
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2006

Modeling Autonomous Agents In Military Simulations Modeling Autonomous Agents In Military Simulations

Varol Kaptan
University of Central Florida

 Part of the Computer Sciences Commons, and the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Kaptan, Varol, "Modeling Autonomous Agents In Military Simulations" (2006). Electronic Theses and
Dissertations, 2004-2019. 1117.
https://stars.library.ucf.edu/etd/1117

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F1117&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F1117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/1117?utm_source=stars.library.ucf.edu%2Fetd%2F1117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

MODELING AUTONOMOUS AGENTS IN MILITARY SIMULATIONS

by

VAROL KAPTAN
B.S. Middle East Technical University, 1996
M.S. Middle East Technical University, 1999

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the School of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Fall Term
2006

Major Professor:
Erol Gelenbe

c© 2006 by Varol Kaptan

ii

ABSTRACT

Simulation is an important tool for prediction and assessment of the behavior of complex sys-

tems and situations. The importance of simulation has increased tremendously during the last few

decades, mainly because the rapid pace of development in the field of electronics has turned the

computer from a costly and obscure piece of equipment to a cheap ubiquitous tool which is now

an integral part of our daily lives. While such technological improvements make it easier to ana-

lyze well-understood deterministic systems, increase in speed and storage capacity alone are not

enough when simulating situations where human beings and their behavior are an integral part of

the system being studied. The problem with simulation of intelligent entities is that intelligence is

still not well understood and it seems that the field of Artificial Intelligence (AI) has a long way to

go before we get computers to think like humans.

Behavior-based agent modeling has been proposed in mid-80’s as one of the alternatives to the

classical AI approach. While used mainly for the control of specialized robotic vehicles with very

specific sensory capabilities and limited intelligence, we believe that a behavior-based approach to

modeling generic autonomous agents in complex environments can provide promising results. To

this end, we are investigating a behavior-based model for controlling groups of collaborating and

competing agents in a geographic terrain.

In this thesis, we are focusing on scenarios of military nature, where agents can move within the

environment and adversaries can eliminate each other through use of weapons. Different aspects of

agent behavior like navigation to a goal or staying in group formation, are implemented by distinct

behavior modules and the final observed behavior for each agent is an emergent property of the

iii

combination of simple behaviors and their interaction with the environment. Our experiments

show that while such an approach is quite efficient in terms of computational power, it has some

major drawbacks.

One of the problems is that reactive behavior-based navigation algorithms are not well suited

for environments with complex mobility constraints where they tend to perform much worse than

proper path planning. This problem represents an important research question, especially when it is

considered that most of the modern military conflicts and operations occur in urban environments.

One of the contributions of this thesis is a novel approach to reactive navigation where goals and

terrain information are fused based on the idea of transforming a terrain with obstacles into a virtual

obstacle-free terrain. Experimental results show that our approach can successfully combine the

low run-time computational complexity of reactive methods with the high success rates of classical

path planning.

Another interesting research problem is how to deal with the unpredictable nature of emergent

behavior. It is not uncommon to have situations where an outcome diverges significantly from the

intended behavior of the agents due to highly complex nonlinear interactions with other agents or

the environment itself. Chances of devising a formal way to predict and avoid such abnormalities

are slim at best, mostly because such complex systems tend to be be chaotic in nature. Instead, we

focus on detection of deviations through tracking group behavior which is a key component of the

total situation awareness capability required by modern technology-oriented and network-centric

warfare. We have designed a simple and efficient clustering algorithm for tracking of groups of

agent suitable for both spatial and behavioral domain. We also show how to detect certain events

of interest based on a temporal analysis of the evolution of discovered clusters.

iv

To my family

v

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor, Professor Erol Gelenbe, for his en-

couragement and for the guidance he provided during my research. This dissertation would not

have been possible without his constant support. I would also like to thank the members of my ex-

amining committee, Professor Ratan Guha, Professor Lesia Crumpton-Young and Professor Annie

Wu for their feedback and help.

I am also indebted to my fellow graduate students, as well as the faculty and staff of the School

of Computer Science for providing environment and resources which made this effort possible.

This work was partially supported by U.S. Army STRICOM through contracts N61339-02-

C0050 and N61339-02-C0080, the Data and Information Fusion DTC by a contract from General

Dynamics UK to Imperial College under Project 6.8 (Future Data Fusion Systems Design and

Demonstration, and by the MoD Defence Science and Technology Laboratory.

vi

TABLE OF CONTENTS

LIST OF FIGURES .xv

LIST OF TABLES .xvi

CHAPTER 1 INTRODUCTION AND BACKGROUND 1

1.1 Problem Statement. 1

1.2 Thesis Organization. 1

1.3 Role of Simulation in Training and Situation Assessment. 3

1.4 Augmented Reality. 4

1.5 Controlling Autonomous Agents. 6

1.5.1 Classical AI. 8

1.5.2 Behavior-based AI. 9

1.6 Data and Information Fusion. .11

CHAPTER 2 A BEHAVIOR-BASED AGENT MODEL 16

2.1 Introduction. .16

2.2 Behavior Types. .16

2.2.1 Navigation Behaviors. .18

2.2.2 Grouping Behavior. .19

2.2.3 Adversarial Behaviors. .20

2.2.4 Other Behaviors. .21

vii

2.3 Combining Behaviors. .22

2.4 Measuring Performance. .22

CHAPTER 3 TESTBED IMPLEMENTATION . 23

3.1 Introduction. .23

3.2 The Augmented Reality Simulator. 24

3.3 The Agent Simulator. .27

3.4 The Agent Model. .28

3.5 Agent Behavior Modules. .30

3.5.1 RNN Navigation .31

3.5.2 GD Navigation. .33

3.5.3 Grouping .34

3.5.4 Imitation .36

3.5.5 Weapons .36

3.5.6 Obstacle Avoidance. .37

3.5.7 Motion Coordination. .38

3.6 Performance Metrics. .38

3.6.1 Group Tension. .39

3.6.2 Group Radius. .40

3.6.3 Travel Distance. .41

3.6.4 Travel Energy. .42

3.6.5 Group Speed. .44

viii

3.6.6 Number of Survivors. .45

CHAPTER 4 EXPERIMENTS .46

4.1 Introduction. .46

4.2 Experiment 1: Comparative Analysis of Behavior Performance. 47

4.2.1 Description. .47

4.2.2 Results .51

4.3 Experiment 2: Measuring Effects of Agent Speed. 53

4.3.1 Description. .54

4.3.2 Results .57

4.4 Experiment 3: Measuring Effects of Chemical Dispersal. 60

4.4.1 Description. .60

4.4.2 Results .64

4.5 Discussion of Observations. .64

4.5.1 Obtaining Estimates of Expected Agent Behavior. 65

4.5.2 Navigation and Complex Environments. 66

4.5.3 Dealing with Emergent Behavior. 68

CHAPTER 5 NAVIGATION IN URBAN ENVIRONMENTS 70

5.1 Introduction. .70

5.2 Terrain Transformation. .72

5.2.1 Informal Description. .73

5.2.2 Formal Description. .73

ix

5.2.3 The Terrain Potential. .74

5.2.4 Transforming the Terrain. 76

5.3 A Heuristic Navigation Algorithm for Urban Environments. 79

5.4 Experiments and Performance Analysis. 81

5.5 Discussion. .83

CHAPTER 6 DISCOVERING AND TRACKING GROUPS 87

6.1 Introduction. .87

6.2 Experimental Setup. .88

6.2.1 Observing Emergent Behavior. 88

6.3 An MST-based Algorithm for Discovering Groups. 90

6.4 An Algorithm for Temporal Analysis of Group Evolution. 95

6.5 Experimental Results. .98

6.6 Discussion. .102

CHAPTER 7 CONCLUSION AND FUTURE RESEARCH DIRECTIONS 104

7.1 Contributions .104

7.2 Limitations .105

7.3 Future Research Directions. .106

APPENDIX A THE RANDOM NEURAL NETWORK108

APPENDIX B REINFORCEMENT LEARNING IN RNN114

x

APPENDIX C DETAILED RESULTS FOR EXPERIMENT 1120

LIST OF REFERENCES .133

xi

LIST OF FIGURES

1.1 The JDL Data Fusion Model (1998 revision). 13

3.1 System architecture.. .24

3.2 A Live scene (left) and its virtual rendering (right). 26

3.3 A synthetic tank included in live scenes (no occlusion on the left, occlusion with a

tree on the right). .26

3.4 The 2D representation of the tabletop environment. 28

3.5 Representation of an 8-neighborhood. 31

3.6 Illustration of the local minimum problem that GD navigation can encounter when

operating in an environment with obstacles.. 33

3.7 Graphs of the components of an SPF force: repulsive(left), attractive(middle) and

a combination of both (right).. .35

4.1 Example of a terrain similar to the one used in experiment 1. The agents of the blue

team are in the process of moving from their initial positions (lower-left corner) to

their final destination (top-right corner).. 48

4.2 Terrain and mission configuration used in Experiment 2. 55

4.3 Effects of speed of green team on survival rates and mission success.. 57

4.4 Examples of different mission outcomes due to randomness.. 58

4.5 Evolution of the number of survivors as a function of time for different speeds of

the green team.. .59

4.6 A screenshot of the simulator running a mission with chemical dispersal.. 62

xii

4.7 Effects of the speed of the green team on the survival rates and mission success

when the chemical is used.. .63

4.8 Improvement of the survival of the blue team due to chemical spray as a function

of the speed of the green team.. .63

4.9 Examples of multiple shortest paths between two positions (A and B) under 4-

neighborhood (shown on the left) and 8-neighborhood quantization (shown on the

right). .67

5.1 Terrain with a number of non-convex obstacles. 75

5.2 Boundary conditions (grid cells with fixed potentials). 75

5.3 Equipotential profile .77

5.4 Shape of a virtual straight line in real space. 77

5.5 Average path length of set 2 missions w.r.t.φmin 85

5.6 Average path length of set 3 missions w.r.t.φmin 85

5.7 A random selection of mission outcomes. Initial and final positions are marked

with a triangle and a square, respectively. Dotted lines represent SHORTEST paths

and solid lines represent HEURISTIC paths.. 86

6.1 Evolution of the spatial configuration of the agents with respect to time in a terrain

with obstacles. .91

6.2 Evolution of the spatial configuration of the agents with respect to time in a terrain

without obstacles. .92

xiii

6.3 Evolution of the instantaneous agent behavior with respect to time. Vertical axis

represents observed direction of motion (in radians). Horizontal axis represents

simulation time steps.. .93

6.4 Graphical illustration of the MST-based clustering algorithm. 96

6.5 Spatial and Behavioral clustering example #1.100

6.6 Spatial and Behavioral clustering example #2.100

6.7 Spatial and Behavioral clustering example #3.101

6.8 Spatial and Behavioral clustering example #4.101

6.9 Spatial and Behavioral clustering example #5.102

A.1 Representation of a neuron in the RNN. .111

C.1 Simulation set #1. .121

C.2 Simulation set #2. .122

C.3 Simulation set #3. .123

C.4 Simulation set #4. .124

C.5 Simulation set #5. .125

C.6 Simulation set #6. .126

C.7 Simulation set #7. .127

C.8 Simulation set #8. .128

C.9 Simulation set #9. .129

C.10 Simulation set #10. .130

C.11 Simulation set #11. .131

xiv

C.12 Simulation set #12. .132

xv

LIST OF TABLES

4.1 Characterization of the performance metrics for the 12 simulation runs. Black,

gray and white boxes indicate that the metric was among the best, average or worst,

respectively. Empty space indicates that difference between measurements was

considered insignificant.. .52

4.2 Distance metrics of continuous 2D euclidean space and its quantizations.. 67

5.1 Explanation of the notation used for describing the heuristic navigation algorithm. 80

5.2 Performance of SIMPLE, HEURISTIC and SHORTEST on the three sets for dif-

ferentφmin .84

5.3 Explanation of the notation used in Table5.2 . 85

xvi

CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Problem Statement

The main goal of this thesis is to investigate the problem of modeling autonomous agents within

the setting of military conflicts. In particular, we will concentrate on multi-agent systems in which

teams of agents embedded in a terrain are able to cooperate and compete with each other. We

will further limit our focus on models which can be employed as training and assessment tools in

augmented-reality simulations which impose hard real-time constraints on agent acting in unpre-

dictable and complex environments.

The main argument we put forward is that research into behavior-based agent models can

provide significant benefits towards achieving these goals. In support of this statement, we show

how a particular behavior-based agent model can be used as a valuable tool for modeling a variety

of situations arising in military conflicts. In addition, we provide novel contributions to two specific

problems (i.e. navigation in complex environments, and detection and tracking of groups) which

are of particular interest in such models.

1.2 Thesis Organization

The rest of this chapter provides discussions on fields related to our main problem. We examine

the role of Simulation as a training and situation assessment tool, Augmented Reality within the

context of training, provide background on Classical and Behavior-based Artificial Intelligence as

1

tools for Autonomous Agent Control, and the fundamental role that Data and Information Fusion

plays in the subject of modern military conflicts.

Chapter 2 describes in broad terms the behavior-based agent model that we propose with par-

ticular focus on the types of behaviors that need to be employed for modeling the range of events

and capabilities associated with military scenarios.

Chapter 3 presents a detailed description of the architecture of the simulation testbed that we

have implemented. In particular, it describes the agent environment, how different behaviors are

implemented and combined, and a number of metrics related to the performance of agents.

Chapter 4 includes a detailed description of three sets of experiments and discussions of the

respective results. The first set of experiments provides evidence of how behavior combination

can improve the overall success of agents. The following two sets of experiments are designed

to show how our approach can be used to provide statistically significant answers to questions of

interest and how our system can be extended in mission-specific ways. As part of the discussion,

we also identify two important areas of further research. These are the problem of navigation in

complex environments and the problem of detection and tracking groups of agents. We address

these problems in Chapter 5, where we describe a novel algorithm for reactive navigation and in

Chapter 6, where we describe algorithms for group detection and for tracking the evolution of

dynamic groups for the purpose of detecting events of interest.

Chapter 7 provides a summary of our contributions and a discussion of the limitations of our

approach as well as possible direction for further research. The Appendix includes descriptions of

the Random Neural Network(RNN), Reinforcement Learning in RNN and the detailed results of

the first experiment described in Chapter 4. Some of the material presented in this thesis has been

2

included in published journal papers and presented at international conferences. This includes

material in Chapters 2 and 3 [GHK05, GKH04, GKW05, GW06], Chapter 4 [GKH04, GKW04,

GKW05], Chapter 5 [KG06] and Chapter 6 [GHK05, GKH04, GKW06].

1.3 Role of Simulation in Training and Situation Assessment

One of the increasingly important application areas of simulation is in education and training,

where simulation can be used to illustrate concepts and provide exercises that allow the learner to

train in a realistic environment. The use of real scenarios enhanced by “what if” situations can

offers a very stimulating learning setting for self-learning and self-evaluation.

The main advantage of using simulations in training is that they can provide significant reduc-

tions to costs and hazards. This is particularly important in the field of military training systems

where traditional exercises have costs and hazard levels which approach those of military oper-

ations [Ken99, Sch04]. Another application area where simulations can be very valuable is the

evaluation of alternative plans of actions related to a system or situation where real experimenta-

tion is not possible or prohibitively expensive.

These advantages, however, can be delivered only when a simulation models the system in

question to an acceptable level of accuracy and realism. For example, the use of purely syn-

thetic scenarios in military training systems can significantly reduce the realism of an exercise, and

therefore have a negative effect on the learning process of a trainee and the quality of the acquired

experience. On the other hand, using an Augmented Reality (AR) system to insert simulation

driven virtual objects in real scenes can offer a higher degree of motivation to the learner, who will

face a realistic stimulus approaching that of a real situation under real-time operating constraints.

3

1.4 Augmented Reality

Augmented Reality refers to the process of enhancing one’s perception of the real world by aug-

menting a mostly real-word environment with some computer-generated sensory information.

There are many application areas of AR, however we will limit our discussion to the subject of

embedded training, where the termembeddedmeans that the training system is built into an actual

operational system, and that the operational system and the training system are designed so that

they can be used jointly. Many fields of application for augmented reality based training systems

have a need for real-time interaction between the learner and the augmented reality which is being

observed.

The ultimate goal of augmented reality is to include a significant human sensory environment

with a visual component, as well as sound, touch, physical motion and pressure, and even smell.

Thus, an augmented reality surgical training operation table, could allow the surgeon to sense the

smell of blood and of the chemical products which are being used, as well as to feel the pressure

of the organs as the synthetic surgical instruments are being applied to the synthetic patient, whose

resulting vital signs and endoscopic images are also being shown on an appropriate set of screens.

However, due mostly due to limitations of existing technology, modern AR systems operate almost

exclusively on the visual component of perception.

A visual augmented reality system creates a combination of a real and virtual scene in which the

user perceives a significant difference between the real and augmented world. One of the difficult

technical issues in augmented reality is theregistration problem, which refers to the need for

determining the isomorphism between objects and features in a live scene with the corresponding

4

features and the corresponding objects in an augmented version of that scene. Errors in registration

will generate visual inconsistencies between real and virtual images with obvious consequences on

the value of the augmented reality system for simulation purposes.

This issue has been addressed widely and it is well known that registration using only infor-

mation from a sensor based tracking system cannot achieve a perfect match [BN95]. Most of the

approaches to robust registration have to combine tracking sensor input with some image process-

ing algorithms in order to improve registration.

One approach is to detect features in the real image and use them to enforce registration. An-

other approach is to place special marks (e.g. LEDs [BN95], circles [Mel95], a calibration grid

[LP98]) in the environment. Image-processing algorithms detect the locations of these marks

and use them to enforce registration, assuming that one or more special marks are visible at all

times. The requirement for placing dedicated marks is somewhat limiting to the applicability of

this method to well-controlled environments.

Yet another approach [Mel95] uses a survey of the the live environment with real-time instru-

mentation, providing more information about objects and their distances in the live environment,

but requires specific equipment and significant amounts of additional computation for the interpre-

tation of the sensors’ output.

Almost all augmented reality techniques assume that virtual objects and live objects have the

same detailed shape. This assumption is only valid for objects with well-defined shapes such as

roads and buildings: many virtual object generators will use a simplified representation, and will

even sometimes only make use of templates; e.g., a synthetic pine tree may be some idealized

template of a pine tree, rather than the actual pine tree being represented at some location.

5

1.5 Controlling Autonomous Agents

Although research in augmented reality is focused predominantly on seamless integration of syn-

thetic and real components, in the context of a training system, the behavior of injected artificial

entities can have impact on the effectiveness of the training which is as important as the effect of

visual realism. This is especially important in the context of simulations designed for training per-

sonnel or evaluating a “what if ...” situation. In such simulations, the behavior of agents will have

an important effect on the final outcome in the form of acquired training experience. Unrealistic

agent behavior, e.g., in the form of very limited or even extremely advanced intelligence may result

in poor performance of the trainees in a real-life situation.

Agent behavior in a sophisticated simulated environment can be very complex and may involve

many entities. Intelligence can be employed at very different levels. A very simple example will be

an agent that has to go from one position to another trying to minimize travel time. A very complex

example of intelligent behavior can include the decision to cancel the mission of a group of entities

and relocating them as a backup for another group. While the first problem can be easily solved

by a single autonomous entity, the second will involve some authority that can make a higher-level

decision based at least partially on feedback from the lower-level autonomous agents or sensors

tracking them. In other words, a solution to the latter problem requires the ability to acquire some

kind of (at least) partial situation awareness - a capability usually associated with high-level data

and information fusion.

Multi-Agent systems are an important field in AI since they emerge as a natural way of deal-

ing with problems of distributed nature. Such problems exist in a diversity of areas like military

6

training, games and entertainment industry, management, transportation, information retrieval and

many others.

Multi-agent systems interacting with the real world face some fundamental restrictions. Some

of these are:

1. They have to deal with an unknown and dynamic environment

2. Their environment is inherently very complex

3. They have to act within the time frame of the real world

4. The level of their performance should be “believable” to real people when agents are used to

simulate human behavior.

Ideally, for meeting these requirements agents have to be able to learn, coordinate and col-

laborate with each other as well as people do. In the context of augmented reality simulations,

this means dealing with a very complex environment, incomplete information and hard timing

constraints – properties which make learning a very difficult task.

The main problem with learning in multi-agent systems is the “exponential explosion” in the

problem state-space. The usual approach of functional decomposition of the state-space can offer

some improvement but it usually very limited. Even simple multi-agent systems consisting of

only a few agents within trivial “toy” environments can quickly approach prohibitively expensive

computational requirements related to learning [Tan93, OF96, OF97]. The extensive amount of

time and computational resources required for a usual learning process is another obstacle which

is important in augmented reality systems.

7

1.5.1 Classical AI

The field of Artificial Intelligence (AI) deals with the problem of creating machines which can ex-

hibit intelligence comparable to or even better than the natural intelligence of biological organisms

and humans in particular. It is generally accepted that AI was born as a distinct field of research in

1955 during a summer research conference organized in Dartmouth College.

In the first few decades, AI researchers focused mainly on systematic approaches based on

the assumption that an intelligent machine can build an internal representation of its environment

through acquiring information and then act in an intelligent way by performing planning over

this abstract representation. It is now generally accepted that thisclassicalapproach was too

optimistic and naive, and has largely failed to deliver the results it initially promised. However, this

fact does not diminish the importance of classical AI research which has provided many valuable

contributions to the field of Computer Science and Engineering, and many of these contributions

are widely used on a daily basis in various industrial and consumer products.

The following observations may help understand the reasons for this failure. First, it is a well-

known fact that there is a great disparity between the computational model and capacity of modern

computers and biological systems. Biological computational systems are built as a complex inter-

connected network of a large amount of neurons which process information in an extremely parallel

fashion and this network is amazingly redundant and robust to failure of its components. Modern

computers, on the other hand, are largely sequential information processors which are still far away

from achieving the computational power of natural systems. However, the architectural discrep-

ancy and difference in raw computational power between natural and artificial intelligent systems

are not significant problems. The real big issue facing AI is the fact that natural intelligence is

8

still a poorly understood phenomena and as a result, computational power alone is generally not

considered sufficient for replicating natural intelligence (for example, see [Pen89, Teg00, HHT02]

for a debate on whether conscience can be achieved with classical computers/physics and [Koc97]

for discussions on how information is possibly transmitted in biological neural networks).

1.5.2 Behavior-based AI

Behavior-based AI emerged as a school of thought as a direct result of the failure ofclassicalAI to

deliver. The main conjecture of Behavior-based AI is that natural intelligence is not necessarily a

result of a well-defined algorithmic model of information flow from perception through cognition

to action, but rather emerges in a non-trivial way from the complex interactions between tightly

coupled simple behavioral components.

In this thesis, we will use the termemergentto describe properties of agents or aspects of agent

behavior which form as a result of such complex interactions in ways which make it impossible

(either theoretically or practically) to predict them or control their effects by means of a simple

analysis of the constituent phenomena responsible for their manifestation. As a result of this un-

predictability, emergence will sometime produce behavior which is unexpected or undesired. We

will, therefore, use the same term to describe unexpected or undesirable situations1 when they

occur as a result of emergence in order to emphasize the irreducible nature of such phenomena.

Behavior-based AI was first popularized by the work of Brooks [Bro86]. It is based on using

simple behavior patterns as basic building blocks and trying to implement and understand intelli-

gent behavior through the construction of artificial life systems. His inspiration comes from the

1Chapter 6, for example, is dedicated to detection of such events.

9

way intelligent behavior emerges in natural systems studied by Biology and Sociology. Brooks

proposes to combine behaviors through a vertical hierarchy of simple computational elements

where higher modules can suppress the outputs of lower modules and replace their functionality

when necessary. This particular model is called “subsumption architecture”.

The main reason for the recent interest in behavior-based systems is that they have been

more successful in modeling simple intelligence than classical approaches. In a series of papers,

Brooks [Bro99] describes a number of robots built on the subsumption architecture. These robots

operate in the real world and show a level of intelligence reminiscent to that of simple insects.

Another example of a biology-inspired model of behavior is the “boids” architecture proposed

by Reynolds [Rey87]. He uses a set of simple rules in order to model the coordinated motion

of animal groups such as bird flocks and fish schools. These rules areseparation(steer to avoid

crowding local flockmates),alignment(steer towards the average heading of local flockmates) and

cohesion(steer to move toward the average position of local flockmates).

A similar approach for modeling group behavior inspired by physics rather than biology, is

the Social Potential Fields method [RW99]. It is based on the observation that combination of

attractive and repulsive forces can create a variety of group formations between particles in physics.

Because of their performance and ability to scale to a large number of agents, these methods

of modeling groups have been widely deployed in technology-driven fields such as the computer-

games industry [Rey99, Pot99].

One of the main problems of behavior-based systems is the question of how to combine dif-

ferent (possibly conflicting) behaviors in order to achieve a desired outcome. For example, in the

original subsumption architecture described by Brooks, this problem is solved by a manual wiring

10

scheme in the form of an explicit network of suppression and inhibition relations between compu-

tational elements. Another example of a manually-generated approach for combining behaviors is

based on fuzzy logic [SRK99]. While such approaches can be useful for creating simple robots,

their “hand-crafted” nature limits their ability to scale to a large number of behaviors and makes

them unsuitable for designing complex agents. More flexible examples of behavior coordination

include Action Selection Methods [Mae90] where behaviors are selected based on their activation

levels which are a function of agent goals and incoming sensory information or the behavior arbi-

tration scheme of the DAMN architecture [RT95] where actions are selected based on the votes of

behaviors.

Ideally, a better way to deal with the problem of behavior combination would be to let a

system learn how to combine behaviors in an unsupervised manner (possibly including contex-

tual information as well) by using techniques like reinforcement learning in the behavior do-

main [Mat97, Bal98]. Unfortunately, such methods suffer from an exponential explosion in com-

plexity when applied to multi-agent systems and are of little practical value in real life.

Good discussions on the historical development of behavior-based AI can be found in [Ste93,

Bro99] and an extensive treatment of the subject is given in the book of Ronald Arkin [Ark98].

1.6 Data and Information Fusion

The field of Data Fusion can be described as the study of how to integrate data from multiple

sources/sensors for improving the performance of algorithms and systems [HL01]. Although its

potential application area is quite large, the emergence of Data Fusion as a separate field and

the bulk of current work is driven mostly by interest from the military research community. The

11

cause of this interest is related to the fact that recent advances in information and communication

technology has changed the nature of modern warfare from platform-centric to network-centric.

Traditionally, military information gathering and processing has been a job for human experts.

However, new sensor processing techniques, weapon platforms and communication systems may

require decision makers to deal with excessively large amounts of data and possibly act within a

very short time. The availability of tools and technologies for automatic identification and tracking

of targets, automatic thread recognition, guidance for autonomous vehicles and smart weapons,

and building a coherent picture of the battlefield situation is considered a key success factor for

commanders on the field [CG98].

The advantages of fusing data from multiple sensors can be illustrated as follows:

• Combining a number of measurements from a sensor (or identical sensors) can improve the

statistical quality of the estimate of an observable parameter of a tracked entity

• Multiple sensor readings can be used in order to infer parameters which a single sensor can-

not provide (for example, triangulation of an entity’s position from multiple sensor readings)

• Combining readings from different sensors can dramatically improve estimates of parame-

ters (for example, combination of readings from sensors with high range accuracy and high

angular resolution)

• Low-level tracking information can be used in order to infer/discover relationship between

entities, their organizational structure, their interaction with the environments and their in-

tentions

12

EXTERNAL

DISTRIBUTED

LOCAL

Sensors
Documents

People
.
.
.

Data stores

Human/
Computer
Interface

DATA FUSION DOMAIN

Level 0
Processing
Sub-Object
Assessment

Level 1
Processing

Object
Assessment

Level 2
Processing
Situation

Assessment

Level 3
Processing

Impact
Assessment

Level 4
Processing
Process

Refinement

Database Management
System

Support
Database

Fusion
Database

SOURCES

Figure 1.1: The JDL Data Fusion Model (1998 revision)

It is easy at this point to see that data fusion can be employed to data of very diverse charac-

teristics. For example, the first three cases in the list above are usually considered to be primarily

engineering problems that can be solved with the right technology. The last case, on the other

hand, cannot be solved though engineering alone but will require a more human-centric skills,

including extensive military experience, insight into human behavior and strong tactical planning

and reasoning skills.

One of the side effects of the interdisciplinary nature of data fusion is the difficulty of cross-

pollination between application-specific boundaries during the early years of the development of

the field. The U.S. Joint Directors of Laboratories (JDL) data fusion Working Group was formed

in 1986 in order to provide a common foundation and develop a standard data fusion terminology

and lexicon. One of the contributions of the JDL has been the construction of a functional model of

data fusion. The model has since then been revised by JDL as well as other entities [SB04, LBR04]

13

- the 1998 JDL revision is shown in Figure1.1. The JDL model differentiates functions into fusion

levels related to refinement of signals, objects, situations, threats and processes [HL01]. These can

be described as follows:

• Level 0 – Signal (Sub-Object) Assessment – estimation and prediction of signal-level states

based on sensor measurements

• Level 1 – Object assessment – estimation and prediction of object states on the basis of

inferences from observations

• Level 2 – Situation Assessment – estimation and prediction of object states based on inferred

relations between them

• Level 3 – Threat (Impact) Assessment – estimation and prediction of effects of predicted

actions by the objects involved

• Level 4 – Process Refinement – adapting data acquisition and processing in order to support

mission objectives

Some researchers prefer to differentiate between the type of data being processed at different

levels by using the terms data, information2 and knowledge to underline the change in nature of

processing from lower levels to higher ones. This practice, however, is not universally accepted

and can be even considered controversial in some circles.

As mentioned earlier, while lower-level fusion tasks are mostly engineering challenges, the

higher-level fusion require more intelligence. When an autonomous system implementation based

2hence the term information fusion

14

on modern computing technology is considered, this implies the requirement of an artificial intel-

ligence with performance levels comparable to human experts. Because of this natural connec-

tion between data fusion and military conflict simulations, we are using data fusion terminology

whenever possible in order to emphasize the multi-disciplinary impact of our results and put our

contributions in proper context.

15

CHAPTER 2

A BEHAVIOR-BASED AGENT MODEL

2.1 Introduction

The focus of this thesis is the modeling of multi-agent systems in the context of real-time simula-

tion of military scenarios. As a direct consequence of this constraint, the design of our agent model

and operating environment has been strongly influenced by the particular characteristics that are of

primary importance in such situations. The purpose of this chapter is to provide a broad definition

of a behavior-based agent model and a description of the types of individual behaviors we think are

representative of the different aspects of action required to successfully model military scenarios.

2.2 Behavior Types

The approach we propose is based on the idea of behavior-based robotics where the overall actions

of an agent are emerging as a result of the combination of simple behaviors which model different

mechanisms involved in the decision making process. We will broadly classify these behaviors as

being related tonavigation, grouping, adversarial actionandother actions:

• Navigation behaviors are responsible for moving agents between different locations in the

terrain.

• Grouping behaviors are helping agents create and maintain spatial formations while per-

forming missions.

16

• Adversarial behaviors model interactions between enemy forces.

• Other behaviors include actions which do not directly fit into any of the above categories.

The emergence of an agent decision can be described by the following equation:

D = aDn ⊕ bDg ⊕ cDa ⊕ dDo

whereD describes the individual’s overall action,a, b, c andd are weighting parameters and:

• Dn represents the individual navigation decisions,

• Dg represents the grouping-related decisions,

• Da represents the adversarial decisions,

• Do represents other decisions,

• ⊕ is an operation which combines the separate decisions into a physical action.

The weighting parameters can be used to influence which aspects of agent behavior are more

important in different situations. We separate behaviors in such classes with the hope that by

combining methods which specialize in solving particular parts of a mission objective, we can

provide a model of multi-agent control which is computationally efficient and at the same time

expressive enough to be of practical significance. The following sections describe the constituent

behaviors in detail.

17

2.2.1 Navigation Behaviors

The goal of navigation behaviors is to move from an initial location in the terrain to a final destina-

tion. This problem can be formalized as a goal functionG which agents are trying to minimize. A

very simple example is the case whenG represents the current distance of an agent to its destina-

tion. A more complex example is when an agent is trying to minimize the expected time of arrival

to a destination while navigating in a dangerous environment. Suppose that the agent has to get

to a destinationd as quickly as possible. If the agent is hit, it will have to be replaced by another

agent, effectively increasing the time to complete the mission. The effect of taking a decisionD of

an agent located at positionx can be modeled with the following equation:

GD(x, d) = s−1 + (1− p(x + sD))G(x + sD, d) + p(x + sD)(T + G(0, d))

where

• x is the current position,

• d is the final destination,

• s is the speed of the agent (s−1 is the time for one step motion),

• p(x) is the probability of being hit at positionx,

• D is the directional decision of the agent,

• T is the cost of restarting the mission,

• G(u, v) is the cumulative cost incurred to get fromu to v.

18

One of the challenges is findingG(u, v). Ultimately, it concerns the future performance of

the agent strategy and may not be possible to compute, especially when the agent operates in a

dynamic environment. Fortunately,G(u, v) can be estimated based on current sensory information

and previous experience in order to allow for real-time decision making.

One of the methods that we investigate is a neural network based decision process where the

goal function is estimated through reinforcement learning applied to the Random Neural Net-

work [GSX01]. Another method, which we discuss in detail in chapter5, is based on applying

novel data fusion techniques for augmenting simple reactive navigation with terrain information.

One of the main problems of quantitative formulations of goal-based actions is that they re-

quire numerical expression of goals rather than linguistic or logic. On the other hand, such an

approach offers an easy infrastructure for efficient computation which is important in a real-time

environment. Numerical expression of goals can also offer an efficient benchmark for measuring

success during and after the completion of a mission.

2.2.2 Grouping Behavior

We use Grouping behaviors for representing the formation of spatial structures of agents. Our

model is based on the idea of Social Potential Fields (SPF) proposed by Reif et. al. [RW99]. This

is a simple distributed-control approach inspired by the attractive and repulsive forces between

charged particle in physics. Their work was inspired by the artificial potential field method pi-

oneered by Khatib [Kha86]. The boids approach proposed by Reynolds [Rey87] is functionally

similar to the potential methods, although it is inspired by biology rather than physics and has

therefore a somewhat different formulation.

19

In its most general form, a SPF consist of a number of attractive and repulsive forces between

agents. The social force laws can differ from physical forces in the sense that they are not nec-

essarily symmetric and can be dynamically changed. There have been attempts to use SPFs as a

complete self-contained way of modeling action, but results have not been promising. It is for this

reason that we will use SPFs primarily for modeling grouping behavior, for which they happen to

be particularly well suited. For example, a combination of a long-range attractive force dominated

by a short-range repulsive force can be used to keep a group agents in a particular spatial formation.

Although traditionally SPF forces are defined as a function of inter-agent distances, it may be

interesting to see how they can be used to model group behavior based on relations other than

spatial. The main advantage of the SPF formalism is that it offers a uniform, simple and efficient

computational mechanism for forming groups of agents.

2.2.3 Adversarial Behaviors

The purpose of adversarial behaviors is to act in a manner that negatively affects the performance

of agents which are considered enemies. There are various ways in which such effects can be

achieved in a military situation. For example,

1. Weapons can be used for the purpose of eliminating enemy agents or other infrastructure.

2. Weapons can also be used as a deterrent in order to discourage certain enemy actions.

3. Disruption of communications or the act of providing false information can be used to affect

the decision process of an enemy.

20

4. Limiting access to resources or cutting supply routes can be used to diminish enemy capa-

bilities.

As it can be seen from these few examples, there are many ways in which agents can employ

adversarial actions and a comprehensive treatment of this subject is well-beyond the scope of our

research. Moreover, proper modeling of such actions usually requires access to restricted technical

and operational know-how.

Fortunately, in the context of the military scenarios that we are considering, adversarial action

is usually implemented through use of weapons. We will, therefore, focus primarily on modeling

adversarial action in the case of using a weapon to eliminate enemy agents.

2.2.4 Other Behaviors

Some aspects of agent behavior may not be related directly to adversarial action, motion towards a

destination or creating spatial social structures. Such behaviors may be employed for the purpose

of supporting goals of secondary nature or in order to provide incremental improvements of a

mission outcome.

For example, an agent in a group may decide to imitate the decisions of other members of the

group. The imitation decision can be formed by taking the average of the observed decisions of

other group members. This process can be useful when a quick decision is required due to time

constraints. Imitation can also be useful for harnessing the experience of more successful agents

by their peers as a way of mitigating lack of experience or knowledge.

Another example is the case when an agent decides to take a course of action which is distinc-

tively different from the average behavior of its group. This behavior can be used used to model

21

aspects of human behavior related to fatigue, poor judgment or insubordination.

A third example is the action of obstacle avoidance. Instead of trying to achieve a primary ob-

jective, this behavior plays a supporting role in the process of navigation in a terrain with mobility

constraints.

2.3 Combining Behaviors

Instead of providing a well-defined methods of combining behaviors, our agent model is based on

the observation that combination of simpler actions can be considered as just another behavior.

There are two main reasons for choosing such an approach. First, this architecture allows us to

choose a method of combination which is as simple as necessary for a particular purpose. In fact,

the implementation described in the next chapter shows that even very simple combination methods

can provide promising results. Second, this decision makes our behavior model very flexible by

allowing incorporation of mission-specific capabilities only as needed.

2.4 Measuring Performance

One of the advantages of having a decision process based on the formalism described above is that

it can allow a rich set of quantitative metrics for measuring agent performance. Besides giving us

an idea of how successful the proposed model is in solving the problems addressed in a simulation,

the performance measurements can also be used to actually improve the behavior of the agents by

providing them with an efficient feedback mechanism. Such a feedback can be used to facilitate a

process of learning better behavior, both during a mission and between different missions.

22

CHAPTER 3

TESTBED IMPLEMENTATION

3.1 Introduction

Two separate systems have been designed and implemented as part of our research. The first

system is an Augmented Reality (AR) simulator which can inject virtual moving objects in a video

recording of a real environment. The second system is an Autonomous Agents (AA) simulator.

The latter is the testbed on which we analyze and test behavior-based approaches to autonomous

agent control and it is the main focus of this thesis.

The systems are designed to operate separately but there is also a glue layer which allows them

to operate together - i.e. the Autonomous Agents testbed can control the virtual agents in the

Augmented Reality simulator. There are two main reasons for this separation:

1. It is much easier to develop the AR system on a table-top or indoor environment. An outdoor

testbed would have required more expensive equipment (vehicle-mounted cameras, GPS re-

ceivers and accurate topological maps of an area, for example) and dedicated vehicles/agents.

Besides the extra cost, an outdoor testbed would also be probably more dangerous to operate.

2. The ability to detach the AA testbed from the AR system enables the standalone simulation

of agents embedded in environments with very large dimensions. It also allows operation in

time scales that are much faster than real time. Such a capability is essential for perform-

ing comprehensive analysis of behaviors over a large number of simulation scenarios and

23

Figure 3.1: System architecture.

parameters in a reasonable amount of human time.

3.2 The Augmented Reality Simulator

A schematic representation of the Augmented Reality simulator is shown in Figure3.1. The live

representation of the environment as perceived by the agent (a vehicle or a robot) is obtained from

a video camera. The camera pose, zoom and speed of movement of the agent are also provided

by extra sensors. This positional information is used to determine the aim-point so that we can

generate a synthetic image that is roughly equivalent to the live image.

The virtual environment is represented by a visual database. Such databases include both

24

topological and visual information. Topological data represents the geometry of the terrain, the

presence and type of obstacles, types of terrain surface, etc. in a form which is suitable for use

by automated tools. The visual information enables realistic rendering of the environment on a

computer graphics display and usually includes surface textures and colors of the terrain surface

and obstacles. We use the OpenFlight [opea] standard as an underlying visual database in our

testbed.

A virtual 2D representation of the environment is generated from the OpenFlight database by

rendering it with OpenGL [opeb]. Since the OpenGL rendering is often done by hardware, the

computational cost for rendering the virtual environment is negligible. As part of the rendering

process in OpenGL, the depth (Z-buffer) of each object in the virtual scene is determined. This

depth is then used to calculate which objects are visible from the current aim-point.

A primary concern is the proper placement of the virtual objects in front of, or behind, live

objects. Thus the realistic representation of the inserted objects is tied to both the appropriate

occlusions and the shapes and sizes of inserted objects. A good solution to the occlusion problem

requires detailed knowledge of the objects and of their location in the live scene. Since the two-

dimensional live images provide no prior information about the objects in the scene, we use an

image segmentation technique to segment the live image into objects.

To segment the live scene into objects we first build a look-up table for each virtual object using

its color information with noise. This table is indexed by a color vector which allows us to segment

the real image by applying the look-up tables to each pixel in the image. We then use a registration

technique to match objects in the live image with those in the virtual scene. Depth information

from the virtual scene is used to associate relative depth to each object in the live image.

25

Figure 3.2: A Live scene (left) and its virtual rendering (right)

Figure 3.3: A synthetic tank included in live scenes (no occlusion on the left, occlusion with a tree
on the right)

Once the depth and shape information of objects in the live scene is acquired, synthetic objects

can be included with proper positioning and occlusion between real stationary objects. The block

diagram in Figure3.1 outlines the flow of data in the system. A camera provides the live terrain

image. A tracker is attached to the camera to provide the location and the direction of the camera.

The scene generator uses this information to generate the 2D synthetic image, and location and

depth information of each stationary object in the field of view. An image segmentation algorithm

26

uses this information to segment the live image into 2D real stationary objects.

To illustrate the approach, an example of a live image and it’s corresponding virtual scene are

shown in Figure3.2. The scene is a scaled down table-top model of a terrain including a building

and some trees. Note in particular the difference in shape of the trees in the synthetic and real

scenes. Figure3.3 illustrate the insertion of synthetic-target objects into the live scene - a tank in

front of the building and the same tank properly occluded by the real tree in the middle.

3.3 The Agent Simulator

The Agent simulator provides an environment for developing and testing ideas in autonomous

agent behavior. Currently, the environment is a 2D world which represents a terrain within which

agents operate. This terrain may contain obstacles. These are represented as simple geometric

shapes like circles, rectangles or general polygons.

For example, in the table-top model shown in Figures3.2and3.3, the trees are represented as

circles and the building as a rectangle. Figure3.4shows the 2D model used by the agent simulator

of the table-top terrain shown earlier in figures3.2and3.3.

The agent environment may also contain enemies, which are dangerous entities. Proximity of

an agent to an enemy results in a positive probability of getting killed or injured by the enemy.

Naturally, the agent environment also contains the agents themselves. Each agent is aware of

its position in the environment and can inquire the positions of the other agents and know how

many agents are out there. The agents can also access the terrain database for checking obstacle

proximity and collision by providing their position and information about their size.

27

Figure 3.4: The 2D representation of the tabletop environment

3.4 The Agent Model

Our approach is based on a hierarchical modular representation of agent behavior. This method

allows for de-coupling the task of group navigation into simpler self-contained sub-problems which

are easier to implement in a system having computational constraints due to interaction with real-

life entities.

Different decision mechanisms are used to model different aspects of the agent behavior and a

higher level coordination module is combining their output. Such an architecture allows versatile

agent personalities both in terms of heterogeneity (agent specialization) within a group and dy-

namic (i.e. mission-context sensitive) agent behavior. The hierarchical modularity of the system

also facilitates the assessment of the performance of separate components and related behavior

patterns on the overall success of the mission.

The following behavior modules are present in our current implementation:

28

• TheRNN NavigationModule is responsible for leading a single agent from a source location

to a destination location, avoiding dangerous areas on the way. The agents in this algorithm

navigate using a Random Neural Network based decision mechanism which learns through

Reinforcement Learning.

• The GD NavigationModule implements a very simple navigation approach where at each

time step the agent will move in the direction which minimizes the geometric distance to

destination (hence the abbreviation GD which refers to Gradient Descent).

• TheGroupingModule is mainly responsible for keeping a group of agents together in par-

ticular formations throughout the mission. This is achieved by setting up attractive and

repulsive forces between agents in order to affect their behavior.

• The Imitation Module is modeling the case where an inexperienced agent will try to mimic

the behavior of more experienced agents in the group and thus increase its chances of suc-

cess.

• TheWeaponsModule provides an agent with the capability to shoot at and possibly destroy

other agents. The shooting is modeled as a probabilistic process controlled by parameters

describing the firing rate, radius of effect of a weapon and probability of success.

• TheObstacle AvoidanceModule is responsible for correcting the motion of an agent so that

it does not collide with physical obstacles or other agents present in the environment.

• TheMotion CoordinatorModule is responsible for providing a weighted combination of the

individual decisions of motion-related behaviors. It also enforces physical limitations on the

29

speed and acceleration of an agent.

Besides the core behaviors described above, the simulator provides an API for adding other

behaviors. This API allows behavior modules written in C++ to be added to a simulationdynam-

ically at run-time. The simulator can also be extended through an embedded high-level scripting

language called Lua [IFF96]. Lua is simple yet powerful dynamically-typed language designed

specifically for extending applications. It is particularly well suited to augment C and C++ pro-

grams by providing a rapid-prototyping capability. We use it extensively in most of the examples

described in Chapter 4 for implementing mission-specific behavior.

3.5 Agent Behavior Modules

The individual decisions proposed by the above behavior modules need to be combined in some

manner in order to provide a final course of action for an agent. Our implementation allows for

connecting an arbitrary number of behaviors in many possible configurations. However, in most

cases we are primarily interested in groups of agents which can move within an environment and

can exhibit adversarial action towards each other.

We consider the motion and adversarial parts of agent behavior as orthogonal. This properly

implies that we can generate these parts independently. The part of agent action related to motion

is generated by the Motion Coordinator module. Broadly speaking, this module will fuse the

individual decisions of the motion-related behaviors and apply some corrections (simple obstacle

avoidance and speed limitations). The adversarial part of agent action, on the other hand, is decided

by the Weapons Module alone without any direct involvement of other behaviors. This limitation,

30

Figure 3.5: Representation of an 8-neighborhood

however, can easily be overcome by providing extra mission-specific behaviors and functionality

through the simulator API.

The following sections describe the operation of the behavior modules in detail.

3.5.1 RNN Navigation

The RNN navigation module is one possible way of implementing a goal-based navigation for an

agent. This module incorporates a quantized grid representation of the agent world. Such a quanti-

zation allows a relatively simple and efficient storage of knowledge and experience relevant to the

navigation task in the otherwise continuous environment. Obviously, there is a requirement that

the scale of quantization should be chosen carefully so that the relevant information is relatively

uniform within each grid cell.

Each cell in the grid represents a position and anagent actionis defined as the decision to move

from a grid cell to one of the eight neighboring cells (Figure3.5). A succession of such actions

31

will result of a completion of a mission. The agents can access terrain-specific information about

features and obstacles of natural (trees, etc.), and artificial origin (buildings, roads, etc.) and also

sense the presence of other (possibly hostile) agents. The interaction between an enemy (a hostile

agent) and an agent is modeled by an associated risk. This risk is expressed as a probability that

the agent will be shot while being at a position which is within the firing range of an enemy. The

goal of the agent is to minimize a functionG (which in this case is the estimated time of a safe

transit to the destination). We useG to define the Reinforcement Learning Reward function such

thatR ∝ 1/G.

Successive measured values ofR are denoted byRl, l = 1, 2, These values are used to

keep track of a smoothed rewardTl, defined as

Tl = bTl−1 + (1− b)Rl, 0 < b < 1

whereb is a number close to 1. An agent has a so-calledcognitive mapwhich is a collection of

latest and smoothed rewards for each decision taken at each visited grid cell.

The decision-making element of an RNN Navigation Module is a fully inter-connected RNN

network consisting of 8 neurons (each representing a possible decision). The training is performed

by reinforcing the weights of each neuron, depending on the difference between the latest and

smoothed rewards; positive difference indicates improvement and negative difference indicates

deterioration. A detailed description of the network and the learning process are given in Appendix

A, Appendix B and in [GSX01].

By using previously acquired information and current sensory input, an agent can start with

32

Agent is stuck here

Initial position

Path with obstacle
avoidance

Destination

obstacle

Figure 3.6: Illustration of the local minimum problem that GD navigation can encounter when
operating in an environment with obstacles.

fairly reasonable estimates of the rewards and skip an otherwise prohibitively-long learning session

and focus on refining its knowledge and adapting to the dynamic changes in the environment.

3.5.2 GD Navigation

GD Navigation is a simpler and cheaper alternative to RNN Navigation. While RNN has a memory

in the form of a cognitive map, a GD Navigation Module has no state except the current position

of the agent and location of the destination. Whenever a GD navigation module is asked to make a

decision, the answer provided will be to go directly towards the final goal position.

Being a completely reactive approach to navigation makes the GD module susceptible to get-

ting stuck in a local minima when navigation interferes with obstacle avoidance. This problem

is illustrated in figure3.6 - the agent’s intention to move towards the destination is counteracted

by the requirement that it should not physically penetrate obstacles. There is no simple way to

avoid this problem within the framework of reactive navigation alone, mainly due to the lack of a

33

memory component where previous behavior can be encoded. As a result, the action suggested by

the GD navigation is dependent only on the metric of the Cartesian space of the environment and

not on the features of the particular terrain in which the mission is being executed.

The reason why we consider this mode of navigation at all, is for comparison with more com-

plex navigation algorithms like RNN navigation. GD navigation is the simplest possible mode of

navigation in terms of requirements on computational resources. It also illustrates very well the

main drawbacks of reactive navigation when applied to a complex environment.

3.5.3 Grouping

The operation of the grouping module is based on the idea of social potential fields. In our treat-

ment, we restrict the form of the force between agentsi andj to:

~Vi,j =

(
− a

rα
+

b

rβ

)
r̂

wherea, b, α, β are dynamic parameters of the force,r is the distance between the agents,r̂ is a

unit vector pointing fromi to j, and the vector~Vi,j represents the effect of the position of agentj

on the decision of agenti. The terms(−a/rα) and(b/rβ) represent theattractiveandrepulsive

components of the SPF force. A graphical illustration of these components and the effect of their

combination is shown in Figure3.7.

When there is a stable equilibrium point, an entity experiencing such a force will try to stay at

a distanceR0 from the force source, where

34

Repulsive Force Attractive Force Combined Forces

f(r) f(r) f(r)

r r r

equilibrium
position

Figure 3.7: Graphs of the components of an SPF force: repulsive(left), attractive(middle) and a
combination of both (right).

R0 =
β−α

√
b

a

The total force acting on agenti can be calculated as the vector summation of individual forces

due to all other agents:

~Vgrpi
=
∑
j

~Vi,j

A wide range of emergent behaviors can be achieved by varying the parameters of forces and

the force configurations between agents or groups. For example, a group can be “encouraged” to

stay together in a spatially localized formation by setting up a collection of two-way forces (with

both attractive and repulsive components) between each member of the group. Another example

is a configuration of one-way repulsive forces between a group and its adversaries in order to en-

courage it to avoid enemy contact. SPF forces can also be used to model the effects of thecollision

avoidanceandflock centeringrules in theBoidsarchitecture described by Reynolds [Rey87].

35

3.5.4 Imitation

The imitation module generates a decision which is a weighted sum of the navigational decisions

of some of the members of the agent group:

~Vimti =
∑
j∈S

wj ∗ ~Vnavj

The weight distribution (wj) can be dynamic, in order to reflect the group members which are

currently observable or known to be experienced, for example. The purpose of incorporating imita-

tion in the behavior of an agent is to try to take advantage of the experience of other agents without

going through the trouble of actually acquiring it - that is, it opens the possibility of “harnessing”

the experience of other agents in a very efficient manner.

The velocity matchingflock behavior described in the work of Reynolds [Rey87] which he

defines as the “attempt to match velocity with nearby flocks” is functionally very similar to the

imitation module.

3.5.5 Weapons

There are two parameters which control how an agent is involved in an adversarial action against

other agents. These are thefiring rate (λ) andfiring range (r). When an agent detects one or

more enemies within its firing range, it will engage its weapon and target the closest one. Weapons

operate in distinct shots which are modeled as a Poisson arrival process with parameterλ. The

probabilityp of the success of a shot depends linearly on the distanced between the agents and is

computed by the following formula:

36

p(d) =

1− d/r , d < r

0 , d ≥ r

According to this formula,p approaches 1 when an enemy is very close with respect to the

firing range, and decreases to zero as distance to the enemy increases towards the firing range

limit. The outcome of each shot is determined as a hit or miss depending on the on the respective

value ofp.

3.5.6 Obstacle Avoidance

The purpose of this module is to provide a rudimentary method for enforcing the physical con-

straint that an agent cannot penetrate obstacles in the environment or other agents. It is a purely

reactive approach which does not include any kind of planning.

The module operates by taking as an input a motion decision in the form of a vector. This

decision is checked forprobablecollisions by examining the immediate environment of the agent

(terrain obstacles or other agents). A collision is consideredprobable if the agent will collide

with an obstacle when moving in the suggested direction for the nextt seconds (a configurable

look-ahead parameter).

If a probable collision is detected, the module will search for smallest possible angular devia-

tion (to the left or to the right of suggested motion vector) which will clear the collision. If such

a deviation exists, the module will output a corrected vector as the new decision, otherwise it will

decrease the speed of the agent until the collision is no longer probable.

37

3.5.7 Motion Coordination

This module combines the decisions of all behaviors which affect the motion of an agent1. It

will also apply corrections associated with obstacle avoidance and physical limitations on speed

and acceleration. First, a combined motion decision is generated as a weighted vector sum of the

individual agent decisions:

~Vmotion =
∑
i∈N

ki ∗ ~Vi

In this formula,~Vmotionrepresents the combined decision,N is the set of available motion-related

decisions,~Vi’s are the individual decision vectors andki’s are their respective weights.

The combined decision~Vmotion is then processed by the Obstacle Avoidance module for cor-

rections. The final operation consists of clamping the vector to ensure that the maximum speed

and acceleration of the particular agent are not exceeded.

3.6 Performance Metrics

The behaviors described above are quite simple and although it may be relatively easy to ana-

lyze them individually, it is difficult to judge empirically what their effect will be on the overall

performance of agents. In order to evaluate and compare the performance of different behavior

combinations, we have devised a number of simple metrics which quantify certain aspects of agent

behavior. These metrics are:

1Such behaviors produce decisions which are 2D vectors.

38

1. Group Tension

2. Group Radius

3. Travel Distance

4. Travel Energy

5. Group Speed

6. Number of Survivors

Of the above,Group Tension, Group RadiusandNumber of Survivorsare metrics which only

make sense when defined for groups of agents. On the other hand, theTravel Distance, Travel

EnergyandSpeedmetrics can be defined for both individual agents and groups. The group versions

of these metrics will usually be defined as the average of the individual metrics of the agents that

belong to the respective group.

The following subsections contain a detailed explanation of which aspects of behavior these

metrics are good indicators for, and how they are measured.

3.6.1 Group Tension

During execution of a mission each agent will experience a number of SPF forces. The total

effective force, which is the vector summation of the individual forces exerted by each agent,

will indicate the direction in which the Grouping module of this particular agentwantsto go. A

reasonable way to measure how well a particular agent formation reflects the intention of the force

39

configuration is to average the magnitudes of the effective total forces exerted on each agent. We

call this value thegroup tension. The tensionTg of an agent groupg with n agents is calculated as:

Tg =
1

n

n∑
i=1

∣∣∣~Fi

∣∣∣

where~Fi is the total force experienced by agenti of groupg.

A small value for the group tension should indicate that the group is well-formed, while a

bigger value should indicate internal stress within the agent group related to bad spatial formation.

In particular, the value will become very large when agents come very close to each other. The

tension will also increase if the group is slowed down when some of the agents have trouble

following the rest due to encountering obstacles or congestion. However, the group tension is

not a good indicator for “pathologically” malformed groups where some agents have separated

from the main formation or groups that have completely broken into spatially-distinct units. The

reason is that the magnitude of SPF forces decays with distance and agents which are too far from

the group formation will contribute very little to the group tension.

3.6.2 Group Radius

The group radius is defined as the average distance of agents to the group center, where the group

center is defined as the arithmetic mean of the positions of all agent belonging to a group. In a

sense, the group center is the center of mass of the agent group. If groupg hasn agents with

40

positions~pi, i = 1..n, then the group center~cg is calculated as

~cg =
1

n

n∑
i=1

~pi

and the group radiusRg is calculated as

~Rg =
1

n

n∑
i=1

|~pi − ~cg|

An increase in group radius can be used to detect cases when some agents have lost spatial contact

with their respective group. A decrease from a normal value, on the other hand, will indicate that

the group has shrunk due to congestion.

3.6.3 Travel Distance

The travel distance metric is defined as the average distance traveled by all agents in a group as

a function of time. Essentially, this is the average of the values shown in the odometers of each

agents, assuming they have ones. We calculate the travel distance for an agenti with position~pi(t)

as

Di(t) =
t∑

s=0

|~pi(s)− ~pi(s− 1)|

and the travel distance for a groupg with n agents is calculated as

Dg(t) =
1

n

n∑
i=1

Di(t)

41

There are two aspects of performance related to this metric. First, during the execution of the

mission, a higher value of travel distance will indicate that a group is moving faster - which may

or may not be a good thing depending on the specific mission objective. The second aspect comes

out when the mission is finished and all agents stop moving. A lower stationary value for travel

distance would then indicate that the agents finished the mission while traveling less distance,

which usually would be considered to be a good thing.

3.6.4 Travel Energy

Defining how much energy is spent by agents during a mission is a very difficult task. The problem

is that different types of agents (e.g. a human, an autonomous robotic platform or an armored

vehicle) will have very different energy spending profiles. The nature of the terrain will also have

a great impact on how much energy is consumed.

Since our agent model is working at a higher-level of abstraction, we are considering an energy

model inspired by basic physics. Any object with a positive massm that is moving with a speedv

with respect to an inertial reference frame has a kinetic energyK defined as:

K =
1

2
mv2

The amount of energyδK needed to increase the speed fromv1 to v2 is equal to the difference

between the respective kinetic energies:

δK = K2 −K1 =
1

2
m(v2

2 − v2
1)

42

At this point, we should note that for vehicles in general, it is much easier to reduce kinetic energy

than to increase it. This is due to the fact that converting kinetic energy into heat and dissipating it

does not usually require any technology more complex than break pads and an actuator pedal (this

is how breaking in cars or bicycles works, for example). Increasing kinetic energy, on the other

hand, is a process that generally requires some kind of an engine and a fuel to operate it. Therefore,

we define thetravel energymetric for an individual agent as the sum of the positive kinetic energy

increments2 as a function of time in the following way:

E(t) =
t∑

i=0

δK+
i

where

δK+
i =

0 , if (vi < vi−1) or (i ≤ 0)

(v2
i − v2

i−1) , otherwise

The travel energy of a groupg with n members is calculated as the average travel energy of its

members:

Eg(t) =
1

n

n∑
i=1

Ei(t)

The definition of the travel energy implies that an agent with a smoother motion, where the speed

does not change very frequently (an everyday example would be highway traffic) willspendless

energy than an agent which changes speed frequently (like the motion pattern in a congested city

traffic). This may not be a very realistic model to apply to humans traveling on foot, for example,

since people cannot operate continuously for prolonged periods and may need frequent breaks

2we drop the constant12m for simplicity

43

when traveling in a tough terrain, especially when carrying heavy support equipment. Another

example where this analogy may not be applicable is heavy armored vehicles like tanks, where

considerable amount of energy is spent just to sustain a certain speed. We should therefore point

that thetravel energyas defined here is a good indicator of how jittery a motion is, not how much

real energy is spent by an agent. We call itenergybecause of its relation to kinetic energy in

physics.

3.6.5 Group Speed

The group speed is defined as the average speed of all agents in a group. For an agenti with

position~pi(t), the speed can be calculated as

Vi(t) =
t∑

s=1

|~pi(t)− ~pi(t− 1)|

and the group speed for a groupg with n agents is calculated as

Vg(t) =
1

n

n∑
i=1

Vi(t)

This metric may seem like an unnecessary redundancy, since from physics we know that speed

is defined as the time derivative of travel distance, which we already measure. We provide it

separately because, as it will become obvious in the following discussion of experimental results,

most of the time it is difficult to resolve differences in group speeds by looking at travel distance

alone.

44

3.6.6 Number of Survivors

The last metric that we will consider is the number of survivors in a group,Sg(t). As the name

implies, it is defined as the number of agents in groupg that are alive at timet. Agents will be

eliminated when adversarial groups with weapons capability are within firing range of each other

and shoot at each other successfully. Obviously, it is good for a group to have a higher value for

this metric.

45

CHAPTER 4

EXPERIMENTS

4.1 Introduction

This chapter describes in detail three experiments that we have performed in the Autonomous

Agents simulator. The first experiment is designed to provide insight into the quantitative effect

of individual behaviors on the observed action of agents and their overall success. The purpose

of the second experiment is to illustrate how the simulator testbed can be used as an aid in a

decision making process by providing quantitative information on how certain agent parameters

affect the expected outcome of a hypothetical military scenario. This scenario is also used in the

third experiment, where we illustrate the advantages of an extensible and flexible agent architecture

by integrating mission-specific behaviors into the core of the agent model. Specifically, we enhance

some of the agents by providing them with means to disperse a chemical and examine its effects

on enemy units and on the overall success of the mission.

The last section in this chapter presents some observations related to our experience with multi-

agent simulations. First, we discuss why it is difficult to provide statistically significant answers to

questions of interest without comprehensive sampling of the problem space by running many sim-

ulations. We also discuss the importance of emergence of unintended behavior and the difficulties

faced by behavior-based agents when navigating in an environment with complex obstacles. These

two problems, in particular, form the basis of our further research and are addressed in detail in

Chapters 5 and 6.

46

4.2 Experiment 1: Comparative Analysis of Behavior Performance

The purpose of this experiment is to show how the combination of simple behaviors can improve

the overall success of groups of agents operating in an adversarial situation. This is accomplished

by analyzing the performance metrics of groups of agents under different modes of operation.

4.2.1 Description

The terrain of this experiment is a square area with a size of 2000 by 2000 units. This terrain

contains obstacles in the form of trees and buildings. There are 6000 trees and 100 buildings.

The trees are represented as circles with with radii picked randomly from the range between 2

and 3 units. The buildings are represented as rectangular obstacles with sizes changing between

5 and 8 units. The positions of both trees and obstacles are randomly generated from a uniform

distribution.

There are two groups of agents designated asblue teamandred team. The blue team consists of

8 agents (1 leader and 7 group members). The mission of this group is to move from one location

in the terrain to another. This group may or may not have weapons.

The red team consists of 1, 3 or 5 agents. The primary mission of this group is to intercept the

blue team and destroy it. It is therefore always equipped with weapons.

A smaller version of this type of terrain is presented in Figure4.1(300 by 300 units, 200 trees

and 10 buildings). For the purpose of showing the size of the groups and the agents that constitute

them, the blue team is also depicted in the process of moving towards a destination.

The configuration of the blue team is as follows:

47

Figure 4.1: Example of a terrain similar to the one used in experiment 1. The agents of the blue
team are in the process of moving from their initial positions (lower-left corner) to their final
destination (top-right corner).

48

• Each agent moves by RNN and GD Navigation (only one of these is active during the course

of a single simulation run).

• There are two types of SPF forces:

1. A two-way force between group members (excluding the leader). The force parameters

area = 1, α = 1.6, b = 16, β = 3.6.

2. A one-way force from the leader to the group members. The force parameters are

a = 1, α = 1.6, b = 4, β = 3.6.

These parameters have the effect of keeping an inter-group distance of approximately 4 units,

and distance between group members and the leader of approximately 2 units - in this way,

the group is surrounding the leader. The decision on the leader is not directly dependent on

the other agents.

• Team members are configured to imitate their leader. The imitation module of the leader is

always disabled.

• Weapon parameters: firing rate is 1 shot per second, weapon range is 5 units.

• Agent parameters: The radius of the agents is 0.3 units, maximum speed is 3 units per

second, maximum acceleration is 0.3 units per second square.

The configuration of the red team is as follows:

• There is a one-way force from each member of the blue team to each member of the red

team. The force parameters area = 1, α = 1.6, b = 0, β = 0. As a result of this force, the

red agents are attracted to all members of the blue team.

49

• Weapon parameters are the same as the blue team.

• Agent parameters are the same as the blue team.

A number of simulations sets are executed with the following options being explored:

• The blue teams uses either RNN Navigation or GD Navigation.

• The weapons of the blue team are either enabled or disabled.

• The red team has 1, 3 or 5 agents.

The total number of simulation sets is 12 (2 × 2 × 3). Each simulation set collects group

measurements for the blue team averaged over 1000 different missions, where a mission is defined

as a set of initial and final positions for the blue team. The missions are selected randomly, subject

to the constraint that the distance between initial and final positions is between 49% and 51%

of the diagonal size of the terrain. The initial position of the red team is fixed at the middle of

the terrain. We measure the performance metrics for four different behaviormodes. These are

navigation-only, navigation and grouping, navigation and imitation, and all three enabled. The

difference between the behavior modes will provide insight into the effects of each behavior on the

overall performance.

The average duration of a mission was experimentally found to be approximately 2000 time

steps. Since not all missions finish at the same time, we ran the simulations for 3000 time steps

(corresponding to 100 seconds of mission time).

50

4.2.2 Results

Due to the large amount of information gathered during the simulation runs, we provide the detailed

experimental results in AppendixC.

Table 4.1 provides a qualitative comparison of the performance. Each column represents a

particular configuration set and the order (1 to 12) is the same as the order of the figures in Ap-

pendixC. Each row in the table represents a particular metric type (one of the following:group

radius, group tension, travel distance, travel energy, number of survivors, group speed). The table

consists of 4 major parts (marked as NGI, N, NG and NI). These refer to the behaviors enabled

during a mission run:

NGI - Navigation, Grouping and Imitation enabled.

N - Only Navigation enabled.

NG - Only Navigation and Grouping enabled.

NI - Only Navigation and Imitation enabled.

A measurement of a metric in a each behavior mode is marked with a black square (X),

gray square (X) or a white square (X) if it is considered to be within the set ofbest, average

or worst measurements respectively, where the comparison is performed over the four behavior

modes (NGI, N, NG and NI). Empty space is used to indicate the cases in which the difference

between all modes is insignificant or inconclusive. The difference is insignificant for thenumber

of survivorsand thetravel distancemetrics in columns 7–12. Also, the measurements of thetravel

distancemetric in columns 1–6 are considered inconclusive because although some of the behavior

51

Table 4.1: Characterization of the performance metrics for the 12 simulation runs. Black, gray and
white boxes indicate that the metric was among the best, average or worst, respectively. Empty
space indicates that difference between measurements was considered insignificant.

1 2 3 4 5 6 7 8 9 10 11 12
NGI group radius X X X X X X X X X X X X

group tension X X X X X X X X X X X X

travel distance X X X X X X X X X X X X

travel energy X X X X X X X X X X X X

survivors X X X X X X X X X X X X

group speed X X X X X X X X X X X X

N group radius X X X X X X X X X X X X

group tension X X X X X X X X X X X X

travel distance X X X X X X X X X X X X

travel energy X X X X X X X X X X X X

survivors X X X X X X X X X X X X

group speed X X X X X X X X X X X X

NG group radius X X X X X X X X X X X X

group tension X X X X X X X X X X X X

travel distance X X X X X X X X X X X X

travel energy X X X X X X X X X X X X

survivors X X X X X X X X X X X X

group speed X X X X X X X X X X X X

NI group radius X X X X X X X X X X X X

group tension X X X X X X X X X X X X

travel distance X X X X X X X X X X X X

travel energy X X X X X X X X X X X X

survivors X X X X X X X X X X X X

group speed X X X X X X X X X X X X

52

modes (i.e. NG and NGI) appear to perform better, this is due to a coupling between number of

survivors and travel distance and not because they actually are better (the experiments are designed

so that the geometric distance between starting and destination positions is fixed at approximately

1400 units).

Based on the experimental results, we make the following observations:

• It is evident that while single behaviors tend to improve certain aspects of agent performance,

they do so at the expense of adversely affecting other metrics. However, the performance

improvement of the NGI mode (where all three behaviors are combined) shows clearly that

even very simplistic combination techniques like ours are able to provide a more compre-

hensive advantage than the constituent behaviors can do by themselves. This observation is

consistent with the general belief of researchers in behavior-based control that “the whole is

bigger than the sum of its constituents”.

• GD navigation seems to perform much better than RNN navigation for easy terrains. This

is most apparent in the measurements the travel energy metric, which show approximately

5-fold increase from GD to RNN. We believe this is due to grid artifacts introduced by the

fact that RNN navigation operates over a discrete quantization of a continuous terrain. This

issue is discussed further in section4.5.2.

4.3 Experiment 2: Measuring Effects of Agent Speed

The purpose of this experiment is to illustrate how our system can be used to explore the effects

of parameters on the success of a mission. Specifically, we are looking at how the speed of a

53

support team will affect the survival chance of agents in a particular military scenario involving

collaborating and competing groups.

4.3.1 Description

The terrain used in this scenario is shown in Figure4.2. There are three teams designated asRed,

BlueandGreenteam. The Blue and Green teams are friendly forces while the Red team is their

enemy. The mission objectives of each team are as follows:

• The goal of the Blue team (located in the lower-center part of the terrain) is to advance in a

group formation to their final location (the building close to the the top-right corner of the

terrain). It will also try to avoid contact with the Red team.

• The goal of the Red team (located close to the center of the terrain) is to intercept and destroy

the Blue team.

• The goal of the Green team (located in the lower-left part of the terrain) is to support the

Blue team by following and engaging the Red team.

The terrain size is 300 by 300 units and contains 200 trees and 1 building. Each team consists

of 5 agents. The configuration of the blue team is as follows:

• Each agent moves to its destination by GD navigation.

• Agents are encouraged to stay together through two-way SPF forces. The force parameters

area = 1, α = 1.6, b = 16, β = 3.6.

54

Figure 4.2: Terrain and mission configuration used in Experiment 2

55

• There is a one-way repulsive force from the red team with parametersa = 0, α = 1.6, b =

4000, β = 0.36.

The configuration of the green team is as follows:

• Agents are encouraged to stay together through two-way SPF forces. The force parameters

are same as the blue team.

• There is a one-way attractive force towards the red team with parametersa = 1, α = 1.6, b =

0, β = 3.6.

The configuration of the red team is as follows:

• Agents are encouraged to stay together through two-way SPF forces. The force parameters

are same as the blue and green team.

• There is a one-way attractive force towards the blue team with parametersa = 1, α =

1.6, b = 0, β = 3.6.

• There is a one-way repulsive force from the green team with parametersa = 0, α = 1.6, b =

4, β = 3.6.

Other agent parameters (size, speed and acceleration limitations, weapons range and firing

rates) are identical to the parameters of the previous experiment (described in Section4.2).

We run five sets of experiments where the speed of the green team varies between 2 and 4 in

increments of 0.5 (the speed of the other teams is fixed at 3). For each set we measure the expected

number of survivors in each team over 500 missions by varying the random number generators

56

 0

 1

 2

 3

 4

 5

 6

 2 2.5 3 3.5 4

N
um

be
r

of
 a

ge
nt

s
al

iv
e

Max Speed of Green Team

Effect of Green Team Speed on Mission Outcome, 500 simulations

Red Team
Green Team

Blue Team
Blue Team Successful

Figure 4.3: Effects of speed of green team on survival rates and mission success.

associated with weapons fire for each mission. We also measure the number of successful survivors

for the blue team, where success is defined for an agent as being alive and being located at the

destination. Simulation time is limited to 2000 steps.

4.3.2 Results

The change in the expected number of survivors as a function of simulation time is shown in

Figure 4.5. The overall effect of the speed of the green team on mission success is shown in

Figure4.3. It is evident from these results that an increase of the speed of the green team above

3.5 does not provide a statistically significant increase in success.

Another interesting observation is that two simulation runs which are identical except for the

randomness associated with weapons fire, can result in significantly different outcomes. This is due

57

(a) a single blue agent survives (b) 1 blue and 5 green agents survive

(c) 2 red agents survive (d) 5 blue and 5 green agents survive

Figure 4.4: Examples of different mission outcomes due to randomness.

58

 0

 1

 2

 3

 4

 5

 6

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

N
um

be
r

of
 a

ge
nt

s
al

iv
e

Time (steps)

500 simulations, max_speed(green_team) = 2.00, others = 3.0

Red Team
Green Team

Blue Team
Blue Team Successful

 0

 1

 2

 3

 4

 5

 6

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

N
um

be
r

of
 a

ge
nt

s
al

iv
e

Time (steps)

500 simulations, max_speed(green_team) = 3.00, others = 3.0

Red Team
Green Team

Blue Team
Blue Team Successful

 0

 1

 2

 3

 4

 5

 6

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

N
um

be
r

of
 a

ge
nt

s
al

iv
e

Time (steps)

500 simulations, max_speed(green_team) = 4.00, others = 3.0

Red Team
Green Team

Blue Team
Blue Team Successful

Figure 4.5: Evolution of the number of survivors as a function of time for different speeds of the
green team.

59

to the fact that elimination of agents through shooting introduces changes which have significant

long-term effect on the outcome of a mission. This implies that obtaining statistically significant

results requires a comprehensive sampling of the problem space (e.g. by integrating measurements

over many simulation runs).

4.4 Experiment 3: Measuring Effects of Chemical Dispersal

This experiment is almost identical to the previous one with the exception of the addition of an

extra capability to one of the members of the blue team. This agent is able to release a chemical

which slows down the red team but has no effect on the blue and green teams.

4.4.1 Description

The terrain, the agent teams and their behavior configurations are exact duplicates of the experi-

mental setup described in Section4.3and will not be described again. The novelty in this experi-

ment is the introduction of mission-specific behavior (adversarial action through chemical disper-

sal) and the purpose is to illustrate the extensibility of our simulator platform. All of this extra

functionality is not a core part of the simulator but a set of extensions which are dynamically

attached to the system as needed.

The operational semantics of the process of chemical release can be described as follows:

1. One member of the blue team has cans full with a chemical which when released will slow

down the red team but will not affect the blue or green teams.

2. The agent is instructed to activate and drop the cans when it detects red agent in its proximity

60

(in this experiment, the detection radius is 40 units).

3. When activated, the cans will release their contents at a constant rate until depleted (in this

experiment, the chemical is depleted in 300 time steps). Due to its nature, the chemical will

spread over an area and eventually dissipate.

4. The effect of the chemical is to reduce the maximum speed of the red team. The maximum

reduction corresponds to half their original speed and happens when the concentration is at

maximum at a location.

In the simulator, this process is represented through a stochastic population model based on a

queuing network. The terrain is quantized to a 75×75 grid with each cell representing a discrete

location. The concentration of chemical at each location is represented as the number of customers

waiting in an associated M/M/1 queue. The rate of removal of chemical from each location (due

to diffusion into neighboring locations or dissipation) is represented as the service rateµi of the

associated queue. The process of diffusion and dissipation are governed by the probabilitiespi,j

that a customer will move to queuej after being serviced at queuei. The customers may also

leave the queuing system with probability(1 − ∑
j pi,j). Customers enter a queuei either due

to diffusion from a neighboring cell or due to the presence of an active undepleted can at that

particular location. The effect of active cans is modeled as an external arrival of customers with

rateλi.

The following values for these parameters were used in the experiment:

1. λi = 100, for all i.

2. µi = 100, for all i.

61

Figure 4.6: A screenshot of the simulator running a mission with chemical dispersal.

3. For each locationi, pi,j = 0.1125, for all j in the 8-neighborhood ofi. As a result, customers

diffuse with probability
∑

j pi,j = 0.9.

4. At each locationi, the probability of dissipation is 0.1(1−∑j pj,j).

62

 0

 1

 2

 3

 4

 5

 6

 2 2.5 3 3.5 4

N
um

be
r o

f a
ge

nt
s a

liv
e

Max Speed of Green Team

Effect of the speed of the Green Team, 500 simulations

Red Team
Green Team

Blue Team
Blue Team Successful

Figure 4.7: Effects of the speed of the green team on the survival rates and mission success when
the chemical is used.

 0

 1

 2

 3

 4

 5

 6

 2 2.5 3 3.5 4

N
um

be
r o

f a
ge

nt
s

al
iv

e

Max Speed of Green Team

Effect of Using Chemical Spray on Outcome, 500 simulations

Blue Team (no spray)
Blue Team (with spray)

Figure 4.8: Improvement of the survival of the blue team due to chemical spray as a function of
the speed of the green team.

63

4.4.2 Results

Figure4.6shows a screenshot of an ongoing mission in the simulator. The agent of the blue team

with with the chemical dispersal capability is marked in pink. The concentration of chemical in

the environment is also represented as various shades of pink. The effect of the speed of the green

team on the survival rates of teams is shown in Figure4.7. Figure4.8shows a comparison of the

survival rate of the blue team with and without chemical dispersal.

It is evident from these results that using a chemical to slow down the red team is statistically

effective only when the difference between the speeds of the enemy (red team) and the support

group (green team) is less than 0.5 units. Using a chemical outside this range does not provide

any advantage to the blue team. However, a closer inspection of Figures4.3 and4.7 reveals that

improvement to the survival rate of the blue team when using chemicals is achieved at the expense

of a reduction of the survival rate of the green team.

4.5 Discussion of Observations

This section includes detailed discussions of a number of important observations related to the in-

terpretation of the experimental results presented in this chapter. First, we will provide a qualitative

description of how non-determinism and chaotic behavior affect the process of providing answers

of statistical significance. Then, we will identify two research problems which we feel need to be

addressed further. These are the phenomenon of emergent behavior and the problem of reactive

navigation in an environment with complex mobility constraints. These discussions will lay the

groundwork for the following two chapters, where we provide solutions to these problems.

64

4.5.1 Obtaining Estimates of Expected Agent Behavior

One of the reasons for performing simulations is to evaluate possible approaches for solving a

problem by choosing a plan of action which is optimal in some sense. For example, in our case we

may be interested in how well a group of agents will perform given a particular set of behaviors or

what types of behaviors will produce a desired outcome. There are two main reasons why this is a

difficult problem:

1. The agent model includes a stochastic component (i.e. adversarial action) which makes the

overall system non-deterministic.

2. Even if we ignore the stochastic component, some parts of the deterministic components of

behavior (i.e. SPF) are inherently chaotic.

Here is a description of what we mean bydeterminismandchaosin the above statement:

• Determinism implies that given a set of initial conditions, we can in principle compute the

exact state of the system at any given time to a reasonable degree of numerical accuracy.

• Chaos is a concept from the field of Dynamic Systems. In Physics,Dynamicsis the study

of systems which change with respect to some parameter (usually time). One of the im-

portant contributions of research in non-linear dynamic systems is the concept ofchaos. A

deterministic system is consideredchaoticif it behaves in an aperiodic manner such that very

small changes in initial conditions can generate very large differences in the outcome as time

advances [Str94]. The importance of this property is that it renders prediction of long-term

behavior in chaotic systems impossible.

65

Our claim that the deterministic part of the agent model is chaotic is based on the observation

that Social Potential Fields can be used to represent the gravitational interaction between a number

of objects and it is a well-known fact that the 3-body problem exhibits chaotic behavior [BM93].

The non-deterministic and chaotic nature of agents makes it very difficult to give statistically

robust answers to questions about the expected behavior of the system by running only a few

simulations. The above problems are not specific to our particular agent model or implementation

- on the contrary, we are describing them in the context of a relatively simple behavior model in

order to emphasize the fact that such problems are an integral part of most multi-agent systems.

This is, in fact, one of the main reasons for our interest in simple reactive methods of agent

control. We believe that computationally efficient methods similar to our approach are more likely

to offer a framework for exploring alternative courses of action in a timely manner within the

constraints of currently available technology. This is true of course, provided that the methods

in question are able to approximate the interaction within the system that is being simulated to a

satisfactory degree of accuracy.

4.5.2 Navigation and Complex Environments

Our main reason for experimenting with a RNN-based reinforcement learning algorithm for navi-

gation was the hope that such an approach would enable agents to acquire information and expe-

rience about the environment in which they operate and use it to their advantage. Specifically, we

wanted the agents to discover routes which would allow them to accomplish their missions better.

However, our simulation results showed that, while computationally efficient, our approach was

hardly effective, mainly because the of the prohibitively long learning times. The value of this

66

A

B

A

B

Figure 4.9: Examples of multiple shortest paths between two positions (A and B) under 4-
neighborhood (shown on the left) and 8-neighborhood quantization (shown on the right).

methods is diminished further by the fact that the learned experience is both terrain and mission-

specific and cannot be reused directly in other circumstances. While it may be possible to mitigate

this problem by using more sophisticated methods of learning, such methods tend to come with an

excessive increase in complexity, both computational and otherwise.

Table 4.2: Distance metrics of continuous 2D euclidean space and its quantizations.

Name Functional Form

Euclidean Distance De =
√

(x2 − x1)2 + (y2 − y1)2

Manhattan Distance Dm = |x2 − x1|+ |y2 − y1|

Chebyshev DistanceDc = max(|x2 − x1| , |y2 − y1|)

Another major problem with the RL RNN navigation is related to the fact that this algorithm

operates over a quantized representation of the environment. It is a well known fact that the perfor-

mance of such algorithms tends to suffer fromgrid artifacts. Sometimes it is possible to mitigate

such effects (Yap, for example, uses a tiled hexagonal quantization as an alternative [Yap02]) but

67

removing them completely is sometimes impossible. This problem is illustrated in Figure4.9 for

square grids with 4 and 8 neighbors. In both cases, the quantization changes the underlying metric

of the space. As a result, any algorithm trying to solve a problem defined in terms of the metric

of the space ends up solving the wrong problem. Table4.5.2show the 2D versions of the distance

metrics for continuous Euclidean space and its 4-neighborhood and 8-neighborhood quantizations.

The latter two are better known asManhattan distance (orL1 distance)andChebyshev distance.

Our efforts to address this problem led to the development of a novel navigation algorithm.

The approach we take has very low runtime computational requirements and is not affected by

grid artifacts because it operates in a continuous domain. This algorithm is described in Chapter 5.

4.5.3 Dealing with Emergent Behavior

Reactive behavior-based methods of control in multi-agent systems can be a very efficient tool for

simulation of large systems. Unfortunately, these methods have the undesirable property of being

unpredictable and cannot generally provide any guarantee of success. This is mainly due to the

fact that the actions of agents in such systems are built from a number of components which are

not capable of solving thebig problem, but rather try to “encourage” the expression of certain

behaviors with the hope that a combination of such behaviors will contribute towards achieving a

common goal.

Let us look for example at Figure4.4 where four different outcomes of the same mission are

shown. Examination of the tracks of the blue team reveals that one of the blue agents consistently

fails to stay within the spatial formation of the team. This a clear violation of the intention imposed

by the SPF forces to keep the agents together. However, such situations may be of particular interest

68

as a way of modeling the effect of human factors. The renegade agent in our example has a much

higher chance of survival and thus a higher chance of completing the mission (such a case is shown

in Figure4.4(a)).

In military conflicts, unexpected situations are the norm rather than the exception. One of the

best expressions of this statement is the quote“No battle plan survives contact with the enemy”, at-

tributed to Field Marshal Helmuth, Graf von Moltke1. Therefore, we believe that working towards

building a capability to detect and react to surprises is a much better approach than trying to avoid

them through premature planning. To this end, we have developed a method of tracking groups

based on spatial and behavioral similarities. As it will be seen from the experimental results, this

algorithm is particularly well suited for application in the context of our research. Chapter 6 is

dedicated to this subject.

1Also known asHelmuth Karl Bernhard von Moltke, a German Field Marshal, Chief of staff of the Prussian army
for thirty years (October 26, 1800 - April 24, 1891).

69

CHAPTER 5

NAVIGATION IN URBAN ENVIRONMENTS

5.1 Introduction

The major change of context of modern military conflicts away from rural areas and into the con-

fines of densely populated urban environments has posed unique challenges for tactical planning

of military operations. These challenges require a new set of technologies and methods to enable

efficient and effective operation within the constraints of urban environments as well as exploit as

much as possible the specific features of the city terrain.

One of the new requirements is the ability to operate in an environment containing a large

number of civilians where it may be very difficult to selectively target an enemy force. Failing to

preserve civilian life can have dire consequences on the overall success of a military operation. An-

other operational constraint is related to the requirement to preserve civilian infrastructure. Among

other things, this constraint implies limitations on the mobility of forces.

In the previous chapter we explored the possibility of modeling the behavior of teams of au-

tonomous agents with common goals through purely reactive methods like social potential fields

and gradient descent navigation. The most attractive feature of such control methods is their

tendency to scale extremely well when the number of mobile agents becomes very large. An-

other possible advantage is the ability to build complex scenarios by defining a small number of

broadly-defined goals. Instead of being explicitly described, the behavior of individual agents in

such systems becomes an emergent property.

70

Unfortunately, these methods also come with a major disadvantage. One of the most important

problems in the context of multi-agent simulations is the severe decrease of success of reactive

agents when the environments in which they operate impose non-trivial mobility constraints.

In the rest of this chapter we will introduce a novel algorithm for efficient navigation in en-

vironments containing complex obstacles. We describe our approach within the context of urban

environments, which is a particularly relevant application area.

The traditional approach to navigation in such domains has been based largely on path plan-

ning algorithms. Such approaches tend to be computationally expensive and therefore do not scale

well when the number of agents in a simulation increase. Scalability is also affected by dynamic

changes in the environment, since these may invalidate original plans and force the agents to com-

pute new ones.

Our approach, on the other hand, is largely reactive and scales very well with the increase of

the agent population. Moreover, since our algorithm is based on the idea of transforming the real

space into a virtual obstacle-free space, it can serve as an adapting tool for applying reactive or

greedy algorithms into domains where they traditionally do not perform very well.

It is interesting to note that while space deformations have been used extensively in many

areas – for example animation and visual effects [KCP92, YHM04, FM98] or computer-aided

modeling [TM91, GM05] – we are not aware of any research into space deforming transformations

as a tool for terrain navigation.

The failure of reactive behavior control techniques to perform well in complex environments

can be characterized as a local minima problem. Figure3.6illustrates such a situation in the context

of agent navigation. The namelocal minimarefers to a commonly occurring situation in the field

71

of Mathematics when searching for parameters which globally maximize or minimize the value of

a function. Simplistic approaches to search can easily fail by getting trapped at a local extremum

point.

In the context of reactive navigation of groups of agents, a local minimum situation is not

always considered detrimental, especially when it is due to internal agent dynamics rather than as

a result of interaction with the environment. For example, we use social potential fields in order to

encourage group formation by providing agents with a behavior component which minimize the

forces acting on them. In this context, achieving the spatial formation corresponding to a global

minimum is not essential - what is important is the “intent” to minimize.

In navigation, the most common example of an undesirable local minimum situation occurs

when a collision avoidance scheme adversely affects the motion towards an intended goal and as

a result the agent either becomes stationary or is stuck on a localized cyclic path, thus failing to

achieve its objective. These situations are the primary target domain of our navigation algorithm.

5.2 Terrain Transformation

We propose a method of avoiding obstacles that is based on the idea of finding a transformation

between the real navigation space and a virtual obstacle-free space and applying the classical agent

control methods within this new space. In this section, we will describe how such transformations

can be computed. As a first step, we will try to illustrate the idea in a more informal but accessible

way. This introduction is followed by a formal mathematical description of the transformation.

72

5.2.1 Informal Description

The following description presents the main idea of transforming space in what we hope is a

relatively easy to understand fashion:

1. We assume that the terrain is represented as a 2D birds-eye view of the environment. All

obstacles have a continuous boundary which is a closed contour. The interior of the obstacles

is not accessible to agents. The space outside the contours is free space.

2. We start the process of transforming the real space into a virtual obstacle-free space by

continuously shrinking the obstacle contours inwards until all the obstacles collapse into

point singularities. The free space isattachedto the contours and willstretchin the process

of obstacle collapse.

3. When all the obstacles have collapsed, the new stretched free space would span the whole

real terrain and any point in this virtual space will be accessible from any other point trivially

(by navigating along a straight line, for example).

4. It is very important that the transform conserves the local continuity of the space in the

process – this property guarantees that any continuous paths (straight lines, for example) in

thestretchedspace are continuous curves in the real space, and therefore, valid navigation

paths.

5.2.2 Formal Description

It is not difficult to realize that there are infinitely many ways of performing the above transfor-

mation. What we will describe below is one approach which happens to be particularly easy to

73

compute and is also well suited for obstacle avoidance.

Figure5.1 shows an example of the types of terrains that we are interested in. The obstacles

are represented as polygons with their interior painted in gray, their boundary outlined and a cross

mark at what can be considered the obstacle center. The obstacle center is the point into which the

obstacles will “collapse”. We do not provide an exact definition of the center because, technically

any point inside an obstacle is a valid choice and will work with our algorithm. In practice, a good

candidate is the center of mass of an obstacle1 or the location of the maximum of the fundamental

vibration mode of a surface stretched over the shape of the obstacle.

The particular collection of obstacles and their respective centers shown in Figure5.1, for

example, was randomly drawn by hand in order to provide a reasonable set of non-convex shapes

that are commonly found in urban areas. This data set will be used throughout the rest of this

chapter to describe the algorithm and provide experimental results.

5.2.3 The Terrain Potential

The definition of the terrain transformation depends on a real-valued function over the terrain that

we call theterrain potential. This potential can be computed in the following way:

1. We quantize the terrain into a grid. At the end of the computation each grid cell will have an

associated potential (a real number between -1 and 1, inclusive).

2. Cells which contain obstacle centers have their potential fixed at -1.

3. Cells which include an obstacle boundary have their potential fixed at 0.

1Except in cases when the center of mass happens to be outside the boundaries of an obstacle

74

Figure 5.1: Terrain with a number of non-
convex obstacles

Figure 5.2: Boundary conditions (grid cells
with fixed potentials)

4. Cells that are completely inside or outside obstacles have their potential initialized to -0.5

and +0.5, respectively (this step is not necessary, but will help in faster convergence).

5. For each free cell (i.e. on the outside of obstacles), we compute the distance to the nearest

obstacle. Cells which have neighbors closer to obstacles other than their own, have their

potential fixed at +1. The same is done for cells at the boundary of the grid.

6. We run an iterative process where at each step the potential of each cell (excluding cells with

already fixed potentials) is replaced by the average potential of its 4 neighbors. The iteration

continues until the potential converges.

Figure5.2 shows cells with fixed potential for our example terrain (quantized at128 × 128).

Cells with potentials fixed at -1, 0 and +1 are represented as black filled squares, gray squares and

white outlined squares, respectively.

75

The formal mathematical explanation of the above process is that we are using Jacobi iteration

to obtain a numerical solution of the Laplace equation subject to Dirichlet boundary conditions.

Physicists will easily recognize that the above procedure is equivalent to finding the electric

potentialφ of a system of electrical conductors (hence the nameterrain potential), where cells at

the center of obstacles represent a conductor with a potential fixed atφ = −1, cells at obstacle

boundaries correspond to a conductor with a potential fixed atφ = 0, cells at an equal distance

between distinct obstacles represent conductors withφ = +1 and all other cells represent free

space (vacuum).

Since the algorithm described below operates in continuous space, we use a quadratic fil-

ter [BMD02] to reconstruct a continuous terrain potential from the quantized numeric solution.

Figure5.3shows the shape of the equipotential lines ofφ for the test environment (quantization

at256×256, 2000 iterations). Note that the equipotential lines approximate the obstacle boundary

asφ approaches 0. As the potential decreases towards -1, the shape of the lines converges smoothly

towards a circle. Also, as the potential increases towards +1, the shape of the lines becomes more

convex.

5.2.4 Transforming the Terrain

Once the terrain potential has been obtained, we can find a transformation which will convert the

real terrain into an obstacle-free virtual terrain. Note that the potential of the exterior of obstacles

(i.e. accessible space) is limited to the range(0; 1] and that of the interior of obstacles (inaccessible

space) is in the range[0;−1]. The virtual position~p′ of any point~p in the real terrain can be

76

Figure 5.3: Equipotential profile
Figure 5.4: Shape of a virtual straight line in
real space

found2 by moving down the gradient of the terrain potential (starting at~p) until a point ~p′ with

potentialφ(~p′) = max{f(φ(~p)),−1}) is reached, wheref : R → R is any function which is

continuous and monotonically increasing in the range[0; 1] and for whichf(0) = −1, f(1) = 1

and∀x ∈ [−1; 0], f(x) ≤ −1. Since there are infinitely many functions with this property, we are

actually defining a class of transformations isomorphic to the class of functionsf with the above

properties. For simplicity, from now on the termtransformationwill refer to any of one these.

Notice that when such a transformation is applied to all points in an obstacle interior it will

collapse the obstacle to a point singularity coinciding with its respective center. Also, when applied

to all other points, the transformation will expand free space to cover all of the terrain except a finite

number of point singularities at the obstacle centers. Moreover, the transformation is reversible

when the range is limited to free space.

2Technically, this is true when there are no saddle points in the terrain potential. An example of when this can
happen is an obstacle which is almost completely surrounded by another. However, this is not a problem for our
algorithm since we do not really compute the transformation itself.

77

The importance of these properties lies in the fact that instead of solving the problem of

collision-free path between two points in the real terrain, we can instead solve the correspond-

ing problem in the virtual space and apply the inverse transform to obtain a valid solution in the

real space. The reason why this approach is attractive is that, due to the lack of obstacles in the

virtual terrain3, any continuous curve that connects two points in the virtual space corresponds to a

valid path between their respective real counterparts. The simplest case of such a curve is a straight

line. Figure5.4 shows a sketch of how a straight line in virtual space might look when mapped

back onto the real terrain. The starting point and the goal are represented with a triangle and a

square, respectively. The dotted curve represents the shape of the straight line in real space.

At this point, we should note that while the computation of the terrain potential is a very

straightforward and efficient procedure, obtaining a terrain transform from this potential is not.

This is mainly due to the fact that gradient descent towards a point singularity over a uniform

approximation of such potentials is numerically a very unstable.

Fortunately, computing such a transformation is not necessary. Nevertheless, it is presented

here for the sake of providing a better understanding of why we use such an approach. For example,

the path shown in Figure5.4can be generated by smoothly switching between (1) going towards a

destination, (2) going around an obstacle (following the equipotential lines), and (3) back to going

towards the destination after approaching the exit point at the other end of the obstacle. All the

necessary information for this algorithm can be extracted from the local terrain potential. Note also

that while not providing optimal paths, at least a collision-free path to destination is guaranteed (if

one exists, of course). In the next section we will introduce a heuristic approach which can do

3Except for point singularities which can be avoided trivially.

78

better in terms of discovered path length at the expense of success ratio.

5.3 A Heuristic Navigation Algorithm for Urban Environments

In this section we will describe a heuristic approach to agent navigation based on the idea of

terrain potential. The algorithm described below is just a proof of concept (mostly for the purpose

of illustrating the idea and initial experimentation) and we are confident that a more careful and

systematic construction will yield better results. Experimental results show that while not being

able to guarantee a successful discovery of a path, this algorithm appears to performs quite well on

our test terrain data.

The algorithm is based on performing a number of computations at each step. The outcome is

a direction of motion and once the decision is applied the agent moves to the new position and the

process is repeated until the destination is reached. These computations require the availability of

the local terrain potential and the center of the closest obstacle. To be precise, the decision process

depends on the following information:

• terrain potential at current position

• center of closest obstacle

• internal state variables (destination and an internal variables)

Note that the local nature of the required information allows it to be stored in completely distributed

data structures. Table5.1describes our notation in detail.

Here is an algorithmic description of the steps necessary for obtaining a motion decision:

79

Table 5.1: Explanation of the notation used for describing the heuristic navigation algorithm

φ terrain potential at the current location

n̂ normalized gradient vector ofφ (i.e. n̂ = ~n
|~n| , where~n = ~∇φ

d distance from current position to destination

dmin threshold dependent on terrain scale
~d a vector from current position to destination

d̂ unit vector pointing towards destination

ĉ unit vector pointing towards current obstacle center

s current avoidance direction (left, right or none)

ŝ a unit vector in the current avoidance direction (always perpendicular ton̂)

~a a vector representing decision outcome (i.e. direction of motion)

1. if a change in~c is detected at the last step (i.e. moved from one obstacle’s field of influence

into another) then

s← ‘none’

2. if n̂ · d̂ ≥ 0 then(agent is climbing the terrain potential – i.e. moving away from obstacle)

(a) if φ < 0.9 then

i. if s = none then picks such thatd̂ · ŝ > 0

ii. if d̂ · ŝ < −0.2 then~a← ŝ, otherwise~a← d̂

(b) otherwise~a← d̂

3. otherwise(agent is descending the terrain potential – i.e. moving towards the obstacle)

(a) if s = none then:

i. if ĉ · d̂ < 0 then picks such thatd̂ · ŝ ≥ 0

80

ii. else picks such that̂c · ŝ ≥ 0

(b) ~a← φ2d̂ + (1− φ2)ŝ

4. if d < dmin then~a← bd̂ + (1− b)~a, whereb =
√

d/dmin

(this operations modulates the behavior after the agent gets withindmin of the obstacle)

5. at this point~a contains the outcome of the decision process in the form of a direction of

motion.

5.4 Experiments and Performance Analysis

In this section we present experimental results on the performance of the heuristic navigation

algorithm and provide quantitative comparison with other approaches. The terrain we used is

shown in Figure5.1 (terrain dimensions are300 × 300 units, terrain potential computed in 2000

iterations at256× 256 quantization,dmin = 10 units).

Table5.2provides experimental results for a set of 1000 randomly selected missions. Amission

is defined by a pair of points which represent initial and final positions of an agent. For each

mission, we run three different algorithms:

1. SHORTEST computes the optimal path from source to destination. It is based on an exten-

sion of Dijkstra’s shortest path algorithm [Dij59] to continuous domain.

2. HEURISTIC is the algorithm we present in the previous section.

3. SIMPLE is equivalent to the GD Navigation behavior described in Chapter 3 - the agent

always moves in a direction which will minimize the distance to destination (or gets stuck if

81

any action will actually increase the distance)

We chose to compare HEURISTIC with SHORTEST and SIMPLE because

• SHORTEST gives best results in terms of path length and success ratio but is computation-

ally expensive and requires global terrain information,

• SIMPLE has very low computational complexity but very low success ratio too,

and HEURISTIC is an algorithm which tries to combine the best properties of both ends of the

spectrum (i.e. high success ratio and low computational complexity).

The results in Table5.2contain three different columns labeled as Set 1, Set 2 and Set 3. These

sets represent the domains of success for the three different algorithms:

• Set 1 contains all missions which are successfully solved by SHORTEST (i.e. all 1000

missions).

• Set 2 contains all missions which are successfully solved by HEURISTIC (974 missions).

• Set 3 contains all missions which are successfully solved by SIMPLE (339 missions).

We examine the performance of the algorithms on these sets in order to provide means to com-

pare their performance within the respective domains - i.e. how well they perform when applied to

easy or difficult missions.

One of the shortcomings of HEURISTIC is that it has trouble approaching the final destination

when it is very close to an obstacle4. In order to analyze the effect of obstacle proximity we

4Step 4 in the algorithm description tries to minimize the effect of this problem by smoothly turning off obstacle
avoidance when the agent is very near to the destination, but does not remove it completely.

82

examine the subsets of missions for which the destination potentialφ is bound by a lower threshold

φmin. The rows in Table5.2 provide results forφmin ranging from 0 to 0.9 (i.e. we start with no

limitations on proximity of the destination to obstacles and gradually eliminate missions for which

the destination is deemed too close to an obstacle).

A close inspection of the results show that the success of HEURISTIC increases from 97.4%

to 100% whenφ at the destination is limited to 0.2 or higher and stays at 100%, while the success

of SIMPLE varies between 34% and 40%. As can be seen, the improvement that HEURISTIC

provides over SIMPLE is significant, especially when we take into consideration the fact that

SIMPLE and HEURISTIC have the same computational complexity at runtime.

Figures5.5and5.6provide plots of the average path lengths from the Set 2 and Set 3 columns

of Table5.2. According to figure5.5, HEURISTIC is able to find paths which are on average 20%

worse than the optimal. In the case of trivial paths (i.e. paths that can be discovered by SIMPLE),

HEURISTIC finds paths which are on average about 10% percent worse than optimal while paths

discovered with SIMPLE are on average about 5% worse than optimal. The trouble experienced

by HEURISTIC for destinations that are close to obstacle boundaries are apparent in the far left

part of figure5.6. Finally, figure5.7shows nine randomly selected missions from the 1000 used in

the experiments.

5.5 Discussion

We introduced a novel approach to path-finding and navigation in an environment with complex

obstacles based on the idea of transforming a real terrain into an obstacle-free virtual space. We

also presented, as a proof of concept, a heuristic algorithm which, by incorporating terrain charac-

83

Table 5.2: Performance of SIMPLE, HEURISTIC and SHORTEST on the three sets for different
φmin

Set 1 Set 2 Set 3
φmin Ab Ab Ah Ab Ah As Nb Nh Ns

0 204.09 204.24 234.20 137.46 174.01 142.33 1000 974 (97.4%) 339 (33.9%)
0.05 205.21 204.98 233.75 141.90 154.50 146.93 928 921 (99.2%) 319 (34.3%)
0.1 204.92 204.96 232.33 142.63 155.38 147.64 883 879 (99.5%) 310 (35.1%)
0.15 204.03 204.07 230.89 143.33 155.13 148.36 850 846 (99.5%) 305 (35.8%)
0.2 205.44 205.44 232.23 144.86 156.84 150.00 814 814 (100%) 292 (35.8%)
0.3 206.49 206.49 231.63 145.08 157.70 150.10 727 727 (100%) 264 (36.3%)
0.4 207.22 207.22 232.42 147.74 159.90 152.97 657 657 (100%) 240 (36.5%)
0.5 209.30 209.30 234.08 149.75 162.44 155.25 559 559 (100%) 199 (35.5%)
0.6 209.74 209.74 234.57 153.93 165.91 159.64 487 487 (100%) 174 (35.7%)
0.7 209.68 209.68 233.86 151.69 162.13 157.09 404 404 (100%) 149 (36.8%)
0.8 212.47 212.47 237.87 155.45 167.42 161.01 310 310 (100%) 117 (37.7%)
0.9 210.65 210.65 233.64 162.06 172.90 167.38 196 196 (100%) 78 (39.7%)

teristics into the decision process is able to significantly improve the success ratio of reactive agent

navigation methods and at the same time retain their low run-time computational requirements.

This is achieved by processing information about terrain-specific features into a form which al-

lows efficient fusion of this data into the decision process.

One of the advantages of the proposed way of abstracting relevant terrain information is that

the amount of processed data depends only on the dimensions of the terrain at a certain level of

detail and can be computed and accessed in a completely distributed manner. This information is

only terrain-specific and does not depend on a particular mission. Therefore, it only needs to be

computed once in order to support a large number of agents sharing the same environment. Due

to its low run-time computational requirements, our approach is also well suited for control of

autonomous robotic platforms with limited computational power.

Last but not least, we believe that the problem of goal-based navigation is closely related to the

84

Table 5.3: Explanation of the notation used in Table5.2

Set 1 : All missions for whichφ ≤ φmin at destination
Set 2 : Subset of set 1 for which HEURISTIC was successful
Set 3 : Subset of set 1 for which SIMPLE was successful

Ab : Average path length of shortest paths
Ah : Average path length for paths discovered by HEURISTIC
As : Average path length for paths discovered by SIMPLE
Nb : Number of missions for whichφ ≥ φmin at destination
Nh : Number of paths discovered (out of a total ofNb) by HEURISTIC
Ns : Number of paths discovered (out of a total ofNb) by SIMPLE

 160

 180

 200

 220

 240

 260

 280

 300

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 P
at

h
Le

ng
th

Mimimum potential at destination

SHORTEST
HEURISTIC

Figure 5.5: Average path length of set 2 mis-
sions w.r.t.φmin

 120

 130

 140

 150

 160

 170

 180

 190

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 P
at

h
Le

ng
th

Mimimum potential at destination

SHORTEST
HEURISTIC

SIMPLE

Figure 5.6: Average path length of set 3 mis-
sions w.r.t.φmin

inverse problem of discovering goals of agents based on observed motion, and we hope that our

approach will contribute to a better understanding of agent mobility in complex environments and

situation awareness.

85

(a) mission #67 (b) mission #89 (c) mission #122

(d) mission #349 (e) mission #422 (f) mission #588

(g) mission #700 (h) mission #701 (i) mission #810

Figure 5.7: A random selection of mission outcomes. Initial and final positions are marked with
a triangle and a square, respectively. Dotted lines represent SHORTEST paths and solid lines
represent HEURISTIC paths.

86

CHAPTER 6

DISCOVERING AND TRACKING GROUPS

6.1 Introduction

Part of the discussion of experimental observations in Chapter 4 is dedicated on emphasizing the

fact that the ability to detect unexpected emergent events may provide an important feedback mech-

anism for dealing with such situations. In the context of military simulations, a large class of such

events are associated with the behavior of groups in a dynamic environment and, therefore, can be

approached as the problem of detecting and tracking groups.

However, this is only one of the reasons for exploring this area and it is certainly not the most

important one. The ability to detect and track groups of agents is considered a fundamental part

of the higher-level data fusion model. Unfortunately, this is an area which traditionally has not

received enough attention from the fusion community [Pan04]. As a direct consequence of the

increase of deployment of high-level technology in modern military conflicts and the general shift

from the platform-centric warfare model to a network-centric one, there has been a sharp increase

in the importance of achieving complete situational awareness which is the ultimate goal of higher-

level data and information fusion.

In the rest of the chapter, we will introduce two algorithms for a) detecting groups of agents,

and b) track groups and detect events of interest.

87

6.2 Experimental Setup

The second experiment described in Chapter 4 provides a good example of emergent behavior.

We will, therefore, utilize the same scenario as a test case for group detection and tracking. The

basic configuration of the experiment is shown in Figure4.2. There are three teams of agents

(color-coded as Red, Green and Blue, 5 agents in each group, 15 agents in total), which have the

following objectives:

• Blue team has to go the destination while avoiding the Red team.

• Red team has to intercept and destroy the Blue team while avoiding the Green team.

• Green team has to help the Blue team by trying to intercept and destroy the Red team.

The terrain also contains a number of simple obstacles (Trees, represented as green circles of

varying radii).

6.2.1 Observing Emergent Behavior

Before introducing our approach for group detection and tracking, we will discuss a number of

observations related to emergent situations arising in our test case which are particularly interesting

in military scenarios. When running our simulations, we were able to observe all of the following:

• Spatially well-formed and distinct groups behaving in accordance with their instructions.

• Adversarial groups fusing into a single formation when they attack each other.

• Friendly groups which are difficult to distinguish from each other due to spatio-temporal

proximity of their trajectories.

88

• Partial break-up of a group due to inability of some group members to “keep pace” with the

rest of the group.

• Complete break-up of a group because of a dominant goal (i.e. urge to evade adversaries

dominates other goals such as staying together, and as a result the group is completely dis-

solved).

We examine these events in detail with the hope that a close scrutiny will provide important

insight into the nature of agent behavior and how raw observation data can be exploited best for

differentiation of groups of related agents.

Let us first look at the spatial behavior of agents. We know that obstacles present in the terrain

will influence the motion of agents. For this reason we examine the scenario both the normal terrain

and in an environment without any obstacles. In both cases we look at how group formations

develop as a function of time. Figure6.1shows four snapshots of the simulation at different times

(0, 300, 600 and 900 time steps) when obstacles are present in the terrain. The obstacle-free

versions are shown in Figure6.2.

The evolution of the spatial configuration of the different teams throughout the simulations are

shown as colored trails representing the trajectories of the agents. Each agent is also identified by

a unique number (agents 1-5 are in the red team, 6-10 are in the green team and 11-15 are in the

blue team).

An example of how terrain affects mobility is depicted in Figure6.1(a). Agent 3 has trouble

clearing some obstacles and eventually falls behind the group. As a result, it is able to avoid a

confrontation with the green team and later engage the blue team while its teammates are mostly

89

destroyed by the green team. This “change of plan” was not explicitly encoded in the mission

objectives, but is an outcome of the complex interactions of different aspects of agent behavior.

Another interested “side effect” is the chase going on between agents 9 and 2. Such unexpected

emergent behavior is not observed in Figure6.2, mostly due to the fact that there are no obstacles

to interfere with the motion of groups. It is also interesting to note that the green and blue teams as

shown in Figures6.1(b)and6.2(b)are too close to each other to be easily distinguished by looking

at their spatial formation alone (assuming that an independent observer has no other information).

Besides spatial configuration, we also measure instantaneous agent behavior as a function of

time. Within the setting of these simulations, instantaneous agent behavior refers to the direction in

which an agent moves (i.e. velocity). A very good example of how these observations can be useful

is the situation of the green and blue teams in Figures6.1(b)and6.2(b). While both teams are too

close to each other for effective spatial discrimination, they can be easily identified as separate

groups by observing that they happen to move in distinctively different directions. Measurement

of the direction of motion throughout the whole simulation is shown in Figure6.3for four different

configurations (i.e. in presence or absence of obstacles and weapons).

6.3 An MST-based Algorithm for Discovering Groups

One of the problems of standard clustering methods is that they tend to work well when provided

with large volume of raw data. Unfortunately, our scenarios involve relatively small number of

agents that usually cannot provide statistical data of acceptable quality. Also, the dynamic nature

of the groups that we are trying to detect makes this particular domain unsuitable for a range of

clustering algorithms which depend on apriori information about the number of groups present

90

(a) steps=0 (b) steps=300

(c) steps=600 (d) steps=900

Figure 6.1: Evolution of the spatial configuration of the agents with respect to time in a terrain
with obstacles

91

(a) steps=0 (b) steps=300

(c) steps=600 (d) steps=900

Figure 6.2: Evolution of the spatial configuration of the agents with respect to time in a terrain
without obstacles

92

-3
-2
-1
 0
 1
 2
 3

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400
(a)

Agent Behavior (with obstacles, weapons enabled)

-3
-2
-1
 0
 1
 2
 3

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400
(b)

Agent Behavior (no obstacles, weapons enabled

-3
-2
-1
 0
 1
 2
 3

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400
(c)

Agent Behavior (with obstacles, weapons disabled)

-3
-2
-1
 0
 1
 2
 3

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400
(d)

Agent Behavior (no obstacles, weapons disabled)

Figure 6.3: Evolution of the instantaneous agent behavior with respect to time. Vertical axis repre-
sents observed direction of motion (in radians). Horizontal axis represents simulation time steps.

93

(like K-means and derivatives).

In the process of researching alternative approaches we noticed that clustering algorithms

which are designed specifically to address a particular class of problems tend to work much better

than generic ones. This observation led to the development of a new clustering algorithm which

is very efficient and performs particularly well for the class of scenarios that we are interested in.

The description of our algorithm is as follows:

1. We assume that the environment contains a number of agents and that we can detect the

number of agents (N) and their positions (~pi) and/or their velocities (~vi). N , ~pi’s and~vi’s

constitute theinput to our algorithm.

2. A fully-connected bi-directional weighted graph withN vertices andM = N ∗ (N − 1)/2

edges is built such that vertices represent agents and the weights of the edges represent

how well agents are related. In the case of spatial clustering, edge weights are the geometric

distances (|~pi−~pj|) between agents, while in behavioral clustering the edge weights represent

angular difference between the directions in which each agent moves - i.e.arcsin(v̂i · v̂j),

normalized to the range(−π; +π].

3. The next step is to build a Minimum Spanning Tree (MST) for this graph. Only a few of the

M edges will be part of the MST.

4. We then compute a density approximation of the distribution of MST edges. The particular

method we use is Gaussian Parzen window estimation. This method has one configurable

parameterσ, the value of which will depend on whether the algorithm works in spatial or

behavioral domain.

94

5. An edge cut-off thresholdε is computed from the density estimation. This is done by first

finding the highest peak in the density and then locating the smallest edge length (ε) on the

right of the peak for which the density drops to half of the maximum.

6. The edges in the MST that have values above the cut-off threshold are removed. As a result

of this operation, the MST is partitioned in a collection of sub-trees (in Graph Theory, such

collections are better known asforests).

7. Each tree in this forest is assumed to represent a separate group of agents.

The operation of this algorithm is illustrated graphically in Figure6.4.

6.4 An Algorithm for Temporal Analysis of Group Evolution

In this section we show how our method of clustering can be used as a valuable tool for detecting

certain events of interest. To this end, we provide a novel algorithm which detects events by per-

forming temporal analysis over the evolution of groups. The output of this algorithm is a sequence

of triggers describing possible or confirmed events. The events indicate either the combination of

a number of groups into a single group or the breakup of a single group into a number of distinct

components.

The description of the algorithm is as follows:

Throughout the simulation we keep a list of viable groupsG that have been detected so far.

G is initially empty. Each group inG has two counters associated with it:age and duration.

Agerepresents the time difference between current simulation time and the most recent time the

95

(a) Simulation Screenshot, 15 agents (b) MST based on spatial metrics

(c) Histogram and density estimation of MST edge
lengths (σ = 5). ε is marked with a red vertical
line.

(d) Partial MST forest after removal of edges above
the cut-off limit

Figure 6.4: Graphical illustration of the MST-based clustering algorithm

96

group was detected.Duration represents for how long the group was consistently detected at every

timestep counting backwards from the current simulation time.

At each timestep, the following operations are performed in this particular order:

1. Since agents can die during a mission, we first update all the groups inG by removing agents

that have been destroyed during the last step. If group duplications occur as a result of this

removal, we combine the duplicates into a single group with a duration set to the maximum

of both durations and an age set to the minimum of both ages. If a group becomes empty, it

is removed fromG.

2. At each time step, the algorithm also receives a list of current groupsN as detected by the

clustering algorithm described in the previous section. Each group inN is marked asold or

newdepending on whether it is present inG or not.

3. For each groupc in N that is also present inG and can be represented as a union of other

groups inG we trigger a “Possible Group Combination” event if duration ofc is greater that

t1 and a “Confirmed Group Combination” event if the duration ofc is greater thatt2. When

a combination is confirmed, the constituent groups are removed fromG. t1 andt2 depend

on the time scale of simulations (in our experiments,t1 = 15 andt2 = 30).

4. For each groups in G which can be represented as a union of groups inN we trigger

a “Possible Group Separation” if the age ofs is greater thant1 and a “Confirmed Group

Separation” event if the age ofs is greater thant2. When a separation is confirmed,s is

removed fromG.

5. Groups marked asold have their age set to 1 and duration increased by 1.Newgroups have

97

their age and duration set to 1. Groups inG which are not present inN have have their age

increased by 1 and their duration set to 0.

6.5 Experimental Results

In this section we illustrate how our clustering and event detection algorithms operate on the test

scenario. The results are shown in Figures6.5 through6.9. Each of these figures contain a the

following pieces of information:

1. Terrain and agents (left part of the figure)

2. Density estimation for spatial clustering (top-middle graph)

3. Density estimation for behavioral clustering (top-right graph)

4. Spatial clustering results (middle-center square)

5. Behavioral clustering results (middle-right square)

6. Event triggers (bottom-right area). These triggers are generated by applying temporal anal-

ysisonly to the spatial clustering of the agents.

Figure6.5 shows the state of the simulator at timet = 0. There are three spatially distinct

groups but only one behaviorally distinct group (this is due to the fact that all agents are stationary).

No events have been triggered.

Figure6.6shows the state of the simulator at timet = 2.733. There are four spatially distinct

groups. Behavior clustering seems to be noisy. The separation of agent 3 from the red team has

been been marked as possible att = 1.86 and later confirmed att = 2.36.

98

Figure6.7shows the state of the simulator at timet = 15.533. There are two spatially distinct

groups. The combination of the red team and the green team has been marked as possible at time

t = 14.29 and later confirmed att = 14.79. Agent 3 from the red team has just established contact

with the blue team (however, as can be seen in the next figure, it will be destroyed before the

algorithm can trigger possible group combination). Note also that the behavior clustering is able to

resolve the difference between the blue team and agent 3 as well as properly distinguish the green

and red teams as they engage each other.

Figure6.8shows the state of the simulator at timet = 26.966. There are three spatially distinct

groups: the blue team, agent 9 from the green team, and agent 2 from the red team. Behavioral

clustering considers agents 2 and 9 to be one group (as they behave in a similar fashion). The fight

between the red and green teams seems to have resulted in another recombination att = 18.66 to

be followed by a separation att = 19.66.

Figure 6.9 shows the state of the simulator at timet = 33.7. There is only one spatially

and behaviorally distinct group. This event has been marked as possible at timet = 32.56 and

confirmed att = 33.06.

As it can be seen from these examples, the results achieved by our approach are quite promis-

ing. The spatial clustering, in particular, performs quite well when agent groups are markedly

distinct. Although less effective in general, behavioral clustering seems to be particularly good at

distinguishing different agent groups when the spatial clustering fails due to group proximity.

99

Figure 6.5: Spatial and Behavioral clustering example #1

Figure 6.6: Spatial and Behavioral clustering example #2

100

Figure 6.7: Spatial and Behavioral clustering example #3

Figure 6.8: Spatial and Behavioral clustering example #4

101

Figure 6.9: Spatial and Behavioral clustering example #5

6.6 Discussion

In this Chapter we presented two novel algorithms for detection and tracking of groups of agents

and group-related events of interest. The first algorithm detects groups of agents by applying

graph-theoretic methods on measures of spatial and behavioral similarity between agents. The

second algorithm tracks groups and detects events related to inter-group dynamics by applying

temporal analysis on the output of the first algorithm. Although relatively simple, our approach

exhibits very promising performance as can be seen from the experimental results.

While the problem of tracking individual agents has been studied extensively as part of low-

level data fusion and is considered a mature subject now, the problem of tracking groups and

analyzing their dynamics has received very little attention until recently. We hope that our con-

tributions to this area will have a positive impact on the field of higher-level data and information

102

fusion as part of the efforts of improving situation awareness in modern military conflicts.

103

CHAPTER 7

CONCLUSION AND FUTURE RESEARCH DIRECTIONS

7.1 Contributions

In this thesis we investigate the problem of modeling teams of collaborating and competing au-

tonomous agents in the context of simulations of military operations. We focus in particular on

agent control methods which can be deployed in real-time as part of an augmented reality embed-

ded training system.

The contributions presented in our work can be summarized as follows:

1. We present a behavior-based agent model which illustrates how simple reactive behavior

mechanisms which model aspects of agent actions like motion towards a goal, group for-

mation, etc., can be combined in order to achieve a variety of emergent behaviors which

commonly arise in military conflict situations.

2. We also present an algorithm for navigation in terrains with non-convex obstacles based on

fusing terrain information into a reactive decision process. Due to its very low runtime com-

putational requirements, high success rate and excellent scalability, this algorithm is partic-

ularly well suited for simulating a large number of agents (civilians, soldiers or autonomous

robotic platforms) in an urban combat environment.

3. We present an algorithm for detecting teams of agents based on applying graph-theoretical

methods for analyzing spatial and behavior similarities.

104

4. We present an algorithm for detecting events of interest based on a temporal analysis of

group dynamics.

7.2 Limitations

Throughout our research we tried to keep the type of the agents, terrain and the nature of adversarial

actions that we consider as general as possible. There are two reasons for this:

1. The primary purpose of our research has been to produce novel ideas on how to solve some

fundamental problems in this area rather than to focus narrowly on a more specific sub-

problem. This decision was made with the hope to produce results which are applicable to a

broader range of areas and therefore increase the significance of our contributions.

2. Besides the danger of limiting the impact of the achieved results, building a scenario with

components which are realistic enough to be considered suitable for direct application by the

military usually requires access to classified information about technological capabilities or

expert know-how.

As a direct result, our agent, terrain and mission models are not directly applicable for simula-

tion of scenarios which require a high-level of detail or realism.

When applied to real terrains, our navigation approach requires the ability to accurately mea-

sure obstacles at a relatively high resolution. If this is done in a centralized manner, the process

of dissemination of this information can introduce a single point of failure. In its current form,

our approach is based on the assumption that all free space in the terrain has a uniform cost of

travel. This may not be the case, for example when significant differences in elevation are present.

105

Finally, the problems which our algorithm experiences when approaching a destination very close

to an obstacle require further consideration.

The success of our approach to group detection and tracking is vitally dependent on the ability

to detect and consistently identify all agents in an environment in an ideal manner. In their cur-

rent form, our algorithms do not provide any means to deal with input from lower-level tracking

methods which may occasionally provide inconsistent or incomplete information.

7.3 Future Research Directions

Our research results provide a number of possible ways for future advances.

As far as the agent model is concerned, we only used static behavior configuration within the

examples presented in this thesis. Our implementation allows for dynamic change of the weighting

parameters or even the wiring scheme of behaviors throughout a simulation1. This property can be

used in conjunction with measurements of performance metrics in order to explore possible ways

of improving performance through learning.

Both the navigation and tracking algorithms, as described, include components which are more

proofs of concepts than matured designs. As such, we feel that they provide ample space for

improvement.

Another direction of future research is exploring the possibility of applying our navigation ap-

proach within a different domain. For example, the duality between the problems of path-finding

and routing of packets in networks implies that it may be possible to transform or adapt our ap-

1We have used dynamic agent behavior to model the transformation of a civilians into a terrorists as part of sup-
porting other research within our group. However, this research is not described here.

106

proach for delivery-guaranteed routing in arbitrary-topology geographical networks without the

need to use a routing table or an expensive search mechanism.

107

APPENDIX A

THE RANDOM NEURAL NETWORK

108

The random neural network (RNN) model, introduced by Gelenbe [Gel89, Gel90, Gel93], is an an-

alytically tractable spiked neural network model which has been studied extensively all around the

world in the past decade. Although it is based on non-linear mathematics, the mathematical struc-

ture of RNN is akin to that of queuing networks and it has “product form” just like many useful

queuing network models. The applications that can use RNN cover almost all the areas in which

typical neural networks are employed. Applications reported in the most recent RNN literature in-

clude, but are not limited to, associative memory, combinatorial optimization, texture generation,

image processing, still image and video compression, function approximation, magnetic resonance

imaging, pattern recognition, detection and classification of synchronous recurrent transient sig-

nals, mine detection, automatic target recognition, and computer communications [BK00, GXS99].

A hardware implementation of the RNN for a single neuron using TTL IC is proposed in 1996 and

a chip design for a network of 16 neurons using CMOS technology is proposed in [BHA97].

Like other artificial neural network models, the work on the RNN model was initially moti-

vated by the behavior of natural neural networks. The interconnection and interaction among the

RNN neurons make it closer to biophysical reality than widely used artificial neuron models in

which signals are represented by fixed signal levels. The RNN model is based on probabilistic

assumptions and belongs to the family of Markovian queuing networks. The novelty with respect

to usual queuing models lies in the concept of requests for removing work (negative customers) in

addition to classical requests for performing work (positive customers). This novel class of models

is referred to as G-network [GP98, LS97]. The significant feature of the model is that it is analyti-

cally solvable, and therefore computationally efficient, since its application is reduced to obtaining

solutions to a system of a fixed-point equations [LS00]. In the RNN model, the rich mathemati-

109

cal structure of the network in terms of an infinite set of Chapman-Kolmogorov equations leads

to a compact closed form solution for the feed-forward and recurrent case [GML99]. The RNN

model accepts a product form solution, i.e., the network’s stationary probability distribution can

be written as the product of the marginal probabilities of the state of each neuron.

Signals in the Random Neural Network travel form of impulses with a unit amplitude. Signals

can be positive or negative. Positive signals represent excitation and negative signals represent in-

hibition to the neuron receiving the signal. Each neuroni in the network has at timet an associated

stateki(t) which is called its potential and is represented by a non-negative integer number.

When the potential of neuroni is positive, it is referred as being ‘excited’. Excited neurons

transmit (fire) signals at a Poisson rateri to other neurons or to the outside of the network. The

transmitted signals will arrive as excitation signals at neuronj with probabilityp+
ij and as inhibitory

signals with probabilityp−ij. A neuron’s transmitted signal can also leave the network with proba-

bility di, where

di = 1−
n∑

j=1

(p+
ij + p−ij)

It is sometimes easier to work with firing rates rather than with probabilities. Let us define

w+
ij = rip

+
ij as the rate of firing excitatory signals from neuroni to neuronj andw−

ij = rip
−
ij as the

rate of firing inhibitory signals from neuroni to neuronj. Thew matrices can be viewed as being

analogous to the synaptic weights in classical neural networks, though they actually represent the

rates of excitatory and inhibitory signal emission. Since thew matrices are formed as a product of

rates and probabilities, they are guaranteed to be non-negative.

110

ki(t)

Λi

λi

kj(t)

kn(t)

k1(t)

w+
ij , w

−
ij

w+
ji, w

−
ji

Figure A.1: Representation of a neuron in the RNN

Besides receiving signals from other neurons, each neuroni can also receive exogenous exci-

tatory and inhibitory signals at Poisson rates ofΛi andλi respectively.

FigureA.1 shows the representation of a neuron in the RNN using the model parameters that

have been defined so far.

The dynamics of the RNN model is defined as follows:

• The potentialki(t) of a neuron will decrease by one whenever it fires a signal regardless of

the type of the emitted signal.

• The potentialki(t) of a neuron will decrease by one whenever it receives an inhibitory signal

from another neuron or from the exogenous inhibitory signal source. The potential will not

decrease further if it is already zero.

• The potentialki(t) of a neuron will increase by one whenever it receives an excitatory signal

from another neuron or from the exogenous excitatory signal source.

• The potentialki(t) will stay the same if none of the events described above happen.

Let k̂(t) = 〈k1(t), . . . , kn(t)〉 be the vector of signal potentials at time t, andk̂ = 〈k1, . . . , kn〉

111

be a particular value of the vector. For the steady state analysis, letp(k̂) denote the stationary

probability distribution which is given byp(k̂) = limt→∞ Prob[k̂(t) = k̂] if it exists. Thus, in

steady state,p(k̂) must satisfy the global balance equations:

p(k̂)
∑

i

[Λ(i) + [λ(i) + r(i)]1[ki > 0]]

=
∑

i

[p(k̂+
i)r(i)d(i) + p(k̂−i)Λ(i)1[ki > 0]

+ p(k̂+
i)λ(i) +

∑
j

{p(k̂+−
ij)r(i)p+(i, j)1[kj > 0]

+ p(k̂++
ij)r(i)p−(i, j) + p(k̂+

i)r(i)p−(i, j)1[kj = 0]}]

where the vectors used are

k̂+
i = 〈k1, . . . , ki + 1, . . . , kn〉

k̂−i = 〈k1, . . . , ki − 1, . . . , kn〉

k̂+−
ij = 〈k1, . . . , ki + 1, . . . , kj − 1, . . . , kn〉

k̂++
ij = 〈k1, . . . , ki + 1, . . . , kj + 1, . . . , kn〉.

Let qi be the steady state probability that neuroni is excited, that is,

qi = lim
t→∞

Prob[ki(t) > 0], i = 1, . . . , n.

It was shown in [Gel89] that,

qi = λ+(i)/[r(i) + λ−(i)], (A.1)

112

where theλ+(i), λ−(i) for i = 1, . . . , n satisfy the system of non-linear simultaneous equations

λ+(i) = Λ(i) +
∑
j

qjr(j)p
+(j, i), (A.2)

λ−(i) = λ(i) +
∑
j

qjr(j)p
−(j, i). (A.3)

Clearly,λ+(i) andλ−(i) are the arrival rate of the positive and negative signals to neuroni,

therefore,qi is equal to the ratio of the sum of all the rates of arriving positive signals to the sum

of the rates of arriving negative signals together with the firing rate of neuroni. If a unique non-

negative solution{λ+(i), λ−(i)} exists to the above equations such thatqi < 1, then the network

stationary probability distribution has the form

p(k̂) =
n∏

i=1

[1− qi]q
ki
i .

For a network withn neurons, the network parameters are twon byn “weight matrices”W+ =

{w+
ij} andW− = {w−

ij} which need to be learned from input data through learning algorithms.

113

APPENDIX B

REINFORCEMENT LEARNING IN RNN

114

Various techniques for learning may be applied to the RNN. These include Hebbian learning,

gradient based learning, and reinforcement learning. In this paper we use Reinforcement Learning

based on the RNN model [Hal99] which was originally suggested for navigation in a maze. In this

appendix, we are going to describe Reinforcement Learning and its adoption for Random Neural

Network model in general and in our specific environment, which is terrain navigation.

One of the major classes of stimulus-response learning is instrumental conditioning (also called

operant conditioning) where the organism is allowed to have an active role in the learning situation.

An organism is allowed to adjust its behavior according to the consequences of that behavior. That

is, when a behavior is followed by favorable consequences, such behavior tends to occur more

frequently; but when it is followed by unfavorable consequences, it tends to occur less frequently.

Collectively, favorable consequences are referred to asrewardand unfavorable consequences are

referred to aspunishment.

Extinction is a well-known property in animal learning, and it is extremely important to the

survival of living organism because it provides adaptation to changing conditions. Extinction refers

to the decline of non-reinforced or punished association between some actions and their responses.

It allows the system to learn new associations after forgetting those ones that are no longer valid,

and prevents it from learning further associations based on those that are not valid and from getting

stuck to previously learned actions.

In an artificial neural network, including RNN, it is the weight values assigned to the corre-

sponding interconnections that allow the network to learn, to remember, and to react to the en-

vironment. Reinforcement Learning is one of the ways to build and update these weight values.

It is similar to supervised training except that, instead of being given the correct output at each

115

individual training trial, the network receives only a grade (could be either areward if the grade

is high, or apunishmentotherwise) that tells it how well it has done over a sequence of training

trials. Therefore, the learner in reinforcement learning is not told which action to take, but instead

must discover by itself which actions yield the highest reward by trying them.

In [Hal97], a reinforcement function is provided for RNN along with the linear-reward-only

weight update rule to solve the maze learning problem. It performs well for the stationary en-

vironment, but it suffers from getting stuck in the previously remembered actions and therefore

losing its ability to adapt in changing conditions. In order to make further exploration possible for

the same problem, [Hal99] proposes a reinforcement learning scheme for RNN which takes the

“internal expectation of reinforcement” into consideration in such a way that it behaves as reward

learning as long as the reward for the learned action is not below the expectation and it behaves

as punishment learning otherwise, so that other possibilities are explored. Both of the above two

approaches (in fact, the second is an extension to the first one) set all the negative weightsp−ij to 0

and remain so, therefore, they don’t fully use of the structure of RNN.

In the case of navigation, a Random Neural Network is used both for storing the weights and

making decisions. The weights of the network are updated so that decisions are reinforced or

weakened depending on whether they have been observed to contribute to increasing or decreasing

the accomplishment of the declared goal.

Given some GoalG that the agent has to achieve as a function to be minimized (e.g. expected

time to reach a destination or probability of getting killed, or a combination of the two), we for-

mulate a rewardR which is proportional toG−1. Successive measured values of theR are denoted

116

by Rl, l = 1, 2, .. These are first used to compute a decision threshold:

Tl = aTl−1 + (1− a)Rl, (B.1)

wherea is some constant0 < a < 1, typically close to1.

A fully interconnected RNN with as many neurons as the decision outcomes is constructed. In

the case of navigation the agent can decide to go to any of the 8 neighboring cells, therefore an

8-neuron decision network will be constructed. The weights will be

Let the neurons be numbered1, ..., n. Thus for any decisioni, there is some neuroni. Decisions

in this Reinforcement Learning algorithm with the RNN are taken by selecting the decisionj for

which the corresponding neuron is the most excited, i.e. the one which has the largest value ofqj.

Note that thelth decision may not have contributed directly to thelth observed reward because of

time delays between cause and effect.

Suppose that we have now taken thelth decision which corresponds to neuronj, and that we

have measured thelth rewardRl. Let us denote byri the firing rates of the neurons before the

update takes place.

What we do is first to determine whether the most recent value of the reward is larger than

the previous “smoothed” value of the reward which we call the threshold or internal expectation

Tl−1. If that is the case, then we increase very significantly the excitatory weights going into the

neuron that was the previous winner (in order to reward it for its new success), and make a small

increase of the inhibitory weights leading to other neurons. If the new reward is not better than

the previously observed smoothed reward (the threshold), then we simply increase moderately all

117

excitatory weights leading to all neurons, except for the previous winner, and increase significantly

the inhibitory weights leading to the previous winning neuron (in order to punish it for not being

very successful this time). This is detailed in the algorithm given below.

We first computeTl−1 and then update the network weights as follows for all neuronsi. Sup-

posej was the previous winner:

• If Tl−1 ≤ Rl

– w+
ij ← w+

ij + (Rl − Tl−1),

– w−
ik ← w−

ik + (Rl−Tl−1)
n−1

, ∀ k 6= j.

• Else

– w+
ik ← w+

ik + (Tl−1−Rl)
n−1

, ∀ k 6= j,

– w−
ij ← w−

ij + (Tl−1 −Rl).

Then we re-calculate all the weights by carrying out the following operations, to avoid obtain-

ing weights which indefinitely increase in size. First for eachi we compute:

r∗i =
n∑

m=1

[w+
im + w−

im], (B.2)

and then re-calculate the weights with:

w+
ij ← w+

ij ∗ ri

r∗i
,

w−
ij ← w−

ij ∗ ri

r∗i
.

118

Finally, the probabilitiesqi are computed using the non-linear equations (A.1), (A.2), and (A.3)

with fixed-point iterations, which lead to a new decision based on the neuron with the highest

probability of being excited.

119

APPENDIX C

DETAILED RESULTS FOR EXPERIMENT 1

120

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 500 1000 1500 2000 2500 3000

Group Size (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 500 1000 1500 2000 2500 3000

Group Tension (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 500 1000 1500 2000 2500 3000

Travel Distance (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 50

 100

 150

 200

 250

 0 500 1000 1500 2000 2500 3000

Travel Energy (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 500 1000 1500 2000 2500 3000

Number of Alive Agents (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 500 1000 1500 2000 2500 3000

Group Speed (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

RL Navigation
Only Red team has weapons
Blue team: 8 agents navigating from source to destination
Red team: 1 agent attracted to Blue team

Figure C.1: Simulation set #1

121

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000 2500 3000

Group Size (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 500 1000 1500 2000 2500 3000

Group Tension (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 500 1000 1500 2000 2500 3000

Travel Distance (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500 3000

Travel Energy (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 500 1000 1500 2000 2500 3000

Number of Alive Agents (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 500 1000 1500 2000 2500 3000

Group Speed (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

Gradient Navigation
Only Red team has weapons
Blue team: 8 agents navigating from source to destination
Red team: 1 agent attracted to Blue team

Figure C.2: Simulation set #2

122

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000 2500 3000

Group Size (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 500 1000 1500 2000 2500 3000

Group Tension (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 500 1000 1500 2000 2500 3000

Travel Distance (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 500 1000 1500 2000 2500 3000

Travel Energy (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 500 1000 1500 2000 2500 3000

Number of Alive Agents (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 500 1000 1500 2000 2500 3000

Group Speed (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

RL Navigation
Only Red team has weapons
Blue team: 8 agents navigating from source to destination
Red team: 3 agents attracted to Blue team

Figure C.3: Simulation set #3

123

 0

 5

 10

 15

 20

 25

 30

 35

 0 500 1000 1500 2000 2500 3000

Group Size (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 500 1000 1500 2000 2500 3000

Group Tension (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 500 1000 1500 2000 2500 3000

Travel Distance (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500 3000

Travel Energy (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 500 1000 1500 2000 2500 3000

Number of Alive Agents (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 500 1000 1500 2000 2500 3000

Group Speed (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

Gradient Navigation
Only Red team has weapons
Blue team: 8 agents navigating from source to destination
Red team: 3 agents attracted to Blue team

Figure C.4: Simulation set #4

124

 0

 5

 10

 15

 20

 25

 30

 35

 0 500 1000 1500 2000 2500 3000

Group Size (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 500 1000 1500 2000 2500 3000

Group Tension (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000 2500 3000

Travel Distance (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 500 1000 1500 2000 2500 3000

Travel Energy (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 500 1000 1500 2000 2500 3000

Number of Alive Agents (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 500 1000 1500 2000 2500 3000

Group Speed (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

RL Navigation
Only Red team has weapons
Blue team: 8 agents navigating from source to destination
Red team: 5 agents attracted to Blue team

Figure C.5: Simulation set #5

125

 0

 5

 10

 15

 20

 25

 30

 35

 0 500 1000 1500 2000 2500 3000

Group Size (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 500 1000 1500 2000 2500 3000

Group Tension (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 500 1000 1500 2000 2500 3000

Travel Distance (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500 3000

Travel Energy (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 500 1000 1500 2000 2500 3000

Number of Alive Agents (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 500 1000 1500 2000 2500 3000

Group Speed (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

Gradient Navigation
Only Red team has weapons
Blue team: 8 agents navigating from source to destination
Red team: 5 agents attracted to Blue team

Figure C.6: Simulation set #6

126

 25

 30

 35

 40

 45

 50

 55

 0 500 1000 1500 2000 2500 3000

Group Size (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000

Group Tension (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 500 1000 1500 2000 2500 3000

Travel Distance (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500 3000

Travel Energy (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 7.3

 7.4

 7.5

 7.6

 7.7

 7.8

 7.9

 8

 0 500 1000 1500 2000 2500 3000

Number of Alive Agents (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 500 1000 1500 2000 2500 3000

Group Speed (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

RL Navigation
Both teams have weapons
Blue team: 8 agents navigating from source to destination
Red team: 1 agent attracted to Blue team

Figure C.7: Simulation set #7

127

 25

 30

 35

 40

 45

 50

 0 500 1000 1500 2000 2500 3000

Group Size (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000

Group Tension (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 500 1000 1500 2000 2500 3000

Travel Distance (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 500 1000 1500 2000 2500 3000

Travel Energy (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 7.2

 7.3

 7.4

 7.5

 7.6

 7.7

 7.8

 7.9

 8

 0 500 1000 1500 2000 2500 3000

Number of Alive Agents (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 500 1000 1500 2000 2500 3000

Group Speed (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

Gradient Navigation
Both teams have weapons
Blue team: 8 agents navigating from source to destination
Red team: 1 agent attracted to Blue team

Figure C.8: Simulation set #8

128

 20

 25

 30

 35

 40

 45

 50

 55

 0 500 1000 1500 2000 2500 3000

Group Size (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 500 1000 1500 2000 2500 3000

Group Tension (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 500 1000 1500 2000 2500 3000

Travel Distance (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500 3000

Travel Energy (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 5.5

 6

 6.5

 7

 7.5

 8

 0 500 1000 1500 2000 2500 3000

Number of Alive Agents (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 500 1000 1500 2000 2500 3000

Group Speed (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

RL Navigation
Both teams have weapons
Blue team: 8 agents navigating from source to destination
Red team: 3 agents attracted to Blue team

Figure C.9: Simulation set #9

129

 20

 25

 30

 35

 40

 45

 50

 0 500 1000 1500 2000 2500 3000

Group Size (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 500 1000 1500 2000 2500 3000

Group Tension (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 500 1000 1500 2000 2500 3000

Travel Distance (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 500 1000 1500 2000 2500 3000

Travel Energy (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 5.5

 6

 6.5

 7

 7.5

 8

 0 500 1000 1500 2000 2500 3000

Number of Alive Agents (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 500 1000 1500 2000 2500 3000

Group Speed (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

Gradient Navigation
Both teams have weapons
Blue team: 8 agents navigating from source to destination
Red team: 3 agents attracted to Blue team

Figure C.10: Simulation set #10

130

 15

 20

 25

 30

 35

 40

 45

 50

 0 500 1000 1500 2000 2500 3000

Group Size (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 500 1000 1500 2000 2500 3000

Group Tension (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 500 1000 1500 2000 2500 3000

Travel Distance (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 50

 100

 150

 200

 250

 0 500 1000 1500 2000 2500 3000

Travel Energy (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 0 500 1000 1500 2000 2500 3000

Number of Alive Agents (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 500 1000 1500 2000 2500 3000

Group Speed (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

RL Navigation
Both teams have weapons
Blue team: 8 agents navigating from source to destination
Red team: 5 agents attracted to Blue team

Figure C.11: Simulation set #11

131

 15

 20

 25

 30

 35

 40

 45

 0 500 1000 1500 2000 2500 3000

Group Size (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 500 1000 1500 2000 2500 3000

Group Tension (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 500 1000 1500 2000 2500 3000

Travel Distance (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500 3000

Travel Energy (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 0 500 1000 1500 2000 2500 3000

Number of Alive Agents (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 500 1000 1500 2000 2500 3000

Group Speed (avg. over 1000 simulations)

Navigation+Grouping+Imitation
Navigation

Navigation+Grouping
Navigation+Imitation

Gradient Navigation
Both teams have weapons
Blue team: 8 agents navigating from source to destination
Red team: 5 agents attracted to Blue team

Figure C.12: Simulation set #12

132

LIST OF REFERENCES

[Ark98] Ronald C. Arkin. Behavior-Based Robotics. The MIT Press, Cambridge, Mas-
sachusetts, 1998.

[Bal98] Tucker Balch. Behavioral Diversity in Learning Robot Teams. PhD thesis, Georgia
Institute of Technology, 1998.

[BHA97] H. Badaroglu, U. Halici, I. Aybay, and C. Cerkez. “Digital Neuron Network Chip for
the Random Neural Network Model with Programmable Architecture.” InProc. of
ISCIS’97, pp. 412–418, 1997.

[BK00] Hakan Bakırcıŏglu and Taşkın Koçak. “Survey of random neural network applications.”
European Journal of Operational Research, 126:319–330, 2000.

[BM93] Patricia T. Boyd and Stephen L. W. McMillan. “Chaotic scattering in the gravitational
three-body problem.”Chaos, 3(4):507–523, October 1993.

[BMD02] Loic Barthe, Benjamin Mora, Neil Dodgson, and Malcolm Sabin. “Triquadratic Recon-
struction for Interactive Modelling of Potential Fields.” InInternational Conference on
Shape Modeling and Applications 2002 (SMI’02), p. 145, 2002.

[BN95] M. Bajura and U. Neumann. “Dynamic registration correction in video-base d reality
systems.”IEEE Computer Graphics and Applications, 15(5):52–60, 1995.

[Bro86] Rodney A. Brooks. “A robust layered control system for a mobile robot.”IEEE Journal
of Robotics and Automation, RA-2(1):14–23, March 1986.

[Bro99] Rodney A. Brooks.Cambrian Intelligence: The Early History of The New AI. The
MIT Press, Cambridge, Massachusetts, 1999.

[CG98] A.K. Cebrowski and J. J. Garstka. “Network centric warfare: its origin and future.”
Naval Institute Proceedings, 124(1):28–35, 1998.

[Dij59] Edsger Wybe Dijkstra. “A Note on Two Problems in Connexion with Graphs.”Nu-
merische Mathmatik, 1:269–271, 1959.

[FM98] Kikuo Fujimura and Mihail Makarov. “Foldover-free image warping.”Graph. Models
Image Process., 60(2):100–111, 1998.

[Gel89] Erol Gelenbe. “Random neural networks with negative and positive signals and product
form solution.” Neural Computation, 1(4):502–511, 1989.

[Gel90] Erol Gelenbe. “Stability of the random neural network model.”Neural Computation,
2(2):239–247, 1990.

[Gel93] Erol Gelenbe. “Learning in the recurrent random neural network.”Neural Computa-
tion, 5(1):154–164, 1993.

133

[GHK05] Erol Gelenbe, Khaled Hussain, and Varol Kaptan. “Simulating autonomous agents in
augmented reality.”Journal of Systems and Software, 74(3):255–268, February 2005.

[GKH04] Erol Gelenbe, Varol Kaptan, and Khaled Hussain. “Simulating the navigation and con-
trol of autonomous agents.” In Per Svensson and Johan Schubert, editors,Proceedings
of the Seventh International Conference on Information Fusion, volume I, pp. 183–189,
Mountain View, CA, June 2004. International Society of Information Fusion.

[GKW04] Erol Gelenbe, Varol Kaptan, and Yu Wang. “Biological Metaphors for Agent Behavior.”
In Computer and Information Sciences - ISCIS 2004: 19th International Symposium,
volume 3280 ofLecture Notes in Computer Science, pp. 667–675. Springer-Verlag,
October 2004.

[GKW05] Erol Gelenbe, Varol Kaptan, and Yu Wang. “Simulation and Modelling of Adversarial
Games.” InGAME-ON 2005, Leicester, UK, November 2005.

[GKW06] Erol Gelenbe, Varol Kaptan, Yu Wang, Nick S. Walmsley, P. Gardiner, P.V. Pearce, and
J. Moffat. “A Dynamic Model for Identifying Enemy Collective Behaviour.” In11th
ICCRTS - Coalition Command and Control in the Networked Era, Cambridge, UK,
September 2006.

[GM05] James Gain and Patrick Marais. “Warp Sculpting.”IEEE Transactions on Visualization
and Computer Graphics, 11(2):217–227, 2005.

[GML99] Erol Gelenbe, Zhi-Hong Mao, and Yan-Da Li. “Function approximation with spiked
random networks.”IEEE Transactions on Neural Networks, 10(1):3–9, January 1999.

[GP98] Erol Gelenbe and Guy Pujolle.Introduction to Queueing Networks. John Wiley &
Sons, second edition, 1998.

[GSX01] Erol Gelenbe, Esin Şeref, and Zhiguang Xu. “Simulation with Learning Agents.”Pro-
ceedings of IEEE, 89(2):148–157, February 2001.

[GW06] Erol Gelenbe and Yu Wang. “A mathematical approach for mission planning and re-
hearsal.” In Raja Suresh, editor,Defense Transformation and Network-Centric Systems,
volume 6249 ofProc. SPIE, pp. 197–207, May 2006.

[GXS99] Erol Gelenbe, Zhiguang Xu, and Esin Şeref. “Cognitive Packet Networks.” InIEEE
Eleventh International Conference on Tools with Artificial Intelligence, pp. 47–54,
Chicago, Illinois, November 1999.

[Hal97] Ugur Halici. “Reinforcement Learning in Random Neural Networks for Cascaded De-
cisions.” Journal of Biosystems, Elsevier, 40(1):83–91, January 1997.

[Hal99] Ugur Halici. “Reinforcement learning with internal expectation for the random neural
network.” European Journal of Operations Research, 1999.

134

[HHT02] S. Hagan, S. R. Hameroff, and J. A. Tuszyński. “Quantum computation in brain mi-
crotubules: Decoherence and biological feasibility.”Physical Review E, 65(6):061901,
June 2002.

[HL01] David L. Hall and James Llinas, editors.Handbook of Multisensor Data Fusion. CRC
Press, June 2001.

[IFF96] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes Filho. “Lua
- an extensible extension language.”Software: Practice & Experience, 26(6):635–652,
1996.

[KCP92] James R. Kent, Wayne E. Carlson, and Richard E. Parent. “Shape Transformation for
Polyhedral Objects.”Computer Graphics, 26(2):47–54, 1992.

[Ken99] Harold Kennedy. “Simulation Reshaping Military Training: technology jumping from
teenagers’ computers to pilots’ cockpits.”National Defense Magazine, November
1999.

[KG06] Varol Kaptan and Erol Gelenbe. “Fusing terrain and goals: agent control in urban
environments.” In Belur V. Dasarathy, editor,Multisensor, Multisource Information
Fusion: Architectures, Algorithms, and Applications 2006, volume 6242 ofProc. SPIE,
pp. 71–79, April 2006.

[Kha86] Oussama Khatib. “Real time obstacle avoidance for manipulators and mobile robots.”
International Journal of Robotics Research, 5(1):90–99, 1986.

[Koc97] Christof Koch. “Computation and the single neuron.”Nature, 385:207–210, January
1997.

[LBR04] James Llinas, Christopher Bowman, Galina Rogowa, Alan Steinberg, Ed Waltz, and
Frank White. “Revisiting the JDL Data Fusion Model II.” InProceedings of The 7th
International Conference on Information Fusion, Stockholm, Sweden, 2004.

[LP98] Shaun W. Lawson and J. R. Pretlove. “Augmented reality for underground pipe in-
spection and maintenance.” InInternational Symposium on Intelligent Systems and
Advanced Manufacturing, Telemanipulator and Telepresence Technologies V, volume
3524 ofProceedings of SPIE, pp. 98–104, Boston, USA, November 1998.

[LS97] Aristidis Likas and Andreas Stafylopatis. “High Capacity Associative Memory Based
on the Random Neural Network Model.”International Journal of Pattern Recognition
and Artificial Intelligence, 10(8):919–937, 1997.

[LS00] A. Likas and A. Stafylopatis. “Training the random neural network using quasi-Newton
methods.”European Journal of Operational Research, 126:331–339, 2000.

[Mae90] Patti Maes. “Situated Agents Can Have Goals.” In Patti Maes, editor,Designing Au-
tonomous Agents, pp. 49–70. MIT Press, 1990.

135

[Mat97] Maja J. Mataric. “Reinforcement learning in the multi-robot domain.”Autonomous
Robots, 4(1):73–83, 1997.

[Mel95] J. P. Mellor.“Enhanced reality visualization in a surgical environment.”. Master’s the-
sis, MIT, Department of Electrical Engineering and Computer Science, January 1995.

[OF96] Norihiko Ono and Kenji Fukumoto. “Multi-agent reinforcement learning: A modular
approach.” InProc. of Second International Conference on Multi-Agent Systems, pp.
252–258, Kyoto, Japan, 1996. AAAI Press.

[OF97] Norihiko Ono and Kenji Fukumoto. “A modular approach to multi-agent reinforcement
learning.” In Gerhard Weiss, editor,Distributed Artificial Intelligence Meets Machine
Learning, volume 1221 ofLecture Notes in Artificial Intelligence, pp. 25–39. Springer-
Verlag, 1997.

[opea] “The OpenFlight 3D database standard.”http://www.openflight.org/products/

standards/openflight/index.shtml.

[opeb] “The OpenGL Graphics Standard.”http://www.opengl.org.

[Pan04] “Panel discussion on Challenges in higher level fusion: Unsolved, difficult, and mis-
understood problems/approaches in levels 2-4 fusion research.” In Per Svensson and
Johan Schubert, editors,Proceedings of the Seventh International Conference on Infor-
mation Fusion, volume I, pp. 523–541, Mountain View, CA, Jun 2004. International
Society of Information Fusion. Organized by Ivan Kadar, Moderated by Ivan Kadar
and Per Svensson.

[Pen89] Roger Penrose.The emperor’s new mind: concerning computers, minds, and the laws
of physics. Oxford University Press, Inc., New York, NY, USA, 1989.

[Pot99] Dave C. Pottinger. “Implementing Coordinated Movement.”Game Developer Maga-
zine, pp. 48–58, January 1999.

[Rey87] Craig W. Reynolds. “Flocks, Herds, and Schools: A Distributed Behavioral Model.”
Computer Graphics, 21(4):25–34, 1987.

[Rey99] Craig W. Reynolds. “Steering Behaviors for Autonomous Characters.” InGame De-
veloper Conference, pp. 763–782, San Jose, California, 1999.

[RT95] J. Rosenblatt and C. Thorpe. “Combining multiple goals in a behavior-based architec-
ture.” InProceedings of the International Conference on Intelligent Robots and Systems
(IROS), pp. 136–141, Pittsburgh, PA, August 1995.

[RW99] John H. Reif and Hongyan Wang. “Social Potential Fields: A Distributed Behavioral
Control for Autonomous Robots.”Robotics and Autonomous Systems, 27(3):171–194,
March 1999.

136

http://www.openflight.org/products/standards/openflight/index.shtml
http://www.openflight.org/products/standards/openflight/index.shtml
http://www.opengl.org

[SB04] Alan Steinberg and Christopher Bowman. “Rethinking the JDL Data Fusion Levels.”
In NSSDF JHAPL, June 2004.

[Sch04] Charles W. Schmidt. “The Price of Preparing for War.”Environ Health Perspect.,
112(17):A1004–A1005, December 2004.

[SRK99] Alessandro Saffiotti, Enrique H. Ruspini, and Kurt Konolige. “Using Fuzzy Logic for
Mobile Robot Control.” In H. J. Zimmermann, editor,Practical Applications of Fuzzy
Technologies, volume 6 ofHandbook of Fuzzy Sets, chapter 5, pp. 185–205. Kluwer
Academic, MA, 1999.

[Ste93] Luc Steels. “The Artificial Life Roots of Artificial Intelligence.”Artificial Life, 1:75–
110, 1993.

[Str94] Steven H. Strogatz.Nonlinear Dynamics and Chaos. Perseus Books, Cambridge, MA,
1994.

[Tan93] Ming Tan. “Multi-Agent Reinforcement Learning: Independent versus Cooperative
Agents.” In Tenth International Conference on Machine Learning, pp. 330–337,
Amherst, Massachusetts, 1993.

[Teg00] Max Tegmark. “The importance of quantum decoherence in brain processes.”Physical
Review E, 61:4194, 2000.

[TM91] Demetri Terzopoulos and Dimitris Metaxas. “Dynamic 3D models with local and
global deformations: deformable superquadrics.”IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 13(7):703–714, 1991.

[Yap02] Peter Yap. “Grid-based Path-finding.” InAI ’02: Proceedings of the 15th Confer-
ence of the Canadian Society for Computational Studies of Intelligence on Advances in
Artificial Intelligence, pp. 44–55, London, UK, 2002. Springer-Verlag.

[YHM04] Han-Bing Yan, Shi-Min Hu, and Ralph Martin. “Morphing based on strain field inter-
polation.” Computer Animation and Virtual Worlds, 15(3-4):443–452, 2004.

137

	Modeling Autonomous Agents In Military Simulations
	STARS Citation

	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1 INTRODUCTION AND BACKGROUND
	1.1 Problem Statement
	1.2 Thesis Organization
	1.3 Role of Simulation in Training and Situation Assessment
	1.4 Augmented Reality
	1.5 Controlling Autonomous Agents
	1.5.1 Classical AI
	1.5.2 Behavior-based AI

	1.6 Data and Information Fusion

	CHAPTER 2 A BEHAVIOR-BASED AGENT MODEL
	2.1 Introduction
	2.2 Behavior Types
	2.2.1 Navigation Behaviors
	2.2.2 Grouping Behavior
	2.2.3 Adversarial Behaviors
	2.2.4 Other Behaviors

	2.3 Combining Behaviors
	2.4 Measuring Performance

	CHAPTER 3 TESTBED IMPLEMENTATION
	3.1 Introduction
	3.2 The Augmented Reality Simulator
	3.3 The Agent Simulator
	3.4 The Agent Model
	3.5 Agent Behavior Modules
	3.5.1 RNN Navigation
	3.5.2 GD Navigation
	3.5.3 Grouping
	3.5.4 Imitation
	3.5.5 Weapons
	3.5.6 Obstacle Avoidance
	3.5.7 Motion Coordination

	3.6 Performance Metrics
	3.6.1 Group Tension
	3.6.2 Group Radius
	3.6.3 Travel Distance
	3.6.4 Travel Energy
	3.6.5 Group Speed
	3.6.6 Number of Survivors

	CHAPTER 4 EXPERIMENTS
	4.1 Introduction
	4.2 Experiment 1: Comparative Analysis of Behavior Performance
	4.2.1 Description
	4.2.2 Results

	4.3 Experiment 2: Measuring Effects of Agent Speed
	4.3.1 Description
	4.3.2 Results

	4.4 Experiment 3: Measuring Effects of Chemical Dispersal
	4.4.1 Description
	4.4.2 Results

	4.5 Discussion of Observations
	4.5.1 Obtaining Estimates of Expected Agent Behavior
	4.5.2 Navigation and Complex Environments
	4.5.3 Dealing with Emergent Behavior

	CHAPTER 5 NAVIGATION IN URBAN ENVIRONMENTS
	5.1 Introduction
	5.2 Terrain Transformation
	5.2.1 Informal Description
	5.2.2 Formal Description
	5.2.3 The Terrain Potential
	5.2.4 Transforming the Terrain

	5.3 A Heuristic Navigation Algorithm for Urban Environments
	5.4 Experiments and Performance Analysis
	5.5 Discussion

	CHAPTER 6 DISCOVERING AND TRACKING GROUPS
	6.1 Introduction
	6.2 Experimental Setup
	6.2.1 Observing Emergent Behavior

	6.3 An MST-based Algorithm for Discovering Groups
	6.4 An Algorithm for Temporal Analysis of Group Evolution
	6.5 Experimental Results
	6.6 Discussion

	CHAPTER 7 CONCLUSION AND FUTURE RESEARCH DIRECTIONS
	7.1 Contributions
	7.2 Limitations
	7.3 Future Research Directions

	APPENDIX A THE RANDOM NEURAL NETWORK
	APPENDIX B REINFORCEMENT LEARNING IN RNN
	APPENDIX C DETAILED RESULTS FOR EXPERIMENT 1
	LIST OF REFERENCES

