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ABSTRACT

This dissertation addresses some analytical and numerical aspects of a problem of weighted

low-rank approximation of matrices. We propose and solve two different versions of weighted

low-rank approximation problems. We demonstrate, in addition, how these formulations can

be efficiently used to solve some classic problems in computer vision. We also present the

superior performance of our algorithms over the existing state-of-the-art unweighted and

weighted low-rank approximation algorithms.

Classical principal component analysis (PCA) is constrained to have equal weighting on

the elements of the matrix, which might lead to a degraded design in some problems. To

address this fundamental flaw in PCA, Golub, Hoffman, and Stewart proposed and solved a

problem of constrained low-rank approximation of matrices: For a given matrix A = (A1 A2),

find a low rank matrix X = (A1 X2) such that rank(X) is less than r, a prescribed bound,

and ‖A−X‖ is small. Motivated by the above formulation, we propose a weighted low-rank

approximation problem that generalizes the constrained low-rank approximation problem of

Golub, Hoffman and Stewart. We study a general framework obtained by pointwise mul-

tiplication with the weight matrix and consider the following problem: For a given matrix

A ∈ Rm×n solve:

min
X
‖ (A−X)�W‖2

F subject to rank(X) ≤ r,

where � denotes the pointwise multiplication and ‖ · ‖F is the Frobenius norm of matrices.

In the first part, we study a special version of the above general weighted low-rank

approximation problem. Instead of using pointwise multiplication with the weight matrix, we

use the regular matrix multiplication and replace the rank constraint by its convex surrogate,

the nuclear norm, and consider the following problem:

X̂ = arg min
X
{1

2
‖(A−X)W‖2

F + τ‖X‖∗},
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where ‖ · ‖∗ denotes the nuclear norm of X. Considering its resemblance with the clas-

sic singular value thresholding problem we call it the weighted singular value threshold-

ing (WSVT) problem. As expected, the WSVT problem has no closed form analytical so-

lution in general, and a numerical procedure is needed to solve it. We introduce auxiliary

variables and apply simple and fast alternating direction method to solve WSVT numeri-

cally. Moreover, we present a convergence analysis of the algorithm and propose a mechanism

for estimating the weight from the data. We demonstrate the performance of WSVT on two

computer vision applications: background estimation from video sequences and facial shadow

removal. In both cases, WSVT shows superior performance to all other models traditionally

used.

In the second part, we study the general framework of the proposed problem. For the

special case of weight, we study the limiting behavior of the solution to our problem, both

analytically and numerically. In the limiting case of weights, as (W1)ij → ∞,W2 = 1, a

matrix of 1, we show the solutions to our weighted problem converge, and the limit is the

solution to the constrained low-rank approximation problem of Golub et. al. Additionally,

by asymptotic analysis of the solution to our problem, we propose a rate of convergence. By

doing this, we make explicit connections between a vast genre of weighted and unweighted

low-rank approximation problems. In addition to these, we devise a novel and efficient nu-

merical algorithm based on the alternating direction method for the special case of weight

and present a detailed convergence analysis. Our approach improves substantially over the

existing weighted low-rank approximation algorithms proposed in the literature. Finally, we

explore the use of our algorithm to real-world problems in a variety of domains, such as

computer vision and machine learning.

Finally, for a special family of weights, we demonstrate an interesting property of the

solution to the general weighted low-rank approximation problem. Additionally, we devise

two accelerated algorithms by using this property and present their effectiveness compared

iv



to the algorithm proposed in Chapter 4.
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CHAPTER ONE: INTRODUCTION

In today’s world, data generated from diverse scientific fields are high-volume and increas-

ingly complex in nature. According to a report in 2004, the new data stored in digital media

devices have increased to 92% in 2002, and the size of these new data is more than 5 ex-

abytes [52]. This can be attributed by the fact that it is always easier to generate more data

than finding useful information from the data. However, in many cases, the high-dimensional

data points are constrained to a much lower dimensional subspace. Therefore, in the anal-

ysis and understanding of high-dimensional data, a major research challenge is to extract

the most important features from the data by reducing its dimension. Dimension reduction

techniques refer to the process of imposing structure to a data having large dimensions into

a data with much lesser dimensions, while ensuring minimal information loss. The problem

of dimensionality reduction arises in many applications, such as, image processing, machine

learning, computer vision, bioinformatics data analysis, and web data ranking. In order

to get storage and computation-efficient prediction models from a big data set, low rank

approximation of matrices has become one of the most eminent tools. Low-rank matrix ap-

proximation is a multidisciplinary field involving mathematics, statistics, and optimization.

It is widely applicable in high-dimensional data processing and analysis. In this study, we

consider the given data points to be arranged in the columns of a matrix and there exists

a much lower dimensional linear subspacial structure to represent it. The goal of dimen-

sionality reduction is to find a low-rank matrix that guarantees a good approximation of

the data matrix with high accuracy. Depending on the nature of the measurements of the

discrepancy between the data matrix and its low rank approximation, there are several well

known classical algorithms.

For an integer r ≤ min{m,n} and a matrix A ∈ Rm×n, the standard low rank approx-

imation problem can be defined as an approximation to A by a rank r matrix under the
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Frobenius norm as follows:

min
X∈Rm×n
r(X)≤r

‖A−X‖2
F , (1.1)

where r(X) denotes the rank of the matrix X and ‖·‖F denotes the Frobenius norm of matri-

ces (see, more discussion in Section 1.1.2). This is also referred to as Eckart-Young-Mirsky’s

theorem [38] and is closely related to the principal component analysis (PCA) method in

statistics [35]. Conventionally, if the given data are corrupted by the i.i.d. Gaussian noise,

classical PCA is used. However, it is a well-known fact that the solution to the classical PCA

problem is numerically sensitive to the presence of outliers in the matrix. In other words, if

the matrix A is perturbed by one single large value at one entry, the explicit formula for its

low-rank approximation would yield a much different solution than the unperturbed one. This

phenomenon may be attributed to the use of the Frobenius norm. To address different na-

ture of corrupted entries in the data matrix, different norms have been proposed to use. For

example, `1 norm does encourage sparsity when the norm is made small. Therefore, to solve

the problem of separating the sparse outliers added to a low-rank matrix, Candes et al. ([32])

argued to replace the Frobenius norm in the SVT problem by the `1 norm and formulated

the following (see also [9]):

min
X∈Rm×n
r(X)≤r

‖A−X‖`1 , (1.2)

which unlike PCA, does not assume the presence of uniformly distributed noise, rather it

deals with sparse large errors or outliers in the data matrix. This is referred to as robust

PCA (RPCA) [9]. Later (in Sections 1.2 and 1.3) we will discuss the motivation and formu-

lation behind forming the unconstrained versions of (1.1) and (1.2), and their solutions in

great detail.

The idea of working with a weighted norm is very natural in solving many engineering

problems. For example, if SVD is used in quadrantally-symmetric two-dimensional (2-D)

filter design, as pointed out in ([37, 29, 30]), it might lead to a degraded construction in
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some cases as it is not able to discriminate between the important and unimportant compo-

nents of A. Similarly in many real world applications, one has good reasons to keep certain

entries of A unchanged while looking for a low-rank approximation. To address this prob-

lem, a weighted least squares matrix decomposition (WLR) method was first proposed by

Shpak [30]. Following his idea of assigning different weights to discriminate between impor-

tant and unimportant components of the test matrix, Lu, Pei, and Wang ([29]) designed a

numerical procedure to find the best rank r approximation of the matrix A in the weighted

Frobenius norm sense:

min
X∈Rm×n
r(X)≤r

‖(A−X)�W‖2
F , (1.3)

where W ∈ Rm×n is a weight matrix and � denotes the element-wise matrix multiplica-

tion (Hadamard product). In 2003, Srebro and Jaakkola ([39]) proposed and solved a prob-

lem similar to (1.3) by using a matrix factorization technique: for a given matrix A ∈ Rm×n

find

min
U∈Rm×r,V ∈Rn×r
X=UV T∈Rm×n

‖(A−X)�W‖2
F , (1.4)

where W ∈ Rm×n
+ is a weight matrix with positive entries. This is the weighted low rank

approximation problem studied first when W is an indicator weight for dealing with the

missing data case ([40, 41]) and then for more general weight in machine learning, collabo-

rative filtering, 2-D filter design, and computer vision [39, 43, 45, 37, 29, 30]. At about the

same time, Manton, Mahony and Hua ([37]) proposed a problem with a more generalized

weighted norm:

min
X∈Rm×n
r(X)≤r

‖A−X‖2
Q, (1.5)

where Q ∈ Rmn×mn is a symmetric and positive definite weight matrix, ‖A − X‖2
Q :=

vec(A−X)TQvec(A−X), which is more general than the norm ‖X‖2
Q = trace(XTQX), and

vec(·) is an operator which maps the entries of Rm×n to Rmn×1 by stacking the columns.
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In computer vision shape and motion from image streams (SfM) [69], non-rigid SfM can

be solved using a matrix factorization with missing components. The standard formulation

of the problem as defined in [68, 67] is

min
X,Y

f(X, Y ) := min
X,Y
‖A−XY ‖2

F , (1.6)

where A ∈ Rm×n is the given noiseless (or corrupted by Gaussian noise) matrix of rank r,

to be factored in two matrices X ∈ Rm×r, Y ∈ Rr×n. The solution to (1.6) can be obtained

using SVD. However, if some entries of A are missing then to minimize f(X, Y ) with respect

to the existing components of A one has to minimize [68, 67]:

min
X,Y

f(X, Y ) := min
X,Y
‖(A−XY )�W‖2

F , (1.7)

where W ∈ Rm×n is a selector matrix such that

wij =


1, if mij exists

0, otherwise.

Note that the problem (1.7) is equivalent to (1.4). Solving (1.7) requires iterative computa-

tion as defined in [45, 70, 71, 40, 68, 72] and by many others. In 2006, Okatani and Deguchi

proposed a low-rank matrix approximation in the presence of missing data, which is also

known as principal component analysis with missing data [40] and can be written using two

equivalent formulations as follows:

min
X,Y

f(X, Y ) := min
X,Y
‖(A−XY )�W‖2

F , (1.8)

and

min
X,Y,µ

f ′(X, Y, µ) := min
X,Y,µ

‖(A−XY − 1mµ
T )�W‖2

F , (1.9)

where W ∈ Rm×n is the indicator matrix as in (1.7), 1 ∈ Rm is a vector of 1, and µ ∈ Rn is

the mean-vector. The problems (1.7) and (1.8) are equivalent to (1.9) in the sense that with
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slight modifications one can use the solutions to (1.7) and (1.8) for solving (1.9). Oaktani

and Deguchi used the classical Wiberg algorithm [41] to solve (1.7).

So far we have presented some classic unweighted and weighted low-rank approximation

problems and briefly mentioned their use in real world applications. We will explain their

solutions later in Chapter 1. Starting from the next section of this chapter, we will discuss

the background material and quote some useful classical results pertinent to the thesis. The

rest of the thesis is organized as follows. In Chapter 2, we propose an elementary treat-

ment (without using advanced tools of convex analysis) to the shrinkage function and show

how naturally the shrinkage function can be used in solving more advanced problems. In

Chapter 3, we propose and solve a weighted low-rank approximation problem motivated by

the work of Golub, Hoffman, and Stewart on a problem of constrained low-rank approxi-

mation of matrices. We compare, in addition, the performance of our algorithm over other

state-of-art rank minimization algorithms on some real world computer vision applications.

In Chapter 4, we study a more generalized version of the problem as proposed in Chapter

3 and analytically discuss the convergence of its solution to that of Golub, Hoffman, and

Stewart in the limiting case of weight. A numerical algorithm with detailed convergence

analysis is also presented. Finally, in Chapter 5, an accelerated version of weighted low-rank

approximation algorithm is discussed for a special family of weights.

1.1 Technical Background

In this section, we provide a detailed technical discussion of some classical results that are

frequently used in this thesis. They had previously been proved and used in several different

articles and journals. In order to have a better understanding, here we present them in

great detail. Some results are rephrased in an elaborated manner so that the reader can

understand the motivation behind them.
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1.1.1 Notations

In this section we list some frequently used notations. Other less frequently used notations

will be notations will be defined when they are used. We denote A as the given matrix and

aij as (i, j)-th entry of A. The standard inner product of two matrices (vectors) is denoted

by 〈·, ·〉. A matrix norm is denoted by ‖ · ‖ unless specified and ‖ · ‖∗ is the corresponding

dual norm. Using trace(A) or tr(A) we denote the sum of the diagonal entries of the

matrix A. The inner product of two matrices X and Y is defined as 〈X, Y 〉 = trace(XTY )

and the Frobenius norm by ‖X‖F =
√

trace(XTX). The regular `1-norm is denoted by

‖X‖`1 =
∑

i,j |xij|. The Euclidean norm on Rm is denoted by ‖ · ‖Rm . Note that if A ∈ Rm×n

then the matrix operator norm can be defined as ‖A‖ = max‖x‖Rn≤1 ‖Ax‖Rm . By conv{A}

we denote the convex hull of the set A. We adopt the notation a = arg min
x∈A

f(x) to mean

that a ∈ A is a solution of the minimization problem min
x∈A

f(x) and by domf we denote the

domain of the function f . We use ∇f to denote the gradient of the function f .

1.1.2 Definitions

In this section we will quote some useful definitions.

Dual Norm [46] The dual norm of a matrix norm ‖ · ‖ induced on a matrix A ∈ Rm×n is

defined as

‖A‖∗ = max
B∈Rm×n
‖B‖≤1

(trace(BTA)).

Subdifferential of a Matrix Norm [46] The subdifferential (or the set of subgradients)

of a matrix A ∈ Rm×n is defined as

∂‖A‖ = {G ∈ Rm×n : ‖B‖ ≥ ‖A‖+ trace((B − A)TG), for all B ∈ Rm×n}. (1.10)

The above definition is equivalent to

∂‖A‖ = {G ∈ Rm×n : ‖A‖ = trace(GTA) and ‖G‖∗ ≤ 1}, (1.11)

6



and can be proved using the following argument: In (1.10), since the choice of B ∈ Rm×n is

arbitrary consider B = 2A in (1.10) and we find

‖2A‖ ≥ ‖A‖+ trace((2A− A)TG),

which implies, ‖A‖ ≥ trace(ATG). (1.12)

Next, substituting B = 0 in (1.10) yields

‖A‖ ≤ trace(ATG). (1.13)

Combining (1.12) and (1.13) we have

‖A‖ = trace(GTA).

Using ‖A‖ = trace(GTA) in (1.10) we find

‖B‖ ≥ ‖A‖+ trace((B − A)TG)

= trace(ATG) + trace(BTG)− trace(ATG)

= trace(BTG). (1.14)

If ‖B‖ ≤ 1 then trace(BTG) ≤ ‖B‖ ≤ 1 and that implies ‖G‖∗ ≤ 1 (using (1.11)). Therefore

∂‖A‖ ⊂ {G ∈ Rm×n : ‖A‖ = trace(GTA) and ‖G‖∗ ≤ 1}. On the other hand ‖G‖∗ ≤ 1

implies trace(BTG) ≤ 1 as ‖B‖ ≤ 1. Therefore for all B ∈ Rm×n, trace( B
T

‖B‖G) ≤ 1, which

implies trace(BTG) ≤ ‖B‖. Finally we have

‖B‖ − ‖A‖

= ‖B‖ − trace(ATG)

= ‖B‖ − trace((A−B +B)TG)

= ‖B‖+ trace((B − A)TG)− trace(BTG)

≥ trace((B − A)TG).

Therefore, {G ∈ Rm×n : ‖A‖ = trace(GTA) and ‖G‖∗ ≤ 1} ⊂ ∂‖A‖. Hence the sets defined

in (1.10) and (1.11) are equal and we proved the expressions (1.10) and (1.11) are equivalent.
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Some Basic Properties of Subdifferential. Let ∂f be a subdifferential of a convex

function f at x ∈ domf. Then ∂f posses the following properties:

1. f(x) + 〈∂f, y − x〉 is a global lower bound on f(y) for all y ∈ domf.

2. ∂f is a closed convex set.

3. If x ∈ int(domf) then ∂f is nonempty and bounded.

4. ∂f(x) = {∇f(x)} if f is differentiable at x.

5. If h(x) = α1f1(x) + α2f2(x) with α1, α2 ≥ 0, then ∂h(x) = α1∂f1(x) + α2∂f2(x).

6. Let h(x) = f(Ax+ b) be an affine transform of f . Then ∂h(x) = −AT∂f(Ax+ b).

Operator Norm [46, 55, 56] The operator norm of a matrix A ∈ Rm×n is defined as

‖A‖ = max
‖x‖Rn≤1

‖Ax‖Rm .

N.B. [46] We can choose two vectors v ∈ Rn and w ∈ Rm and define u := Av
‖A‖ , u ∈ Rm, with

‖u‖ = 1. Thus, {v, w} are the member of the set Φ(A), where

Φ(A) = {v ∈ Rn, w ∈ Rm : ‖v‖Rn = 1,
Av

‖A‖
= u, ‖u‖Rm = 1, w ∈ ∂‖u‖Rm}.

Singular Value Decompositions and Matrix Norms [55, 56] Let A ∈ Rm×n and A =

UÃV T be a singular value decomposition (SVD) of A with U ∈ Rm×m and V ∈ Rn×n being

two orthogonal matrices (that is, U−1 = UT and V −1 = V T ) and Ã = diag(σ1(A) σ2(A) · · ·

σmin{m,n}(A)) being a diagonal matrix with σ1(A) ≥ σ2(A) ≥ · · · ≥ σmin{m,n}(A) ≥ 0. The

σi(A)’s are called the singular values of A. It is known ([56]) that every matrix in Rm×n has

a SVD and that SVD of a matrix is not unique. Then the nuclear norm of A is given by

‖A‖∗ =

min{m,n}∑
i=1

σi(A),
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and we can also define the Frobenius norm of A as

‖A‖F =

min{m,n}∑
i=1

(σi(A))2

1/2

.

This norm turns out to be the same as the `2 norm of A, treated as a vector in Rmn×1. Since

the nonzero singular values σi(A)’s are exactly the square root of the nonzero eigenvalues of

AAT or ATA. So,

‖A‖2
l2

=
m∑
i=1

n∑
j=1

(aij)
2 = trace(AAT )

= trace((UÃV T )(V ÃTU))

= trace(UÃÃTUT )

= trace(ÃÃT )

=

min{m,n}∑
i=1

(σi(A))2,

and we have also used the fact that trace(AB) = trace(BA) for any square matrices A and

B. Finally we define the spectral norm of A as the square root of the maximum eigenvalue

of the matrix AAT or AAT and write

‖A‖2 =
√

max
1≤i≤{m,n}

λi(AAT ),

where λi’s are the eigenvalues of AAT . The spectral norm can also be viewed as the maximum

singular value of A and can be written using the notation defined above as

‖A‖2 = σ1(A).

We can state the following simple fact about the nuclear norms of a matrix and that of its

diagonal: Let D(A) denote the diagonal matrix using the diagonal of A. We have

‖D(A)‖∗ ≤ ‖A‖∗. (1.15)
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This inequality can be verified by using a SVD of A = UÃV T as follows. Write U = (uij),

V = (vij), and t = min{m,n}. Then

‖D(A)‖∗ = ‖D(UÃV T )‖∗ =
t∑
i=1

∣∣∣∣∣
t∑

j=1

σj(A)uijvij

∣∣∣∣∣ ≤
t∑

j=1

σj(A)
t∑
i=1

|uijvij|

≤
t∑

j=1

σj(A) ·

(
t∑
i=1

|uij|2
)1/2( t∑

i=1

|vij|2
)1/2

≤
t∑

j=1

σj(A) = ‖A‖∗,

where we have used the Cauchy-Schwarz inequality, and the orthogonality of U and V (so

that
∑t

i=1 |uij|2 ≤ 1 and
∑t

i=1 |vij|2 ≤ 1) in the second inequality.

Symmetric Gauge Function [46] Using the notations used in the previous definition let

A = UÃV T be a SVD of A. Define ‖A‖ := φ(σ(A)), where σ(A) is a vector containing the

singular values of A and φ : Rmin{m,n} → R is known as a symmetric gauge function. By the

property of symmetric gauge function [46] we have

φ
(
ε1xi1 , ε2xi2 , ... , εnximin{m,n}

)
= φ(x),

where εi = ±1, for all i, and {i1, i2, ...imin{m,n}} is a permutation of the set {1, 2, · · · ,min{m,n}}.

One can define different symmetric gauge function to denote different matrix norms (asso-

ciated with SVD of a matrix). For example, if φ(σ) := ‖σ(A)‖1, then it is the nuclear norm

of A, if φ(σ) := ‖σ(A)‖∞, then it denotes the spectral norm of A and, so on.

Shrinkage Function [57, 58] The shrinkage function Sλ(·), first introduced by Donoho

and Johnstone in their landmark paper [57], (see also [58]) on function estimation using

wavelets in the early 1990’s. Recently, the shrinkage function has been heavily used in the

solutions of several optimization and approximation problems of matrices (see, e.g., [9, 44,

48, 65]).
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Let λ > 0 be fixed. For each a ∈ R, the shrinkage function Sλ(a), is defined as

Sλ(a) =


a− λ, a > λ

0, |a| ≤ λ

a+ λ, a < −λ

.

Remark. The function Sλ(·) defined above is called the shrinkage function (also referred to

as soft shrinkage or soft threshold, [57, 58]). One may imagine that Sλ(a) “shrinks” a to

zero when |a| ≤ λ. A plot of Sλ(·) for λ = 1 is given in Figure 1.1.
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y = a

Figure 1.1: A plot of Sλ for λ = 1.

Elementwise Shrinkage Function [44, 60] For µ > 0 and X = (xij) ∈ Rm×n the

element-wise shrinkage function can be defined as

(Sµ(X))ij := max{abs(Xij − µ), 0}.sign(Xij)

where abs(.) and sign(.) are the absolute value and sign functions respectively.

Singular Value Thresholding [48] Let X ∈ Rm×n be a matrix of rank r ≤ min{m,n}

and X = UΣV T be a singular value decomposition of X. The soft-thresholding operator Dτ

is defined as follows [48, 64]: for each τ ≥ 0,

Dτ (X) := UDτ (Σ)V T ,
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where Dτ (Σ) = diag{(σi − τ)+}1 and t+ is defined as t+ = max{0, t}. This is also referred

to as singular value shrinkage operator. On the other hand, let X = UrΣrV
T
r be a rank r

SVD of X such that Ur ∈ Rm×r and Vr ∈ Rn×r are column orthonormal matrices (UT
r Ur = Ir

and V T
r Vr = Ir) and Σr ∈ Rr×r is a diagonal matrix containing the first r non zero singular

values of X arranged in a non-increasing order along the diagonal. With the notations

defined above one can define the soft-thresholding operator Dτ as following: For each τ ≥ 0,

Dτ (X) := UrDτ (Σr)V
T
r .

Unitarily Invariant Norms [46, 55, 56] Let A ∈ Rm×n be a given matrix. The class of

norms ‖ · ‖ are said to be unitarily invariant if

‖UAV ‖ = ‖A‖ for all orthogonal matrices U ∈ Rm×m, V ∈ Rn×n.

Note that, the Frobenius norm, nuclear norm, and spectral norm are examples of unitary

invariant matrix norms.

1.1.3 Lagrange Multiplier Method and Duality [19]

Consider the standard form of optimization problem (not necessarily convex) as:

minimizef0(x)

subject to fi(x) ≤ 0, i = 1, 2, · · · ,m,

hi(x) = 0, i = 1, 2, · · · , p,

where x ∈ Rn,D be the domain of f , and p∗ = arg minx f0(x). Note that the function f0(x)

is the objective function and fi, hi’s are the constriant functions. The Lagrange multiplier

method is to form a function L : Rn×Rm×Rp → R which is a weighted sum of the objective

and constriant functions such that domL = D × Rm × Rp, and define L as

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x),

1σi’s are the singular values of X.
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where λi ≥ 0 is Lagrange multiplier associated with fi(x) ≤ 0 and νi is lagrange multiplier

associated with hi(x) = 0. Denote

ψP (x) = sup
λ≥0,ν

L(x, λ, ν)

as the primal problem. If x violates any of the primal constraints, that is, fi(x) > 0 or

hi(x) 6= 0 for any i then ψP (x) = ∞. On the other hand, if x satisfies primal constraints

then ψP (x) = f0(x). Therefore,

ψP (x) =

 fo(x), if x is primal feasible

0, otherwise
.

An equivalent unconstrianed minimization problem can be written as:

inf
x
ψP (x) = inf

x
sup
λ≥0,ν

L(x, λ, ν).

Next define ψD : Rm × Rp → R, where D stands for dual and denote

ψD(λ, ν) = inf
x∈D
L(x, λ, ν)

= inf
x∈D

(f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)).

Note that, ψD is concave, because it is the point-wise infimum of a collection of affine

functions in x. It is easy to see that, if λ ≥ 0, then ψD(λ, ν) ≤ p∗.

1.1.4 Smooth Minimization of Non-Smooth Functions [73]

Consider the following optimization problem [73]:

f ∗ = arg min
x
{f(x) : x ∈ Q1}, (1.16)

where Q1 is a closed and bounded convex set in a finite dimensional real vector space E1

and f(x) is a continuous (not necessarily smooth) convex function on Q1. Note that f(x) is

not necessarily differentiable everywhere on Q1. The problem (1.16) can be modified as:

f(x) = f̂(x) + max
u
{〈Ax, u〉 − φ̂(u) : u ∈ Q2},
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where f̂(x) is continuous and convex on Q1, Q2 is a closed and bounded convex set in a

finite dimensional real vector space E2, φ̂(u) is a continuous convex function on Q2, and

A : E1 → E2 is a linear operator. Therefore,

min
x
f(x) = min

x∈Q1

{f̂(x) + max
u∈Q2

{〈Ax, u〉 − φ̂(u)}

= max
u∈Q2

{−φ̂(u) + min
x∈Q1

{〈Ax, u〉+ f̂(x)}}.

If φ(u) = −φ̂(u) + min
x∈Q1

{〈Ax, u〉+ f̂(x)} the dual of (1.16) is

max
u
{φ(u) : u ∈ Q2}. (1.17)

An Inequality [73] For a positive parameter µ let the function fµ(x) be

fµ(x) := max
u
{〈Ax, u〉 − φ̂(u)− µd2(u) : u ∈ Q2},

where d2(u) is a continuous and strongly convex function on Q2. Denote

u0 := arg min
u
{d2(u) : u ∈ Q2}.

Note that if A(x) and B(x) are two functions defined on a set X then

max
x∈X
{A(x) +B(x)} ≤ max

x∈X
A(x) + max

x∈X
B(x).

2 Therefore,

fµ(x) = max
u
{〈Ax, u〉 − φ̂(u)− µd2(u)}

≥ max
u
{〈Ax, u〉 − φ̂(u)} − µmax

u
d2(u). (1.18)

Denote D2 := max
u
{d2(u) : u ∈ Q2} and f0(x) := max

u
{〈Ax, u〉 − φ̂(u)}. So, (1.18) yields

fµ(x) + µD2 ≥ f0(x). (1.19)

2supx∈X(A(x) +B(x)) ≥ supx∈X(A(x) + supy∈X B(y)) = supx∈X A(x) + supy∈X B(y)
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Since d2(u) ≥ 0 we have

〈Ax, u〉 − φ̂(u)− µd2(u) ≤ 〈Ax, u〉 − φ̂(u),

which implies, max
u
{〈Ax, u〉 − φ̂(u)− µd2(u)} ≤ max

u
{〈Ax, u〉 − φ̂(u)},

and finally, fµ(x) ≤ f0(x). (1.20)

Combining (1.19) and (1.20) together we have

fµ(x) ≤ f0(x) ≤ fµ(x) + µD2.

Let f(A) = ‖A‖∗ be a non smooth function. By adopting Nesterov’s smoothing tech-

nique, Ayabat et.al. [74] defined a smooth C1,1 variant fµ(A) of the original function f(A),

denoted by fµ(A) := max
W∈Rm×n,‖W‖≤1

{〈A,W 〉 − µ

2
‖W‖2

F}. By using the smoothing technique

it can be shown that,

fµ(A) +
µ

2
max

W∈Rm×n
‖W‖≤1

‖W‖2
F ≥ max

W∈Rm×n
‖W‖≤1

〈A,W 〉 = ‖A‖∗.

And finally,

fµ(A) ≤ ‖A‖∗ ≤ fµ(A) +
µ

2
max

W∈Rm×n
‖W‖≤1

‖W‖2
F .

1.1.5 Classic Results on Subdifferentials of Matrix Norm

In this section, we will discuss some useful results and theorems. The first theorem is due

to G.A. Watson [46] which gives an expression for directional derivative of any unitary

invariant matrix norm ‖ · ‖, in terms of the singular value decomposition (SVD) of the

matrix. The second theorem is also due to Watson [46], which helps us to obtain a more

general representation of the subdifferential of a matrix norm in terms of its SVD. The next

two theorems are due to operator norms. Additionally, we present some of useful examples,

which indeed explain the use of the main results in this section.
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Theorem 1. [46] Let UΣV T be a SVD of A ∈ Rm×n. Without loss of generality consider

m ≥ n. The columns of U(V ) are denoted as ui(vi) and σi be the ith singular value of the

matrix A. If R ∈ Rm×n, then

lim
γ→0+

‖A+ γR‖ − ‖A‖
γ

= max
d∈∂φ(σ)

n∑
i=1

diui
TRvi (1.21)

Proof. Let A depend smoothly on the parameter γ and denote it as A(γ). We will show

how the change in γ influences the change of the singular values and the singular vectors of

A(γ). Write,

A(γ)vi(γ) = σi(γ)ui(γ), (1.22)

which on differentiating with respect to γ and then premultiplying by uTi (γ) yields

uTi (γ)
∂A(γ)

∂γ
vi(γ) + uTi (γ)A(γ)

∂vi(γ)

∂γ
= uTi (γ)

∂σi(γ)

∂γ
ui(γ) + σi(γ)uTi (γ)

∂ui(γ)

∂γ
.(1.23)

Since U is an orthogonal, we have uTi (γ)ui(γ) = 1, that is,
∑n

j=1(uji )
2(γ) = 1, which on

differentiating with respect to γ gives

uTi (γ)
∂ui(γ)

∂γ
= 0. (1.24)

This together with (1.23) yields

uTi (γ)
∂A(γ)

∂γ
vi(γ) + uTi (γ)A(γ)

∂vi(γ)

∂γ
=

∂σi(γ)

∂γ
. (1.25)

Pre-multiplying (1.22) by AT (γ) and writing AT (γ)A(γ)vi(γ) = σi(γ)2vi(γ) we have

σ2
i vi(γ) = σi(γ)AT (γ)ui(γ),

which is, (σ2
i vi(γ))T = (σi(γ)AT (γ)ui(γ))T ,

and finally, uTi (γ)A(γ) = σi(γ)vTi (γ). (1.26)

Using the orthogonality of the columns of V , that is, vTi (γ)vi(γ) = 1 and differentiating it

with respect to γ we have, for each i,

vTi (γ)
∂vi(γ)

∂γ
= 0, (1.27)
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which together with (1.26) gives

uTi (γ)A(γ)
∂vi(γ)

∂γ
= σi(γ)vTi (γ)

∂vi(γ)

∂γ
= 0. (1.28)

Using (1.25) we find

uTi (γ)
∂A(γ)

∂γ
vi(γ) =

∂σi(γ)

∂γ
. (1.29)

Note that the orthogonal left and right singular vectors play an important role in finding the

relation (1.29), which is a generic expression for A(γ), any matrix which depends smoothly

on the parameter γ. For given A and R denote A(γ) := A+ γR. Define the singular values

of A(γ) as σi(γ) for i = 1, 2...n. We can write a Taylor series expansion for σi(γ) at γ = 0 as

σi(γ) = σi(0) + (γ − 0)
∂σi(γ)

∂γ
|γ=0 +o(γ). (1.30)

Substituting A(γ) = A+ γR in (1.29) we find

uTi (γ)
∂(A+ γR)

∂γ
vi(γ) =

∂σi(γ)

∂γ
. (1.31)

Since ∂A
∂γ

= 0 and ∂R
∂γ

= 0, (1.31) gives

uTi (γ)Rvi(γ) =
∂σi(γ)

∂γ
. (1.32)

Note that, at γ = 0, σi(0) = σi, and uTi (0) = uTi , are the singular values and singular vectors

of the matrix A, respectively. So finally we have,

uTi Rvi =
∂σi
∂γ
|γ=0 . (1.33)

Using (1.33) in (1.30) gives

σi(γ) = σi(0) + γ
∂σi(γ)

∂γ
|γ=0 +o(γ)

= σi + γuTi Rvi + o(γ). (1.34)

Denote ‖A‖ := φ(~σ), where ~σ = (σ1 σ2 ... σn)T and φ is a symmetric gauge function [46]. If

d(γ) ∈ ∂φ(σ(γ)), then by the definition of subdiffrential, for all σ̂(γ) ∈ Rn we have

φ(σ̂(γ))− φ(σ(γ)) ≥ (σ̂(γ)− σ(γ))Td(γ). (1.35)
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Applying triangle inequality on φ(σ̂(γ)− σ(γ)) we find

φ(σ̂(γ)− σ(γ)) ≥ φ(σ̂(γ))− φ(σ(γ)),

which together with (1.35) gives

φ(σ̂(γ)− σ(γ)) ≥ φ(σ̂(γ)− σ(γ)) ≥ (σ̂(γ)− σ(γ))Td(γ). (1.36)

Since the choice of σ̂(γ) ∈ Rn is arbitrary choose σ̂(γ)− σ(γ) = σ(0) and we have

‖A‖ = φ(~σ) = φ(σ̂(0)) ≥ σ̂Td(γ),

and using (1.34) we find

‖A‖ ≥ σ̂Td(γ) ≥ (σ(γ)− γuTRv − o(γ))Td(γ).

That is,

‖A‖ ≥
n∑
i=1

σi(γ)di(γ)− γ
n∑
i=1

di(γ)uTi Rvi −
n∑
i=1

o(γ)di(γ). (1.37)

Using the fact that d(γ) ∈ φ(σ(γ)), if and only if, φ(σ(γ)) = σ(γ)Td(γ) and φ∗(σ(γ)) ≤ 1 we

have,

‖A+ γR‖ = φ(σ(γ)) = σ(γ)Td(γ) =
n∑
i=1

σi(γ)di(γ). (1.38)

Using (1.37) and (1.38) together yields,

‖A‖ ≥ ‖A+ γR‖ − γ
n∑
i=1

di(γ)uTi Rvi −
n∑
i=1

o(γ)di(γ) (1.39)

On the other hand, if d(0) ∈ ∂φ(σ(0)), then by the definition of subdiffrential, for all σ ∈ Rn

we have

φ(σ)− φ(σ(0)) ≥ (σ − σ(0))Td(0). (1.40)

Applying triangle inequality on φ(σ − φ(σ(0)) and using (1.40) we find

φ(σ − σ(0)) ≥ φ(σ)− φ(σ(0)) ≥ (σ − σ(0))Td(0).
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Since the choice of σ ∈ Rn is arbitrary considering σ − σ(0) = σ(γ) we obtain

‖A+ γR‖ = φ(σ(γ)) ≥ σ(γ)Td(0) = (σ(0) + γuTRv + o(γ))Td(0).

The last equality is due to (1.34). Therefore we have

‖A+ γR‖ ≥
n∑
i=1

σi(0)di(0) + γ

n∑
i=1

di(0)uTi Rvi +
n∑
i=1

o(γ)di(0)

= ‖A‖+ γ

n∑
i=1

di(0)uTi Rvi +
n∑
i=1

o(γ)di(0). (1.41)

Combining (1.39) and (1.41) together we obtain

n∑
i=1

di(0)uTi Rvi ≤
‖A+ γR‖ − ‖A‖

γ
≤

n∑
i=1

di(γ)uTi Rvi. (1.42)

Considering γ → 0+ we achieve the result as desired. �

The next theorem gives a general representation of the subdifferential of a matrix norm.

In this theorem subdifferential of a matrix norm is represented as the convex combination

of the elements of a set, obtained from the SVD of a matrix.

Theorem 2. [46] Let A = UΣV T be a SVD of A and d ∈ ∂φ(σ). Then for a unitary

invariance matrix norm ‖ · ‖, we have

∂‖A‖ = conv{UDV T : D ∈ Rm×n;D = diag(d) and d ∈ ∂φ(σ)}.

Proof. Denote conv{UDV T : D ∈ Rm×n;D = diag(d) and d ∈ ∂φ(σ)} as S(A). Let

G ∈ S(A) and write G =
∑n

i=1 λiei, where ei ∈ S(A) and λi ≥ 0 such that
∑n

i=1 λi = 1. For

each i, let A = UiΣV
T
i be a SVD of A. If di ∈ ∂φ(σ) then we can write ei = UiDiV

T
i such

that G =
∑n

i=1 λiUiDiV
T
i where Di = diag(di) for each di ∈ ∂φ(σ). Our goal is to show if

G ∈ S(A) then (i) tr(GTA) = ‖A‖, and (ii) ‖G‖∗ ≤ 1. To prove the first condition we use

the linearity and some basic properties of trace [56] and find

tr(GTA) = tr(ATG) = tr(AT
n∑
i=1

λiUiDiV
T
i ) = tr(

n∑
i=1

λiA
TUiDiV

T
i ) = tr(

n∑
i=1

λiViΣ
TUT

i UiDiV
T
i ),
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which can be further reduced to

tr(GTA) = tr(
n∑
i=1

λiΣ
TDiV

T
i Vi) =

n∑
i=1

λitr(Σ
TDi) =

n∑
i=1

λiσ
Tdi =

n∑
i=1

λiφ(σ).

Therefore,

tr(GTA) = φ(σ)
n∑
i=1

λi = φ(σ) = ‖A‖.

To prove the second condition recall that, ‖G‖∗ = max
‖R‖≤1

tr(GTR). Therefore,

‖G‖∗ = max
‖R‖≤1

tr(GTR) = max
‖R‖≤1

tr(RTG) = max
‖R‖≤1

tr(RT

n∑
i=1

λiUiDiV
T
i )

= max
‖R‖≤1

n∑
i=1

λitr(V
T
i R

TUiDi). (1.43)

Using the definition of unitary invariant norm we have ‖UiRVi‖ = ‖R‖, for all orthogonal

matrices Ui and Vi. For RT ∈ Rn×m we find ‖V T
i R

TUi‖ = ‖RT‖ = ‖R‖ ≤ 1. Denote

R̂i := UT
i RVi. From (1.43) we have

‖G‖∗ = max
‖R‖≤1

n∑
i=1

λitr(V
T
i R

TUiDi) ≤ max
‖R̂i‖≤1

n∑
i=1

λitr(R̂
T
i Di) =

n∑
i=1

λi max
‖R̂i‖≤1

tr(R̂T
i Di)

=
n∑
i=1

λi‖Di‖∗. (1.44)

In order to prove ‖G‖∗ ≤ 1, first we show ‖Di‖∗ = φ∗(di). By the characterization of

subdiffrential we have

∂(φ(σ)) = {di : σTdi = φ(σ), φ∗(di) = max
φ(y)≤1

dTi y ≤ 1}.

Using the definition of the dual norm of Di we write

‖Di‖∗ = max
‖X‖≤1

tr(XTDi),

where X ∈ Rm×n. Recall that any unitary invariant matrix norm can be characterized by

the symmetric gauge function of its singular values [46]. Therefore we have ‖A‖ = φ(σ(A)),
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where σ(A) is a vector containing the singular values of A and φ : Rn → R is a symmetric

gauge function. Hence,

‖Di‖∗ = max
φ(σ(X))≤1

tr(XTDi). (1.45)

Let X = U1Σ1V
T

1 be a SVD of X and write V T
1 X

TU1 = ΣT . We can right multiply both

sides of the above relation by a permutation matrix E of size m × n which have diagonal

elements as either +1 or −1, and everywhere else is zero, and obtain V T
1 X

TU1E = ΣTE. By

the property of symmetric gauge function [46] we have

φ (ε1xi1 , ε2xi2 , ... εnxin) = φ(x),

where εi = ±1 for all i and i1, i2, ...in is a permutation of of the set {1, 2, ...n}. Therefore we

have

‖X‖ = φ(σ(X)) = φ(σ(V T
1 X

TU1)) = φ(σ(ΣT )) = φ(σ(V T
1 X

TU1E)) = φ(σ(ΣTE)),

and using (1.45) we find3

‖Di‖∗ = max
φ(σ(X))≤1

tr(XTDi)

= max
φ(σ(V T1 XTU1))≤1

tr(V T
1 X

TU1Di)

= max
φ(σ(ΣT ))≤1

tr(ΣTDi); [since Σ, Di ∈ Rm×n]

= max
φ(σ(ΣTE))≤1

〈[Eσ(X)], di〉

= max
φ(σ(ΣTE))≤1

〈[Eσ(X)], di〉

= max
φ(z)≤1

〈z, di〉

= φ∗(di).

Therefore, ‖Di‖∗ = φ∗(di) ≤ 1. Using (1.44) we have

‖G‖∗ ≤
n∑
i=1

λi‖Di‖∗ ≤
n∑
i=1

λi = 1.

3In this derivation we denote the coordinate of a vector v as [v]
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Hence the second condition is proved. In summary we conclude, if G ∈ S(A) then G ∈ ∂‖A‖.

So S(A) ⊆ ∂‖A‖. On the contrary let us assume there exists a G0 ∈ ∂‖A‖ but G0 /∈ S(A).

By separation theorem, for all H ∈ S(A) there exists a R ∈ Rm×n such that,

tr(RTH) ≤ tr(RTG0).

Let H = UDV T ∈ S(A), D = diag(d) and d ∈ ∂(φ(σ)). Therefore,

tr(RTH) = tr(RTUDV T )

= tr(UDV TRT ); [tr(AB) = tr(BA)]

= tr(DTUTRV ); [tr(ATB) = tr(BTA)]

=
n∑
i=1

diu
T
i Rvi.

And finally,

max
D=diag(d)
d∈∂(φ(σ))

tr(RTH) < tr(RTG0) ≤ max
G∈∂‖A‖

tr(RTG),

which implies, max
D=diag(d)
d∈∂(φ(σ))

n∑
i=1

diu
T
i Rvi < lim

γ→0+

‖A+ γR‖ − ‖A‖
γ

.

If G ∈ ∂‖A‖ then ‖A + γR‖ ≥ ‖A‖ + tr(γRTG), for all A + γR ∈ Rm×n. So, using The-

orem 1, we have lim
γ→0+

‖A+ γR‖ − ‖A‖
γ

= max
d∈∂φ(σ)

n∑
i=1

diu
T
i Rvi and arrive at a contradiction.

Therefore, our assumption was wrong and ∂‖A‖ ⊆ S(A) and we obtain the desired result

S(A) = ∂‖A‖. �

Example 3. [46] Let A = UΣV T be a singular value decomposition of A and denote φ(σ) :=

‖σ‖∞ as the spectral norm of A. Then ∂‖σ‖∞ = conv{ei, : σi = σ1} and if the algebraic

multiplicity of σ1 be t then we have ∂‖A‖ = {U (1)HV (1) : H ∈ Rt×t, H ≥ 0, tr(H) = 1}.

Proof. As mentioned above let A = UΣV T be a SVD of A, and let the multiplicity of σ1

be t, with U = [U (1) U (2)] and V = [V (1) V (2)], where U (1) and V (1) have t columns.

Before writing the singular value decomposition of A we would like to define the (t + 1)th
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singular values of A as σt+1 and the preceding singular values as σ1, since σ1 has multiplicity

t. Therefore,

A = UΣV T = [U (1) U (2)]diag(σ1 σ1 · · · σ1 σt+1 · · ·σn)[V (1) V (2)]T ,

which implies, A = U (1)



σ1 0 ... 0

0 σ1 ... 0

0 0 σ1 0

.

0 0 ... σ1


V (1)T + U (2)Σ(2)V (2)T

= U (1)σ1ItV
(1)T + U (2)Σ(2)V (2)T

= σ1U
(1)V (1)T + U (2)Σ(2)V (2)T , (1.46)

where Σ(2) is a diagonal matrix containing the remaining singular values of A. According

to Theorem 2, G ∈ ∂‖A‖ can be written as G =
∑n

i=1 µiU
(1)
i D

(1)
i V

(1)T
i , with µi ≥ 0, and∑n

i=1 µi = 1. Also note that for each i, A = UiΣV
T
i be a SVD of A, and di ∈ ∂‖σ‖∞.

Now we will prove the following statement: If φ(σ) = ‖σ‖∞ which is the spectral norm of

A then ∂‖σ‖∞ = conv{ei, : σi = σ1}. We use the following argument: We can write the

subdiffrential of ‖σ‖∞ as ∂‖σ‖∞ = {y :< y, σ >= ‖σ‖∞ and ‖y‖1 ≤ 1}. Therefore,

‖σ‖∞ = σ1 = σTy

= σ1y1 + σ1y2 + · · · σ1yt + σt+1yt+1 + · · ·σnyn

≤ σ1(|y1|+ |y2|+ · · ·+ |yt|) + σt+1|yt+1|+ · · ·σn|yn| [Since, σi ≥ 0 for all i]

≤ σ1(|y1|+ |y2|+ · · ·+ |yt|+ |yt+1|+ · · ·+ |yn|)

≤ σ1‖y‖1

≤ σ1.
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To achieve the equality we must have

σ1|yi| = σiyi; i = 1, 2, ...t

= σi0; i = t+ 1, ...n.

Thus y1, y2, ...yt ≥ 0 and yi = 0, i = t+1, t+2, ...n. Now from σ1‖y‖1 = σ1 we have ‖y‖1 = 1

Therefore we find
∑t

i=1 yi = 1 and y = y1e1 + y2e2 + ...ytet ∈ conv{ei, : σi = σ1} and we

proved the statement. Since, G =
∑n

i=1 µiU
(1)
i D

(1)
i V

(1)T
i , we can express U

(1)
i and V

(1)
i , in

terms of U (1) and V (1) using the transformation U
(1)
i = U (1)Xi and V

(1)
i = V (1)Yi, where each

Xi and Yi is a t× t orthogonal matrix. Since V T
i = 1

σi
uTi A we have

V
(1)
i Xi =

1

σi
ATuiXi = V (1)Xi.

Hence Xi = Yi. Therefore we can write G as

G =
n∑
i=1

µiU
(1)XiD

(1)
i XT

i V
(1)T

= U (1)

(
n∑
i=1

µiXiD
(1)
i XT

i

)
V (1)T .

Defining H =
∑n

i=1 µiXiD
(1)
i XT

i and using the linearity of trace we can show

tr(H) = tr

(
n∑
i=1

µiXiD
(1)
i XT

i

)

=

(
n∑
i=1

µitr(XiD
(1)
i XT

i )

)

=

(
n∑
i=1

µitr(D
(1)
i XT

i Xi)

)
[since tr(AB) = tr(BA)]

=

(
n∑
i=1

µitr(D
(1)
i )

)
.

Recall from Theorem 2, we have ∂‖A‖=conv{UDV T ∈ Rm×n;D = diag(d) and d ∈

∂φ(σ)} and we have already proved for y ∈ ∂φ(σ), ‖y‖1 = 1 and D
(1)
i ’s are constructed

such that D
(1)
i = diag(y), y ∈ ∂φ(σ) = ∂‖σ‖∞. Therefore tr(D

(1)
i ) = 1, and tr(H) =
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(∑n
i=1 µitr(D

(1)
i )
)

=
∑n

i=1 µi = 1. To prove H is positive semidefinite we choose x ∈ Rt and

find

xTHx =
n∑
i=1

µix
TXiD

(1)
i XT

i x

=
n∑
i=1

µi(X
T
i x)TD

(1)
i (XT

i x)

=
n∑
i=1

µiz
TD

(1)
i z. (Denote z := XT

i x)

In summary we have, D
(1)
i is positive semidefinite for all y ∈ Rt and H =

∑n
i=1 µiXiD

(1)
i XT

i ,

is positive semidefinite as well. Therefore we can define the subdiffrential of A as

∂‖A‖ = {U (1)HV (1) for all H ∈ Rt×t, H ≥ 0, tr(H) = 1}.

Hence the result. �

Example 4. [46] Let A ∈ Rm×n (assume m ≥ n) has a SVD A = UΣV T with s zero singular

values, such that s < n. Denote φ(σ) := ‖σ‖1 then ∂‖σ‖1 = {x ∈ Rn : |xi| ≤ 1, xi = 1, i =

1, 2, ...n− s} and ∂‖A‖ = {U (1)V (1)T + U (2)TV (2)T ; for all T ∈ Rm−n+s×s, σ1(T ) ≤ 1}, where

U = [U (1) U (2)] and V = [V (1) V (2)], such that U (1) and V (1) have (n− s) columns.

Proof. Note that, ∂‖σ‖1 = {y ∈ Rn :< y, σ >= ‖σ‖1 and ‖y‖∞ ≤ 1}. Since there are s zero

singular values, we have,

‖σ‖1 = σ1 + σ2 + ...+ σn; [σi ≥ 0]

= σ1 + σ2 + ...+ σn−s.

Furthermore,

‖σ‖1 = σ1 + σ2 + ...+ σn−s

= σTy

= σ1y1 + σ2y2 + ...σn−syn−s (1.47)
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≤ σ1|y1|+ σ2|y2|+ ...σn−s|yn−s| (1.48)

≤ ‖y‖∞(σ1 + σ2 + ...σn−s); (Since; ‖y‖∞ = max
1≤i≤n−s

|yi|) (1.49)

≤ ‖σ‖1‖y‖∞ (1.50)

≤ ‖σ‖1. (1.51)

For (1.50) to become an equality ‖y‖∞(σ1 + σ2 + σ3 + ...σn−s) = ‖σ‖1‖y‖∞ we must have

‖y‖∞ = 1. For (1.49) to become an equality we need

σ1|y1|+ σ2|y2|+ σ3|y3|+ ...σn−s|yn−s| = ‖y‖∞(σ1 + σ2 + σ3 + ...σn−s)

which implies, |yi| = ‖y‖∞ = 1, (for i = 1, 2, ...n− s). (1.52)

For (1.48) to reduce to an equality, we need σ1y1 + σ2y2 + σ3y3 + ...σn−syn−s = σ1|y1| +

σ2|y2|+σ3|y3|+...σn−s|yn−s|, which together with (1.52) implies yi = |yi| = 1; i = 1, 2, ...n−s.

Combining all these conditions together finally we have

∂‖σ‖1 = {x ∈ Rn : |xi| ≤ 1, xi = 1, i = 1, 2, ...n− s}.

From Theorem 2, an element G of the set ∂‖A‖ can be written as G =
∑n

i=1 µiUiDiV
T
i

with µi ≥ 0 and
∑n

i=1 µi = 1, where di ∈ ∂‖σ‖1 and for each i, let A = UiΣV
T
i be a

SVD of A. Employing the partition U = [U (1) U (2)] and V = [V (1) V (2)], where U (1) and

V (1) have n− s columns, one can write G = U (1)V (1)T +
∑

i µiU
(2)
i WiV

(2)T
i , where Wi is an

(m−n+s)×s diagonal matrix with the absolute value of each diagonal element less than 1.

We can write U
(2)
i and V

(2)
i , in terms of U (2) and V (2) using the transformation U

(2)
i = U (2)Yi

and V
(2)
i = V (2)Zi, where Yi and Zi are orthogonal matrices of size (m−n+ s)× (m−n+ s)

and s× s, respectively. Therefore, G can be written as

G = U (1)V (1)T + U (2)TV (2)T ,

where T =
∑

i µiYiWiZ
T
i ∈ R(m−n+s)×s. Since Yi and Zi are orthogonal matrices of size

(m − n + s) × (m − n + s) and s × s, respectively, and Wi is an (m − n + s) × s diagonal
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matrix YiWiZ
T
i is a singular value decomposition of Wi for each i. If σ1(T ) denotes the

largest singular value of the matrix T then

σ1(T ) = σ

(∑
i

µiYiWiZ
T
i

)
. (1.53)

Since Wi is an (m − n + s) × s diagonal matrix with the absolute value of each diagonal

element less than 1 we have σ1(Wi) ≤ 1. Hence (1.58) yields,

σ1(T ) = σ

(∑
i

µiYiWiZ
T
i

)

=

(∑
i

µiσ1(Wi)

)
≤

∑
i

µi = 1.

Therefore, given any singular value decomposition of a matrix A the subdiffrential of the

matrix norm can be written as

∂‖A‖ = {U (1)V (1)T + U (2)TV (2)T ; for all T ∈ Rm−n+s×s, σ1(T ) ≤ 1}.

Hence the result. �

Theorems on Operator Norms We present the next two theorems, which are an exten-

sion of Theorem 1 and 2 in case of operator norm. Since the proofs of these theorems follow

closely to the proof of Theorem 1 and 2, we will just quote the theorems. The reader can

find the proofs in [46].

Theorem 5. [46] Let A,R ∈ Rm×n be given matrices. Then

lim
γ→0+

‖A+ γR‖ − ‖A‖
γ

= max
(v,w)∈Φ(A)

wTRv,

where Φ(A) = {v ∈ Rn, w ∈ Rm : ‖v‖Rn = 1, Av‖A‖ = u, ‖u‖Rm = 1, w ∈ ∂‖u‖Rm}.

Theorem 6. [46] With the notations defined in the previous theorem,

∂‖A‖ = conv{wvT : (v, w) ∈ Φ(A)}.
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1.2 Constrained and Unconstrained Principal Component Analysis (PCA)

In this section, we will review constrained and unconstrained classical principal compo-

nent analysis problems and their solutions. Recall the classical principal component analy-

sis (PCA) problem ([35, 38]) can be defined as an approximation to a given matrix A ∈ Rm×n

by a rank r matrix under the Frobenius norm:

min
X

r(X)≤k

‖A−X‖F , (1.54)

where r(X) denotes the rank of the matrix X. If UΣV T is a singular value decomposi-

tion (SVD) of X then the solutions to the above problem are given by thresholding on the

singular values of A: X̂ = UHr(Σ)V T , where Hr is the hard-thresholding operator that

keeps the r largest singular values and replaces the others by 0. This is also referred to as

Eckart-Young-Mirsky’s theorem in the literature [35]. An unconstrained version of problem

(1.54) is:

min
X
{‖A−X‖F + τr(X)},

where τ is some fixed positive parameter. A careful reader should note that the above problem

is simply the “Lagrangian form” of the problem (1.54). This problem can be solved by

assuming the rank of X from 0 to min{m,n}, and for each rank, it admits a closed form

analytical solution, given by the SVD of A, with the singular values being hard-thresholded

with τ . This algorithm is solvable in polynomial time. But in a more general set up where

only a subset of the entries of the data matrix is observable, for example, matrix completion

problem under low-rank penalties [48, 64]:

min
X

rank(X) subjcet to Aij = Xij, (i, j) ∈ Ω,
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where Ω ⊆ {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}, is indeed NP-hard [34]4. One common idea

used in such a situation is to consider a convex relaxation of the above problem. As it turns

out, the nuclear norm ‖X‖∗, the sum of the singular values of X, is a good substitution

for r(X) [33, 66] (see Section 1.1.2 for a detailed discussion on the nuclear norm and its

properties). Cai et al. used this idea and formulated the following convex approximation

problem ([48]):

min
X∈Rm×n

{
1

2
‖A−X‖2

F + τ‖X‖∗
}
, (1.55)

which they refer as singular value thresholding (SVT). Problem (1.55) can be solved using

an explicit formula ([48, 64]),which is derived by using advanced tools from convex analy-

sis (“subdifferentials” to be more specific).

1.2.1 Singular Value Thresholding Theorem

In this section we will quote the celebrated theorem of Cai, Candes and Shen [48]. We will

start with the following lemma.

Lemma 7. [46] Let φ(σ) = ‖σ‖1 and let X = UΣV T be a singular value decomposition of

X ∈ Rm×n (we assume m ≥ n). Let r denote the number of nonzero singular values of X,

and r < n. Then we have

∂‖X‖∗ = {U (1)V (1)T +W ;W ∈ Rm×n, U (1)TW = 0,WV (1) = 0, σ1(W ) = ‖W‖2 ≤ 1}

where U (1) ∈ Rm×r and V (1) ∈ Rn×r are column orthogonal matrices.

4A careful reader should note that the matrix completion problem is a special case of the affinely con-

strained matrix rank minimization problem [64]:

min
X

rank(X) subjcet to A(X) = b,

where X ∈ Rm×n be the decision variable and A : Rm×n → Rp be a linear map.
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Proof. Recall from Example 2,

∂‖σ‖1 = {x ∈ Rn : |xi| ≤ 1, xi = 1, i = 1, 2, ...r}.

Note that, by Theorem 2, if G ∈ ∂‖X‖∗ then G =
∑p

i=1 µiUiDiV
T
i with µi ≥ 0 and

∑p
i=1 µi =

1 and for each i, X = UiΣV
T
i denotes a SVD of X and di ∈ ∂‖σ‖1. Let X = UΣV T be a

singular value decomposition of X with r nonzero singular values. We partition the matrices

U and V such that U = [U (1) U (2)] and V = [V (1) V (2)], where U (1) and V (1) have r

columns. Write G as

G = U (1)V (1)T +
∑
i

µiU
(2)
i AiV

(2)T
i ,

where Ai is an (m− r)× (n− r) diagonal matrix with each diagonal element having absolute

value less than 1. We can express U
(2)
i ∈ Rm×m−r and V

(2)
i ∈ Rn×n−r, in terms of U (2) ∈

Rm×m−r and V (2) ∈ Rn×n−r using the transformation U
(2)
i = U (2)Yi and V

(2)
i = V (2)Zi where

the matrices Yi and Zi are orthogonal matrices of size (m−r)× (m−r) and (n−r)× (n−r)

respectively. Therefore G can be written as

G = U (1)V (1)T + U (2)TV (2)T ,

where

T =
∑
i

µiYiAiZ
T
i ∈ R(m−r)×(n−r).

We can further modify G as

G = U (1)V (1)T +W,

where

W = U (2)TV (2)T ;W ∈ Rm×n,

such that

U (1)TW = 0,WV (1) = 0.
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If σ1(W ) denotes the largest singular value of the matrix W then using unitary invariant

property of the matrix norm

σ1(W ) = σ

(∑
i

µiU
(2)YiAiZ

T
i V

(2)T

)

= σ

(
U (2)[

∑
i

µiYiAiZ
T
i ]V (2)T

)

= σ

(∑
i

µiYiAiZ
T
i

)
. (1.56)

Since Ai is an (m− r)× (n− r) diagonal matrix with each diagonal element having absolute

value less than 1, we have σ1(Ai) ≤ 1. Further using the unitary invariant property of the

matrix norm in (1.56) we find,

σ1(W ) = σ

(∑
i

µiYiAiZ
T
i

)
=

(∑
i

µiσ1(Ai)

)
≤
∑
i

µi = 1.

Hence the result. �

Theorem 8. [48] Let A ∈ Rm×n be given. For each τ ≥ 0, the singular value shrinkage

operator obeys

Dτ (A) = arg min
X
{1

2
‖X − A‖2

F + τ‖X‖∗}. (1.57)

Proof. Denote h(X) := 1
2
‖A−X‖2

F + τ‖X‖∗. Since both Frobenius norm and nuclear norm

are convex functions in X on R, h(X) is a strictly convex function in X. Therefore, h(X)

has a unique minimizer and the motivation behind this theorem is to show the minimizer is

Dτ (A). Note that, X̂ minimizes h(X) if and only if 0 ∈ ∂h(X̂), that is,

0 ∈ X̂ − A+ τ∂‖X̂‖∗.

Let X ∈ Rm×n, be a matrix of rank r and X = UΣV T be a SVD of X, with U ∈ Rm×r and

V ∈ Rn×r being column orthonormal matrices. According to Lemma 7,

∂‖X‖∗ = {UV T +W ;W ∈ Rm×n, UTW = 0,WV = 0, ‖W‖2 ≤ 1}.
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Write the SVD of A as

A = U0Σ0V
T

0 + U1Σ1V
T

1 , (1.58)

where U0, V0 are the singular vectors corresponding to the singular values of A greater than

τ , and U1, V1 are the singular vectors corresponding to the singular values of A less than τ ,

respectively. Denote X̂ := Dτ (A) then using (1.58) we have

X̂ = U0(Σ0 − τI)V T
0 ,

and therefore,

A− X̂ = U1Σ1V
T

1 + τU0V
T

0 = τ(U0V
T

0 + τ−1U1Σ1V
T

1 ) = τ(U0V
T

0 +W ),

where W = τ−1U1Σ1V
T

1 be such that UT
0 W = 0 and WV0 = 0, since UT

0 U1 = 0 and

V T
1 V0 = 0. Note that, from (1.58) we have the diagonal elements of Σ1 are less than τ . If we

denote σ1(W ) as the largest singular value of W , then using the unitary invariance property

of norm we find

σ1(W ) = σ1

(
τ−1U1Σ1V

T
1

)
= τ−1σ1 (Σ1) ≤ 1.

Therefore, ‖W‖2 ≤ 1 and finally we conclude A − X̂ ∈ τ∂‖X̂‖∗, which implies Dτ (A) =

arg min
X
{1

2
‖X − A‖2

F + τ‖X‖∗}. Hence the result. �

1.3 Principal Component Pursuit Problems or Robust PCA

It is well-known that the solution to the classical PCA problem is numerically sensitive to the

presence of outliers in the matrix. In other words, if the matrix A is perturbed by one single

large value at one location, the explicit formula for its low-rank approximation would yield

a much different solution than the unperturbed one. This phenomenon may be attributed

to the use of the Frobenius norm in measuring the closeness to A by its approximation in

the equivalent formulation of the classical PCA problem: the Frobenius norm would not
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encourage zero entries while making the norm small. As long as the matrix X − A is

sufficiently sparse, one can recover the low-rank matrix X. This leads to the formulation of

following rank-minimization problem:

min
X∈Rm×n

{r(X) + λ‖X − A‖0}, (1.59)

where λ > 0 is a balancing parameter and ‖·‖0 is the `0 norm which represents the number of

non zero entries in amtrix. Solving (1.59) directly is infeasible. It is combinatorial and NP-

hard [34]. On the other hand, we have learned recently (in particular during the last decade)

that `1 norm does encourage vanishing entries when the norm is made small. Therefore, a

good candidate to replace the `0 norm could be the `1 norm. Thus, to solve the problem

of separating the sparse outliers added to a low-rank matrix, Candes, Li, Ma, and Wright

argued to further replace the Frobenius norm in the SVT problem by the `1 norm ([32]; see

also [9]) and introduced the Robust PCA (RPCA) formulation:

min
X
{1

2
‖X − A‖l1 + λ‖X‖∗}. (1.60)

Unlike in the classical PCA and SVT problems, there is no explicit formula for the solution of

the above problem. Various numerical procedures have been proposed to solve RPCA prob-

lem. In [9], using augmented Lagrange multiplier method, Lin, Chen, and Ma proposed two

iterative methods: the exact Augmented Lagrange Method (EALM) and the inexact Aug-

mented Lagrange Method (iEALM). The iEALM method turns out to be equivalent to the

alternating direction method (ADM) later proposed by Tao and Yuan in [44]. In [49], Wright

et. al. proposed an proximal gradient algorithm to solve the RPCA problems as well.

In many real world applications, it is possible that some entries of the matrix A is

missing or only a portion of its entries is observable. In these situations one can think of an

index set which represents the observable entries of the matrix A. Let Ω be such that Ω ⊂

{1, 2, ...,m} × {1, 2, ..., n}. One can also define a projection operator (which is self adjoint)

πΩ : Rm×n → Rm×n, such that, (πΩ(A))ij = Aij if (i, j) ∈ Ω, and (πΩ(A))ij = 0 otherwise.
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Therefore (1.60) can be written as

min
X,S∈Rm×n

{‖X‖∗ + λ‖S‖`1},

subject to πΩ(X + S + E) = πΩ(A), and for given δ > 0; ‖πΩ(A−X − S)‖F ≤ δ.

(1.61)

It is evident that the low-rank part of the matrix A is pretty rigid. In other words for

problem (1.61), the sparse part of the decomposition can be restricted by using a projection

operator and a feasible solution can still be achieved. But the projection operator can not

be used on the low-rank part as it might bring huge discrepancies in X. It has already

been shown that under certain randomness hypotheses the solution to the problem (1.61)

can be achieved with high probability when δ = 0. Aybat, Goldfarb, and Ma formulated an

alternative to the minimization problem (1.61). Since, πΩ(A − X − S) ⊂ X + S − πΩ(A),

they formulated the following problem:

min
X,S∈Rm×n

{‖X‖∗ + λ‖πΩ(S)‖`1 : X,S ∈ Rm×n ∈ X}, (1.62)

where X := {X,S ∈ Rm×n : for given δ > 0; ‖X + S − πΩ(A)‖F ≤ δ}.

Theorem 9. [74] If (X∗, S∗) is an optimal solution to (1.62) then (X∗, πΩ(S∗)) is an optimal

solution to(1.61).

Using the smoothing technique discussed in Section 1.6, Ayabat, Goldfarb and Ma pro-

posed the following RPCA problem with smooth objective function:

min
X,S∈Rm×n

{fµ(X) + λgν(S) : X,S ∈ Rm×n ∈ X}, (1.63)

and partially smooth objective function

min
X,S∈Rm×n

{fµ(X) + λ‖πΩ(S)‖`1 : X,S ∈ Rm×n ∈ X}, (1.64)

and showed the inexact solution to the problems (1.63) and (1.64) are closely related to the

solution to (1.62).
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Theorem 10. [74] If (X(µ)∗, S(ν)∗) is an ε/2 optimal solution to (1.63) then (X(µ)∗, S(ν)∗)

is an ε optimal solution to(1.62) with µ = ν = ε
4τ

, where τ = 0.5 min{m,n}.

1.4 Weighted Low-Rank Approximation

In this section, we will briefly discuss the solutions of two classic weighted low-rank approxi-

mation problems: (i) Problem (1.4) proposed by Srebro and Jakkolla, and (ii) problem (1.5)

proposed by Manton, Mahony, and Hua. Recall that working with a weighted norm is funda-

mentally difficult, as the weighted low-rank approximation problems do not admit a closed

form solution, in general. Therefore a numerical procedure must be devised to solve the

problems.

It is easy to see that problem (1.4) is a special case of problem (1.5) withQ = diag(vec(W )),

where vec : Rm×n → Rmn×1 [23]. When W be a matrix of 1s, the solution to (1.4) can be

given using the classical PCA, otherwise problem (1.4) has no closed form solution in gen-

eral [39]. Note that the minimization problem (1.5), also becomes a regular low rank approx-

imation problem (1.1) when Q is an identity matrix, and its solution can be approximated

using the classical PCA [35]. It is a very common practice in non-negetive matrix factoriza-

tion and shape and motion from image streams (SfM) to replace the rank constraint by the

product of two matrices of compatible sizes [29, 40, 43, 45, 67, 68, 70, 71, 72]. That is, if

X ∈ Rm×n be such that r(X) ≤ r, then X can be factorized as X = UV T , where U ∈ Rm×r

and V ∈ Rn×r. Srebro and Jakkolla followed the above convention in studying the solution

to (1.4). In order to solve (1.4), first, the authors used a numerical procedure inspired by the

alternating direction method of updating U and V alternatively. The partial derivatives of

F (U, V ) = ‖(A− UV T )�W‖2
F
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with respect to U and V respectively are given by:

∂F

∂U
= (W � (UV T − A))V (1.65)

∂F

∂V
= (W � (V UT − AT ))V. (1.66)

The system of equations obtained by setting ∂F
∂U

= 0, for a fixed V , is a linear system in U

which after solving for U row-wise yields:

U(i, :)T = (V TWiV )−1V TWiA(:, i)T , (1.67)

where Wi ∈ Rn×n is a diagonal matrix with the weight from ith row of W along the diagonal

and the vector A(i, :) is the ith row of the matrix A. In 1997, Lu, Pei, and Wang used

a similar technique to update U and V in closed form by using an alternating projection

algorithm [29] (see also [23] for the algorithm and software package). They proposed to

update U and V via the following iterative procedure: At k + 1th step do:

vec(Vk+1) =
(
(In ⊗ Uk)Tdiag(vec(W ))(In ⊗ Uk)

)−1
(In ⊗ Uk)Tdiag(vec(W ))vec(A),

and

vec(Uk+1) =
(
(Vk+1 ⊗ Im)diag(vec(W ))(Vk+1 ⊗ Im)T

)−1
(Vk+1 ⊗ Im)diag(vec(W ))vec(A).

But the above update rule is computationally expensive as one iteration of the alternating

projection algorithm requires O(mnr2) flops for diag(vec(W )). However, with recovered U ,

Srebro and Jaakkola used a gradient descent method to update V . It is computationally

efficient, because, with recovered U = U∗, it will take only O(mnr) operations to compute

∂F
∂V

using the formula ∂F
∂V

= (W � (V U∗T −AT ))V and at the k+ 1 th iteration Vk+1 is given

via:

Vk+1 = Vk − η
(
(W � (VkU

∗T − AT ))Vk
)
, (1.68)

where η is the step length. Next, Srebro and Jaakkola proposed an Expectation-Maximization

inspired approach to solve (1.4), which is much simpler to implement, though it could settle
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down to a local minimum instead of a global minimum. The method is based on viewing (1.4)

as a maximum-likelihood problem with missing entries. If Wij only takes values either 0 or 1,

corresponding to unobserved and observed entires of A, respectively, then the key observation

for EM method is to refer A to a probabilistic model parameterized by the low-rank matrix

X and write:

A = X + E,

where E is white Gaussian noise. Each EM update is inspired by finding a new low-rank ma-

trix X which maximizes the expected log-likelihood of A as its missing entires are recovered

by the current low-rank estimate X. In summary, in the expectation step one recovers the

missing values of A from recent estimate X, and in the maximization step X is estimated

as a low-rank approximation of newly formed A. The authors extended this approach to a

general weighted case by considering a system with several target matrices: A1, A2, · · · , AN ,

but with a unique low-rank parameter matrix X such that

Ar = X + Er,

where Er are independent white Gaussian noise matrices. For Wij ∈ N ∪ {0}, they rescaled

the weight matrix to WEM = 1
maxij(W1)ij

W such that (WEM)ij ∈ [0, 1]. By scaling the weight

matrix, it is easy to see that problem (1.4) is transformed to a missing value problem with

0/1 weights and the EM update for X in each iterate is given by:

Xk+1 = Hr (WEM � A+ (1m×n −WEM)�Xk) ,

where Hr is the hard thresholding operator and 1m×n is a m × n matrix of all 1s. The

initialization for the EM method could be tricky. For a given threshold of weight bound εEM ,

the authors proposed to initialize X to a zero matrix if minij(WEM)ij ≤ εWEM
, otherwise

initialize X to A.

Now we will give a brief outline of the method proposed by Manton, Mahony, and Hua

to solve (1.5). Instead of using a matrix factorization to replace the rank constraint, Manton
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et al. proposed a more generalized approach on a Grassman manifold to solve (1.5) by

converting (1.5) to a double-minimization problem:

min
N∈Rn×(n−r)

NTN=In−r

(
min

R∈Rm×n
RN=0

‖A−R‖2
Q

)
. (1.69)

It is clear from the above formulation that r(N) = n− r, which together with the condition

RN = 0 implies r(R) ≤ r as every column of N ∈ N (R), where N is the null-space of R.

Since r(N) = n − r, r(N (R)) ≤ n − r and using the rank-nullity theorem it is easy to see

that r(R) ≤ r. They proposed: If R̂ be the solution to the inner minimization problem

R̂ = arg min
R∈Rm×n
RN=0

‖A−R‖2
Q,

then R̂ is given by

vec(R̂) = vec(A)−Q−1(N ⊗ Im)
(
(N ⊗ Im)TQ−1(N ⊗ Im)

)−1
(N ⊗ Im)Tvec(A),

where⊗ is Kronecker’s product. Using the expression for R̂ in the inner minimization problem

the objective function for the outer minimization problem is given by

‖X − R̂‖2
Q = vec(A)T (N ⊗ Im)

(
(N ⊗ Im)TQ−1(N ⊗ Im)

)−1
(N ⊗ Im)Tvec(A) := f(N),

a function of N . Finiding a minimum N̂ for the minimization problem

min
N∈Rn×(n−r)

NTN=In−r

f(N),

is an n(n − r) dimensional optimization problem. Consequently, by exploiting the symme-

try, the optimization problem can be reduced to r(n − r) parameters, as f(N) depends

on the range space of N , not on its individual elements. In [36], Edelman, Arias, and

Smith introduced a Riemannian structure to solve the outer optimization problem. How-

ever, in [37], Manton, Mahony, and Hua argued that instead of a “flat space approximation”

of the geodesic based algorithm, one can solve f(N) subject to NTN = I only under the
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assumption that f at any point N only depends on the range space of N . As a result they

shown the geodesic-based optimization algorithms (see, for example [36]) are not only the

“natural” algorithms.

Let N⊥ ∈ Rn×r be the orthogonal complement of N satisfying NTN⊥ = 0. For an ar-

bitrary N ∈ Rn×(n−r) with NTN = I, and a certain perturbation matrix Z ∈ Rn×(n−r), if

R(N +Z) = R(N), then f(N +Z) = f(N), where R denotes the range space. Manton, Ma-

hony, and Hua argued that, it is not necessary to consider all n(n−r) search directions while

minimizing f(N). For fixed N and N⊥, a perturbation Z ∈ Rn×(n−r) uniquely decomposes

as

Z = NL+N⊥K,

where L ∈ R(n−r)×(n−r) and K ∈ Rr×(n−r). Since R(N + NL) ⊂ R(N), it is sufficient to

consider only search direction Z = N⊥K. Since the total number of elements in K is r(n−r),

minimizing f(N) is an r(n− r) dimensional problem. In order to solve

min
N∈Rn×(n−r)

NTN=In−r

f(N),

Manton, Mahony, and Hua outlined the following numerical procedure: Choose N ∈ Rn×(n−r)

and N⊥ ∈ Rn×r such that NTN = I and [N N⊥]T [N N⊥] = I and define

φ(K) = N +N⊥K,

where K ∈ Rr×(n−r) to form the local cost function

f(φ(K)) = f(N +N⊥K).

Apply Newton’s method or simple steepest descent method to f(φ(K)) to calculate∇f(φ(K))

at K = 0, and compute a descent step 4K. A QR decomposition can be used to compute an

N such that NTN = I and R(N) = R(φ(4K)). Repeat the above steps until convergence.
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CHAPTER TWO: AN ELEMENTARY WAY TO SOLVE SVT
AND SOME RELATED PROBLEMS

In this chapter, we want to give a new and elementary treatment of Theorem 8 that is

accessible to a vast group of researchers, as it only requires basic knowledge of calculus

and linear algebra, to the singular value thresholding (SVT) and some other related sparse

recovery problems. We also show how naturally the shrinkage function can be used in solving

more advanced problems.

2.1 A Calculus Problem

We start with a regular calculus problem. Let λ > 0 and a ∈ R be given. Consider the

following problem:

Sλ(a) := arg min
x∈R

{
λ|x|+ 1

2
(x− a)2

}
. (2.1)

Theorem 11. Let λ > 0 be fixed. For each a ∈ R, there is one and only one solution Sλ(a),

to the minimization problem (2.1). Furthermore,

Sλ(a) =


a− λ, a > λ

0, |a| ≤ λ

a+ λ, a < −λ

.

Proof. Let f(x) = λ|x|+ 1
2
(x−a)2. Note that f(x)→∞ when |x| → ∞ and f is continuous

on R and differentiable everywhere except a single point x = 0. So, f achieves its minimum

value on R. Let x∗ = arg min
x∈R

f(x).

We consider three cases.

Case 1: Let x∗ > 0. Since f is differentiable at x = x∗ and achieves its minimum, we

must have f ′(x∗) = 0. Note that, for x > 0, we have

f ′(x) =
d

dx
(λx+

1

2
(x− a)2) = λ+ (x− a).
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Figure 2.1: Plots of f(x) for different values of a with λ = 1.

So,

λ+ (x∗ − a) = 0,

which implies

x∗ = a− λ.

To be consistent with x∗ > 0, we must require a− λ > 0 or, equivalently, a > λ.

Case 2: Let x∗ < 0. By proceeding similarly as in Case 1 above, we can arrive at

x∗ = a+ λ with a < −λ.

Case 3: Let x∗ = 0. Note that f(x) is no longer differentiable at x = 0 (So we could not

use the condition f ′(x∗) = 0 as before). But since f has a minimum at x∗ = 0 and since f

is differentiable on each side of x∗ = 0, we must have

f ′(x) > 0 for x > 0 and f ′(x) < 0 for x < 0.

So,

λ+ x− a > 0 for x > 0 and − λ+ x− a < 0 for x < 0.
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Thus,

λ− a > 0 and − λ− a < 0,

or, equivalently,

|a| ≤ λ.

To summarize, we have

x∗ =


a− λ with a > λ,

a+ λ with a < −λ,

0 with |a| ≤ λ.

Since one and only one of the three cases (1) a > λ, (2) a < −λ, and (3) |a| ≤ λ holds,

we obtain the uniqueness in general. With the uniqueness, it is straightforward to verify

that each of the three cases would imply the corresponding formula for x∗. This completes

the proof. �

2.2 A Sparse Recovery Problem

Recently, research in compressive sensing leads to the recognition that the `1-norm of a

vector is a good substitute for the count of the number of non-zero entries of the vector in

many minimization problems. In this section, we solve some simple minimization problems

using the count of non-zero entries or `1-norm. Given a vector v ∈ Rn, we want to solve

min
u∈Rn
{card(u) +

β

2
‖u− v‖2

`2
}, (2.2)

where card(u) denotes the number of non-zero entries of u, ‖·‖`2 denotes the Euclidean norm

in Rn, and β > 0 is a given balancing parameter. We can solve problem (2.2) component-

wise (in each ui) as follows. Notice that, given u ∈ Rn, each entry ui of u contributes 1 to

card(u) if ui is non-zero, and contributes 0 if ui is zero. If vi = 0, then ui = 0. We now will

investigate the case when vi 6= 0. Since we are minimizing g(u) := card(u) + β
2
‖u − v‖2

`2
,

if ui is zero then the contribution to g(u) depending on this ui is β
2
v2
i ; otherwise, if ui is
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non-zero, then we should minimize β
2
(ui − vi)2 for ui ∈ R \ {0}, which forces that ui = vi

and contributes 1 to g(u) as the minimum value. Combining all the cases, the solution u to

problem (2.2) is given component-wise by

ui =


0, if β

2
(vi)

2 ≤ 1

vi, otherwise.

Next, we replace card(u) by ‖u‖l1 in (2.2) and solve:

min
u∈Rn

[‖u‖`1 +
β

2
‖u− v‖2

`2
], (2.3)

where ‖ · ‖`1 denotes the `1 norm in Rn.

Using Theorem 11, we can solve (2.3) component-wise as follows.

Theorem 12. [60] Let β > 0 and v ∈ Rn be given and let

u∗ = arg min
u∈Rn

[‖u‖`1 +
β

2
‖u− v‖2

`2
],

then

u∗ = S1/β(v),

where, S1/β(v) denotes the vector whose entries are obtained by applying the shrinkage func-

tion S1/β(·) to the corresponding entries of v.

Proof. If ui and vi denote the ith entry of the vectors u and v, respectively, i = 1, 2, . . . , n,

then we have,

u∗ = arg min
u∈Rn

[‖u‖`1 +
β

2
‖u− v‖2

`2
]

= arg min
u∈Rn

n∑
i=1

|ui|+
β

2

n∑
i=1

(ui − vi)2

= arg min
u∈Rn

n∑
i=1

(
|ui|+

β

2
(ui − vi)2

)

= arg min
u∈Rn

{
n∑
i=1

(
1

β
|ui|+

1

2
(ui − vi)2

)}
.
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Since |ui| and (ui − vi)2 are both nonnegative for all i, the vector u∗ must have components

u∗i satisfying

u∗i = arg min
u∗i∈R
{ 1

β
|ui|+

1

2
(ui − vi)2},

for i = 1, 2, . . . , n. But by Proposition 1, the solution to each of these problems is given

precisely by S1/β(vi). This yields the result. �

Remark 13. The previous proof still works if we replace the vectors by matrices and use the

extension of the norms `1 and `2 to matrices by treating them as vectors. By using the same

argument we can obtain the following more general version of the previous theorem.

Theorem 14. [60] Let β > 0 and V ∈ Rm×n be given. Then

S1/β(V ) = arg min
U∈Rm×n

{‖U‖`1 +
β

2
‖U − V ‖2

`2
},

where S1/β(V ) is again defined component-wise.

Theorem 14 solves the problem of approximating a given matrix by a sparse matrix by

using the shrinkage function.

2.3 Solution to (1.55) via Problem (2.1)

We are ready to show how problem (1.55) is problem (2.1) in disguise. Given β > 0, using

the unitary invariance of the Frobenius norm and the nuclear norm we have

min
X
{‖X‖∗ +

β

2
‖X − A‖2

F} = min
X
{‖X‖∗ +

β

2
‖X − UÃV T‖2

F}

= min
X
{λ‖X‖∗ +

1

2
‖U(UTXV − Ã)V T‖2

F}

= min
X
{λ‖X‖∗ +

1

2

min{m,n}∑
i=1

σi(U(UTXV − Ã)V T )2}

= min
X
{λ‖X‖∗ +

1

2

min{m,n}∑
i=1

σi(U
TXV − Ã)2}

= min
X
{‖UTXV ‖∗ +

β

2
‖UTXV − Ã‖2

F}.
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It is now obvious from the last expression that the minimum occurs when UTXV is diagonal

since both terms in that expression get no larger when UTXV is replaced by its diagonal

matrix (with the help of (1.15)). So, the matrix E = (eij) := UTXV − Ã has no non-zero

off-diagonal entries: eij = 0 if i 6= j. Thus,

X = UX̃V T , with X̃ = Ã+ E,

which yields a SVD of X (using the same matrices U and V as in a SVD of A !). Then,

min
X
{‖X‖∗ +

β

2
‖X − A‖2

F} = min
X̃∈diag

{
‖X̃‖∗ +

β

2
‖X̃ − Ã‖2

F

}
= min

X̃∈diag

{∑
i

σ(X̃) +
β

2

∑
i

(σi(X̃)− σi(Ã))2

}
,

where “diag” is the set of diagonal matrices in Rm×n. Above is an optimization problem like

(2.1) (for vectors (σ1(X̃), σ2(X̃), ...)T as X̃ varies) whose solution is given by1

σi(X̃) = S1/β(σi(Ã)), i = 1, 2, ...

To summarize, we have proven Theorem 8.

Remark 15. 1. The most recent proof of this theorem is given by Cai, Candes, and Shen

in [48] where they give an advanced verification of the result as discussed in the proof of

Theorem 8. Our proof given above has the advantage that it is elementary and allows

the reader to “discover” the result.

2. There are many earlier discoveries of related results ([55]) where rank(X) is used in-

stead of the nuclear norm ‖X‖∗. We will examine one such variant in the next section.

3. One key ingredient in the above discussion is the unitary invariance of the norms ‖ · ‖∗

and ‖ · ‖F . It was von Neumann (see, e.g., [66]) who was among the first to study the

1A careful reader will notice the additional requirement on σi(X̃): they are non-negative and sorted in

descending order. Fortunately, this property can be automatically inherited from that of σi(Ã) and the

monotone property of the shrinkage function.
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family of all unitarily invariant matrix norms in matrix approximation, ‖ · ‖F being

one of them.

4. A closely related (but harder) problem is compressive sensing ([61, ?]). Readers are

strongly recommended to the recently survey by Bryan and Leise ([59]).

2.4 A Variation [5]

Some related problems can be solved by applying similar ideas. For example, let us consider

a variant of a well-known result of Schmidt (see, e.g., [55, Section 5]), replacing the rank by

the nuclear norm: For a fixed positive number τ , consider

min
X∈Rm×n

‖X − A‖F subject to ‖X‖∗ ≤ τ. (2.4)

Using similar methods as in the previous section, this problem can be transformed into the

following:

min
u∈Rmin{m,n}

‖u− v‖`2 subject to ‖u‖`1 ≤ τ. (2.5)

Note that, (2.5) related to a LASSO problem [58, 63, 62]. But unlike a LASSO problem,

no special assumption is made on v in (2.5). In spite of this difference with LASSO, as

in [58], one can form a Lagrange relaxation of (2.5), and solve the same problem as defined

in Theorem 2:

u∗ = arg min
u∈Rmin{m,n}

{1

2
‖u− v‖2

`2
+ λ‖u‖`1}, with ‖Sλ(v)‖`1 = τ, (2.6)

which has a solution u∗ = Sλ(v). We will now verify this. It is easy to see that

min
u∈Rmin{m,n}

{1

2
‖u− v‖2

`2
+ λ‖u‖`1} ≤

1

2
‖u− v‖2

`2
+ λ‖u‖`1 ,

for all u ∈ Rmin{m,n}. Since Sλ(v) solves (2.6) we have,

1

2
‖Sλ(v)− v‖2

2 + λτ ≤ 1

2
‖u− v‖2

`2
+ λ‖u‖`1 ,
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for all u ∈ Rmin{m,n}; which implies,

1

2
‖Sλ(v)− v‖2

2 ≤
1

2
‖u− v‖2

`2
+ λ(‖u‖`1 − τ),

for all u ∈ Rmin{m,n}. Therefore,

1

2
‖Sλ(v)− v‖2

2 ≤
1

2
‖u− v‖2

`2
,

for all u ∈ Rmin{m,n}, such that ‖u‖`1 ≤ τ . Hence u∗ = Sλ(v) solves (2.5). We now give the

following sketch of the derivation of converting (2.4) to (2.5): As in section 2.7.3, we use a

SVD of A: Let A = UÃV T be a SVD of A. Then,

min
X∈Rm×n

‖X − A‖F = min
X∈Rm×n

‖UTXV − Ã‖F .

Note that, by the unitary invariance of matrix norm, ‖X‖∗ = ‖UTXV ‖∗, so (2.4) can be

written as

min
X∈Rm×n

‖X − Ã‖F subject to ‖X‖∗ ≤ τ,

which, by using (1.15), can be further transformed to

min
X∈Rm×n

‖X − Ã‖F subject to X being diagonal and ‖X‖∗ ≤ τ. (2.7)

Next, if we let u and v be two vectors in Rmin{m,n} consisting of the diagonal elements of X

and Ã, respectively, then (2.7) is (2.5). Thus we have established the following result.

Theorem 16. [5] With the notations above, the solution to problem (2.4) is given by

X̂ = USλ(Ã)V T ,

for some λ such that ‖Sλ(Ã)‖`1 = τ.
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CHAPTER THREE: WEIGHTED SINGULAR VALUE
THRESHOLDING PROBLEM

In Chapter 1, we discussed the formulation of some classical low-rank approximation prob-

lems. Both classical PCA and SVT problems can be solved using closed form formulas based

on SVD of the given matrix. However, if the Frobenius norm is replaced by the l1 norm, no

closed form is available for the solution (for example RPCA). This situation does not hap-

pen just to l1 norm but to many other norms, including a weighted version of the Frobenius

norm [37, 39].

In this chapter, we formulate a weighted low-rank approximation problem and discuss

its numerical solution. We also present a detailed convergence analysis of our algorithm

and, through numerical experiments on real data, we demonstrate the improvements in

performance when weight is learned from the data over other state of the art methods.

3.1 Motivation Behind Our Problem: The Work of Golub, Hoffman, and

Stewart

Recall that the solution to (1.1) suffers form the fact that none of the entries of A is preserved

in the solution X. Let A ∈ Rm×n be the given matrix with k fixed columns. Write A as

A = (A1 A2). In 1987, Golub, Hoffman, and Stewart were the first to consider the following

constrained low rank approximation problem [1]:

Given A = (A1 A2) ∈ Rm×n with A1 ∈ Rm×k and A2 ∈ Rm×(n−k), find Ã2 such that (with

Ã1 = A1)

(Ã1 Ã2) = arg min
X1,X2

r(X1 X2)≤r
X1=A1

‖(A1 A2)− (X1 X2)‖2
F . (3.1)

That is, Golub, Hoffman, and Stewart required that the first few columns, A1, of A must be

preserved when one looks for a low rank approximation of (A1 A2). As in the standard low
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Figure 3.1: Visual interpretation of constrained low-rank approx-

imation by Golub, Hoffman, and Stewart and weighted low-rank

approximation by Dutta and Li.

rank approximation, the constrained low-rank approximation problem of Golub, Hoffman,

and Stewart also has a closed form solution.

Theorem 17. [1] With k = r(A1) and r ≥ k, the solutions Ã2 in (3.1) are given by

Ã2 = PA1(A2) +Hr−k
(
P⊥A1

(A2)
)
, (3.2)

where PA1 and P⊥A1
are the projection operators to the column space of A1 and its orthogonal

complement, respectively.

Later in Chapter 4 we present a thorough proof of Theorem 17 as it is more appropriate

to the context of that chapter. Recently, to solve background estimation problems, Xin

et al. [42] proposed a supervised model learning algorithm. They assumed that some pure

background frames are given and the data matrix A can be written into A = (A1 A2), where
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A1 contains the given pure background frames. Xin et al. required with B = (B1 B2) and

F = (F1 F2) partitioned in the same way as in A, find B and F satisfying

min
B,F

B1=A1

(rank(B) + ‖F‖gfl) ,

where ‖ · ‖gfl denotes a norm that is a combination of l1 norm and a local spatial total

variation norm (to encourage connectivity of the foreground). Indeed, [42] further simplified

the above model by assuming rank(B) = rank(B1). Since B1 = A1 and A1 is given, so

r := rank(B1) is also given and thus, we can re-write the model of [42] as follows:

min
B=(B1 B2)
rank(B)≤r
B1=A1

‖A−B‖gfl. (3.3)

This formulation resembles the constrained low rank approximation problem of Golub et

al. Inspired by Theorem 17 above and motivated by applications in which A1 may contain

noise, it makes more sense if we require ‖X1 − A1‖F small (as in the case of the total least

squares) instead of asking for X1 = A1. This leads us to consider the following problem: Let

λ > 0 and Wλ =

λIk 0

0 In−k

, find (X̂1 X̂2) such that

(X̂1 X̂2) = arg min
X1,X2

r(X1 X2)≤r

‖ ((A1 A2)− (X1 X2))Wλ‖2
F . (3.4)

This problem can be viewed as “approximately” preserving (controlled by a parameter λ),

instead of requiring exactly matching, in the first few columns (see Figure 3.1).

Note that multiplying a matrix from right by Wλ is same as multiply λ to each element of

the first k columns of that matrix and leaving the rest of the elements unchanged. As it turns

out, this formulation can be viewed as generalized total least squares problem (GTLS) [23,

24]. Problem (3.4) is a special case of weighted low-rank approximation with a rank-one

weight matrix and can be solved in closed form by using a single SVD of the given matrix

(λA1 A2) [23, 24]. A careful reader should also note that, both problems (3.1) and (3.4) can

be cast as special cases of structured low-rank problems with element-wise weights [26, 31].
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But what about an unconstrained version of the problem (3.4) where one can replace

the rank constraint by its convex surrogate, the nuclear norm? Can it still be capable of

making ‖X1−A1‖F small when one looks for a low-rank approximation of A? First, we will

answer these questions. Indeed, as in a related work of background estimation from video

sequence, shadow and specularity removal from face image, and domain adaptation problems

in computer vision and machine learning in ([3]), this idea of unconstrained weighted low-

rank approximation is shown to be more effective. An unconstrained version of (3.4) is:

min
X1,X2

{‖ ((A1 A2)− (X1 X2))Wλ‖2
F + τ‖(X1 X2)‖∗}, (3.5)

where τ > 0 is a balancing parameter. The above problem can be written as:

min
X=(X1 X2)

{λ2‖A1 −X1‖2
F + ‖A2 −X2‖2

F + τ‖X‖∗}.

Let

X̃ = arg min
X
{λ2‖A1 −X1‖2

F + ‖A2 −X2‖2
F + τ‖X‖∗},

and X̃ = (X̃1 X̃2) be a compatibale block partition. Therefore,

λ2‖X̃1 − A1‖2
F ≤ min

X=(X1 X2)
{λ2‖A1 −X1‖2

F + ‖A2 −X2‖2
F + τ‖X‖∗}

≤ ‖A2‖2
F + τ‖(A1 0)‖∗.

The first inequality is due to the fact ‖X̃2 − A2‖2
F + τ‖X̃‖∗ ≥ 0. Since X = (A1 0) is a

special choice of X we obtain the second inequality. Denote m := ‖A2‖2
F + τ‖(A1 0)‖∗ and

we find

λ2‖X̃1 − A1‖2
F ≤ m.

As λ → ∞ we have X̃1 → A1. This shows problem (3.5) can also make ‖X1 − A1‖F small

as claimed in the formulation of its constrained version, problem (3.4). Note that (3.5) is a

special unconstrained version of the problem (1.3), where the ordinary matrix multiplication

is used and the weight Wλ ∈ Rn×n is non-singular. A derivation of the above claim is provided

in Chapter 4. Considering its resemblance to the classical singular value thresholding (SVT)
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problem [48] one can denote problem (3.5) as the weighted SVT (WSVT) problem. Unlike

SVT there is no closed form solution for problem (3.5), as ‖XW‖∗ 6= ‖X‖∗, in general. In

contrast to the many numerical methods ([39, 40, 41, 43, 45, 47]) for solving the weighted

low-rank approximation problem (1.3), we are not aware of any numerical solutions to the

weighted SVT problem. Based on the formulation of the problem (3.5) above, one of the

main problem we will study in this chapter is the numerical solution to the WSVT problem.

Our algorithm can solve problem (3.5) for any non-singular weight matrix Wλ. But in the

numerical experiment section, we consider two computer vision applications where we use

diagonal weight matrix. Depending on the nature of the problem, the multiplication of the

diagonal weight matrix could be from left (when the rows of A need to be constrained) or

from right (when the columns of A need to be constrained). In many real world applications,

the data matrix is a “tall and skinny” matrix, which means it has more rows than columns.

For example, in analyzing a video sequence for background estimation the columns of the

test matrix is comprised of the video frames, where the total number of rows of A is the

total number of pixels in each video frame (see Figure 3.3). So indeed this is the case when

m >> n. In this chapter, we will study the case when the weight matrix is multiplied from

the right.

The rest of the chapter is organized as follows. In Section 3.2, we propose a numerical

algorithm to solve problem (3.5) for any general invertible weight matrix W using the fast

and simple alternating direction method. In Section 3.3, we propose a numerical algorithm

to solve problem (3.5) by using augmented Lagrange multiplier method. In Section 3.4,

we present the convergence analysis of our proposed algorithm in Section 3.3. Qualitative

and quantitative results demonstrating the efficiency of our algorithm on some real world

computer vision applications, using a special diagonal weight matrix W are given in Section

3.5.
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3.1.1 Formulation of the Problem

Given a target matrix A = (aij) ∈ Rm×n and a weight matrix W = (wij) ∈ Rn×n
+ with non

negative entries. Assume that W is invertible and m >> n. Our goal is to find a low rank

matrix X = (xij) ∈ Rm×n of rank less than or equal to a given integer r, (where necessarily

r(A) ≥ r ) such that the matrix X is the best approximation to A under the weighted

Frobenious norm. That is,

B = arg min
X
‖(A−X)W‖2

F ; subject to r(X) ≤ r. (3.6)

Using the nuclear norm a related unconstrained convex relaxation of the above problem is

B = arg min
X
{1

2
‖(A−X)W‖2

F + τ‖X‖∗}

= arg min
X
{1

2
‖AW −XW‖2

F + τ‖X‖∗}. (3.7)

3.2 A Numerical Algorithm for Weighted SVT Problem

We propose to introduce auxiliary variables and use alternating direction method to solve (3.7).

The novelty of our weighted SVT algorithm (WSVT) is that by using auxiliary variables, we

can employ the simple and fast alternating direction method (ADM) to numerically solve

the minimization problem (3.7). Denote XW = C ∈ Rm×n and as W is non-singular we can

rewrite (3.7) as

min
C
{1

2
‖AW − C‖2

F + τ‖XWW−1‖∗}

= min
C
{1

2
‖AW − C‖2

F + τ‖CW−1‖∗},

write D = CW−1 in the above to get

min
C,D
{1

2
‖AW − C‖2

F + τ‖D‖∗},

subject to CW−1 = D. A regularized version of the above problem can be written as:

min
C,D
{1

2
‖AW − C‖2

F + τ‖D‖∗ +
µ

2
‖D − CW−1‖2

F}, (3.8)
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where µ ≥ 0 is a fixed balancing parameter. If (Ĉ, D̂) solves (3.8) then we have

(Ĉ, D̂) = arg min
C,D

h(C,D) = arg min
C,D
{1

2
‖AW − C‖2

F + τ‖D‖∗ +
µ

2
‖D − CW−1‖2

F},

where h(C,D) = 1
2
‖AW − C‖2

F + τ‖D‖∗ + µ
2
‖D − CW−1‖2

F is a convex function and we

can justify our claim by using the following argument: Let h(C,D) = h1(C,D) + h2(C,D)

where h1(C,D) = 1
2
‖AW − C‖2

F + µ
2
‖D − CW−1‖2

F , and h2(C,D) = τ‖D‖∗. One way to

show h(C,D) is convex is to use the well known fact that if a function f(x) is convex then

f(βx+ (1− β)y) ≤ βf(x) + (1− β)f(y) for 0 ≤ β ≤ 1. We need to use the following result:

for A,B ∈ Rm×n, we have

‖A+B‖2
F = trace((A+B)T (A+B))

= trace((AT +BT )(A+B))

= trace(ATA+BTA+ ATB +BTB))

≤ trace(ATA) + trace(BTB)

= ‖A‖2
F + ‖B‖2

F .

Consider the linear combinations of C1,C2 and D1,D2 with respect to the parameter 0 ≤

α ≤ 1. Using the above result on h(αC1 + (1− α)C2, αD1 + (1− α)D2) we find:

h(αC1 + (1− α)C2, αD1 + (1− α)D2)

=
1

2
‖WA− αC1 − (1− α)C2‖2

F + τ‖αD1 + (1− α)D2‖∗

+
µ

2
‖αD1 + (1− α)D2 − αW−1C1 − (1− α)W−1C2‖2

F

=
1

2
‖(α + 1− α)WA− αC1 − (1− α)C2‖2

F + τ‖αD1 + (1− α)D2‖∗

+
µ

2
‖αD1 + (1− α)D2 − αW−1C1 − (1− α)W−1C2‖2

F

=
1

2
‖αWA+ (1− α)WA− αC1 − (1− α)C2‖2

F + τ‖αD1 + (1− α)D2‖∗

+
µ

2
‖αD1 + (1− α)D2 − αW−1C1 − (1− α)W−1C2‖2

F
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≤ α

2
‖WA− C1‖2

F +

(
1− α

2

)
‖WA− C2‖2

F + τα‖D1‖∗ + τ(1− α)‖D2‖∗

+
αµ

2
‖D1 −W−1C1‖2

F +

(
(1− α)µ

2

)
‖D2 −W−1C2‖2

F

= αh(C1, D1) + (1− α)h(C2, D2).

Hence our claim is justified.

Since h(C,D) is convex it has a unique minimizer and (Ĉ, D̂) minimizes h(C,D) if and

only if

0 ∈ ∂(C,D)h(Ĉ, D̂) implies 0 =
∂

∂C
h(Ĉ, D̂) and 0 ∈ ∂Dh(Ĉ, D̂).

The first optimality condition gives

Ĉ − AW + µ(ĈW−1 − D̂)(W−1)T = 0, (3.9)

that is,

Ĉ(In + µ(W TW )−1) = AW + µD̂(W T )−1,

which after solving for Ĉ gives (since (Im + µ(W TW )−1) is invertible for a positive µ),

Ĉ = (AW + µD̂(W T )−1)(In + µ(W TW )−1)−1.

From the second optimality condition we find

0 ∈ τ∂‖D̂‖∗ + µ(D̂ −W−1Ĉ),

which is a typical SVT problem. Using the well known result of Cai-Candes-Shen [48] we

can write

US τ
µ
(Σ)V T = arg min

D
{µ

2
‖D − ĈW−1‖2

F + τ‖D‖∗},

where UΣV T is a SVD of ĈW−1.
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In summary we have, Ĉ = (AW +µD̂(W T )−1)(In +µ(W TW )−1)−1 and D̂ = US τ
µ
(Σ)V T

where UΣV T be a SVD of ĈW−1. Therefore, our algorithm is:

Algorithm 1: WSVT algorithm

1 Input : A ∈ Rm×n, weight matrix W ∈ Rm×m
+ and τ > 0, ρ > 1;

2 Initialize: C = AW,D = A, Y = 0;µ > 0;

3 while not converged do

4 Ck+1 = (AW + µD(W T )−1)(In + µ(W TW )−1)−1;

5 [U Σ V ] = SV D(CW−1);

6 D = US τ
µ
(Σ)V T ;

7 µ = ρµ;

end

8 Output : X = CW−1

3.3 Augmented Lagrange Multiplier Method

In this section we use the classic augmented Lagrange multiplier method to solve (3.7). As

proposed in Section 3.2, first we introduce the auxiliary variables XW = C, and CW−1 = D

to make the alternating direction method applicable. After introducing the auxiliary variables

the augmented Lagrange function for the minimization problem (3.7) is

L(C,D, Y, µ) =
1

2
‖AW − C‖2

F + τ‖D‖∗ + 〈Y,D − CW−1〉+
µ

2
‖D − CW−1‖2

F , (3.10)

where Y ∈ Rm×n is the Lagrange multiplier and µ and τ are two positive balancing param-

eters. If (Ĉ, D̂) be a solution to (3.10) then

(Ĉ, D̂) = arg min
C,D

L(C,D, Y, µ).

The solution can be approximated using an alternating strategy of minimizing the augmented

Lagrange function with respect each component iteratively via the following rule: At (k+1)th
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iteration do:
Ck+1 = arg min

C
L(C,Dk, Yk, µk),

Dk+1 = arg min
D

L(Ck+1, D, Yk, µk),

Yk+1 = Yk + µk(Dk+1 − Ck+1W
−1),

where (Ck, Dk, Yk) is the given triple of iterate. We begin by completing the square on (3.10):

L(C,D, Y, µ) =
1

2
‖AW − C‖2

F + τ‖D‖∗ + 〈Y,D − CW−1〉+
µ

2
‖D − CW−1‖2

F

=
1

2
‖AW − C‖2

F + τ‖D‖∗ +
µ

2
(‖D − CW−1‖2

F +
2

µ
〈Y,D − CW−1〉

+
1

µ2
‖Y ‖2

F )− 1

2µ
‖Y ‖2

F

=
1

2
‖AW − C‖2

F + τ‖D‖∗ +
µ

2
‖D − CW−1 +

1

µ
Y ‖2

F −
1

2µ
‖Y ‖2

F .

Note that, by completing the squares, we have

arg min
C
L(C,Dk, Yk, µk) = arg min

C
{1

2
‖AW − C‖2

F +
µk
2
‖Dk − CW−1 +

1

µk
Yk‖2

F},

arg min
D

L(Ck+1, D, Yk, µk) = arg min
D
{τ‖D‖∗ +

µk
2
‖D − Ck+1W

−1 +
1

µk
Yk‖2

F}.

Since L(C,D, Y, µ) is a convex function in the argument C and D, it has a unique minimizer

and (Ĉ, D̂) minimizes L(C,D, Y, µ) if and only if

0 ∈ ∂(C,D)L(Ĉ, D̂, Y, µ) which implies, 0 =
∂

∂C
L(Ĉ, D̂, Y, µ) and 0 ∈ ∂DL(Ĉ, D̂, Y, µ).

Note that,

∂

∂C
L(Ĉ, D̂, Y, µ) = Ĉ − AW + µ(ĈW−1 − D̂ − 1

µ
Y )(W−1)T ,

which after solving for Ĉ yields (since the matrix (In + µ(WW T )−1) is invertible for µ ≥ 0)

Ĉ = (AW + µD̂(W T )−1 + Y (W T )−1)(In + µ(W TW )−1)−1.

The second optimality condition gives,

0 ∈ ∂DL(Ĉ, D̂, Y, µ), which is, 0 ∈ τ∂‖D̂‖∗ + µ(D̂ − ĈW−1 +
1

µ
Y ).
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Using the well known result from Cai-Candes-Shen [48] we have

US τ
µ
(Σ)V T = arg min

D
{µ

2
‖D − ĈW−1 +

1

µ
Y ‖2

F + τ‖D‖∗}

where UΣV T is a SVD of ĈW−1 − 1
µ
Y. Therefore, we propose Algorithm 2.

Algorithm 2: WSVT Algorithm: Augmented Lagrange Multiplier Method

1 Input : A ∈ Rm×n, weight matrix W ∈ Rn×n
+ and τ > 0, ρ > 1;

2 Initialize: C = AW,D = A, Y = 0;µ > 0;

3 while not converged do

4 C = (XW + µD(W T )−1 + Y (W−1)T )(In + µ(W TW )−1)−1;

5 [U Σ V ] = SV D(CW−1 − 1
µ
Y );

6 D = US τ
µ
(Σ)V T ;

7 Y = Y + µ(D − CW−1);

8 µ = ρµ;

end

9 Output : X = CW−1

3.4 Convergence of the Algorithm

In this section, we will establish the convergence of Algorithm 2. To do so, we will take

advantage of the special form of our augmented Lagrangian function L(C,D, Y, µ) in Section

3.3. We follow the main ideas from [7, 9, 44]. We will also use the same notation as

defined in the previous section. Recall that Yk+1 = Yk + µk(Dk+1 − Ck+1W
−1) and define

Ŷk+1 := Yk + µk(Dk − Ck+1W
−1). Also note that for ρ > 1, {µk} is an increasing geometric

sequence. We will require the situation when

∑
k

1

µk
<∞

to prove the convergence results.
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Theorem 18. We have

1. The sequences {Ck} and {Dk} are convergent. Moreover, if limk→∞{Ck} = C∞ and

limk→∞{Dk} = D∞, then C∞ = D∞W with

‖Dk − CkW−1‖ ≤ C

µk
, k = 1, 2, · · · ,

for some constant C independent of k.

2. If Lk+1 := L(Ck+1, Dk+1, Yk, µk), then the sequence {Lk} is bounded above and

Lk+1 − Lk ≤
µk + µk−1

2
‖Dk − CkW−1‖2

F = O(
1

µk
), for k = 1, 2, · · · .

Theorem 19. Let (C∞, D∞) be the limit point of (Ck, Dk) and define

f∞ =
1

2
‖AW − C∞‖2

F + τ‖D∞‖∗.

Then C∞ = D∞W and

−O(µ−2
k−1) ≤ 1

2
‖AW − Ck‖2

F + τ‖Dk‖∗ − f∞ ≤ O(µ−1
k−1).

To establish our main results, we need two lemmas.

Lemma 20. The sequence {Yk} is bounded.

The boundedness of the sequence {Ŷk} is true but requires a different argument.

Lemma 21. We have the following:

1. The sequence {Ck} is bounded.

2. The sequence {Ŷk} is bounded.
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3.4.1 Proofs

We need the following lemma (see also [9]).

Lemma 22. [46] Let P ∈ Rm×n and ‖·‖ be a unitary invariant matrix norm. Let Q ∈ Rm×n

be such that Q ∈ ∂‖P‖, where ∂‖P‖ denotes the set of subdifferentials of ‖ · ‖ at P . Then

‖Q‖∗ ≤ 1; where ‖ · ‖∗ is the dual norm of ‖ · ‖.

Proof of Lemma 20. By the optimality condition forDk+1 we have, 0 ∈ ∂DL(Ck+1, Dk+1, Yk, µk).

So,

0 ∈ τ∂‖Dk+1‖∗ + Yk + µk(Dk+1 − Ck+1W
−1).

Therefore, −Yk+1 ∈ τ∂‖Dk+1‖∗. By using Lemma 22, we conclude that the sequence {Yk} is

bounded by τ in the dual norm of ‖ · ‖∗. But the dual of ‖ · ‖∗ is the spectral norm, ‖ · ‖2. So

‖Yk+1‖2 ≤ τ . Hence {Yk} is bounded. �

Proof of Lemma 21. We start with the optimality of Ck+1:

0 =
∂

∂C
L(Ck+1, Dk, Yk, µk).

We get

(Ck+1W
−1 − A)WW T = Yk + µk(Dk − Ck+1W

−1), (3.11)

which equals Ŷk+1 by our definition at the beginning of this section.

1. Solving for Dk in (3.11), we arrive at

Dk = Ck+1(W−1 +
1

µk
W T )− 1

µk
(AWW T − Yk).

Next, using the definition of {Yk} to write

Dk = CkW
−1 − 1

µk−1

Yk−1 +
1

µk−1

Yk

and now equating the two expressions for Dk to obtain

CkW
−1 − 1

µk−1

Yk−1 +
1

µk−1

Yk = Ck+1(W−1 +
1

µk
W T )− 1

µk
(AWW T − Yk),
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which after post multiplying throughout by W leads to

Ck −
1

µk−1

Yk−1W +
1

µk−1

YkW = Ck+1(In +
1

µk
W TW )− 1

µk
(AWW T − Yk)W,

and can be simplified further to

Ck −
1

µk−1

Yk−1W = Ck+1(In +
1

µk
W TW )− 1

µk
AWW TW,

To simplify the notations, we will use O( 1
µk

) to denote matrices whose norm is bounded by

a constant (independent of k) times 1
µk

. Note that, for a fixed W the matrix AWW TW is a

constant matrix. So, by using the boundedness of {Yk}, the above equation can be written

as

Ck+1(I +
1

µk
W TW ) = Ck +O(

1

µk
). (3.12)

Since W TW is a symmetric positive definite matrix it is orthogonal diagonalizable. Diago-

nalize W TW as W TW = QΛQT , where Q ∈ Rn×n be column orthogonal (QTQ = In) and

use it in (3.12) to get

Ck+1(In +
1

µk
QΛQT ) = Ck +O(

1

µk
),

which is

Ck+1(QQT +
1

µk
QΛQT ) = Ck +O(

1

µk
),

and reduces to

Ck+1Q(In +
1

µk
Λ) = CkQ+O(

1

µk
).

Taking the Frobenius norm on both sides and using the triangle inequality yield

‖Ck+1Q(I +
1

µk
Λ)‖F ≤ ‖CkQ‖F +O(

1

µk
). (3.13)

Since the diagonal matrix I + 1
µk

Λ has all diagonal entries no smaller than 1 + λ/µk where

λ > 0 denotes the smallest eigenvalue of W TW , we see that

‖Ck+1Q‖F ≤ (1 +
λ

µk
)−1‖Ck+1Q(I +

1

µk
Λ)‖F .

61



Thus, (3.13) implies

‖Ck+1Q‖F ≤ (1 +
λ

µk
)−1‖CkQ‖F +O(

1

µk
),

which, by the unitary invariance of the norm, is equivalent to

‖Ck+1‖F ≤ (1 +
λ

µk
)−1‖Ck‖F +

C

µk
for all k,

for some constant C > 0 independent of k. Finally, using the fact that µk+1 = ρµk with ρ > 1,

we see that the above inequality implies (by mathematical induction) that ‖Ck‖F ≤ C∗ for

some constant C∗ > 0 (say, C∗ = C(µ0 + λ)/(µ0λ) works). This completes the proof of the

boundedness of {Ck}.

2. Equation (3.11) gives us Ŷk+1 = (Ck+1W
−1 − A)WW T , and so, the boundedness of {Ŷk}

follows immediately from the boundedness of {Ck} established in 1 above. �

Proof of Theorem 18. 1. Since Yk+1 − Ŷk+1 = µk(Dk+1 −Dk) we have

Dk+1 −Dk =
1

µk
(Yk+1 − Ŷk+1).

So, by the boundedness of {Yk} and {Ŷk}, for all k,

‖Dk+1 −Dk‖ =
1

µk
‖Yk+1 − Ŷk+1‖ ≤

2M

µk
.

There exists a N > 0 such that

‖
N∑
k=1

(Dk+1 −Dk)‖ ≤
N∑
k=1

‖Dk+1 −Dk‖ =
N∑
k=1

‖ 1

µk
(Yk+1 − Ŷk+1)‖ ≤

N∑
k=1

2M

µk
, (3.14)

where the first inequality is due to the triangle inequality. Hence, (3.14) implies,
∑N

k=1(Dk+1−

Dk) is convergent if
∑N

k=1
1
µk
<∞. Therefore, lim

N→∞
DN exists. Now, recall that

Ck+1 = (AW + µkDk(W
−1)T + Yk(W

−1)T )(I + µk(W
TW )−1)−1.

So, we see that {Ck} is convergent as well and their limits satisfy

C∞W
−1 = D∞.

62



Next, from the definition of {Yk}, we have

1

µk
(Yk+1 − Yk) = Dk+1 − Ck+1W

−1.

Thus,

‖Dk+1 − Ck+1W
−1‖ = O(

1

µk
). (3.15)

Hence the result.�

2. We have,

Lk+1 = L(Ck+1, Dk+1, Yk, µk)

≤ L(Ck+1, Dk, Yk, µk)

≤ L(Ck, Dk, Yk, µk)

=
1

2
‖AW − Ck‖2

F + τ‖Dk‖∗ + 〈Yk, Dk − CkW−1〉+
µk
2
‖Dk − CkW−1‖2

F

=
1

2
‖AW − Ck‖2

F + τ‖Dk‖∗ + 〈Yk−1, Dk − CkW−1〉+
µk−1

2
‖Dk − CkW−1‖2

F

+〈Yk − Yk−1, Dk − CkW−1〉+
µk − µk−1

2
‖Dk − CkW−1‖2

F

= Lk + 〈µk−1(Dk − CkW−1), Dk − CkW−1〉+
µk − µk−1

2
‖Dk − CkW−1‖2

F

= Lk + µk−1‖Dk − CkW−1‖2
F +

µk − µk−1

2
‖Dk − CkW−1‖2

F

= Lk +
µk + µk−1

2
‖Dk − CkW−1‖2

F .

Therefore,

Lk+1 − Lk ≤
µk + µk−1

2
‖Dk − CkW−1‖2

F .

In addition to that we find

Lk+1 − Lk ≤
µk + µk−1

2
‖Dk − CkW−1‖2

F =
(1 + ρ)

2µk−1

‖Yk − Yk−1‖2
F .

Boundedness of the sequence {YK} implies

Lk+1 − Lk ≤ O(µ−1
k−1), as

1

µk
→ 0, k →∞.
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Hence the result. �

Proof of Theorem 19. By Theorem 18 (i) and by taking the limit as k →∞, we get

C∞W
−1 = D∞. (3.16)

Note that

L(Ck, Dk, Yk−1, µk−1) = min
C,D

L(C,D, Yk−1, µk−1)

≤ min
CW−1=D

L(C,D, Yk−1, µk−1)

≤ ‖AW − C∞‖2
F + τ‖D∞‖∗

= f∞, (3.17)

where we applied (3.16) to get the last inequality. Note also that

‖AW − Ck‖2
F + τ‖Dk‖∗

= L(Ck, Dk, Yk−1, µk−1)− 〈Yk−1, Dk − CkW−1〉 − µk−1

2
‖Dk − CkW−1‖2

F ,

which, by using the definition of Yk and (3.17), can be further rewritten into

‖AW − Ck‖2
F + τ‖Dk‖∗

= L(Ck, Dk, Yk−1, µk−1)− 〈Yk−1,
1

µk−1

(Yk − Yk−1)〉 − µk−1

2
‖ 1

µk−1

(Yk − Yk−1)‖2
F

≤ f∞ +
1

2µk−1

(‖Yk−1‖2
F − ‖Yk‖2

F ). (3.18)

Next, by using triangle inequality we get

‖AW − Ck‖2
F + τ‖Dk‖∗

= ‖AW − Ck +DkW −DkW‖2
F + τ‖Dk‖∗

≥ ‖AW −DkW‖2
F + τ‖Dk‖∗ − ‖Ck −DkW‖2

F

≥ f∞ − ‖
1

µk−1

(Yk−1 − Yk)W‖2
F

= f∞ −
1

µ2
k−1

‖(Yk−1 − Yk)W‖2
F . (3.19)
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Combining (3.18) and (3.19), we obtain the desired result. �

3.5 Numerical Experiments

In this section, we will demonstrate the performance of Algorithm 2 on two computer vision

applications: background estimation from video sequences and shadow removal from face

images under varying illumination. We will show that even with diagonal weight matrix W

we can improve the performance as compared with other state-of-the-art unweighted low-

rank algorithms. All experiments were performed on a computer with 3.1 GHz Intel Core i7

processor and 8GB memory.

3.5.1 Background Estimation from video sequences

Background estimation from video sequences is a classic computer vision problem. A robust

background estimation model used for surveillance may efficiently deal with the dynamic

foreground objects present in the video sequence. Additionally, it is expected to handle

several other challenges, which include, but are not limited to: gradual or sudden change

of illumination, a dynamic background containing non-stationary objects and a static fore-

ground, camouflage, and sensor noise or compression artifacts. In these problems, one can

consider if the camera motion is small, the scene in the background is presumably static;

thus, the background component is expected to be the part of the matrix which is of low

rank [50]. Minimizing the rank of the matrix A emphasizes the structure of the linear sub-

space containing the column space of the background. However, the exact desired rank is

questionable, as a background of rank 1 is often unrealistic. For background estimation, we

use three different sequences: the Stuttgart synthetic video data set [51], the airport sequence,

and the fountain sequence [75]. We give qualitative analysis results on all three sequences.

For performing quantitative analysis between different methods, we use the Stuttgart video

sequence. It is a computer generated sequence from the vantage point of a static camera
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located on the side of a building viewing a city intersection. The reason for choosing this se-

quence is two fold. First, this is a challenging video sequence which comprises both static and

dynamic foreground objects and varying illumination in the background. Second, because

of the availability of ample amount of ground truth, we can provide a rigorous quantitative

comparison of the various methods. We choose the first 600 frames of the BASIC sequence

to capture the changing illumination and foreground object. Correspondingly, we have 600

high quality ground truth frames. Frame numbers 551 to 600 have static foreground, and

frame numbers 6 to 12 and 483 to 528 have no foreground. Given the sequence of 600

Figure 3.2: Sample frame from Stuttgart arti-

ficial video sequence.

test frames {I1, I2, · · · I600} and corresponding 600 ground truth frames, each frame in the

test sequence and in ground truth is resized to 64 × 80; originally they were 600 × 800.

Each resized frame is stacked as a column vector of size 5120 × 1. We form the test ma-

trix as A = {vec(I ′1), vec(I ′2), · · · , vec(I ′600)}, where vec(I ′i) ∈ R5120×1, I ′i ∈ R64×80, and

vec(·) : R64×80 → R5120×1 is an operator which maps the entries of R64×80 to a column vec-

tor R5120×1. Figure 3.2 shows a sample video frame from the Stuttgart video sequence and

Figure 3.3 demonstrates an outline of processing the video frames defined above.
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Figure 3.3: Processing the video frames.

We compare the performance of our algorithm to RPCA and SVT methods. We set a

uniform threshold 10−7 for each method. For iEALM and APG we set λ = 1/
√

max{m,n},

and for iEALM we choose µ = 1.5, ρ = 1.25 as suggested in [9, 32, 49]. To choose the

right set of parameters for WSVT we perform a grid search using a small holdout subset

of frames. For WSVT we set τ = 4500, µ = 5, ρ = 1.1 for a fixed weight matrix W . For

SVT we set τ̃ = τ/µ since our method is equivalent to SVT for W = In. Next, we show the

effectiveness of the weighted SVT and propose a mechanism for automatically estimating

the weights from the data.

3.5.2 First Experiment: Can We Learn the Weight From the Data?

We present a mechanism for estimating the weights from the data for the weighted SVT.

We use the heuristic that the data matrix A can be comprised of two blocks A1 and A2

such that A1 mainly contains the information about the background frames which have the

least foreground movements. However, the changing illumination, reflection, and noise are

typically also a part of those frames and pose a lot of challenges. Our goal is to recover a

low-rank matrix X = (X1 X2) with compatible block partition such that X1 → A1 + ε.

Therefore, we want to choose a weight λ̃ corresponding to the frames of A1. For this purpose,
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Figure 3.4: Histogram to chose the threshold ε1.

the main idea is to have a coarse estimation of the background using an identity weight

matrix, infer the weights from the coarse estimation, and then use the inferred weights to

refine the background.

We denote the test matrix as T , and ground truth matrix as G. We borrow some

notations from MATLAB to explain the experimental setup. The last 200 frames of the

video sequence are chosen for this experiment because they contain static foreground (last 50

frames) along with moving foreground object and varying illumination. Jointly the different

types of foreground objects and illumination pose a big challenge to the conventional SVT

or RPCA algorithms.

We use our method with W = In for 2 iterations on the frames and then detect the initial

foreground FIn. We plot the histogram of our initially detected foreground to determine the

threshold ε1 of the intensity value. In our experiments we pick ε1 = 31.2202, the second

smallest value of |(FIn)ij|, where | · | denotes the absolute value (see Figure 3.4). We replace

everything below ε1 by 0 in FIn and convert it in to a logical matrix LFIn. Arguably, for

each such logical video frame, the number of pixels whose values are on (+1) is a good
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Figure 3.5: Diagonal of the weight matrix Wλ̃ with λ̃ = 20 on the frames which has

less than 5 foreground pixels and 1 elsewhere. The frame indexes are chosen from the set

{
∑

i(LFIN)i1,
∑

i(LFIN)i2, · · ·
∑

i(LFIN)in}.

indicator about whether the frame is mainly about the background. We thus set a weight

λ̃ to the frames which has less than or equal to 5 foreground pixels and set a weight equal

to 1 to other frames and formed the diagonal weight matrix Wλ̃. In Figure 3.5 we plot the

diagonal of the weight matrix Wλ̃. Using our method defined above there is a weight λ̃ = 20

is set to the frames which are contender of the best background frames. Figure 3.6 validates

that we are able pick up the indexes correctly corresponding to the frames which has least

foreground movement. Originally there are 48 frames in last 200 ground truth frames which

has less than 5 pixels, our method picks up 51 frames. Next, we run our algorithm with

weight as Wλ̃ and compare the performance with RPCA and SVT.

3.5.3 Second Experiment: Learning the Weight on the Entire Sequence

We perform the same procedure as defined in Section 3.5.2 on the entire video sequence.

Figure 3.7 shows the histogram of our initially detected foreground to determine the threshold
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Figure 3.6: Original logical G(:, 401 : 600) column sum. From the ground truth we estimated

that there are 46 frames with no foreground movement and the frames 551 to 600 have static

foreground.

ε1 of the intensity value. In Figure 3.8 and 3.9 we show that using the method described

in Section 3.5.2 we are able to distinguish the correct frame indexes with least foreground

movement. Originally there are 57 frames in G which has less than 5 pixels, our method

picks up 61 frames.

3.5.4 Third Experiment: Can We Learn the Weight More Robustly?

Since our approach of learning the weights in Sections 3.5.1 and 3.5.2 relies on extracting

the initial background BIn and foreground FIn by performing the WSVT algorithm with

W = In, it might not always make sense to specify the number of pixels manually for each

test video sequence.

The initial success on learning the weights from Sections 3.5.1 and 3.5.2 motivates us

to propose a robust alternative. As mentioned before, we use WSVT with W = In for 2

iterations on the frames and detect the initial foreground FIn and background BIn. We
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Figure 3.7: Histogram to chose the threshold ε′1 = 31.2202.
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Figure 3.8: Diagonal of the weight matrix Wλ̃ with λ̃ = 20 on the frames which has less than

5 foreground pixels and 1 elsewhere.
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Figure 3.9: Original logical G column sum. From the ground truth we estimated that there

are 53 frames with no foreground movement and the frames 551 to 600 have static foreground.

plot the histogram of our initially detected foreground to determine the threshold ε1 of the

intensity value. We replace everything below ε1 by 0 in FIn and convert it into a logical

matrix LFIn. We convert BIn directly to a logical matrix LBIn. We calculate the percentage

score for each background and foreground frame and choose the threshold ε2 as

ε2 := mode({
∑

i(LFIN)i1∑
i(LBIN)i1

,

∑
i(LFIN)i2∑
i(LBIN)i2

, · · · ,
∑

i(LFIN)in∑
i(LBIN)in

}),

and finally the frame indexes with least foreground movement are chosen from the following

set:

I = {i : (

∑
i(LFIN)i1∑
i(LBIN)i1

,

∑
i(LFIN)i2∑
i(LBIN)i2

, · · · ,
∑

i(LFIN)in∑
i(LBIN)in

) ≤ ε2}.

Figures 3.10-3.13 demonstrate the percentage score plot for the Stuttgart video sequence,

the fountain sequence, and the airport sequence. Comparing with the ground truth frames

in Figures 3.6 and 3.9, we can see the effectiveness of the process on the Stuttgart video

sequence. Using the percentage score, our method picks up 49 and 58 frame indexes respec-

tively. For the airport sequence and fountain sequence our method selects 104 and 44 frames

respectively. In the fountain sequence there is an almost static foreground object for the
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Figure 3.10: Percentage score versus frame number for Stuttgart video sequence. The method

was performed on last 200 frames.
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Figure 3.11: Percentage score versus frame number for Stuttgart video sequence. The method

was performed on the entire sequence.
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Figure 3.12: Percentage score versus frame number on first 200 frames for the fountain

sequence.
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Figure 3.13: Percentage score versus frame number on first 200 frames for the airport se-

quence.

74



200 400 600 800 1000

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Iterations

‖
C
k
W

−
1
−
D

k
‖
F

 

 

λ̃ = 1

λ̃ = 5

λ̃ = 10

λ̃ = 20

Figure 3.14: Iterations vs. µk‖Dk − CkW−1‖F for λ̃ ∈ {1, 5, 10, 20}

first 100 frames.

3.5.5 Convergence of the Algorithm

In Figure 3.14 and 3.15 we demonstrate the convergence of our algorithm as claimed in The-

orem 18. For a given ε > 0, the main stopping criteria of our WSVT algorithm is

|Lk+1 − Lk| < ε or if it reaches the maximum iteration. To demonstrate the convergence

of our algorithm as claimed in Theorem 18, we run it on the entire Stuttgart artificial video

sequence. The weights were chosen using the idea explained in Subsection 3.5.3. We choose

λ̃ ∈ {1, 5, 10, 20} and ε is set to 10−7. To conclude, in Figure 3.14 and 3.15, we show that for

any λ̃ > 0, there exists α, β ∈ R such that ‖Dk −CkW−1‖F ≤ α/µk and |Lk+1−Lk| ≤ β/µk

as µk →∞, for k = 1, 2, · · · .

3.5.6 Qualitative and Quantitative Analysis

In this section we perform rigorous qualitative and quantitative comparison between WSVT,

SVT, and RPCA algorithms on three different video sequences: Stuttgart artificial video se-
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Figure 3.15: Iterations vs. µk|Lk+1 − Lk| for λ̃ ∈ {1, 5, 10, 20}.

quence, the airport sequence, and the fountain sequence. For the quantitative comparison

between different methods, we only use Stuttgart artificial video sequence. We use two dif-

ferent metric for quantitative comparison: The receiver and operating characteristic (ROC)

curve, and peak signal-to-noise ratio (PSNR). In Figure 3.16, we tested each method on 200

resized video frames. We employ the method defined in Section 3.5.3 to adaptively choose the

weighted frame indexes for WSVT. Next, we test our method on the entire Stuttgart video

sequence and compare its performance with the other unweighted low-rank methods. Unless

specified, a weight λ̃ = 5 is used to show the qualitative results for the WSVT algorithm

in Figure 3.16 and 3.17. It is evident from Figure 3.16 that WSVT outperforms SVT and

recovers the background as efficiently as RPCA methods. However, in Figure 3.17, WSVT

shows superior performance over each method.

Next, in Figure 3.18 and 3.19, we perform the first set quantitative analysis of differ-

ent methods. For quantitative analysis we use the following measure: Denote true positive

rate (TPR) and false positive rate (FPR) as:
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Figure 3.16: Qualitative analysis: From left to right: Original, APG low-rank, iEALM low-

rank, WSVT low-rank, and SVT low-rank. Results on (from top to bottom): (a) Stuttgart

video sequence, frame number 420 with dynamic foreground, methods were tested on last

200 frames; (b) airport sequence, frame number 10 with static and dynamic foreground,

methods were tested on 200 frames; (c) fountain sequence, frame number 180 with static

and dynamic foreground, methods were tested on 200 frames.

TPR =
correctly classified foreground pixels

correctly classified foreground pixels + incorrectly rejected foreground pixels

and

FPR =
incorrectly classified foreground pixels

incorrectly identified foreground pixels + correctly rejected foreground pixels
.

Using the above relations we generate the receiver operating characteristic (ROC) curves for
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Figure 3.17: Qualitative analysis: From left to right: Original, APG low-rank, iEALM low-

rank, WSVT low-rank, and SVT low-rank. (a) Stuttgart video sequence, frame number

600 with static foreground, methods were tested on last 200 frames; (b) Stuttgart video

sequence, frame number 210 with dynamic foreground, methods were tested on 600 frames

and WSVT provides the best low-rank background estimation.

different methods. A uniform threshold vector linspace(0,255,100) is used for plotting the

receiver and operating characteristic (ROC) curves in Figure 3.18 and 3.19. From both ROC

curves in Figures 3.18 and 3.19, the increments in performance of WSVT after using the

weights seem to be trivial compared to the original SVT method, considering the computa-

tional complexity of proposed method is much higher according to Table 1. On the basis of

the quantitative results performed using a uniform threshold vector in Figures 3.18 and 3.19,

it supports the fact that WSVT performs better, albeit marginally. But the qualitative anal-

ysis results in Figures 3.16 and 3.17 show the performance of WSVT is superior to all

state-of-the-art methods. We now provide a more detailed demonstration of the foreground

objects recovered by different methods corresponding to the same video frames provided in

Figures 3.20 and 3.21. We use color map for better comparison.

78



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P
R

 

 

SVT, area=0.9063

iEALM, area=0.8463

APG, area =0.8458

WSVT, λ̃ = 1, area=0.9111

WSVT, λ̃ = 5, area=0.9304

WSVT, λ̃ = 10, area=0.9304

WSVT, λ̃ = 20, area=0.9306

Figure 3.18: Quantitative analysis. ROC curve to compare between different methods on

Stuttgart artificial sequence: 200 frames. For WSVT we choose λ̃ ∈ {1, 5, 10, 20}. We see

that for W = In, WSVT and SVT have the same quantitative performance, but indeed

weight makes a difference in the performance of WSVT.
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Figure 3.19: ROC curve to compare between the methods WSVT, SVT, iEALM, and APG

on Stuttgart artificial sequence: 600 frames. For WSVT we choose λ̃ ∈ {1, 5, 10, 20}.
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Figure 3.20: Foreground recovered by different methods: (a) fountain sequence, frame number

180 with static and dynamic foreground, (b) airport sequence, frame number 10 with static

and dynamic foreground, (c) Stuttgart video sequence, frame number 420 with dynamic

foreground.

From Figures 3.20 and 3.21 it is evident that in recovering the foreground objects, static

or dynamic, WSVT outperforms other methods. A careful reader must also note that WSVT

uniformly removes the noise (the changing light and illumination, and movement of the leaves

of the tree for the Stuttgart sequence) from each video sequence.

Inspired by the empirical results in Figures 3.20 and 3.21, we propose a nonuniform

threshold vector to plot the ROC curves and compare between the methods using the same

metric. In Figures 3.22 and 3.23, we provide quantitative comparisons between the methods

using a new non-uniform threshold vector [0,15,20,25,30,31:2.5:255]. This way we can

reduce the number of false negatives and increase the number of true positives detected by
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Figure 3.21: Foreground recovered by different methods for Stuttgart sequence: (a) frame

number 210 with dynamic foreground, (b) frame number 600 with static foreground.

WSVT as it appears in Figure 3.16, 3.17, 3.20 and 3.21. To conclude, WSVT has better

quantitative and qualitative results when there is a static foreground in the video sequence.

Next we will provide another quantitative comparison of different methods. For this

purpose we will use peak signal to noise ratio (PSNR). PSNR is defined as 10log10 of the ratio

of the peak signal energy to the mean square error (MSE) observed between the processed

video signal and the original video signal.

If E(:, i) denotes each reconstructed vectorized foreground frame in the video sequence

and G(:, i) be the corresponding ground truth frame, then PSNR is defined as 10log10
M2
I

MSE
,

where MSE = 1
mn
‖E(:, i)−G(:, i)‖2

2 and MI is the maximum possible pixel value of the image.

In our case the pixels are represented using 8 bits per sample, and therefore, MI is 255. The

proposal is that the higher the PSNR, the better degraded image has been reconstructed

to match the original image and the better the reconstructive algorithm. This would occur
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Figure 3.22: Quantitative analysis. ROC curve to compare between the methods WSVT,

SVT, iEALM, and APG : 200 frames. For WSVT we choose λ̃ ∈ {1, 5, 10, 20}. The perfor-

mance gain by WSVT compare to iEALM, APG, and SVT are: 8.92%, 8.74%, and 20.68%

respectively on 200 frames (with static foreground)
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Figure 3.23: Quantitative analysis. ROC curve to compare between the methods WSVT,

SVT, iEALM, and APG : 600 frames. For WSVT we choose λ̃ ∈ {1, 5, 10, 20}. The perfor-

mance gain by WSVT compare to iEALM, APG, and SVT are 4.07%, 3.42%, and 15.85%

respectively on 600 frames.
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Figure 3.24: PSNR of each video frame for WSVT, SVT, iEALM, and APG. The meth-

ods were tested on last 200 frames of the Stuttgart data set. For WSVT we choose

λ̃ ∈ {1, 5, 10, 20}.
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Figure 3.25: PSNR of each video frame for WSVT, SVT, iEALM, and APG when meth-

ods were tested on the entire sequence. For WSVT we choose λ̃ ∈ {1, 5, 10, 20}. WSVT

has increased PSNR when a weight is introduced corresponding to the frames with least

foreground movement.
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Table 3.1: Average computation time (in seconds) for each algorithm in background estima-

tion

No. of frames iEALM APG SVT WSVT

200 4.994787 14.455450 0.085675 1.4468

600 131.758145 76.391438 0.307442 8.7885334

because we wish to minimize the MSE between images with respect to the maximum signal

value of the image. For a reconstructed image with 8 bits bit depth, the PSNR are between

30 and 50 dB, where the higher is the better.

In Figures 3.24 and 3.25, we demonstrate the PSNR and mean PSNR of different methods

on the Stuttgart sequence. For their implementation, first we calculate the PSNR of the last

200 frames of the sequence containing the static foreground, and finally we use 600 frames

of the video sequence. It is evident from Figures 3.24 and 3.25 that weight improves the

PSNR of WSVT significantly over the other existing methods. More specifically, we see that

the weighted background frames or the frames with least foreground movement has higher

PSNR than all other models traditionally used for background estimation. In Figures 3.24

and 3.25, for λ = 1, PSNR of the frames with least foreground movement is a little higher

than 30 dB, but for λ = 10 and 20 they are about 55 dB and 65 dB respectively.

3.5.7 Facial Shadow Removal: Using identity weight matrix

Removal of shadow and specularity from face images under varying illumination and camera

position is a challenging problem in computer vision. In 2003, Basri and Jacobs showed the

images of the same face exposed to a wide variety of lighting conditions can be approximated

accurately by a low-dimensional linear subspace [53]. More specifically, the images under

distant, isotropic lighting lie close to a 9-dimensional linear subspace which is known as
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Table 3.2: Average computation time (in seconds) for each algorithm in shadow removal

No. of images iEALM APG SVT WSVT

65 1.601427 10.221226 0.039598 1.047922

harmonic plane.

For our experiment we use test images from the Extended Yale Face Database B [54].1

The mechanism used to perform this experiments is fairly similar to the processing of the

video frames. A set of training images of same person taken under varying illumination and

camera position are first resized and vectorized to form the columns of the test matrix. We

use different low-rank approximation algorithms on the test matrix to decompose it in the

low-rank and error part. The low-rank component of the test-matrix is assumed to contain

the face images without shadow and specularities. We choose 65 sample images and perform

our experiments. The images are resized to [96,128], originally they were [480,640]. We set

a uniform threshold 10−7 for each algorithm. For APG and iEALM, λ = 1/
√

max{m,n},

and the parameters for iEALM are set to µ = 1.5, ρ = 1.25 [9, 49]. For WSVT we choose

τ = 500, µ = 15, and ρ = 3 and the weight matrix is set to In. Since we have no access

to the ground truth for this experiment we will only provide the qualitative result. Note

that the rank of the low-dimensional linear model recovered by RPCA methods is 35, while

WSVT and SVT are able to find a rank 4 subspace. Figure 3.26 and 3.27 show that WSVT

outperforms SVT and RPCA algorithms. Since iEALM and APG has same reconstruction

we only provide qualitative analysis for APG.

1see also, http://vision.ucsd.edu/content/extended-yale-face-database-b-b
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Figure 3.26: Left to right: Original image (person B11, image 56, partially shadowed), low-

rank approximation using APG, SVT, and WSVT. WSVT removes the shadows and spec-

ularities uniformly form the face image especially from the left half of the image.

Figure 3.27: Left to right: Original image (person B11, image 21, completely shadowed), low-

rank approximation using APG, SVT, and WSVT. WSVT removes the shadows and spec-

ularities uniformly form the face image especially from the eyes, chin, and nasal region.

In both cases, WSVT removes the shadow and specularity uniformly from the face image

and provides a superior qualitative result compare to SVT and RPCA algorithms.
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CHAPTER FOUR: ON A PROBLEM OF WEIGHTED LOW
RANK APPROXIMATION OF MATRICES

In image processing, rank-reduced signal processing, computer vision, and in many other

engineering applications SVD is a successful designing tool. But SVD has limitations and in

many applications, it may fail. Recall from Chapter 1, the solutions to (1.1) are given by

X∗ = Hr(A) := U(A)Σr(A)V (A)T , (4.1)

where A = U(A)Σ(A)V (A)T is a SVD of A and Σr(A) is the diagonal matrix obtained from

Σ(A) by thresholding: keeping only r largest singular values and replacing other singular val-

ues by 0 along the diagonal. This is also referred to as Eckart-Young-Mirsky’s theorem ([38])

and is closely related to the PCA method in statistics [35]. Note that the solutions to (1.1)

as given in (4.1) suffer from the fact that none of the entries of A is guaranteed to be pre-

served in X∗. In many applications this could be a typical weak point of SVD. For example

if SVD is used in quadrantally-symmetric two-dimensional (2-D) filter design, as pointed out

in ([37, 29, 30]), it might lead to a degraded construction in some cases as it is not able to

discriminate between the important and unimportant components of A. So it is required to

put more emphasis on some elements of the matrix A. In Chapter 3, we formulated and

solved a weighted low-rank approximation problem that approximately preserve k columns

of the data matrix when we put a large weight on them. But what about putting more em-

phasis on individual entries of a column, rather preserving an entire column? The method

we defined in Chapter 3 is not able to answer this question.

In this chapter, we study a more general weighted low-rank approximation that is also

inspired by the work of Golub, Hoffman, and Stewart (see Chapter 3). The problem we study

in this chapter is more generalized in the sense is that we use a pointwise matrix multipli-

cation with the weight matrix. This serves two purposes for us: one by using the pointwise

weight we have the freedom to control the elements of the given matrix to be preserved in
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the approximating low-rank matrix; and second, it helps us to show the convergence of our

solution to that of Golub, Hoffman, and Stewart for the limiting case of weights.

Figure 4.1: Pointwise multiplication with a weight ma-

trix. Note that the elements in block A1 can be con-

trolled.

We also propose an algorithm based on the alternating direction method and demonstrate

convergence asserted in our theorems.

4.1 Proof of Theorem 17

Recall that, in Chapter 3 we quote a theorem proposed by Golub, Hoffman, and Stewart [1].

We start by giving a detailed proof of the Theorem.

Proof. Without loss of generality let us assume r(A1) = k. If r(A1) = l < k then A1 can

be replaced by a matrix with l linearly independent columns chosen from A1 [1].The proof
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is based on the QR decomposition of the matrix A. Let the QR decomposition of A be

A = (A1 A2) = QR =

(
Q1 Q2 Q3

)
R11 R12

0 R22

0 0

 , (4.2)

where Q is an orthogonal matrix with blocks Q1, Q2 and Q3 of size, m× k, m× (n− k) and

m× (m− n), respectively. Note that, if m ≥ n then the block Q3 is considered to complete

the entire space. The column vectors of Q1 form an orthogonal basis for the column space of

A1, where those of Q2 and Q3 lie in the orthogonal complement of the column space of A1.

In other words, the column vectors of Q2 and Q3 form an orthonormal basis for the column

space of A2. The coefficient matrices, R11 and R22, are square matrices of size k × k and

(n − k) × (n − k) respectively, and they are upper triangular with R11 invertible (because

A1 has k linearly independent columns with k ≤ m and r(A1) = k and hence R11 is full

of rank and nonsingular). The other coefficient matrix R12 is of size k × (n − k). We can

rewrite (4.2) as,
QT

1A1 QT
1A2

QT
2A1 QT

2A2

QT
3A1 QT

3A2

 =


R11 R12

0 R22

0 0

 . (4.3)

Write X as:

X = QR̂ = (X1 X2) =

(
Q1 Q2 Q3

)
R11 R̂12

0 R̂22

0 R̂32

 .

Using the unitary invariance of the Frobenius norm one can rewrite (3.1) as:

min
R̂12,R̂22,R̂32

‖R12 − R̂12‖2
F + ‖R22 − R̂22‖2

F + ‖R32 − R̂32‖2
F ,

subject to r(


R11 R̂12

0 R̂22

0 R̂32

) ≤ r.
(4.4)
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Since R11 is nonsingular and of full rank, the choice of R̂12 does not change the rank of the

matrix R̂. The elementary column transformation on R̂ can make R̂12 identically 0 without

affecting the rank and changing R̂22 and R̂32 as well. 1 Therefore, one can choose R̂12 = R12,

and (4.4) becomes

min
R̂22,R̂32

‖

R22

0

−
R̂22

R̂32

 ‖2
F

such that r(

R̂22

R̂32

) ≤ r − k.

(4.5)

The above problem is equivalent to the classical PCA [1, 35, 38]. If R22 has a SVD UΣV T

then the matrix

R22

0

 has a SVD

UΣV T

0

 as well. Hence, the solution to (4.5) is

Hr−k

R22

0

 =

Hr−k(R22)

0

 . Therefore,


R11 R̂12

0 R̂22

0 R̂32

 =


R11 R12

0 Hr−k(R22)

0 0

 , and,

X = QR̂ = (A1 X2) =

(
Q1 Q2 Q3

)
R11 R12

0 Hr−k(R22)

0 0


=

(
Q1R11 Q1R12 +Q2Hr−k(R22)

)
=

(
Q1R11 Q1R12 +Hr−k(Q2R22)

)
.

The last equality is due to the fact that R22 and Q2R22 has the same SVD and can be shown

using the following argument: Let R22 = UΣV T be a SVD of R22. So, Q2R22 = Q2UΣV T =

U1ΣV T , where U1 = Q2U is a column orthogonal matrix and it implies, Q2Hr−k(R22) =

1One such elementary column transformation is post multiplying R̂ by

 Ik×k −R−111 R̂12k×n−k

0n−k×n−k In−k×n−k


which shows R̂22 can be eliminated by only using R11.
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Hr−k(Q2R22). Using (4.3) we can write,

(A1 | X2) = (Q1R11 Q1R12 +Hr−k(Q2R22)

= (Q1Q
T
1A1 Q1Q

T
1A2 +Hr−k(Q2Q

T
2A2))

= (Q1Q
T
1A1 PA1(A2) +Hr−k

(
P⊥A1

(A2)
)
)

= (A1 PA1(A2) +Hr−k
(
P⊥A1

(A2)
)
).

Therefore, Ã2 = PA1(A2) +Hr−k
(
P⊥A1

(A2)
)
. This completes the proof. �

Remark 23. According to Section 3 of [1], the matrix Ã2 is unique if and only if Hr−k
(
P⊥A1

(A2)
)

is unique, which means the (r − k)th singular value of P⊥A1
(A2) is strictly greater than

(r − k + 1)th singular value. When Ã2 is not unique, the formula for Ã2 given in Theo-

rem 20 should be understood as the membership of the set specified by the right-hand side

of (3.2). We will use this convention in this paper.

In this chapter, we consider the following problem by using a more general point-wise

multiplication with a weight matrix W of non-negative terms: given A = (A1 A2) ∈ Rm×n

with A1 ∈ Rm×k and A2 ∈ Rm×(n−k), and a weight matrix W = (W1 W2) ∈ Rm×n of

compatible block partition solve:

min
X1,X2

r(X1 X2)≤r

‖ ((A1 A2)− (X1 X2))� (W1 W2)‖2
F . (4.6)

This is the weighted low-rank approximation problem studied first when W is an indicator

weight for dealing with the missing data case ([40, 41]) and then for more general weight in

machine learning, collaborative filtering, 2-D filter design, and computer vision [39, 43, 45,

37, 29, 30]. One can consider (4.6) as a special case of the weighted low-rank approximation

problem (1.5) defined in [37]:

min
X∈Rm×n

‖A−X‖2
Q, subject to r(X) ≤ r,

where Q ∈ Rmn×mn is a symmetric positive definite weight matrix. Denote ‖A − X‖2
Q :=

vec(A − X)TQvec(A − X), where vec(·) is an operator which maps the entries of Rm×n to
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Rmn×1. Unlike problem (3.4) the weighted low-rank approximation problem (4.6) has no

closed form solution in general [39, 37]. Also, note that the entry-wise multiplication is

not associative with the regular matrix multiplication: (A · B) � C 6= A · (B � C), and

as a consequence, we lose the unitary invariance property in case of using the Frobenius

norm. We are interested in finding out the limit behavior of the solutions to problem (4.6)

when (W1)ij →∞ and W2 = 1, a matrix whose entries are equal to 1. One can expect that

with appropriate conditions, the solutions to (4.6) will converge and the limit is AG. We will

verify this with an estimate on the rate of convergence. We will also extend the convergence

result to the unconstrained version of the problem (4.6) and propose a numerical algorithm

to solve (4.6) for the special case of the weight matrix (W1)ij →∞ and W2 = 1.

The rest of the chapter is organized as follows. In Section 4.2, we state our main results.

Their proofs will be given in Section 4.3. In Section 4.4, we will propose a numerical algorithm

to solve problem (4.6) for a special choice of weights and present the convergence of our

proposed algorithm. Numerical results verifying our main results are given in section 4.5.

4.2 Main Results

We will start with a simple example. The example will support the fact why SVD can not

be used to find a solution to the problem (4.6). Next, we will present our main analytical

results.

Example 24. Let A =

σ1 0

0 σ2

 with σ1 > σ2 > 0 and let W =

1 0

0 w2

 , w2 > 0. Solve:

min
r(X̂)≤1

‖(A− X̂)�W‖2
F . (4.7)
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Writing X̂ =

a
b

(c d

)
, we solve

min
a,b,c,d

‖


σ1 0

0 σ2

−
a
b

(c d

)�
1 0

0 w2

 ‖2
F

= min
a,b,c,d

(
(σ1 − ac)2 + (σ2 − bd)2w2

2

)
.

There are two critical points with critical values

σ2
1 and σ2

2w
2
2

which, when w2
2 >

σ2
1

σ2
2
, yields a solution given by0 0

0 σ2


other than σ1 0

0 0


as expected from the SVD method.

Let (X̃1(W ), X̃2(W )) be a solution to (4.6). Denote A = P⊥A1
(A2) and Ã = P⊥

X̃1(W )
(A2).

Also denote s = r(A) and let the ordered non-zero singular values of A be σ1 ≥ σ2 ≥ · · · ≥

σs > 0. Let λj = min
1≤i≤m

(W1)ij and λ = min
1≤j≤k

λj.

Theorem 25. Let W2 = 1m×(n−k). If σr−k > σr−k+1, then

(X̃1(W ) X̃2(W )) = AG +O(
1

λ
), λ→∞,

where AG = (A1 Ã2) is defined to be the unique solution to (3.1).

Remark 26. 1. The assertion of the uniqueness of AG is due to the assumption σr−k >

σr−k+1 (see the Remark 23).
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2. As in ([26]), with proper condition one can find (X̃1(W ) X̃2(W ))→ AG as (W1)ij →

∞ and W2 = 1. We should mention, however, it does not give the convergence rate as

proposed in Theorem 25.

Theorem 27. Assume r > k. For (W1)ij > 0, if (X̃1(W ), X̃2(W )) is a solution to (4.6),

then

X̃2(W ) = PX̃1(W )(A2) +Hr−k

(
P⊥
X̃1(W )

(A2)
)
.

Next, if we do not know r but still want to reduce the rank in our approximation, consider

the unconstrained version of (4.6): for τ > 0,

min
X1,X2

{
‖ ((A1 A2)− (X1 X2))� (W1 W2)‖2

F + τr(X1 X2)
}
. (4.8)

Note that problem (3.7) in Chapter 3 is a special case of problem (4.8), where the ordinary

matrix multiplication is used with the nonsingular weight matrix W ∈ Rn×n and r(X1 X2)

is replaced by its convex function the nuclear norm X. We can establish our claim of (3.7)

to be a special case of (4.8) by using the following argument: Note that, replacing r(X1 X2)

by ‖X‖∗ in problem (4.8) we have:

min
X1,X2

{
‖ ((A1 A2)− (X1 X2))� (W1 W2)‖2

F + τ‖X‖∗
}
. (4.9)

Write W in its SVD form W = UΣV T , where U, V ∈ Rn×n are unitary matrices and Σ =

diag(σ1, σ2, · · · , σn) is a full rank diagonal matrix. Therefore using the unitary invariance

of the matrix norms (3.7) can be written as

min
X
{‖(A−X)UΣV T‖2

F + τ‖X‖∗} = min
X
{‖(AU −XU)ΣV T‖2

F + τ‖XU‖∗}

= min
X
{‖(AU −XU)Σ‖2

F + τ‖XU‖∗}

= min
X̃

X̃=XU

{‖(AU − X̃)�WΣ‖2
F + τ‖X̃‖∗},

where WΣ =

(
σ11 σ21 · · ·σn1

)
∈ Rm×n, and 1 ∈ Rm, is a vector whose entries are all

1. Thus (3.7) is in the form of (4.9) with data matrix AU and hence it is a special form

of (4.8).
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Again one can expect that the solutions to (4.8) will converge to AG as (W1)ij →∞ and

(W2)ij → 1. Define ArG, 0 ≤ r ≤ min{m,n}, to be the set of all solutions to (3.1). Let

(X̂1(W ) X̂2(W )) be a solution to (4.8). With the notations above we will present the next

two theorems.

Theorem 28. Every accumulation point of (X̂1(W ) X̂2(W )) as (W1)ij → ∞, (W2)ij → 1

belongs to ∪
0≤r≤min{m,n}

ArG.

Theorem 29. Assume that σ1 > σ2 > · · · > σs > 0. Denote σ0 := ∞ and σs+1 := 0. Then

the accumulation point of the sequence (X̂1(W ) X̂2(W )), as (W1)ij →∞ and (W2)ij → 1 is

unique; and this unique accumulation point is given by

(
A1 PA1(A2) +Hr∗

(
P⊥A1

(A2)
))

with r∗ satisfying

σ2
r∗+1 ≤ τ < σ2

r∗ .

Remark 30. For the case when P⊥A1
(A2) has repeated singular values, we leave it to the

reader to verify the following more general statement by using a similar argument: Let σ̂1 >

σ̂2 > ... > σ̂t > 0 be the singular values of P⊥A1
(A2) with multiplicity k1, k2, · · · kt respectively.

Note that
∑t

i=1 ki = s. Let σ2
p∗+1 ≤ τ < σ2

p∗ , where σp∗ has multiplicity kp∗ . Then the

accumulation points of the set (X̂1(W ), X̂2(W )), as (W1)ij →∞, (W2)ij → 1, belongs to the

set ∪
r∗
Ar∗G , where 1 +

∑p∗−1
i=1 ki ≤ r∗ <

∑p∗

i=1 ki.

4.3 Proofs

To prove Theorem 25, we first establish the following lemmas.

Lemma 31. As (W1)ij →∞ and W2 = 1, we have the following estimates.

(i) X̃1(W ) = A1 +O(
1

λ
).
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(ii) PX̃1(W )(A2) = PA1(A2) +O(
1

λ
).

(iii) P⊥
X̃1(W )

(A2) = P⊥A1
(A2) +O(

1

λ
).

Proof: (i). Note that,

‖(A1 − X̃1(W ))�W1‖2
F + ‖A2 − X̃2(W )‖2

F

= min
X1,X2

r(X1 X2)≤r

(
‖(A1 −X1)�W1‖2

F + ‖A2 −X2‖2
F

)
≤ ‖A2‖2

F (by taking (X1 X2) = (A1 0))

= m1 (say).

Then
∑

1≤i≤m
1≤j≤k

((A1)ij − (X̃1(W ))ij)
2(W1)2

ij ≤ m1 and so

|(A1)ij − (X̃1(W ))ij| ≤
√
m1

(W1)ij
; 1 ≤ i ≤ m, 1 ≤ j ≤ k.

Thus

X̃1(W ) = A1 +O(
1

λ
) as λ→∞.

(ii). For simplicity, let us assume r(A1) = k, full rank. If r(A1) = l < k, then A1 can be

replaced by a matrix with l linearly independent columns chosen from A1 [1]. We use the

QR decomposition of A = (A1 A2). Let

(A1 A2) = QR = (Q1 Q2 Q3)


R11 R12

0 R22

0 0

 ,

where Q ∈ Rm×m is an orthogonal matrix with block matrices Q1, Q2, and Q3 of sizes m×k,

m × (n − k), and m × (m − n), respectively, and the matrices R11 and R22 are both upper

triangular. Therefore, A1 = Q1R11,

A2 = Q1R12 +Q2R22.
(4.10)
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Note that Q1R12 = PA1(A2) and Q2R22 = P⊥A1
(A2). By (i), we see that r(X̃1(W )) = k, for

all large (W1)ij. We now look at the QR decomposition of X̃1(W ) :

X̃1(W ) = Q1(W )R11(W ), (4.11)

where Q1(W ) is column orthogonal (QT
1 (W )Q1(W ) = Ik), and R11(W ) is upper triangular.

The QR decomposition can be obtained via the Gram-Schmidt process. If we write the

matrices as collection of column vectors:

X̃1(W ) = (x1(W ) x2(W ) · · ·xk(W )), Q1(W ) = (q1(W ) q2(W ) · · · qk(W )),

and

A1 = (a1 a2 · · · ak), Q1 = (q1 q2 · · · qk),

where xi(W ), qi(W ), ai, qi ∈ Rm, i = 1, 2, · · · k, then by (i),

xi(W ) = ai +O(
1

λi
), λi →∞. (4.12)

Next, for each i = 1, 2, · · · , k we can show (where ‖ · ‖2 denotes the `2 norm of vectors)

‖xi(W )‖2 =

√√√√ m∑
j=1

(aji +O(
1

λji
))2)

=

√√√√ m∑
j=1

a2
ji + 2

m∑
j=1

ajiO(
1

λji
) +

m∑
j=1

(O(
1

λji
))2

=

√√√√(
m∑
j=1

a2
ji)

√√√√1 +
2∑m

j=1 a
2
ji

m∑
j=1

ajiO(
1

λji
) +

1∑m
j=1 a

2
ji

m∑
j=1

(O(
1

λji
))2

=‖ai‖2

√√√√1 +
2

‖ai‖2

m∑
j=1

ajiO(
1

λji
) +

1

‖ai‖2

m∑
j=1

(O(
1

λji
))2,

which together with the conditions: (i) min1≤j≤m λji > 1, and (ii) | 2
‖ai‖2

∑m
j=1 ajiO( 1

λji
) +

1
‖ai‖2

∑m
j=1(O( 1

λji
))2| < 1 gives

‖xi(W )‖2 ≈ ‖ai‖2(1 +
1

2
(

2

‖ai‖2

m∑
j=1

ajiO(
1

λji
) +

1

‖ai‖2

m∑
j=1

(O(
1

λji
))2)).

97



Therefore,

‖xi(W )‖2 ≈ ‖ai‖2 +O(
1

min1≤j≤m λji
). (4.13)

For each i = 1, 2, · · · , k, using the same arguments as above, from (4.13) we can show

1

‖xi(W )‖2

=(‖ai‖2 +O(
1

min1≤j≤m λji
))−1

=
1

‖ai‖2

(1 +
1

‖ai‖2

O(
1

min1≤j≤m λji
))−1

=
1

‖ai‖2

(1− 1

‖ai‖2

O(
1

min1≤j≤m λji
)).

Finally for each i = 1, 2, · · · , k, we find

xi(W )

‖xi(W )‖2

= (ai +O( 1
λi

)) 1
‖ai‖2 (1− 1

‖ai‖2O( 1
λi

)) = ai
‖ai‖2 +O( 1

λi
). (4.14)

In particular, as λ1 →∞,

q1(W ) =
x1(W )

‖x1(W )‖2

=
a1 +O( 1

λ1
)

‖a1 +O( 1
λ1

)‖2

=
a1

‖a1‖2

+O(
1

λ1

) = q1 +O(
1

λ1

).

Similarly, we see that

〈x2(W ), q1(W )〉 = 〈a2, q1〉+O

(
1

min{λ1, λ2}

)
, min{λ1, λ2} → ∞,

and

x2(W )− 〈x2(W ), q1(W )〉q1(W )

= a2 +O(
1

λ2

)− 〈a2 +O(
1

λ2

), q1 +O(
1

λ1

)〉(q1 +O(
1

λ1

))

= a2 − 〈a2, q1〉q1 +O

(
1

min{λ1, λ2}

)
, min{λ1, λ2} → ∞.

Therefore,

q2(W ) =
x2(W )− 〈x2(W ), q1(W )〉q1(W )

‖x2(W )− 〈x2(W ), q1(W )〉q1(W )‖2

=
a2 − 〈a2, q1〉q1 +O

(
1

min{λ1,λ2}

)
‖a2 − 〈a2, q1〉q1 +O

(
1

min{λ1,λ2}

)
‖2

,
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which using the same idea as in (4.14) and considering e1 = a2 − 〈a2, q1〉q1 reduces to

q2(W ) =
e1

‖e1‖2(1 + 1
‖e1‖2O

(
1

min{λ1,λ2}

)
)

=
e1

‖e1‖2

(1− 1

‖e1‖2

O

(
1

min{λ1, λ2}

)
). (4.15)

As q2 = e1
‖e1‖2 , (4.15) leads us to

q2(W ) = q2 +O

(
1

min{λ1, λ2}

)
, min{λ1, λ2} → ∞.

Continuing this process we obtain, as λ→∞,

Q1(W ) = (q1 q2 · · · qk) +O

(
1

min{λ1, · · · , λk}

)
= Q1 +O(

1

λ
).

Finally, we have

PX̃1(W )(A2) = Q1(W )Q1(W )TA2

=

(
Q1 +O(

1

λ
)

)(
Q1 +O(

1

λ
)

)T
A2

= PA1(A2) +O(
1

λ
),

as λ→∞.

(iii) We know that

PX̃1(W )(A2) + P⊥
X̃1(W )

(A2) = A2 = PA1(A2) + P⊥A1
(A2).

Using (ii)

PA1(A2) +O(
1

λ
) + P⊥

X̃1(W )
(A2) = PA1(A2) + P⊥A1

(A2), λ→∞.

Therefore,

P⊥
X̃1(W )

(A2) = P⊥A1
(A2) +O( 1

λ
), λ→∞. (4.16)

This completes the proof of Lemma 31. �
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Figure 4.2: An overview of the matrix setup for Lemma 33, Lemma 34, and Lemma 35.

Remark 32. For the case when there is an uniform weight in (W1)ij = λ > 0, one might

refer to [27] for an alternative proof of Lemma 31. But the proof in [27] can not be applied

in the more general case as in Lemma 31.

Next, we will quote one of the most involved results of this chapter in Lemma 35. In

this lemma, we will investigate how the weights (W1)ij → ∞ and W2 = 1 affect the hard-

thresholding operator. We will first quote two classic results.

Lemma 33. [13] Let Ã = A+E and σ 6= 0 be a non-repeating singular value of the matrix

A with u and v being left and right singular vectors respectively. Then as λ→∞, there is a

unique singular value σ̃ of Ã such that

σ̃ = σ + uTEv +O(‖E‖2). (4.17)
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The lemma above will allow us to estimate the difference between the singular values of

Ã and A. However, the perturbation matrix E not only changes the singular values of A,

but also affects the column space of A. Therefore, the perturbation measure of the singular

values of Ã and A does not necessarily suffice our goal to compare between Hr−k(Ã) and

Hr−k(A). This leads us to consider the column spaces of A1 and Ã1. One way to measure

the distance between two subspaces is to measure the angle between them [14]. Davis and

Kahan measured the difference of the angles between the invariant subspaces of a Hermitian

matrix and its perturbed form as a function of their perturbation and the separation of their

spectra. Wedin proposed a more generalized form. Using the generalized sin θ Theorem of

Wedin ([10]), the following results can be achieved (see Section 4.4 in [10]).

Lemma 34. [10] Let A and Ã be given as

Ã = Ã1 + Ã2 = A1 +A2 + E = A+ E.

Assume there exists an α ≥ 0 and a δ > 0 such that

σmin(Ã1) ≥ α + δ and σmax(A2) ≤ α,

then

‖A1 − Ã1‖ ≤ ‖E‖(3 +
‖A2‖
δ

+
‖Ã2‖
δ

). (4.18)

Now we will state our result.

Lemma 35. If σr−k > σr−k+1, then

Hr−k(Ã) = Hr−k(A) +O(
1

λ
), λ→∞. (4.19)

Proof. Let the SVDs of A, Ã be given by

A = UΣV T = (U1 U2)

Σ1 0

0 Σ2


V T

1

V T
2

 =: A1 +A2, (4.20)
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Ã = ŨΣ̃Ṽ T = (Ũ1 Ũ2)

Σ̃1 0

0 Σ̃2


Ṽ T

1

Ṽ T
2

 =: Ã1 + Ã2, (4.21)

such that U, Ũ ∈ Rm×m, V, Ṽ ∈ R(n−k)×(n−k), and Σ, Σ̃ ∈ Rm×(n−k) with Σ and Σ̃ being

diagonal matrices containing singular values of A and Ã, respectively, arranged in a non-

increasing order; U1, Ũ1 ∈ Rm×(r−k), U2, Ũ2 ∈ Rm×(m−r+k), V1, Ṽ1 ∈ R(n−k)×(r−k), and V2, Ṽ2 ∈

R(n−k)×(n−r).Using (4.20) and (4.21) we have (also following the structure proposed in Lemma 35):

Ã = Ã1 + Ã2 = A1 +A2 + E = A+ E. (4.22)

Then by (iii) of Lemma 31, we know that E = O( 1
λ
), λ→∞. Indeed, with the non-increasing

arrangement of the singular values in Σ and Σ̃, and the fact that E = O(
1

λ
) as λ → ∞,

Lemma 33 immediately implies that

Σ1 − Σ̃1 = O(
1

λ
) and Σ2 − Σ̃2 = O(

1

λ
) as λ→∞. (4.23)

Note that, r(A1) = r(Ã1) = r − k, and, since σr−k > σr−k+1, we can choose δ such that

δ ≥ 1

2
(σr−k − σr−k+1) > 0.

In this way, for all large λ the assumption of Lemma 34 will be satisfied. Since A1 = Hr−k(A)

and Ã1 = Hr−k(Ã), (4.18) can be written as

‖Hr−k(A)−Hr−k(Ã)‖ ≤ ‖E‖(3 +
‖A2‖
δ

+
‖Ã2‖
δ

). (4.24)

Since A2 is fixed, ‖A2‖ = O(1) as λ→∞. On the other hand, by (4.23), as λ→∞,

Ã2 = Ũ2Σ̃2Ṽ
T

2 = Ũ2(Σ2 +O(
1

λ
))Ṽ T

2 = Ũ2Σ2Ṽ
T

2 +O(
1

λ
Ũ2Ṽ

T
2 ).

Now the unitary invariance of the matrix norm implies,

‖Ã2‖ ≤ ‖Ũ2Σ2Ṽ
T

2 ‖+O(
1

λ
‖Ũ2Ṽ

T
2 ‖) = ‖Σ2‖+O(

1

λ
),
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which is bounded as λ→∞. Therefore (4.24) becomes

‖Hr−k(A)−Hr−k(Ã)‖ ≤ C‖E‖, (4.25)

for some constant C > 0 and for all large λ→∞. Thus

Hr−k(Ã) = Hr−k(A) +O(
1

λ
), λ→∞,

since E = O(
1

λ
) as λ→∞. This completes the proof of Lemma 35. �

Proof of Theorem 25. The proof is a consequence of Lemmas 31 and 35. �

Proof of Theorem 27. Note that,

‖(A1 − X̃1(W ))�W1‖2
F + ‖A2 − X̃2(W )‖2

F

= min
X1,X2

r(X1 X2)≤r

(
‖(A1 −X1)�W1‖2

F + ‖A2 −X2‖2
F

)
≤‖(A1 − X̃1(W ))�W1‖2

F + ‖A2 −X2‖2
F ,

for all r(X̃1(W ) X2) ≤ r. So,

(X̃1(W ) X̃2(W )) = arg min
X1=X̃1(W1)
r(X1 X2)≤r

‖(X̃1(W ) A2)− (X1 X2)‖2
F . (4.26)

Therefore, by Theorem 17, X̃2(W ) = PX̃1(W )(A2) +Hr−k

(
P⊥
X̃1(W )

(A2)
)
. �

Proof of Theorem 28. Let X̂(W ) = (X̂1(W ) X̂2(W )). We need to verify that {X̂(W )}W

is a bounded set and every accumulation point is a solution to (3.1) for some r. Since

(X̂1(W ) X̂2(W )) is a solution to (4.8), we have

‖(A1 − X̂1(W ))�W1‖2
F + ‖(A2 − X̂2(W ))�W2‖2

F + τr(X̂1(W ) X̂2(W ))

≤ ‖(A1 −X1)�W1‖2
F + ‖(A2 −X2)�W2‖2

F + τr(X1 X2). (4.27)

for all (X1 X2). By choosing X1 = A1, X2 = 0, we can obtain a constant m3 := ‖A2�W2‖2
F +

τr(A1 0) such that ‖(A1 − X̂1(W )) �W1‖2
F + ‖(A2 − X̂2(W )) �W2‖2

F ≤ m3. Therefore,

{X̂1(W ) X̂2(W )} is bounded. Let (X∗∗1 X∗∗2 ) be an accumulation point of the sequence.
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We only need to show that (X∗∗1 X∗∗2 ) ∈ ∪
r
ArG. As in the proof of Lemma 31 (i), we can

show that

lim
(W1)ij→∞
(W2)ij→1

X̂1(W ) = A1. (4.28)

Now, taking limit and setting X1 = A1 in (4.27), we can obtain,

‖A2 −X∗∗2 ‖2
F + τr(A1 X∗∗2 ) ≤ ‖A2 −X2‖2

F + τr(A1 X2), (4.29)

for all X2. If we denote r∗∗ = r(A1 X∗∗2 ), then for X2 with r(A1 X2) ≤ r∗∗, (4.29) yields

‖A2 −X∗∗2 ‖2
F ≤ ‖A2 −X2‖2

F . (4.30)

So, X∗∗2 is a solution to the problem of Golub, Hoffman, and Stewart. Thus, by Theorem 17,

X∗∗2 = PA1(A2) +Hr∗∗−k
(
P⊥A1

(A2)
)
.

This, together with (4.28) completes the proof. �

Proof of Theorem 29. Let X̂(W ) = (X̂1(W ) X̂2(W )) solve the minimization problem (4.8).

For convenience, we will drop the dependence on W in our notations. Then X̂ satisfies

‖(A1 − X̂1)�W1‖2
F + ‖(A2 − X̂2)�W2‖2

F + τr(X̂1 X̂2)

≤ ‖(A1 −X†1)�W1‖2
F + ‖(A2 −X†2)�W2‖2

F + τr(X†1 X†2), (4.31)

for all X† = (X†1 X†2) ∈ Rm×n. By choosing X†1 = A1 and X†1 = X̂2 in (4.31) we obtain

∑
1≤i≤m
1≤j≤k

((A1)ij − (X̂1)ij)
2(W1)2

ij ≤ τr(A1 X̂2)− τr(X̂1 X̂2) =: C.

Therefore,

X̂1 → A1, (W1)ij →∞. (4.32)

Next we choose X†1 = X̂1 in (4.31) and find, for all X†2,

‖(A2 − X̂2)�W2‖2
F + τr(X̂1 X̂2) ≤ ‖(A2 −X†2)�W2‖2

F + τr(X̂1 X†2). (4.33)
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As in the proof of (ii) of Lemma 31, assume r(A1) = k and consider a QR decomposition of

A :

A = QR = Q(R1 R2) = Q


R11 R12

0 R22

0 0

 .

Write R̂ := QT X̂ = (R̂1 R̂2) =


R̂11 R̂12

R̂21 R̂22

R̂31 R̂32

 and let R† := (R†1 R†2) =


R†11 R†12

R†21 R†22

R†31 R†32

 be

in compatible block partitions. Since the rank of a matrix is invariant under an unitary

transformation, (4.33) can be rewritten as

‖(A2 − X̂2)�W2‖2
F + τr(QT X̂1 QT X̂2)

≤ ‖(A2 −X†2)�W2‖2
F + τr(QT X̂1 QTX†2). (4.34)

When λ is large enough, R̂11 is nonsingular by (4.32) and the fact that r(A1) = k and we

can perform the row and column operations on the second term on left hand side of (4.34)

to get:

‖(A2 − X̂2)�W2‖2
F + τr


R̂11 0

0 R̂22 − R̂21R̂
−1
11 R̂12

0 R̂32 − R̂31R̂
−1
11 R̂12

 ,

which is equal to

‖(A2 − X̂2)�W2‖2
F + τk + τr

R̂22 − R̂21R̂
−1
11 R̂12

R̂32 − R̂31R̂
−1
11 R̂12

 .

Performing the similar operations on the right hand side we obtain

‖(A2 −X†2)�W2‖2
F + τr(R̂11) + τr

R†22 − R̂21R̂
−1
11 R

†
12

R†32 − R̂31R̂
−1
11 R

†
12

 .
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Substituting these back in (4.34) we obtain

‖(A2 − X̂2)�W2‖2
F + τr

R̂22 − R̂21R̂
−1
11 R̂12

R̂32 − R̂31R̂
−1
11 R̂12


≤ ‖(A2 −X†2)�W2‖2

F + τr

R†22 − R̂21R̂
−1
11 R

†
12

R†32 − R̂31R̂
−1
11 R

†
12

 , (4.35)

for all R†12, R
†
22, and R†32. From Theorem 28, we know that (R̂1 R̂2) has accumulation

points which belong to ∪
0≤r≤min{m,n}

ArG. We are going to show that lim
(W1)ij→∞
(W2)ij→1

R̂2 indeed exists.

Assume lim
(W1)ij→∞
(W2)ij→1


R̂12

R̂22

R̂32

 =


R̂∗12

R̂∗22

R̂∗32

 be an accumulation point. From (4.32), using the fact

that R̂11 → R11, R̂21 → 0, and R̂31 → 0, as (W1)ij →∞, (W2)ij → 1 in (4.35) we get

‖A2 − X̂∗2‖2
F + τr

R̂∗22

R̂∗32

 ≤ ‖A2 −X†2‖2
F + τr

R†22

R†32

 , (4.36)

for all R†12, R
†
22, and R†32. Since Frobenius norm is unitarily invariant, (4.36) reduces to

‖


R12

R22

0

−

R̂∗12

R̂∗22

R̂∗32

 ‖2
F + τr

R̂∗22

R̂∗32

 ≤ ‖

R12

R22

0

−

R†12

R†22

R†32

 ‖2
F + τr

R†22

R†32

 , (4.37)

for all R†12, R
†
22, and R†32. Substituting R†22 = R̂∗22, R

†
32 = R̂∗32, and R†12 = R12, in (4.37) yields

‖R12 − R̂∗12‖2
F ≤ 0,

which implies lim
(W1)ij→∞
(W2)ij→1

R̂12 = R12. Next, substituting R†12 = R̂∗12 in (4.37) we find

‖

R22

0

−
R̂∗22

R̂∗32

 ‖2
F + τr

R̂∗22

R̂∗32

 ≤ ‖
R22

0

−
R†22

R†32

 ‖2
F + τr

R†22

R†32

 , (4.38)
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for all R†22, R
†
32. Let R̄∗ =

R̂∗22

R̂∗32

 and r∗ = r(R̄∗), then (4.38) implies

‖

R22

0

− R̄∗‖2
F ≤ ‖

R22

0

−R∗‖2
F , (4.39)

for all R∗ ∈ R(m−k)×(n−k) with r(R∗) ≤ r∗. So R̄∗ solves a problem of classical low-rank

approximation of

R22

0

. Note that, Q2

R22

0

 = P⊥A1
(A2) (see (4.10)) and it is assumed

that P⊥A1
(A2) has distinct singular values. So there exists a unique R̄∗ which is given by

R̄∗ = Hr∗

R22

0

 as in (4.1)). Therefore there is only one accumulation point of {R̂2} and

so lim
(W1)ij→∞
(W2)ij→1

R̂2 exists. It remains for us to identify this unique accumulation point. Assume

that R22

0

 = QTΣP

is a SVD of

R22

0

 . Then, for any R∗ ∈ R(m−k)×(n−k), (4.38) gives

‖Σ−QR̄∗P T‖2
F + τr(QR̄∗P T )

≤ ‖Σ−QR∗P T‖2
F + τr(QR∗P T ), (4.40)

Since r∗ = r(R̄∗) and QR̄∗P T = diag(σ1 σ2 · · ·σr∗ 0 · · · 0), choosing R∗ such that

QR∗P T = diag(σ1 σ2 · · ·σr∗+1 0 · · · 0),

and using (4.40) we find

σ2
r∗+2 + · · ·+ σ2

n + τ ≥ σ2
r∗+1 + σ2

r∗+2 + · · ·+ σ2
n.

Next we choose R∗ such that

QR∗P T = diag(σ1 σ2 · · ·σr∗−1 0 · · · 0),
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and so r(R∗) = r∗− 1 < r∗. Now (4.39) and Ektart-Young-Mirsky’s theorem then imply the

equality in (4.40) can not hold. So,

σ2
r∗ + · · ·+ σ2

n − τ > σ2
r∗+1 + σ2

r∗+2 + · · ·+ σ2
n.

Therefore, we obtain

σ2
r∗ > τ ≥ σ2

r∗+1. (4.41)

It is easy to see that if (4.41) holds then r(R̄∗) = r∗. So,

r(R̄∗) = r∗ if and only if σ2
r∗ > τ ≥ σ2

r∗+1,

and in this case when r(R̄∗) = r∗, we have shown that lim
(W1)ij→∞
(W2)ij→1

R̂2 =


R12

Hr∗

R22

0


. Thus,

together with (4.32), this implies

lim
(W1)ij→∞
(W2)ij→1

(X̂1 X̂2) = Q( lim
(W1)ij→∞
(W2)ij→1

(R̂1 R̂2)) = Q


R12

R1 Hr∗

R22

0




= (A1 Q1R12 +Hr∗

Q2

R22

0


),

which is the same as (
A1 PA1(A2) +Hr∗

(
P⊥A1

(A2)
))
.

This completes the proof. �

4.4 Numerical Algorithm [2, 6]

In this section we propose a numerical algorithm to solve a special case of (4.6), which, in

general, does not have a closed form solution [37, 39]. Note (4.6) can be written as

min
X1,X2

r(X1 X2)≤r

(
‖(A1 −X1)�W1‖2

F + ‖(A2 −X2)�W2‖2
F

)
.
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We assume that r(X1) = k. It can be verified that any X2 such that r(X1 X2) ≤ r can be

given in the form

X2 = X1C +BD,

for some arbitrary matrices B ∈ Rm×(r−k), D ∈ R(r−k)×(n−k), and C ∈ Rk×(n−k). Here we will

focus on a special case when W2 = 1 in solving:

min
X1,C,B,D

(
‖(A1 −X1)�W1‖2

F + ‖A2 −X1C −BD‖2
F

)
. (4.42)

Writing (4.6) in the form (5.2) is not a new approach. A careful reader should note that,

for the special choice of the weight matrix the problem (5.2) can be written using a block

structure:

min
X1,C,B,D

‖
(A1 A2)− (X1 B)

Ik C

0 D


� (W1 1)‖2

F

 ,

which is equivalent to the alternating weighted least squares algorithm in the literature [39,

23]. But in our case we will not follow the algorithm proposed in [23]. Because the structure

we employed in (5.2) will serve two purposes for us: One is to verify the rate given by

Theorem 25 numerically and to gain some insight on the sharpness of the rate (O( 1
λ
), as

λ → ∞); the other one is to demonstrate a fast and simple numerical procedure based on

alternating direction method in solving the weighted low-rank approximation problem that

also allows detailed convergence analysis which is usually hard to obtain in other algorithms

proposed in the literature [39, 37, 23]. For the special structure of the weight our algorithm is

more efficient than [23] (see Algorithm 3.1, page 42) and can handle bigger size matrices which

we will demonstrate in the numerical result section. If k = 0, then (5.2) is an unweighted rank

r factorization of A2 and is known as alternating least squares problem [17, 18, 20]. Denote

F (X1, C,B,D) = ‖(A1 − X1) � W1‖2
F + ‖A2 − X1C − BD‖2

F as the objective function.

The above problem can be numerically solved by using an alternating strategy [9, 22] of
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minimizing the function with respect to each component iteratively:

(X1)p+1 = arg min
X1

F (X1, Cp, Bp, Dp),

Cp+1 = arg min
C
F ((X1)p+1, C,Bp, Dp),

Bp+1 = arg min
B
F ((X1)p+1, Cp+1, B,Dp),

and, Dp+1 = arg min
D

F ((X1)p+1, Cp+1, Bp+1, D).

(4.43)

Note that each of the minimizing problem for X1, C,B, and D can be solved explicitly by

looking at the partial derivatives of F (X1, C,B,D). But finding an update rule for X1 turns

out to be more involved than the other three variables. We update X1 element wise along

each row. Therefore we will use the notation X1(i, :) to denote the i-th row of the matrix

X1. We set ∂
∂X1

F (X1, Cp, Bp, Dp)|X1=(X1)p+1 = 0 and obtain

−(A1 − (X1)p+1)�W1 �W1 − (A2 − (X1)p+1Cp −BpDp)C
T
p = 0. (4.44)

Solving the above expression for X1 sequentially along each row gives

(X1(i, :))p+1 = (E(i, :))p(diag(W 2
1 (i, 1) W 2

1 (i, 2) · · ·W 2
1 (i, k)) + CpC

T
p )−1,

where Ep = A1 � W1 � W1 + (A2 − BpDp)C
T
p . The reader should note that, for each

row X1(i, :), we can find a matrix Li = diag(W 2
1 (i, 1) W 2

1 (i, 2) · · ·W 2
1 (i, k)) + CpC

T
p such

that the above system of equations are equivalent to solving a least squares solution of

Li(X1(i, :))Tp+1 = (E(i, :))Tp for each i. Next we find, Cp+1 satisfies

∂

∂C
F (X1, C,Bp, Dp)|C=Cp+1 = 0,

which implies

−(X1)Tp+1(A2 − (X1)p+1Cp+1 −BpDp) = 0, (4.45)

and consequently can be solved as long as (X1)p+1 is of full rank. Therefore solving for Cp+1

gives

Cp+1 = ((X1)Tp+1(X1)p+1)−1((X1)Tp+1A2 − (X1)Tp+1BpDp).
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Similarly, Bp+1 satisfies

−A2D
T
p + (X1)p+1Cp+1D

T
p +Bp+1DpD

T
p = 0. (4.46)

Solving (4.46) for Bp+1 obtains (assuming Dp is of full rank)

Bp+1 = (A2D
T
p − (X1)p+1Cp+1D

T
p )(DpD

T
p )−1.

Finally, Dp+1 satisfies

−BT
p+1A2 +BT

p+1(X1)p+1Cp+1 +BT
p+1Bp+1Dp+1 = 0, (4.47)

and we can write (assuming Bp+1 is of full rank)

Dp+1 = (BT
p+1Bp+1)−1(BT

p+1A2 −BT
p+1(X1)p+1Cp+1).

Algorithm 3: WLR Algorithm

1 Input : A = (A1 A2) ∈ Rm×n (the given matrix);

W = (W1 W2) ∈ Rm×n,W2 = 1 ∈ Rm×(n−k) (the weight); threshold ε > 0.;

2 Initialize: (X1)0, C0, B0, D0;

3 while not converged do

4 Ep = A1 �W1 �W1 + (A2 −BpDp)C
T
p ;

5 (X1(i, :))p+1 = (E(i, :))p(diag(W 2
1 (i, 1) W 2

1 (i, 2) · · ·W 2
1 (i, k)) + CpC

T
p )−1;

6 Cp+1 = ((X1)Tp+1(X1)p+1)−1((X1)Tp+1A2 − (X1)Tp+1BpDp);

7 Bp+1 = (A2D
T
p − (X1)p+1Cp+1D

T
p )(DpD

T
p )−1;

8 Dp+1 = (BT
p+1Bp+1)−1(BT

p+1A2 −BT
p+1(X1)p+1Cp+1);

9 p = p+ 1;

end

10 Output : (X1)p+1, (X1)p+1Cp+1 +Bp+1Dp+1.
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4.4.1 Convergence Analysis

Next we will discuss the convergence of our numerical algorithm. Since the objective function

F is convex only in each of the component X1, B, C, and D; it is hard to argue about the

global convergence of the algorithm. In Theorem 38 and 39, under some special assumptions

when the limit of the individual sequence exists, we show that the limit points are going to

be a stationary point of F . To establish our main convergence results in Theorem 38 and

39, the following equality will be very helpful.

Theorem 36. For a fixed (W1)ij > 0, and p = 1, 2, · · · , let mp = F ((X1)p, Cp, Bp, Dp).

Then,

mp −mp+1 =‖((X1)p − (X1)p+1)�W1‖2
F + ‖((X1)p − (X1)p+1)Cp‖2

F

+ ‖(X1)p+1(Cp − Cp+1)‖2
F + ‖(Bp −Bp+1)Dp‖2

F + ‖Bp+1(Dp −Dp+1)‖2
F .

(4.48)

Proof: Denote

mp − F ((X1)p+1, Cp, Bp, Dp) = d1,

F ((X1)p+1, Cp, Bp, Dp)− F ((X1)p+1, Cp+1, Bp, Dp) = d2,

F ((X1)p+1, Cp+1, Bp, Dp)− F ((X1)p+1, Cp+1, Bp+1, Dp) = d3,

and, F ((X1)p+1, Cp+1, Bp+1, Dp)−mp+1 = d4.

(4.49)

Therefore,

d1 = ‖(A1 − (X1)p)�W1‖2
F + ‖A2 − (X1)pCp −BpDp‖2

F − ‖(A1 − (X1)p+1)�W1‖2
F

− ‖A2 − (X1)p+1Cp −BpDp‖2
F

=
∑
i,j

((A1 − (X1)p)
2
ij(W1)2

ij −
∑
i,j

((A1 − (X1)p+1)2
ij(W1)2

ij + ‖A2 − (X1)pCp‖2
F

− ‖A2 − (X1)p+1Cp‖2
F − 2〈A2 − (X1)pCp, BpDp〉+ 2〈A2 − (X1)p+1Cp, BpDp〉
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=
∑
i,j

(X1)p)
2
ij(W1)2

ij −
∑
i,j

(X1)p+1)2
ij(W1)2

ij + 2
∑
i,j

(A1)ij(X1)p+1 −X1)p)
2
ij(W1)2

ij

+ ‖(X1)pCp‖2
F + ‖(X1)p+1Cp‖2

F − 2〈(A2, ((X1)p − (X1)p+1)Cp, 〉

+ 2〈((X1)p − (X1)p+1)Cp, BpDp〉

= ‖(X1)p �W1‖2
F − ‖(X1)p+1 �W1‖2

F + 2〈A1 �W1 �W1, (X1)p+1 − (X1)p〉

+ ‖(X1)pCp‖2
F − ‖(X1)pCp+1‖2

F − 2〈((X1)p − (X1)p+1)Cp, A2 −BpDp〉. (4.50)

Note that,

(((X1)p+1 − A1)�W1 �W1) = (A2 − (X1)p+1Cp −BpDp)C
T
p ,

as (X1)p+1 satisfies (4.44). Post multiplying both sides of the above relation by ((X1)p −

(X1)p+1)T gives us

(((X1)p+1−A1)�W1�W1)((X1)p−(X1)p+1)T = (A2−(X1)p+1Cp−BpDp)C
T
p ((X1)p−(X1)p+1)T ,

which is

(A1 �W1 �W1)((X1)p+1 − (X1)p)
T − (A2 −BpDp)C

T
p ((X1)p − (X1)p+1)T

= (X1)p+1CpC
T
p ((X1)p+1 − (X1)p)

T − (((X1)p+1 �W1 �W1)((X1)p − (X1)p+1)T

This, together with (4.50), will lead us to

d4 = ‖(X1)p �W1‖2
F − ‖(X1)p+1 �W1‖2

F − 2〈(X1)p+1 �W1 �W1, (X1)p+1 − (X1)p〉

+ ‖(X1)pCp‖2
F − ‖(X1)pCp+1‖2

F − 2〈((X1)p − (X1)p+1)Cp, (X1)p+1Cp〉

=
∑
i,j

(
((X1)p)

2
ij − ((X1)p+1)2

ij − 2((X1)p+1)ij((X1)p+1 − (X1)p)ij)(w1)2
ij

)
+ ‖(X1)pCp‖2

F + ‖(X1)pCp+1‖2
F − 2〈((X1)pCp, (X1)p+1)Cp〉

=
∑
i,j

(
((X1)p)

2
ij + ((X1)p+1)2

ij − 2((X1)p+1(X1)p)ij)(w1)2
ij

)
+ ‖((X1)p − (X1)p+1)Cp‖2

F

= ‖((X1)p − (X1)p+1)�W1‖2
F + ‖((X1)p − (X1)p+1)Cp‖2

F . (4.51)
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Similarly we find
d2 = ‖(X1)p+1(Cp − Cp+1)‖2

F ,

d3 = ‖(Bp −Bp+1)Dp‖2
F ,

d4 = ‖Bp+1(Dp −Dp+1)‖2
F .

(4.52)

Combining them together we have the desired result. �

Theorem 40 implies a lot of interesting convergence properties of the algorithm. For

example, we have the following estimates.

Corollary 37. We have

(i) mp −mp+1 ≥ 1
2
‖Bp+1Dp+1 −BpDp‖2

F for all p.

(ii) mp −mp+1 ≥ ‖((X1)p − (X1)p+1)�W1‖2
F for all p.

Proof: (i). From (4.48) we can write, for all p,

mp −mp+1

≥ ‖Bp+1(Dp −Dp+1)‖2
F + ‖(Bp −Bp+1)Dp‖2

F

=
1

2
(‖Bp+1Dp+1 −BpDp‖2

F + ‖2Bp+1Dp −Bp+1Dp+1 −BpDp‖2
F ),

by parallelogram identity. Therefore,

mp −mp+1 ≥
1

2
‖Bp+1Dp+1 −BpDp‖2

F .

This completes the proof.

(ii). This follows immediately from (4.48). �

We now can state some convergence results as a consequence of Theorem 40 and Corol-

lary 37.

Theorem 38. (i) We have the following:
∑∞

p=1 ‖Bp+1Dp+1 −BpDp‖2
F <∞, and

∞∑
p=1

(‖((X1)p − (X1)p+1)�W1‖) <∞.
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(ii) If
∑∞

p=1

√
mp −mp+1 < +∞, then lim

p→∞
BpDp and lim

p→∞
(X1)p and exist. Furthermore if

we write L∗ := lim
p→∞

BpDp then lim
p→∞

Bp+1Dp = L∗ for all p.

Proof: (i). From Corollary 37 we can write, for N > 0,

2(m1 −mN+1) ≥
N∑
p=1

(
‖Bp+1Dp+1 −BpDp‖2

F

)
,

and m1 −mN+1 ≥
∞∑
p=1

(‖((X1)p − (X1)p+1)�W1‖) ≥ λ2

N∑
p=1

‖(X1)p − (X1)p+1‖2
F .

Recall, λ = min
1≤i≤m
1≤j≤k

(W1)ij. Also note that, {mp}∞p=1 is a decreasing non-negative sequence.

Hence the results follows.

(ii). Again using Corollary 37 we can write, for N > 0,

1√
2

(
‖

N∑
p=1

(Bp+1Dp+1 −BpDp)‖F

)
≤ 1√

2

N∑
p=1

(‖Bp+1Dp+1 −BpDp‖F )

≤
N∑
p=1

√
mp −mp+1,

where the first inequality is due to triangle inequality and the second inequality follows

from (i). So

1√
2

(
‖

N∑
p=1

(Bp+1Dp+1 −BpDp)‖F

)
≤

N∑
p=1

√
mp −mp+1,

which implies
∑∞

p=1(Bp+1Dp+1−BpDp) is convergent if
∑∞

p=1

√
mp −mp+1 < +∞. Therefore,

lim
N→∞

BNDN exists. Similarly,(
‖

N∑
p=1

(Xp+1 −Xp)‖F

)
≤

N∑
p=1

(‖Xp+1 −Xp‖F ) ≤ 1√
λ

N∑
p=1

√
mp −mp+1,

which implies
∑N

p=1(Xp+1 −Xp) is convergent if 1√
λ

∑N
p=1

√
mp −mp+1 <∞. Therefore, we

conclude lim
p→∞

(X1)p exists.

Further, lim
p→∞
‖Bp+1Dp+1−Bp+1Dp‖2

F = 0, since {mp}∞p=1 converges. Therefore lim
p→∞

Bp+1Dp

exists and is equal to lim
p→∞

BpDp = L∗. This completes the proof. �
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From Theorem 38, we can only prove the convergence of the sequence {BpDp} but not

of {Bp} and {Dp} separately. We next establish the convergence of {Bp} and {Dp} with

stronger assumption. Consider the situation when

∞∑
p=1

√
mp −mp+1 < +∞. (4.53)

Theorem 39. Assume (4.53) holds.

(i) If Bp is of full rank and BT
p Bp ≥ γIr−k for large p and some γ > 0 then lim

p→∞
Dp exists.

(ii) If Dp is of full rank and DpD
T
p ≥ δIr−k for large p and some δ > 0 then lim

p→∞
Bp exists.

(iii) If X∗1 := lim
p→∞

(X1)p is of full rank, then C∗ := lim
p→∞

Cp exists. Furthermore, if we write

L∗ = B∗D∗, for B∗ ∈ Rm×(r−k), D∗ ∈ R(r−k)×(n−k), then (X∗1 , C
∗, B∗, D∗) will be a

stationary point of F .

Proof: (i). Using (4.48) we have, for N > 0,

N∑
p=1

√
mp −mp+1 ≥

N∑
p=1

‖Bp+1(Dp −Dp+1)‖F

=
N∑
p=1

√
tr[(Dp −Dp+1)TBT

p+1Bp+1(Dp −Dp+1)],

where tr(X) denotes the trace of the matrix X. Note that, BT
p Bp ≥ γIr−k, and we obtain

N∑
p=1

√
mp −mp+1 ≥

√
γ

N∑
p=1

‖Dp −Dp+1‖F .

Therefore, for N > 0,

√
γ‖

N∑
p=1

(Dp −Dp+1)‖F ≤
√
γ

N∑
p=1

‖Dp −Dp+1‖F ≤
N∑
p=1

√
mp −mp+1,

which implies
∑∞

p=1(Dp−Dp+1) is convergent if (4.53) holds. Hence lim
N→∞

DN exists. Similarly

we can prove (ii).
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(iii). Note that, from (4.48) we have, for N > 0,

N∑
p=1

√
mp −mp+1 ≥

N∑
p=1

‖(X1)p+1(Cp − Cp+1)‖F

=
N∑
p=1

√
tr[(Cp − Cp+1)T (X1)Tp+1(X1)p+1(Cp − Cp+1)].

If X∗1 := lim
p→∞

(X1)p is of full rank, it follows that, for large p, (X1)Tp+1(X1)p+1 ≥ ηIk, for some

η > 0. Therefore, we have

N∑
p=1

√
mp −mp+1 ≥

√
η

N∑
p=1

‖Cp − Cp+1‖F .

Following the same argument as in the previous proof, we have, for N > 0,

√
η‖

N∑
p=1

(Cp − Cp+1)‖F ≤
√
η

N∑
p=1

‖Cp − Cp+1‖F ≤
N∑
p=1

√
mp −mp+1,

which implies
∑∞

p=1(Cp − Cp+1) is convergent if (4.53) holds. Finally, we can conclude

lim
p→∞

Cp = C∗ exists if (4.53) holds. Recall from (4.44-4.47), we have,



((X1)p+1 − A1)�W1 �W1 − (A2 − (X1)p+1Cp −BpDp)C
T
p = 0,

(X1)Tp+1(A2 − (X1)p+1Cp+1 −BpDp) = 0,

(A2 − (X1)p+1Cp+1 −Bp+1Dp)D
T
p = 0,

BT
p+1(A2 − (X1)p+1Cp+1 −Bp+1Dp+1) = 0.

Taking limit p→∞ in above we have

∂
∂X1

F (X∗1 , C
∗, B∗, D∗) = (X∗1 − A1)�W1 �W1 + (B∗D∗ +X∗1C

∗ − A2)C∗T = 0,

∂
∂C
F (X∗1 , C

∗, B∗, D∗) = X∗1
T (A2 −X∗1C∗ −B∗D∗) = 0,

∂
∂B
F (X∗1 , C

∗, B∗, D∗) = (A2 −X∗1C∗ −B∗D∗)D∗T = 0,

∂
∂D
F (X∗1 , C

∗, B∗, D∗) = B∗T (A2 −X∗1C∗ −B∗D∗) = 0.

Therefore (X∗1 , C
∗, B∗, D∗) is a stationary point of F . This completes the proof. �
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4.5 Numerical Results

In this section, we will demonstrate numerical results of our weighted rank constrained

algorithm and show the convergence to the solution given by Golub, Hoffman and Stewart

when λ → ∞ as predicted by our theorems in Section 4.2. All experiments were performed

on a computer with 3.1 GHz Intel Core i7-4770S processor and 8GB memory.

4.5.1 Experimental Setup

To perform our numerical simulations we construct two different types of test matrix A. The

first series of experiments were performed to demonstrate the convergence of the algorithm

proposed in Section 4.4 and to validate the analytical result proposed in Theorem 25. To this

end, we performed our experiments on three full rank synthetic matrices A of size 300×300,

500× 500, and 700× 700 respectively. We constructed A as low rank matrix plus Gaussian

noise such that A = A0+α∗E0, where A0 is the low-rank matrix, E0 is the noise matrix, and α

controls the noise level. We generate A0 as a product of two independent full-rank matrices

of size m × r whose elements are independent and identically distributed (i.i.d.) N (0, 1)

random variables such that r(X0) = r. We generate E0 as a noise matrix whose elements

are i.i.d. N (0, 1) random variables as well. In our experiments we choose α = 0.2 max
i,j

(Xij).

The true rank of the test matrices are 10% of their original size but after adding noise they

become full rank.

To compare the performance of our algorithm with the existing weighted low-rank ap-

proximation algorithms, we are interested in which A has a known singular value distribution.

To address this, we construct A of size 50× 50 such that r(A) = 30. Note that, A has first

20 singular values distinct, and last 10 singular values repeated. It is natural to consider the

cases where A has large and small condition number. That is, we demonstrate the perfor-

mance comparison of WLR in two different cases: (i) σmax
σmin

is small, and (ii) σmax
σmin

is large,

where the condition number of the matrix A is κ(A) = σmax
σmin

.
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4.5.2 Implementation Details

Let AWLR = (X̂∗1 X̂∗1C
∗ + B∗D∗) where (X̂∗1 , C

∗, B∗, D∗) be a solution to (5.2). We

denote (AWLR)p as our approximation to AWLR at pth iteration. Recall that (AWLR)p =

((X̂1)p (X̂1)pCp +BpDp). We denote ‖(AWLR)p+1− (AWLR)p‖F = Errorp and as a measure

of the relative error Errorp
‖(AWLR)p‖F

is used. For a threshold ε > 0 the stopping criteria of our

algorithm at the pth iteration is Errorp < ε or Errorp
‖(AWLR)p‖F

< ε or if it reaches the maximum

iteration. The algorithm performs the best when we initialize X̂1 and D as random normal

matrices and B and C as zero matrices. Throughout this section we set r as the target low

rank and k as the total number of columns we want to constrain in the observation matrix.

The algorithm takes approximately 35.9973 seconds on an average to perform 2000 iterations

on a 300× 300 matrix for fixed r, k, and λ.

4.5.3 Experimental Results on Algorithm in Section 4.4

We first verify our implementation of the algorithm for computing AWLR for fixed weights.

We initialize our algorithm by random matrices. Throughout this subsection we set the

target low-rank r as the true rank of the test matrix and k = 0.5r. To obtain the accurate

result we run every experiment 25 times with random initialization and plot the average

outcome in each case. A threshold equal to 2.2204 × 10−16 (“machine ε”) is set for the

experiments in this subsection. For Figure 4.3 and 4.4, we consider a nonuniform weight

with entries in W1 randomly chosen from the interval [λ, ζ], where min1≤i≤m
1≤j≤k

(W1)ij = λ and

max1≤i≤m
1≤j≤k

(W1)ij = ζ in the first block W1 and W2 = 1 and plot iterations versus relative

error. Relative error is plotted in logarithmic scale along Y -axis.
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Figure 4.3: Iterations vs Relative error: λ = 25, ζ = 75
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Figure 4.4: Iterations vs Relative error: λ = 100, ζ =

150.

Next, we consider a uniform weight in the first block W1 and W2 = 1. Recall that, in

this case the solution to problem (4.6) can be given in closed form by solving (3.4). That

is, when W1 = λ1, the rank r solutions to (4.6) are XSV D = [ 1
λ
X̃1 X̃2], where [X̃1 X̃2] is
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Figure 4.5: Iterations vs ‖(AWLR)p−XSVD‖F
‖XSVD‖F

: λ = 50
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Figure 4.6: Iterations vs ‖(AWLR)p−XSVD‖F
‖XSVD‖F

: λ = 200.
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obtained in closed form using a SVD of [λA1 A2]. In Figure 4.5 and 4.6, we plot iterations

versus ‖(AWLR)p−XSVD‖F
‖XSVD‖F

in logarithmic scale. From Figures 4.3, 4.4, 4.5, and 4.6 it is clear

that the algorithm in Section 4.4 converges. Even for the bigger size matrices the iteration

count is not very high to achieve the convergence.

4.5.4 Numerical Results Supporting Theorem 25

We now demonstrate numerically the rate of convergence as stated in Theorem 2.1 when the

block of weights in W1 goes to ∞ and W2 = 1. First we use an uniform weight W1 = λ1

and W2 = 1. The algorithm in Section 4.4 is used to compute AWLR and SVD is used for

calculating AG, the solution to (3.1) when A = (A1 A2). We plot λ vs. λ‖AG − AWLR‖F

where λ‖AG−AWLR‖F is plotted in logarithmic scale along Y -axis. We run our algorithm 20

times with the same initialization and plot the average outcome. A threshold equal to 10−7

is set for the experiments in this subsection. For Figure 4.7 and 4.8 we set λ = [1 : 50 : 1000].
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Figure 4.7: λ vs. λ‖AG − AWLR‖F : (r, k) = (70, 50)
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Figure 4.8: λ vs. λ‖AG − AWLR‖F : (r, k) = (60, 40).

The plots indicate for an uniform λ in W1 the convergence rate is at least O( 1
λ
), λ→∞.

Next we consider a nonuniform weight in the first block W1 and W2 = 1. We consider

λ = [2000 : 50 : 3000] such that (W1)ij ∈ [2000, 2020], [2050, 2070], · · · , and so on. For

Figure 4.9 and 4.10, λ‖AG − AWLR‖F is plotted in regular scale along Y -axis.
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Figure 4.9: λ vs. λ‖AG − AWLR‖F : (r, k) = (70, 50)
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Figure 4.10: λ vs. λ‖AG − AWLR‖F : (r, k) = (60, 40).

The curves in Figure 4.9 and 4.10 are not always strictly decreasing but it is encouraging

to see that they stay bounded. Figures 4.7, 4.8, 4.9, and 4.10 provide numerical evidence

in supporting Theorem 25. As established in Theorem 25 the above plots demonstrate the

convergence rate is at least O( 1
λ
), λ→∞.

4.5.5 Comparison with other State of the Art Algorithms

In this section, we will make an explicit connection of the algorithm proposed in Section 4.4

with the standard weighted total alternating least squares (WTALS) proposed in [23, 37] and

expectation maximization (EM) method proposed by Srebro and Jaakkola [39] and compare

their performance on synthetic data. We compare the performance of our algorithm with the

standard alternating least squares and EM method [23, 39] for k = 0 case.

For the numerical experiments in this section, we are interested to see how the distribution

of the singular values affects the performance of our algorithm compare to other state-of-

the-art algorithms.
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Performance Compare to other Weighted Low-Rank Approximation Algorithms

We set (W1)ij ∈ [50, 1000] and W2 = 1. For WTALS, as specified in the software package, we

consider max_iter = 1000, threshold = 1e-10 [23].For EM, we choose max_iter = 5000,

threshold = 1e-10, and for WLR, we set max_iter = 2500, threshold = 1e-16. As

for the performance measure of the algorithms we use the root mean square error (RMSE)

which is ‖A − Â‖F/
√
mn, where Â ∈ Rm×n is the low-rank approximation of A obtained

by using different weighted low-rank approximation algorithm. The MATLAB code for the

EM method is written by the authors following the algorithm proposed in [39]. Note that

for computational time of WLR and EM, the authors do not claim the optimized perfor-

mance of their codes. However, the initialization of X plays a crucial role in promoting

convergence of the EM method to a global, or a local minimum, as well as the speed with

which convergence is attained. For the EM method, first we rescale the weight matrix to

WEM = 1
maxij(W1)ij

(W1 1). For a given threshold of weight bound εEM , we initialize X to a

zero matrix if minij(WEM)ij ≤ εWEM
, otherwise we initialize X to A. Initialization for WLR

is same as specified in Section 4.5.2. To obtain the accurate result we run each experiment

10 times and plot the average outcome in each case. Both RMSE and computational time

are plotted in logarithmic scale along Y -axis. Figures 4.11, 4.12, 4.13, and 4.14 indicate that

WLR is more efficient in handling bigger size matrices than WTALS [23] with the compa-

rable performance measure. This can be attributed by the fact that WTALS uses a weight

matrix of size mn × mn for the given input size m × n, which is both memory and time

inefficient. On the other hand, Figures 4.11, 4.12, 4.13, and 4.14 demonstrate the fact that as

mentioned in [39], EM-inspired method is computationally effective, however in some cases

might converge to a local minimum instead of global.

Performance Comparison for k = 0 For k = 0 we set the weight matrix as W = 1 for

all weighted low-rank approximation algorithm. Moreover, we include the classic alternating

least squares algorithm to compare between the accuracy of the methods. As specified in
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Figure 4.11: Comparison of WLR with other methods: r

versus time. We have σmax
σmin

= 1.3736, r = [20 : 1 :

30], and k = 10.
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versus RMSE, σmax
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Figure 4.13: Comparison of WLR with other methods: r

versus time. We have σmax
σmin

= 5.004 × 103, r = [20 : 1 :

30], and k = 10.
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Figure 4.14: Comparison of WLR with other methods: r

versus RMSE, σmax
σmin

= 5.004× 103, r = [20 : 1 : 30], and

k = 10.
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Figure 4.15: Comparison of WLR with other methods: r

versus time. We have σmax
σmin

= 1.3736, r = [20 : 1 :

30], and k = 0.

the previous section, the stopping criterion for all weighted low-rank algorithms are kept the

same and RMSE is used for performance measure. We run each experiment 10 times and plot

the average outcome in each case. Figure 4.16 and 4.18 indicate that WLR has comparable

performance in both cases, κ(A) small and large. However from Figure 4.15 and 4.17 we

see the standard ALS, WTALS, and EM method is more efficient than WLR, as for W = 1

case, each method uses SVD to compute the solution.

Performance Compare to Other Weighted Low-Rank Algorithms for the Limiting

Case of Weights As mentioned in our analytical results, one can expect, with appropriate

conditions, the solutions to (4.6) will converge and the limit is AG, the solution to the

constrained low-rank approximation problem by Golub-Hoffman-Stewart. We now show the

effectiveness of our method compare to other state-of-the-art weighted low rank algorithms

when (W1)ij →∞, and W2 = 1. SVD is used for calculating AG, the solution to (3.1), when

A = (A1 A2), for varying r and fixed k. Considering AG as the true solution we use the
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Figure 4.16: Comparison of WLR with other methods: r

versus RMSE, σmax
σmin

= 1.3736, r = [20 : 1 : 30], and

k = 0.
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Figure 4.17: Comparison of WLR with other methods: r

versus time. We have σmax
σmin

= 5.004 × 103, r = [20 : 1 :

30], and k = 0.
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Figure 4.18: Comparison of WLR with other methods: r

versus RMSE, σmax
σmin

= 5.004× 103, r = [20 : 1 : 30], and

k = 0.

RMSE measure ‖AG−Â‖F/
√
mn as the performance measure metric for different algorithms,

where Â ∈ Rm×n is the low-rank approximation of A obtained by different weighted low-

rank approximation algorithm. From Figure 4.19 and 4.20 it is evident that WLR has the

superior performance compare to the other state-of-the-art weighted low-rank approximation

algorithms, with computation time being as effective as EM method (see Table 4.1).

To conclude, WLR has comparable or superior performance compare to the state-of-the-

art weighted low-rank approximation algorithms for the special case of weight with fairly

less computational time. Even when the columns of the given matrix are not constrained,

that is k = 0, its performance is comparable to the standard ALS. Additionally, WLR

and EM method can easily handle bigger size matrices and easier to implement for real

world problems (see Section 4.5.6 for detail). On the other hand, WTALS requires more

computational time and is not memory efficient to handle large scale data. Another important

feature of our algorithm is that it does not assume any particular condition about the matrix
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Â
‖ F

√
m
n

k=10,
σmax

σmin
=1.3736

WLR

WTALS

EM

Figure 4.19: r vs ‖AG − Â‖F/
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Table 4.1: Average computation time (in seconds) for each algorithm to converge to AG

κ(A) WLR EM WTALS

1.3736 6.5351 6.1454 205.1575

5.004× 103 8.8271 8.1073 107.0353

A and performs equally well in every occasion.

4.5.6 Background Estimation form Video Sequences [6]

In this section, we will present how our algorithm can be useful in the context of real world

problems and handling large scale data matrix. For this purpose, we will demonstrate the

qualitative performance of our algorithm on a classic computer vision application: back-

ground estimation from video sequences. We use the heuristic that the data matrix A can be

considered of containing two blocks A1 and A2 such that A1 mainly contains the information

about the background frames and we want to find a low-rank matrix X = (X1 X2) with

compatible block partition such that, X1 ≈ A1. In our experiments, we use the Stuttgart

synthetic video data set [51]. It is a computer generated video sequence, that comprises

both static and dynamic foreground objects and varying illumination in the background. We

choose the first 600 frames of the BASIC sequence to capture the changing illumination

and foreground object. The reader should note that, frame numbers 550 to 600 have static

foreground.

Given the sequence of 600 test frames, each frame in the test sequence is resized to 64×80;

originally they were 600 × 800. Each resized frame is stacked as a column vector of size

5120× 1 and we form the test matrix A. Next, we use the method described in [3], to choose

the set S of correct frame indexes with least foreground movement. In our experiments, for

the Stuttgart video sequence, we empirically choose k =
⌈
|S|/2

⌉
, where |S| denotes the
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cardinality of the set S. We set r = k + 1. However, such assumptions do not apply to all

practical scenarios.

Algorithm 4: Background Estimation using WLR

1 Input : A = (A1 A2) ∈ Rm×n (the given matrix);

W = (W1 W2) ∈ Rm×n,W2 = 1 ∈ Rm×(n−k) (the weight), threshold ε > 0,

i1, i2 ∈ N;

2 Run WSVT with W = In to obtain: A = BIn + FIn;

3 Plot image histogram of FIn and find threshold ε1;

4 Set FIn(FIn ≤ ε1) = 0 and FIn(FIn > ε1) = 1 to obtain a logical matrix LFIn;

5 Set BIn(BIn ≤ ε1) = 0 and BIn(BIn > ε1) = 1 to obtain a logical matrix LBIn;

6 Find ε2 = mode({
∑
i(LFIN )i1∑
i(LBIN )i1

,
∑
i(LFIN )i2∑
i(LBIN )i2

, · · · ,
∑
i(LFIN )in∑
i(LBIN )in

});

7 Denote S = {i : (
∑
i(LFIN )i1∑
i(LBIN )i1

,
∑
i(LFIN )i2∑
i(LBIN )i2

, · · · ,
∑
i(LFIN )in∑
i(LBIN )in

) ≤ ε2};

8 Set k =
⌈
|S|/i1

⌉
, r = k + i2;

9 Rearrange data: Ã1 = (A(:, i))m×k, i ∈ S randomly chosen and Ã2 = (A(:, i′))m×(n−k),

i 6= i′;

10 Apply Algorithm 1 on Ã = (Ã1 Ã2) to obtain X̃;

11 Rearrange the columns of X̃ similar to A to find X;

12 Output : X.

Therefore, we argue that, in practical scenarios, the choices of r and k are problem-

dependant and highly heuristic. We rearrange the columns of our original test matrix A as

follows: Form Ã1 = (A(:, i))m×k such that i ∈ S and 1 ≤ i ≤ k, and using the remaining

columns of the matrix A form the second block Ã2. With the rearranged matrix Ã = (Ã1 Ã2),

we run our algorithm for 200 iterations and obtain a low-rank estimation X̃.

Finally, we rearrange the columns of X̃ as they were in the original matrix A and form

X. The algorithm takes approximately 72.5 seconds to run 200 iterations on a matrix of size
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Figure 4.21: Qualitative analysis: On Stuttgart video sequence, frame number 435. From left

to right: Original (A), WLR low-rank (X), and WLR error (A − X). Top to bottom: For

the first experiment we choose (W1)ij ∈ [5, 10] and for the second experiment (W1)ij ∈

[500, 1000].

5120×600 for a fixed choice of r, k, and W1. We show the qualitative analysis of our weighted

low-rank approximation algorithm in background estimation in Figure 4.21 and 4.22. The

results in Figure 4.21 suggest the fact that the choice of weight makes a significant difference

in the performance of the algorithm. Indeed, our weighted low-rank algorithm can perform

reasonably well in background estimation with proper choice of weight. On the other hand,

the experimental result in Next, in In Figure 4.22, we present frame number 210 and 600 of

the Basic scenario.
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Original WLR APG 

Figure 4.22: Qualitative analysis of the background estimated by WLR and APG on the

Basic scenario. Frame number 600 has static foreground. APG can not remove the static

foreground object from the background. On the other hand, in frame number 210, the

low-rank background estimated by APG has still some black patches. In both cases, WLR

provides a substantially better background estimation than APG.

The performance of APG on frame 210 is comparable with WLR, but on frame 600

WLR clearly outperforms APG. Even when the foreground is static, with the proper choice

of W, r, and k our algorithm can provide a good estimation of the background by removing

the static foreground object, in our case the static car at the bottom right corner. On the

other hand, the performance of the RPCA algorithms in background estimation when there

is static foreground is not good [3, 49].
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CHAPTER FIVE: AN ACCELERATED ALGORITHM FOR
WEIGHTED LOW RANK MATRIX APPROXIMATION FOR

A SPECIAL FAMILY OF WEIGHTS

In Chapter 4, we have verified the limit behavior of the solution to (4.6) when (W1)ij →∞

and W2 = 1, the matrix whose entries are equal to 1, both analytically and numerically

in [2]. As mentioned in our analytical results, one can expect, with appropriate conditions,

the solutions will converge and the limit is AG, the solution to the constrained low-rank

approximation problem by Golub-Hoffman-Stewart. In this chapter we design two numerical

algorithms by exploiting an interesting property of the solution to the problem (4.6). Our

new algorithms are capable of achieving the desired accuracy faster compare to the algorithm

we proposed in [2, 6] when (W1)ij is large.

The rest of the chapter is organized as follows. In section 5.1, we state an important

property of the solution to (4.6) and based on it we propose two accelerated algorithms to

solve problem (4.6). Numerical results demonstrating their performance are given in Section

5.2.

5.1 Algorithm [4]

In this section we propose a numerical algorithm to solve (4.6). Recall that (4.6) is a weighted

low rank approximation problem which does not have a closed form solution in general [39].

As in [2, 39, 40, 41, 23], our new algorithm is not based on matrix factorization to address the

rank constraint. But we exploit the dependence of X2 on X1, instead of factoring X = PQ.

We could take advantage of the special types of weight when W2 = 1 (or even W2 → 1) to

explicitly express X2 in terms of X1. We address this property in our next theorem.

Theorem 40. Assume r > k. For (W1)ij > 0 and (W2)ij = 1, if (X̂1(W ), X̂2(W )) is a
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solution to (4.6), then

X̂2(W ) = PX̂1(W )(A2) +Hr−k

(
P⊥
X̂1(W )

(A2)
)
.

Proof. Note that,

‖(A1 − X̂1(W ))�W1‖2
F + ‖A2 − X̂2(W )‖2

F

= min
X1,X2

r(X1 X2)≤r

(
‖(A1 −X1)�W1‖2

F + ‖A2 −X2‖2
F

)
≤‖(A1 − X̂1(W ))�W1‖2

F + ‖A2 −X2‖2
F ,

for all (X̂1(W ) X2) such that r(X̂1(W ) X2) ≤ r. Therefore,

(X̂1(W ) X̂2(W )) = arg min
X1=X̂1(W )
r(X1 X2)≤r

‖(X̂1(W ) A2)− (X1 X2)‖2
F . (5.1)

Therefore, by Theorem 17, X̂2(W ) = PX̂1(W )(A2) +Hr−k

(
P⊥
X̂1(W )

(A2)
)
. �

We will use Theorem 40 to device an iterative process to solve (4.6) for the special case

of weight. We assume that r(X1) = k. Then any X2 such that r(X1 X2) ≤ r can be given

in the form

X2 = X1C +D,

for some arbitrary matrices C ∈ Rm×(n−k) and D ∈ Rm×(n−k), such that r(D) ≤ r − k.

Therefore, for W2 = 1, (4.6) becomes an constrained weighted low-rank approximation

problem:

min
X1,C,D

r(D)≤r−k

(
‖(A1 −X1)�W1‖2

F + ‖A2 −X1C −D‖2
F

)
. (5.2)

Denote F (X1, C,D) = ‖(A1−X1)�W1‖2
F + ‖A2−X1C −D‖2

F as the objective function. If

X1 has QR decomposition: X1 = QR, then using Theorem 40 we find

PX1(W )(A2) = QQTA2 = X1C,
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which implies QTA2 = RC and we obtain (assuming X1 is of full rank)

C = R−1QTA2.

Next we claim

Hr−k
(
P⊥X1(W )(A2)

)
= D,

that is,

Hr−k((Im −QQT )A2) = D,

which can be shown using the following argument: If P⊥X1(W )(A2) has a singular value de-

composition UΣV T then the above expression reduces to

Hr−k((Im −QQT )A2) = UΣr−kV
T ,

To conclude, for a given X1, we have:

C = R−1QTA2 and UΣr−kV
T = D,

and altogether

X2 = X1C +D,

such that r(D) ≤ r − k. We are only left to find X1 via the following iterative scheme:

(X1)p+1 = arg min
X1

F (X1, Cp, Dp). (5.3)

We will update X1 row-wise. Therefore, we will use the notation X1(i, :) to denote the i-th

row of the matrix X1. We set ∂
∂X1

F (X1, Cp, Bp)|X1=(X1)p+1 = 0 and obtain

−(A1 − (X1)p+1)�W1 �W1 − (A2 − (X1)p+1Cp −Dp)C
T
p = 0.

Solving the above expression for X1 sequentially along each row produces

(X1(i, :))p+1 = (E(i, :))p(diag(W 2
1 (i, 1) W 2

1 (i, 2) · · ·W 2
1 (i, k)) + CpC

T
p )−1,
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where Ep = A1 �W1 �W1 + (A2 −Dp)C
T
p . Therefore, we have the following algorithm.

Algorithm 5: Accelerated Exact WLR Algorithm

1 Input : A = (A1 A2) ∈ Rm×n (the given matrix); W = (W1 1) ∈ Rm×n, (the

weight); threshold ε > 0;

2 Initialize: (X1)0;

3 while not converged do

4 (X1)p = QpRp, (Im −QpQ
T
p )A2 = UpΣpV

T
p ;

5 Cp = R−1
p QT

pA2;

6 Dp = Up(Σp)r−kV
T
p ;

7 Ep = A1 �W1 �W1 + (A2 −Dp)C
T
p ;

8 (X1(i, :))p+1 = (E(i, :))p(diag(W 2
1 (i, 1) W 2

1 (i, 2) · · ·W 2
1 (i, k)) + CpC

T
p )−1;

9 p = p+ 1;

end

10 Output : (X1)p, (X1)pCp +Dp.

Remark 41. Recall that the update rule for our numerical procedure in Algorithm 5 is

Xp+1 = ((X1)p (X1)pCp +Dp),

such that r((X1)p) = k, r((X1)pCp) = k, r(Dp) = r−k, and max{r((X1)pCp +Dp)} = r. We

use (X1)p+1 to compute (X2)p+1 in the next iteration.

Instead if we use the update rule

Xp+1 = ((X1)p+1 (X1)pCp +Dp),

then r((X1)p+1) = k, and r((X1)p+1Cp) = k, r(Dp) = r − k.But we might face a challenge in

keeping the rank of Xp+1 less than equal to r at the begining, when the entries of (W1)ij are

small, and, consequently, the algorithm will take a huge number of iterations to converge.

But for larger weight this phenomenon work as a boon. We give the following justification: If
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for a given ε > 0, ‖(X1)p+1 − (X1)p‖ > ε, then (X1)pCp /∈ R((X1)p+1); where R(A) denotes

the column space of A, and as a consequence r(Xp+1) = r+k. But as ‖(X1)p+1− (X1)p‖ < ε,

then (X1)pCp ∈ R((X1)p+1) and we obtain r(Xp+1) = r, as desired.

Algorithm 6: Accelerated Inexact WLR Algorithm

1 Input : A = (A1 A2) ∈ Rm×n (the given matrix); W = (W1 1) ∈ Rm×n, (the

weight); threshold ε > 0;

2 Initialize: (X1)0;

3 while not converged do

4 (X1)p = QpRp, (Im −QpQ
T
p )A2 = UpΣpV

T
p ;

5 Cp = R−1
p QT

pA2;

6 Dp = Up(Σp)r−kV
T
p ;

7 Ep = A1 �W1 �W1 + (A2 −Dp)C
T
p ;

8 (X1(i, :))p+1 = (E(i, :))p(diag(W 2
1 (i, 1) W 2

1 (i, 2) · · ·W 2
1 (i, k)) + CpC

T
p )−1;

9 p = p+ 1;

end

10 Output : (X1)p+1, (X1)pCp +Dp.

5.2 Numerical Experiments

In this section, we will demonstrate numerical results of our weighted rank constrained

algorithm on synthetic data and show the convergence to the solution given by Golub,

Hoffman and Stewart when λ → ∞ as proposed by our main results in Chapter 4. The

motivations behind performing the numerical experiments were twofold: one is to support

the convergence and efficiency of the algorithm, and the second one is to verify the analytical

property of the solution from Chapter 4. The choices of r, k, andW are not made purposefully

to support any real world example. All experiments were performed on a computer with 3.1

GHz Intel Core i7-4770S processor and 8GB memory.
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5.2.1 Experimental Setup

Following the experimental setup in Chapter 4, we construct a full rank matrix A as A =

A0 +α∗E0, where A0 is the low-rank matrix, E0 is the gaussian noise matrix, and α controls

the noise level. In our experiments we choose α = 0.2 max
i,j

(Aij). The true rank of the test

matrices are 10% of their original size but after adding noise they become full rank.

5.2.2 Implementation Details

Throughout this section we set r as the target low rank and k as the total number of columns

we want to constrain in the observation matrix. Let XWLR = (X∗1 X∗1C
∗ + D∗) where

(X∗1 , C
∗, D∗) be a solution to (5.2). We denote (XWLR)p as our approximation to XWLR at

pth iteration. Recall that (XWLR)p = ((X1)p+1 (X1)pCp + Dp). We denote ‖(XWLR)p+1 −

(XWLR)p‖F = Errorp and use Errorp
‖(XWLR)p‖F

as a measure of the relative error. For a threshold

ε > 0 the stopping criteria of the exact accelerated WLR algorithm at (p + 1)th iteration

is Errorp < ε or Errorp
‖(XWLR)p‖F

< ε or if it reaches the maximum iteration count. But, for a

threshold ε > 0 the stopping criteria of the inexact accelerated WLR algorithm at (p+ 1)th

iteration is Errorp < ε or Errorp
‖(XWLR)p‖F

< ε or r((XWLR)p+1) ≤ r (see Remark 41). For both

algorithms we initialize X1 as a random matrix and a threshold equal to 2.2204 × 10−16

(“machine ε”) is set to perform all numerical experiments.

5.2.3 Experimental Results on Algorithm 6

We first show the power of the inexact accelerated algorithm in computing XWLR for fixed

weights. Throughout this subsection we set the target low-rank r as the true rank of the

test matrix and k = 0.5r. We initialize our algorithm by random matrices. To obtain the

accurate result we run every experiment 25 times with random initialization and plot the

average outcome in each case.
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Figure 5.1: Iterations vs Relative error: λ = 5, ζ = 10

For Figure 5.1 and 5.2, we consider a nonuniform weight with entries in W1 randomly

chosen from the interval [λ, ζ], where min1≤i≤m
1≤j≤k

(W1)ij = λ and max1≤i≤m
1≤j≤k

(W1)ij = ζ and

W2 = 1 and plot iterations versus relative error.
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Figure 5.2: Iterations vs Relative error λ = 50, ζ = 100.

Relative error is plotted in logarithmic scale along Y -axis. Next, we consider a uniform
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weight in the first blockW1 andW2 = 1. Recall that, in this case the solution to problem (4.6)

can be given in closed form by solving (3.4).
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Figure 5.3: Iterations vs ‖XWLR(p)−XSVD‖F
‖XSVD‖F

: λ = 5.
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Figure 5.4: Iterations vs ‖XWLR(p)−XSVD‖F
‖XSVD‖F

: λ = 50.

That is, when W1 = λ1, the rank r solutions to (4.6) are XSV D = [ 1
λ
X̃1 X̃2], where

[X̃1 X̃2] is obtained in closed form using a SVD of [λA1 A2]. In Figure 5.3 and 5.4,
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we plot iterations versus ‖AWLR(p)−XSVD‖F
‖XSVD‖F

in logarithmic scale. From Figures 5.1-5.4 it is

clear that the inexact accelerated WLR algorithm in Section 5.1 converges. Even for bigger

size matrices the iteration count is not very high to achieve the convergence. As claimed

in Remark 41, it is clear from Figures 5.1,5.2,5.3, and 5.4, inexact accelerated WLR takes

almost 1/10 of iterations when the weights in the first block increase. Hence for bigger

weights in W1, the algorithm takes significantly less time to converge.

5.2.4 Comparison between WLR, Exact Accelerated WLR, and Inexact Accel-

erated WLR
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Figure 5.5: Rank vs. computational time (in seconds)

for different algorithms. Inexact accelerated WLR takes

the least computational time.

In this section, we compare the performance of WLR, exact accelerated WLR, and inexact ac-

celerated WLR on a full rank synthetic test matrix of size 300×300. For the performance mea-

sure of the algorithms, we use the root mean square error (RMSE) which is ‖A− Â‖F/
√
mn,

where Â ∈ Rm×n is the low-rank approximation of A obtained by using different weighted
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low-rank approximation algorithm. We set r = 20 : 1 : 30, k = 10, λ = 50, ζ = 1000, and to

obtain the accurate result we run every experiment 10 times with random initialization and

plot the average outcome in each case. We set the number of iterations for WLR and exact

accelerated WLR as 2500 and 100, respectively.

20 21 22 23 24 25 26 27 28 29 30
r

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6

‖A
−
Â
‖ F

√
m
n

WLR

eWLR

iEWLR

Figure 5.6: Rank vs. RMSE for different algorithms.

All three algorithms have same precision.

From Figure 5.5 and 5.6, we can conclude both exact and inexact accelerated WLR

algorithms can recover a low rank matrix as precisely as the regular WLR algorithm in

significantly less time.

5.2.5 Numerical Results Supporting Theorem 25

Finally, we numerically demonstrate the rate of convergence as stated in Theorem 25 when

the block of weights in W1 goes to ∞ and W2 = 1. First we use an uniform weight W1 = λ1

and W2 = 1. We use inexact accelerated WLR algorithm to compute AWLR and SVD is used

for calculating AG, the solution to (3.1) when A = (A1 A2). We plot λ vs. λ‖AG−AWLR‖F

where λ‖AG − AWLR‖F is plotted in logarithmic scale along Y -axis. We run our algorithm
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Figure 5.7: λ vs. λ‖AG − AWLR‖F : Uniform λ in the

first block, (r, k) = (60, 40).
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Figure 5.8: λ vs. λ‖AG − AWLR‖F : non-uniform λ in

the first block, (r, k) = (70, 50).
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25 times with the same initialization and plot the average outcome. For Figure 5.7 we set

λ = [5 : 25 : 1000]. For Figure 5.8, we consider a nonuniform weight in the first block W1

and W2 = 1. We consider λ = [2000 : 25 : 3000] such that (W1)ij ∈ [2000, 2010], [2025, 2035]

and so on.

Figure 5.7 and 5.8 provide numerical evidence in supporting Theorem 25. As established

in Theorem 25, for both uniform and nonuniform weights in W1 and W2 = 1, the above

Plots demonstrate the convergence rate is at least O( 1
λ
), λ→∞.
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