
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2007 

Graph Theoretic Modeling: Case Studies In Redundant Arrays Of Graph Theoretic Modeling: Case Studies In Redundant Arrays Of 

Independent Disks And Network Defense Independent Disks And Network Defense 

Sanjeeb Nanda 
University of Central Florida 

 Part of the Computer Sciences Commons, and the Engineering Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Nanda, Sanjeeb, "Graph Theoretic Modeling: Case Studies In Redundant Arrays Of Independent Disks And 
Network Defense" (2007). Electronic Theses and Dissertations, 2004-2019. 3278. 
https://stars.library.ucf.edu/etd/3278 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/236257547?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F3278&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F3278&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/3278?utm_source=stars.library.ucf.edu%2Fetd%2F3278&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


 

 

 

 

GRAPH THEORETIC MODELING: CASE STUDIES IN REDUNDANT ARRAYS OF 

INDEPENDENT DISKS AND NETWORK DEFENSE 
 

 

 

 

 

 

 

 

by 

 

 

SANJEEB NANDA 

M.S. University of Louisville, 1991 

B.E. Birla Institute of Technology and Science, 1989 

 

 

 

 

A dissertation submitted in partial fulfillment of the requirements  

for the degree of Doctor of Philosophy  

in the School of Electrical Engineering and Computer Science  

in the College of Engineering and Computer Science 

at the University of Central Florida  

Orlando, Florida  

 

 

 

 

Fall Term  

2007 

 

 

 

Major Professor: Narsingh Deo  

 



ii 

ABSTRACT 

Graph theoretic modeling has served as an invaluable tool for solving a variety of 

problems since its introduction in Euler’s paper on the Bridges of Königsberg in 1736 [1]. Two 

amongst them of contemporary interest are the modeling of Redundant Arrays of Inexpensive 

Disks (RAID), and the identification of network attacks. While the former is vital to the 

protection and uninterrupted availability of data, the latter is crucial to the integrity of systems 

comprising networks. Both are of practical importance due to the continuing growth of data and 

its demand at increasing numbers of geographically distributed locations through the use of 

networks such as the Internet. 

The popularity of RAID has soared because of the enhanced I/O bandwidths and large 

capacities they offer at low cost.  However, the demand for bigger capacities has led to the use of 

larger arrays with increased probability of random disk failures. This has motivated the need for 

RAID systems to tolerate two or more disk failures, without sacrificing performance or storage 

space. To this end, we shall first perform a comparative study of the existing techniques that 

achieve this objective. Next, we shall devise novel graph-theoretic algorithms for placing data 

and parity in arrays of n disks (n ≥ 3) that can recover from two random disk failures, for n = p – 

1, n = p and n = 2p – 2, where p is a prime number. Each shall be shown to utilize an optimal 

ratio of space for storing parity. We shall also show how to extend the algorithms to arrays with 

an arbitrary number of disks, albeit with non-optimal values for the aforementioned ratio. 

The growth of the Internet has led to the increased proliferation of malignant applications 

seeking to breach the security of networked systems. Hence, considerable effort has been 

focused on detecting and predicting the attacks they perpetrate. However, the enormity of the 
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Internet poses a challenge to representing and analyzing them by using scalable models. 

Furthermore, forecasting the systems that they are likely to exploit in the future is difficult due to 

the unavailability of complete information on network vulnerabilities. We shall present a 

technique that identifies attacks on large networks using a scalable model, while filtering for 

false positives and negatives. Furthermore, it also forecasts the propagation of security failures 

proliferated by attacks over time and their likely targets in the future. 
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1. INTRODUCTION 

From its inception, graph theory has proved invaluable in modeling numerous problems 

and deriving their solutions. Two contemporary ones of practical interest are the design of 

Redundant Arrays of Independent Disks (RAID) and, the identification of network attacks and 

the forecasting of their propagation.  

1.1 A case for RAID tolerant to two or more random disk failures 

In contrast to the growth of CPU throughputs, enhancements to I/O bandwidth have been 

relatively modest. In fact, I/O limitations continue to bottleneck the performance of many 

applications to this day. This fact motivated the introduction of Redundant Arrays of Inexpensive 

Disks (RAID) [14, 32, 33] that substitutes large expensive disks with arrays of independent disks 

to provide greater effective I/O bandwidth. Note that, the word independent in RAID may be 

found substituted by inexpensive in literature on this area. However, an array’s probability of 

failure exceeds that of each disk comprising it. Consider the disks that are manufactured with 

some of the most stringent requirements on durability, such as those with SCSI and Fibre 

Channel interfaces. They have mean time between failures (MTBF) of at most 1,400,000 hours. 

Manufacturers list the MTBF of a disk to be nh hours if, upon running an array of n such disks, 

the first disk fails after h hours. Thus, if an array is comprised of 1024 disks, with each having an 

MTBF of 1,400,000 hours, one disk may be expected to fail approximately every 57 days. 

However, this is a misleading measure of reliability for several reasons. First, such tests use disks 

with pristine electromechanical components that, unlike in older disks, have not degraded due to 

overheating, vibration, and shock from rough handling. Second, a large number of disks, such as 
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those with ATA and SATA interfaces, utilize less resilient components than SCSI and Fibre 

Channel ones to reduce cost. Hence, arrays comprised of such disks are likely to experience 

failures sooner than equal sized ones with more robust disks. 

 

Figure 1: RAID level 0 with n disks and m blocks per disk. 

 

A RAID level 0 with n disks may partition each disk into equal sized blocks and order the 

blocks in a round-robin fashion. This enhances I/O throughput by permitting up to n blocks to be 

accessed concurrently when reading from, or writing to the array sequentially. Figure 1 displays 

the order of the data blocks in a RAID level 0 with n disks and m data blocks per disk. But, 

RAID level 0 does not offer any redundancy. In contrast, levels 1 through 5 provide tolerance to 

the failure of exactly one disk in the array. RAID level 1 is simply a pair of disks with the data 

on any one being mirrored on the other, and RAID level 5 consists of at least three disks with 

rotating bit-wise parity placement to provide redundancy. 
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Figure 2: A RAID level 10 with three virtual disks, each being a RAID 1. 

 

Since RAID levels 1 through 5 can tolerate only one disk failure, their use is limited to 

small arrays where the probability of a second disk failing before a previously failed disk has 

been reconstructed, is negligible. A popular technique that addresses this challenge partitions a 

set of disks into subsets, with each being a single-disk fault-tolerant RAID that is treated as a 

disk. However, the likelihood of this event is greater for larger arrays. We note that, arrays with 

over 1000 disks are already offered by vendors such as Hewlett Packard, Hitachi and EMC. Such 

arrays may need to tolerate two or more simultaneous disk failures. For example, RAID Level 10 

is obtained in this manner by treating subsets of RAID Level 1 as disks. Figure 2 displays a 

RAID Level 10 composed of three subsets of RAID Level 1. The blocks in the array are 

represented by cylindrical segments, with their typical size in practice being 128 KB. Their 

labels indicate the sequential order in which data is written to them, with identically labeled 

blocks containing duplicate data. 
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Although such arrays can tolerate as many disk failures as there are subsets, each failure 

is restricted to a unique subset. Thus, there is a compelling need for arrays that can tolerate 

multiple arbitrary disk failures. For most practical array sizes, the probability of occurrence of 

more than two simultaneous disk failures is generally small enough to be ignored, and a lesser 

number of failures can be tackled by the use of RAID systems resistant to two disk failures. 

1.2 A case for attack graphs 

The rapid growth of the Internet has triggered an explosion in the number and use of 

networked applications. Unfortunately, many are maliciously designed to harm network 

infrastructure and systems. Hence, considerable effort has been focused on detecting and 

predicting the breaches in security produced by them. However, the enormity of the Internet 

poses a formidable challenge to representing and analyzing such attacks using scalable models. 

Furthermore, the unavailability of complete information on network vulnerabilities makes the 

task of forecasting the systems that are likely to be exploited by such applications in the future 

equally hard. 

Directed graphs serve as an intuitive way to represent network attacks. Existing 

formulations [35, 37, 39] use vertices to represent a tuple of attributes comprised of a source 

system, target system, a vulnerability that exists on the target as a precondition, and the 

postcondition of an atomic attack from the source to the target using that vulnerability. Then, an 

arc exists from one exploit to another if and only if an atomic attack can leverage the 

postcondition in the former to utilize the precondition in the latter, and the corresponding 

systems are connected. To produce such attack graphs, the set of vulnerabilities at each system in 

the network is first obtained using scanners such as Nessus, Saint, ISS’ Internet Scanner and the 
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CISCO Security Scanner. Then, a model checker such as NuSMV or Spin is applied to a graph 

on all possible exploits to generate every path that breaches an explicitly stated security 

condition that is stated as the goal. Finally, the result produced by the model checker is rendered 

using a visualization application such as GraphViz. However, such attack graphs suffer from two 

major drawbacks. First, they have very large orders and lack scalability. As a result, they cannot 

be used to model and visualize attacks on networks in practice. To alleviate the severity of this 

problem, mechanisms have been proposed to reduce the order of such graphs [3] and to represent 

them succinctly to facilitate their comprehension by users [27, 29]. Second, a given graph 

describes the attack paths comprised of sequences of exploits that breach a target security 

condition, and therefore, its use is confined to the analysis of attacks pertaining to the violation 

of that condition alone. To address this challenge, attack graphs have been constructed using a 

large set of attack goals [30]. 

However, attack graphs merely provide a roadmap of the attacks that can occur based on 

the vulnerabilities exposed by the systems under consideration. In isolation, they cannot establish 

if an exploit corresponding to an intrusion detection system (IDS) alert truly constitutes an 

attack. There are various reasons that can make this determination difficult. Firstly, any given 

network-based IDS incorporates rules that are designed to search the payload of network packets 

for signatures that portend threat and generates an alert when a match is found. However, such 

rules are independent of the potentially differing sets of vulnerabilities admitted by various hosts 

on that network. That is, the payload of a packet arriving at a system may ostensibly exploit a 

vulnerability v, but that system may not admit v. For example, the Lion worm exploits 

vulnerabilities in Linux only. However, a typical IDS generates an alert even when this worm 
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attempts to exploit a Windows-based system. However, such an exploit is guaranteed to have no 

ill effect on a targeted Windows system nor serve as an intermediate step towards harming any 

peers, and is therefore defined to be irrelevant. Secondly, an event by itself may have ambiguous 

implications. For example, a TCP-SYN packet received by a host may be a legitimate request by 

a client to open a streaming connection to that host, or it may constitute a deliberate TCP-SYN 

flooding being carried out by that client using spoofed IP addresses to achieve denial of service. 

An alert generated in response to the occurrence of the former event, termed as a false positive, 

is undesirable since they drain network administration resources away from the investigation of 

meaningful events. While methods to identify false positives such as TCP-SYN flooding already 

exist, they are based on time-consuming heuristics that track the activity of malicious clients 

over periodic intervals of time [38]. Thirdly, an event may be incorrectly judged to be benign. 

For example, an ftp request that appears to originate from a trusted system within a firewall to a 

peer within it may be considered harmless, and therefore, ignored by the existing set of IDS 

rules. However, in reality the actual source may reside outside the firewall, and the system 

appearing to initiate the ftp request may have been compromised earlier to allow a port-

forwarding program on it to masquerade as the source. The lack of an alert in such an instance is 

termed as a false negative and it poses a far greater danger to the network than false positive or 

irrelevant alerts. It is therefore vital to correlate alerts to meaningfully identify attacks. 
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2. A SURVEY 

2.1 Salient methods to realize RAID tolerant to two or more random disk failures 

Several schemes to recover from random two-disk failures have been developed, each 

with their advantages and disadvantages. Blaum’s technique for recovery against double disk 

failures [6] uses bit-wise exclusive-OR (XOR) of data blocks to calculate parity, and stores it 

using an optimal fraction of the total space of the array. However, it requires the array size to be 

a prime number. This is commercially unappealing since consumers typically demand 

considerable flexibility in choosing the size of the array that meets the needs of their respective 

businesses. 

The EVENODD scheme [7] requires the array to have (p + 2) disks, where p is a prime 

number. Data is stored exclusively on p disks while parity is stored on the remaining two disks. 

This scheme allows non-prime values for the number of data disks n by assuming the presence of 

(p – n) additional imaginary data disks in the array containing 0’s. This scheme too, uses bit-wise 

XOR of data blocks to calculate parity, and stores it using an optimal fraction of the total space 

of the array. However, it stores parities exclusively on two disks. This chokes throughput when 

writing to the array since parity updates are confined to two disks. Furthermore, read throughput 

from the array does not utilize the cumulative I/O bandwidth of all disks since the two parity 

disks do not contain any data to be read. 

Similarly, the RDP scheme [9] requires the array to have (p + 1) disks, where p is a prime 

number. Data is stored exclusively on (p – 1) disks while parity is stored on the remaining two 

disks. As in the EVENODD scheme, RDP allows values for the number of data disks n not equal 
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to (p – 1) by assuming the presence of (p – 1 – n) additional imaginary data disks in the array 

containing 0’s. RDP too, uses bit-wise XOR of data blocks to calculate parity, and stores it using 

an optimal fraction of the total space of the array. Unfortunately, it too, stores parities 

exclusively on two disks that stifles read and write throughput. 

 The X-code scheme [43] requires the array to have p disks, where p is a prime number. It 

distributes parity over all the disks enabling efficient disk utilization. However, its requirement 

on the number of disks in the array being equal to a prime number makes it commercially 

undesirable. 

 The B-code scheme [44] describes the methods for the placement of data and parity in 

arrays with p and (2p – 1) disks by deriving the desired maximum distance separable B-codes 

from the equivalent perfect 1-factorizations of the complete graphs Kp + 1 and K2p. 

 The STAR code [13] is an extension of the EVENODD scheme that enables arrays 

having (p + 3) disks, where p is a prime number, to recover from up to three random disk 

failures. As in the case of EVENODD, it places parity exclusively in three disks, and thus suffers 

from the same I/O inefficiency as its predecessor. 

Techniques based on Reed-Solomon codes [36] such as DATUM [2] allow arbitrary 

array sizes. However, their use of Galois Field arithmetic to compute parities makes them 

computationally more expensive than those using only XOR operations as demonstrated by 

projects such as Oceanstore [17]. Hence, they are implemented using costly specialized hardware 

that makes the solution economically unattractive. 

Park’s RM2 algorithm [31] determines the configuration of data and parity, when given 

the desired number of disks n in the array and the ratio of disk space r used for storing parity. 
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However, the algorithm does not guarantee a solution for all values of r and n. As a result, for a 

given value of n, several values of r may have to be tested, other than the optimal value of 2/n, in 

decreasing order of optimality to find one for which the algorithm can yield the placement of 

data and parity that can tolerate the failure of two random disks. The only known enhancement to 

RM2 [21] has unfortunately only addressed the low write I/O performance in arrays tolerant to 

two disk failures. This shortcoming arises from the need to update two distinct parity blocks 

whenever a block of data is written into such arrays. 

 Our research proposes to address the various drawbacks observed in the aforementioned 

schemes. To that end, our schemes attempt to meet the following requirements. 

 Parities are computed using computationally less expensive XOR operations only. 

 Parities are distributed evenly over all disks to enhance data throughput. 

 Space consumed for storing parity is optimal. 

 Arrays can be comprised of an arbitrary number of disks. 

2.2 Salient methods to analyze and forecast network attacks 

A number of methods have been proposed to meaningfully correlate alerts with attacks. 

One salient approach [40] fuses together alerts that are generated within a finite window of time 

and possess common values for a specified set of attributes to form a meta-alert. However, the 

drawback of this technique is that it can fuse together uncorrelated alerts when they have 

common attributes such as source and destination addresses, and can ignore related alerts that are 

spaced farther apart in time. Furthermore, it fuses meta-alerts constituting multi-step attacks in a 

similar manner with the same deficiencies. 
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Another technique [30] creates paths comprised of observed events such that, each 

contains events whose corresponding exploits in the attack graph have a distance less than a 

specific threshold to other exploits whose corresponding events lie on the same path. The 

relevancy of a path to an attack is then obtained by first applying a moving average filter to the 

distances between the adjacent events in each path, and then calculating the ratio of the number 

of events in a given path to the sum of the filtered distances between all pairs of events in that 

path. The drawback of this scheme is that, it uses conventional non-aggregated attack graphs, 

which as stated earlier, have extremely large orders, which makes distance calculation between 

alerts computationally nontrivial. 

Several methods have also been proposed to estimate the likelihood of an attack with 

specified goals. One prominent scheme [10] accomplishes this by modeling attacks using trees 

where each vertex represents a network/attacker state and each edge represents an exploit that 

leverages a non-unique vulnerability with a given probability. The probability of the goal state is 

defined to be the sum of the probabilities of each non-intersecting path that has the vertex 

representing that goal state as an end, where the probability of each path is the product of the 

probabilities of the edges comprising it. However, it does not address the mechanism by which 

the probability of an exploit can be derived. 

Another technique [28] computes the closure of the adjacency matrix A of the vertices of 

an attack graph, where A
k
 shows the clusters of systems that are at risk from one another after k 

attack steps. However, this indicates the reachability of an attack initiated from a given system to 

others in the network and not necessarily the path that is taken by an attack. 
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3. MODELING RAID TO TOLERATE TWO RANDOM DISK FAILURES 

The graph theoretic schemes we have developed to model the placement of data and 

parity in disk arrays have several advantages over the schemes investigated in our survey. First, 

the computational expense incurred by our schemes for deriving parities and reconstructing 

failed disks is relatively low. This is because they use XOR operations only to calculate parity. 

Second, they distribute parity uniformly over all the disks, permitting data to be read from, and 

parity to be written to all disks concurrently. This enhances I/O throughput of the array. Finally, 

the arrays to which our schemes can collectively be applied have disk numbers encompassing a 

relatively dense subset of the set of integers, while consuming an optimal ratio of space for 

storing parity. In each scheme, the fault-tolerant array is modeled as a graph G = (V, E) with a 

self-loop at each vertex, where each disk corresponds to a unique vertex in V, each data block 

corresponds to a simple edge in E, and each parity block corresponds to a self-loop. 

3.1 Approach using complete graphs 

Two graph-theoretic algorithms for arrays of n disks, n ≥ 4, that can recover from the 

failure of any two arbitrary disks have been proposed [11, 12]. The first has n = p – 1, and the 

second n = 2p – 2, where p is a prime number. Both algorithms generate solutions with at most 

(n/2 – 1) equal sized blocks of data and exactly one block of parity per disk. Each parity block’s 

value is then obtained by computing the bit-wise XOR of data blocks specified by the respective 

algorithm. In practice, the solutions repeat the configuration of the data and parity blocks an 

integral number of times. 
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3.1.1 Using Kp, where p is a prime number, to model arrays with (p – 1) disks 

Given p a prime number, this scheme admits arrays with (p – 1) disks having (p – 3)/2 

equal sized blocks of data and one block of parity per disk. Each data block is labeled {u, v}, 0 ≤ 

u, v ≤ p – 1, u ≠ v, and its contents used for computing the bit-wise parity stored in the parity 

blocks labeled {u, u} and {v, v}. Thus, the parity in the block labeled {v, v} equals the bit-wise 

XOR of the data in each data block labeled using v. Also, the parity-block in disk d is labeled {d, 

d}. For brevity, a block labeled {u, v} is hereafter referred to as, block {u, v}. 

Figure 3: A 6-disk array modeled using K7. 

 

Consider the array of six disks shown in Figure 3. In this array, each parity-block {d, d} 

contains the bit-wise XOR of all data-blocks labeled using d, where 0 ≤ d ≤ p – 2. For instance, 

the parity in the block {3, 3} equals the bit-wise XOR of the data in blocks {3, 4}, {1, 3}, {3, 5} 

and {0, 3}. This array can tolerate two random disk failures. For example, if disks 0 and 2 say 

fail, then we can reconstruct them as follows. We can first reconstruct the block {1, 3} on disk 2 

because no other blocks labeled using 1 are on the failed disks. Therefore, its content can be 

derived by taking the bit-wise XOR of the blocks {1, 1}, {1, 5}, {0, 1} and {1, 2}. Next, we can 

reconstruct the block {3, 4} on disk 0 because all other blocks labeled using 3 have been already 

reconstructed or lie on disks that are intact. Similarly, we can then reconstruct the block {0, 4} 
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followed by the block {0, 0}. In the aforesaid sequence of reconstructed blocks {1, 3}, {3, 4}, 

{0, 4} and {0, 0}, each block’s label, other than that of the first, has an element in common with 

the label of the previously reconstructed block. However, we cannot reconstruct any farther in 

this manner because no unreconstructed blocks labeled using 0 remain on the failed disks. Next, 

we can reconstruct the remaining blocks on disks 0 and 2 as follows. We reconstruct the block 

{2, 5} because no other blocks labeled using 5 are on the failed disks. Hence, its content can be 

derived from the bit-wise XOR of the blocks {4, 5}, {1, 5}, {3, 5} and {5, 5}. Finally, we can 

reconstruct the block {2, 2}.  

Figure 4: The graph G(V, E) that models the six-disk RAID. 
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The array shown in Figure 3 is modeled by the graph G(V, E) shown in Figure 4. Each 

data-block {u, v} in the array corresponds to the edge (u, v) in E. Thus, each parity-block {v, v} 

corresponds to the self-loop (v, v). Note that, all the edges and self-loops in E are colored, with 

the blocks corresponding to identically colored edges being on the same disk. For example, the 

blocks in the array corresponding to edges (3, 4), (2, 5) and (0, 0), each colored 0, are all on the 

leftmost disk. 

Figure 5: The graph Q7 with its edges colored to yield a perfect near-1-factorization. 
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perfect near-1-factorization. A near-1-factor of a graph G is a spanning subgraph of G in which 

one vertex is isolated and all others have degree 1. (Note that the order of G must then be odd.) A 

perfect near-1-factorization of G is a partitioning of its edges into near-1-factors such that the 

union of any two near-1-factors induces a Hamiltonian path in G. Now, Q7 admits such a 

coloring, as shown in Figure 5, since any complete graph of prime order admits a perfect near-1-

factorization [4]. One such coloring is where edge (u, v) is colored u + v (mod p). Let Ф be the 

set of seven near-1-factors and their associated self-loops in Q7.  Finally, from Q7 we remove 

vertex 6, the edges incident on vertex 6, and all the edges of the near-1-factor colored the same 

as the self-loop on vertex 6. 

The result of removing vertex 6 and the edges incident on it from Q7 results in each of the 

remaining six near-1-factors in Ф losing their respective edge incident on vertex 6 to yield a set 

of six matchings П. Each matching corresponds to a disk, each edge (u, v) in a matching 

represents the data block {u, v} in the corresponding disk, and each self-loop (v, v) associated 

with a matching, represents the parity-block {v, v} in the disk corresponding to that matching.  

Now, suppose two disks have failed in the array. Then, we can reconstruct the data blocks 

in those disks as follows. Select an edge (u, v) in a near-1-factor in Ф corresponding to a failed 

disk such that u is adjacent to the vertex in W in the near-1-factor corresponding to the other 

failed disk. Then, no edge other than (u, v) in the two matchings in П corresponding to the failed 

disks can be incident to the vertex u. Hence, there is no data block other than {u, v} in the two 

failed disks that contributes to the contents of the parity-block {u, u}. Furthermore, the parity-

block {u, u} cannot be on either failed disk for the following reason. Parity-blocks correspond to 

self-loops, and self-loops are on the ends of the Hamiltonian path formed by the edges in the 
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union of any pair of near-1-factors in Ф. If the parity-block {u, u} were on a failed disk, u would 

be an end of the Hamiltonian path formed by the edges in the near-1-factors in Ф corresponding 

to the failed disks. This would be a contradiction, since by assumption (u, v) is an edge. 

Thus, we can reconstruct the data block {u, v} by taking the XOR of the data in all blocks 

labeled using u. We can then reconstruct a data block labeled using v, {v, w} say, by taking the 

XOR of the data in all blocks labeled using v. This is possible because a pair of disks can have at 

most two data blocks that contribute to the contents of any given parity-block. Next, we can 

reconstruct a data block labeled using w different from {v, w}. Thus, in each iteration we select a 

data block for reconstruction whose label shares a common element with the label of the data 

block reconstructed in the previous iteration. Thus, a data block {u, v} can be reconstructed if the 

edge (u, v) is on a path comprised of the edges in the matchings in П corresponding to the failed 

disks, and the path has an end x, with x adjacent to vertex 6 in the corresponding near-1-factor in 

Ф. Since the edges corresponding to the data-blocks of two failed disks form a Hamiltonian path 

minus those edges incident to vertex 6, each edge is therefore on a path having an end that is 

adjacent to vertex 6. Hence, we can reconstruct each and every data block on a pair of failed 

disks.  

Since a graph with prime order admits a perfect near-1-factorization, the steps involved in 

the modeling of the six disk RAID can be generalized using the complete graph on p vertices Kp, 

to yield a (p – 1) disk RAID, where p is a prime number. Figure 6 illustrates the algorithm that 

may be used to this end, while Figure 26 in Appendix A describes the algorithm for 

reconstructing a pair of failed disks in such an array. 
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 for u ← 0 to (P – 1) do 

  for v ← u to (P – 1) do 

   Color (u, v) with c(u, v) ← (u + v) mod p 

  endfor 

 endfor 

 

 Let W be a singleton subset of V 

 

 for each disk d in V – W do 

  b ← 0 

  for u ← 0 to (p – 2) do 

   for v ← (u + 1) to (p – 1) do 

    if (u  V – W) and (v  V – W) and (c(u, v) = c(d, d)) then 

     Block b in disk d is assigned the data-block label {u, v} 

     b ← b + 1 

    endif 

   endfor 

  endfor  

  Block b of disk d is assigned the parity-block label {d, d} 

 endfor 

 

Figure 6: Algorithm to place data and parity blocks in a (p – 1) disk array 

 

 Data may be requested from arrays with a pair of failed disks that have not been 

reconstructed. To minimize the number of blocks reconstructed prior to the one containing the 

desired data, it is necessary to find the sequence of blocks containing that block. There are only 

two sequences of data blocks comprising a pair of disks, with each sequence starting on a unique 

disk. Hence it suffices to find the disk on which the desired reconstruction sequence starts. To 

this end, Figure 28 in Appendix B describes the algorithm to find the disk from which to start 

reconstruction.  
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3.1.2 Using K2p – 1 to model arrays with (2p – 2) disks 

The preceding result demonstrates how any complete graph with a self-loop at each 

vertex models the placement of data and parity in a two-disk fault tolerant array if it admits a 

perfect near-1-factorization. This is stated by the following theorem. 

Theorem 1.  Let Qm be the graph formed by adding a self-loop at each vertex of Km. If Km admits 

a perfect near-1-factorization, then Qm models the placement of data and parity in an array of (m 

– 1) disks to tolerate two random disk failures. 

Perfect 1-factorizations of K2p have been given by Anderson [4] and Nakamura in 

Japanese [15]. Nakamura defines a 1-factor of K2p = (V, E) where V = {0, 1, …, 2p – 1} with 

edges colored c as, 
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The (2p – 1) 1-factors defined by this construction have 2p edges each. Now, we remove 

vertex (2p – 1) and all edges incident to it from K2p to obtain (2p – 1) near-1-factors of K2p – 1, 

each having (2p – 1) edges. The union of the edges of any pair of these near-1-factors must form 

a Hamiltonian path. Next, we add a self-loop at each vertex of K2p – 1 to obtain Q2p – 1. By 

Theorem 1, Q2p – 1 must model the placement of data and parity in an array of (2p – 2) disks to 

tolerate two disk failures using an optimal ratio of space for parity. Using Q2p – 1, we place data 

and parity in an array of (2p – 2) disks as described by the algorithm in Figure 7.  
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Step 1: for u ← 0 to (2p – 3) do 

 for v ← (u + 1) to (2p – 2) do 

  if (u + p = v) then 

   Color (u, v) with c(u, v) ← 2u (mod 2p) 

  else if (u + v ≡ 0 (mod 2)) then 

   Color (u, v) with c(u, v) ← u + v (mod 2p) 

  else if (u ≡ 1 (mod 2)) then 

   Color (u, v) with c(u, v) ← u – v (mod 2p) 

  else 

   Color (u, v) with c(u, v) ← v – u (mod 2p) 

  endif 

 end for 

end for 

  

Step 2: for u ← 0 to (2p – 2) do 

 S ← {0, …, p – 1, p + 1, …, 2p – 1} 

 for v ← 0 to (2p – 2) do 

  if ( u ≠ v ) then 

   S ← S – c(u, v) 

  end if 

 end for 

 k ← 0 

 while (k ≤ (2p – 2) and k  S) do 

  k ← k + 1 

 end while 

 Color (u, u) with c(u, u) ← k 

end for 

 

Step 3: Let W be a singleton subset of V 

 

Step 4: for each disk d in V – W do 

 b ← 0 

 for u ← 0 to (2p – 3) do 

  for v ← (u + 1) to (2p – 2) do 

   if u   V – W and v  V – W and c(u, v) = c(d, d) then 

    Label data-block b in d as {u, v} 

    b ← b + 1 

   end if 

  end for 

 end for 

 Label parity-block b in d as {d, d} 

end for 

Figure 7: Algorithm to model a (2p – 2) disk array that tolerates two disk failures. 
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As an example, the eight-disk array with data and parity assignments obtained upon 

executing the given algorithm using W = {8} is shown in Figure 8. 

 

Figure 8: An eight-disk array modeled using Q9 

 

3.1.3 Additional values of n for which Kn models RAID 

 In addition to the infinite families of graphs on p and (2p – 1) vertices, there are graphs 

on n vertices that admit perfect near-1-factorizations, where n equals, 15, 27, 35, 39, 49, 169, 

243, 343, 729, 1331, 1369, 1849, 2197, 3125, and 6859 [41]. It is therefore possible to model 

arrays with n disks that can tolerate two random disk failures for each of the aforementioned 

values of n [25]. An important observation in this context is that, the existence of 1-factorizations 

for every value of 2n, n ≥ 2, as conjectured [16], would enable us to model arrays with any 

desired even number of disks.  

3.1.4 Extending the model to arrays of arbitrary size 

We note that the union of any two matchings in П is obtained by removing the edges 

incident to the vertex in W from the Hamiltonian path formed by the union of the corresponding 
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would be obtained by removing the edges incident to all the vertices in W from the Hamiltonian 

path formed by the union of the corresponding near-1-factors in Ф. It is then clear that, the union 

of any two matchings in П would still yield paths, each with a self-loop on at most one end. The 

disks corresponding to a pair of such matchings can then be reconstructed in the manner 

described for the six-disk RAID. We can therefore extend the algorithm in Figure 7 to create 

arrays of n disks to tolerate two disk failures by choosing W such that, |W| = p – n and |W| = 2p – 

n – 1 respectively, for n ≥ 3. We illustrate an array with n = 8 disks using p = 11 in Figure 9 

created in this manner. 

Figure 9: Algorithm to create an eight-disk array with V – W = {0, 1, 2, 3, 4, 5, 6, 7}. 
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Suppose that in the first iteration we remove vertex u from Qm, the (m – 1) edges incident 

to u and the ½(m – 1) edges colored the same as the self-loop at u. The remaining vertices are 

each of degree (m – 3). Suppose that in the second iteration we remove vertex v from Qm, the (m 

– 3) edges incident to v and the  )2(
2
1 m  edges colored the same as the self-loop at v. Since m 

is odd,  )2(
2
1 m  = )3(

2
1 m . At this point, one vertex is of degree (m – 4) and the remaining 

ones are of degree (m – 5) for the reason that, one vertex does not have an edge incident to it that 

is colored the same as the self-loop at v, and therefore must have degree (m – 4). Now, to ensure 

that we delete the least number of edges in the next iteration, we choose for deletion the vertex w 

with the least degree i.e., (m – 5) in addition to its (m – 5) incident edges, and the )3(
2
1 m  edges 

colored the same as the self-loop at w. Proceeding in this manner, the maximum number of edges 

removed in each iteration is as follows. 
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The number of edges remaining at the end of k iterations is then: 

]2mod)256([)1(
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2
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The ratio of space used for parity in the array is then 
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It is easy to verify that this ratio has the optimal value of 2/(m – 1) when n = m – 1 by 

observing that the optimal ratio of space used for storing parity in an n disk array equals 2/n. 

Table 1 shows the number of arrays with (p – 1) and (2p – 2) disks in the second and 

third columns respectively for the corresponding interval of n in the first column. The last 

column shows the percentage of even values of n covered by their sum in the corresponding 

interval. 

Table 1: Even numbers admitted by (p – 1) and (2p – 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Interval of n 
Number of arrays 

with (p – 1) disks 

Number of arrays 

with (2p – 2) disks 

Percentage of 

even n covered 

4 – 128 30 12 66.66 

130 - 256 20 14 53.13 

258 – 512 43 18 47.65 

514 – 1024 76 34 42.96 

1026 – 2048 138 60 38.67 
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Figure 10 displays the percentage difference in the ratio of space used for parity by the 

algorithm compared to the optimal value for array sizes between 5 and 255. Note that, prime 

numbers occur more sparsely in intervals spanned by larger integers, and therefore, the 

frequency at which the algorithm uses optimal values decreases as the size of the arrays 

increases. 

Figure 10. Difference in the ratio of space used for parity by the algorithm to the optimal value. 
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3.2 Approach using complete bipartite graphs 

Algorithms have been proposed to model data and parity placement in arrays with (n – 1) 

disks to tolerate two disk failures using complete bipartite graphs on 2n vertices, for n = p and n 

= 2p – 1, where p is a prime number [24]. 

3.2.1 Using Kp, p to model (p – 1) disk arrays 

As shown in the preceding algorithms, a two-disk fault-tolerant array is modeled by a 

graph satisfying the following condition. The blocks in a disk correspond to the edges of a 

matching in the graph, and the blocks in any pair of disks correspond to paths in the graph, each 

having an end of degree 1. Such graphs can be derived from complete bipartite graphs with 2p 

vertices as follows. 

Let Qp, p be the complete bipartite graph on 2p vertices, p a prime, with a self-loop at each 

vertex. Suppose that each edge (u, v) in it is colored u + v (mod p). Then, Qp, p can be factored 

into p 1-factors such that the simple edges in the union of any two 1-factors form a Hamiltonian 

cycle. This may be proved as follows. 

Let Qp, p = (V, E) where V1 = {0, 1, …, p – 1} and V2 = {p, p + 1, …, 2p – 1} are the 

bipartition subsets of V. Color each edge (u, v) of Qp, p with u + v (mod p) (including the self-loop 

when u = v). Then, we shall show that, (a) the graph on the vertices of Qp, p formed by its proper 

edges with a common color is a 1-factor of Qp, p, and (b) the proper edges in the union of any two 

1-factors contains a Hamiltonian cycle. For the sake of brevity, we shall henceforth refer to 

proper edges simply as edges and to self-loops explicitly. 
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(a) First, we show that there are p independent edges with a common color by proving that no 

two edges having a common color can be adjacent.  Suppose to the contrary that, there exist a 

pair of adjacent edges (u, v) and (v, w) both colored e. Then, we must have e ≡ u + v (mod p) 

and e ≡ v + w (mod p). That is, u + v ≡ v + w (mod p) and therefore, u ≡ w (mod p). Since u 

and w are both adjacent to v, both belong to the same bipartition subset, and therefore u = w. 

A contradiction. Now, if there are less than p edges colored e1 say, then there must be more 

than p edges colored e2, where e1 ≠ e2 and 0 ≤ e1, e2 ≤ p – 1. This is a result of the pigeonhole 

principle, for there are p
2
 edges in Qp, p and p colors. Then, two edges colored e2 must be 

adjacent. A contradiction. Hence, there must be exactly p independent edges having any 

common color, and therefore, the graph on V formed by the edges with a common color is a 

1-factor of Qp, p. 

(b) Next, we show that the union of any two 1-factors forms a Hamiltonian cycle. Suppose to the 

contrary, there exists a cycle v1, v2, v3, … vt, v1 in the union of two 1-factors with edges 

alternately colored e1 and e2 where t < 2p. Without loss of generality, assume that the edges 

(v1, v2), (v3, v4), … (vt – 1, vt) are colored e1, and (v2, v3), (v4, v5), … (vt , v1) are colored e2. 

Note that t must be even. Therefore, let t = 2k, k < p. Then, 

e1 ≡ (v1 + v2) (mod p),  e2 ≡ (v2 + v3) (mod p), 

e1 ≡ (v3 + v4) (mod p),  e2 ≡ (v4 + v5) (mod p), 

 :    : 

e1 ≡ (vt – 1 + vt) (mod p), e2 ≡ (vt  + v1) (mod p) 

 

We can then easily prove that t(e1 – e2)/2 ≡ 0 (mod p) and therefore, k(e1 – e2) ≡ 0 (mod p). 

This is a contradiction since p is a prime, and k, e1 and e2 are each less than p. 
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From (a) and (b) we see that Qp, p admits a factorization into p 1-factors such the union of 

any pair has 2p edges without a cycle having less than 2p edges. Hence the union of any two 1-

factors must form a Hamiltonian cycle. Figure 11 illustrates the Hamiltonian path formed by the 

1-factors having edges colored 0 and 1. 

Figure 11: Q5, 5 and the Hamiltonian cycle formed by the 1-factors colored 0 and 1. 
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u + w1 ≡ 2v  (mod p),   w1 + w2 ≡ 2u  (mod p) 

w2 + w3 ≡ 2v  (mod p),  w3 + w4 ≡ 2u  (mod p) 

 :  :  

wk – 2 + wk – 1 ≡ 2v  (mod p),  wk – 1 + v ≡ 2u  (mod p) 

Figure 12: A Hamiltonian cycle formed by a pair of 1-factors of Qp, p. 

 

Then, it can be proved that (k + 1)(v – u) ≡ 0 (mod p), which implies that k = p – 1. In a 

similar manner we can show that the distance between vertices (u + p) and (v + p) is also p – 1. 

Using this observation, we remove each edge (u, u + p) in Qp, p, 0 ≤ u ≤ p – 1. Then the union of 

the remaining edges in any pair of 1-factors yields a pair of paths of length p – 1, each having a 

self-loop at both ends. Now, for any given vertex w on one of these paths, where 0 ≤ w ≤ p – 2, 

vertex w + p must lie on the other path and vice versa. This is observed by enumerating the 

vertices in the paths starting with their corresponding ends, u and u + p (say). Thus, if w is 

adjacent to x + p, with the edge (x + p, w) colored a in one path, then w + p must be adjacent to x 
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with the edge (x, w + p) colored a in the other. Using this observation, we next remove the 

vertices w and w + p from Qp, p, for w  {0, 1, … p – 1}, and all the edges incident to them. 

Finally we remove all edges colored 2w (mod p), which leads to all the edges of that 1-factor 

being deleted. As a result, the union of the remaining edges in any pair of the other (p – 1) 1-

factors must yield paths having a self-loop on at most one end as shown in Figure 13. 

Figure 13: Paths obtained by deleting the lighter colored edges from two 1-factors of Qp, p. 

 

We now have the graph derived from Qp, p that models the placement of data and parity in 
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{1, 1} and {6, 6}. Note that, each of these sequences corresponds to paths with a self-loop on 

exactly one end that are formed by the edges in the pair of 1-factors of Q5, 5 colored 1 and 2. 

 

Figure 14: The graph derived from Q5, 5. 

 

Figure 15: Four-disk array modeled from the graph derived from Q5, 5. 
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3.2.2 Using K2p – 1, 2p – 1 to model (2p – 2) disk arrays 

Let Q2p – 1, 2p – 1 be the complete bipartite graph on 4p – 2 vertices, p a prime, with a self-

loop at each vertex. The placement of data and parity in an array with 2p – 2 disks to tolerate two 

disk failures using Q2p – 1, 2p – 1 can be modeled in a manner similar to Qp – 1, p – 1. We now describe 

the method for obtaining a perfect 1-factorization of Q2p – 1, 2p – 1 from the perfect 1-factorization 

of K2p for which constructions have been proposed by Anderson [4] and Kobayashi [15]. Let K2p 

= (V, E) where V = {0, 1, …, 2p – 1}. Then, Kobayashi’s construction defines a 1-factor of K2p 

having edges colored e as, 
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This defines (2p – 1) 1-factors for K2p, where 0 ≤ e ≤ 2p – 1 and e ≠ p, such that the union 

of the edges of any pair forms a Hamiltonian cycle. Using the 1-factors of K2p, the edges of K2p – 

1, 2p – 1 are colored to create a perfect 1-factorizarion using a method proposed by Laufer [18]. It 

is as follows. Let K2p – 1, 2p – 1 = (V, E) where V1 = {0, 1, …, 2p – 2} and V2 = {2p – 1, 2p, …, 4p – 

3} are the bipartition subsets of V. Let c(u, v) be the color assigned to an edge (u, v) in K2p – 1, 2p – 

1, and e(w, x) the color assigned to an edge (w, x) in K2p. Then, for 0 ≤ u, v ≤ 2p – 2, 
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The proper edges of Q2p – 1, 2p – 1 are colored the same as the edges of K2p – 1, 2p – 1, and each 

self-loop (u, u) on the vertices of Q2p – 1, 2p – 1 is colored as, 
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220,),(  puforuuuc  

 

Each Hamiltonian cycle constructed in this manner is described by a sequence of vertices 

u, u + 2p – 1, …, v + 2p – 1, v, …, u, where 0 ≤ u, v ≤ 2p – 2. In such a cycle, the shortest paths 

between vertices u and v, and between vertices u + 2p – 1 and v + 2p – 1 are of length 2p – 2. 

These paths correspond to the subpath that is obtained from the Hamiltonian cycle in K2p defined 

by the sequence of vertices u + 1, 0, v + 1, …, u + 1, by removing vertex 0 and the edges (0, u 

+ 1) and (0, v + 1). 

 

Figure 16: The Hamiltonian path formed by edges colored 0 and 1 in Q9, 9. 

 

 Figure 16 illustrates the 1-factors formed by the edges colored 1 and 2 in Q9, 9 and the 

Hamiltonian cycle formed by their union using the aforementioned coloring scheme. The solid 

lines indicate the edges colored 1, and the dotted lines indicate the edges colored 2. We observe 
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that the paths defined by the sequences of vertices 0, 14, 6, 13, 3, 16, 8, 11, 1 and 9, 5, 15, 4, 

12, 7, 17, 2, 10 correspond to the subpath that is obtained from the Hamiltonian cycle in K10 

defined by the sequence of vertices 1, 0, 2, …, 1, by removing vertex 0 and the edges (0, 1) and 

(0, 2). 

Now remove edges from Q2p – 1, 2p – 1 in the same manner as that described earlier for Qp, p 

such that the union of the remaining edges in any pair of its 1-factors forms paths, each having a 

self-loop on at most one end. To this end, we first remove each edge (u, u + 2p – 1) in Q2p – 1, 2p – 

1, 0 ≤ u ≤ 2p – 2, such that the union of the remaining edges in any pair of 1-factors yields a pair 

of paths, each having a self-loop at both ends. Next, we remove the vertices v and v + 2p – 1 

from Q2p – 1, 2p – 1, for some v  {0, 1, … 2p – 2}, followed by all the edges incident to those 

vertices. Finally, we remove all edges colored v, which leads to all the edges of that 1-factor 

being deleted. Therefore, the union of the remaining edges in any pair of the other (2p – 2) 1-

factors must yield paths having a self-loop on at most one end. Hence, this graph must model the 

placement of data and parity in an array to tolerate two disk failures.  

3.2.3 Using Kp, p to model p disk arrays 

The previously described models using Qp, p and Q2p – 1, 2p – 1, p a prime, placed data and 

parity in arrays with p – 1 and 2p – 2 disks respectively to tolerate two disk failures. We now 

show how to use Qp, p to place data and parity in arrays with p disks to tolerate two disk failures. 

First, color each edge (u, v) in Qp, p with u + v (mod p) to obtain a perfect 1-factorization. 

Consider the Hamiltonian cycle formed by the union of a pair of 1-factors of Qp, p having edges 

colored a and b, 0 ≤ a, b ≤ p – 1. Let a ≡ 2u (mod p) and b ≡ 2v (mod p). Then, as proven earlier, 
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the distance between vertices u and v, as well as between vertices u + p and v + p on that cycle is 

p – 1. Now, from each 1-factor with edges colored 2v (mod p), 0 ≤ v ≤ p – 1, we remove the 

edges (v, v + p) and (v + 1, (v + p – 1) (mod p) + p) to obtain a matching with p – 2 edges. Then 

the union of a pair of such matchings with edges colored 2u (mod p) and 2v (mod p) and their 

identically colored self-loops form paths, each having a self-loop on at most one end. This is 

because, the removal of the edges (u, u + p) and (v, v + p) from the Hamiltonian path formed by 

the union of edges colored 2u (mod p) and 2v (mod p) yields two paths, each having a self-loop 

at both its ends. Finally, since the distance between vertices (u + 1) (mod p) and (v + 1) (mod p) 

on that Hamiltonian path is p – 1, each of the aforementioned two paths must have exactly one of 

the edges (u + 1, (u + p – 1) (mod p) + p) and (v + 1, (v + p – 1) (mod p) + p) on it. Hence, upon 

removing them we must obtain paths, each having a self-loop on at most one end. Again, by our 

argument in section 2, this graph must model the placement of data and parity in an array to 

tolerate two disk failures. 
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Figure 17: Paths corresponding to the reconstruction sequences of blocks on disks 1 and 2. 

 

Figure 17 displays the pair of matchings in Q5, 5 corresponding to disks 0 and 1. These are 

the edges of the 1-factor with edges colored 0 remaining upon removing the edges (0, 5) and (1, 

9), and the edges of the 1-factor with edges colored 1 remaining upon removing the edges (3, 8) 

and (4, 7). The union of these matchings yields four paths with vertices 1, 4, 7, and 9 as their 

ends, with each of degree 1, and a self-loop at its other end. Thus, reconstruction of disks 0 and 1 

in the event of their failure can start with any data block corresponding to the edges incident to 

those vertices. Figure 18 shows the five-disk array obtained using the previously described 

model. If disks 1 and 2 in this array were to fail for instance, their data blocks could be 

reconstructed in the order given by the sequence of blocks {1, 5}, {5, 5} followed by {7, 3), {3, 

3), followed by {4, 6}, {6, 0}, {0, 0} and finally {9, 2}, {2, 8}, {8, 8}. 
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Figure 18: An array constructed from Q5, 5. 
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4. METHODS TO MODEL AND FORECAST NETWORK ATTACKS 

We propose a model that decouples attack graphs from the networked systems on which 

they are described. This approach is motivated by the following reason. Each system is reachable 

from every other in a network. Hence, to execute the sequence of exploits needed to achieve its 

goal, a malware relies only on the existence of the preconditions necessary to execute each, 

regardless of which system provides each precondition. However, to meaningfully define an 

attack graph unique to an attack goal and an attack path, we first state the following definitions. 

Definition 1: A network is a pair G = (S, E), where S is a set of systems and E is a set of 2-

tuples, and given si, sj in S, (si, sj) is in E if and only if si and sj can communicate with each other. 

We assume that si can communicate with sj if physical cabling can be traced from si to sj, and the 

routers that control data flow on the cabling between those systems, permit data from si to reach 

sj and vice versa. 

Definition 2: A network service is an application on a system that has the ability to transmit and 

receive data to and from network services on other systems. Each service utilizes a unique port 

number for the transmission and reception of data from its peers.  

Definition 3: A network service on a system s is said to be targeted by an exploit e if e attempts 

to utilize it to enhance its privileges on s. Since we want to determine how applications with 

vulnerabilities are exploited by their peers in a network, we restrict our discussion to network 

services only. For brevity, we shall hereafter refer to each simply as a service. 

Definition 4: A service v on a system s is said to be compromised if an exploit that targets v 

succeeds in gaining privileges on s. We refer to s as the host of v. 
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Definition 5:  A service v is assigned a rank using the set of permissions on a system hosting v 

that can be usurped by compromising v. Thus, given services v1 and v2, the rank of v1 is greater 

than that of v2, if the set of permissions usurped by compromising v2 is a subset of the set of 

permissions usurped by compromising v1. We denote the rank of a service v as rank(v). 

Definition 6: A honeypot is a system in a network that admits exploits that target it, and enables 

security experts to analyze the characteristics of such exploits to determine the behavior of the 

attackers that perpetrate them. In the following section we construct the network required to 

derive attack graphs from observed exploits. 

4.1 A network to derive attack graphs 

Suppose that R = {r1, r2, …, rn} and S = {s1, s2, …, sn} are two sets of honeypots where 

each si in S rejects any transmissions to it other than those from ri in R, for 1 ≤ i ≤ n. This can be 

achieved, for instance, by confining each pair of systems {ri, si} to a unique domain, and 

rejecting all transmissions to si originating from outside its own domain. However, systems 

outside the domain of si can counter this by impersonating ri. They can achieve this by 

overwriting the valid 2-tuple comprised of the IP and media access control (MAC) addresses of 

ri in the ARP cache of si with the spurious 2-tuple comprised of the IP address of ri and the MAC 

address of the impersonator. To prevent this from occurring, the initially valid 2-tuple that 

associates the IP and MAC addresses of ri, is never allowed to be replaced. 

Each system in R and S is actually a virtual machine that is simulated within a physical 

server using a tool such as VMware WorkStation. This enables a physical server to simulate 

multiple systems in a network, and thereby furnish the means for realizing the large number of 
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systems needed to implement our proposed solution in practice. For the sake of brevity, we shall 

henceforth refer to each virtual machine simply as a system. 

Initially, the honeypots are initialized such that, no service on any system in R transmits 

data to any service on any system in S. Any transmission that is observed thereafter is scanned to 

determine if it is harmless. For example, a SYN packet that is typically used to initiate a TCP 

connection or to scan a port is judged to be harmless. On the other hand, an unfamiliar 

transmission is considered to be an exploit. In the latter case, the system in R from which the 

transmission originated is deemed to have been compromised. 

Figure 19: A network with 2n honeypots. 

 

Suppose that V = {v1, v2, …, vn} is the set of services on which attack paths are to be 

found. Then, we initialize each system ri in R to contain each service in V – {vi}, for 1 ≤ i ≤ n. 
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Figure 19 illustrates the aforementioned network. The rectangle with rounded corners shown 

within each system specifies the services on that system, and arc (ri, si) indicates the exploits that 

are permitted to originate from ri to target si, but not vice versa. 

Legal liabilities inhibit honeypots from propagating attacks that are known to it. As a 

result, an attacker can identify a system s that has been ostensibly compromised as being a 

honeypot, if exploits designed by the attacker to originate from s do not occur. To ensure that 

attackers continue to launch exploits targeting systems in S from system in R, it is essential that 

they are not alerted to the fact that systems in S are honeypots. Hence, attacks are allowed to 

originate from systems in S. To this end, we allow systems in S to transmit only to those in 

another set, T say, where each system in T is protected with up-to-date internet security software. 

4.2 Deriving an attack graph 

Definition 7: An attack graph is a pair H = (V, A), where A is a set of arcs, and given vi, vj in V, 

(vi, vj) is in A if and only if vi can be compromised to yield the postcondition necessary to exploit 

vj. Then, vi is called the predecessor of vj. Next, we show how to derive such attack graphs. 

Suppose that k systems in S are each targeted on port p by an instance of exploit e. Since, 

each service utilizes unique port numbers we can assume that the same service v has been 

targeted by e on each of the k systems. Now, an instance of e targeting a given system in S must 

originate from a unique system in R, since ri  in R is permitted to transmit to si  in S only, for 1 ≤ i 

≤ n. Let p be the probability that a service on a system r in R has been compromised given that r 

is the source of an exploit e. Assuming that the probability of an internal attack on r, such as one 

perpetrated by a disgruntled employee with administrative privileges on r, is relatively low, we 

have p ≈ 1. However, it is possible that a service has been compromised in r even when no 
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exploit is observed to originate from it. For instance, an attacker may have compromised a 

service on r but not yet leveraged it to launch an exploit. So, let q be the probability that a service 

in r has been compromised given that r is not a source of e. In our proposed network, each 

system in S can be targeted by an exploit launched from a unique system in R only. Hence, an 

attack that is keen to propagate itself to all systems in S is very likely to eventually use a 

compromised service u in each system in R to launch the corresponding exploit that required the 

attacker to compromise u in the first place. In other words, if after prolonged observation, r is not 

found to be a source of e, it is very likely that no service has been compromised on r to launch e. 

Thus, we have (1 – q) ≈ 1, and therefore, 0 ≈ q < p ≈ 1. 

Let C(n, k) denote the number of k-combinations of an n-set. Now, suppose that e 

originates from k given systems in R. Since, there are C(n – k, m – k) m-sets of systems with 

every system in each of those m-sets containing each service common to those k systems, the 

probability pk  that a service common to k such systems has been compromised equals C(n – k, m 

– k)p
k
q

m – k
. Then, since m = n – 1 in our network we have, 
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Thus, the probability that a service has been compromised is greater when the number of 

systems k containing it, which are the origins of a common exploit, is greater. Now consider the 

following cases. 
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Case 1 k = (n – 1) 

The intersection of the sets of services in the (n – 1) systems in R from which instances of 

e exploit the (n – 1) systems in S, must contain exactly one service, u say. By our preceding 

discussion, the likelihood of an attack having compromised u to yield the postcondition to 

exploit v must be high. Hence, we designate u as the predecessor of v. 

Case 2 k < (n – 1) 

The intersection of the sets of services that are the origins of e has (n – k) services, v1, v2, 

…, vn – k say, where (n – k) > 1. Let U = {v1, v2, …, vn – k}. In that case, each service in U may be 

a predecessor of v in the derived attack graph. However, if k is relatively small, and the number 

of services in V that admit the precondition necessary for e to occur is small, then having all 

services in U as predecessors of v in an attack graph yields larger numbers of false positives. To 

avoid this, we can wait till the value of k is observed to be larger. In the meantime we may apply 

the following criteria to prune the number of services in U that are predecessors of v. 

(i) Suppose that (n – 1) systems in R having service u have been observed to target the service v 

as well as the service vi on systems in S, where i {1, 2, …, k}. By our argument in Case 1, 

u must then be a predecessor of both vi and v. Then, vi cannot be a predecessor of v for the 

following reason. If an attacker has already found a service u to compromise in order to 

exploit v, then there is no benefit in compromising vi as an intermediate step after 

compromising u in order to exploit v. Hence we can eliminate vi from the set of likely 

predecessors of v. 

(ii) Suppose that (n – 1) systems in R having service vi are observed to be targeting the service w 

on systems in S, where i {1, 2, …, k}, and rank(w) < rank(s). Then, by our argument in 
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Case 1, vi is a predecessor of service w. Now an attacker that has compromised service vi 

earlier to exploit w cannot be exploiting v later if rank(w) < rank(v). This is because exploits 

are designed by an attacker to usurp privileges with reasonable confidence of success. 

Hence, an attacker that intends to exploit a higher ranked service v will do so without 

exploiting a lower ranked service w first. Therefore, we can eliminate vi from the set of 

likely predecessors of v. 

Case 3 k = n 

Unfortunately, this implies that two or more services have been compromised to enable 

exploit e to be launched from each system in R. However, such an occurrence is rare because of 

the following reason. In order to obtain the desired privileges on a system r that enables the 

launch of e from r, an attacker has to first find a vulnerability admitted by a service on r that can 

be compromised to yield those privileges, and then write a program to achieve that. Neither task 

is trivial. Hence, upon finding a vulnerability in a service and the exploit necessary to 

compromise it, there is little reason for the attacker to find another service that can be 

compromised to enable the launch of e, unless the existing mechanism to compromise the former 

service is rendered ineffective by network security. Hence, the occurrence of this case should be 

limited. 

Using the inferences from Case 1 and Case 2, an attack graph H = (V, A) is constructed 

over time. A service in V that does not have a successor in H is then that which can be exploited 

by an attack to realize the postcondition satisfying its goal. Note that H may have multiple such 

services. Also, it may admit self-loops as well as arcs having the same tail and head. Now, an 

attack graph may be alternatively defined as follows. 
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Definition 8: An attack graph is a directed graph H = (V, A) where each vertex v in V is a 

vulnerability and each arc (u, v) in A is an action a originating from a system having 

vulnerability u that has been exploited to yield the condition for a to exploit a system with 

vulnerability v. A unique vertex vf in V represents the end vulnerability that can be exploited by 

the attack to realize the postcondition that immediately satisfies its goal. Thus an attack path is a 

unique path in H that contains vf as its end. 

 Figure 20 illustrates an example of an attack graph described by Definition 8, where 

vulnerabilities v1 and v2 – each having in-degree 0 – are starting points for an attack, and whose 

goal is achieved by exploiting vulnerability v6. In this graph, the sequences of vulnerabilities v1, 

v3
+
, v6, and v2, v4, v6, and v2, v5, v6 represent attack paths, where v

+
 denotes one or more 

occurrences of v. Each has vulnerability v6 as its end, which can be exploited to yield the 

postcondition that satisfies the goal of the attack. 

Figure 20: An attach graph with attack paths. 
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The graphs given by Definition 7 and Definition 8 are closely related for the following 

reason. A given vulnerability is unique to a service. Hence for each edge (u, v) in the graph given 

by Definition 8, there exists an edge between the services containing vulnerabilities u and v 

respectively in the graph given by Definition 7, and vice versa. Hence, the terms service and 

vulnerability are interchangeable. However, a graph H given by Definition 7 admits multiple 

services without successors. For each such service s in H we can obtain the graph Hs that has s as 

its only vertex without a successor, by removing any vertex from H that is not an ancestor of s. 

In this manner we obtain multiple graphs from H that together contain all the attack paths in H. 

Each attack graph that we refer to hereafter shall be assumed to have exactly one vertex without 

an ancestor.  

4.3 Using an attack graph 

We now describe how the given model of an attack graph can be used to determine the 

likelihood of an alert corresponding to a multi-step attack. Suppose an IDS generates an alert 

corresponding to an exploit originating from system s2 targeting vulnerability v1 at time t1 on 

system s1. Then, we determine if s1 admits v1. If not, we discard that alert as irrelevant, else we 

find a predecessor of v1 in a chosen attack graph H, v2 say, and determine if s2 admits v2. If true, 

we determine if an alert has been seen at some time t2 < t1 for an exploit targeting v2 on s2. 

Suppose this is true, and the system from which that exploit originates is s3. Then we find a 

predecessor of v2 in H, v3 say, and determine if s3 admits v3. If true, we again determine if an 

alert has been seen at some time t3 < t2 for an exploit targeting v3 on s3. We continue 

backtracking in this manner until one of the following three cases occurs. 
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(a) Upon examining an alert at time tk – 1 corresponding to an exploit from system sk targeting 

vulnerability vk – 1 on system sk – 1, we backtrack to the predecessor of vk – 1 in the chosen 

attack graph, vk say, and find that sk admits vk, but vk has no predecessor. 

(b) After inspecting the alert corresponding to an exploit from system sk + 1 targeting 

vulnerability vk on system sk, we backtrack to the predecessor of vulnerability vk in the 

chosen attack graph, vk + 1 say, and find that vk + 1 is not admitted by sk + 1. There are three 

possible scenarios that can cause this: 

(b.1) sk + 1 already admits the postcondition for an exploit to target vk on sk. This implies 

that the exploits targeting the sequence of vulnerabilities vk, vk – 1, …, v1 represent a 

legitimate multi-step attack on system s1. 

(b.2) The chosen attack graph may not correspond to the attack that is ostensibly occurring. 

(b.3) The attack may be exploiting an unknown vulnerability on sk + 1 to exploit the 

sequence of vulnerabilities vk, vk – 1, …, v1 thereafter. 

(c) Upon examining an alert generated at time tk – 1 for an exploit from system sk targeting 

vulnerability vk – 1 on system sk – 1, we backtrack to the predecessor of vk – 1 in the chosen 

attack graph, vk say, and find that sk admits vk. However, there is no alert originating from 

any system that targets vk on sk at time tk < tk – 1. 

4.4 Correlating an alert to an attack 

Using the previously described model of an attack graph, we can correlate an alert to an 

attack in the following manner. If (a) holds true and v1 = vf in the attack graph being used, then 

we have found a complete sequence of exploits targeting each vulnerability in an attack path 

with vf at its end. We refer to such a path as a complete attack path and its length as the complete 
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attack length. It would then be intuitive to assume that such an occurrence indicates a legitimate 

multi-step attack that targets system s1. In the event (b.2) holds true, we can substitute the attack 

graph being currently used with another that contains vulnerability v1 and repeat the process of 

backtracking along the new graph to see if (a) or (b.1) holds. We may obtain such a graph after a 

number of substitutions. However, if no such attack graph is found, then we have to reconcile the 

matching of partial sequences of vulnerabilities vk, vk – 1, …, v1 for each examined attack graph 

with the likelihood that it represents a real attack. It is intuitively appealing that the greater the 

length of the sequence vk, vk – 1, …, v1 that is matched, the greater the likelihood that the alert 

targeting vulnerability v1 corresponds to a legitimate multi-step attack. We refer to the value of k 

in this matching attack subpath as the matching attack length, and its difference from the 

complete attack length as the remaining attack length. Furthermore, if ui, ui – 1, …, u1 and vj, vj – 1, 

…, v1 are the partial sequence of vulnerabilities that are matched by employing the attack graphs 

H and H’ respectively say, with i > j, then it is intuitive to assume that H is the attack graph that 

best describes the perceived attack. Finally, (b.3) and (c) may be caused by the exploit on sk 

being stealthy, or the IDS rules not being adequately comprehensive to detect such an exploit. 

Algorithm 1 uses the previously described model to determine if an alert corresponding 

to an exploit constitutes an attack. Step 1 is executed once for a given network, while Step 2 is 

executed each time an alert is generated by an IDS thereafter. If the alert is correlated to an 

attack, Step 2 returns the sequence of 2-tuples comprised of the systems and their corresponding 

vulnerabilities that have been iteratively targeted by that attack. Such a sequence forms an attack 

instance as defined next. 
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Algorithm 1 

Correlate(vulnerability v, system s, time t, int matchLen) 

{ 

    if (v ≠ null) and (s admits v) and 

      (alert found for exploit targeting v on s at time tv < t) then 

 e ← exploit at time tv for which alert is found 

 t ← tv 

 P ← P  (v, s) 

 s ← origin system of e 

 matchLen ← matchLen + 1 

if (v has predecessors in Gi) then 

        for each predecessor u of v in Gi do 

          Correlate(u, s, t, matchLen) 

        end for 

      else 

        Correlate(null, s, t, matchLen) 

    end if 

    else 

      
1),(

1

),( 





ff wwdwwdmatchLen

matchLen
corr  

      if (corr > maxCorr) then 

        maxCorr ← corr 

        Pmax ← P 

      end if 

    end if 

} 

 

Step 1: S = Systems in a subnet 

V = Set of vulnerabilities admitted by all systems in S 

n = Size of the set of attack goals admitted by V 

for attack goal i ← 1 to n generate attack graph Gi on V 

 

Step 2: e ← exploit at time t for which alert is raised 

 s ← system targeted by e 

 w ← vulnerability targeted by e 

 Pmax ←  

 maxCorr ← 0 

 i ← 1 

 t ← ∞ 
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while (i ≤ n) do 

  d(w, wf) ← distance of w to end vulnerability wf  in Gi  

  P ← 
  Correlate(w, s, t, –1) 

  i ← i + 1 

end while 

if (maxCorr > τ) then 

 return (Pmax, i) 

else 

 return null 

end if 

Figure 21: Algorithm to identify an attack from an alert. 

 

Figure 22: An attack instance with an attack subpath 
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sequence of tuples (s1, v1),  (s2, v2), …, (si, vi) where i ≤ k and systems s1, s2, …, si in S admit v1, 

v2, …, vi respectively as a matching attack subpath. 

Figure 22 illustrates an example of an attack instance comprised of the tuples (sa, va), (sb, 

vb), (sc, vb), and (sd, vc). In this instance, systems sa, sb, sc, sd admit an attack path comprised of 

the attack path va, vb, vb, vc. The correlation factor corr in Algorithm 1 is defined such that it is 

proportional to the ratio of the matching attack length to the complete attack length. At the same 

time, it is inversely proportional to the remaining attack length. This enables the correlation 

value of an attack to be proportional to the proximity of vf to the vulnerability targeted by its 

most recently observed exploit. Finally, the threshold τ is a suitable real value in (0, 2.0). 

Execution of Step 2 of Algorithm 1 returns the tuple (P, i) if an attack instance P using 

the attack graph Hi is correlated to the investigated alert. Now, suppose that it returns (P1, i1) in 

response to an alert for an exploit e1 at time t1, and (P2, i2) in response to an alert for an exploit e2 

at time t2, where t2 > t1. If i1 ≠ i2 and P1 is a subsequence of P2, then P2 must represent an attack 

that is different from P1, since by Definition 1, each attack graph has a unique goal. On the other 

hand, if i1 = i2 then we obtain vindication of the algorithm’s earlier result that suggested an attack 

with the goal of the attack graph having index i1. 

The depths of attack graphs are generally small since the average length of a sequence of 

vulnerabilities exploited to achieve a desired security breach is small. Furthermore, the system 

that is examined for the predecessor of a given vulnerability v is specified by the alert for the 

exploit targeting v, and therefore, its discovery is achieved in constant time using suitable data 

structures such as a hash table. Thus, the order of Algorithm 1 is dominated by the number of 

attack graphs examined. If their number equals n, then the algorithm has order O(n). Moreover, 
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since the value of n is independent of the size of the network, the proposed model with its 

associated algorithm to identify attacks is scalable. 

Algorithm 1 identifies attack instances on a subnet when the vulnerabilities on all 

systems have been identified in Step 1. However, it does not identify the systems that are future 

targets of exploits by an identified attack. For example, suppose that (s1, v1),  (s2, v2), …, (sj, vj) is 

an identified attack instance using the attack graph with the final goal vulnerability vf, where 

systems s1, s2, …, sj admit vulnerabilities v1, v2, …, vj respectively, and vj ≠ vf. Then Algorithm 1 

does not identify the systems that are likely to be targeted next by that attack to realize its goal of 

exploiting vf. For instance, the attack may next target systems sa and sb that admit vulnerabilities 

vi and vj + 1 using exploits from systems si – 1 and sj respectively, for some 1 ≤ i < j, as shown in 

Figure 23. Next, we describe the method to identify such systems. 

 

Figure 23: Future exploit targets of an identified attack. 
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4.5 Forecasting the propagation of attacks 

To determine the systems that are likely to be targeted by an attack in the future utilizes 

the idea of matching the remaining attack length of an attack path in the direction of the goal. As 

described earlier, Algorithm 1 returns the index i of the attack graph corresponding to the 

matched attack instance. Now, if the remaining attack length is zero, then the system specified in 

the first tuple (v1, s1) of an attack instance is the system targeted by the attack. On the other hand, 

if the remaining attack length is nonzero, d say, then we iteratively find the sequence of systems 

sk + 1, sk + 2, … sk + d such that, system sj admits vulnerability vj, for k + 1 ≤ j ≤ k + d, vj + 1 is a child 

of vj in the attack graph, vk + 1 is the child of v1, and vk + d  = vf. However, in some iteration j, 

multiple systems may admit the vulnerability vj that is a descendant of v1. Therefore, to 

definitively identify the next system that is likely to be targeted, we determine that malware’s 

past preferences when selecting a system to exploit under such circumstances. 

Consider a malware that has just compromised system s within a private network by 

exploiting vulnerability u on it, and whose eventual goal is to exploit vulnerability vf 

Furthermore, suppose that (u, v) is an arc in the attack graph with goal vf. Since a malware 

propagates itself in the manner dictated by the flow of its coded logic, it can be expected to 

exhibit predictable traits in choosing the next system to exploit in the set of systems that all 

admit vulnerability v. For instance, that malware may be designed to next exploit, from s, the 

system that admits vulnerability v and belongs to the same private network as s. On the other 

hand, if s is a router, then that malware may be designed to immediately exploit another router 

that admits v. Similarly, it may choose the host having the lowest version of the operating system 

that admits vulnerability v. We now describe how such preferences are measured. 
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First, we define a system state as a tuple z = (v, x1, x2, …, xm) in V x X1 x X2 x … x Xm of 

m + 1 independent variables that describes the state of a system, where V is the set of all 

vulnerabilities and Xi is the domain of characteristic xi, 1 ≤ i ≤ m, for some integer value m. For 

example, we may have X1 = {a11, a12, a13}, where a11 denotes a system having a private class C 

IP address of the form 192.168.b1.b2, with 0 ≤ b1, b2 ≤ 255; a12 represents a system having a 

private class B IP address of the form 172.b1.b2.b3, with 16 ≤ b1 ≤ 31 and 0 ≤ b2, b3 ≤ 255; and 

a13 represents a system having a private class A IP address of the form 10.b1.b2.b3, with 0 ≤ b1, 

b2, b3 ≤ 255. Similarly, we may have X2 = {a21, a22, …, a2r} as the set of r unique combinations 

of operating systems and version numbers that indicate their respective service packs or patches. 

Also, we may have X3 = {a31, a32}, where a31 denotes a system that is a router and a32 denotes 

otherwise. In this manner, we identify x1, x2, …, xm while ensuring that their respective domains 

do not omit any values that characterizes a system. 

Since each variable comprising a system state has a finite domain, we must have a finite 

number of such states. Then, the conditional probability of an attack being in the system state zi 

when the preceding system state is zj, denoted as p(zi | zj), may be derived in the following 

manner. For each pair of system states zi and zj we determine over all attack instances of the form 

(v1, s1),  (v2, s2), …, (vk, sk), k > 0, the number of occurrences cj where a system st is in state zj, 

and the number of occurrences ci, j where a system st is in state zj and system st + 1 is in state zi, for 

t < k. Then, p(zi | zj) = ci, j /cj. We may represent the probabilities of such pairs of states using a 

matrix P = (p)i j, where entry (i, j) equals p(zi | zj). Now, given any system, its state must be a 

tuple in V x X1 x X2 x … x Xm, since by construction, each domain is chosen such that each and 

every system is characterized by a unique value within it. As a result, a system’s state is also 
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unique. Hence a given pair of systems r and s have a unique pair of corresponding states zr and zs 

respectively. Then the probability of an attack exploiting vulnerability v on s from r, using its 

prior exploitation of vulnerability u on r is given by the conditional probability p(zs | zr). For 

simplicity of notation we denote this simply as p(s, r).  

Algorithm 2 utilizes the function FindTarget to perform a depth-first search for the 

targeted system. In each stage of recursion, it searches the branches from a system r to each 

system s in decreasing order of the conditional probability value p(s, r), where s admits the next 

vulnerability in the attack path towards vf following that admitted by r. If a target is not found by 

proceeding down a branch, FindTarget backtracks to r and resumes its search on the branch 

having the next lower conditional probability value. It continues in this manner until a branch 

returns a target system, or all branches have been exhausted. 

 

Algorithm 2 

FindTarget(system s, set of systems R, vulnerability u) 

{ 

 if (u = vf) then 

   return s 

 else 

   R ← R – s 

   target ← null 

   for each successor v of u in attack graph Gi do 

  Let Rv = {r1, …, rj} be the set of systems in R that admit v, 

  with p(ri, s) ≥ p(ri + 1, s), 1 ≤ i < j 

  if (Rv ≠ empty and target = null) then 

    i ← 1 

    while (target = null and i < j) do 

       target ← FindTarget(ri, Rv, v) 

       i ← i + 1 

    end while 

   end if 
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  end for 

 end if 

 return target 

} 

 

Execution Step S = Systems in a subnet 

     R ← S 

Suppose Algorithm 1 returns (P, i) 

Let P = (v1, s1), (v2, s2), …, (vk, sk) 

for j ← 1 to k do 
 R ← R – sj, where sj is a member of a tuple in P 

end for 

FindTarget(sk, R, vk) 

Figure 24: Algorithm to identify the target of an attack 
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5. CONCLUSION 

The first objective of this research is to utilize graph theoretic techniques to model RAID 

capable of tolerating two random disk failures using bit-wise XOR operations only, and using an 

optimal ratio of space for parity. The techniques shown in this thesis place data and parity in 

arrays of n disks to tolerate two random disk failures for the values of n = (p – 1), p and (2p – 2). 

These values cover significant numbers of the disks that may constitute arrays in practice, but not 

all. Hence, extending the coverage to additional values of n is of great practical interest. 

The second objective of this research is to devise more powerful techniques for 

correlating alerts with attacks in the context of network defense. The technique shown in this 

thesis correlates alerts to attacks with relatively high certainty by examining a sufficient number 

of the former after they have occurred. While that number is relatively small, the systems on 

which those alerts are generated are implicitly sacrificed to the attack. This is undesirable if those 

systems contain critical data that is shared by multiple clients, and whose availability cannot be 

interrupted. Hence, extending our technique to achieve correlation before network resources 

have been compromised is of significant practical value. 

5.1 Modeling two-disk fault-tolerant RAID with additional numbers of disks 

In section 0, we demonstrated the technique for using the complete bipartite graph on 2p 

vertices Kp, p to model an array with p disks that is capable of tolerating two random disk failures. 

In a similar manner, it may be possible to use the complete bipartite graph on (4p – 2) vertices 

K2p – 1, 2p – 1 to model the placement of data and parity in an array with (2p – 1) disks. 
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Perfect 1-factorizations are known to exist for the complete bipartite graph on 2n vertices 

Kn, n, where n = p
2
, p a prime [8]. Therefore, similar techniques may be used to obtain solutions 

for data and parity assignment in arrays with p
2
 or (p

2
 – 1) disks to tolerate two disk failures. 

Developing such techniques is an area for future research. 

5.2 Modeling RAID to tolerate three random disk failures 

Arrays deployed in practice generally have smaller numbers of disks. Hence, their ability 

to tolerate the failure of up to two random disks is adequate. However, as increasingly larger 

arrays are deployed, the need for tolerance to more than two random disk failures is compelling. 

A scheme [22] that achieves this is illustrated in Figure 25.  

Figure 25: A three-disk fault tolerant array 
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In the previously illustrated array, parity is stored in the blocks h(i), l(j) and r(k), for 0 ≤ i 

≤ m – 1, 0 ≤ j, k ≤ m + n – 2, and m > n. These parities are calculated in the following manner. 
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Now, suppose that three disks i, j and k have failed in this array. Then, we prove by 

induction that the data in those disks can be iteratively reconstructed as follows. Assume without 

loss of generality that, i < j < k. In the first iteration, we reconstruct blocks {0, i}, {0, k} and {0, 

j}. Block {0, i} is reconstructed using the parity in block l(i). This is possible because the blocks 

used for computing the parity in block {0, i} all occur to the left of disk i, which are all intact. 

Next, block {0, k} is reconstructed using the parity in block r(k). This is possible because the 

blocks contributing to the parity in block {0, k} all occur to the right of disk k, which are all 

intact. Now block {0, j} is reconstructed using the parity in block h(0). 

Suppose that in the (t – 1)
th

 iteration, we can reconstruct blocks {t – 1, i}, {t – 1, k} and {t 

– 1, j}. Then, we can reconstruct blocks {t, i}, {t, k} and {t, j} in the t
th

 iteration as follows. A 

data block needed to reconstruct {t, i} is of the form {t’, i’} where t’ < t if i’ > i, and t’ > t if i’ < 

i. Now if i’ < i then {t’, i’} must be intact since j and k are both greater than i. On the other hand, 

if i’ > i then {t’, i’} must be intact if i’ ≠ j and i’ ≠ k. Now, if i’ = j or i’ = k, {t’, i’} would have 
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been already reconstructed since, by assumption, we have reconstructed all blocks {t’, j} and {t’, 

k} for t’ ≤ t – 1. Finally, the parity block l(i + t) that is used for reconstructing the block {t, i} is 

either located on a disk containing parities only, or is located on a disk with index less than i, 

which are both intact by assumption. 

Similarly, a data block needed to reconstruct {t, k} is of the form {t’, k’} where t’ < t if k’ 

< k, and t’ > t if k’ > k. If k’ > k then {t’, k’} must be intact since i and j are both less than k. On 

the other hand, if k’ < k then {t’, k’} must be intact if k’ ≠ i and k’ ≠ j. Now, if k’ = i or k’ = j, {t’, 

k’} would have been already reconstructed since, by assumption, we have reconstructed all 

blocks {t’, i} and {t’, j} for t’ ≤ t – 1. Finally, the parity block r(i + t) that is used for 

reconstructing the block {t, k} is either located on a disk containing parities only, or is located on 

a disk with index greater than k, which are both intact by assumption. 

Having reconstructed blocks {t, i}, {t, k}, we can reconstruct {t, j} using the parity in 

block h(t). Thus we have reconstructed all the desired blocks in iteration t, and thereby shown 

that the array can tolerate the failure of any three arbitrary disks.  

Using this scheme, the ratio of space used for storing parity in an array of n disks as a 

function of m is
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. Hence, f(m) is closest to the optimum value of 3/(n 

+ 3) when m is infinitely large. That is turn implies that parity cannot be rotated to enhance data 

throughput, for otherwise, this ratio assumes a relatively larger non-optimal value. For this 

reason, this scheme is not attractive in practice. 
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Some of the alternatives that may be investigated for the placement of data and parity in 

arrays to tolerate three disk failures are the factorization of graphs and hypergraphs such that the 

union of any three 1-factors yields a Hamiltonian path. 

5.3 Correlating alerts to attacks without compromising systems 

As shown earlier, honeypots provide a method for deriving attack graphs without putting 

system resources at risk. Honeypots also offer the potential for being used as targets to correlate 

alerts with attacks in the manner shown earlier. However, a challenge posed by such an approach 

is that, the presence of longer attack paths requires relatively large numbers of honeypots to 

ensure that sufficient numbers of correlated alerts are generated corresponding to an attack. 

Methods to prune the number of honeypots required for this purpose is an area of future research. 



61 

APPENDIX A: RECONSTRUCTING IN (p – 1) DISK ARRAYS 
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Suppose that disks i and j have failed in an array with (p – 1) disks. Then their 

reconstruction is achieved in the following manner. Each block {u, v} on disk i is colored u + v 

(mod p), and therefore satisfies the equation u + v ≡ 2d (mod p). Now, block {u, v} on disk i can 

be reconstructed if, for some vertex w in W, the edge (u, w) is in a near-1-factor whose 

corresponding blocks lie on disk j. The edge (u, w) is colored u + w (mod p). Thus, we can start 

reconstruction of a block (u, v) on disk i that satisfies u + w (mod p) ≡ 2j (mod p). That is, u ≡ 2j 

– w (mod p). Conversely, reconstruction can be started on a block {u, v} on disk j that satisfies u 

≡ 2i – w (mod p). 

We illustrate the aforementioned idea using the six-disk array shown in Figure 3. This 

array was created using W = {6} and the complete graph on p vertices, where p = 7. Now, 

suppose that the disks 0 and 1 have failed. Thus, i = 0 and j = 1. Then, the block {u, v} on disk 0 

from which reconstruction can be started is the one where u ≡ 2·1 – 6 (mod 7) = 3. This is the 

block {3, 4}. Thereafter, each block reconstructed corresponds to the edge that is incident to the 

edge corresponding to the previously reconstructed block. Similarly the block {u, v} on disk 1 

from which reconstruction can be started is the one where u ≡ 2·0 – 6 (mod 7) = 1. This is the 

parity block {1, 1}. 

Figure 26 illustrates the pseudo code of the function Repair(disk i, disk j) that repairs 

failed disks i and j. This function in turn calls the function Reconstruct(block {u, v}, parity group 

v) shown in Figure 27 to reconstruct the data block {u, v} by taking the XOR of all blocks in the 

parity group v. 
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 Repair (disk i, disk j) 

 { 

  for d ← i and j do 

   k ← d 

   u ← 2k – w (mod p) 

   if (k = i) then  

    k ← j 

   else 

    k ← i 

   endif 

   v ← 2k – u (mod p) 

   continue ← true 

 

   do 

    Reconstruct(block {u, v}, parity group v) 

    if (u = v) then 

     continue ← false 

    else 

     if (k = i) then 

      k ← j 

     else 

      k ← i 

     endif 

     u ← v 

     v ← 2k – u (mod p) 

    endif 

   while (continue = true) 

  endfor 

} 

Figure 26: Repairing two failed disks 
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  Reconstruct(block {u, v}, parity group v) 

  { 

   result ← 0 

   for disk d ← 0 to (n – 1) do 

    x ← 2d – v (mod p) 

    if (x  W) and (x ≠ u) do 

     result ← result ^ data in block {v, x} 

    endif 

   endfor 

   block {u, v} is assigned result 

  } 

Figure 27: Computing the data in a block from its parity group 

 

Note that, each parity group has (n – 2) data blocks and one parity block, with disk d not 

containing any block from parity group v if 2d ≡ v + w (mod p), where w W. 
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APPENDIX B: READING FROM FAILED DISKS 
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An important function of RAID systems is to provide uninterrupted access to data on 

failed disks that have not been reconstructed. Hence, a block on which requested data resides 

must be reconstructed prior to those without it. Now, the preceding algorithm reconstructs two 

failed disks in two iterations of the outermost for-loop, where the disk index d assumes the 

values i and j, without constraints on their order. Each iteration reconstructs the data blocks 

corresponding to the edges of a path terminating with a self-loop. However, the order in which k 

assumes the values i and j is important when a data block on a failed disk has to be reconstructed 

to enable its contents to be read expeditiously. This is because, in an array with (p – 1) disks, the 

average number of blocks that have to be reconstructed in an iteration to read a given data block 

is (p – 3)/4. That in turn requires (p – 3)
2
/4 XOR operations on blocks. Hence, for large value of 

p, it is desirable to reconstruct a given data block in the first iteration. To this end, the function 

FindReconstructionDiskIndex(block {u, v}) given in Figure 28 computes the disk from which to 

start reconstruction such that the failed data block {u, v} having the requested data is 

reconstructed more quickly. Note that, the function executes at most two iterations of the 

outermost while loop. Without loss of generality, if the value returned is i, then the first block 

reconstructed is {2i – w (mod p), 2j – (2i – w) (mod p)}. 

In practice, data is requested from blocks corresponding to the edges on both paths. 

However the order and frequency with which data is requested from a block may be utilized to 

prioritize it. 
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FindReconstructionDiskIndex(block {u, v}, disk i, disk j) 

{ 

  found ← false 

 d ← i 

  while (found = false) do 

   k ← d 

   x ← 2k – w (mod p) 

   if (k = i) then  

    k ← j 

   else 

    k ← i 

   endif 

   y ← 2k – x (mod p) 

   continue ← true 

 

   do 

    if (u = x) and (v = y) then 

     continue ← false 

     found ← true 

    else 

    if (u = v) then 

     continue ← false 

    else 

     if (k = i) then 

      k ← j 

     else 

      k ← i 

     endif 

     x ← y 

     y ← 2k – x (mod p) 

    endif 

   while (continue = true) 

 

   if (found = true) then 

    return d 

   else 

    d ← j 

   endif 

  endwhile 

} 

Figure 28: Finding the smallest reconstruction sequence. 
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