
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2006 

Molecular Structure-nonlinear Optical Property Relationships For Molecular Structure-nonlinear Optical Property Relationships For 

A Series Of Polymethine And Squaraine Molecules A Series Of Polymethine And Squaraine Molecules 

Jie Fu 
University of Central Florida 

 Part of the Electromagnetics and Photonics Commons, and the Optics Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Fu, Jie, "Molecular Structure-nonlinear Optical Property Relationships For A Series Of Polymethine And 
Squaraine Molecules" (2006). Electronic Theses and Dissertations, 2004-2019. 1016. 
https://stars.library.ucf.edu/etd/1016 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/271?utm_source=stars.library.ucf.edu%2Fetd%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/204?utm_source=stars.library.ucf.edu%2Fetd%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/1016?utm_source=stars.library.ucf.edu%2Fetd%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


MOLECULAR STRUCTURE – NONLINEAR OPTICAL PROPERTY 
RELATIONSHIPS FOR A SERIES OF POLYMETHINE AND 

SQUARAINE MOLECULES 
 
 
 
 
 
 
 
 

by 
 
 
 

JIE FU 
B.S. Tsinghua University, 1997 
M.S. Tsinghua University, 2000 

M.S. University of Central Florida, 2002 
 
 
 

A dissertation submitted in partial fulfillment of the requirements  
for the degree of Doctor of Philosophy  

in the College of Optics and Photonics: CREOL & FPCE 
at the University of Central Florida 

Orlando, Florida 
 
 
 
 
 
 
 
 
 

Fall Term 
2006 

 
 
 
 
 

Major Professors: Dr. Eric W. Van Stryland and Dr. David J. Hagan 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2006 Jie Fu 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ii



ABSTRACT 

 

This dissertation reports on the investigation of the relationships between molecular 

structure and two-photon absorption (2PA) properties for a series of polymethine and squaraine 

molecules. Current and emerging applications exploiting the quadratic dependence upon laser 

intensity, such as two-photon fluorescence imaging, three-dimensional microfabrication, optical 

data storage and optical limiting, have motivated researchers to find novel materials exhibiting 

strong 2PA. Organic materials are promising candidates because their linear and nonlinear 

optical properties can be optimized for applications by changing their structures through 

molecular engineering. Polymethine and squaraine dyes are particularly interesting because they 

are fluorescent and showing large 2PA. 

We used three independent nonlinear spectroscopic techniques (Z-scan, two-photon 

fluorescence and white-light continuum pump-probe spectroscopy) to obtain the 2PA spectra 

revealing 2PA bands, and we confirm the experimental data by comparing the results from the 

different methods mentioned.  

By systematically altering the structure of polyemthines and squaraines, we studied the 

effects of molecular symmetry, strength of donor terminal groups, conjugation length of the 

chromophore chain, polarity of solvents, and the effects of placing bridge molecules inside the 

chromophore chain on the 2PA properties. We also compared polymethine, squaraine, 

croconium and tetraon dyes with the same terminal groups to study the effects of the different 

additions inserted within the chromophore chain on their optical properties. Near IR absorbing 

squaraine dyes were experimentally observed to show extremely large 2PA cross sections (≈ 

30000GM). A simplified three-level model was used to fit the measured 2PA spectra and 

 iii



detailed quantum chemical calculations revealed the reasons for the squaraine to exhibit strong 

2PA. In addition, two-photon excitation fluorescence anisotropy spectra were measured through 

multiple 2PA transitions. A theoretical model based on four-levels with two intermediate states 

was derived and used for analysis of the experimental data. 
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CHAPTER 1 INTRODUCTION 
 

1.1 Background and motivation 

In 1931, Maria Goppert-Mayer first theoretically predicted that an atom or a molecule 

could absorb two photons simultaneously in a single quantized event [1]. The first experimental 

evidence for two-photon absorption (2PA) waited 30 years until the laser was invented, and then 

Kaiser and Garret demonstrated two-photon excitation in a CaF2:Eu3+ crystal [2]. 

The process of two-photon absorption involves simultaneous absorption of two photons 

from an initial state to a higher excited state within a material, and the energy difference between 

these two states is equal to the sum of the energies of the two photons. In the case of absorbing 

two photons having the same frequency or photon energy, this type of 2PA is called Degenerate 

2PA (D-2PA). In the case of absorbing two photons having different frequency or photon energy, 

this type of 2PA is called Nondegenerate 2PA (ND-2PA). 

The two-photon absorption process is different from excited state absorption (ESA). Both 

of them involve two photons. The difference is shown in Fig.1.1. S0 is ground state, S1 is the first 

excited state, and S2 is the second excited state.  
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Figure 1.1 Diagram for electronic transitions for Excited State Absorption (ESA) and Two-
Photon Absorption (2PA)  

 

The following is a conceptual description of ESA and 2PA that provides some useful 

intuition concerning the processes.  Shown in Fig. 1.1, In the ESA process, photon 1 has 

sufficient energy to excite a molecule from the ground state S0 to the first excited state S1. 

Because the energy mismatch, ∆E, between photon 1 and state S1 is within the natural linewidth, 

excited electrons can make real transitions and stay in state S1 for times of ~10-3 to 10-12 seconds. 

Thus arrival of photon 2 within this time can complete the electronic transition to the final state 

S2. This describes the ESA process, which is sometimes called resonance two-photon absorption. 

In a 2PA process, the energy mismatch ∆E between photon 1 and the first excited state S1 

is large compared to the natural linewidth and neither photon has sufficient energy to excite the 

ground-state molecule to excited state S1 on its own. Thus, in order to complete the 2PA process 

to S2, the second photon has to arrive within a time determined by the Uncertainty Principle [3]. 

The brief duration of this action (~10-15 seconds for 2PA in the visible) is the reason 2PA is 

classified as an ‘instantaneous’ nonlinear process. This also describes why 2PA is observed only 

for high intensity where the probability of finding 2 photons in the same time interval is large. 

2PA is also called non-resonance two-photon absorption. 
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More accurately, the probability of 2PA depends quadratically on the irradiance of the 

beam (2PA ∝ I2). This leads to several existing and potential applications and technologies, 

including two-photon fluorescence microscopy [4], three-dimensional (3D) micro-fabrication [5] 

and optical data storage [6].  

Achieving 3D spatial resolution with 2PA (or spatial localization of 2PA) is illustrated in 

Fig. 1.2. The solution is a fluorescent chromophore. In Fig.1.2 (a), light of wavelength λ1 is 

focused into the solution. Because λ1 is within the linear absorption spectrum, the solution shows 

large one-photon absorption (1PA) of the λ1 beam at regions close to the surface, and then emits 

significant fluorescence from this region. In Fig.1.2 (b), the laser beam of wavelength λ2 (λ2 = 

2λ1) is focused into the solution by the same focusing geometry. Because λ2 is not within the 

linear absorption range, the green solution does not experience 1PA of λ2 at regions close to the 

surface, and only experiences 2PA at region near the focal point where the intensity of the laser 

beam is high. Fluorescence following 2PA is localized at the region of the focal point. Moreover, 

the λ2 laser beam shows much less linear scattering loss (scattering loss ∝ ω4) compared with a 

λ1 beam, so 2PA improves the penetration depth. This is important for biological imaging. 
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Figure 1.2 Illustration showing a comparison of fluorescence due to 1PA (a) and 2PA (b) to 
show the greater spatial resolution of two-photon excitation 

 

In addition to the fluorescence that can follow the 2PA process, 2PA can also be followed 

by intersystem crossing (ISC) and ESA as shown in Fig.1.3. Another important application of 

2PA is optical power limiting [8-10] which takes advantage of these processes.  
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Figure 1.3 Photophysical process following 2PA (S0, S1 and S2 are singlet states, T1 is a triplet 
state): 1) Internal Conversion to S1; 2) Intersystem crossing (ISC) to triplet state T1; 3) radiative 

decay (fluorescence) from S1; 4) Excited state absorption (ESA) 
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Organic materials are strong candidates for 2PA applications because their material 

properties can be tailored through molecular engineering. In particular, electron delocalization in 

molecules provides a strong polarizability to enhance a molecule’s 2PA.  

In organic structures the delocalization of electrons, similar to the free electrons in a 

semiconductor, is provided by π-bonding in a class of organic compounds called π-conjugated 

molecules and polymers. These conjugated molecules involve alternate single and multiple 

covalent bonds. A single covalent bond between two atoms (heavier than hydrogen) is formed by 

the axial overlap of the hybridized atomic orbitals of two atoms and is called the σ bond (blue 

bond in Fig.1.4). The additional bond involved in a double covalent bond between two atoms is 

formed by the lateral overlap of the un-hybridized p type atomic orbitals (green bond in Fig.1.4). 

This bond is called a π bond, and the electrons involved are called the π electrons. One example 

for π bonds in ethane is illustrated in Fig.1.4 [11].  
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Figure 1.4: (a) Molecular structure for ethane (b) illustration of covalent bands of ethane 
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A double covalent bond has one σ bond and one π bond, and a triple covalent bond has 

one σ bond and two π bonds. π electrons are loosely bound electrons and are spread (delocalized) 

over the entire conjugated molecular structure, hence behaving similar to free electrons in a 

semiconductor. 

Unfortunately, most known organic molecules have relatively small 2PA cross sections δ, 

and criteria for the design of molecules with large δ have not been well developed. A significant 

breakthrough came in 1998 [12] and opened the door for design strategies for molecules with 

large 2PA cross sections. Researchers synthesized molecules with linear π-conjugation showing 

large 2PA cross sections on the basis of the concept that symmetric charge (π electrons) transfers 

from the ends of a conjugated system to the middle, or vice verse [12]. They also performed 

quantum chemical calculations to confirm this charge redistribution with experimental results.  

After that, various research groups [13-26] have shown molecular design strategies for 

efficient 2PA by a systematic investigation of the conjugation length of the chromophores, 

various symmetrical and asymmetrical combinations of electron-donor and electron-acceptor 

terminal groups, and the addition of such groups in the middle of the chromophore to vary the 

charge distribution. Even though there has been considerable progress in the studies of structure-

property relationships of organic molecules, much more remains to be discovered. We discuss 

some of this in this dissertation but also use newly developed techniques (done at CREOL) to 

significantly build the existing database to help elucidate structure/property relations in 

collaboration with materials synthesizers and quantum chemists. 
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1.2 Dissertation statement 

The purpose of this dissertation is to investigate several sets of organic molecules whose 

structures have been systemically altered to determine how these structural changes will affect 

their two-photon absorbing capabilities. Full linear spectroscopic characterization is performed 

on these molecules to determine the strength, location and spectral contour of their absorption 

and emission spectra. Several nonlinear spectroscopic techniques are employed to characterize 

both the strength and location of the 2PA spectra. In addition, quantum chemical calculations are 

used to determine state and transition dipole moments, as well as explaining and confirming 

experimental results. We also measured two-photon excitation fluorescence anisotropy spectra 

which for the first time covered several 2PA bands, giving us more insight into the 2PA process. 

Molecular structure motif changes, such as symmetry, conjugation length, donor-acceptor 

strength, effect of squaraine addition, croconium and tetraon are investigated. These results show 

definitive correlations between chemical structures and the linear and nonlinear optical 

properties of these molecules, and with molecules showing unprecedented 2PA cross sections. 

All these experimental and theoretical studies improve our understanding of the way to optimize 

molecular two-photon absorbing capabilities. 

 

1.3 Dissertation outline 

This work is structured according to the following: Chapter 1 introduces the concept of 

two-photon absorption and provides the impetus for investigating this nonlinear behavior of 

organic molecules. Chapter 2 describes this process in terms of light-matter interactions and 

presents the perturbative Sum-Over-States (SOS) formulation for the third-order susceptibility, 
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χ(3). Chapter 3 addressed the linear and nonlinear spectroscopic techniques. Chapter 4 

concentrates on the study of relationships between molecular structures and 2PA properties for 

polymethine molecules. The linear spectroscopic data for these molecules are also presented. 

Chapter 5 addresses the relationships between chemical structures and the 2PA properties of 

squaraines. We also compared 2PA properties for polymethines, squaraines, croconium and 

tetraon molecules having similar structures. Quantum chemical calculations help us understand 

the differences and also provide us insight into the nature of the 2PA process. In Chapter 6, two-

photon excitation fluorescence anisotropy spectra of polymethines and squaraines are studied 

both experimentally and theoretically. We derived a new equation for two-photon anisotropy 

based on a two-intermediate-state, four-level model to reveal the orientation between different 

transition dipole moments involved in the 2PA process. Finally, Chapter 7 concludes the 

dissertation and suggests some future directions which might be taken. 
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CHAPTER 2  NONLINEAR OPTICS AND TWO-PHOTON ABSORPTION 
THEORY 

 

2.1 Nonlinear optics/macroscopic polarization theory 

All derivations and formulas in this chapter are based on the definition of the electric 

field and polarization shown below: 

 ( titi ee ωω ∗− += 00 EEE
2
1 ) (2.1) 

 ( titi ee ωω ∗− += 00 PPP
2
1 )  (2.2) 

Nonlinear optics studies the phenomena that the response of a material system to an 

applied optical/electric field depends upon the strength of the optical field in a nonlinear manner, 

or in the other words, optical properties of a material system are changed in the presence of an 

intense optical field.  

Responses of materials to intense optical fields depend on the frequency of the optical 

wave and the irradiance (i.e. for pulsed sources, the pulse energy, pulse duration, and beam 

spatial distribution): and on the materials; 1) displacement of electrons; 2) displacement of atoms 

(molecular vibrations); 3) molecular orientation in liquid and gas phase; 4) electrostriction 

(acousto-optics); 5) molecular orientation in solid (liquid crystal); 6) saturated absorption; 7) 

thermal effect. Here two-photon absorption (2PA) is one of nonlinear optical processes related to 

the displacement of electrons in the presence of an intense optical field.  

Now we consider details of this interaction between materials and an externally applied 

optical electric field, Eex. The materials consist of a distribution of charged particles, namely 
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positively charged nuclei and negatively charged electrons. In general, the electron is 

“elastically” coupled to the nucleus (by “classical” picture). An externally applied oscillating 

optical field Eex will interact with electrons in the way that electrons are “displaced” by the 

electric field in the vicinity, called the local electric filed Eloc. This local field is due to the 

externally applied optical field Eex, but is modified by the electric field due to the presence of 

other electrons and nuclei. The local electric field, Eloc, displaces the electron density from the 

nuclear core and creates an induced dipole moment µ (called microscopic polarization).  

Provided the incident optical field Eex is small in magnitude, the displacement of the 

electron charge cloud will remain small as well, and will oscillate harmonically with the 

frequency of the electric field Eloc. In this regime, the induced dipole moment or microscopic 

polarization µ can be considered to be linearly proportional to the strength of the local electric 

field Eloc and an expression can be written relating the two terms:  

 )(E)µ( loc ωωαω )(=  (2.3) 

Here, µ and Eloc are given as vector quantities and α(ω) is called the linear polarizability of the 

atom or molecule. In addition, it should be noted that α is a second rank tensor for general 

anisotropic materials. 

The Macroscopic polarization, P, is related to the microscopic polarization µ  through the 

number density, N, number of molecules per unit volume, and to the external optical field Eex 

with macroscopic linear susceptibility χ(1) ( also a second-rank tensor for anisotropic materials). 

In SI unit, the relation is: 

  (2.4) )(E)(E)µ()P( exloc ωωχεωωαωω )()( )1(
0=== NN
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If we assume that there are only Lorentz-Lorentz interactions among the molecules, the 

local field can be expressed in SI unit as: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=+=

3
)(1

3
1 )1(

0

ωχωω
ε

ωω )(E)P()(E)(E exexloc  (2.5) 

The relationship between microscopic linear polarizability α and macroscopic linear 

susceptibility χ(1) can be derived from Eq (2.4) and (2.5) as: 
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and 
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ε
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ε

ωχ
N

N

−
=  (2.7) 

If we assume the linear absorption of light with frequency ω is negligible (this is a 

common case for nonlinear optics), the imaginary part of χ(1) is set equal to zero. We then have 

the relation: 

  (2.8) 1)(1))(Re())(Re()( )1()1()1( −=−== ωωεωχωχ n

Substituting Eq.(2.8) into Eq. (2.5), we get: 

 ⎟
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and substituting Eq.(2.8) into Eq.(2.6), we get: 
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In nonlinear optics, the nonlinear optical response of a material can often be described by 

generalizing Eq. (2.4) by expressing the macroscopic polarization P as a power series in the 

externally applied optical field Eex. In SI units this gives: 

LL

L

+++=

+++=
(3)(2)(1)

exexexexexex

PPP

rErErErErErErP t) ,(t) ,(t) ,(t) ,(t) ,(t) ,(t) ,( )3(
0

)2(
0

)1(
0 χεχεχε  (2.11) 

Here χ(2) is called the macroscopic second-order nonlinear susceptibility and is a third-

rank tensor, and  is referred to as the second-order nonlinear polarization; 

χ

exex
(2) EEP )2(

0 χε=

(3) is called the macroscopic third-order nonlinear susceptibility and is a fouth-rank tensor, and 

 is referred to as the third-order nonlinear polarization. exexex
(3) EEEP )3(

0 χε=

It is noted that some researchers in the nonlinear optics field use microscopic third-order 

polarizability γ (please do not confuse this γ with the γ used in the next section referring to the 

three-photon absorption coefficient) instead of the macroscopic third-order nonlinear 

susceptibility χ(3). We can derive the relationship between these below. 

With Eq (2.5) and (2.9), for the frequency degenerate 2PA case, we have in SI units from 

Eq. (2.11): 
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This equation is now solved algebraically for P(ω) to obtain: 
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Also from Eq. (2.11), we have,  

  (2.14) ( ) )()( )3(
0

)1(
0 ωωωωωχεωχεω 3

exex EE)P( ),,-;(-ω +=

Comparing Eq. (2.13) and (2.14), we see the first terms must be equal to each other by Eq. (2.7), 

so the second terms must also be equal. Therefore we have 
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From Eq. (2.7) and (2.10), we have, 
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Usually, researchers define 
3

2)( +
=

ωnL  as a local field factor. 

In this dissertation, we will use the macroscopic third-order nonlinear susceptibility χ(3) only. 

The polarization P describes the linear and nonlinear optical phenomena through its time 

and space variation, P(r,t). This polarization can act as the source of new components of the 

electromagnetic field. This is shown by the wave equation in a media in SI unit: 

 2
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We note that second-order nonlinear optical interactions (χ(2), P(2)) can only occur in 

noncentrosymmetric materials, i.e. materials that do not display inversion symmetry [inversion 

symmetry: P(2)(-r,t) = -P(2)(r,t)]. Since liquids, gases, amorphous solids (for example, glass), even 

many crystals do display inversion symmetry, χ(2) vanishes for such materials, and consequently 

they cannot show macroscopic second-order nonlinear optical interactions. On the contrary, 

third-order nonlinear optical interactions (χ(3), P(3)) can occur in both centrosymmetric and 

noncentrosymmetric materials, i.e. all materials. 

The physical phenomenon related to the second-order nonlinear susceptibility χ(2) and 

third-order nonlinear optical susceptibility χ(3) are summarized in Table 2.1 and Table 2.2 

respectively. 

 

Table 2.1 Second-order nonlinear optical processes related to second-order susceptibility χ(2)

Nonlinear Optical Process Description χ(2)

Second-Harmonic Generation 
(SHG) 

In:    single beam at ω 
Out: single beam at 2ω χ(2)(-2ω; ω,ω) 

Sum Frequency Generation 
Difference Frequency Generation 

In:    two beams at ω1, ω2 

Out: single beam at ω3=ω1±ω2
χ(2)(-ω3; ω1,±ω2) 

Linear Electro-Optical Effect 
(Pockels Effect) 

In:    static field and ω-beam 
Out: phase shift at ω-beam χ(2)(-ω; 0,ω) 

Optical Rectification (OR) In:    single beam at ω 
Out: static electric field χ(2)(0; ω,ω) 
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Table 2.2 Third-order nonlinear optical processes related to third-order susceptibilityχ(3)

Nonlinear Optical Process Description χ(3)

Third-Harmonic Generation (THG) In:    single beam at ω 
Out: single beam at 3ω χ(3)(-3ω; ω,ω,ω) 

Nonlinear Refractive Index 
Degenerate Two-Photon Absorption (D-
2PA) 

In:    single beam at ω 
Out: phase shift/loss at ω χ(3)(-ω; ω,-ω,ω) 

Cross-Phase Modulation  ( including 
Optical Kerr Effect) 
Nondegenerate Two-Photon Absorption 
(ND-2PA) 

In:    two beams at ω1, ω2

Out: phase shift/loss at ω1 χ(3)(-ω1; ω1,-ω2,ω2) 

Degenerate Four Wave Mixing (DFWM) In:    three beams at ω 
Out: new beam at ω χ(3)(-ω; ω,-ω,ω) 

General Four Wave Mixing In: two beams at ω1, ω2, ω3 

Out: new beam at ω4
χ(3)(-ω4; ω1,ω2,ω3) 

Electric Field Induced Second-Harmonic 
Generation 

In: static field and ω-beam 
Out: new beam at 2ω χ(3)(-2ω; 0,-ω,ω) 

Quadratic Electro-Optical Effect (Kerr 
Electro-Optical Effect) 

In: static field and ω-beam 
Out: phase shift at ω χ(3)(-ω; 0,0,ω) 

 

2.2 Two-photon absorption and perturbation theory 

2.2.1 Two-photon absorption 

One of the most prominent aspects of the third-order nonlinear susceptibility χ(3) is its 

connection to the nonlinear refractive index n2 and the two-photon absorption coefficient β (see 

Table 2.2).  

 

Degenerate two-photon absorption (D-2PA): 

If we look at the evolution of the intensity I(z) of a single beam with frequency ω 

propagating along the z-direction in a material with χ(3), it can be described by the following 

differential equation: 
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 L−−−−= 32)( III
dz

zdI γβα   (2.19) 

where α is called the linear absorption coefficient, β is called the two-photon absorption 

coefficient, and γ is called the three-photon absorption coefficient. 

If we ignore 1PA and only consider pure two-photon absorption, Eq. (2.19) will become: 

 2)( I
dz

zdI β−=  (2.20) 

It can be shown that the 2PA coefficient β is related to imaginary part of the third order 

susceptibility χ(3). For the degenerate 2PA case (two photons having the same frequency and 

same polarization), this relation is shown below in SI units: 

 )),,;(Im(
2

3 )3(

0
22 ωωωωχ
ε

ωβ −−=
cn

 (2.21) 

where n is the linear refractive index of the beam with frequency ω, and c is speed of light in 

vacuum. 

Besides the 2PA coefficient β, another quantity often used to describe 2PA of molecules 

is the 2PA cross section, δ. The 2PA cross section, δ, is typically given in units of 1×10-50 cm4 

sec photon-1 molecule-1. This unit is commonly referred as a Goppert-Mayer or GM in honor of 

the author who pioneered theoretical work in this field.  The relationship between δ and β for the 

degenerate 2PA case is shown below [27]: 

 
N
ωβδ h

=  (2.22) 

where N is the density of molecules in units of 1/volume. 
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We can derive this relation based on the work of Ref. [27]. For the degenerate 2PA case, 

the energy exchanged between the light beam and the molecular ensemble per unit time and 

volume, is given by 

 ( )()(Im
2
1 ωωω PE

dt
d

dt
dW

⋅=⋅= ∗PE ) (2.23) 

With SI units, we have a relationship between the amplitude of the induced dipole moment to the 

electric field amplitude: 

 ( ) ( ) )()(,,;
4
3 2)3(

0 ωωωωωωχεω EEP −−=  (2.24) 

Substituting Eq.(2.24) into Eq. (2.23), we have: 

 ( ))3(22
0 Im)()(

8
3 χωωωε EE

dt
dW

=  (2.25) 

Using the SI units definition of irradiance 

 2
0 )(

2
1 ωε EcnI =  (2.26) 

Eq. (2.25) changes to: 

 ( )3(
22

0

2

Im
2

3 χ
ε

ω
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I
dt
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= )  (2.27) 

In a rate equation description, two-photon absorption is often described by a cross section δ in 

units of cm4sec as  

 2NF
dt

dnp δ=  (2.28) 

where dtdn p is the number of photons absorbed per unit time and unit volume, N is the density 

of absorbing molecules, and the photon flux is described as: 
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(2.29) 

And ωhpdndW = , so we have 
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NI 2

ωδ h
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Substituting Eq (2.27) into Eq (2.30), we obtain: 
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If we substitute Eq.(2.21) into Eq.(2.31), we can get relation shown in Eq.(2.22)  

 

Nondegenerate two-photon absorption (ND-2PA): 

If we look at two beams at different frequencies (ω1, ω2) incident on a material, the 

intensity change of the two beams in the material due to pure two-photon absorption can be 

described by: 
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where β11, β22 are degenerate 2PA coefficients for beam ω1 and beam ω2 respectively, and their 

relationships to χ(3) are shown in Eq.(2.21). β12, β21 are called nondegenerate 2PA coefficients 

(βND), and their relationships to χ(3) in isotropic media are shown below in SI units: 
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where n1 and n2 are linear refractive index of beam ω1 and beam ω2 respectively. ∆=1 for two 

beams having parallel polarization. ∆=1/3 for two beams having orthogonal polarization.  

The relation of the nondegenerate 2PA cross section δND to the nondegenerate 2PA 

coefficient βND is shown below [28]: 
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where N is number density of molecules in a unit volume (units of 1/volume). 

 

2.2.2 Calculation for third-order nonlinear susceptibility 

In order to determine the 2PA coefficient, β, or 2PA cross section, δ, we have to 

determine the imaginary part of the third-order nonlinear susceptibility, Im(χ(3)). There are two 

ways to calculate χ(3): 1) based on the “classical” model (electron “spring” model); 2) based on 

quantum mechanical perturbation theory of the atomic (or molecular) wave function (sum-over-

states expression), where one method to derive the expression for 2PA cross section δ is 

following the work from Orr and Ward [31], the other method for 2PA cross section δ is 

following the work from McClain [33].  

 

1) Classical model [29]: 

Based on a classical electron “spring” model, the third-order nonlinear susceptibility χ(3) 

(fourth-rank tensor) for centrosymmetric media for ω4 = ω1 + ω2 + ω3 can be expressed as below 

in SI units: 
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where e is the charge of the electron, m is mass of the electron; N is the number density of atoms; 

b is a parameter that characterizes the strength of the nonlinearity; i, j, k, l = x, y, z; δ is the 

Kronecker delta function which is expressed as: 1=ijδ  if i = j and 0=ijδ  if i ≠ j , and  

  (2.36) Γ−−= ωωωω iD 22
0)(

where ω0 is the resonance frequency of the electron “spring”, and Γ is the damping factor of the 

“spring”. 

 

2) Quantum mechanical perturbation theory [30] 

With quantum mechanical perturbation theory, we perform the calculation of the third-

order nonlinear susceptibility χ(3) based on the properties of the atomic wave functions. This 

method gives a clearer picture of the underlying physics of the nonlinear interaction. As the 

intramolecular electric forces are much stronger than the forces due to the external electric field 

Eex, the interaction of the external electric field with the molecules can be regarded as a 

perturbation of the molecular fields. By this theory, for a general third-order process, the third-

order nonlinear susceptibility, χ(3), can be expressed by a sum over states (SOS) method. 

To derive ( )( )ωωωωχ ,,;Im )3( −− , we use the third-order nonlinear susceptibility χ(3) 

expressed in SI units from the work of Orr and Ward [31]: 
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 (2.37) 

Here g indicates the ground state, υ, m, n indicate excited states; µυm indicates transition dipole 

moments from state υ to state m, and ggmmm µδµµ ννν −= , µgg is ground state permanent dipole 

moment; Ωυm is defined as immmmm iiE Γ−=Γ−=Ω νννν ωh , Eυm is the energy between the state υ 

and state m, and Γυm is a damping factor; ℘ is called the intrinsic permutation parameter; ∑  

means summation over all states excluding the ground state g, and  i, j, k, l = x, y, z. 

'

Now let us consider the case for degenerate 2PA. The third-order nonlinear susceptibility 

responsible for degenerate 2PA is the imaginary part of χ(3) (-ω; ω, ω, -ω),χ(3) (-ω; ω, -ω,ω) and 

χ(3) (-ω; -ω, ω,ω) . Also let us only look at the xxxx component ,χxxxx
(3) (-ω; ω, ω, -ω), so Eq. 

(2.37) becomes: 
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 (2.38) 

 

Here we can see only the resonance terms in bold in χxxxx
(3) (-ω; ω,ω, -ω) above where all 

3 terms at denominator have minus sign, and other terms are at least two orders magnitude 

smaller than these bold terms with typical molecular parameters and can be negelected. The 

factor of 2 in Eq. (2.38) is a consequence of the permutation operator ℘ and comes from the fact 

that there are two possibilities of the ordering of the two positive ω’s that are equivalent in χxxxx
(3) 

(-ω; ω,ω,-ω). 

In the same way, we can calculate that χxxxx
(3) (-ω; -ω,ω,ω) does not have any such 

resonance term, and χxxxx
(3) (-ω; ω, -ω,ω) has resonance terms (bold) shown in Eq. (2.39): 
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 (2.39) 

 

Combining resonance terms from χxxxx
(3) (-ω; ω,ω, -ω) and χxxxx

(3) (-ω; ω, -ω,ω), we 

obtain an approximate expression for χxxxx
(3) for degenerate 2PA (D-2PA): 
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For a three-state model (see Fig.2.1), we only consider three electronic states (ground 

state g, and two excited states e and e′ ). We also assume that only one excited state e is strongly 

coupled to the ground state g in a 1-photon transition, which means that the transition dipole 

moment between these two states is non-zero, µge≠0 and µeg≠0, and µge′ =0 and µe′g =0. In 

addition, we assume that coupling between the two excited states is strong, which means µee′ ≠0 

and µe′e ≠0. Finally, we assume that the permanent dipole moment of the ‘molecule’ in the 

ground state g and in the excited state e are non-zero: µgg≠0 and µee≠0, and possibly different. 
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Figure 2.1 Three state model for Sum-Over-State (SOS) expression 
 

Based on these assumptions, χxxxx
(3)(D-2PA) in Eq. (2.40) becomes: 
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The first two terms in Eq. (2.41) are called D-terms or Dipolar terms, which correspond 

to D-2PA to excited state e (shown in Fig.2.1) because these have a two-photon resonance term 

in the denominator, ωh2−Ωeg .  

We define ggeeeege µµµµ −==∆ , which indicates the change of the permanent dipole 

moments between the molecule in states g and e. We consider the near resonance for the two-

photon absorption where 2egωω hh ≈ ; therefore we have, 

egegegeg ii Γ−≈−Γ−=−Ω ωωω hhh 22  and egegegegeg ii Γ−≈−Γ−=−Ω 2ωωωω hhhh .  Then 

the summation of imaginary parts of the two D-terms gives: 
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The third and fourth terms in Eq. (2.41) are called T-terms or two-photon terms, which 

correspond to degenerate two-photon absorption (D-2PA) to excited state e′  because they have a 

two-photon resonance term in the denominator, ωh2' −Ω ge . We also consider the resonance for 

the two-photon absorption where 2'geωω hh ≈  shown in Fig. 2.1. So summation of these two 

terms gives us: 
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If we assume that
2

2'geeg
eg

ωω hh −
<<Γ , we have, 
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Now we define ωωωω hhhh −=−=∆ eggeegE 2' as the detuning energy, shown in Fig.2.1.  

The last two terms in Eq.(2.41) are called N-terms or negative terms, which do not have 

two-photon resonance denominators, only 1PA resonance terms.  This is often called the AC 
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Stark term, or virtual saturation term. The imaginary part for these two N-terms is zero at 

resonance ωω hh =eg , so there is no contribution to two-photon absorption at resonance.  

If we consider an average over the orientation of molecules in an isotropic medium 

(averaging factor is 1/5) [33], then Eq. (2.42) and Eq. (2.44) become: 
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If we substitute Eq (2.46) into Eq. (2.31), we have an expression for the 2PA cross 

section δ in SI units: 
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If we change Eq.(2.47) into CGS units, we have: 
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Here we define ωωωω hhhh −=−=∆ eggeegE 2' as the detuning energy shown in Fig. 

2.1. Eq. (2.48) agrees with Eq.9 in Ref [13]. 

 

The dominant parameters which appear in the expression in Eq. (2.47) and Eq. (2.48) are: 

1) the transition dipole moment between state g and e, µge ; 2) the transition dipole moment 
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between state e and e′, µee′ ; 3) the change of permanent dipole moments between the molecule in 

state g and e, ∆µge; and 4) the detuning energy ωωωω hhhh −=−=∆ eggeegE 2' . 

In order to optimize 2PA of molecules we can look at Eq. 2.48 to note what makes the 

2PA large.   Molecules will show large 2PA if they have a large ground state transition dipole 

moment µge and large excited state transition dipole moment µee′ (or ∆µge), and also have a small 

detuning energy ∆E. Damping factors Γeg in Eq (2.48) give the natural linewidths of transitions 

between state g and e. It should be noted that the minimum detuning energy ∆E achievable is 

limited by this natural linewidth of the transition Γeg. Beyond that, ESA will occur.  

There is another assumption in the above simplified three-state model for 2PA that the 

orientations of all transition dipole moments are parallel to each other: µge//µee′ and µge//∆µ. If 

there is an angle θ between the transition dipole moment µge and µee′, Cronstrand suggested an 

effective excited state transition dipole moment , which is related to eff
ee 'µ 'eeµ [32]:  

 ( )
3

1cos2 2

''
+

=
θµµ ee

eff
ee  (2.49) 

If , we will see  will be smaller thano0≠θ eff
ee 'µ 'eeµ . Then the 2PA probability will be smaller 

according to Eq.(2.48). In order to optimize 2PA of molecules, we prefer small angle between 

these transition dipole moments.  

 

There is an alternative method to calculate the 2PA cross section for molecules based on 

the pertubation theory, called the 2PA tensor method. This method is developed originally by 

McClain [33], and widely used by Birge [34] and Cronstrand [32], and other researchers [35]. It 
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is commonly accepted that the degenerate 2PA cross section of molecules at a pump laser 

frequency pν  is given in CGS Units as [36]: 
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where c is the speed of light and h is Planck’s constant.  Here g(2νp) denotes the normalized line 

shape function of the 2PA transition defined such that integral over all frequency space is 

normalized to unity, which is usually taken as a Lorenzian given by,  
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foS  is the so-called two-photon tensor and for the degenerate 2PA of randomly oriented 

molecules is given by perturbation theory: 
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where µmn and νmn are a transition dipole moment vector and transition energy of the m  n 

transition (m,n=0, i, j, f); 0 and f denote ground and final states; i and j denote the intermediate 

states, the number of which is M; Γ is a damping constant related to the intermediate states; a 

and b vary depending on the polarization of the two photons and a=b=8 for the case where both 

photons are linearly polarized and parallel to each other. 
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We assume 1) there is only one dominant intermediate state (i=j, M=1); 2) transition 

dipole moments µjo and µfj are parallel to each other, 3) one final state, (denoted as f ), and we 

have: 
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Subsitituting Eq. (2.53) and (2.51) into Eq. (2.50), we get 
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where Ep=hνp , Ej0=hνjo , Ef0=hνf0. 

If there are two 2PA final states (=f1, =f2), then Eq.(2.54) changes to  
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Notably, for Eq. (2.54), if we ASSUME: jopjo EE Γ>>−  and 02 ≈− pfo EE  (only 

consider the peak value for 2PA), we obtain: 
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In CGS units, we calculate the constant in Eq. (2.55) and changed it into the Eq. (2.57) 

used for fitting the measured 2PA spectra of molecules in Chapter 4 and Chapter 5, where the 

2PA cross section is in unit of GM (10-50 cm4 • s/(molecule • photon)). Here all energies are input 
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with units of eV and all dipole moments are input with units of debye (D). The derivation for this 

equation is shown in APPENDIX A.  
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With assumption that  and pf EE 20 ≈ 00 jpj EE Γ>>− , the Eq. (2.54) becomes: 
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If we compare Eq. (2.58) with Eq. (2.48), we can see that they are in the same form. In Eq. (2.58) 

ωh=pE , and n=1 for Eq. (2.48) because the theory assumes the molecule in the vacuum 

without considering the effect of the solvent. However the constant in Eq. (2.58) is off by 2 

compared to Eq. (2.48). 
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CHAPTER 3 LINEAR AND NONLINEAR SPECTROSCOPY METHODS 
 

3.1 Linear spectroscopic techniques 

The linear optical properties of molecules that we measured are one-photon absorption 

(1PA) spectra, one-photon fluorescence (1PF) spectra, one-photon excitation (steady-state) 

fluorescence anisotropy spectra and the fluorescence quantum yield.  

Linear absorption spectra are measured with a Cary-500 UV-Vis-NIR (170nm to 3300nm) 

spectrophotometer. These spectra specify linear absorption peak positions and molar 

absorptivities, or extinction coefficients ε in units of cm-1M-1.  The relationship between 

extinction coefficient ε and absorption optical density (OD) is given by: 

 CLOD ε=  (3.1) 

where C is the solution concentration in units of Molarity (M) or moles per liter (mole/liter); L is 

the thickness of the solution in units of cm.  

Furthermore, with the extinction coefficient ε we can determine ground state transition 

dipole moments from the ground state to first excited state transition dipole moment, geµ , which 

is one of the key factors influencing the strength of 2PA. The transition dipole moment geµ  can 

be calculated from the integrated strength of the g e band in the linear absorption spectrum by 

[36-38]:  

 ( ) ( )∫= ννε
π

µ d
EN

c
ge

geA
ge

10ln1500 2
h  (3.2)  
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where NA is Avogadro’s number (6.022×1023), ( )νε ge  is the extinction coefficient in cm-1M-1 at 

the photon energy in wavenumbers υ, in cm-1, and the integral is performed over the main 

absorption band. All parameters in Eq. (3.2) are in CGS unit.  

One-photon fluorescence spectra are measured with a PTI quantamaster 

spectrofluorimeter under 90 degree excitation in a T-format method [39], i.e. irradiate from one 

direction and look at the fluorescence in a direction perpendicular to this excitation. Material 

solutions are put into a 1cm cuvette, and we used dilute solutions with peak optical density OD ≤ 

0.1 for 1PF measurements.  

 

One-photon excitation fluorescence anisotropy spectra are also measured with the PTI 

quantamaster spectrofluorimeter in the T-format configuration [39]. Upon excitation with 

linearly polarized light, the fluorescence emission from the molecule solution is also polarized. 

The extent of polarization of the fluorescence is expressed in terms of the anisotropy r.  

There are many phenomena contributing to the depolarization of the fluorescence, and 

rotational diffusion of molecules is one common cause of depolarization. In order to avoid 

rotation of molecules during the emission process, we prepared the solution with high viscosity 

solvents such as glycerol (Viscosity = 934 mPa • S) and silicon oil (Viscosity ≥ 200 mPa • S). 

We also prepared the solution in 1cm cuvettes with peak optical density OD ≤ 0.1 to avoid 

reabsorption of the fluorescence and subsequent depolarization of the fluorescence.  

One-photon fluorescence anisotropy spectra give information about locations of excited 

states and the orientation of the transition dipole moment from the ground to excited state 
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relative to the emission dipole moment. More experimental and theoretical details will be 

discussed in Section 5.6. 

Fluorescence quantum yields of the molecular samples are measured against a standard 

molecule. In our case we use Rhodamine6G in ethanol (η = 0.95) [39][40], where η is the 

fluorescence quantum yield fraction.  

 

3.2 Nonlinear spectroscopy 

3.2.1 Femtosecond 1KHz laser system 

As mentioned in Chapter 2, we are more interested in electronic nonlinear optical 

properties, especially two-photon absorption of molecules. Two-photon absorption depends on 

the irradiance of light. We use a femtosecond pulsed laser source to provide light with high 

intensity.  

The femtosecond laser we used is a CPA2010 from Clark-MXR inc. This includes a Ti: 

Sapphire regenerative chirped pulse amplifier with output at 775nm, 1mJ/pulse, 140fs (FWHM) 

pulsewidth and a 1KHz repetition rate. The seed beam injected into the Ti: Sapphire regenerative 

amplifier cavity at 775nm, has a pulsewidth of 180-200ps at a repetition rate of 38-40MHz, and 

comes from a diode laser (980nm) pumped, mode-locked, frequency-doubled fiber laser. The 

pump beam for the regenerative amplifier at 532nm, having a 1ns pulsewidth at a 1KHz 

repetition rate, comes from a flashlamp pumped, Q-switched, frequency-doubled Nd:YAG laser. 

In order to perform the nonlinear spectroscopy study, we need to have a source with a 

tunable output wavelength. In order to obtain this, the output from the CLK-MXR CPA2001 is 

split into two beams to pump two identical optical parametric amplifiers (OPA), TOPAS from 
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Light Conversion Inc, which outputs 1100nm to 2200nm. With additional SHG (second 

harmonic generation) and DFG (Difference Frequency Generation) crystals attachments, the 

output of the TOPAS could be expanded to the range from 280nm to 10µm. One beam pumping 

the TOPAS is also able to be redirected to pump a “TOPAS WHITE”, which has an output with 

a 10-30fs pulsewidth, and a wavelength tuning range from 490nm to 1600nm. A schematic of the 

laser system with the pumping scheme is shown in Fig. 3.1. 
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Figure 3.1 Femto-second 1KHz laser system with tunable wavelength output 
 

3.2.2 Z-scan 

 The Z-scan [41] is a sensitive single-beam technique to separately determine the 

nonlinear absorption and nonlinear refraction of materials. Z-scan can be used to measure both 

fluorescent samples and nonfluorescent samples, and due to its experimental simplicity, is 

probably the most widely used technique to measure these nonlinear properties.  
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Figure 3.2 (a) Z-scan experimental setup (b) typical open-aperture Z-scan experimental data 
(square) with theoretical fitting (red line) 

 

The Z-scan setup is shown in Fig.3.2 (a). The transmission of a focused Gaussian laser 

beam is measured as a function of the position of the sample with respect to the laser beam waist. 

Typical Z-scan experimental data with theoretical fitting is shown in Fig. 3.2 (b). Here a plot of 

the normalized transmission as a function of position Z is displayed. By this theoretical fitting, 

the 2PA coefficient is determined. 2PA measured by the Z-scan technique is degenerate 2PA 

because the two photons absorbed come from one beam with the same photon energy. By tuning 

the wavelength of the beam from the TOPAS, the whole 2PA spectrum can be obtained. 
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There are assumptions for the Z-scan method and its theoretical fitting: 1) Thickness of 

sample should be much smaller than Rayleigh range of focused laser beam, or “thin sample” 

assumption, so changes in the beam diameter within the sample due to diffraction can be 

neglected. 2) The nonlinear phase shift should be small enough that no change of the beam 

profile occurs within the sample.  

If the pump beam experiences linear absorption loss (this is the case when the pump 

wavelength is moved to be close to the linear absorption edge), ESA could also happen in a Z-

scan experiment. Because both 2PA and ESA are two-photon processes, a single Z-scan using a 

single pulsewidth cannot determine which physical process is occuring. However, we can 

separate them with time-resolved experiments, such as using a pump-probe setup in Section 3.2.4.  

The details will be discussed in Section 3.2.5 

The absolute errors associated with the Z-scan technique using the optical source 

described here are estimated to be ±15 ∼ 20%. 

3.2.3 Two-Photon Fluorescence (2PF) Spectroscopy 

Another single beam technique for measuring degenerate 2PA cross section of molecules 

is two-photon fluorescence (2PF) spectroscopy, first developed by C. Xu and W. W. Webb in 

1996 [42]. 

In the 2PF technique, we do not measure the transmission of the beam like in the Z-scan. 

Instead, we measure fluorescence due to 2PA. Figure.3.3 shows the fluorescent process due to 

1PA (a) and 2PA (b). Fluorescent molecules can absorb one photon to reach an excited state S2, 

then, through nonradiative processes, decay to the first excited state S1. The fluorescent 

molecules can come back to the ground state S0 by releasing a fluorescence photon, and this 
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process is referred to as radiative decay. The molecule can also absorb two photons 

simultaneously to reach an excited state, and then through the same decay processes can come 

back to the ground state by emitting a fluorescence photon. Because the photon energy of the 

emitted photon is higher than that of a single photon absorbed via 2PA, 2PF spectroscopy is also 

called up-conversion fluorescence spectroscopy. By measuring the photon flux of the 

fluorescence with respect to a known standard, we can retrieve the 2PA coefficient or cross 

section of 2PA of the molecules [42]. 
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Figure 3.3 Fluorescence following one-photon absorption (a) and two-photon absorption (b) 
 

The experimental setup is shown in Fig.3.4, where a λ/2 WP is a half wave plate, P is a 

GLAN-Laser calcite Polarizer. We use them to control the energy and polarization of the input 

beam. We use the telescope made of lenses L1 and L2 to expand the beam by 4×, use the iris A2 

to truncate the beam and only allow the central part of the beam to reach the focusing lens L3. 

By doing this, the spatial profile of the beam on the focusing lens L3 is independent of the pump 

wavelength from the TOPAS (usually the spatial profile of the beam from the TOPAS changes 

when tuning the wavelength). Thus, the spatial profile of the beam on L3 will be nearly a flat top 

beam, so that the intensity distribution at the focal spot after L3 will be a diffraction-limited Airy 
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pattern, which will be considered in the calculation of the fluorescence due to 2PA shown below 

[42].  Fluorescent samples experience 2PA at the focal spot to emit fluorescence. Fluorescence is 

collected by lens L4 and detected by a photomultiplier tube (PMT).  The PMT is very sensitive 

detector, allowing 2PF spectroscopy to be a very sensitive method to measure the molecules’ 

2PA cross section with values even smaller than 1GM. Also, the concentration of the solution 

can be less than 10-4 M. 
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Figure 3.4 Experimental setup for two-photon fluorescence spectroscopy using femtosecond 
laser pulses from the TOPAS 

 

There are two separate PMT detectors available covering the different spectral ranges 

(R928, 250-800nm; P1524, 250-700nm). The detectors are operated in the analog mode (DC 

voltage output) for 2PF measurements. The dynamic range of the PMTs is limited to between 

0.03-3 Volts in order to operate in the linear regime of the detector. The fluorescence spectrum is 

corrected for the spectral responsivity of the fluorimeter (monochrometer and PMT), and then 
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integrated over the entire emission range to obtain the total integrated fluorescence for a certain 

excitation wavelength. 

In order to determine the 2PA cross section of molecules, we have to determine the 

photon flux of fluorescence based on the spatial and temporal distribution of the pump beam at 

the focal point. Here I gave a brief description of this calculation. More details can be found in 

Ref. [42]. 

It is known that the number of photons absorbed per molecule per unit time by 2PA is 

proportional to the 2PA cross section δ and to the square of the incident intensity, I [43]. So the 

time-averaged fluorescence photon flux )(tF  is measured as: 

 ∫=
V

dVStICgtF )()(
2
1)( 22

0 rδφη  (3.3) 

where  and  describe the spatial and temporal distribution of the incident light at the 

focal spot respectively. 

)(rS )(0 tI

η  is the fluorescence quantum yield of the molecule, and φ  is the 

fluorescence collection efficiency of the fluorimeter. C is the concentration of the solution. 

2
0

2
0 )()( tItIg =  is a measure of the second-order temporal coherence of the excitation 

source. δ  is the 2PA cross section of the molecule.  

If we assume the spatial profile of the pump beam is a flat-top beam at the focus of lens 

L3, we have the time averaged fluorescence photon flux )(tF  as: 
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where  is the pulse repetition rate, f τ  is the pulsewidth (FWHM), )( τfgg p ×=  

(
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f
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f

fp tIdttIg τ ) is equal to 0.664 for a Gaussian temporal profile pulse 

and 0.558 for a hyperbolic-secant squared pulse. Equation (3.4) is valid for thick samples where 

the sample thickness is much greater than the focal depth. The time averaged fluorescence 

photon flux )(tF  is the signal detected by the PMT in the analog mode. 

We can see in Eq. (3.4) that the 2PF signal 2)()( tPtF ∝ . We can check this quadratic 

power dependence of the fluorescence signal to determine that the fluorescence signal detected is 

only due to 2PA, not to 1PA or other higher order absorption processes. 

From Eq. (3.4), we can see that )(tF  is proportional to the 2PA cross section δ and 

inversely proportional to the pulsewidth τ  and wavelength λ , or 
τλ

δ 1)( ∝tF . If other 

experimental conditions are the same for all excitation wavelengths used (such as collection 

coefficient φ , power )(tP ), knowing the 2PA cross section 1δ  and fluorescence signal ( )1)(tF  

for one excitation wavelength 1λ , we can approximately estimate the 2PA cross section 2δ  for 

any other excitation wavelength 2λ  by the relation:  

 
111

222
12 )(

)(
λτ
λτ

δδ
tF
tF

=  (3.5) 

We use this method when there is no standard molecule available for the excitation wavelength 

range. 

Based on the Eq. (3.4), we use a relative method to determine the 2PA cross section Sδ  

of the sample by using standard reference molecules with known 2PA cross sections, Rδ . We 
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measure the 2PF signal for both the reference molecules and the unknown sample under the 

same excitation wavelength. Using Eq. (3.4), we can eliminate the 2PA cross section dependency 

on the spatial and temporal profile of the excitation light and the 2PA cross section of an 

unknown sample Sδ can be obtained as: 

 R

SSSSR

RRRRS
S

tPCtF

tPCtF
δ

ηφ

ηφ
δ 2

2

)()(

)()(
=  (3.6) 

where the subscripts S and R refer to the sample and reference respectively. The reference 

standard molecules we used are: Fluorescein in water (PH=11, quantum yield = 0.9) [42], and 

Rhodamine B in methanol (quantum yield=0.7) [42]  

For the reference molecules and the unknown sample, the difference of the collection 

efficiencies is mainly due to different slit widths W used for the emission monochrometer, 

indicated by the micrometer installed on it. The collection efficiency is proportional to the square 

of this slit width,  [39]. 2W∝φ

Another factor affecting the collection efficiency is the refractive index of solutions. 

Usually the collection efficiency can be expressed as ndisp φφφ ×= [13]. dispφ is the collection 

efficiency related to the fluorescence spectrum range and corresponding PMT’s response to this 

range. And  (n is refractive index of the solution) takes into account the difference in the 

solid angles under which the illuminated portion of the solution is seen from the PMT, when the 

solvents for the reference and the sample are different. This effect is usually considered when the 

fluorescence quantum yield is measured. However in our 2PF experimental setup, the excitation 

beam is directed close to one side of the cuvette window and the fluorescence emitted passes 

through a negligible amount of solvent.  Therefore this factor is normally neglected. 

2−∝ nnφ
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We can determine the fluorescence quantum yield of the sample by linear spectroscopy. 

In 2PF spectroscopy, we assume the fluorescence quantum yield due to 1PA and 2PA are the 

same. We also assume that the fluorescence spectrum due to 1PA and 2PA are identical. 

There is another issue we need to deal with, called the inner filter effect, indicating 

significant reabsorption of the emission beam because we use relatively high concentrated 

solutions (∼ 10-4 M). We measure the one-photon fluorescence spectrum with very low 

concentration solutions (peak OD < 0.1 in a 1cm cuvette) by linear spectroscopy, and then 

correct the fluorescence spectrum due to 2PA with this one-photon fluorescence spectrum. 

Details are described in Ref [28] 

The absolute errors associated with this characterization technique are estimated to be 

±20%.  

3.2.4 White-Light Continuum Pump-Probe Spectroscopy 

The two-beam technique we used to measure 2PA is White-Light Continuum (WLC) 

pump-probe spectroscopy [44][45]. With this pump-probe technique, we are not only able to 

measure nondegenerate 2PA of materials, but we can also study the dynamics of the nonlinearity 

in the time regime. For the weak probe beam we can detect additional absorption of the probe 

due to nondegenerate 2PA (one photon from the pump, the other photon from the probe) with the 

presence of the strong pump beam to determine the 2PA spectra of samples. The pump beam and 

probe beam overlap in space and in time (by adjusting the temporal delay) at sample. We can 

also use the strong pump pulse to induce the nonlinearity within the sample and the weak probe 

pulse monitors the dynamics of that nonlinearity – again by adjusting the temporal delay. Since 
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we use ultrashort pump and probe pulses (∼140fs), we can distinguish the “short-lived” processes 

(such as 2PA) from the “long-lived” processes (such as excited state absorption). 

Pump-probe experimental setup is shown in Fig.3.5 
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Figure 3.5 Experimental setup for white-light continuum pump-probe nonlinear spectroscopy. 
BS-Beam Splitter, λ/2-half waveplate, P-polarizer, RR-retroreflector 

 

In this White-Light Continuum (WLC) pump probe spectroscopy, in order to generate the 

WLC probe beam, we focus a 140fs (FWHM), 2-3 µJ, 1300nm beam from the TOPAS into a 

2.5mm thick CaF2 window with a 5cm focal length lens. According to research by Brodeur and 

Chin [46], the spectral broadening of the WLC or supercontinuum scales as the bandgap energy 

of the generation medium, and CaF2 is one of the transparent media with the largest bandgap 

(Egap=10.2eV). The spectral range of the WLC generated by this method is from 400nm to 

1600nm.  
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With 140fs pulse excitation, the duration of the WLC probe pulse is much longer than 

140fs due to group velocity dispersion (GVD) of the broad WLC spectrum in CaF2.  In order to 

characterize the temporal properties of the WLC probe, we perform an Optical Kerr Effect (OKE) 

pump-probe experiment [44]. The OKE method is a cross-correlation technique used to fully 

characterize the chirp of the WLC (relation between the wavelength and time) and furthermore 

can measure the GVD of an unknown sample. More details can be found in Ref [44]. The 

duration of the WLC is around 2ps with 1600nm at the front in time and 400nm toward the back 

(i.e. normal dispersion).  

Nondegenerate 2PA requires that the pump and probe pulses reach the sample at the same 

time. The single wavelength pump pulse from another TOPAS has a duration of ~140fs, much 

shorter than the WLC probe. Thus it is necessary to scan the temporal delay of the pump pulse to 

reach zero delay with different wavelength components of the WLC probe, i.e. only a narrow 

spectral portion of the WLC undergoes 2PA for a fixed temporal delay. 

In addition, photons from the pump and WLC probe have different wavelengths so that 

they travel at different speeds inside the sample. This causes temporal walk off making the 

effective interaction length in the sample between the pump and probe pulses to be significantly 

reduced. Thus, the magnitude of the nonlinear signal will be reduced as well. Therefore, 

experimentally determined raw data is corrected for this temporal walk off due to group-velocity 

mismatch (GVM). GVM can be completely corrected for provided the linear dispersion of the 

sample is known. We can characterize the dispersion of the sample by the OKE method 

mentioned above. 

We derived a single dynamical equation to describe the transmission of the WLC probe 

due to nondegenerate 2PA including the walk-off correction as [44]: 
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where Q is the transmission of the WLC probe, σ is the linear absorption coefficient, τd is the 

delay time between the pump and probe pulses, and W is the ratio of the band-limited probe 

pulsewidth to pump pulsewidth.  ρ is the parameter related to the GVM between pump and probe 

pulses. Γ is the parameter related to the nondegenerate 2PA coefficient; NDeLI β=Γ , here L is 

the sample length and Ie is the pump beam intensity. 

3.2.5 Pump-probe experiments to study ESA and 2PA processes 

In order to investigate 2PA bands located at high energy (or shorter wavelength) region 

where the large 2PA cross sections usually could be observed, we have to use the pump 

wavelengths as short as possible, i.e. move the pump wavelength close to longer wavelength 

edge of linear absorption band. Therefore, pump light might experience some linear absorption. 

In the Z-scan experiment. as discussed in Section 3.2.4, If the pump beam experiences linear 

absorption, excited state absorption (ESA) could also happen. Because both 2PA and ESA are 

two-photon processes, a single wavelength Z-scan using a single pulsewidth cannot determine 

which physical process is occurring. However, we can separate them with time-resolved 

experiments, such as using a white-light continuum pump-probe setup in Section 3.2.4. Because 

ESA and 2PA have different time responses, ESA shows a longer time response (usually 

hundreds of ps to ns) than 2PA (which is essentially “instantaneous”) 

1) Let’s see the case of the molecule TOR-I-103. The molecular structure and 2PA data 

for this molecule are presented in Section 5.4. The peak 2PA cross sections are observed to be ≈ 

34000 GM at 515nm correponding pump wavelength 1030nm with Z-scan technique. The time-
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resolved pump-probe experiments with femtosecond pulses are performed for this molecule with 

pump wavelength 1020nm and probe wavelengths 1064nm. The linear absorption spectrum for 

TOR-I-103 in THF are shown in Fig.3.6 (a), and the results of pump-probe experiments are 

shown in Fig.3.6 (b) including three different pump energies:  
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Figure 3.6 (a) Linear absorption spectrum for TOR-I-103 in THF (b) The normalzied 
transmission of probe as a function of the time delay between pump and probe pulses for TOR-I-

103 with pump 1020nm (2uJ, 3uJ and 4.5uJ) and probe 1064nm. Solid lines are for eye-guide. 
 

It is seen that pump 1020nm is located at the long wavelength edge of the linear 

absorption band in Fig. 3.6 (a). In Fig. 3.6 (b), the transmission of weak probe beam is plotted as 

a function of time delay between pump and probe pulses for three pump energies. The positive 

delay indicates that strong pump pulse hits the TOR-I-103 solution before the arrival of the weak 

probe pulse, negative delay indicates the pump pulse is behind of probe pulse temporally. So at 

the negative delay, the transmission can be considered as the linear transmission of the probe 

beam without presence of strong pump beam. The linear transmission of the probe is normalized 

to unity in Fig. 3.16 (b). We observed that the transmission of probe decreases around zero delay 

region (-150fs < Delay < 150fs) and then goes back to the same linear transmission as that in the 
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negative delay. We can conclude that the probe transmission “instantaneous” change around zero 

delay region is due to nondegenerate 2PA (one photon from pump, the other photon from probe). 

There is no ESA occurring for this case. We can trust the signal we see in the single wavelength 

Z-scan experiment with pump 1030nm is from the pure 2PA process. 

2) Let’s look at the case for molecule Sjz-3-16 in THF. The spectroscopic data for this 

molecule can be found at Appendix C.3. The linear absorption spectrum of Sjz-3-16 in THF is 

shown in Fig. 3.7 (a), and the pump probe data in Fig. 3.7 (b) and (c) 

Pump 600nm is located at edge of linear absorption band of Sjz-3-16 in THF shown in 

Fig. 3.7 (a). In Fig 3.7 (b), at after delay ≈ 150 fs, the transmission of weak probe beam is 

smaller than normalized linear transmission at negative delay, and staying almost same for the 

delay up to 1.4 ps. We can conclude that this decrease of transmission of the probe (∆) after zero-

delay region (-150fs – 150fs) is because of ESA, which is evidenced by its long time response 

behavior (usually hundreds ps to ns). In addition, the dip of the probe transmission at zero delay 

have contributions both from the non-degenerate 2PA and ESA. 

Because the strong pump 600nm femtosecond pulse may experience both 2PA and 1PA. 

In order to tell which absorption process dominates here, we plot the logarithm of ESA signal (∆) 

as a function of logarithm of pump energy and fit the experimental data with linear function in 

Fig. 3.7 (c). The relationship of 1PA and 2PA induced electron population of first excited state 

N1 that is responsible to ESA without considering lifetime of the excited state can be expressed 

as: 

ω
β

ω
α

hh 2
)()( 2

1 tItI
dt

dN
+=    (3.8) 
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Where α is 1PA coefficient, β is 2PA coefficient, I(t) is irradiance of pump beam and ωh  is 

pump photon energy. In Fig 3.7 (c), the slope of 1.1 is observed to indicates that 1PA dominates 

here, and ESA signal is mainly due to 1PA of pump beam. So if we use 600nm as the pump 

beam in single wavelength open-aperture Z-scan experiment, the signal we see is due to 2PA 

plus 1PA followed with ESA, even although the Z-scan signal can be well fitted with 2PA theory. 
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Figure 3.7 (a) Linear absorption spectrum of Sjz-3-16 in THF; (b) The normalized transmission 
of probe 650nm as a function of the time delay between pump and probe pulses for Sjz-3-16 with 

pump 600nm (3uJ, 6uJ and 9uJ) and probe 650nm. ESA signals are indicated by ∆1, ∆2 and ∆3 
for three pump energies respectively; (c) Plot of logarithm of ESA signal (∆) as a function of 

logarithm of pump energy 
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3) In addition, let’s look at the case for LB-II-80 in THF. The spectroscopic data are 

shown in Appendix C.3. The linear absorption spectrum of LB-II-80 in THF is shown in Fig. 3.8 

(a), and the pump probe data in Fig. 3.8 (b) and (c) 
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(b) 

Figure 3.8 (a) Linear absorption spectrum of LB-II-80 in THF; (b) The normalized transmission 
of probe 550nm as a function of the time delay between pump and probe pulses for LB-II-80 

with pump 600nm. ESA signals are indicated by ∆3, ∆4 and ∆5 for pump energies 3uJ, 6uJ and 
9uJ respectively. ESA signals for pump enegies 0.5uJ and 1uJ are equal to  ∆1 = 0.002, ∆2 = 

0.005 respectively (not shown in the graph); (c) Plot of logarithm of ESA signal (∆) as a function 
of logarithm of pump energy. 
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The pump 600nm is located quite close to linear absorption band for LB-II-80 in THF 

shown in Fig. 3.8 (a). ESA with probe 550nm is observed for all the pump energies shown in Fig. 

3.8 (b). In Fig 3.8 (c), Slope is equal to 1.4 indicates that ESA have contributions from both 2PA 

and 1PA of pump 600nm according to Eq. (3.8), i.e. pump 600nm beam experiences both 1PA 

and 2PA here.  

4) We performed the pump-probe experiment for LB-II-80 in THF with another pump 

wavelength 690nm that is far from linear absorption edge shown in Fig. 3.9 (a), therefore 

experiences negligible 1PA. The pump probe data in Fig. 3.9 (b) and (c), non-smooth curves in 

Fig. 3.9 (b) are due to the crosstalk between motor cable and detector cables. 

Shown in Fig. 3.9 (b), ESA is observed for all the pump energies, and the slope in Fig. 

3.9 (c) is observed to be equal to 2.15, which indicates that here 2PA dominates absorption 

process for strong pump 690nm. Here ESA is mainly due to 2PA, i.e. a three-photon process. If 

we use pump 690nm in the single wavelength Z-scan experiment, we prefer to use smaller pump 

energy to minimize higher order ESA+2PA effect. If pump energy is high, Z-scan signal will not 

be able to be fitted with pure 2PA theory. 
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(b) 

Figure 3.9 (a) Linear absorption spectrum of LB-II-80 in THF; (b) The normalized transmission 
of probe 750nm as a function of the time delay between pump and probe pulses for LB-II-80 

with pump 690nm. ESA signals are indicated by ∆1, ∆2, ∆3 and ∆4 for pump energies 3uJ, 7uJ, 
10uJ and 13uJ respectively. (c) Plot of logarithm of ESA signal (∆) as a function of logarithm of 

pump energy 
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CHAPTER 4 STRUCTURE-PROPERTY RELATIONSHIP OF 
POLYMETHINE DYES 

 

4.1 Cyanines 

The generic cyanine dyes consist of two nitrogen centers, one of which is positively 

charged and is linked by a conjugated chain of a number of carbon atoms to the other nitrogen. 

For example, the structures of PDs are shown in Fig. 4.1.Both polymethine dyes and squaraine 

dyes belong to the family of cyanine dyes. Polymethine dyes are also called cationic 

streptopolymethine-cyanines, and squaraine dyes are referred as Zwitterionic squaraine-based 

cyanine dyes. In this chapter, we will discuss relationships of molecular structure to linear and 

nonlinear optical properties for polymethine dyes. The squaraine dyes will be discussed in 

Chapter 5. 

In the middle of the 19th century, cyanine dyes were first used as the spectral sensitizers 

for silver halide photography, and dominate the field of photography since then [47]. Although 

polymethine and squaraine dyes are substances with a variety of colors in solution, they are not 

widely used for dyeing purposes because they are decolorized by light and acid, i.e. bleached. 

However, they have been widely used in optical disks as recording media [48], saturable 

absorbers for Q-switching and modelocking [49], and gain media in dye lasers [50]. Cyanines are 

also used for initiation of photopolymerization, as molecular probes in polymer science and 

biology [51], as nonlinear media for exploring excited-state absorption [52] [53].  Polymethine 

molecules are also useful objects for developing new theoretical concepts and effective quantum-

chemical models. 
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4.2 Polymethine dyes 

The name polymethine refers to the π conjugated chromophore chain, which is composed 

of the methine groups and serves as a light absorbing chromophore of the molecule. The general 

structure of a polymethine dye (PD) is shown in Fig. 4.1(a), where R1 and R2 represent terminal 

groups. PDs are a special type of the charged (ionic) linear π-electron conjugated system. 

R1N NR2n
 

+

  δ+ δ+ δ+

δ- δ-
R1N +NR2

δ+ δ+ δ+

δ- δ-
R1N +NR2

 
 (a) (b) 

Figure 4.1 (a) General molecular structure of PD, R1 and R2 are terminal groups; (b) π-electron 
distribution in polymethine chromophore. 

 

The key feature of the polymethine chromophore is an alternating partial charge (δ+ and 

δ- are positive and negative charge, respectively) at the carbon atoms within the polymethine 

chain along with an equalization of the bond lengths as shown in Fig.4.1(b). This property allows 

a large delocalization of the π-electron system, which gives rise to a large polarizability and 

promises a strong nonlinear interaction upon excitation. 

Altering the chromophore via the addition of terminal groups to the two end positions 

gives us the ability to generate different chemical archetypes by affecting the electron accepting 

and donating properties of the system. By placing the terminal groups with high (accepting) or 

low (donating) electron affinities we can create the following motifs: 1) Donor-π conjugated 

chromophore-Donor (D-π-D), 2) Donor-π conjugated chromophore-Acceptor (D-π-A). We can 

also control the strength of these electron accepting/withdrawing terminal groups, which gives us 
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further freedom to address the effect these structural changes having on the molecule’s NLO 

properties. 

Polymethine dyes (PDs) have highly intense and comparatively narrow absorption and 

fluorescence bands which can be shifted from the visible to infrared (>1600nm) region by 

lengthening the polymethine chain (up to n=13) [54] or by introducing specific terminal groups. 

The PDs we studied in this thesis are shown in Fig. 4.2: 
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Figure 4.2 Molecular structures of Polymethine Dyes (PDs) 
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The photochemical stability of PDs degrades as the chain length is increased from the 

lowest cyanine limit (n=0) to the carbocyanine (n=1) and on to the di- (n=2), tri-, etc. 

carbocyanine structures. It should be noted that much work has been spent on making this series 

of dyes photochemically stable [52], with the exception of the pentacarbocyanine dyes which 

were only recently synthesized. 

PDs are attractive for 2PA due to three advantages: 1) they show large ground-state 

transition dipole moments; 2) they have close to parallel orientation of their ground- and excited-

state transition dipole moments [55]; 3) the sharp low-energy side of their linear absorption 

spectra allows significant intermediate state resonance enhancement of the 2PA [56]  

Linear properties such as peak linear absorption wavelength, λabsmax and fluorescence 

spectra peak wavelength λflumax, quantum yield η and peak extinction coefficient εmax of the 

polymethine dyes studied in ethanol are summarized at Table 4.1 below: 

Table 4.1 Linear optical properties of polymethine dyes in ethanol 
PD λabs (nm) λflu (nm) η εmax (cm-1 M-1) 
AF 547 566 0.035 149000 

2350 649 665 0.38 235000 
3428 756 - - 292000 
2093 771 - - 294000 
824 863 - - 224000 
25 560 572 0.063 151000 
200 648 670 0.0656 160000 
2646 654 675 0.3 240000 
2501 762 788 - 228000 
2630 682 704 - 211900 

Styryl 1 527 598 0.013 61500 
2665 644 667 0.243 197000 
2755 570 605 0.066 168500 
2761 536 553 0.11 250200 
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4.3 Symmetry 

It is well known that materials with symmetry through their center of inversion have 

ground and excited states with a definite parity. These materials are referred to as centro-

symmetric systems. Their states are usually separated as symmetric or unsymmetric states. 

Quantum mechanics dictates that in centro-symmetric systems, linear excitation and two-photon 

excitation processes access states of differing parity. One-photon absorption will gain access to a 

state which is opposite in symmetry to that of the ground state, whereas 2PA will access a state 

of like symmetry [57][58] [59]. 

We consider the effect of molecular symmetry on 2PA by comparing results for the 

symmetrical PD 2350 (indolium terminal groups, n = 2) with the weakly asymmetrical PD 2665 

(indolium – thiazolium terminal groups, n = 2), and also with the strong asymmetrical molecule 

PD2755 (indolium-terminal groups, n=2).  

Degenerate 2PA spectra of these molecules in ethanol were taken by using 2PF 

spectroscopy and the Z-scan technique. Experimental results and theoretical fittings based on Eq. 

(2.55) in chapter 2 are shown in Fig. 4.3. Here the two-photon absorption cross section δ is 

plotted versus half the wavelengths of the input photons. The 2PA cross-section is a unit 

expressed in 10-50 cm4*sec/photon that is defined as Goppert-Mayer (GM). 

It is commonly known that asymmetrical dyes are characterized by blue-shifted and 

broader linear absorption bands S0 → S1 as compared to those for symmetrical dyes. We can see 

this in Fig. 4.3 where the solid lines indicate linear absorption spectra. Absorption shapes for 

asymmetrical molecules strongly depend on solvent polarity which is connected to the charge 

localization [55].  
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Figure 4.3 (a) Molecular structures (b) Degenerate 2PA spectra for PD2350 (red), PD2665 (black) 
and PD2755 (blue).  Dashed line is the theoretical fitting based on Eq. (2.55), and the linear 

absorption spectra (solid line) are shown for reference.  
 

2PA spectra also show some differences. As was expected, for the strongly asymmetrical 

PD2755, the first 2PA band is much broader than that for the symmetrical PD 2350; however, 

δ2PA for the second band is smaller. The same, but less pronounced effect was observed for the 

weakly asymmetrical PD 2665 when compared to the symmetrical PD 2350. We note that for PD 

2665 the beginning of the third 2PA band is observed while this is not the case for the 

symmetrical PD 2350. PD2350, a symmetric dye, shows negligible 2PA into the peak of the first 

singlet excited state, but displays a first 2PA band corresponding to its vibration shoulder due to 
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the effect of vibronic coupling partly breaking the molecular symmetry. We will discuss the 

nature of symmetry breaking in Chapter 5 and 6. 

We also compare results for the symmetrical molecule PD 25 (thiazolium terminal groups, 

n = 1) with the strongly asymmetrical molecule Styryl 1 (thiazolium – styryl terminal groups, n = 

1). Molecular structures and experimental results are presented in Fig.4.4. 
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Figure 4.4 (a) Molecular structures (b) Degenerate 2PA spectra for PD25 (red), Styryl_1 (black). 
The dashed line is for theoretical fitting based on Eq. (2.55), and linear absorption spectra (solid 

line) are shown for reference.  
 

Styryl_1, a strongly asymmetrical molecule, shows a relatively strong and broad 2PA 

band within the linear absorption band when the two-photon absorption cross section δ is plotted 
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versus half the wavelength of the input photons. PD 25 shows a less intense vibrationally 

induced 2PA band close to the position of its vibration shoulder. 

 

4.4 Terminal groups 

Altering the chromophore of PDs via the addition to the two end groups gives us the 

ability to generate different chemical archetypes by affecting the electron accepting and donating 

properties of the system. By placing terminal groups (TGs) at these positions with low (donating) 

electron affinities we can create the following motifs such as Donor-π conjugated core-Donor 

(D-π-D). We can also control the strength of these electron donating end groups which gives us 

further freedom to address the effect these structural changes having on the molecule’s NLO 

properties.  

We consider the effect of the three terminal groups: thiazolium, indolium and 

benzoindolium, on the one- and two-photon absorption properties. Fig. 4.5 represents 

experimental results for PDs with the same length of the chromophore n = 2 and different 

terminal groups placed in order of a decrease of their donor strength: PD 2630 (benzoindolium), 

PD 2350 (indolium) and PD 2646 (thiazolium), respectively. Degenerate 2PA spectra of these 

molecules in ethanol were taken by using 2PF spectroscopy and Z-scan. Molecular structures are 

shown in Fig. 4.5 (a). The 2PA spectra are shown in Fig. 4.5 (b). Here the two-photon absorption 

cross section δ is plotted versus half of the wavelengths of the input photons.  A summary of 

ground state transition dipole moments µ01, calculated excited state transition dipole moments 

µ12 (obtained by fitting the 2PA spectra with Eq. (2.55)), as well as maximum 2PA cross sections 

δmax, are shown in Table 4.2. 
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Figure 4.5 (a) Molecular structures; (b) Degenerate 2PA spectra for PD 2630, PD 2350 and PD 
2646. The dashed line is for theoretical fitting based on Eq. (2.55), and linear absorption spectra 

(solid line) are shown for reference. 
 

Table 4.2 Parameters for PDs having the same conjugate length with benzoindolium (PD2630); 
indolium (PD2350); thiazolium (PD2646) terminal groups 

Molecules µ01(debye) µ12(debye) δmax (GM) ∆E (eV) 
PD2630 14 3.1 980 0.35 
PD2350 15 2.0 720 0.31 
PD2646 14 1.5 600 0.29 

 

All linear and nonlinear parameters for PD 2646 and PD 2350 are very close in 

accordance with the similar donor strength and similar contribution of π-conjugation from their 

terminal groups to the polymethine chain. However, we note that δ2PA in both 2PA bands of PD 

2350 is 20-40 % larger than those of PD 2646.  
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For PD 2630, with the larger π-conjugation (larger contribution to the chain) and 

increased donor strength in the benzoindolium terminal groups, the positions of the one- and 

two-photon absorption peaks are red-shifted, and δ2PA for the second band is ≈ 1.5× larger than 

for PD 2646. The 2PA spectrum for PD 2630 is more complicated than for PD 2350. In contrast 

to PD 2350, the beginning of the next, third 2PA band, is seen for PD 2630, with δ2PA reaching 

1320 GM. Further tuning of the excitation wavelength into the short wavelength region was 

restricted by the presence of linear absorption. Quantum chemical calculations related to the 

effect of terminal groups will be addressed in Chapter 5.  

All three terminal groups we studied here contain their own π-conjugated system, which 

will change the effective conjugation length of the molecules. When we discuss the effect of 

terminal groups on 2PA properties, besides the strength of donors, we also have to consider the 

change of the effective molecular conjugate length due to the terminal groups. From Section 4.5, 

we observed the trend that increasing the conjugation length of the molecules leads to an 

increase of the ground-state transition dipole moments in Section 4.5. However, we do not see 

this trend with different terminal groups (see the Table 4.2). It should be an interesting topic to 

study the change of the effective conjugation length due to terminal groups on the 2PA 

properties of molecules. 

Comparing the 2PA properties of PD 200 and PD 2761 gives us some insights about this. 

They have the same length of the chromophore n = 2 and different terminal groups, i.e. TGs for 

PD 200 and PD 2761 have similar donor strength but very different conjugation length, which 

will make the effective conjugation length of PD 2761 smaller. Both of them have benzene 

bridges in the middle of the chromophore chain. Degenerate 2PA spectra of these molecules in 

ethanol were also taken by using 2PF spectroscopy and Z-scan. Molecular structures are shown 

 62



in Fig. 4.6 (a). The 2PA spectra are shown in Fig. 4.6 (b). Here the two-photon absorption cross-

section δ is plotted versus the half of input photon wavelengths. A summary of ground state 

transition dipole moment µ01, as well as maximum 2PA cross section δmax are shown in Table 4.3. 
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Figure 4.6 (a) Molecular Structure (b) Degenerate 2PA spectra for PD 200 and PD 2761. The 
dashed line is for theoretical fitting based on Eq. (2.55), and linear absorption spectra (solid line) 

are shown for reference 
 

Table 4.3 Parameters for PD 200 and PD 2761 having the same chromophore conjugation length 
with different terminal groups  

Molecules µ01(debye) µ12(debye) δmax (GM) ∆E (eV) 
PD 200 11 2.2 703 0.32 
PD 2761 12.8 1.5 248 0.52 

 

The main difference between PD 2761 and PD 200 is that PD 2761 has a very simplified 

terminal group (TG) without conjugation, which will make the effective conjugation length of 
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PD 2761 smaller, and is the reason why the linear absorption band of PD 2761 is so shifted to the 

“blue” region. Here we observe that the one-photon absorption band of PD 2761 is blue-shifted 

by ∼ 110nm compared to PD 200. This shift is approximately equal to the shift upon lengthening 

of the chain by one unit. Thus, this is a manifestation of the conjugation in TG on the linear 

properties. The two-photon absorption band is also shifted by a smaller amount ∼ 50nm, which is 

also observed for the dyes upon lengthening of the chain by one unit.  

It is interesting to observe that PD 2761 shows a smaller peak 2PA cross section. From 

the Table 4.3, PD 2761 possesses a larger ground state transition dipole moment than PD 200, a 

shorter effective conjugation length, but a much smaller observed 2PA cross section. This could 

be considered as evidence that π-conjugation in TG of PD 200 improves the 2PA probability by 

increasing the excited state absorption dipole moments and decreasing the detuning energy 

shown in Table 4.3. It is noticable that extending π-conjugation in chromophore chain of 

polymethine will increase 2PA cross setions by increasing ground state transition dipole 

moments shown in Section 4.5 

 

4.5 Conjugation length 

For symmetric molecules the first accessible two-photon state is 2A1 (numbering is the 

following: Ag only for the neutral molecules like polyenes and squaraine dyes, and A1 for 

polymethine dyes) corresponds to the second singlet excited state. Based on perturbation theory 

for a three-state model having one-intermediate state for 2PA shown in Chapter 2, the dominant 

terms which affect the two-photon properties of this transition are the ground to first excited state 

(intermediate state) with the transition dipole moment µ01 as well as the first to second excited 
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state with the transition dipole moment µ12. A very straightforward way to maximize µ01 is by 

extending the chromophore length of the conjugated molecule. By increasing the ground state 

transition dipole moment by lengthening the molecule, we can increase the distance over which 

charge can be transferred to the excited state. Certainly there are limits to the extent to which the 

value of µ01 can be increased by this method.  

Here we study two series of symmetric PDs: one series of PDs with indolium terminal 

groups (from n = 1 to n = 4) is shown in Fig. 4.7 (a), the other series of PDs with thiazolium 

terminal groups (from n =1 to n = 3) is shown in Fig. 4.8 (a). Degenerate 2PA spectra of these 

molecules in ethanol were taken by using 2PF spectroscopy and Z-scan. 2PA spectra as well as 

linear absorption spectra are shown in Fig. 4.7 (b) and Fig. 4.8 (b). Here the 2PA cross section δ 

is plotted versus the half of input photon wavelengths. A summary of ground state transition 

dipole moments µ01, calculated excited state transition dipole moments µ12 (obtained by fitting 

the 2PA spectra with Eq. (2.55)), maximum 2PA cross sections δmax, as well as detuning energies 

∆E are shown in Table 4.4 and Table 4.5.   

Calculations show that an increase in the chain length leads to an increase of the ground 

state transition dipole moment from 12.2 debye (n = 1) to 17 debye (n = 4) for 

indocarbocyanines (see Table 4.4), and 10.5 debye (n = 1) to 15.5 debye (n = 3) for 

thiacarbocyanines (see Table 4.5).  
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Figure 4.7 (a) molecular structures; (b) degenerate 2PA spectra for PDAF, PD2350, PD3428 and 
PD824. The dashed line is for theoretical fitting based on Eq. (2.55), and linear absorption 

spectra (solid line) are shown for reference.  
 

Table 4.4 Parameters for PDs having indolium terminal groups with conjugation length from n=1 
to n=4. Detuning energy ∆E is calculated for the 2PA peak at δexpmax2; Q. C. is from the 

quantum chemical calculation 

PD n µ01(debye) 
Exp  

µ01(debye) 
Q.C. 

µ12(debye) 
Fit 

µ12(debye) 
Q. C. 

δexpmax1 
(GM) 

δexpmax2 
(GM) ∆E* (eV) 

AF 1 12.2 10.2 2.8 3.4 10 465 0.51 
2350 2 14.7 12.4 2.0 3.9 140 720 0.31 
3428 3 16.8 13.8 2.8 2.3 180 2260 0.26 
824 4 17 12.4 2.9 2.3 600 2550 0.25 

* Detuning energy ∆E calculated for peak of 2PA spectra δexpmax2 
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Figure 4.8 (a) molecular structures; (b) degenerate 2PA spectra for PD25, PD2646 and PD2501.   
The dashed line is for theoretical fitting based on Eq. (2.55), and linear absorption spectra (solid 

line) are shown for reference.  
 

Table 4.5 Parameters for PDs having tiazolium terminal groups with conjugation length from 
n=1 to n=3. Detuning energy ∆E is calculated for a 2PA peak at δexpmax2; Q. C. is from the 

quantum chemical calculation 

PD n µ01(debye) 
Exp 

µ01(debye) 
Q.C. 

µ12(debye) 
Fit 

µ12(debye) 
Q.C. 

δexpmax1 
(GM) 

δexpmax2 
(GM) ∆E* (eV) 

25 1 10.5 10.7 2.1 1.5 50 280 0.36 
2646 2 14.0 12.4 1.5 1.4 100 600 0.29 
2501 3 15.5 13.4 1.1 1.6 200 630 0.22 

* Detuning energy ∆E calculated for peak of 2PA spectra δexpmax2 

In addition, it is commonly known that an increase in the chromophore length of the 

polymethine by one chain unit (n) with the same terminal groups leads to a red shift in the peak 

of the linear absorption of about 100 nm, which provides another advantage of longer molecules 
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for 2PA performance: possible have smaller detuning energy ∆E, so the larger 2PA cross section. 

Based on perturbation theory with a three-state model, the 2PA cross section δ is proportional to 

1/∆E, As ∆E becomes small, the increase in δ is referred to  intermediate state resonance 

enhancement [56]. We also calculated the detuning energy ∆E for peaks of 2PA δexpmax2 for 

these molecules shown in Table 4.4 and Table 4.5. 

Broadening of the linear absorption band for PD 824 (n = 4) in polar solution such as 

ethanol is connected with a partial ground state symmetry breaking and the appearance of a form 

of the molecule with an asymmetrical distribution of the charge density. Detailed information on 

our experimental and theoretical investigations of this symmetry breaking effect in different 

solvents can be found in [55] and are discussed in Section 4.6. 

Two-photon absorption spectra for all PDs show the existence of two 2PA bands. 

Experimental results demonstrate that lengthening of the polymethine chromophore generally 

results in an increase in the 2PA cross section δ. First, a weakly allowed 2PA band is always 

positioned within the shoulder of the first absorption band S0 → S1. In the indolium series δ 

increases from ≈ 10 GM for PD AF (n = 1) to 600 GM for PD 824 (n = 4) and in the thiazolium 

series from 50 GM for PD 25 (n = 1) to 200 GM for PD 2501 (n = 3).  

Secondly, a more intense 2PA band is positioned at a shorter wavelength region, (see Fig. 

4.7 and 4.8 and data in Table 4.4, 4.5). The peak 2PA cross section δexpmax2 in the indolium 

series increases from 470 GM for PD AF (n = 1) to 2550 GM for PD 824 (n = 4) and in the 

thiazolium series increases from 280 GM for PD 25 (n = 1) to 630 GM for PD 2501 (n = 3). We 

explain this increase of δ2PA upon lengthening of the polymethine chromophore by the 
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corresponding increase of the ground state dipole moments and decrease of the detuning energies 

∆E (between excitation wavelength and intermediate S1 state), see Eq. (2.48) and (2.56). 

 

4.6 Polarity of solvents 

Now we consider the nature of the weakly allowed 2PA bands. Two-photon excitation to 

the S1 state involves at least two dipole moments:  and ∆µ (vector difference between 

permanent S

01µ

0 and S1 dipole moments). According to the traditional quantum-chemical theories 

[59], 2PA to the S1 state is symmetry forbidden for 2PA in centro-symmetric molecules such as 

squaraines with C2i symmetry (∆µ = 0), and is only slightly allowed for symmetrical 

polymethines with C2v symmetry (∆µ is oriented perpendicular to ). However, these bands 

have been observed for cyanines and cyanine-like molecules (squaraines [60], Rhodamine B and 

fluorescein [42]) and explained by the effect of symmetry breaking due to vibronic coupling 

which can lead to a change of the dipole selection rules, resulting in the appearance of a 2PA 

band within the S

01µ

0 → S1 absorption band [61][62]. Indications of some forms of symmetry 

breaking were also observed by two-photon anisotropy measurements, which show relatively 

high and nearly constant values over the entire spectral range studied [63]. These results can be 

explained by taking into account the deviation of ∆µ from being perpendicular to . Details 

will be discussed in Chapter 6. 

01µ

Our current and ongoing studies of 2PA spectra in this series of PDs with different 

conjugation lengths discussed in Section 4.5, made it possible to assume that processes other 

than vibronic coupling can break the symmetry of the molecules. The frequency of the chain 

skeleton vibration observed in the linear absorption of PDs is ≈ 1450 – 1500 cm-1 and is almost 
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chain-length independent. However, for the weak 2PA band, we observed a different trend. For 

the shorter molecules, the peak of the weak 2PA band corresponds approximately to the 1PA 

vibrational shoulder (again plotting as in, for example, Figs. 4.7 and 4.8), but for the longer PDs, 

this 2PA peak is more blue-shifted and depends upon the solvent polarity.  

Based on the discussions above, we studied the behavior of this weak 2PA band in 

different solvents (methanol, ethanol, 1,2-Dichlorobenzene) for symmetric molecules PD 2646 

and asymmetric molecule PD 2755. The molecular structures are shown in Fig. 4.9 
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Figure 4.9 Molecular structures for the study of the solvent effect on the weak 2PA band 

The polarity of solvents can be evaluated by their orientational polarizability which is 

expressed as [39]: 
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where ε is the dielectric constant of the solvent, and n is the refractive index of the solvent. From 

Eq. (4.1), we can see that if the solvent has no permanent dipole moment, or a completely 

nonpolar solvent, and . 2n≅ε 0≅∆f

These parameters for three solvents used in this study are listed with decreasing polarity 

in Table 4.6: 
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Table 4.6 Dielectric constant ε, refractive index n and polarity ∆f of the three solvents (methanol, 
ethanol and 1,2-Dichlorobenzene) 

Solvent ε n ∆f 
methanol 33.1 1.326 0.31 
ethanol 24.3 1.35 0.30 

1,2 dichlorobenzene 2.8 1.551 0.166 
 

Table 4.7 Linear optical properties of PD 2646 and PD 2755 in different solvents. 
PD Solvent λabsmax λflumax η εmax(cm-1M-1) 

methanol 652 nm 672 nm 0.26 219500 
ethanol 654 nm 674 nm 0.3 240000 2646 

1,2 Dichlorobenzene 671 nm 693 nm 0.52 222700 
ethanol 570 nm 604 nm 0.07 168500 2755 1,2 Dichlorobenzene 592 nm 625 nm 0.2  
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Figure 4.10 Linear absorption and fluorescence spectra for PD 2646 and PD 2755 in different 
solvents 

Linear properties, such as peak linear absorption λabsmax and fluorescence wavelength 

λflumax, quantum yield η and peak extinction coefficient εmax of PD 2646 and PD 2755 in 
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different solvents are listed in Table 4.7. Linear absorption and fluorescence spectra are shown in 

Fig. 4.10 

We can see that linear properties of these two polymethine dyes strongly depend on the 

polarity of the solvents. Because methanol and ethanol have very similar polarity, PD 2646 

shows very similar linear properties in these two solvents. For both asymmetric PD 2755 and 

symmetric PD 2646 molecules in the less polar solvent 1,2-dichlorobenzene, linear absorption 

and fluorescence spectra exhibit a 20 ∼ 30nm red shift. Fluorescence quantum yields are also 

higher for dyes in 1,2-dichlorobenzene than in methanol and ethanol. 

Our current understanding is that besides vibrational symmetry breaking, a molecular 

form having an asymmetrical charge distribution may also be present. It was shown in [55], that 

symmetrical PDs can exist in the ground state as an equilibrium of two forms with symmetrical 

and asymmetrical charge distributions. Observed both theoretically and experimentally, the total 

charge (positive and negative) in the charged π-electron system is not delocalized uniformly 

along the polymethine chain, but instead is distributed at the π-centers as a wave of alternating 

positive and negative partial charges, i.e. as a soliton of the electron or hole type respectively. 

For PDs beyond a certain length, i.e. when the width of the charge or solitonic wave is 

comparable with the length of the chromophore of the molecule, the peak of the charge wave in 

the ground state can be shifted to on of the TGs. This is called symmtry breaking due to 

degeneracy of the potential energy. Any fluctuation in the bond length can lead to a shift of this 

wave. Polar solvents can stabilize the asymmetric form.  

However, for the shorter molecules, the fraction of molecules with an asymmetrical 

charge distribution is small, therefore the shapes of their linear absorption bands do not show a 

 72



pronounced solvent dependence as shown in Fig. 4.10. This small amount of the asymmetrical 

form could be seen by 2PA measurements due to the strong effects of symmetry breaking.  

2PA spectra for PD 2646 in methanol, ethanol and 1,2-Dichlorobenzene are taken with 

the 2PF method and are shown in Fig. 4.11. The polarity of solvents clearly show their profound 

effect on the 2PA bands in the spectra region 500-700nm. We observed two 2PA bands in the 

range from 500nm to 700nm (indicated by arrows in Fig. 4.11). In all solvents, the positions of 

2PA bands (2) are located exactly at the position of the vibronic shoulder of the linear absorption 

spectra, so this 2PA band results from vibronic coupling breaking the system symmetry of 

molecule PD 2646. Therefore, the other 2PA band (1) could result from the existence of an 

asymmetric charge distribution for the symmetric molecule. The “fraction” of the asymmetric 

charge distribution decreases in less polar solvents, which can explain in Fig. 4.11 how the 2PA 

cross section for band (1) is smaller in the less polar solvent 1,2-dichlorobenzene than in 

methanol and ethnaol. We also notice that the 2PA cross section for band (2) is bigger in 1,2-

Dichlorobenzene than that in methanol and ethanol.  
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Figure 4.11 2PA spectra for PD 2646 in different solvents: methanol (black), ethanol (red) and 
1,2-Dichlorobenzene (blue). Dashed line is a guide for the eye. Solid lines are linear absorption 

spectra in different solvents for comparison. 
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2PA spectra for asymmetric PD 2755 in methanol, ethanol and 1,2-Dichlorobenzene are 

taken with the 2PF method and are shown in Fig. 4.12. Two arrows indicate that there are two 

2PA bands for PD 2755 in ethanol. We also can see the similar two 2PA bands for PD 2755 in 

Dichlorobenzene. Band (1) is located at the position of the vibronic shoulder of the linear 

absorption spectrum due to vibrational coupling. Band (2) corresponds to the linear absorption 

peak. Because PD 2755 is an asymmetric molecule, 2PA into the first excited state S1 is allowed. 

We can also consider band (2) is due to the asymmetric charge distribution of PD 2755, so the 

2PA cross section of band (2) is smaller in the less polar solvent 1,2-dichlorobenzene than it is in 

ethanol, as experimentally observed.  
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Figure 4.12 2PA spectra for PD 2755 in different solvents: ethanol (blue) and 1,2-
dichlorobenzene (red). Dashed line is for a guide for the eye. Solid lines are linear absorption 

spectra in different solvents for comparison. 
 

These experimental studies are just preliminary results for investigating the nature of the 

weak 2PA band and symmetry breaking for symmetric molecules. More experiments and 

detailed quantum chemical calculations are needed to fully understand this nature. 
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4.7 Effect of bridge 

We studied the effect of placing bridge molecules in the middle of conjugated chains on 

the 2PA properties by comparing PD 2646 with PD 200, as well as PD 3428 with PD 2093. 

Molecular structures are shown in Fig. 4.13 (a) and Fig. 4.14 (a). Degenerate 2PA spectra of 

these molecules in the solvent ethanol were taken by using 2PF spectroscopy and Z-scan. 2PA 

spectra as well as linear absorption spectra with extinction coefficients are shown in Fig. 4.13 (b) 

and Fig. 4.14 (b). Here the 2PA cross-section δ is plotted versus the half of input photon 

wavelengths. 
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(b) 

Figure 4.13 (a) molecular structures; (b) degenerate 2PA spectra for PD200, PD2646, dashed line 
is for theoretical fitting based on Eq. (2.55), and linear absorption spectra (solid line) are shown 

for reference.  
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Introduction of the bridges (or partial cyclization of the chain) with the goal of increasing 

the photochemical stability, depending on the position of cyclization, leads to blue shifts 

(compare PD 2646 with PD 200) or red shifts (compare PD 3428 with PD 2093) of the linear 

absorption peaks relative to the unbridged chromophores. 
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(b) 

Figure 4.14 (a) molecular structures; (b) degenerate 2PA spectra for PD3428, PD2093, dashed 
line is for theoretical fitting based on Eq. (2.55), and linear absorption spectra (solid line) are 

shown for reference.  
 

We note that the bridged structures (PD 200, PD 2093) are characterized by smaller 

values of 2PA cross section δ in the first 2PA band. From Section 4.6, this weak 2PA band is due 

to symmetry breaking of symmetric molecules. So it is reasonable to consider that the 
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introduction of the bridges can protect the symmetric molecular structure from this symmetry 

breaking, thus the smaller 2PA cross section δ. 
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CHAPTER 5 STRUCTURE-PROPERTY OF SQUARAINE, CROCONIUM 
AND TETRAON 

 

5.1 Squaraine dyes 

Squaraine dyes (SDs) also belong to the family of cyanines. SDs insert an electron 

acceptor C4O2 fragment at the center of the chromophore chain, which can be chemically 

considered as a simultaneous cyclization of the polymethine chain by the C=O bridge shown in 

Fig.5.1 (a). Introduction of the anionic substitute O - to the central position of the polymethine 

molecule makes the squaraine molecule formally neutral, or more correctly, it can be considered 

as a bi-ionic molecule with separated positive and negative charges. By placing terminal groups 

R1 and R2, we studied SDs with different structures shown in Fig.5.1 (b), which are synthesized 

at the Institute of Organic Chemistry, National Academy of Science, Kiev, Ukraine by standard 

methods as described in Ref. [64]. There are other SDs shown in Fig.5.11 in Section 5.4, which 

are synthesized by Dr. Seth Marder’s group at the School of Chemistry and Biochemistry and 

Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta.  

Similar to polymethine dyes (PDs), Squaraine dyes are also attractive for 2PA due to 

three advantages: 1) they show large ground-state transition dipole moments; 2) they have close 

to parallel orientation of their ground- and excited-state transition dipole moments; 3) their even 

sharper (than for PDs) low-energy side of the linear absorption spectra allows significant 

intermediate state resonance enhancement of the 2PA. The comparison of 2PA property between 

SDs and PDs will be discussed in Section 5.2  
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Figure 5.1 Squaraine dyes (SDs): (a) electron acceptor C4O2 fragment at the center of the chain, 
R1 and R2 are terminal groups; (b) SDs synthesized in Institute of Organic Chemistry, National 

Academy of Sciences, Ukraine 
 

5.2 Comparison between polymethines and squaraines 

We performed experimental and theoretical studies for two polymethine dyes (PDs) and 

two squaraine dyes (SDs) with analogous structures to study the effects of the squaraine on the 

2PA properties and provide a deeper insight into the nature of 2PA processes.  

The molecular structures are shown in Fig. 5.2 (a) and Fig. 5.3 (a). SD 2577 and PD 2350 

have the same indolium terminal groups and similar conjugation lengths. SD 2243 and PD 2630 

also have the same benzoindolium terminal groups and similar conjugation lengths. Linear 

absorption and fluorescence spectra are shown in Fig. 5.2 (b) and 5.3 (b). Experimental data 

show that SDs have narrower linear absorption bands than PDs allowing a smaller detuning 

energy, ∆E, to be accessed for 2PA, leading to a larger intermediate state resonance enhancement, 

and thus a larger 2PA cross section. SDs typically are characterized by narrower absorption 
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bands because of the smaller change in bond lengths when excited by a photon. The Central 

acceptor group leads to a less pronounced bond alternation as compared to PDs. Therefore their 

Frank-Condon potential curves (ground and excited) are less shifted with respect to each other.  

Degenerate 2PA spectra of these molecules were also taken by using 2PF spectroscopy 

and Z-scan. 2PA spectra as well as linear absorption spectra with extinction coefficients are 

shown in Fig. 5.2 (c) and 5.3 (c). The 2PA cross section δ is plotted versus the half of input 

photon wavelengths. A summary of ground state transition dipole moments µ01, calculated 

excited state transition dipole moments µ12, maximum 2PA cross section δmax, as well as 

detuning energy ∆E are shown in Table 5.1 and Table 5.2. PD 2350, SD 2577 and PD 2630 are 

measured in ethanol, but SD 2243 is measured in CH2CL2 due to poor solubility in ethanol. 

 

Table 5.1 Parameters for polymethine and squaraine with analogous structures: PD2350 and 
SD2577 in ethanol 

Molecules µ01(debye) µ12(debye) δmax1 δmax2 δmax3 ∆E*

PD2350 14.7 2.8 130 GM 710 GM N/A 0.31eV 
SD2577 12.2 4.2 36 GM 740 GM 5000 GM 0.21eV 

* Detuning energy ∆E for PD 2350 is calculated for 2PA peak δmax2, and ∆E for SD2577 is 
calculated for 2PA peak δmax3 
 

Table 5.2 Parameters for polymethine and squaraine with analogous structures: PD2630 and 
SD2243 

Molecules µ01(Debye) µ12(Debye) δmax1 δmax2 δmax3 ∆E 
PD2630 14 3.1 140 GM 980 GM > 1200 GM 0.21 eV 
SD2243 13.8 3.5 80 GM 1000 GM >7000 GM 0.2 eV 
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(c) 

Figure 5.2 (a) Molecular structure of PD2350 and SD2577; (b) Linear absorption and 
fluorescence spectra in ethanol; (c) 2PA spectra in ethanol (dotted, dashed line for theoretical 

fitting) and linear absorption spectra (solid lines) shown as extinction coefficient 
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Figure 5.3 (a) Molecular structure of PD2630 and SD2243; (b) Linear absorption and 
fluorescence spectra; (c) 2PA spectra (doted, dashed line for theoretical fitting) and linear 

absorption spectra shown as extinction coefficient. PD 2630 in ethanol and SD 2243 in CH2CL2
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1) Weakly allowed 2PA band: 

Our measurements show the existence of a weakly allowed 2PA band within the vibronic 

shoulder of the first absorption band, S0 → S1, for which the transition is forbidden by dipole 

selection rules for these symmetrical molecules. It is commonly accepted that two-photon 

excitation to S1 involves two dipole moments: µ01 and ∆µ (vector difference between permanent 

S0 and S1 dipoles). According to the traditional quantum-chemical theories [59], for symmetrical 

polymethine dyes (symmetry C2v) ∆µ is oriented perpendicular to µ01 and for the symmetrical 

squarylium dyes (symmetry C2i) ∆µ = 0 which would both prohibit 2PA to the S1 state.  

Cross sections for these weak 2PA bands are: 140 GM for PD 2350 (peak position at ≈ 

590 nm); 40 GM for SD 2577 (peak position at ≈ 570 nm); 160 GM for PD 2630 (peak position 

at ≈ 625 nm), and 85 GM for SD 2243 (peak position at  ≈ 625 nm). We note that cross sections 

for squaraine dyes are smaller than for polymethines, which may be connected with the different 

molecular symmetry. As was already mentioned, symmetrical polymethine dyes have C2v 

symmetry and a non-zero ∆µ value. As a result, this band is slightly allowed by dipole selection 

rules in contrast to being a forbidden band in the centrosymmetrical SDs with ∆µ  = 0.  

2) Main 2PA bands: 

Considering the more intense 2PA bands, for PD 2350 shown in Fig. 5.2 (c), our 

measurements reveal the position of the second 2PA band at ∼ 390 nm (~780nm excitation) with 

δ2PA ≈ 720 GM. Further tuning of the excitation wavelength into the shorter wavelength region is 

impossible due to the presence of one-photon absorption from the S0 → S1 band. 

Fig. 5.2 (c) shows the analogous information for SD 2577. In contrast to PD 2350, the 

2PA spectrum for SD 2577 includes three bands: a weakly allowed band at the vibronic shoulder 
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of the S0 → S1 transition, a more intense band at ∼ 408 nm with δ2PA ≈ 760 GM, and a much 

more intense band at ∼ 350 nm with δ2PA ≈ 5200 GM.  

Between the peak of the first absorption band and the position with twice that energy, i.e. 

the “double resonance” position, there are two 2PA bands for PD2350 and three 2PA bands for 

SD2577 that are experimentally observable 

The 2PA spectrum for PD 2630, presented in Fig. 5.3 (c), is more complicated than for 

PD 2350. In contrast to PD 2350, there is no strong decrease in δ2PA after the second 2PA band 

(δ2PA ≈ 920 GM at 440 nm). We observe an increase in δ2PA to ≈ 1320 GM at an excitation 

wavelength of 780 nm, the shortest wavelength at which 2PA measurements may be performed 

in this molecule due to the linear absorption tail. This increase in δ2PA may be the beginning of a 

third 2PA band. This new band is connected with the larger π conjugation length in the 

benzoindolium terminal groups, and will be discussed more in Section 5.3.  

Figure 5.3 (c) also shows the 2PA spectrum for SD 2243 with the same terminal groups 

as for PD 2630. The 2PA trends for both dyes are similar. For the second 2PA peak at 440 nm, 

SD 2243 shows a similar value of δ2PA ≈ 1200 GM, however, for the next 2PA band, the 

experimentally observable δ2PA is considerably larger, reaching ≈ 8660 GM for the shortest 

possible excitation wavelength of 730 nm. The peak position and strength of this band cannot be 

resolved for the same reason as for PD 2630, i.e. linear absorption loss. 

In summary, PDs and SDs show comparable 2PA cross sections and positions for the 

second 2PA band (δmax2 ≈ 720 GM for PD2350 and 760 GM SD2577 at around 400nm, see 

Table 5.1; δmax2 ≈ 980 GM for PD2630 and 1000 GM SD2243 at around 421nm, see Table 5.2). 

For the case of PD2350 and SD2577, as determined by quantum-chemical calculations as shown 
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in Section 5.3, introduction of the donor indolium terminal groups to the unsubstituted 

polymethine chain increases the density of the occupied molecular orbitals, and thus the number 

of electronic transitions between the first band S0 → S1, and the position of twice the energy of 

the first band. Relatively high δ2PA ≈ 700 GM can be observed due to a strong coupling of initial 

and final molecular orbitals via the intermediate level.  

Quantum-chemical calculations (see Section 5.3) show another way to increase the 

number of active two-photon transitions by increasing the density of unoccupied molecular 

orbitals. This was achieved by introducing acceptor fragments to the squaraine molecules. The 

distinguishing feature of SD2577 is the possibility to access the third and most intense 2PA band. 

This higher lying third 2PA band (δmax3 ≈ 5200 GM for SD2577) displays a much larger δ due to 

a decrease in the detuning energy ∆E  leading to a large enhancement of cross section values, i.e. 

significant resonance enhancement of the 2PA cross section for both the intermediate and final 

states.. This peak is observable just below the linear absorption edge. 

 

5.3 Quantum-chemical calculations and analysis 

5.3.1 Methodology of quantum-chemical calculations 

Quantum-chemical calculations are performed by Dr. Olga V. Przhonska and her 

colleagues at Institute of Organic Chemistry, National Academy of Sciences, Ukraine. Quantum-

chemical calculations were performed with the goal of understanding the spectral position of 

2PA bands and revealing the origin of the high 2PA cross section δ2PA in squaraine molecules. 

Quantum-chemical calculations were carried out at the Institute of Organic Chemisty, National 

Academy of Sciences, Ukraine. For the calculations of the positions of the electronic levels and 

 85



the shapes of the molecular orbitals, a well-known MOLCAO (Molecular Orbital as a Linear 

Combination of Atomic Orbitals) method was used [59]. The wavefunction of the i-th molecular 

orbital (MO) iϕ  was written as an expansion of the atomic orbitals µχ : 

  (5.1) ∑=
µ

µµ χϕ ii C

where  are the corresponding coefficients, and the summation runs over all the atomic 

orbitals. We note that  is the probability of the location of an electron in the i-th MO in the 

neighborhood of the µ-th atom [59]. Calculations were performed in the framework of the 

standard semi-empirical approximations (HyperChem package). The equilibrium molecular 

geometries were calculated employing the Austin Model 1 (AM1) method with the energy 

change step, i.e. gradient, 0.01 kcal/mol. It was established previously that the lengths of the 

carbon-carbon bonds calculated in this method are in good agreement with the corresponding 

values obtained by an ab initio approximation [65].  

µiC

2
µiC

The π-system of all molecules was found to be planar. Characteristics of the electron 

transitions were obtained in the ZINDO/S approximation with spectral parameterization. The 

wavefunction of the p-th excited state Ψp was built as an expansion of the electronic 

configurations  corresponding to electron transfer from the occupied i-th to vacant j-th 

orbital:  

ji→Φ

 ∑ →→ Φ=
ji

jijipp T
,

,ψ  (5.2) 

where  are the normalized coefficients, and indices i and j run over all MOs.  

is a normalization condition. In our calculations we used all π → π* single excited 

jipT →, 1
,

2
, =∑ →

ji
jipT
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configurations, with the overlap weight factor (OWF) equal to 0.5. All calculations were 

performed on isolated molecules neglecting solvent effects. 

Here quantum-chemical calculations have been performed with the goal of understanding 

the 2PA spectra for cationic polymethines and neutral squaraines having analogous structures and 

uncover the origin of the high 2PA cross section δ2PA for squaraine molecules. For these purposes 

we considered the evolution of the molecular orbitals and electronic transitions from the 

unsubstituted polymethine chain: H2C+– (CH = CH)2 – CH = CH2 to the cationic PD 2350, PD 

2646, PD 2630 and neutral SD 2577. Schemes of some higher occupied and lower unoccupied 

molecular orbitals, as well as the corresponding transitions between them are presented in Figs. 

5.4 and Table 5.3. In our considerations we limited the number of molecular orbitals to the 

number of electronic transitions participating in one- and two-photon absorption between S0 → S1 

and its “double resonance” position.  

Table 5.3 Calculated parameters for the unsubstituted polymethine chain, PD 2350 and SD 2577 
Dye Transition Symmetry of 

final states λ nm Oscillator 
strength 

Main 
configuration 

S0 → S1 1B1 551 1.65 0.96⎢H→L> 
S0 → S2 2A1 315 0.002 0.97⎢H-1→L> 

Unsubstituted 
chain 

S0 → S3 3A1 291 0.08 0.97⎢H→L+1> 
S0 → S1 1B1 655 1.6 0.96⎢H→L> 
S0 → S2 2A1 460 0.01 0.94⎢H-1→L> 
S0 → S3 2B1 410 0.07 0.92⎢H-2→L> 
S0 → S4 3A1 (local) 395 0.02 0.95⎢H-3→L> 
S0 → S5 3B1 386 0.06 0.93⎢H-4→L> 

PD 2350 

S0 → S6 4A1 352 0.05 0.95⎢H→L+1> 
S0 → S1 1Bu 630 1.7 0.97⎢H→L> 
S0 → S2 2Ag 480 0 0.87⎢H-1→L> 
S0 → S3 2Bu 465 0.005 0.85⎢H-2→L> 
S0 → S4 3Ag (O-O) 456 0.34 0.45⎜H→L+2> + 

0.85⎜H→L+3>  
S0 → S5 4Ag 410 0 0.87⎢H→L+1> 
S0 → S6 3Bu 386 0.03 0.54⎜H-4→L> + 

0.66⎜H→L+3> 
S0 → S7 5Ag (local) 384 0 0.96⎢H-3→L> 

SD 2577 

S0 → S8 4Bu 378 0.2 0.63⎜H-4→L> + 
0.52⎜H→L+3> 
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Figure 5.4 Scheme of the electronic transitions for the unsubstituted chain, PD 2350 and SD 
2577. Dashed lines indicate one-photon allowed transitions; solid lines indicate allowed two-
photon transitions; bold solid lines indicate experimentally observed two-photon transitions. 

 

5.3.2 Unsubstituted polymethine chain 

Quantum-chemical calculations of the unsubstituted polymethine chain show in Fig.5.4 – 

Fig. 5.6 that the ground to first excited state transition S0 → S1 is allowed by symmetry rules 

(1A1 → 1B1) and is connected with the electron transfer between the highest occupied molecular 

orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). The two next electronic 
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transitions, S0 → S2 (1A1 → 2A1) and S0 → S3 (1A1→ 3A1), are forbidden and correspond to 

HOMO-1 → LUMO and HOMO → LUMO+1 respectively (see Table 5.3). 

These transition energies are close but not exactly equal to each other. The calculated 

spectral shift between the corresponding S0 → S2 and S0 → S3 absorption bands is ≈ 20 nm, i.e. 

no degeneracy. This is the origin of the main difference between the spectra of the cationic 

polymethine chain and its neutral polyene analogue. The polyene chain is characterized by the 

formation of double (for Au → Au) and triple (for Bg → Bg) degenerate configurations leading to 

energy level splitting and to a redistribution of oscillator strengths [22]. This makes the least 

energetic transition disallowed for 1PA but allowed for 2PA. 

For the polymethine chain, one of the A1 → A1 transitions approximately corresponds to 

a “double resonance” position of the main absorption band, which makes it impossible to reach 

this 2PA peak experimentally, again due to linear absorption. We emphasize that all molecular 

orbitals in the unsubstituted conjugated polymethine chain are totally and uniformly delocalized, 

and all electronic transitions are described mainly by single configurations with coefficients 

Tp,i→j > 0.9 (see Table 5.3). 
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Figure 5.5 Electron density distribution in the molecular orbitals for the unsubstituted 
polymethine chain and indolium terminal groups. 
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Figure 5.6 Scheme of the energy levels for molecular orbitals of the unsubstituted polymethine 
chain, indolium terminal groups and PD 2350. H identifies Highest Occupied Molecular Orbital 
(HOMO) and L identifies Lowest Unoccupied Molecular Orbital (LUMO). Dashed arrow lines 

indicate experimentally observed one-photon transitions and solid arrow line indicates the 
experimentally observed two-photon transition. 

 

5.3.3 Polymethines 

Introduction of the donor indolium terminal groups (TGs) to the polymethine chain will 

increase the density of the occupied molecular orbitals and thus the number of electronic 

transitions. Figure 5.5 presents three MOs (HOMO-1, HOMO and LUMO) belonging to each TG. 
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Figure 5.7 Electron density distribution in the molecular orbitals for PD 2350 

 

 92



As shown in Fig. 5.6 and Fig. 5.7, two HOMO orbitals of both TGs are completely mixed 

with the HOMO of the unsubstituted polymethine chain producing three delocalized molecular 

orbitals HOMO, HOMO-1 and HOMO-4. In symmetrical PDs such as PD 2350, there are two 

identical HOMO-1s of TGs (with charge localization only at TGs see in Fig. 5.5). This is an 

origin of the energy splitting. The splitting energy depends on the TG’s donor properties. After 

splitting, one of these MOs typically mixes with the orbital of the chain producing a delocalized 

molecule orbital, HOMO-2, shown in Fig. 5.6 and Fig. 5.7, and the other MO remains localized at 

the TGs (see HOMO-3 shown in Fig. 5.6 and Fig. 5.7).  Thus, the interaction of the MOs of all the 

molecular fragments (mixing among HOMOs from chain and two TGs) in PD 2350 leads to 

delocalization of the three highest occupied MOs of PD 2350 (HOMO, HOMO-1, HOMO-2 

shown in Fig. 5.6). This occurs not only along the polymethine chain, but also extends through the 

TGs. Therefore, introduction of the indolium TGs with their own conjugated systems causes a 

considerable effective lengthening of the chromophore.  

Note that LUMO and LUMO+1 extend the chain conjugation to the nitrogen atoms of 

both TGs, while the π-electron conjugations at HOMO, HOMO-1 and HOMO-2 spread out over 

the entire molecule. In total, 7 molecular orbitals (from HOMO-4 to LUMO+1), shown in Fig. 5.7, 

are necessary for the quantum-chemical analysis.  

It is commonly accepted that the electron transfer between the HOMO and LUMO (S0 → 

S1, 1A1→ 1B1 transition) corresponds to the intense long wavelength band in the one-photon 

absorption spectrum. The next transition involving practically pure HOMO-1 and LUMO (see 

coefficients Tp,i→j in the Table 5.3) and being of the 1A1→ 2A1 symmetry, should correspond to 

the lowest two-photon transition. However, based on the results of the quantum-chemical 

calculations, we suggest that only the next 1A1→ 3A1 (S0 → S4) transition in Fig. 5.4 for PD2350, 
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corresponding to the electron transfer between the localized HOMO-3 and delocalized LUMO is 

the most active in 2PA for PD 2350. This is in agreement with the experimental spectral position 

of the second 2PA band seen in Fig. 5.2 at ∼ 390 nm. 

The existence of this local molecular orbital is of great importance for the 2PA. The 

transition from HOMO-3 to LUMO (1A1→ 1A3, S0 → S4 in Table 5.3) gives zero overlap (see in 

Fig.5.7), thus it requires an intermediate (HOMO) state and forms a two-photon absorbing 

transition. Our understanding is that the localized – delocalized electron transition, such as 

HOMO-3 → LUMO, which appears in the energy interval between the S0 → S1 and its “double 

resonance”, is responsible for the strong 2PA band with peak at 390nm. 

The main characteristic feature of the 2PA spectrum for the PDs is the relatively high 2PA 

cross section δ2PA of ≈ 600 – 1000 GM (for dicarbocyanines with different TGs, see the Section 

4.4) due to the strong coupling of these orbitals with the intermediate HOMO, see Fig. 5.7. 
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Figure 5.8 Scheme of the energy levels for molecular orbitals of PD 2646, PD 2350 and PD 
2630. H identifies the Highest Occupied Molecular Orbital (HOMO) and L identifies the Lowest 
Unoccupied Molecular Orbital (LUMO). Dashed arrow lines indicate experimentally observed 

one-photon transitions and solid arrow lines indicate experimentally observed two-photon 
transitions. 

 

In order to further increase the density of occupied molecular orbitals and thus the number 

of electronic transitions, we choose TGs with more extended π-systems. This idea was realized in 

PD 2630 containing more complicated benzoindolium terminal groups (see Section 4.4 and Fig. 

5.8). As compared to PD 2350, this dye is characterized by red-shifted absorption bands. Note 

that experimentally the main one-photon absorption peak is shifted by ≈ 0.1 eV, and the 2PA band 
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is shifted more to the red by ≈ 0.18 eV. Due to this shift, the beginning of the next, third 2PA 

band (corresponding to transition HOMO  L+1 in Fig. 5.8, 1A1  4A1 and S0  S6 in Fig. 

5.4), has been experimentally measured (see Fig. 4.5(b)). Analyzing the evolution of the 2PA 

bands from the unsubstituted chain to PD 2350, and then to PD 2630, we assume that the spectral 

shift of the 2PA peak is primarily due to the terminal groups. More extended TGs may provide an 

additional shift increasing the number of experimentally reachable 2PA bands. 

5.3.4 Squaraines 

An alternative way to increase the number of active two-photon transitions, 1A1→ mA1, 

can be provided by an increase of the density of unoccupied molecular orbitals. This has been 

achieved in the dyes of another type – squaraines. Inserting the high acceptor C4O2 fragment in 

the center of the polymethine chain, while keeping the same TG, can be chemically considered as 

a simultaneous cyclization of the chain by the C=O bridge and introduction of the anionic 

substituents O- to the central position of the PD 2350 (or PD 2630). The latter makes the SD-

molecule formally neutral, or more correctly, it can be considered as a bi-ionic molecule with 

separated positive and negative charges.  

In the case of SD 2577, five HOMO’s and five LUMO’s have to be considered to 

elucidate the nature of the allowed and forbidden transitions in the spectral area of interest, see 

Fig. 5.9. Shown in Fig. 5.10 the molecular orbitals of the neutral dye SD 2577 are shifted up in 

energy, and the distance between LUMO and LUMO+1 decreases as compared to the 

corresponding PD 2350. Therefore, the energies of the electronic transitions involving LUMO+1 

can be smaller than twice the energy of the transition S0  S1, i.e. the “double resonance” energy, 

thus allowing experimental observation. 
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Figure 5.9 Electron density distribution in the molecular orbitals for SD 2577 

 97



0

-5

-10

-15

E (eV)

PD 2350

N

CH3

CH3

C3H7

N
C3H7

CH3

CH3

I

+

SD 2577

H-2

H
H-1

H-3

H-4

L

L+1

(Local)

NO

O
CH3CH3

CH3
CH3

N
C3H7

C3H7

+

L

L+1
L+2

H
H-1

H-4 H-3
(Local)

H-2

(Local)

0

-5

-10

-15

E (eV)

0

-5

-10

-15

E (eV)

PD 2350

N

CH3

CH3

C3H7

N
C3H7

CH3

CH3

I

+

SD 2577

H-2

H
H-1

H-3

H-4

L

L+1

(Local)
H-2

H
H-1

H-3

H-4

L

L+1

(Local)

NO

O
CH3CH3

CH3
CH3

N
C3H7

C3H7

+

L

L+1
L+2

H
H-1

H-4 H-3
(Local)

H-2

(Local)

 

Figure 5.10 Scheme of the energy levels for molecular orbitals of PD 2350 and SD 2577. H 
identifies the Highest Occupied Molecular Orbital (HOMO) and L identifies the Lowest 

Unoccupied Molecular Orbital (LUMO). Dashed arrow lines indicate experimentally observed 
one-photon transitions and solid arrow lines indicate experimentally observed two-photon 

transitions. 
 

The nature of the allowed S0 → S1 transition for SD 2577 remains the same as for the PD 

2350, and is connected with the electron transfer between HOMO and LUMO. Similar to PD 

2350, two HOMO orbitals of both TGs for SD 2577 are also completely mixed with the orbitals 

of the chain producing HOMO, HOMO-1 and HOMO-2. The HOMO-1 orbitals of TGs produce 
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two localized molecular orbitals HOMO-3 and HOMO-4 in SD 2577 that remain mostly 

localized in the TGs with only a small participation of the chain, see in Fig. 5.9. 

For the neutral SD 2577, the influence of the LUMOs associated with the TGs is very 

significant. Although the nature of LUMO and LUMO+1 is similar for PD 2350 and SD 2577 

which preliminarily are associated with LUMOs from the chain, other unoccupied molecular 

orbitals (LUMO+2, LUMO+3) are connected to LUMOs from the TGs that mix with the 

molecular orbital located at the central C4O2.  

Analysis of the quantum-chemical data shows that the following two electronic 

transitions are the most active for 2PA in agreement with the spectral positions of the measured 

bands: HOMO → LUMO+1 in Fig. 5.10 (presumably the 1Ag → 4Ag, S0  S5 transition in 

Fig.5.4 for SD 2577), which was unreachable in PD 2350 due to linear absorption, but becomes 

shifted to a lower energy region in the neutral SD2577 and thus becomes experimentally 

reachable. Also, the transition between the localized HOMO-3 and delocalized LUMO in Fig. 

5.10 (presumably the 1Ag → 5Ag, S0  S7 transition in Fig. 5.4 for SD2577), which is analogous 

to the 1A1 → 3A1 transition in PD2350, is similarly shifted and can now be observed just below 

the linear absorption edge. These higher lying 4Ag and 5Ag states are strongly coupled to the 

intermediates state as is displayed in Fig. 5.9 

The lower lying 3Ag state, connected with the charge distribution in the direction 

perpendicular to the long molecular axis, cannot be coupled to the intermediate state and 

therefore, the 1Ag → 3Ag transition is not active in 2PA. As predicted, we did not observe this 

2PA band experimentally. We did not observe the 1A1 → 2A1 transition for PDs and 1Ag → 2Ag 

transition for SDs. This may be partially due to the large detuning from the intermediate level S1, 

leading to smaller 2PA.  
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5.4 Squaraine molecules showing large 2PA cross sections 
 

Seth Marder’s group at the School of Chemistry and Biochemistry and Center for 

Organic Photonics and Electronics at the Georgia Institute of Technology synthesized a series of 

squaraine molecules in which the terminal donor groups are separated from the central acceptor 

squarylium core by longer conjugated bridges. The molecular structures are shown in Fig. 5.11. 

The 2PA spectra were acquired using open-aperture Z-scan (D-2PA) and the white-light 

continuum pump-probe (ND-2PA) method [44]. The experimental results are shown in Fig. 5.12 
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Figure 5.11 Molecular structures of squaraine dyes synthesized by Seth Marder’s group at the 
Georgia Institute of Technology  
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(a) SC-V-57c in CH2CL2 
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(b) SC-V-77c in CH2CL2 
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(c) SC-V-21c in CH2CL2
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(d) TOR-I-103 in THF 
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(e) Sjz-7-76 in THF 
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(f) Sjz-7-89 in THF 
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(h) Sjz-7-97 in THF 
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(i) Sjz-8-17b in THF 
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(j) LB-IV-90 in THF 
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(k) LB-IV-85 in THF 

Figure 5.12 2PA spectra for squaraine dyes synthesized by Seth Marder’s group at Georgia 
Institute of Technology. 2PA cross-section δ is plotted versus the wavelength for the 2PA state 

(equivalent to the sum of the two excitation photons’ energies, for D-2PA, two photons have the 
same energies, for ND-2PA, pump and probe photons have the different energies). The pump 

wavelength of WLC pump-probe measurements for ND-2PA is shown in the graph.  
 

Due to the extensive π systems of chromophores or long conjugated chains of these 

molecules, the peaks of the linear absorption bands are around 800nm. SC-V-21c and TOR-I-103 

show extremely large peak 2PA cross sections of ≈ 30000 GM [66].  

Quantum-chemical calculations [66] were carried out by Jean-Luc Bredas’s group at the 

Georgia Institute of Technology for these two molecules, SC-V-21c and TOR-I-103 (alkyl 

groups replaced with CH3). They used model structures in which hexyl and butyl groups were 

replaced with methyl groups. In the case of TOR-I-103, both centrosymmetric conformers with 

both cisoid and transoid arrangement of the two vinylene groups about the outermost pyrrole 

were considered, as shown in Fig.5.13: 
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Figure 5.13 Two centrosymmetric conformers of TOR-I-103 considered in quantum chemical 
calculations 

 

The molecular geometry was optimized with the semi-empirical AM1 method [67] 

without symmetry constraints. The excited-state energies and transition dipole moments were 

computed applying the intermediate neglect of differential overlap (INDO/S) method [68] (using 

the Mataga-Nishimoto potential to describe Coulomb repulsion terms [69] ) combined with two 

different schemes to include correlation effects: the Coupled Cluster method with singles and 

doubles (CCSD-EOMs)[70][71], and the multi-reference double-configuration-interaction 

(MRD-CI) technique[72][73]. For the latter method, they have fully modified the codes so that 

the maximum number of CI configurations can exceed the 6000 limit and that an identical MO-

active space is required for single and multiple excitations. With the upper computational limit of 

~106 configurations they can consider MO active spaces comprising up to 26 molecular orbitals. 

The high numerical efficiency is achieved by implementing Davidson's diagonalization 

algorithm. Both approaches incorporate multiply excited determinants in the description of the 

excited states, which are necessary for providing more quantitative predictions. In particular, 

doubly excited determinants constitute a significant portion of the excited states that are active in 

two-photon absorption [73][74][75][76][77]. 

The two-photon absorption cross-section was computed from the excited states and 

transition dipole moments among them using the sum-over-states approach [31] and by the S-
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tensor [32]. The damping constant Γ was set to 0.1 eV, which for the S-tensor calculations 

corresponds to a convolution with a Lorentzian lineshape function with a FWHM of 0.4 eV for 

spectra plotted as a function of transition energy.  

For the MRD-CI calculations, the determinants dominant in the description of the ground 

state and the lowest excited states were selected as references: These are the SCF determinant, 

singly excited determinants (HOMO→LUMO, HOMO→LUMO+1, HOMO-1→LUMO), and 

one doubly excited determinant (HOMO, HOMO→LUMO, LUMO). The same set of reference 

determinants was found necessary to reliably describe the excited states of other quadrupolar 

molecules [22] [78]. In order to ensure that the obtained picture is independent on the (somewhat 

ambiguous) choice of the MO-active space, it was varied between 5/5 (including the five highest 

occupied and five lowest unoccupied) π-orbitals to 11/11 (MRD-CI) for SC-V-21c, and 8/9 to 

11/11 (MRDCI) for TOR-I-103. For CCSD, the MO-active space included both σ− and π− 

orbitals; the largest probed were 15/15 for SC-V-21c and 15/16 for TOR-I-103. 

In the geometry optimizations, the total energy of TOR-I-103 is essentially independent 

of the chosen conformer; the transoid conformation being 0.005 eV more stable than the cisoid. 

All excited state and detuning energies of the conformers agree quantitatively within 1%, while 

transition dipole moments [2PA cross-sections] differ by up to 7% [13%] between the 

conformers. Below, the results for the “cisoidal” conformer of TOR-I-103 are presented. 

The validity of the few-state model for describing 2PA from the 1Ag ground state (g) into 

3Ag (e') is ensured by the very small detuning factor of the channel associated with the 

intermediate state e (1Bu) and e', which leads to this channel dominating over all possible 

alternative pathways. Table 5.4 compares the 2PA cross sections and few-state model parameters 
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obtained with MRD-CI and CCSD. The chosen MO-active spaces for MRD-CI and CCSD were 

scaled between SC-V-21c and TOR-I-103 to account for the increased number of π-electrons in 

TOR-I-103. Additionally, the results for the largest MO-active space used for each molecule and 

method are given.  

Independent of the method (MRD-CI or CCSD) and the CI-active space used, the same 

qualitative (and expected) picture arises: With extending the molecular length from SC-V-21c to 

TOR-I-103 by an additional pyrrol-vinylene unit, the energies of 1Bu and 3Ag decrease, while the 

calculated transition dipole moments µge.and µee' increase (Table 5.4).  

Table 5.4 Theoretical one and two-photon parameters for SC-V-21c and TOR-I-103 a

 MRD-CI CCSD 
SC-V-21c 7/7 (11/11) 7/7 (15/15) 

 E (eV) Configuration Coefficient E (eV) Configuration Coefficient 
E (1Bu) 1.92 (1.96) H  L 0.91 (0.90) 1.90 (1.69) H  L 0.93 (0.88) 

H-1  L 0.81 (0.80) H-1  L 0.81 (0.58) 
H  L+1 0.31 (0.30) H  L+1 0.32 (<0.1) E’ (3/4Ag) 3.19 (3.29) 
HH  LL 0.16 (0.10) 

3.17 (2.82) 
HH  LL 0.17 (0.20) 

Detuning (eV) 0.32 (0.31) 0.31 (0.28) 
µge (debye) 18.4 (17.3) 17.2 (13.7) 
µee’ (debye) 15.4 (14.9) 13.9 (12.2) 

δS-tensor 
(103 GM) 42 (40) 32 (16) 

TOR-I-103 11/9 (11/11) 12/12 (15/16) 
 E (eV) Configuration Coefficient E (eV) Configuration Coefficient 

E (1Bu) 1.83 (1.83) H  L 0.90 (0.90) 1.72 (1.71) H  L 0.91 (0.90) 
E’ (3/4Ag) H-1  L 0.77 (0.77) H-1  L 0.53 (0.57) 

 H  L+1 0.38 (0.37) H  L+1 0.25 (0.20) 
 

2.88 (2.90) 
HH  LL 0.17 (0.17) 

2.59 (2.57) 
HH  LL 0.30 (0.27) 

Detuning (eV) 0.39 (0.38) 0.42 (0.43) 
µge (debye) 20.4 (20.1) 20.4 (19.4) 
µee’ (debye) 15.4 (18.7) 14.2 (14.7) 

δS-tensor 
(103 GM) 41 (42) 20 (19) 

athe CI active space chosen has been scaled consistently with the varying number of π-electrons 
in the system; equivalent π-orbitals were used in the MRD-CI and CCSD calculations for each 
molecule. The values corresponding to the largest MO-active space are given in parentheses. 
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The one-photon active state 1Bu (e) corresponds to a HOMO→LUMO transition whereas 

the main two-photon active state, 3Ag (e') [4Ag for some MO-active spaces], is mainly composed 

of the configurations representing the HOMO→LUMO+1, HOMO-1→LUMO, and HOMO, 

HOMO→LUMO, LUMO transitions (cf. Table 5.4). However, the participation of the above 

mentioned configurations into 3Ag varies with the method (MRD-CI vs. CCSD) as well as with 

the size of the MO-active space. CCSD calculations for SC-V-21c show particularly pronounced 

variations. This unsteadiness in the description of 3Ag can be partially held responsible for the 

observed deviations of up to 25% in all 3-state model parameters contributing to δ (see Table 

5.4); deviations that, in combination, lead to a CCSD calculated δ being a factor of up to two 

smaller than the MRD-CI calculated δ. 

To eliminate the uncertainty related to the MRD-CI vs. CCSD computed 3-state model 

parameters, they studied the impact of the computed transition dipole moments on 2PA cross 

section δ by inserting them with the experimentally observed detuning and transition energies, 

Ege and Ege’, into the few-state model expression. They note that owing to its smaller detuning 

energy, SC-V_21c possesses a comparable if not even larger cross-section than the more 

elongated compound TOR-I-103. The extraordinarily strong dependence of the actual cross-

section on the detuning energy upon approaching double resonance (and thus on only minor 

errors affecting the calculations of the excited-state energies) together with larger experimental 

errors upon approaching linear absorption, can be held to some extent responsible for 

quantitative deviations between theoretical and experimental peak values. 

In summary, quantum chemical calculations suggest that an excited singlet state, 3Ag, is 

strongly 2PA allowed, with δmax values of the same order of magnitude as observed 
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experimentally, and lies at a similar energetic position relative to the 1PA-allowed S1 state as the 

experimentally observed 2PA peaks. The calculations also suggest that 2PA into 3Ag can be well 

described by considering a single 3-level model with S1 as the intermediate state (see Eq. (2.48) 

and (2.56) in Chapter 2). Consistent with the experimental result, the calculations give 

comparable µge for SC-V-21c (18.4 debye) and TOR-I-103 (20.4 debye), and small detuning 

energies (0.32eV for SC-V-21c, 0.39 eV for TOR-I-103). Furthermore, the calculated µee' is 

somewhat larger for TOR-I-103 (18.5 debye) than for SC-V-21c (15.4 debye). Although 2PA 

into 3Ag results from the combination of two large (albeit not exceptional) transition dipole 

moments that scale with molecular size, the resulting 2PA cross section δmax for SC-V-21c and 

TOR-I-103 (42 and 41 × 103 GM, respectively) are found to be comparable.  

   

5.5 Croconium and Tetraon 

From section 5.2-5.4, we can see that inserting the squarylium center core into the 

conjugated chain of polymethine dyes can generate neutral squaraine dyes that show much larger 

2PA cross sections than the counterpart PDs. Following this strategy, we are trying to insert 

different types of acceptor cores into the conjugated polymethine chain to study their effects on 

2PA properties. 

5.5.1 Squaraine Vs Croconium 

First, we compared the squaraine molecule TOR-I-110 with the croconium molecule 

TOR-I-95. Molecular structures are shown in Fig. 5.14.  Both of these two molecules are 

synthesized by Seth Marder’s group at the Georgia Institute of Technology, Atlanta. They have 

the same terminal donor groups and conjugation length.  
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(a) TOR-I-110     (b) TOR-I-95 

Figure 5.14 Molecular structure for (a) Squaraine TOR-I-110 (b) Croconium TOR-I-95 
 

Linear optical properties of these two molecules are listed in Table 5.5. We can see that 

the peak wavelength of linear absorption of croconium, TOR-I-95, is ≈150nm red-shifted 

compared to that of its counterpart squaraine TOR-I-110. But they show similar extinction 

coefficients and ground state transition dipole moments (TOR-I_95 is a little bit larger).  

 

Table 5.5 Linear properties of squaraine TOR-I-110 and croconium TOR-I-95 in THF: linear 
absorption peak λabsmax, extinction coefficient εmax, ground state transition dipole moment. µge

Molecule λabsmax (nm) εmax (cm-1M-1) µge (debye) 
TOR-I-110 703 200000 13.6 
TOR-I-95 854 180000 14.3 

 

Degenerate 2PA spectra as well as linear absorption spectra are shown in Fig. 5.15. The 

2PA cross section δ is plotted versus the half of input photon wavelengths. Degenerate 2PA cross 

sections were measured with Z-scan and two-photon fluorescence (2PF) techniques.  

Measuring the 2PA properties, we cannot resolve the peak of the main 2PA band for both 

molecules due to linear absorption. The highest 2PA cross section of the squaraine dye TOR-I-
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110 observed by experiment is much larger than that of croconium TOR-I-95. The reason for this 

difference is still under study. In general, croconium dyes are a type of PD, and their 2PA 

properties should be very similar to PDs. Here we observed that the relationships of both linear 

and 2PA properties between SD and croconium dyes with analogous structures are similar to the 

relationships between SDs and PDs discussed in Section 5.2. 
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Figure 5.15 2PA spectra for squaraine TOR-I-110 and croconium TOR-I-95. Linear spectra also 
are plotted for comparison. 

 

5.5.2 Squaraine Vs Tetraon 

We also compared the squaraine dye SD 2243 and tetraon dye TOD 2765. They are 

synthesized at the Institute of Organic Chemistry, National Academy of Sciences, Ukraine. 

Molecular structures are shown in Fig. 5.16. They have the same terminal groups. SD 2243 has a 

squarylium acceptor core at the center of the conjugated chain, but TOD 2765 has a C6H12O4 

acceptor core at the center that separates the conjugated chain of the left part of the molecule 

from the right part. The effective conjugation length of TOD 2765 is shorter than that of SD 
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2243 because the central structure in the Tetraon breaks the conjugation chain connected from 

the left to the right. 
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(a) SD 2243      (b) TOD 2765 

Figure 5.16 Molecular structure for (a) Squaraine dye SD 2243 and (b) Tetraon dye TOD 2765. 
 

The linear optical properties of SD 2243 and TOD 2765 are summarized in Table 5.6. 

Due to the shorter effective length of TOD 2765, we can see that the linear absorption band of 

TOD 2765 is blue-shifted ≈ 60nm compared to SD 2243, and the ground state transition dipole 

moment µ01 for TOD 2765 is smaller than that of SD2243. TOD 2765 also exhibits a stronger 

linear absorption vibrational shoulder shown in Fig. 5.17.  

 

Table 5.6 Linear properties of squaraine SD 2243 in CH2CL2 and tetraon TOD 2765 in ethanol: 
linear absorption peak λabsmax, extinction coefficient εmax and ground state transition dipole 

moment µ01

Molecule λabsmax (nm) εmax (cm-1M-1) µ01 (debye) 
SD 2243 668 345000 13.8 

TOD 2765 624 230900 13.0 
 

The 2PA spectra of SD 2243 in CH2CL2 and TOD 2765 in ethanol are shown in Fig. 5.17. 

The 2PA cross-section δ is plotted versus the half of input photon wavelengths. 2PA spectra are 

measured by Z-scan and two-photon fluorescence (2PF).  
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We experimentally observed three 2PA bands for SD 2243 (δmax1 ≈ 80 GM at ≈ 615nm, 

δmax2 ≈ 1000 GM at ≈ 440nm and δmax3 > 8000 GM at wavelengths shorter than 375nm), 

however, we observed four 2PA bands for TOD 2765 (δmax1 ≈ 130 GM at ≈ 550 nm, δmax2 ≈ 877 

GM at ≈ 483 nm, δmax3 ≈ 2700 GM at ≈ 410nm and  δmax4 > 8000 GM at wavelengths shorter 

than 340nm). Similar to linear absorption, 2PA bands of TOD 2765 are also blue-shifted 

compared to those of SD 2243. We cannot resolve the peak of the 2PA band at shorter 

wavelengths due to linear absorption. We conclude, based experimental data, that the 

introduction of C6H12O4 at the center of the conjugated chain in TOD 2765 further increases the 

density of electronic transitions between the linear absorption band and its “double resonance” 

position. The molecular orbitals associated with this could be revealed by undergoing quantum 

chemical calculations.  
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Figure 5.17 2PA spectra for squaraine SD 2243 in CH2CL2 and tetraon TOD 2765 in Ethnaol. 
Linear spectra also are plotted for comparison. 
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5.6 Relations of one-photon anisotropy to 2PA spectra  

5.6.1 One-photon excitation fluorescence anisotropy 

Steady-state one-photon excitation fluorescence anisotropy spectra of organic molecules 

were measured in high viscosity solvents to avoid reorientation of molecules, and in low 

concentration solutions (peak OD < 0.1) to avoid reabsorption of fluorescence, with a PTI 

Quantamaster Spectrofluorimeter. The experimental setup is shown as below: 
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Figure 5.18 Experiment setup for one-photon and two-photon excitation fluorescence anisotropy 
measurement 

 

The solutions of molecules are excited with vertically polarized light. One then measures 

the intensity of the fluorescence emission through a polarizer at 90 degree (L-format 

configuration) with the detector. When the emission polarizer is oriented parallel (||) to the 

direction of the polarized excitation, the observed intensity is referred as I||. Likewise, when the 

polarizer is perpendicular (⊥) to the excitation polarization, the intensity is called I⊥.  
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It is well-known that the excitation anisotropy spectrum, r(λ), can be calculated as a 

function of the excitation wavelength λ at a fixed emission wavelength, usually near a 

fluorescence maximum:  
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IIr  (5.3) 

where and are the fluorescence intensities polarized parallel and perpendicular to the 

excitation light [39].  

//I ⊥I

One-photon anisotropy measurements can give information about the spectral position 

and orientation of the transition dipole moments from the ground (S0) to the first (S1) and higher 

(Sn) excited-states relative to the orientation of the emission dipole moment. The angle between 

the absorption and emission dipole moments (β) can be determined from one-photon anisotropy,  

 
2

1cos3 2

1
−

=
β

PAr  (5.4) 

In the range: , one-photon anisotropy ranges between, 00 090 ≤≤ β 4.02.0 1 ≤≤− PAr  

5.6.2 Polymethine dyes 

Here we show experimental results for three typical polymethine dyes with different 

terminal groups: PD 2350, PD 2646 and PD 2630. The molecular structures are shown in Fig. 

5.19. The 2PA cross section is plotted versus the wavelengths equal to half of input photon 

wavelengths. One-photon excitation fluorescence anisotropy (all three molecules in Glycerol) 

and degenerate 2PA spectra (all three molecules in ethanol), as well as linear absorption spectra 

are shown in Fig; 5.20. All three PDs show strong correlation between one-photon anisotropy 

spectra and 2PA spectra.  
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Figure 5.19 Molecular structures for polymethine dyes: PD 2350, PD 2646 and PD 2630 
 

Analysis of one-photon excitation fluorescence anisotropy, r(λ), for PD 2350 revealed 

the alternation of the allowed and forbidden (by symmetry) one-photon transitions. One-photon 

forbidden transitions, as transitions between states of the same symmetry, can indicate a possible 

position of 2PA bands. Shown in Fig. 5.20 (a), the first dip in r(λ) was observed at 412 nm (r1PA 

= 0.22) corresponding to the angle β ≈ 330 between µ01 and µ10. However, the peak of 2PA for 

PD 2350 is shifted to the blue region by ≈ 22 nm relative to this anisotropy dip. A second dip in 

r(λ) at 330 nm (r1PA ≈ 0) corresponds to the angle β ≈ 550. Since this wavelength is almost 

exactly half that of the absorption peak in the S0 → S1 transition, degenerate 2PA into this band 

would be enhanced by an intermediate state resonance [56]. However, as we observed from Fig. 

5.20, this “double resonance” cannot be experimentally reached by 2PA due to the influence of 

the tail in the linear absorption band.  
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(a) PD 2350 
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(b) PD 2646 
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(c) PD 2630 

Figure 5.20 One-photon excitation fluorescence anisotropy and 2PA spectra for three PDs with 
different terminal groups. Linear spectra also are plotted for comparison. 
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Let’s go back to see the quantum chemical calculations in Section 5.3 (Fig. 5.6) to reveal 

the origin of this correlation. As shown in Fig. 5.6 for PD 2350, there are two identical HOMO-1s 

of the isolated TGs (with charge localization only at TGs, see in Fig. 5.5). Introduction of the 

symmetrical terminal groups leads to the formation of doubly degenerate configurations resulting 

in their energies splitting. After splitting, one of these MOs typically mixes with the orbital of the 

chain producing a delocalized molecule orbital, HOMO-2, shown in Fig. 5.6 and Fig. 5.7. The 

transition from HOMO-2 to LUMO (1A1 → 2B1, S0 → S3 shown in Table 5.3) can be seen in 

one-photon absorption (non zero transition dipole moment). The peak of this one-photon 

transition band (410nm in Table 5.3) corresponds to a dip in the one-photon anisotropy spectrum 

(412nm in Fig. 5.20 (a)). 

The other MO remains localized at the benzene rings of the TGs (see HOMO-3 shown in 

Fig. 5.6 and Fig. 5.7). The existence of this local molecular orbital is of great importance for 2PA. 

The transition from HOMO-3 to LUMO (1A1→ 1A3, S0 → S4 in Table 5.3) gives zero overlap 

(see in Fig.5.7), thus it requires an intermediate (HOMO) state and forms a two-photon absorbing 

transition. Our understanding is that the localized – delocalized electronic transition, such as 

HOMO - 3 → LUMO, which appears in the energy interval between the S0 → S1 and its “double 

resonance”, is responsible for the strong 2PA band with peak at 390nm.  

Similar to PD 2350, for PD 2630 in Fig. 5.20 (c) there is a shift of ≈ 13 nm between the 

second 2PA peak (440nm) and the first one photon excitation fluorescence anisotropy dip 

(453nm). The splitting energy for polymethine dyes with indolium and benzoindolium TGs is 

larger. Therefore, for these molecules, the 2PA peaks are blue-shifted relative to the anisotropy 

dips (see Appendix B). 
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The energy splitting depends on the energy position of the orbitals from the isolated 

terminal groups relative to the chain orbitals and thus on the terminal groups’ structure (length of 

conjugation, donor strength). A small splitting energy leads to approximate overlap between one-

photon anisotropy dips and the positions of the 2PA peaks. Figure5.20 (b) shows a strong 

correlation between the 2PA peak and the one-photon anisotropy dip for PD 2646 with the 

thiazolium terminal groups. The same trend was observed for all other polymethine molecules 

(see Appendix B). 

5.6.3 Squaraine dyes 

We also compared one-photon anisotropy spectra with 2PA spectra for two squaraine dyes. 

Experimental data for other squaraines can be found at Appendix B. Molecular structures are 

shown in Fig. 5.21. SD 2577 was synthesized at the Institute of Organic Chemistry, National 

Academy of Sciences, Ukraine. SC-V-21c was synthesized by Seth Marder’s group at the Georgia 

Institute of Technology, Atlanta. The one-photon excitation anisotropy spectra (SD 2577 in 

Glycerol, SC-V-21c in Silicon Oil) as well as degenerate 2PA spectra (SD 2577 in ethanol, and 

SC-V-21c in CH2CL2) are shown in Fig. 5.22. The 2PA cross section is plotted versus the 

wavelengths equal to half of input photon wavelengths. 
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(a) SD 2577     (b) SC-V-21c 

Figure 5.21 Molecular structures for squaraine dyes (a) SD 2577 (b) SC-V-21c 
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(a) SD 2577 
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(b) SC-V-21c 

Figure 5.22 One-photon excitation fluorescence anisotropy and 2PA spectra for two SDs: (a) SD 
2577 (b) SC-V-21c. There are two curves for one-photon anisotropy spectra: (1) measured by the 
visible detector, PMT R928b (2) measured by the near IR PMT. Linear spectra are also plotted 

for comparison. 
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The 2PA spectrum for SD2577 can be directly mapped onto the one-photon anisotropy 

function r(λ). The observed dips of one-photon anisotropy at 410 nm (r1PA = 0.22, β ≈ 330) and 

at 345 nm (r1PA = 0.13, β ≈ 420) correspond to the peak positions of the 2PA bands. Analogous 

to PD 2350, the last dip at 309 nm (r1PA = 0.06, β ≈ 490), corresponding to a position of twice the 

energy of the main allowed S0 → S1 absorption band (or “double resonance” position) is 

obscured by one-photon absorption.  

We also observed this strong correlation for SC-V-21c. The observed dips of one-photon 

anisotropy at 460nm and at 546nm correspond to the peak positions of the experimentally 

observed 2PA bands as well.  

Explanation for this correlation for SDs is not so straightforward as for PDs. More 

research needs to be carried out to understand this.  
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CHAPTER 6 TWO-PHOTON EXCITATION FLUORESCENCE 
ANISOTROPY 

 

6.1 Introduction 

A much less investigated approach for understanding the 2PA properties of organic 

molecules is the study of one-photon and two-photon excitation fluorescence anisotropy. Such 

studies can give additional information about the nature of intermediate states and the molecular 

symmetry. It is commonly known that one-photon excitation fluorescence anisotropy 

measurements, especially linked to quantum-chemical calculations, can reveal the spectral 

positions and orientations of the transition dipole moments from the ground to the first, µ01, and 

higher excited-states, µ0n, relative to the orientation of the emission dipole moment, µ10, which 

cannot be obtained from one-photon absorption spectra, but is important for understanding 2PA 

processes.  

It was shown theoretically [79] that the range of two-photon anisotropy, , values is 

much broader than for  indicating potential advantages of two-photon excitation. In practice, 

as will be shown in this dissertation and in a previous paper [80],  spectra for many organic 

dyes are almost wavelength independent within several electronic transitions. It is necessary to 

note that  literature studies are very limited. Most of the measurements were performed only 

within one electronic band, and their analysis is usually directed at a comparison of the values of 

 and . An overview of the existing experimental data was presented by Lakowicz and 

Gryczynski in Ref. [81]. However, to our knowledge, an explanation of the wavelength 

PAr2

PAr1

PAr2

PAr2

PAr1 PAr2
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independent behavior of  as well as its potential for understanding the properties of 2PA has 

not been reported.  

PAr2

 

6.2 Experimental setup 

The light source for one-photon excitation fluorescence anisotropy measurements is a 

Xenon lamp. However the light source for two-photon excitation fluorescence anisotropy 

measurements is our Clark-MXR, CPA2010, Ti:Sapphire amplified femtosecond laser system 

followed by an optical parametric generator/amplifier (model TOPAS 4/800, Light Conversion) 

providing laser pulses of 140 fs (FWHM) duration with 1 kHz repetition rate. Experimental setup 

for two-photon excitation fluorescence anisotropy is same as that for one-photon anisotropy 

shown in Fig. 5.18 

The anisotropy of up-converted fluorescence of all molecules under two-photon 

excitation was measured in 1 cm quartz cuvettes with the same PTI Quantamaster 

Spectrofluorimeter and the same experimental configuration as shown in Fig .6.1. Special care 

was taken to minimize reabsorption of the emission, especially for the dyes with a small Stokes 

shift as, for example, for PDs with a typical Stokes shift of ≈ 15-20 nm. We controlled this 

reabsorption by comparing the shape of up-converted fluorescence (usually red-shifted due to the 

high concentration typically used for 2PA studies) with one-photon fluorescence obtained from 

the diluted solution. We found experimentally that for all the molecules studied the up-converted 

fluorescence at concentrations ≤ 10-5 M completely overlaps the one-photon fluorescence band, 

confirming that reabsorption is negligible. Therefore, we used 10-5 M or smaller concentrations 
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for all two-photon anisotropy studies. The measurements and calculations of  were 

performed as described above in Eq. 6.2. 

PAr2

 

6.3 Two-photon anisotropy: four-state and three-state model 

Derivation of the formula for two-photon excitation fluorescence anisotropy is based on 

two theoretical approaches. The first was made by P. R. Callis [82], who used McClain’s original 

treatment for the two-photon absorption (2PA) tensor and added the fluorescence transition 

dipole moment to develop the equation for the two-photon anisotropy function. The second 

theoretical approach was made by P. Cronstrand et al [32]. They derived the equation for 2PA 

cross section in a more general four-state/two-intermediate-level model taking into account the 

influence of an additional second excitation channel. 

We obtain the equation for the two-photon excitation fluorescence anisotropy  in the 

four-state/two-intermediate-state approximation shown in Fig. 6.2 (a). The assumptions are 1) 

the two photons for excitation have identical photon energies and the same polarization 

(degenerate 2PA case); 2) all transition dipole moments are in one plane, or planar molecule 

assumption. In the final formula,  should be expressed in terms of absorbing dipoles

PAr2

PAr2 01µ , n0µ , 

f1µ , nfµ (not their projections), angles α, β, γ, θ  between transitions (α is the angle between 

emission dipole moment f and isometric line of ground state transition dipole moment 01µ  and 

excited state transition dipole moment f1µ , β is the angle between transition dipole moments 

01µ and n0µ , γ is the angle between ground state transition dipole moment 01µ  and excited state 

transition dipole moment f1µ , θ is the angle between transition dipole moments 01µ and n0µ  in 
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Fig.6.2 (b)) and detuning energies 1E∆ , 2E∆ . After algebraic transformation, we can write the 

expression (detailed derivation is shown in Appendix D): 
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(a) (b) 

Figure 6.1 Four-state, two-intermediate level (S1 and Sn ), model for two-photon anisotropy, (a) 
energy states S0, S1, Sf and Sn diagram; (b) transition dipole moments schematic diagram 

 

In case of the simplest three-state/one-intermediate-state model shown in Fig. 6.3 (α is 

the angle between emission dipole moment f and isometric line of ground state transition dipole 

moment 01µ  and excited state transition dipole moment f1µ , γ is the angle between ground state 
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transition dipole moment 01µ  and excited state transition dipole moment f1µ , αem is the angle 

between emission dipole moment f and ground state transition dipole moment 01µ  in Fig.6.3 (b)): 

S0 → S1 and S1 → Sf (S1 is the only intermediate state and Sf is the final state), Eq. 6.3 can be 

simplified to Eq. 6.4, which is the same as the formula derived in Ref. [82] using a 3-state model, 

 
)1cos2(7

1cos7cos)
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cos(18
2

2

2 +
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γ

γγαγαγ

PAr  (6.4) 

The main difference between Eq. (6.3) and (6.4) is that in the three-state model, two-

photon anisotropy, , depends only on the mutual orientation (α and γ ) in 2D-space of three 

transition dipole moment vectors participating in the 2PA process (µ

PAr2

01: S0 → S1, µ1f : S1 → Sf 

and fem: S1 → S0), and does not depend on the values of the absorbing dipole moments and 

detuning energy.  
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(a) (b) 

Figure 6.2 Three-state one-intermediate level (S1) model for two-photon anisotropy: (a) energy 
states S0, S1, Sf diagram; (b) transition dipole moments schematic diagram 

 

The angle αem = α + 
2
γ  in Fig. 6.3 (b) is the angle of orientation of µ01 relative to the 

orientation of fem, which could be calculated from the one-photon excitation anisotropy spectra. 
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If the absorbing dipole µ01 is parallel to µ1f, γ  = 0 (αem=α) and the angle α becomes 

equal to the angle between absorbing and emitting dipoles, then r reduces to the well-known 

formula [39]: 

 
7

2cos6 2

2
−

= em
PAr

α
 (6.5) 

In the case of αem = 0°,  reaches its maximum value 0.57. If αPAr2 em= 90°, the value of is 

minimal: -0.29.  

PAr2

 

6.4. Symmetric molecules 

We measured two-photon excitation anisotropy spectra for most of the polymethine and 

squaraine dyes (see Appendix B) synthesized at the Institute of Organic Chemistry, National 

Academics of Sciences, Ukraine. Here, we choose only four polymethine dyes for our two-

photon excitation fluorescence anisotropy measurement and analysis. We also choose two 

fluorene molecules synthesized by Kevin Belfield’s group in the Department of Chemistry, 

University of Central Florida in Orlando for analysis. Three of them are symmetric molecules 

(PD2350, PD3428 and Fluorene 2), the other three are asymmetric molecules (PD2665, Styryl 1 

and Fluorene 1). The molecular structures of polymethine dyes are shown in Fig. 6.4, and the 

molecule structures of two fluorene molecules are shown below in Fig. 6.5: 
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Figure 6.3 Molecular structures for polymethine dyes PD2350, PD3428, PD2665 and Styryl_1 
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Figure 6.4 Molecule structures of two fluorene derivatives for two-photon excitation 

fluorescence anisotropy measurements. 
 

The experimental results for the three symmetric molecules are shown in Fig. 6.6. For 

comparison with linear absorption, 2PA and two-photon anisotropy spectra are presented as 

functions of wavelength equal to half of input photon wavelengths. 
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(c) 

Figure 6.5 (1) linear absorption, (2) 2PA, (3) one-photon fluorescence anisotropy and (4) two-
photon fluorescence anisotropy spectra for symmetric molecules; (a) PD2350; (b) PD3428; (c) 

Fluorene 2. 
 

For both three-state (Eq. 6.4) and four-state models (Eq. 6.3),  depends on angle α, or  

α

PAr2

em = α + 
2
γ  (angle between the absorbing dipole moment µ01 and emission dipole moment fem), 

which can be calculated from the maximum value of the one-photon anisotropy . From Fig. 

6.6,  for all three symmetric molecules indicating that α

max
1PAr

38.0max
1 ≈PAr em does not exceed ~10°.  
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6.4.1.Analysis: Three-state model 

Based on three-state model of Eq. 6.4, we can plot a set of curves for  as a function 

of γ ranging from 0° to 180° at several α

PAr2

em as shown in Fig. 6.7. All curves converge to a point 

 at γ = 90° independent of the value of α14.02 =PAr em. 

For symmetric molecules, quantum-chemical theory predicts that for 2PA to S2 state, the 

transition dipoles µ01 and µ12 are parallel γ = 0° (or anti-parallel γ=180°), for 2PA to the S1 state 

µ01 and ∆µ are perpendicular γ = 90°. Thus from curve 3 (αem=10° do) in Fig. 6.7, the theoretical 

value of  ≈ 0.55 for 2PA to the SPAr2 2 state (γ = 0°) and 0.14 for 2PA to the S1 state (γ = 90°). 

Compared with experimental data, we found that for PD 2350 and PD 3428, 49.047.02 −≈PAr  

for both 2PA to S1 and S2 states, and contradicted the theoretical predictions. For fluorene 2, we 

measured   for both transitions, which is close to the theoretical value for 2PA to the 

S

53.02 ≈PAr

2 state, but also disagrees with the theoretical result for 2PA to the S1 state. 
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Figure 6.6 Two-photon anisotropy as a function of the angle γ  with the three-state model at (1) 
αem=0° ; (2) 5°; (3) 10°; and (4) 20°. 
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In order to understand the reason for this disagreement between the three-level model and 

experiments for symmetric molecules, we propose two ways as described in the next two 

sections 

6.4.2. Analysis: Four-state model 

Here we go to a more complete four-state model with Eq. 6.3. As shown in Fig.6.2,  

becomes a function of the mutual orientation (angles α, γ, β, θ ) in 2D-space of all 5 transition 

dipoles participating in the 2PA process, and also a function of the magnitudes of the four 

transition dipole moments and two detuning energies. We made this four-state model analysis 

with molecule PD2350 (experimental data shown in Fig. 6.6 (a)).  

PAr2

We assume that 2PA to S2 includes two simultaneous scenarios or channels: S0 → S1 then 

S1 → S2 (first), and S0 → S4 then S4 → S2 (second), which is shown in Fig. 6.2 (a) where Sn = S4 

and Sf=S2. The choice of S4 as the second intermediate state for PDs is connected with our 

observation, taken from one-photon anisotropy spectra, that the angle β (between two scenarios 

or between  and ) is typically one of the largest angles (≈ 6001µ 04µ 0) among the measurable S0 

→ Sn transitions. According to traditional quantum-chemical theories for symmetric molecules, 

the transitions within each scenario can be anti-parallel ((γ = φ = 1800) or parallel (γ = φ = 00) to 

each other, where γ is an angle inside of the first scenario (between µ01 and µ12), and φ  is the 

angle inside of the second scenario (between µ04 and µ42) (see in Fig. 6.2 (b)). The dependence of 

 upon the angle γ  calculated by Eq. 6.3 is shown in Fig. 6.8(a). Typically, for polymethines, 

the contribution of the second channel is small:

PAr2

12014204 µµµµ << , therefore, the curve in Fig. 6.8 

(a) completely overlaps with curve 3 in Fig. 6.7 which is calculated by the three-state model. In 
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this case,  depends mainly on γ and αPAr2 em, and does not change significantly with changes of β 

and φ, which is shown in the 3D plot in Fig. 6.8(b).  
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Figure 6.7 (a) Two-photon anisotropy , calculated in the four-state model, as a function of γ. 
α

PAr2

em = 100; µ01 =13.5 D; µ12 = µ04 = µ42 = 1 D; β = 600; φ  = 00 (or 1800); ∆E1 = 0.5 eV; ∆E2 = 2.5 
eV. This curve coincides with curve 3 from Fig. 6.7 obtained from the three-state model. (b) 3D 

picture of , calculated in the four-state model, as a function of β and φ for αPAr2 em = 100; µ01 
=13.5 D; µ12 = µ04 = µ42 = 1 D; γ = 1800. 

 

6.4.3. Analysis: Symmetry breaking of symmetric molecules 

Since the more complete four-state model cannot explain the discrepancy between the 

theory and experiments for symmetric molecules shown in Fig. 6.6 either, we tried to explain this 

with the symmetry breaking of symmetric molecules.  

For PD2350, based on calculations from the three-state model (Eq.6.4, and curve 3 in Fig. 

6.7), in order to achieve 49.047.02 −≈PAr over two electronic transitions, which is what 

experiments showed, the deviations of orientation of the participating dipoles should be ≈ 350 for 

∆µ from the perpendicular “classical” orientation, and ≈ 170 for µ12 from the anti-parallel 
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“classical” orientation. These deviations could be due to ground-state symmetry breaking. This is 

illustrated in Fig. 6.9.  

Even a small contribution of an asymmetrical form can lead to non-equality in the charge 

transfer from the terminal groups to the chain center, which will affect the orientation of the 

transition moments. As shown in Fig. 6.9, this effect cannot essentially change the orientation of 

the large S0 → S1 transition dipole moment since for both forms charge transfer occurs in the 

direction of the chromophore. However, for other transition dipole moments, which are at least 

one order of magnitude smaller, the difference in the charge transfer from the terminal groups to 

the center of the chain can strongly affect their orientations. An especially strong effect can be 

observed for the “perpendicular” (to S0 → S1) transitions, such as ∆µ, µ02 (S0 → S2), µ04 (S0 → 

S4). It is seen that the asymmetrical charge transfer from the terminal groups can change the 

direction of µ02 relative to µ01. However, we cannot predict how the deviation of µ02 will change 

the “classical” orientation of µ12 (parallel or anti-parallel to µ01). Further development of 

quantum-chemical theory is necessary.  

The assumption about the ground-state symmetry breaking, affecting the orientations of 

higher excited-state transition dipole moments relative to µ01, can explain why in one-photon 

anisotropy measurements the “classical” minimal anisotropy value = -0.2, corresponding to 

an angle α

PAr1

em = 900, has not been observed for PDs (also see this in Appendix B). The maximum 

angles observed experimentally for the “perpendicular” transitions in PDs were 600 – 650.  
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(a)       (b) 

Figure 6.8 Schematic presentation of the orientation of the transition dipole moments for (a) 
symmetrical and (b) asymmetrical forms of PD 2350. µ”

02 and µ’
02 indicate a partial charge 

transfer from each terminal group to the polymethine chromophore. 
 

6.5. Asymmetric molecules 

The experimental results for the three asymmetric molecules (PD2665, Styryl 1 and 

Fluorene 1) are shown in Fig. 6.10 (a)-(c). For comparison with linear absorption, 2PA and two-

photon anisotropy spectra are presented as functions of wavelength equal to half of input photon 

wavelengths. 

We also compare experimental data with the three-state model (Eq. 6.4). Quantum-

chemical calculations performed for these molecules, show that µ01 and µ12 are oriented almost 

parallel (angles γ are within 100) similar to the symmetrical molecules. However, ∆µ  shows a 

large deviation from an orientation perpendicular to µ01. These angles γ for Styryl 1, PD 2665 

and fluorene 1 equal 260, 430 and 370 respectively. Substituting theseγ’s into the three-state 

model or Eq. 6.4, as well as using the experimental value of αem = 100, which is the same for all 

these molecules, we calculated that ≈ 0.55 - 0.56 for 2PA to both SPAr2 1 and S2 states. Thus, the 

three-state model can be used to model the asymmetrical molecules for two-photon excitation 

fluorescence anisotropy. 

 

 135



300 400 500 600 700
-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

r 1P
A,

 r 2P
A

Wavelength (nm)

0

500

1000

1500

2000

2500

2P
A

 c
ro

ss
 s

ec
tio

n 
(G

M
)

  

5 4 3 2

PD2665
4

3

2

2

1

Sum of Photons (eV)

 250 300 350 400 450 500 550 600 650
-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

r 1P
A,

 r 2P
A

Wavelength (nm)

0

100

200

300

400

500

600

700

800

2P
A

 c
ro

ss
 s

ec
tio

n 
(G

M
)

  

5 4 3 2

Styryl 1

4

3

2
2

1

Sum of Photons (eV)

 

 
(a) (b) 

250 300 350 400 450
-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

r 1P
A, r

2P
A

Wavelength (nm)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
bs

or
pt

io
n

 

4.5 4 3.5 3
Fluorene 1

4

3

1

Sum of Photons (eV) 

 

 
(c) 

Figure 6.9 Linear absorption (1), 2PA spectra (2), one-photon anisotropy (3) and two-photon 
anisotropy (4) for asymmetric molecules: (a) PD2665; (b) Styryl 1; (c) Fluorene 1.  

 

 

6.6 Why do we use the four-state model? 

From the above analysis, we see that the three-state model works for asymmetric 

molecules fairly well, but both three- and four-state models do not work for the symmetric 
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molecules we studied, and we have to introduce symmetry breaking to explain the lower 

experimental value of  for symmetrical molecules. So what is the benefit for us to have a 

more complicated four-state model for two-photon excitation fluorescence anisotropy? 

PAr2

Based on the four-state model, theoretically there is a way to decrease  closer to the 

experimental values for symmetric molecules without introducing symmetry breaking (means 

that we can keep the parallel or anti-parallel “classical” orientation of transitions inside each 

channel for symmetric molecules).  

PAr2
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(a)       (b) 

Figure 6.10 (a) Two-photon anisotropy  for 2PA to SPAr2 2 state of PD2350, calculated in the four-
state model, as a function of γ. Curve 1: αem = 100; β = 600; φ  = 00 (or 1800); ∆E1 = 0.5 eV; ∆E2 

= 2.5 eV; µ01 =13.5 D; µ12 =1D; µ04 = µ42 = 1 D. Curve 2 and 3: αem = 100; β = 600; ∆E1 = 0.5 eV; 
∆E2 = 2.5 eV; µ01 =13.5 D; µ12 = 1 D; µ04 = µ42 = 6 D;  φ  = 00 (for curve 2) and φ  = 1800 (for 

curve 3). (b) 3D plot of , as functions of β, φ , with αPAr2 em = 100; γ  = 1800; ∆E1 = 0.5 eV; ∆E2 = 
2.5 eV; µ01 =13.5 D; µ12 = 1 D; µ04 = µ42 = 6 D 

 

For this purpose we consider an increase of the contribution of the second channel. Fig. 

6.11 (a) (curves 2 and 3) demonstrates these results for the case 12014204 µµµµ ≥  (µ01 =13.5 D, 

µ12 = 1 D, µ04 = µ42 = 6 D). The 3D plot of , calculated in the four-state model, as functions PAr2
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of β, φ  at an increased contribution of the second channel, is presented in Fig. 6.11 (b), which 

are compared with Fig.6.8 for µ04 = µ42 = 1D.  

It is important to note that in contrast to the PDs studied in this dissertation, some 

molecules from other classes of organic compounds possess strong transitions to the second or 

higher excited states with dipole moments comparable to 01µ . For example, the symmetrical 9,9-

didecyl-2,7-bis-(N,N-diphenylamino)fluorene, reported in [76], shows relatively large transition 

dipole moments (up to 6 debye) to the higher excited-states compared to the ground state 

transition dipole moment 01µ = 8 debye. Its molecular parameters, revealed from quantum-

chemical calculations and substituted into the four-state model or Eq. 6.3, give  ≈ 0.27 

without involving symmetry breaking, which is close to its experimental value. This confirms 

that the four-state model can be used for the explanation of  into the S

PAr2

PAr2 1 and S2 states, if the 

contribution of the effective second channel to 2PA is comparable with the contribution of the 

first one.  

For the polymethine molecules, this case may be achieved by considering the second 

channel as a superposition of all possible channels oriented at relatively large angles to the first 

excitation channel. 

In addition, although based on the three-state model,  does not depend on detuning 

energy ∆E, or pump photon energy. The four-state model provides us a chance to study the 

wavelength dependence of  by changing the detuning energy. Figure 6.12 shows the two-

photon excitation anisotropy  for PD2350 based on the four-state model as a function of 

wavelength equal to half of input photon wavelength. By including a symmetry breaking effect, 

PAr2

PAr2

PAr2
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we could get the two-photon excitation fluorescence spectrum, which agrees with the 

experimentally observed flat  spectra.  PAr2

 

Figure 6.11 Calculated wavelength dependence of  under 2PA to SPAr2 1 state (1) and 2PA to S2 
state (2) based on the four-state model. Molecular parameters for (1) are: αem = 100; µ01 =13.5 D; 
∆µ = 0.6; µ02 = 1.2 D; µ21 = 1 D; φ  = 900; β = 320; γ = 550. Molecular parameters for (2) are: αem 

= 100; µ01 =13.5 D; µ12 = 1 D; µ04 = µ42 = 1 D; φ  = 1800; β = 600; γ = 1630.  
 

Although we can understand two-photon anisotropy having the same value within one 

electronic transition based on the theoretical models, we still do not quite understand the 

fundamental reason why two-photon anisotropy keeps the same value over several electronic 

transitions for symmetric molecules, so more analysis has to be made. 
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CHAPTER 7 CONCLUSIONS 
 

7.1 Conclusions 

In this dissertation, the relationships of molecular structures to linear and nonlinear 

optical properties (especially 2PA properties) for polymethine and squaraine dyes are addressed. 

Systematically altering the molecular structures provided an effective way to investigate the 

correlations of structure to their optical properties, and then indicated the pathway to design 

novel organic molecules exhibiting large nonlinearity and ultimately to make nonlinear optical 

organic photonic devices for real applications. These studies include effects of molecular 

symmetry, strength of donor terminal groups, conjugation length of the chromophore chain, 

polarity of solvents, and bridge molecules within the chromophore chain. We also compared 

polymethine, squaraine, croconium and tetraon dyes with similar structures to study the effects 

of the different additions inserted within the chromophore chain on their NLO properties. We 

used three different nonlinear spectroscopic techniques (Z-scan, two-photon fluorescence and 

white-light continuum pump-probe) to obtain 2PA spectra, revealing 2PA bands, and to confirm 

the experimental data by comparing the results from different methods. Two-photon excitation 

fluorescence anisotropy spectra were measured through several 2PA transitions. This is the first 

time such measurement have been reported to our knowledge.  

To understand the structure-property relationships observed from these experiments, we 

used a simplified three-level model based on the 2PA tensor method to fit experimental 2PA 

spectra to reveal the critical parameters for 2PA. Quantum chemical calculations help us 
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understand the evolution of molecular orbitals with changing to the structures, and transitions 

between MOs which are responsible for observed linear and 2PA bands. 

The conclusions related to the correlations of the molecular structures to their 2PA 

properties are summarized below: 

1) Symmetry: Symmetrical PDs and SDs show negligible 2PA into the first excited state, or 

linear absorption band. But asymmetric molecules clearly show 2PA into any excited 

state. Both symmetric and asymmetric PDs as well as SDs exhibit a weak 2PA band at 

the vibrational shoulder of the linear absorption spectra, i.e.2PA from the ground state to 

the higher lying vibration bands of the first excited state. Symmetry breaking is clearly 

indicated for symmetric molecules by this 2PA band. The origin of the symmetry 

breaking was investigated (see sections 4 and 9)). 

2) Terminal Groups: Three molecules with different terminal groups (Thiazolium, 

Indolium, Benzoindolium) and the same conjugation length were compared for their 2PA 

properties. PD 2630 with the strongest donor benzoindolium terminal group exhibits red-

shifted linear and 2PA spectra, and the beginning of a third and stronger 2PA band can be 

observed experimentally. Comparing 2PA properties of PD 200 and PD 2761 provides us 

some insight about the effect of conjugation strcture in the terminal group on the linear 

and nonlinear properties. 

3) Conjugation Length: Increasing the conjugation length of the chromophore chain red-

shifts both the linear and 2PA bands, as well as increasing the 2PA cross section due to 

increases of ground state transition dipole moments and decreases of detuning energies. 

4) Polarity of Solvents: A way to study the symmetry breaking of symmetric molecules is 

to study 2PA of molecules in solvents of different polarity. Experimental results indicated 
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two possible origins for this symmetry breaking. One is vibronic coupling due to the 

vibrational shoulder in the linear absorption.  The other is the existence of an 

asymmetrical charge distribution in the symmetric molecules. 

5) Bridge: Inserting a benzene bridge into the chromophore chain can protect the symmetric 

molecules from symmetry breaking. Thus, we observed that the 2PA cross sections of 

this weak 2PA band is smaller for bridged symmetric PDs than unbridged symmetric PDs. 

6) Polymethines and Squaraines: SDs exhibited much larger experimentally observable 

2PA cross sections than PDs having the same terminal groups and similar conjugation 

length. Quantum chemical calculations showed that forming PDs  by putting terminal 

groups on the chromophore chain increases the density of occupied molecular orbitals, 

thus increases electronic transitions for 2PA. Quantum chemical calculations also showed 

that forming SDs by inserting a squarylium core into PDs further increases the density of 

unoccupied molecular orbitals, thus the electronic transitions. Thus, combining with 

narrower linear absorption bands, SDs move more 2PA bands with larger 2PA cross 

sections into the experimentally observable region before being obscured by linear 

absorption. Near IR absorbing squaraine dyes exhibit extremely large 2PA cross sections 

(≈ 30000GM). 

7) Squaraine, Croconium and Tetraon: Inserting different additions into the chromophore 

chain forms squaraine (C4O2), Croconium (C5O3) and Tetraon (C6O4) dyes. Croconium 

exhibits much smaller 2PA than squaraine, and tetraon dyes show similar large 2PA as 

squaraine, but exhibits more 2PA bands than squaraines indicating an increase of the 

number of electronic transitions. 
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8) One-photon Fluorescence Anisotropy: Our experimental results indicate the strong 

correlation between one-photon excitation fluorescence anisotropy spectra and 2PA 

spectra for symmetric PDs. Quantum chemical calculations show that this correlation 

comes from energy splitting of molecular orbitals of two identical terminal groups. After 

splitting, one molecular orbital corresponds to a one-photon transition, and the other 

molecular orbital corresponds to a two-photon transition. And this splitting energy 

depends on the structure of the terminal groups. For symmetric SDs, this correlation is 

also observed. 

9) Two-photon Fluorescence Anisotropy: Two-photon excitation fluorescence anisotropy 

spectra for several 2PA bands are measured experimentally for the first time.  A 

theoretical model based on a four-level, two-intermediate-state model is developed. The 

observed deviation of the two photon anisotropy from the theoretical prediction for 

symmetric molecules indicates the existence of symmetry breaking. 

 

7.2 Future work 
 

From the conclusions listed above, a few potential research are are proposed: 

1) The conjugation structure of terminal groups will increase the effective conjugation 

length of molecules. The effect of conjugation length in the terminal groups on 2PA is 

still an ongoing research project. I will propose to try to quantitatively describe the 

donor/acceptor strength of different terminal groups, which will help to separate the 

contributions of donor/acceptor strength in TGs from conjugation structure in TGs on the 

2PA properties of the molecules. 
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2) To investigate the nature of symmetry breaking we need more experiments performed. 

Linear absorption of long polymethine molecules (such as PD 1659) exhibits a strong 

dependence on the polarity of solvents. Some short molecules exhibit less of this 

dependence. It is proposed to measure 2PA of long molecules in solvents of different 

polarity to study the effects of the asymmetric form in symmetric molecules on 2PA 

However, two issues make this measurement difficult. One is that molecules with long 

conjugation lengths will move the linear absorption band as well as the fluorescence 

spectrum into the NIR region. Only the Z-scan technique can study the weak 2PA band at 

the vibronic shoulder of the linear absorption band. The other is that the solubility of 

symmetric molecules strongly depends on the polarity of the solvent, which makes it 

impossible to prepare high concentration solutions for all solvents for Z-scan 

measurements. Being able to use the very sensitive 2PF method becomes crucial for this 

study.  

3) Quantum chemical calculations need to be performed to understand the difference in 2PA 

properties of squaraine, croconium and tetraon for optimizing molecules for 2PA 

applications in the future. 

4) The value of two-photon excitation fluorescence anisotropy is experimentally observed to 

be constant for several 2PA bands for all the molecules we studied. We can explain this 

for asymmetric molecules based on a three-level model. However we cannot explain this 

phenomenon for symmetric molecules with three-level and four-level models. More 

theoretical study on this is proposed. 
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APPENDIX A 
CGS AND SI UNIT 
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In chapter two, we derived the formula for the imaginary part of χ(3) in SI units. But when 

we used the relation for the 2PA cross section and transition dipole moments to fit experimental 

2PA spectra, we use a formula in CGS units because usually transition dipole moments are 

expressed with units of debye (D) that belongs to CGS unit. 

The CGS unit system is an abbreviation for the centimeter-gram-second system, which 

uses the centimeter, gram and second for length, mass and time. The units most used parameters 

for 2PA cross section theory are expressed in SI and CGS units listed in Table A.1.  

Table A.1 Relationship of CGS to SI unit 
 CGS Definition SI 

Length centimeter 1 cm = 10-2 m 
Mass  Gram 1 g = 10-3 kg 
Time Second 1 s = 1 s 
Energy Erg 1 erg = 1 g • cm2/s2 = 10-7 J 
Charge Esu 1 esu = 1 (g • cm3/s2)1/2 = 3.3356×10-10 C 
Dipole moment debye (D) 1 D = 1 10-18 cm • esu = 3.3356×10-10 C • m  

 

We used Eq. 2.54 in Chapter 2 to fit the 2PA spectra of polymethine and squaraine 

molecules. We calculated the constant and changed Eq. 2.54 into the Eq. 2.57 for practical use, 

where the 2PA cross section is in units of GM (10-50 cm4 • s/molecule), all energies are input 

with units of eV and all dipole moments are input with units of debye (D). The derivation for this 

equation is shown below to verify the units validity and calculated constant in front. 

 

 146



[ ]
[ ] [ ] [ ]

[ ]
[ ] [ ] [ ] [ ]

[ ]
[ ] [ ] [ ]

[ ]
[ ] [ ] [ ]

[ ]
[ ] [ ] [ ]

[ ]
[ ] [ ] [ ]

[ ]
[ ] [ ] [ ]

[ ]
[ ] [ ] [ ]

[ ]
[ ] [ ] [ ]

[ ]
[ ] [ ] [ ]

[ ]( )
[ ] [ ] [ ]( )

[ ]
[ ] [ ] [ ]( ) ][

)2(

][][

)(
1015.4

][10
)2(

][][

)(
1015.4

)(

)(
][][

)2(

)(
101015.4

][][
)2(

)(1067.477
104.1984

][][
)2(

)(10602.110626.6)103(5
)10(64

)
][

10(][][
10602.1

1
)2(

)()10626.6()103(5

64

)2()(5
64])[(

2
0

2

22

0

22

2
3

450
22

0
2

22

0

222

22
3

2
2

2

4
2

3

222

22
0

2

0

222

22
503

2

4
222

22
0

2

0

222

22

19

72

2
2

2

4422

22
0

2

0

222

22

1227210

4183

41822

1222
0

2

0

222

22

27
2

2210

3

2
0

2

0

22

22

2

2

3

GM
eVeVEeVE

debyedebyeeV

eVeVEeVE

eVE

GMscm
eVeVEeVE

debyedebyeeV

eVeVEeVE

eVE

s
cmg

s
cmg

scmdebyedebye
eVeVEeVE

eV

eVeVEeVE

eVE

erg
esuscmdebyedebye

eVeVEeVE

eV

eVeVEeVE

eVE

sergs
cm

cmesudebyedebye
eVeVEeVE

eV

eVeVEeVE

eVE

debye
cmesudebyedebye

eV
ergeVeVEeVE

eV

eVeVEeVE

eVE

sergs
cm

EEEE

E

hc
GME

fpfo

fjjof

jop

p

fpfo

fjjof

jop

p

fjjo
fpfo

f

jop

p

fjjo
fpfo

f

jop

p

fjjo
fpfo

f

jop

p

fjjo
fpfo

f

jop

p

fpfo

ffjjo

jop

p
p

Γ+−

Γ
×

Γ+−
××=

⋅⋅×
Γ+−

Γ
×

Γ+−
××=

⋅

⋅
⋅⋅××

Γ+−

Γ

×
Γ+−

×××=

⋅⋅××
Γ+−

Γ

×
Γ+−

×
×
×

=

⋅⋅

⋅
××

Γ+−

Γ

×
Γ+−

×
××××××

×
=

⋅
⋅××

⋅×
×

Γ+−

Γ

×
Γ+−

×
⋅⋅××⋅××

=

Γ+−

Γ

Γ+−
=

−

−−

−−

−

−

−−

−

−

−

−

µµ

µµ

µµ

µµ

µµ

µµ

µµ

jo

jo

jo

jo

jo

jo

jo

π

π

πδ

 

 147



APPENDIX B 
EXPERIMENTAL DATA FOR MOLECULES FROM DR. OLGA V. 

PRZHONSKA 
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We performed a comprehensive experimental study of PDs, SDs, and tetraon dye that are 

synthesized at the Institute of Organic Chemistry, National Academy of Sciences, Ukraine. We 

measured linear absorption spectra, one-photon fluorescence spectra, one-photon excitation 

fluorescence anisotropy spectra, two-photon absorption spectra and two-photon excited 

fluorescence anisotropy spectra. Below are listed experimental results for all molecules. 

Molecular structures can be found in Fig. 4.2 and Fig. 5.1. 
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APPENDIX C 
EXPERIMENTAL DATA FOR MOLECULES FROM DR. SETH R. 

MARDER’S GROUP 
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C.1 MOLECULES FOR 2PA AT TELECOMMUNICATIONS WAVELENGTHS [83] 

 
Molecular structures: 
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Sjz-6-89 in THF 

300 400 500 600 700 800 900 1000 1100
0

1000

2000

3000

4000  ND-2PA: e1700nm
 ND-2PA: e1900nm
 ND-2PA: e1600nm
 D-2PA: Zscan

2P
A

 c
ro

ss
 s

ec
tio

n 
(G

M
)

Wavelength (nm)

0

30000

60000

90000

120000

150000

Ex
tin

ct
io

n 
co

ef
fic

ie
nt

 (c
m

-1
M

-1
)4 3 2

Energy (eV)

 
AJC-190 in THF

300 450 600 750 900 1050 1200
0

1500

3000

4500

6000

2P
A 

cr
os

s 
se

ct
io

n 
(G

M
)

Wavelength (nm)

 ND-2PA: e1800nm
 ND-2PA: e1800nm
 ND-2PA: e1700nm
 D-2PA: Zscan

0

20000

40000

60000

80000

E
xt

in
ct

io
n 

co
ef

fic
ie

nt
 (c

m
-1
M

-1
)4 3 2 1

Energy (eV)

 
TOR-I-99 in THF 

400 600 800 1000 1200
0

1000

2000

3000

4000

2P
A

 c
ro

ss
 s

ec
tio

n 
(G

M
)

Wavelength (nm)

 Z-scan

0

20000

40000

60000

80000

100000

E
xt

in
ct

io
n 

co
ef

fic
ie

nt
 (c

m
-1
M

-1
)4 3 2 1

Energy (eV)

 158



C.2 NI-COMPLEX FOR 2PA AT TELECOMMUNICATIONS WAVELENTHS [84] 
 

Molecular structures: 
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JYC-IV-087c in CHCL3 
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C.3 D-D-D-D MOLECULES [85] 
 
Molecular structures: 
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Sjz-3-17 in THF 
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GW-67a in THF 
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C.4 A-D-D-A MOLECULES [86] 
 
Molecular structures: 
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Siz-7-58 in THF 
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Sjz-8-14d in THF 
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C.5 PERYLENE DYE 
 

Molecular structures: 
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ZA-III-20 in CH2CL2
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ZA-IV-64 in CH2CL2
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C.6 Naphthalene Derivatives 
 

Molecular Structures: 
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GJW-1-26a 
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C.7 OTHERS 
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Sjz-3-42 in CH2CL2
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SC-V-10 in Toluene 
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APPENDIX D 
DERIVATIONS FOR TWO-PHOTON EXCITATION FLUORESCENCE 

ANISOTROPY 
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The two-photon anisotropy formula derivation is based on two theoretical approaches. 

The first is made by P. Callis [79], who used McClain’s original treatment for the two-photon 

absorption (2PA) tensor and added the fluorescence transition dipole to develop the equation for 

the two-photon anisotropy function. The second theoretical approach is made by P. Cronstrand, 

Yi Luo and H. Agren [32]. They derived the equation for the 2PA cross section in a more general 

four-state, two-intermediate-level model taking into account the influence of an additional 

(second) excitation channel. 

Following Callis’ theory, the two-photon anisotropy function, r, is written as 

 
147

718
+

−+
=

y

yx

Q
QQ

r  (D.1) 

where and are functions depending on the 2PA tensor S and fluorescence transition dipole 

F. Both Callis and Cronstrand considered only a two-dimensional approximation (case of the 

planar molecule oriented in the x-y plane) and linear polarization of the excitation light. For 

linear molecules the tensor component S

xQ yQ

zz is much smaller compared to Sxx and Syy, and r depends 

only on the  and projections. Also, this formula is limited to steady-state conditions with 

completely motionless molecules. From [79] it follows that 

xQ yQ

  (D.2) 22222222 22 yyyyyyxyxxyxxyyxyyxxxxxxx sfsfsfsfsfsfsfsfQ +++++=

  (D.3) 2)( yyxxy ssQ +=

where fx, fy and sxx, sxy, syy are normalized matrix elements of S and F. 

Substituting Eq.D.2 and D. 3 into Eq. D.1 gives the two-photon anisotropy function, r, as 
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This is the general formula for steady-state two-photon excitation fluorescence anisotropy, 

which is valid for a model including any number of levels. In order to derive an equation for r2PA, 

which is possible to apply for analysis of real molecules, we need, first, to choose an adequate 

molecular model and, second, to connect the normalized matrix elements fx, fy and sxx, sxy, syy 

with the molecular parameters such as transition dipole moments, angles between these 

transitions and energy position of the levels.  
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Figure D.1 Four-state, two-intermediate level (S1 and Sn ) model for two-photon anisotropy, 
(a) energy states S0, S1, Sf and Sn diagram; (b) transition dipole moments schematic 

diagram 
 

First, let’s consider a more general four-state-two-intermediate-level model (or two 

scenario model) described in [32] and presented in Fig. D.1 (a). As shown in [32], for this model 

the two-photon matrix element S may be presented as , where upper indexes (1) 

and (2) indicate the first and the second scenarios of 2PA, and α, β 

)2()1(
αβαβαβ SSS +=

},{ yx∈ . If the first scenario 

involves the transitions S0 → S1 and S1 → Sf (1 is the first intermediate level and f is the final 
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level) and the second scenario involves transitions S0 → Sn and Sn → Sf (n is the second 

intermediate level), matrix elements  and may be rewritten as )1(
αβS )2(

αβS
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where µα and µβ  are the dipole moments of the participating transitions; ωω hh −=∆ 11E , 

ωω hh −=∆ nnE  and ω is the frequency of the excitation. Using Eq. D.5 and D.6, we can write 

xx, xy and yy components of matrix elements as: αβS
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The next step is to find the normalized matrix elements , , using the normalized 

condition 

xxs yys xys

∑ ∗
=

αβ
αβαβ

αβ
αβ

SS

S
s  presented in [79].  

After normalization  
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Substituting relation Eq. D.7 and D.8 into Eq. D.9, gives the normalized matrix 

elements , , , expressed in terms of molecular parameters, for Eq. (D.4). However, two-

photon anisotropy (Eq. D.4) includes not only the normalized matrix elements of the 2PA tensor 

xxs yys xys
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S but also the normalized components of the emission dipole moment F: 
2F

x
x

F
f =  and 

2F

y
y

F
f = [79]. To connect these components with the absorbing dipoles, we consider the 

diagram shown in Fig. D.1 (b). It is possible to show that fx = cosβem and fy = sinβem , where βem 

= )
2

(01 αγβ +− . The angle can be written as a ratio of the corresponding µ01β x and µy projections 

and the normalized absorbing dipole 01µ : 
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where )
2

cos( αγ
+=a  and )

2
sin( αγ

+=b   

Substituting Eq. D.10, D. 11 as well as Eq. D. 9 into Eq. D. 4, we obtain an equation for 

r2PA in the four-level-two-intermediate state approximation. In the final formula for the 

anisotropy, r should be expressed in terms of absorbing dipoles 01µ , n0µ , f1µ , nfµ (not their 

projections), angles α, β, γ, θ  between transitions and detuning energies , . After 

algebraic transformation and taking into account that  
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we finally can write the expression for the four-level model for two-photon excitation 

fluorescence anisotropy: 
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