

The profit function in period 2 is Πl,U
2 = ph(1 − vlb) = ph(1 − ph

θh−θl
). Notice this

function is concave in ph for all θh > θl (as
∂2Πl,U

2

∂p2h
= −2

θh−θl
< 0). Hence, the optimal price

that satisfies the first order condition
∂Πl,U

2

∂ph
= 0 is p̂h = θh−θl

2
; and the corresponding demand

is Nb = 1/2.

Taking the second period behavior into account, the present value of the total profit

in period 1 is

Πl,U
1 = pl(1−

pl − ω(1 + δ)

θl − ω(1 + δ)
) + δ

θh − θl
4

, (A40)

where Πl,U
1 is concave in pl for all ω < θl

1+δ
(since

∂2Πl,U
1

∂p2l
= −2

θl−ω(1+δ)
< 0). The unconstrained

pl in this case would be given by solving
∂Πl,U

1

∂pl
= 0, or equivalently, pl = θl/2. However,
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if the constraints that pl has to satisfy to engineer the required segmentation structure are

binding, then a corner solution for pl will arise. Define ωl,U1 = δθl
1+δ+δ2

. We now show that

when ωl,U1 ≤ ω ≤ θl
1+δ

, an interior solution will arise; and when ω < ωl,U1 , a corner solution

will arise.

When ωl,U1 ≤ ω ≤ θl
1+δ

, with pl = θl/2, the corresponding demand in period 1 is Nl +

Nb = ω(1+δ)
2(θl−ω(1+δ))

+1/2, where Nl = ω(1+δ)
2(θl−ω(1+δ))

≥ 0. Also, vhb−vlh = δ(θh−θl)(δθl−(1+δ+δ2)ω)
2(1−δ)(δθh−θl)(θl−(1+δ)ω)

≤

0 for all ω ≥ ωl,U1 . Since pl = θl/2 satisfies all the constraints, it is indeed the optimal

solution.

Notice that the market is not fully covered when Nl + Nb < 1 + M , or equivalently,

ω < ω̃l,U = θl(1+2M)
(1+δ)(2+2M)

, where ω̃l,U > ωl,U1 for a sufficiently large M (i.e., M > 1−δ−δ2
2

).

Therefore, pl = θl/2 is the optimal solution for all ω ∈ [ωl,U1 , ω̃l,U).

When ω < ωl,U1 , the constraint vhb ≤ vlh is violated and will bind. Solving vhb = vlh

gives

pl =
θl(θl(1− δ) + ω(1 + δ2))

2(θl − δω)
> 0; (A41)

and the corresponding size of segment Sl is Nl = δ(θl+ω)
2(θl−δω)

> 0.

The following comparative statics are useful:

At the interior solution: ∂(Nl+Nb)
∂ω

= θl(1+δ)
2(θl−(1+δ)ω)2

> 0.

At the corner solution: ∂pl
∂ω

=
θ2l (1+δ)

2(θl−δω)2
> 0, ∂(Nl+Nb)

∂ω
= θl(1+δ)δ

2(θl−δω)2
> 0.

Notice that when the market is covered, then the firm sets the old product’s price

such that the consumer indexed v = −M receives zero surplus, or equivalently, pl =

−Mθl+(1+δ)(1+M)ω. Further, vhb ≤ vlh as long as ω ≤ ω̃l,Uf = θl(1−δ+2M)
δ(2+2M)

, where ω̃l,Uf > ω̃l,U

for a sufficiently large M (i.e., M > δ2+δ−1
2

). Hence, at high levels of ω (i.e., ω > ω̃l,Uf ), the

firm will price the product such that vhb ≤ vlh binds. It follows that pl = θl(1−δ)
2

+ω(1 +M).

We, however, focus on the [0, ωl,U ] range for ω, where ωl,U = ω̃l,U .
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Backward Compatibility

Under rapid improvement with backward compatibility and T-l , we have Nl = vlb−v0l,

Nb = 1− vlb, ηl,1 = ω(1− v0l), ηl,2 = ω(vlb− v0l), and ηh,2 = ω(1− v0l); our approach is similar

to the one under full compatibility. The locations of the marginal consumers are:

v0l =
pl − ω

θl − (1 + δ)ω
− δω(θh − ω)

(θh − θl − ω)(θl − (1 + δ)ω)
, (A42)

vlb =
ph − ω

θh − θl − ω
, (A43)

vlh =
phδ((θh − θl)(θl − (1 + δ)ω) + ω2)− pl(θh − θl − ω)(θl − δω)

(δθh − θl)(θh − θl − ω)(θl − (1 + δ)ω)

+
θl(θh − θl)(1− δ)ω + (θhδ

2 − θl(1 + δ2))ω2

(δθh − θl)(θh − θl − ω)(θl − (1 + δ)ω)
, and (A44)

vhb =
1

θl(1− δ)
[
pl − ω

(θh − θl)(θl − pl) + (pl − pl + (ph + θl − θh)δ)ω

(θh − θl − ω)(θl − (1 + δ)ω)

]
. (A45)

The profit in period 2 is Πl,B
2 = ph(1 − vlb) = ph(1 − ph−ω

θh−θl−ω
), and is concave in ph

for all ω < θh − θl (as
∂2Πl,B

2

∂p2h
= −2

θh−θl−ω
< 0). Hence, the optimal price that satisfies the first

order condition
∂Πl,B

2

∂ph
= 0 is p̂h = θh−θl

2
; and the corresponding demand is Nb = θh−θl

2(θh−θl−ω)
.

Taking the second period behavior into account, the present value of the total profit

in period 1 is

Πl,B
1 = pl

[
1− pl − ω

θl − (1 + δ)ω
+

δω(θh − ω)

(θh − θl − ω)(θl − (1 + δ)ω)
)
]

+ δ
(θh − θl)2

4(θh − θl − ω)
, (A46)

where Πl,B
1 is concave in pl for all ω < θl

1+δ
(since

∂2Πl,B
1

∂p2l
= −2

θl−ω(1+δ)
< 0). The unconstrained

pl in this case would be given by solving
∂Πl,B

1

∂pl
= 0, or equivalently, pl = θl/2 − δω(θh−θl)

4(θh−θl−ω)
;

and the corresponding size of Sl is Nl = ω(θh(2+δ)−θl(4+δ))
4(θh−θl−ω)(θl−(1+δ)ω)

. However, if the constraints that

pl has to satisfy to engineer the required segmentation structure are binding, then a corner

solution for pl will arise.
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Define

ωl,B1 =
θl

2δ(3θlδ + θh(2 + δ))

[
θh(2 + 3δ + 2δ2)− θl(4− δ + 2δ2)−√

8δ2(θl − θh)(3θlδ + θh(2 + δ)) + (θl(−4 + δ − 2δ2) + θh(2 + 3δ + 2δ2))2
]
. (A47)

We now show that: (1) when θl/θh <
2+δ
4+δ

, if ωl,B1 ≤ ω ≤ min{θh − θl, θl
1+δ
}, then an interior

solution will arise, and if ω < ωl,B1 , a corner solution from the binding constraint vhb = vlh

will arise; (2) when θl/θh ≥ 2+δ
4+δ

, a corner solution from either the binding constraint vhb = vlh

or Nl = vlb − v0l = 0 will arise.

When θl/θh <
2+δ
4+δ

and ωl,B1 ≤ ω ≤ min{θh − θl, θl
1+δ
}, with the old product’s price at

the interior solution, the corresponding size of segment Sl is Nl = ω(θh(2+δ)−θl(4+δ))
4(θh−θl−ω)(θl−(1+δ)ω)

> 0.

Further, we have

vhb − vlh =
−δ(θh − θl)f1

4θl(1− δ)(δθh − θl)(θh − θl − ω)(θl − (1 + δ)ω)
, where (A48)

f1 = 2δθ2
l (θl − θh) + θl(θl(−4 + δ − 2δ2) + θh(2 + 3δ + 2δ2))ω − δ(3δθl + θh(2 + δ))ω2.

(A49)

Notice that f1 = 0 has two positive roots, where ωl,B1 is the smaller root, and the

larger root is larger than θl/(1 + δ). Hence, f1 ≥ 0 for all ωl,B1 ≤ ω ≤ min{θh − θl, θl
1+δ
}; it

follows that vhb ≤ vlh for all ωl,B1 ≤ ω ≤ min{θh − θl, θl
1+δ
}.

Denote ω̃l,B1 as the value of ω at which Nl + Nb = 1 + M ; when ω ≥ ω̃l,B1 (where

ω̃l,B1 < min{θh − θl,
θl

1+δ
}), the market is covered, and the firm sets price that makes the

surplus of consumer indexed −M equal zero.

When either θl/θh <
2+δ
4+δ

and ω < ωl,B1 , or θl/θh ≥ 2+δ
4+δ

and ω < θh−θl
2

, the constraint

vhb ≤ vlh is violated at the interior solution. The old product’s price is then derived from
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the condition that vhb = vlh:

pl =
θl(θl(1− δ) + ω(1 + δ2))

2(θl − δω)
− ω(θl(1− δ)(θl − δω) + ω(δθh − θl))

2(θl − δω)(θh − θl − ω)
; (A50)

and the corresponding size of segment Sl is Nl = δθl(θh−θl−2ω)
2(θh−θl−ω)(θl−δω)

≥ 0.

Finally, when θl/θh ≥ 2+δ
4+δ

and θh−θl
2
≤ ω < θl(θh−θl)

3θl−θh
, then Nl = vlb−v0l ≥ 0 is binding;

and the old product’s price is obtained by setting vlb − v0l = 0, or equivalently

pl =
θl(θh − θl)− ω(3θl − θh)

2(θh − θl − ω)
> 0. (A51)

At this price, vhb − vlh = −δ2(θh−θl)(θh−θl−2ω)
2(1−δ)(δθh−θl)(θh−θl−ω)

≤ 0.

Notice that the market is not fully covered when Nb < 1 +M , or equivalently, when

ω < ω̃l,B2 = (θh−θl)(1+2M)
2+2M

< θh − θl. Further, when θl/θh <
1+2M
1+4M

, then θl(θh−θl)
3θl−θh

> ω̃l,B2 . We

assume a sufficiently large M so that θl(θh−θl)
3θl−θh

> ω̃l,B2 .

Define

ωl,B =

 ω̃l,B1 if θl/θh <
2+δ
4+δ

ω̃l,B2 if θl/θh ≥ 2+δ
4+δ

(A52)

The following comparative statics are useful:

When θl/θh ≥ 2+δ
4+δ

and θh−θl
2
≤ ω < θl(θh−θl)

3θl−θh
,

∂pl

∂ω
= −(θh − θl)(2θl − θh)

2(θh − θl − ω)2
≤ 0 for all θl/θh ≥

2 + δ

4 + δ
≥ 1/2. (A53)
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When θl/θh <
2+δ
4+δ

and ωl,B1 ≤ ω ≤ min{θh − θl, θl
1+δ
},

∂pl

∂ω
=
−δ(θh − θl)2

4(θh − θl − ω)2
< 0 , (A54)

∂Nl

∂ω
=

(θh(2 + δ)− θl(4 + δ))(θl(θh − θl)− (1 + δ)ω2)

4(θh − θl − ω)2(θl − (1 + δ)ω)2
> 0 (A55)

for all ω < θl/(1 + δ) and θl/θh <
2 + δ

4 + δ
, and

∂Nb

∂ω
=

θh − θl
2(θh − θl − ω)2

> 0. (A56)

When either θl/θh <
2+δ
4+δ

and ω < ωl,B1 , or θl/θh ≥ 2+δ
4+δ

and ω < θh−θl
2

,

∂Nb

∂ω
=

θh − θl
2(θh − θl − ω)2

> 0, (A57)

∂pl

∂ω
=

1

2(θh − θl − ω)2(θl − δω)

[
θ2
l (θh − θl)(θh(1 + δ)− 2θl)

− 2δθl(θh − θl)(δθl + θh)ω + δ(δθ2
h − 2δθlθh(2− δ) + θl(2 + δ − δ2))ω2

]
> 0 (A58)

∂Nl

∂ω
=
δθl((θh − θl)(δθh − θl(1 + δ)− 2(θh − θl)δω + 2δω2)

2(θl − δω)2(θh − θl − ω)2
≶ 0. (A59)

Note that in order to sign (A58), we need to determine the sign of the numerator.

If the numerator has no roots, because the coefficient of ω2 is strictly positive, then it

is positive for all ω. This happens when either θl/θh > δ
2+δ

, or (δ < 0.296 and either

θl/θh <
1+2δ−δ2−

√
1−4δ+2δ2+δ4

2(2−δ2)
or θl/θh >

1+2δ−δ2−
√

1−4δ+2δ2+δ4

2(2−δ2)
). This observation gives rise to

the conclusion that when θl/θh ≥ 2+δ
4+δ

> δ
2+δ

, the numerator is positive.

When θl/θh <
2+δ
4+δ

, ∂pl
∂ω

may be positive or negative. However, we will show that the

numerator of ∂pl
∂ω

is positive for all ω < θl/2, where θl/2 > ωl,B1 . Consequently, ∂pl
∂ω

is positive

for all ω < ωl,B1 . Below is a sketch of that proof.

We need to show when either θl/θh ≤ δ
2+δ

, or δ < 0.296 and 1+2δ−δ2−
√

1−4δ+2δ2+δ4

2(2−δ2)
≤

θl/θh ≤ 1+2δ−δ2−
√

1−4δ+2δ2+δ4

2(2−δ2)
, the numerator of ∂pl

∂ω
is positive for all ω < θl/2. We first

evaluate the value of the expression θ2
l (θh − θl)(θh(1 + δ)− 2θl)− 2δθl(θh − θl)(δθl + θh)ω +
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δ(δθ2
h − 2δθlθh(2− δ) + θl(2 + δ − δ2))ω2 at ω = θl/2 and show that value is positive in the

above region of θl/θh. This result implies that ω = θl/2 is either smaller or larger than the

two roots of the expression. The next step helps resolve the ambiguity. We show that the

critical value of the expression (where the first derivative w.r.t ω vanishes) is larger than θl/2.

This indicates θl/2 has to be smaller than both the two roots (imagine a convex parabola

cutting the x-axis; θl/2 is to the left of the smaller root). Consequently, the expression is

positive for all ω < θl/2.

Next, the sign of (A59) resolves around the sign of the quadratic function of ω in

the numerator. If θl/θh < δ
2+δ

, then the quadratic function has no root; and ∂Nl

∂ω
> 0.

If δ
2+δ
≤ θl/θh ≤ δ

1+δ
, the quadratic function has two positive roots, then ∂Nl

∂ω
≥ 0 for all

ω ≤ θh−θl
2
−
√
δ(θh−θl)(θl(2+δ)−δθh)

2δ
and ∂Nl

∂ω
< 0 for all θh−θl

2
−
√
δ(θh−θl)(θl(2+δ)−δθh)

2δ
< ω < θh−θl

2
+

√
δ(θh−θl)(θl(2+δ)−δθh)

2δ
. If θl/θh >

δ
1+δ

, one root is negative while the other is positive, then

∂Nl

∂ω
≤ 0 for all ω ≤ θh−θl

2
+

√
δ(θh−θl)(θl(2+δ)−δθh)

2δ
. Notice that θh−θl

2
+

√
δ(θh−θl)(θl(2+δ)−δθh)

2δ
>

ωl,B1 .

Forward Compatibility

Under rapid improvement with forward compatibility and T-l , we have Nl = vlb− v0l,

Nb = 1 − vlb, ηl,1 = ηl,2 = ω(1 − v0l), and ηh,2 = ω(1 − vlb). The locations of the marginal

148



consumers are:

v0l =
pl − (1 + δ)ω

θl − (1 + δ)ω
, (A60)

vlb =
ph(θl − (1 + δ)ω)− (pl − (1 + δ)ω)ω

(θh − θl − ω)(θl − (1 + δ)ω)
, (A61)

vlh =
phδ(θh − θl)(θl − (1 + δ)ω) + pl(θ

2
l − δω2 − θl(θh − ω))

(δθh − θl)(θh − θl − ω)(θl − (1 + δ)ω)

− ωθ
2
l − δθh(1 + δ)ω − θl(θh − (1 + δ + δ2)ω)

(δθh − θl)(θh − θl − ω)(θl − (1 + δ)ω)
, and (A62)

vhb =
pl(θl − δω)− ωθl

θl(1− δ)(θl − (1 + δ)ω)
. (A63)

The profit in period 2 is Πl,F
2 = ph(1 − vlb) = ph

[
1 − ph(θl−(1+δ)ω)−(pl−(1+δ)ω)ω

(θh−θl−ω)(θl−(1+δ)ω)

]
, which

is concave in ph for all ω < θh − θl (as
∂2Πl,F

2

∂p2h
= −2

θh−θl−ω
< 0). Hence, the optimal price that

satisfies the first order condition
∂Πl,F

2

∂ph
= 0 is p̂h = θh−θl

2
− ω(θl−pl)

2(θl−(1+δ)ω)
; and the corresponding

demand is Nb = (θh−θl)(θl−(1+δ)ω)+(θl−pl)ω
2(θh−θl−ω)(θl−(1+δ)ω)

.

Taking the second period behavior into account, the present value of the total profit

in period 1 is

Πl,F
1 = pl

[
1− pl − (1 + δ)ω

θl − (1 + δ)ω

]
+ δ
[θh − θl

2
− ω(θl − pl)

2(θl − (1 + δ)ω)

](θh − θl)(θl − (1 + δ)ω) + (θl − pl)ω

2(θh − θl − ω)(θl − (1 + δ)ω)
. (A64)

Notice that

∂2Πl,F
1

∂p2
l

= −(4 + 3δ)ω2 + 4(θlδ − θh(1 + δ))ω + 4θl(θh − θl)
2(θh − θl − ω)(θl − ω(1 + δ))2

, (A65)
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and
∂2Πl,F

1

∂p2l
≤ 0 when (4 + 3δ)ω2 + 4(θlδ − θh(1 + δ))ω + 4θl(θh − θl) ≥ 0; this is satisfied for

all ω ≤ ωl,Fsoc, where

ωl,Fsoc =
2(θh(1 + δ)− δθl −

√
θl(θl − θh)(4 + 3δ) + (θlδ − θh(1 + δ))2)

4 + 3δ
, (A66)

and ωl,Fsoc < min{θh − θl, θl/(1 + δ)}.

The unconstrained pl in this case would be given by solving
∂Πl,F

1

∂pl
= 0, or equivalently

pl = θl/2 +
δω(2θl(θh − θl)− (2θh(1 + δ)− θl(1 + 2δ))ω)

2((4 + 3δ)ω2 + 4(θlδ − θh(1 + δ))ω + 4θl(θh − θl))
. (A67)

However, if the constraints that pl has to satisfy to engineer the required segmentation

structure are binding, then a corner solution for pl will arise.

Define

ωl,F1 =
θl

2δ(δθh − 2θl(1 + 2δ))

[
θl(3− 2δ + 2δ2)− θh(2 + δ + 2δ2)+√

8δ2(θh − θl)(δθh − 2θl(1 + 2δ)) + (θh(2 + δ + 2δ2)− θl(3− 2δ + 2δ2))2, (A68)

ωl,F2 =
2θl(θh − θl)

2θh(1 + δ)− θl(1 + 2δ)
, and (A69)

ωl,F3 =
θl(θh − θl)

δθh
. (A70)

We now show that when θl/θh < 2
1+2δ

and ωl,F1 ≤ ω ≤ ωl,F2 , the interior solution

arises; and when either θl/θh <
2

1+2δ
and ω < ωl,F1 , or θl/θh ≥ 2

1+2δ
and ω < ωl,F3 , the corner

solution at vhb = vlh arises. (The above regions of ω cover all the feasible values according

to Assumption 1; see equation (A80) below.)
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When θl/θh < 2
1+2δ

and ωl,F1 ≤ ω ≤ ωl,F2 , the old product’s price at the interior

solution gives

Nl =
ω(θh(2 + δ)− θl(3 + δ))

(4 + 3δ)ω2 + 4(θlδ − θh(1 + δ))ω + 4θl(θh − θl)
≥ 0, (A71)

Nb =
2θl(θh − θl)− (2θh(1 + δ)− θl(1 + 2δ))ω

(4 + 3δ)ω2 + 4(θlδ − θh(1 + δ))ω + 4θl(θh − θl)
≥ 0, (A72)

ph =
(θh − θl − ω)(2θl(θh − θl)− (2θh(1 + δ)− θl(1 + 2δ))ω)

(4 + 3δ)ω2 + 4(θlδ − θh(1 + δ))ω + 4θl(θh − θl)
> 0 (A73)

vhb − vlh =
−(θh − θl)f2

θl(1− δ)(δθh − θl)((4 + 3δ)ω2 + 4(θlδ − θh(1 + δ))ω + 4θl(θh − θl))
, where

(A74)

f2 = δ(δθh − 2θl(1 + 2δ))ω2 + θl(θh(2 + δ + 2δ2)− θl(3− 2δ + 2δ2))ω + 2δθ2
l (θl − θh).

(A75)

It is easy to show that f2 = 0 has two roots; when θl/θh ≥ δ
2(1+2δ)

, ωl,F1 is the smaller

root among the two positive roots; and when θl/θh <
δ

2(1+2δ)
, ωl,F1 is the positive root while

the other is negative. It then follows that f2 ≥ 0, and subsequently, vhb − vlh ≤ 0 for all

ωl,F1 ≤ ω ≤ ωl,F2 .

When either θl/θh <
2

1+2δ
and ω < ωl,F1 , or θl/θh ≥ 2

1+2δ
and ω < ωl,F3 , then the

constraint vhb ≤ vlh is violated; the old product’s price is then obtained by solving vhb = vlh:

pl =
θl(θl(1− δ) + ω(1 + δ2))

2(θl − δω)

− ωθl(1− δ)(θl(1− δ)− 2δω)(θl − (1 + δ)ω)

2(θl − δω)(2δω2 − (θl(1− δ) + 2θhδ)ω + 2θl(θh − θl))
. (A76)

151



Hence, the new product’s price and the demand are obtained as follows

ph =
(θh − θl − ω)(θl(θh − θl)− δωθh)

2δω2 − (θl(1− δ) + 2θhδ)ω + 2θl(θh − θl)
> 0, (A77)

Nl =
δ(θl(θh − θl)− (2θl − θh)ω)

2δω2 − (θl(1− δ) + 2θhδ)ω + 2θl(θh − θl)
> 0, and (A78)

Nb =
θl(θh − θl)− δθhω

2δω2 − (θl(1− δ) + 2θhδ)ω + 2θl(θh − θl)
> 0. (A79)

Define

ωl,F =

 ωl,F2 if θl/θh <
2

1+2δ

ωl,F3 if θl/θh ≥ 2
1+2δ

(A80)

Notice that when ω ≥ ωl,F , the firm will not introduce the new product. Under that

scenario, it sets the old product’s price to maximize the profit from the old product in period

1, Πl,F
1 = pl(1 − v0l) = pl(θl−pl)

θl−(1+δ)ω
. When ω < θl/(1 + δ) (i.e.,

∂2Πl,F
1

∂θ2l
= −2

θl−(1+δ)ω
< 0), the

optimal price that satisfies the first order condition
∂Πl,F

1

∂θl
= 0 is pl = θl/2. Consequently, the

profit obtained is
θ2l

4(θl−(1+δ)ω)
.

The following comparative statics are useful:

When θl/θh <
2

1+2δ
and ωl,F1 ≤ ω ≤ ωl,F2 , we have

∂Nb

∂ω
=

(4 + 3δ)((2θh(1 + δ)− θl(1 + 2δ))ω2 − 4θl(θh − θl)ω) + 4θ2
l (θh − θl)

((4 + 3δ)ω2 + 4(θlδ − θh(1 + δ))ω + 4θl(θh − θl))2
< 0, (A81)

∂Nl

∂ω
=

(θh(2 + δ)− θl(3 + δ))(4θl(θh − θl)− (4 + 3δ)ω2)

((4 + 3δ)ω2 + 4(θlδ − θh(1 + δ))ω + 4θl(θh − θl))2
> 0, and (A82)

∂ph

∂ω
= −Nb + (θh − θl − ω)

∂Nb

∂ω
< 0, and (A83)

∂pl

∂ω
=
δ(Nb + ω ∂Nb

∂ω
)

2
≶ 0. (A84)
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(A84) is equivalent to

∂pl

∂ω
=

δ

((4 + 3δ)ω2 + 4(θlδ − θh(1 + δ))ω + 4θl(θh − θl))2

[
4θ2

l (θh − θl)2+

4θl(θh − θl)(θl(1 + 2δ)− 2θh(1 + δ))ω+

(4θ2
h(1 + δ)2 + θ2

l (4 + δ(5 + 4δ))− θlθh(6 + δ(13 + 8δ)))ω2
]
, (A85)

whose sign depends on the quadratic function of ω in the numerator. This function has two

positive roots; one of the roots is smaller than ωl,F2 and the other is larger than ωl,F2 . It

follows that when ω is smaller than the smaller root, ∂pl
∂ω

> 0, and when ω is larger than the

smaller root, ∂pl
∂ω

< 0.

When either θl/θh <
2

1+2δ
and ω < ωl,F1 , or θl/θh ≥ 2

1+2δ
and ω < ωl,F3 , we have

∂pl

∂ω
=

1

(−2δω2 + (θl(1− δ) + 2θhδ)ω − 2θl(θh − θl))2

[
θl(2δ(2θl − θh(1− δ2))ω2−

4δ(1 + δ)θl(θh − θl)ω + 2θl(θh − θl)(2θh(1 + δ)− θl(3 + δ2)))
]
> 0, (A86)

∂Nl

∂ω
=
δ(2δ(2θl − θh)ω2 − 4δθl(θh − θl)ω + θl(θh − θl)(2θh(1 + δ)− θl(3 + δ2)))

(−2δω2 + (θl(1− δ) + 2θhδ)ω − 2θl(θh − θl))2
> 0, (A87)

∂ph

∂ω
= θl

(θh(1− δ)− 2θl)δω
2 + 4θl(θh − θl)δω − θl(θh − θl)2(1 + δ)

(−2δω2 + (θl(1− δ) + 2θhδ)ω − 2θl(θh − θl))2
< 0, and (A88)

∂Nb

∂ω
=

2θhδ
2ω2 − 4δθl(θh − θl)ω + θ2

l (1− δ)(θh − θl)
(−2δω2 + (θl(1− δ) + 2θhδ)ω − 2θl(θh − θl))2

≶ 0. (A89)

The sign of (A89) resolves around the sign of the quadratic function of ω in the nu-

merator. When ω < θl(θh−θl)
δθh

− θl
√

2(θh−θl)(θh(1+δ)−2θl)

2δθh
, ∂Nb

∂ω
≥ 0; otherwise ∂Nb

∂ω
< 0. �

Proof of Proposition 3.1

Begin by recalling (a) the present value of the total profit under replacement with

full compatibility and T-l where a corner solution arises (i.e., Πl,U
1 ); and (b) the profit under

skipping with full compatibility and T-h (i.e, Πh,U,s
1 ). Note that under T-l , the corner solution
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arises at low levels of ω (i.e., ω < ωl,U1 ), whereas, skipping occurs when either δ ≥ 1/2, or

δ < 1/2 and ω ≥ ωh,U1 . Let ∆ = Πh,U,s
1 − Πl,U

1 . We will examine the sign of ∆ to determine

which product strategy is optimal.

We have ∆ =
δθ2h

4(θh−ω)
− δ(θh−θl)

4
− Γ, where Γ is the old product’s profit, and

Γ =
θ2
l (1 + δ)(θl(1− δ) + ω(1 + δ2))

4(θl − δω)2
. (A90)

If ∆ > 0, or equivalently, (4Γ− δθl)ω+θh(δθl + δω−4Γ) > 0, then it follows that: (1)

θh > θ̂h when δθl + δω−4Γ ≥ 0, or (2) θh < θ̂h when δθl + δω−4Γ < 0, where θ̂h = (δθl−4Γ)ω
δθl+δω−4Γ

,

δθl + δω − 4Γ = f
(θl−δω)2

, and f = δ3ω3 − (2− δ)θlδ2ω2 − (1 + 3δ2 + δ3)θ2
l ω + (δ2 + δ − 1)θ3

l .

Since f and (δθl+δω−4Γ) have the same sign, we will consider the sign of f instead of

the sign of (δθl +δω−4Γ). Notice that f is a cubic function of ω. A tedious calculation from

the critical values (at which the first derivative of f w.r.t ω vanishes) shows that f = 0 has

three real roots and the smallest root is negative, while the largest root is positive and the

middle root has the same sign as that of δ2 + δ− 1. Denote ω̂ and ω̂1 as the middle root and

the largest one respectively. If δ2 + δ− 1 ≥ 0, or equivalently, δ ≥ δ̂, where δ̂ =
√

5−1
2
≈ 0.62,

then (1) f ≥ 0 when ω ≤ ω̂ or ω ≥ ω̂1; and (2) f < 0 when ω̂ < ω < ω̂1. If δ2 + δ− 1 < 0, or

equivalently, δ < δ̂, then (1) f ≥ 0 when ω ≥ ω̂1; and (2) f < 0 when ω < ω̂1. Furthermore,

the value of f at ω = θl/(1 + δ) is
−θ3l (2+4δ+5δ2+2δ3)

(1+δ)3
< 0. This implies θl

1+δ
< ω̂1. Thus, we

will focus on the case where ω < ω̂1. That is, f ≥ 0 for ω ≤ ω̂ and δ ≥ δ̂. Otherwise, f < 0.

By the definition of rapid improvement, δθh > θl. We then need to compare θ̂h and

θl/δ to derive the condition that dictates the sign of ∆. We have

θ̂h −
θl
δ

=
θl(θl − δω)(δ2(1− δ)ω2 + θl(1 + 3δ2 + δ3)ω + θ2

l (1− δ − δ2))

δf
. (A91)
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Let Λ = δ2(1− δ)ω2 + θl(1 + 3δ2 + δ3)ω+ θ2
l (1− δ− δ2). If Λ ≥ 0, then ω > ω∗, where

ω∗ is the larger root of Λ = 0 (the other root is negative), and

ω∗ =
−1− 3δ2 − δ3 +

√
1 + 2δ2 + 10δ3 + 9δ4 + 2δ5 + δ6

2(1− δ)δ2
θl. (A92)

When δ < δ̂, ω∗ is negative; otherwise, it is nonnegative. In addition, f is negative

at ω = ω∗ 2; if ω∗ > 0, then ω̂ < ω∗.

When δ ≥ δ̂ and ω ≤ ω̂, we have f ≥ 0 and Λ < 0. Subsequently, θ̂h < θl/δ. This

indicates that θh > θ̂h for all δθh > θl, and thus, ∆ > 0 for all δθh > θl. In other words,

skipping is the optimal strategy.

When δ < δ̂, we have f < 0, ω̂ < 0 and ω∗ < 0, leading to Λ > 0, and subsequently,

θ̂h < θl/δ. It follows that ∆ < 0 for all δθh > θl; and product replacement is the dominant

strategy.

When δ ≥ δ̂ and ω > ω̂, we have ω∗ > ω̂ > 0 and f < 0. If ω̂ < ω < ω∗, then Λ < 0

and thus θ̂h > θl/δ. Hence, ∆ > 0 when θh < θ̂h. Otherwise, i.e., θh > θ̂h, ∆ < 0. If ω ≥ ω∗,

then Λ ≥ 0 and θ̂h ≤ θl/δ, subsequently, ∆ ≤ 0 for all δθh > θl.

It is important to notice that ω∗ < ωl,U1 , at higher levels of ω (i.e., ω ≥ ωl,U1 ), when

an interior solution arises, replacement strategy continues dominating skipping since profits

under this solution are always higher than the ones under a corner solution (which have

already dominated skipping).

Extension to a fully covered market setting: Since ω̃l,U < ω̃h,U , the market

under T-l is covered before the one under T-h. If the market under T-l is covered, then the

old product’s pricing allows the firm to extract more surplus from consumers than before,

and subsequently, it will continue dominating skipping strategy (from scheme T-h). If the

market under both schemes is covered, then it is easy to show that the replacement strategy

2This can be shown by considering the value of f at ω∗, rearranging the terms involving the θ’s, and
inspecting the expression for different values of δ
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under scheme T-l is also the dominant strategy. �

Proof of Observations 3.1 and 3.2

The present value of the new product’s profit under skipping is
δθ2h

4(θh−ω)
. From Table

3.4, the present value of the total profit in period 1 when a corner solution at vhb = vlh arises

is:

Under full compatibility:

Πl,U
1 =

θl(θl(1− δ) + ω(1 + δ2))

2(θl − δω)
∗ θl(1 + δ)

2(θl − δω)
+ δ

θh − θl
4

(A93)

Under backward compatibility:

Πl,B
1 =

[θl(θl(1− δ) + ω(1 + δ2))

2(θl − δω)
− ω(θl(1− δ)(θl − δω) + ω(δθh − θl))

2(θl − δω)(θh − θl − ω)

]
∗

[ θl(1 + δ)

2(θl − δω)
− ω(δθh − θl)

2(θl − δω)(θh − θl − ω)

]
+ δ

(θh − θl)2

4(θh − θl − ω)
(A94)

Under forward compatibility:

Πl,F
1 =

1

(2θ2
l + 2δω(θh − ω)− θl(2θh − ω + δω))2

[
θ2
l (θh − θl)2(δθh + θl(1− δ − δ2))−

θl(θh − θl)(2θ2
hδ

2 − θlθh(1 + 3δ2 + δ3) + θ2
l (2 + δ(2− 2δ + δ2)))ω+

δ(2θl − θh)(2θ2
l − 2δθlθh − (θh − θl)(2θl + θh)δ2)ω2 + (4θ2

l − θ2
h)δ3ω3

]
(A95)

Given the complexity of these profit functions, we use simulations to identify the

optimal regions for skipping and replacement under forward and backward compatibility;

subsequently, we compare these regions with the ones obtained from Proposition 3.1. In

particular, we compare profitability of the corner solution at vhb = vlh under T-l and the
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skipping solution under T-h when they are both feasible. We conducted the simulation by

setting θh = 1; θl is selected from 0.001 to 1; δ ∈ (0, 1), and θl/θh ∈ (0, δ).

Under backward compatibility with T-l and a corner solution at vhb = vlh, these

comparative statics are useful:

∂Nb

∂θh
=

−ω
2(θh − θl − ω)2

< 0, (A96)

∂p∗l
∂θh

=
ωθl(1− δ)(θl − (1 + δ)ω)

2(θl − δω)(θh − θl − ω)2
> 0, and (A97)

∂Nl +Nb

∂θh
=

ω(δω − θl(1− δ))
2(θl − δω)(θh − θl − ω)2

> 0 for all ω > θl(1− δ)/δ. (A98)

�

Proof of Proposition 3.2

We will show that a product replacement strategy weakly dominates a skipping strat-

egy when ω < ωg,j, j = {U,B, F}. As mentioned in the main text, skipping is a more

restricted case of replacement; hence, if the unconstrained prices, pl and ph (which are the

solution to the first order conditions), yield positive product sales in period 2 and the loca-

tion of the marginal consumer vlb ≤ 1, then a replacement strategy is weakly viable and is

the optimal strategy. In what follows, we will show the viability of a replacement strategy

for all ω < ωg,j, j = {U,B, F}.

Full Compatibility

Under full compatibility, the network value is ηl,1 = ω(1 − vhl), and ηh,2 = ηl,2 =

ω(1 − v0h). In period 2, given vhl, the demands are Nl = ph
θh−θl

− vhl, Nh = vhl − ph−ω
θh−ω

, and

Nb = 1− ph
θh−θl

. The profit in period 2 is Πg,U,r
2 = ph(vhl − ph−ω

θh−ω
+ 1− ph

θh−θl
).

Notice that the profit in period 2 is concave in ph for all ω < θh (as
∂2Πg,U,r

2

∂p2h
=

−2(2θh−θl−ω)
(θh−ω)(θh−θl)

< 0). Hence, the optimal price that satisfies the first order condition
∂Πg,U,r

2

∂ph
= 0

is p̂h = (θh−θl)(θh+(θh−ω)vhl)
2(2θh−θl−ω)

; and the corresponding demand is Nh +Nb = 1
2
[vhl + θh

θh−ω
] > 0 for

all p̂h > 0. This result shows that the product’s sales in period 2 are positive.
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In period 1, the firm sets the old product’s price such that the consumer indexed vhl

is indifferent between buying in periods 1 and 2. We then obtain

vhl =
δθh(θh − θl) + 2ω(2θh − θl)− 2ω2 − 2pl(2θh − θl − ω)

2θ2
l − θlθh(4 + δ) + 3δθ2

h + ω(θh(4− δ)− δθl)− 2ω2
, (A99)

where v0h ≤ vhl ≤ vlb (as depicted in Figure 3.2).

The present value of the total profit in period 1 is Πg,U,r
1 = pl(Nb+Nl)+δp̂h(Nh+Nb),

or equivalently,

Πg,U,r
1 = pl(1− vhl) + δ

(θh − θl)(θh + (θh − ω)vhl)

2(2θh − θl − ω)
∗ 1

2
[vhl +

θh
θh − ω

]. (A100)

Since the shape of this function dictates how the optimal solution is derived, we first examine

its concavity through the second derivative w.r.t pl.

∂2Πg,U,r
1

∂p2
l

= −2
∂vhl

∂pl

+
δ(θh − θl)(θh − ω)

2(2θh − θl − ω)

[∂vhl

∂pl

]2
(A101)

Hence,
∂2Πg,U,r

1

∂p2l
≤ 0 when 0 ≤ ∂vhl

∂pl
≤ 4(2θh−θl−ω)

δ(θh−θl)(θh−ω)
. It follows that 2(2θ2

l −θlθh(4+ δ)+

3δθ2
h + ω(θh(4− δ)− δθl)− 2ω2) ≤ −δ(θh− θl)(θh− ω)⇔ 4θ2

l + 7δθ2
h − θlθh(8 + 3δ) + (θh(8−

3δ)− δθl)ω − 4ω2 ≤ 0⇔ ω ≤ ωg,U where

ωg,U =
1

8

[
θh(8− 3δ)− δθl −

√
64(θh − θl)2 + 64(θh − θl)δθh + δ2(3θh + θl)2

]
, (A102)

and ωg,U < θh.
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In the regime ω ∈ [0, ωg,U), the unconstrained price pl is derived from the first-order

condition
∂Πg,U,r

1

∂pl
= 0:

∂Πg,U,r
1

∂pl

= Nl +Nb + δ
∂Πg,U,r

2

∂pl

− pl

∂vhl

∂pl

= 0 (A103)

⇔ Nl +Nb + δ
(θh − θl)(θh + (θh − ω)vhl)

2(2θh − θl − ω)

∂vhl

∂pl︸ ︷︷ ︸
+

− pl

∂vhl

∂pl︸ ︷︷ ︸
+

= 0 (A104)

or equivalently,

pl =
1

2

[
θl(1− δ) +

δθl(θh − θl)
2θh − θl − ω

+
δ(θh − θl)(θl − δθh)(θh − ω)

4θ2
l + 7δθ2

h − θlθh(8 + 3δ) + (θh(8− 3δ)− δθl)ω − 4ω2

]
.

(A105)

Demand in period 1 is

Nl +Nb = 1− vhl =
2(θl − δθh)(θl − 2θh + ω)

4θ2
l + 7δθ2

h − θlθh(8 + 3δ) + (θh(8− 3δ)− δθl)ω − 4ω2
≥ 0. (A106)

Backward Compatibility

Under backward compatibility, the network value is ηl,1 = ω(1−vhl), ηl,2 = ω(vlb−vhl),

and ηh,2 = ω(1− v0h). Our analysis follows similar steps as in the full compatibility setting.

In period 2, given vhl, the demands are Nl = phθh−ω(θh+(θh−ω)vhl)
(θh−ω)(θh−θl−ω)

−vhl, Nh = vhl− ph−ω
θh−ω

,

and Nb = 1− phθh−ω(θh+(θh−ω)vhl)
(θh−ω)(θh−θl−ω)

. The profit in period 2 is

Πg,B,r
2 = ph(vhl −

ph − ω
θh − ω

+ 1− phθh − ω(θh + (θh − ω)vhl)

(θh − ω)(θh − θl − ω)
). (A107)
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Now examine the shape of this profit function through the second derivative w.r.t ph:

∂2Πg,B,r
2

∂p2h
= −2(2θh−θl−ω)

(θh−ω)(θh−θl−ω)
. It follows that if ω < θh−θl, then the profit function is concave; and

the optimal price that satisfies the first order condition
∂Πg,B,r

2

∂ph
= 0 is p̂h = (θh−θl)(θh+(θh−ω)vhl)

2(2θh−θl−ω)
.

The corresponding demand in period 2 is Nh + Nb = (θh−θl)(θh+(θh−ω)vhl)
2(θh−ω)(θh−θl−ω)

> 0 for all p̂h >

0. This result shows that the product’s sales in period 2 are positive whenever the firm

introduces the new product.

In period 1, the firm sets the old product’s price such that consumer indexed vhl is

indifferent between buying in periods 1 and 2. We then obtain vhl = Xbwd

Ybwd
, where

Xbwd = δθ2
h(θh − θl)2 + 2θh(2θh − θl)(θh − θl)(1− δ)ω − 2θl(θ

2
l + θh(5− δ)(θh − θl))ω2

+ 4(2θh − θl)ω3 − 2ω4 − 2pl(θh − ω)(θh − θl − ω)(2θh − θl − ω), and (A108)

Ybwd = (θh − ω)
[
(θh − θl)(2θ2

l − θlθh(4 + δ) + 3δθ2
h)

+ 2(θ2
h(2− δ)− δθlθh − θ2

l (1− δ))ω + 2(θl(1 + δ)− 3θh)ω2 + 2ω3
]
. (A109)

and v0h ≤ vhl ≤ vlb (as depicted in Figure 3.2).

The present value of the total profit in period 1 is Πg,B,r
1 = pl(Nb+Nl)+δp̂h(Nh+Nb),

or equivalently,

Πg,B,r
1 = pl(1− vhl) + δ

(θh − θl)(θh + (θh − ω)vhl)

2(2θh − θl − ω)
∗ (θh − θl)(θh + (θh − ω)vhl)

2(θh − ω)(θh − θl − ω)
. (A110)

This function is concave in pl when the following second derivative is non-positive.

∂2Πg,B,r
1

∂p2
l

= −2
∂vhl

∂pl

+
δ(θh − θl)2(θh − ω)

2(2θh − θl − ω)(θh − θl − ω)

[∂vhl

∂pl

]2
(A111)

Hence,
∂2Πg,B,r

1

∂p2l
≤ 0 when 0 ≤ ∂vhl

∂pl
≤ 4(2θh−θl−ω)(θh−θl−ω)

δ(θh−θl)2(θh−ω)
. It follows that 2

[
(θh −

θl)(2θ
2
l − θlθh(4 + δ) + 3δθ2

h) + 2(θ2
h(2− δ)− δθlθh− θ2

l (1− δ))ω+ 2(θl(1 + δ)−3θh)ω2 + 2ω3
]
≤
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−δ(θh − θl)2(θh − ω) ⇔ (θl − θh)(4θ2
l + 7δθ2

h − θlθh(8 + 3δ)) − (θ2
h(8 − 5δ) − 2δθlθh − θ2

l (4 −

3δ))ω + 4(3θh − θl − δθl)ω2 − 4ω3 ≥ 0 ⇔ ω ≤ ωg,B1 , where ωg,B1 is the smallest root of the

cubic function and ωg,B1 < θh − θl. This is obtained by showing that the cubic function has

two critical points (where the first derivative w.r.t ω vanishes) and the values of the cubic

function at these points have opposite sign; combining this with a positive value at ω = 0

leads to the conclusion that the cubic function has three positive roots. Further, the fact

that the two critical points are larger than θh − θl and the value of the cubic function is

negative at θh − θl indicates ωg,B1 < θh − θl (imagine the graph of a cubic function with

negative coefficient on the term involving ω3, and two critical points cutting the x-axis at

three positive values).

Hence, the unconstrained price pl is derived from the first-order condition
∂Πg,B,r

1

∂pl
= 0:

∂Πg,B,r
1

∂pl

= Nl +Nb + δ
∂Πg,B,r

2

∂pl

− pl

∂vhl

∂pl

= 0 (A112)

⇔ Nl +Nb + δ
(θh − θl)2(θh + (θh − ω)vhl)

2(2θh − θl − ω)(θh − θl − ω)

∂vhl

∂pl︸ ︷︷ ︸
+

− pl

∂vhl

∂pl︸ ︷︷ ︸
+

= 0 (A113)

The solution pl to the above equation is always nonnegative. Demand in period 1 is

Nl +Nb = Qbwd

Zbwd
, where

Qbwd = 2θh(2θh − θl)(θh − θl)(θl − δθh)− 2(θ3
l − 5θ2

l θh − 2δθ3
h + (5 + δ)θlθ

2
h)ω

− (θ2
l (4− δ)− 4θlθh(2− δ) + δθ2

h)ω2 − 2θl(1− δ)ω3, and (A114)

Zbwd = (θh − ω)((θl − θh)(4θ2
l + 7δθ2

h − θlθh(8 + 3δ))− (θ2
h(8− 5δ)− 2δθlθh − θ2

l (4− 3δ))ω

+ 4(3θh − θl − δθl)ω2 − 4ω3). (A115)

We have Zbwd > 0 for all ω < ωg,B1 and Qbwd ≥ 0 for all ω ≤ ωg,B2 , where ωg,B2 is the smallest

root of Qbwd = 0 and ωg,B2 < θh − θl. Define ωg,B = min{ωg,B1 , ωg,B2 }. We then conclude that
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sales in period 1 (i.e., 1− vhl) are nonnegative for all ω < ωg,B.

Forward Compatibility

Under forward compatibility, the network value is ηl,1 = ω(1− vhl), ηl,2 = ω(1− v0h),

and ηh,2 = ω(1− vlb + vhl − v0h). In period 2, given vhl, the demands are Nl = ph−ωvhl
θh−θl−ω

− vhl,

Nh = vhl − (θh−θl)(ph−ω(1+vhl))+ω
2

(θh−ω)(θh−θl−ω)
, and Nb = 1− ph−ωvhl

θh−θl−ω
. The profit function in period 2 is

Πg,F,r
2 = ph(vhl −

(θh − θl)(ph − ω(1 + vhl)) + ω2

(θh − ω)(θh − θl − ω)
+ 1− ph − ωvhl

θh − θl − ω
). (A116)

Now examine the shape of this profit function through the second derivative w.r.t θh:

∂2Πg,F,r
2

∂p2h
= −2(2θh−θl−ω)

(θh−ω)(θh−θl−ω)
. It follows that if ω < θh−θl, then the profit function is concave; and

the optimal price that satisfies the first order condition
∂Πg,F,r

2

∂ph
= 0 is p̂h = θh((θh−θl)(1+vhl)−ω)

2(2θh−θl−ω)
.

The corresponding demand in period 2 is Nh +Nb = θh((θh−θl)(1+vhl)−ω)
2(θh−ω)(θh−θl−ω)

> 0 for all p̂h > 0.

In period 1, the firm sets the old product’s price such that consumer indexed vhl is

indifferent between buying in periods 1 and 2. We then obtain vhl =
Xfwd

Yfwd
, where

Xfwd = (θh − θl − ω)(2ω2 − 2(2θh − θl)ω − δθh(θh − θl) + 2pl(2θh − θl − ω)), and (A117)

Yfwd = (θl − θh)(2θ2
l + 3θ2

hδ − θlθh(4 + δ)) + 2(θ2
l (1− δ)− θ2

h(2− δ) + δθlθh)ω

+ 2(3θh − θl − δθl)ω2 − 2ω3. (A118)

and v0h ≤ vhl ≤ vlb (as depicted in Figure 3.2).

The present value of the total profit in period 1 is Πg,F,r
1 = pl(Nb+Nl)+δp̂h(Nh+Nb),

or equivalently,

Πg,F,r
1 = pl(1− vhl) + δ

θh((θh − θl)(1 + vhl)− ω)

2(2θh − θl − ω)
∗ θh((θh − θl)(1 + vhl)− ω)

2(θh − ω)(θh − θl − ω)
. (A119)
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This function is concave when the second derivative w.r.t pl is nonpositive. We have

∂2Πg,F,r
1

∂p2
l

= −2
∂vhl

∂pl

+
δ(θh − θl)2θ2

h

2(θh − ω)(2θh − θl − ω)(θh − θl − ω)

[∂vhl

∂pl

]2
. (A120)

Hence,
∂2Πg,F,r

1

∂p2l
≤ 0 when 0 ≤ ∂vhl

∂pl
≤ 4(θh−ω)(2θh−θl−ω)(θh−θl−ω)

δ(θh−θl)2θ2h
. It follows that 2(θh −

ω)Yfwd ≥ δθ2
h(θh − θl)2 ⇔ (θh − ω)Yfwd ≥

δθ2h(θh−θl)2
2

. This inequality holds for all ω ≤ ωg,F1 ,

where ωg,F1 is the smallest solution of (θh−ω)Yfwd =
δθ2h(θh−θl)2

2
and ωg,F1 < θh−θl. This result

is obtained by showing that Yfwd = 0 has three positive roots, and that (θh−θl) is larger than

the smallest root but smaller than the other roots, and that (θh − ω)Yfwd

∣∣∣
ω=0

>
δθ2h(θh−θl)2

2
.

The unconstrained price pl is derived from the first-order condition
∂Πg,F,r

1

∂pl
= 0:

∂Πg,F,r
1

∂pl

= Nl +Nb + δ
∂Πg,F,r

2

∂pl

− pl

∂vhl

∂pl

= 0 (A121)

⇔ Nl +Nb +
(θh − θl)θ2

h((θh − θl)(1 + vhl)− ω)

2(θh − ω)(2θh − θl − ω)(θh − θl − ω)

∂vhl

∂pl︸ ︷︷ ︸
+

− pl

∂vhl

∂pl︸ ︷︷ ︸
+

= 0 (A122)

The solution pl to the above equation is always nonnegative. Demand in period 1 is

Nl +Nb =
Qfwd

Zfwd
, where

Qfwd = 2θh(2θh − θl)(θh − θl)(θl − δθh)− 2(θ3
l − 5θlθ

2
h − 2δθ3

h − (5− δ)θ2
l θh)ω

− (2θ2
l (2− δ)− θlθh(8− 5δ) + δθ2

h)ω2 − 2θl(1− δ)ω3 ,and (A123)

Zfwd = 2(θh − ω)Yfwd − δθ2
h(θh − θl)2. (A124)

We have Zfwd > 0 for all ω < ωg,F1 and Qfwd ≥ 0 for all ω ≤ ωg,F2 , where ωg,F2 is the smallest

root of Qfwd = 0 and ωg,B2 < θh − θl. Define ωg,F = min{ωg,F1 , ωg,F2 }. We then conclude that

sales in period 1 (i.e., 1− vhl) are nonnegative for all ω < ωg,F . �
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APPENDIX B: PROOFS OF RESULTS FROM CHAPTER 5
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Proof of Lemmas 5.1

Solving the surplus maximization problem of consumers, we obtain the sets of con-

sumers choosing different purchase alternatives as follows:

Sb = {v : 0 ≤ v ≤ 1, v ≥ max{vbh, vbn, vbu, vbo}}, (B1)

Sh = {v : 0 ≤ v ≤ 1,max{vho, vhn, vhu} ≤ v ≤ vbh}, (B2)

Sn = {v : 0 ≤ v ≤ 1,max{vno, vnu} ≤ v ≤ min{vbn, vhn}}, (B3)

Su = {v : 0 ≤ v ≤ 1, vuo ≤ v ≤ min{vbu, vhu, vnu}}, (B4)

So = {v : 0 ≤ v ≤ 1, v ≤ min{vbo, vho, vno, vuo}} (B5)

where vij’s values are in Table 5.1.

Now suppose Sh exists in the market, from (B2), it is required that vhn < vbh, since

vbh = vnu (from Table 5.1), it follows that vhn < vnu. From (B3), the condition vhn < vnu

excludes the existence of Sn. In other words, both Sn and Sh cannot coexist.�

Proof of Lemmas 5.2

Under S1, we need vhu ≤ vbh or p1−δpeu
θ
≤ pe2−peu

θ(1−γ)
; on the other hand, S2 requires

vnu ≤ vbn, or
pe2−peu
θ(1−γ)

≤ p1−δpeu
θ

. Hence, the critical constraint determining which structure to

arise is the relative magnitude of
pe2−peu
θ(1−γ)

and p1−δpeu
θ

. Using (5.2) in the main text, we have

p1 − δpeu
θ

≤ pe2 − peu
θ(1− γ)

⇔ pe2 ≥ Ψ. (B6)

Under the above condition, S1 arises; otherwise, S2 arises. �

Proof of Lemma 5.3

(i) When c/θ < tE

The inverse demand structure is specified in The Model section. We solve the problem

backward, starting from period 2, the firm selects the quantity sold dE
m,2 by maximizing the
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profit in this period ΠE
m,2. The first order condition is

∂ΠE
m,2

∂dEm,2
= 0⇔ dE

m,2 =
θ(1−γdEm,1)−c

2θ
. Since

the second order condition is satisfied (i.e.,
∂2ΠE

m,2

∂(dEm,2)2
= −2θ < 0), the solution to the first

order condition is indeed the optimal solution. We then have

d̂E

m,2 =
θ(1− γdE

m,1)− c
2θ

. (B7)

Substituting d̂E
m,2 into ΠE

m and solving for dE
m,1 gives dE

m,1 = 2(θ−c(1−δγ))
θ(4+4δγ−3δγ2)

. Checking

the second order condition also confirms that the above is indeed the optimal solution (

∂2ΠE
m,2

∂(dEm,2)2
= −θ(4 + 4δγ − 3δγ2)/2 < 0). Subsequently, the optimal quantity in period 2 is

dE
m,2 = θ(4−γ(2−4δ)−3δγ2)−c(4−γ(2−4δ)−δγ2)

2θ(4+4δγ−3δγ2)
. The equilibrium outcome is in Table 5.2.

(ii) When c/θ ≥ tE

The sole entrant will not sell any new product in the second period. The first period

quantity is set by solving the following problem:

ΠE

0 = max
dEm,1

(pE

m,1 − c)dE

m,1 = (θ(1− dE

m,1) + δθγ(1− dE

m,1)− c)dE

m,1 (B8)

Solving the first order condition gives dE
m,1 = 1

2
− c

2θ(1+δγ)
; this is also the optimal

solution as the second order condition is satisfied (
∂2ΠE

0

∂(dEm,1)2
= −2θ(1 + δγ) < 0). In this case,

there is no secondary market, and consumers who buy in period 1 will hold the product

in period 2. The price of the product is pE
m,1 = θ(1+δγ)+c

2
and the corresponding profit is

ΠE
0 = θ(1 + δγ)

(
1
2
− c

2θ(1+δγ)

)2
. �

Proof of Lemma 5.4
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(i) In period 2, we obtain

∂ΠE
m,2

∂γ
= −2θdE

m,1

θ(4 + 3δγ2)− c(4− 8γδ + δ(3− 4δ)γ2)

θ(4 + 4δγ − 3δγ2)2
< 0 (B9)

∂ΠE
m,2

∂c
= −2θdE

m,1

γ2(−δ) + 4γδ − 2γ + 4

2θ(4γδ − 3γ2δq + 4)
< 0 (B10)

∂2ΠE
m,2

∂γ∂c
=

1

θ(γ(3γ − 4)δ − 4)3

[
2c(γ((γ − 4)δ + 2)− 4)(γδ(γ(4δ − 3) + 8)− 4)+

4θ(γ(γδ(γ(δ(−3γ(δ − 1) + 4δ − 14) + 3) + 12δ − 6) + 4)− 8)
]
> 0 (B11)

(ii) The comparative static of the present value of the total profit w.r.t γ is:

∂ΠE
m

∂γ
=

2δ(θ − c(1− δγ))(θ(3γ − 2) + c(6− 3γ + 2δγ))

θ(4 + 4δγ − 3δγ2)2
. (B12)

Thus, ∂ΠE
m

∂γ
≥ 0 when c/θ ≥ 2−3γ

6−3γ+2δγ
. More specifically, ∂ΠE

m

∂γ
≥ 0 when either (γ ≥ 2/3) or

(γ < 2/3 and c/θ ≥ 2−3γ
6−3γ+2δγ

). �

Proof of Lemma 5.5

The derivation of the equilibrium outcome is given below

In period 2, since the second order condition is satisfied (i.e.,
∂2ΠC

n,2

∂(dEm,2)2
= −2θ < 0),

the optimal solution of n is the solution of the first order condition
∂ΠC

n,2

∂dEm,2
= 0 ⇔ dC

n,2 =

θ(1−γdEm,1)−wC
m,2

2θ
. In other words,

d̂C

n,2 =
θ(1− γdE

m,1)− wC
m,2

2θ
. (B13)

Substituting d̂C
n,2 into ΠC

m,2 and solving for wC
m,2 gives wC

m,2 =
θ(1−γdCn,1)

2
, and subse-

quently dC
n,2 =

1−γdCn,1

4
. Checking the second order condition confirms that the above is

indeed the optimal solution (i.e.,
∂2ΠE

m,2

∂(wC
m,2)2

= −1/θ < 0).

Following the same sequence, in period 1: Solving the first-order condition of the

downstream firm’s problem gives dC
n,1 =

θ(8+5δγ)−8wC
m,1

θ(16+16δγ−5δγ2)
. This is the optimal solution as the

167



second-order condition is satisfied (i.e., ∂2ΠC
n

∂(dCn,1)2
= −θ(2 + 2δγ− 5δγ2

8
) < 0). Consequently, the

component’s price in period 1 is wC
m,1 = θ(128+240δγ−56δ(1−2δ)γ2−45δ2γ3)

32(8+8δγ−3δγ2)
, a solution to ∂ΠC

m

∂wC
m,1

= 0

(with ∂2ΠC
m

∂(wC
m,1)2

= − 32(8+8δγ−3δγ2)
θ(16+16γδ−5δγ2)2

< 0).

Comparative Statics

In period 2, we obtain

∂ΠC
m,2

∂γ
= −2θdC

n,2

8 + 6δγ + 3δ(1 + δ)γ2

2(8 + 8δγ − 3δγ2)2
< 0 (B14)

∂ΠC
n,2

∂γ
= −θdC

n,2

8 + 6δγ + 3δ(1 + δ)γ2

2(8 + 8δγ − 3δγ2)2
< 0 (B15)

Finally, the changes in the present value of the total profit of both firms with respect

to γ are given below:

∂ΠC
m

∂γ
=
θδ(8 + 3δγ)(3(2 + δ)γ − 2)

8(8 + 8δγ − 3δγ2)2
(B16)

∂ΠC
n

∂γ
=
θδ(8 + 3δγ)(6(4− γ)γ2δ2 + γ(8 + 15γ(4− γ))δ + 56γ − 16)

16(8 + 8δγ − 3δγ2)3
(B17)

Thus, ∂ΠC
m

∂γ
≥ 0 when γ ≥ 2

3(2+δ)
. And ∂ΠC

n

∂γ
≥ 0 when γ ≥ g(δ), where

g(δ) = arg
−8−15γ(4−γ)+

√
1600−4800γ+4704γ2−1800γ3+225γ4

12γ(4−γ)
, and g(δ) is decreasing in δ.

Proof of Lemma 5.6

The optimal quantities in period 2 are the solution to the following first order condi-

tions (since the second order conditions are satisfied, i.e.,
∂2ΠD

m,2

∂(dDm,2)2
=

∂2ΠD
n,2

∂(dDn,2)2
= −2θ < 0)

∂ΠD
m,2

∂dD
m,2

= θ − c− θ(2dD

m,2 + dD

n,2 + γ(dD

m,1 + dD

n,1)) = 0 (B18)

∂ΠD
n,2

∂dD
n,2

= θ − wD

m,2 − θ(dD

m,2 + 2dD

n,2 + γ(dD

m,1 + dD

n,1)) = 0 (B19)
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It follows that

d̂D

m,2 =
θ(1− γ(dD

m,1 + dD
n,1))− 2c+ wD

m,2

3θ
(B20)

d̂D

n,2 =
θ(1− γ(dD

m,1 + dD
n,1))− 2wD

m,2 + c

3θ
(B21)

Substituting d̂D
m,2 and d̂D

n,2 into ΠE
m,2 and solving for wD

m,2 gives wD
m,2 =

5θ(1−γ(dDm,1+dDn,1))−c
10

,

and subsequently dD
m,2 =

5θ(1−γ(dDm,1+dDn,1))−7c

10θ
and dD

n,2 = 2c
5θ

. Checking the second order condi-

tion also confirms that the above is indeed the optimal solution (i.e.,
∂2ΠD

m,2

∂(wD
m,2)2

= −10/9θ < 0).

The optimal quantities in period 1 are obtained by the following first-order condi-

tions (since the second-order conditions are satisfied, i.e., ∂2ΠD
m

∂(dDm,1)2
= − θ(4+4δγ−3δγ2)

2
< 0 and

∂2ΠD
n

∂(dDn,1)2
= −θ(2 + 2δγ − δγ2) < 0 )

∂ΠD
m

∂dD
m,1

= θ − c(5− 4δγ)

5
− θ(4 + 4δγ − 3δγ2)

2
dD

m,1 − θ(1 + δγ − δγ2)dD

n,1 = 0 (B22)

∂ΠC
m

∂dD
n,1

=
2 + δγ

2
θ − wD

m,1 +
3cδγ

10
− θ(2 + 2δγ − δγ2)

2
dD

m,1 − θ(2 + 2δγ − δγ2)dD

n,1 = 0 (B23)

It follows that

d̂D

m,1 =
5θ(2 + δγ − δ2γ2 + δ2γ3) + 10wD

m,1(1 + δγ − δγ2)− c(20 + 7δγ − δ(10 + 13δ)γ2 + 5δ2γ3)

5θ(2 + 2δγ − δγ2)(3 + 3δγ − 2δγ2)

(B24)

d̂D

n,1 =
1

10θ(2 + 2δγ − δγ2)(3 + 3δγ − 2δγ2)

[
5θ(4 + 8δγ − 4(1− δ)δ2γ2 − 3δ2γ3)

− 10wD

m,1(4 + 4δγ − 3δγ2) + c(20 + 16δγ − 2δ(5 + 2δ)γ2 − δ2γ3)
]

(B25)
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Next, the component’s price in period 1 is

wD

m,1 =
θ(4 + 8δγ − 4δ(1− δ)γ2 − 3δ2γ3)

2(4 + 4δγ − 3δγ2)
− E ∗ c, where (B26)

E =
40 + 120δγ − 20δ(5− 6δ)γ2 − 2δ2(59− 20δ)γ3 + 2δ2(25− 9δ)γ4 − 7δ3γ5

10(4 + 4δγ − 3δγ2)(10 + 10δγ − 7δγ2)
. (B27)

The above is a solution to ∂ΠD
m

∂wD
m,1

= 0 (with ∂2ΠD
m

∂(wD
m,1)2

< 0). Subsequently, the compo-

nent’s price in period 2 is

wD

m,2 =
θ(4− 2(1− 2δ)γ − 3δγ2)

2(4 + 4δγ − 3δγ2)
−G ∗ c, where (B28)

G =
40− (60− 80δ)γ − 2δ(19− 20δ)γ2 + 2δ(20 + 11δ)γ3 − 35δ2γ4

10(4 + 4δγ − 3δγ2)(10 + 10δγ − 7δγ2)
. (B29)

And the optimal quantities chosen by m are

dD

m,1 =
2

4 + 4δγ − 3δγ2
−B ∗ c, (B30)

dD

m,2 =
4− 2(1− 2δ)γ − 3δγ2

2(4 + 4δγ − 3δγ2)
− F ∗ c, where (B31)

B =
2(140 + 200δγ − 10δ(19 + 2δ)γ2 − 2δ2(47 + 40δ)γ3 + δ2(65 + 96δ)γ4)− 28δ3γ5)

5θ(2 + 2δγ − δγ2)(4 + 4δγ − 3δγ2)(10 + 10δγ − 7δγ2)
,

(B32)

F =
280− 20(3− 28δ)γ − 2δ(193− 140δ)γ2 + 2δ(20− 163δ)γ3 + 91δ2γ4

10θ(4 + 4δγ − 3δγ2)(10 + 10δγ − 7δγ2)
. (B33)

Next, the optimal quantities set by n are dD
n,2 = 2c

5θ
, dD

n,1 = 2c(4+4δγ−3δγ2)
θ(2+2δγ−δγ2)(10+10δγ−7δγ2)

.

Notice that dD
m,2 > 0 when c/θ < tD, where

tD =
5(10 + 10δγ − 7δγ2)(4− 2(1− 2δ)γ − 3δγ2)

280− 20(3− 28δ)γ − 2δ(193− 140δ)γ2 + 2δ(20− 163δ)γ3 + 91δ2γ4
. (B34)
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When c/θ ≥ tD, m does not sell any new product in period 2 (i.e., dD
m,2 = 0); that is,

it becomes a component supplier in period 2. Hence, analogous to the case of a component

supplier in period 2, n is the monopolist and sets the quantity sold after receiving the

component’s price from m. We have the following problem of m in period 2:

max
wD

m,2

ΠD,0

m,2 = wD

m,2d̂
D

n,2 (B35)

such that

d̂D

n,2 = arg max
dDn,2

ΠD,0

n,2 = (pD

m,2 − wD

m,2)d
D

n,2 (B36)

wD

m,2 ≥ 0; dD

n,2 ≥ 0 (B37)

Solving the downstream firm’s problem yields d̂D
n,2 =

θ(1−γ(dDm,1+dDn,1))−wD
m,2

2θ
(the solution

to the first-order condition
∂ΠD,0

n,2

∂dDn,2
= 0 is indeed the optimal solution as the second order

condition is satisfied
∂2ΠD,0

n,2

∂(dDn,2)2
= −2θ < 0). Subsequently, the component’s price is obtained

by solving
∂ΠD,0

m,2

∂wD
m,2

= 0⇔ wD
m,2 = θ(1− γ(dD

m,1 + dD
n,1))/2, and thus, the quantity sold in period

2 is dD
n,2 = (1− γ(dD

m,1 + dD
n,1))/4.

In period 1, m sets the component’s price, and given that, both firms simultaneously

and noncollusively choose the quantities sold:

max
wD

m,1

ΠD,0

m = wD

m,1d̂
D

n,1 + (pD

m,1 − c)d̂D

m,1 + δΠD

m,2 (B38)

subject to

d̂D

m,1 = arg max ΠD,0

m = wD

m,1d
D

n,1 + (pD

m,1 − c)dD

m,1 + δΠD

m,2 (B39)

d̂D

n,1 = arg max ΠD,0

n = (pD

m,1 − wD

m,1)d
D

n,1 + δΠD

n,2 (B40)

dD

m,1 ≥ 0; dD

n,1 ≥ 0;wD

m,1 ≥ 0 (B41)
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The first order conditions are

∂ΠD,0
m

∂dD
m,1

=
θ(2 + δγ)

2
− c− θ(2 + 2δγ − 3δγ2/4)dD

m,1 − (1 + δγ − δγ2/2)dD

n,1 = 0, and (B42)

∂ΠD,0
n

∂dD
n,1

=
θ(8 + 5δγ)

8
− wD

m,1 − θ(1 + δγ − 3δγ2/8)dD

m,1 − (2 + 2δγ − 5δγ2/8)dD

n,1 = 0. (B43)

The optimal solution is

d̂D

m,1 =
4
(
θ(8 + 11δγ + δ(3δ − 1)γ2)− c(16 + 16δγ − 5δγ2) + 4(2 + 2δγ − δγ2)wD

m,1

)
3θ(4 + 4δγ − δγ2)(8 + 8δγ − 3δγ2)

, and

(B44)

d̂D

n,1 =
θ(4 + 3δγ) + 4c− 8wD

m,1

3θ(4 + 4δγ − δγ2)
. (B45)

Subsequently, the component’s price is

wD

m,1 =
θ(160 + 304δγ − 4δ(19− 36δ)γ2 − 63δ2γ3)− 4c(8 + 8δγ − 5δγ2)

64(5 + 5δγ − 2δγ2)
. (B46)

It follows that the optimal solution is:

wD

m,2 =
5θ(8− 4(1− 2δ)γ − 5δγ2) + 12γc

16(5 + 5δγ − 2δγ2)
, (B47)

dD

n,2 =
5θ(8− 4(1− 2δ)γ − 5δγ2) + 12γc

32θ(5 + 5δγ − 2δγ2)
, (B48)

dD

m,1 =
θ(40 + 62δγ + 2δ(11δ − 6)γ2 − 7δ2γ3)− 4c(14 + 14δγ − 5δγ2)

4θ(4 + 4δγ − δγ2)(5 + 5δγ − 2δγ2)
, and (B49)

dD

n,1 =
θδγ(5δγ2 + 4γ(1− 2δ)− 8) + c(64 + 64δγ − 28δγ2)

4θ(4 + 4δγ − δγ2)(5 + 5δγ − 2δγ2)
. (B50)

Notice that dD
m,1 > 0 ⇔ c/θ < tD,0 = θ(40+62δγ+2δ(11δ−6)γ2−7δ2γ3)

4(14+14δγ−5δγ2)
. It follows that when

c/θ ≥ tD,0, then dD
m,1 = 0 and the dual distributor becomes a component supplier.�

Proof of Lemma 5.7
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In period 2, we obtain

∂ΠD
m,2

∂γ
= dD

n,2

∂wD
m,2

∂γ
+ 2θdD

m,2

∂dD
m,2

∂γ
< 0 (B51)

∂ΠD
n,2

∂γ
= 2θdD

n,2

∂dD
n,2

∂γ
= 0 (B52)

where
∂wD

m,2

∂γ
< 0 and

∂dDm,2

∂γ
< 0.

Next, in period 1, we have ∂ΠD
m

∂γ
≥ 0 when ∆ ≥ 0 and max{0, t1} ≤ c/θ ≤ min{tD, t2},

where ∆ = 196δ4γ8 − 1344δ4γ7 + δ2(3424δ2 − 1344δ − 1575)γ6 + 4δ2(−960δ2 + 1712δ +

1725)γ5 + 4δ(400δ3 − 2880δ2 − 1919δ + 1050)γ4 + 20δ(320δ2 − 186δ − 635)γ3 + 20(380δ2 +

438δ − 135)γ2 + 2400(δ + 2)γ − 400

t1 = − 5

4Y
(3((γ − 2)γδ − 2)2(γ(2γδ − 5) + 6)(γ(7γ − 10)δ − 10)2+√

((γ − 2)γδ − 2)2(−3δγ2 + 4δγ + 4)2(γ(7γ − 10)δ − 10)2δ) (B53)

t2 = − 5

4Y
(3((γ − 2)γδ − 2)2(γ(2γδ − 5) + 6)(γ(7γ − 10)δ − 10)2−√

((γ − 2)γδ − 2)2(−3δγ2 + 4δγ + 4)2(γ(7γ − 10)δ − 10)2δ) (B54)

Y = 49δ5(8δ − 15)γ10 + 28δ4(−96δ2 + 208δ + 75)γ9 + 2δ4(3424δ2 − 10452δ − 5195)γ8 +

2δ3(−3840δ3+20896δ2+7557δ−6300)γ7+5δ3(640δ3−8880δ2+1434δ+12381)γ6+3δ2(6400δ3−

12940δ2−37548δ+9525)γ5 +10δ2(2780δ2 +8424δ−11387)γ4−40δ(420δ2−3921δ+725)γ3 +

1200(68− 61δ)δγ2 + (11100− 61600δ)γ − 17000.

With respect to the cost disadvantage, we obtain ∂ΠD
m

∂c
≤ 0 when c/θ ≤ min{tD, t3},

where t3 = 1
Z

[5(δγ2 − 2δγ − 2)(7δγ2 − 10δγ − 10)(5γ(3γ − 4)δ2 + 4(4γ − 5)δ − 20)], and

Z = γ3(497γ3−2964γ2+5740γ−3600)δ4+4γ2(280γ3−1701γ2+3670γ−2700)δ3−20γ(80γ3−

48γ2 − 427γ + 540)δ2 + 400(12γ2 − 10γ − 9)δ − 3600.
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Next, the comparative static of the present value of the total profit of n w.r.t γ is:

∂ΠD
n

∂γ
=
∂ΠD

n,1

∂γ
+ δ

∂ΠD
n,2

∂γ
=
∂ΠD

n,1

∂γ
(B55)

=
∂(pD

m,1 − wD
m,1)

∂γ
dD

n,1 + (pD

m,1 − wD

m,1)
∂dD

n,1

∂γ
≤ 0 (B56)

where
∂(pDm,1−wD

m,1)

∂γ
< 0 and

∂dDn,1

∂γ
< 0.

Finally ∂ΠD
n

∂c
=

∂ΠD
n,1

∂c
+ δ

∂ΠD
n,2

∂c
, where

∂ΠD
n,1

∂c
=
∂(pD

m,1 − wD
m,1)

∂γ
dD

n,1 + (pD

m,1 − wD

m,1)
∂dD

n,1

∂γ
≥ 0 (B57)

∂ΠD
n,2

∂c
= 2θdD

n,1

∂dD
n,1

∂γ
≥ 0 (B58)

where
∂(pDm,1−wD

m,1)

∂γ
≥ 0,

∂dDn,1

∂γ
≥ 0, and

∂dDn,1

∂γ
> 0. �

Proof of Lemma 5.8

(i) Market segmentation under Sole Entrant

We have dE
m,1 − dE

m,2 = γ θ(2−(4−3γ)δ)+c(δ(8−γ)−2)
2θ(4+4δγ−3δγ2)

. Therefore, dE
m,1 ≥ dE

m,2 when either

(γ ≥ 4δ−2
3δ

) or (γ < 4δ−2
3δ

and c/θ ≥ tEsegment), where tEsegment = δ(4−3γ)−2
δ(8−γ)−2

.

(ii) Market segmentation under Component Supplier

We have dC
n,1 − dC

n,2 = γ 8−5(4−3γ)δ)
16(8+8δγ−3δγ2)

. Therefore, dC
n,1 ≥ dC

n,2 when γ ≥ 4(5δ−2)
15δ

.

(iii) Market segmentation under Dual Distribution

(dD

m,1 + dD

n,1)− (dD

m,2 + dD

n,2) =
γ

X

[
5θ(2− (4− 3γ)δ)(10 + 10δγ − 7δγ2)

− c(60− 280δ + 2δ(37− 140δ)γ − 2δ(20− 103δ)γ2 − 7δ2γ3)
]
. (B59)

whereX = 10θ(4+4δγ−3δγ2)(10+10δγ−7δγ2). Therefore, dD
m,1+d

D
n,1 ≥ dD

m,2+d
D
n,2 when either

(γ ≥ 4δ−2
3δ

) or (γ < 4δ−2
3δ

and c/θ ≥ tDsegment), where tDsegment = 5(2−(4−3γ)δ)(10+10δγ−7δγ2)
60−280δ+2δ(37−140δ)γ−2δ(20−103δ)γ2−7δ2γ3

.

�
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Proof of Proposition 5.1

The comparisons of quantities follow directly from Tables 5.2, 5.3, and 5.4. Here we

define the values of all critical values.

(i) dC
n,1 < dE

m,1 when c/θ < tEC
q,1 , where tEC

q,1 = 9γ3δ2−12γ2δ2+20γδ+32
8(3γ3δ2−γ2δ(8δ+3)+8)

.

dC
n,2 < dE

m,2 when c/θ < tEC
q,2 , where tEC

q,2 = 27γ4δ2−132γ3δ2+24γ3δ+128γ2δ2−228γ2δ+256γδ−96γ+128
8(γ2δ−4γδ+2γ−4)(3γ2δ−8γδ−8)

.

dC
n,1+d

C
n,2 < dE

m,1+d
E
m,2 when c/θ < tEC

q , where tEC
q = 27γ4δ2+24γ3(1−4δ)δ+4γ2δ(20δ−57)+48γ(7δ−2)+256

8(γ2δ+2γ−8)(3γ2δ−8γδ−8)
.

(ii) dD
m,1 < dE

m,1 < dD
m,1 + dD

n,1 and dD
m,2 < dE

m,2 < dD
m,2 + dD

n,2 for all c/θ < tD.

(iii) dD
m,1 + dD

n,1 > dC
n,1 and dD

m,2 + dD
n,2 > dC

n,2 for all c/θ < tD. �

Proof of Proposition 5.2

The comparisons of the component’s prices follow directly from Tables 5.3, and 5.4,

where tCD
w = − 5γδ(γ(7γ−10)δ−10)(γ(δ(γ(3γ((3γ−20)δ+8)+64δ−156)+128)−96)+64)

16(γ(3γ−8)δ−8)(γδ(γ(γ(γ+4)(7γ−10)δ2−2(γ(25γ−59)+60)δ+100)−120)−40)
.

Notice that tCD
w > 0 when δ >

2(−32+39γ−6γ2+γ
√

3(107−84γ+12γ2))

γ(64−60γ+9γ2
. �

Proof of Proposition 5.3

The comparisons of profits follow directly from Tables 5.2, 5.3, and 5.4, where

tEC
2 = −γ(δ(γ(3γ−4)(3(5

√
2−8)γ−32(

√
2−2))δ+4γ(6(

√
2−2)γ−47

√
2+104)+256(

√
2−2))−32(

√
2−4))+128(

√
2−2)

8(γ(3γ−8)δ−8)(γ((γ−4)δ+2)−4)

tDE
2 = −T1

T2
, tDC

2 = −T3
T4

T1 = 5γ(γ(7γ − 10)δ − 10)(γ((3γ − 4)δ + 2)− 4)(γδ(7γ2δ − 5γ(2δ + 3) + 10) + 20)

T2 = γ(γ(δ(γ(−(10− 7γ)2γ(γ(51γ− 140) + 80)δ3 + 5(7γ− 10)(γ(γ(7γ+ 332)− 984) +

640)δ2 + 5(γ(γ(165γ− 1006)− 2924) + 12720)δ− 2300γ+ 9400) + 1200(11− 40δ)) + 1600)−

4000(8δ + 1))− 8000

T3 = 5(
√

2
√
T 1

3−8((8−3γ)γδ+8)2(γ(7γ−10)δ−10)(γ((3γ−4)δ+2)−4)(γ(δ(γ(γ(7(7γ−

30)δ + 40) + 200δ − 270) + 400)− 60) + 200)

T 1
3 = ((8 − 3γ)γδ + 8)2(32((8 − 3γ)γδ + 8)2(γ(7γ − 10)δ − 10)2(γ((3γ − 4)δ + 2) −

4)2(γ(δ(γ(γ(7(7γ−30)δ+40)+200δ−270)+400)−60)+200)2−((10−7γ)γδ+10)2(γ(γ(δ(γ((4−

3γ)2γ(9γ(7γ − 64) + 1024)δ3 + 8(3γ − 4)(3γ(γ(18γ − 245) + 800) − 2048)δ2 + 16(γ(36(γ −

30)γ + 6079) − 10944)δ − 4608γ + 47360) + 3072(32δ − 35)) + 7168) + 8192(8δ − 3)) +
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16384)(γ(γ(δ(γ((10− 7γ)2γ(γ(229γ− 760) + 720)δ3 + 20(7γ− 10)(γ(γ(28γ− 617) + 1764)−

1440)δ2 + 20(γ(2γ(40γ − 687) + 12529) − 30120)δ − 4800γ + 48400) + 800(540δ − 311)) +

3600) + 24000(12δ − 1)) + 72000)).

T4 = 8((8 − 3γ)γδ + 8)2(γ(γ(δ(γ((10 − 7γ)2γ(γ(229γ − 760) + 720)δ3 + 20(7γ −

10)(γ(γ(28γ − 617) + 1764)− 1440)δ2 + 20(γ(2γ(40γ − 687) + 12529)− 30120)δ − 4800γ +

48400) + 800(540δ − 311)) + 3600) + 24000(12δ − 1)) + 72000). �

Proof of Proposition 5.4

The comparisons of profits follow directly from Tables 5.2, 5.3, and 5.4, where tDC = T5
T6

T5 = 20((γ−2)γδ−2)(γ(3γ−8)δ−8)(γ(7γ−10)δ−10)(δ(γ(5(3γ−4)δ+ 16)−20)−

20)− 5
√
T 1

5

T 1
5 = ((γ−2)γδ−2)(γ(3γ−8)δ−8)(γ(3γ−4)δ−4)(γ(7γ−10)δ−10)(δ(γ((γ−2)γ3(7γ−

10)(γ(1257γ − 3916) + 1280)δ5− 4γ2(γ(γ(γ(1764γ + 11147)− 68602) + 89780)− 25600)δ4−

4γ(γ(γ(16γ(617γ− 2612) + 2759) + 92980)− 38400)δ3 + 16(γ(2γ(2γ(80γ + 2649)− 11405)−

3215)+6400)δ2+80(γ(16γ(35γ−48)−2675)+1520)δ−19200(4γ−1))+25600(δ+2))+25600)

T6 = 4(γ(3γ−8)δ−8)(δ(γ(γ(δ((γ−2)γ(7γ−10)(71γ−180)δ2 + 4(γ(7γ(40γ−243) +

3670)− 2700)δ + 20(16(3− 5γ)γ + 427)) + 4800)− 400(27δ + 10))− 3600)− 3600)

tDE = −10γδ((γ−2)γδ−2)(γ(7γ−10)δ−10)
δ(γ(γ(δ(4(γ−2)γ(6γ−5)(7γ−10)δ2−2(γ(7γ(5γ+34)−860)+600)δ+15(56−15γ)γ+160)+600)−200(6δ+5))−400)−400

.

�

Proof of Proposition 5.5

The comparisons of profits follow directly from Tables 5.2, 5.3, and 5.4, where

tDC′ =
(γ(3γ−8)δ−8)(γδ(γ((33γ−96)δ+52)−256)−160)−

√
2
√

(3γδ+8)2((γ−4)γδ−4)(γ(2γ−5)δ−5)(γ(3γ−8)δ−8)2

36(γ(3γ−8)δ−8)2
.

�
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