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ABSTRACT  

According to documented statistics, intersections are among the most hazardous 

locations on roadway systems. Many studies have extensively analyzed safety of 

signalized intersections, but did not put their major focus on the most frequent type of 

intersections, unsignalized intersections. Unsignalized intersections are those 

intersections with stop control, yield control and no traffic control. Unsignalized 

intersections can be differentiated from their signalized counterparts in that their 

operational functions take place without the presence of a traffic signal. In this 

dissertation, multiple approaches of analyzing safety at unsignalized intersections were 

conducted. This was investigated in this study by analyzing total crashes, the most 

frequent crash types at unsignalized intersections (rear-end as well as angle crashes) and 

crash injury severity. Additionally, an access management analysis was investigated with 

respect to the different median types identified in this study. Some of the developed 

methodological techniques in this study are considered recent, and have not been 

extensively applied. 

In this dissertation, the most extensive data collection effort for unsignalized 

intersections was conducted. There were 2500 unsignalized intersections collected from 

six counties in the state of Florida. These six counties were Orange, Seminole, 

Hillsborough, Brevard, Leon and Miami-Dade. These selected counties are major 

counties representing the central, western, eastern, northern and southern parts in Florida, 

respectively. Hence, a geographic representation of the state of Florida was achieved. 

Important intersections’ geometric and roadway features, minor approach traffic control, 

major approach traffic flow and crashes were obtained.  
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The traditional negative binomial (NB) regression model was used for modeling 

total crash frequency for two years at unsignalized intersections. This was considered 

since the NB technique is well accepted for modeling crash count data suffering from 

over-dispersion. The NB models showed several important variables affecting safety at 

unsignalized intersections. These include the traffic volume on the major road and the 

existence of stop signs, and among the geometric characteristics, the configuration of the 

intersection, number of right and/or left turn lanes, median type on the major road, and 

left and right shoulder widths. Afterwards, a new approach of applying the Bayesian 

updating concept for better crash prediction was introduced. Different non-informative 

and informative prior structures using the NB and log-gamma distributions were 

attempted. The log-gamma distribution showed the best prediction capability. 

Crash injury severity at unsignalized intersections was analyzed using the ordered 

probit, binary probit and nested logit frameworks. The binary probit method was 

considered the best approach based on its goodness-of-fit statistics. The common factors 

found in the fitted probit models were the logarithm of AADT on the major road, and the 

speed limit on the major road. It was found that higher severity (and fatality) probability 

is always associated with a reduction in AADT, as well as an increase in speed limit.  

A recently developed data mining technique, the multivariate adaptive regression 

splines (MARS) technique, which is capable of yielding high prediction accuracy, was 

used to analyze rear-end as well as angle crashes. MARS yielded the best prediction 

performance while dealing with continuous responses. Additionally, screening the 

covariates using random forest before fitting MARS model was very encouraging. 
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Finally, an access management analysis was performed with respect to six main 

median types associated with unsignalized intersections/access points. These six median 

types were open, closed, directional (allowing access from both sides), two-way left turn 

lane, undivided and mixed medians (e.g., directional median, but allowing access from 

one side only). Also, crash conflict patterns at each of these six medians were identified 

and applied to a dataset including median-related crashes. In this case, separating median-

related and intersection-related crashes was deemed significant in the analysis. From the 

preliminary analysis, open medians were considered the most hazardous median type, 

and closed and undivided medians were the safest. The binomial logit and bivariate probit 

models showed significant median-related variables affecting median-related crashes, 

such as median width, speed limit on the major road, logarithm of AADT, logarithm of 

the upstream and downstream distances to the nearest signalized intersection and crash 

pattern.  

The results from the different methodological approaches introduced in this study 

could be applicable to diagnose safety deficiencies identified. For example, to reduce 

crash severity, prohibiting left turn maneuvers from minor intersection approaches is 

recommended. To reduce right-angle crashes, avoiding installing two-way left turn lanes 

at 4-legged intersections is essential. To reduce conflict points, closing median openings 

across from intersections is recommended. Since left-turn and angle crash patterns were 

the most dominant at undivided medians, it is recommended to avoid left turn maneuvers 

at unsignalized intersections having undivided medians at their approach. This could be 

enforced by installing a left-turn prohibition sign on both major and minor approaches.  
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CHAPTER 1. INTRODUCTION  

1.1 Overview 

Transportation is one of the most important aspects in our life. No one can move 

to another place without using a mode of transportation. Transportation is an important 

issue in any country’s development and progress. The development and progress of any 

country can be measured by the characteristics of its transportation facilities. 

Transportation not only includes moving people, but goods as well. Traffic safety 

analysis is one of the most important applications in transportation. The issue of traffic 

safety has been of great importance for many researchers in U.S.A. This is because 

transportation is a mixed-blessing aspect. With the annual increase in the vehicle miles 

traveled (VMT), many people lost and are still losing their lives on these roadways. So, 

crashes are the drawback of transportation development. Some of these crashes lead to 

injuries, and some are fatal. Thus, traffic safety analysts aim to reduce the harm in terms 

of deaths, injuries, and property damage resulting from vehicle crashes along roadways. 

Researchers dealing with traffic safety analysis are investigating crashes along arterials 

(corridors) and at intersections. Of both, intersections are among the most dangerous 

locations of a roadway network. Crash analysis along arterials is macroscopic, while 

crash analysis at intersections is microscopic in nature. Macroscopic studies include 

analytic models that deal with the average traffic stream characteristics, such as flow, 

speed and density, while microscopic studies consider the characteristics of individual 

vehicles, and their interactions with other vehicles in the traffic stream (Kang, 2000).  



 

According to the U.S. Census Bureau, Florida was ranked the 17th for traffic 

fatalities per 100 million VMT in 2003. In 2005, the total number of traffic crashes in 

Florida was 268,605 (DHSMV, 2005), of which 3185 were fatal crashes, accounting for 

1.186% of the total reported crashes. The number of injury crashes was 147,879, 

accounting for 55.05% of the total reported crashes. In 2006, the total number of reported 

traffic crashes was 256, 200 (DHSMV, 2006), of which 3084 (1.204%) were fatal 

crashes. The number of injury crashes was 137,282 (53.58%). Compared to 2005, it is 

noted that there is a decrease of 4.6% in total reported crashes in 2006, a decrease of 

3.17% in fatal crashes and a decrease of 7.16% in injury crashes.  

In 2007, the total number of reported traffic crashes in Florida was 256,206 

(DHSMV, 2007), of which 2947 (1.15%) were fatal crashes. The number of injury 

crashes was 135,601 (52.93%). Compared to 2006, it is noted that there is almost the 

same number of reported and investigated crashes in 2007. Moreover, there is a decrease 

of 4.44% in fatal crashes, and a decrease of 1.22% in injury crashes.  

As indicated by Kuciemba and Cirillo (1992), although intersections constitute a 

small part of the overall highway system, intersection-related crashes represent more than 

50% and 30% of crashes in urban and rural areas, respectively. As indicated in FARS 

(1999), for the fatal crashes’ distribution by location, non-intersection locations constitute 

the highest percentage (79%), followed by signalized intersections (12%), and finally 

unsignalized intersections (9%). Of those 9% fatal crashes occurring at unsignalized 

intersections, 6% occurs in rural areas, and the remaining 3% occurs in urban areas. 

Moreover, for the fatal crashes’ collision manner at unsignalized intersections, 85.6% 

were angle crashes, 2% were head-on crashes, and 1% were rear-end crashes. 
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According to DHSMV (2003), there were 96,710 crashes (39.75%) that occurred 

or were influenced by intersections. According to Wang (2006), “the percentage of injury 

crashes at intersections was 68.9%, which was much higher than that for all other entities 

(e.g. road sections), in which the injury crash percentage was 52.4%”. This indeed 

indicates a need for analyzing crashes at intersections more thoroughly for further 

improvement and reduction in crashes. 

Intersections are considered those locations with complex nature for any roadway 

system. Thus, a thorough understanding of them needs to be achieved in order to design 

them in the most effective manner. Intersections are classified into two main types, 

signalized intersections and unsignalized intersections. Crashes at unsignalized 

intersections are increasing at a high level, and thus, traffic safety at unsignalized 

intersections needs further study. One important reason for that is the unfamiliarity of 

drivers to traffic operations at unsignalized intersections, when compared to those of 

signalized intersections. Very few studies have addressed the safety of unsignalized 

intersections, which make this issue of an urgent need to be addressed. The study 

presented deals with traffic safety analysis at unsignalized intersections.  

Unsignalized intersections include intersections with stop control, yield control 

and no traffic control. Unsignalized intersections, which are seen frequently in both rural 

and urban areas, can be differentiated than their signalized counterparts in that their 

operational functions take place without the presence of a traffic signal. Though research 

on them is not highly documented, the contributions from researchers across the nation 

and the world have proven to be significantly useful. 
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Crashes at unsignalized intersections are considered complicated incidents 

involving the interaction between the driver, vehicle, roadway geometry, and traffic-

related factors. According to Retting et al. (2003), in U.S.A, around 700,000 reported 

motor-vehicle crashes by police officers occur annually at stop-controlled intersections, 

with one third of these crashes involve injuries and more than 3,000 are fatal. This fact 

was also mentioned in the U.S. Department of Transportation (2002).  

Despite the increasing number of crashes at unsignalized intersections (especially, 

at stop-controlled intersections) and their severe nature, crash patterns at stop-controlled 

intersections have not been the core of detailed research (Retting et al., 2003). The work 

done in this study will be focusing on modeling crash frequency and crash severity at 

unsignalized intersections using advanced statistical and data mining techniques, so as to 

identify significant factors leading to crashes. Then afterwards, some safety 

countermeasures are recommended for further safety alleviation. 

1.2 Research Objectives 

The objectives of this research are six-fold, as follows: 

1. Identifying the geometric and traffic factors leading to crashes at unsignalized 

intersections in the state of Florida using an appropriate statistical approach. For 

this, the traditional negative binomial (NB) model is used since it accounts for the 

observed over-dispersion in crash count data, i.e., the variance is greater than the 

mean.  

2. Reducing uncertainty in predicting crash frequency at unsignalized intersections 

caused by statistical models. Hence, a reliability method based on the full 
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Bayesian updating concept is used for updating parameter coefficients from the 

NB model for better prediction performance. 

3. Investigating various factors affecting the frequency of the two most dominant 

types of crashes at unsignalized intersections (rear-end and angle crashes). Then, 

it is claimed to increase crash prediction performance since researchers rarely 

develop models for the sole prediction objective. This was done using a very 

recent data mining technique, which is the multivariate adaptive regression 

splines (MARS) technique. MARS has superior prediction power, however, it has 

not been used in safety analysis before. Thus, MARS was used in an attempt to 

introduce this technique to traffic safety and show its high prediction capability. 

4. Identifying the geometric, roadway and traffic factors contributing to crash 

severity at unsignalized intersections using the ordered probit, binary probit and 

nested logit frameworks.  

5. Analyzing the safety effect of various median types on crash occurrence at 

unsignalized intersections, in order to get the safest and most hazardous types of 

medians in terms of safety analysis, as well as the frequent crash patterns at each 

median type. Hence, a safety remedy is to be applied to alleviate those high crash 

patterns. This analysis is related to improved access management.  

6. Applying the findings from all the statistical modeling approaches to real-life 

traffic engineering in terms of designing the appropriate countermeasures that can 

be beneficial to solving any safety deficiencies identified.  

By this, the conducted research has covered both the theoretical and 

implementational aspects in traffic safety analysis at unsignalized intersections.  
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1.3 Dissertation Organization 

Following this chapter, a detailed literature review on previous studies of 

unsignalized intersections is presented in Chapter 2 of this dissertation. Chapter 3 deals 

with data collection procedures, variables description, median classification (types of 

medians) at unsignalized intersections, and an initial perspective for classifying 

unsignalized intersections. Chapter 4 discusses a preliminary analysis procedure 

regarding the safety effect of the presence of both stop sign and line, and stop sign only in 

Orange County. Chapter 5 presents using the reliability method (in terms of the Bayesian 

updating concept) to reduce the uncertainty from the fitted NB model. Chapter 6 deals 

with analyzing crash injury severity at unsignalized intersections. Chapter 7 illustrates 

using the multivariate adaptive regression splines “MARS” technique for analyzing rear-

end as well as angle crashes at unsignalized intersections. Chapter 8 presents an access 

management analysis for the identified median types at unsignalized intersections. The 

last chapter, Chapter 9 is an application-wise chapter that summarizes the key findings 

from this research, and accordingly some countermeasures are introduced. Also, some 

further research avenues are recommended. Finally, the list of references used in this 

study is presented. 
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CHAPTER 2. LITERATURE REVIEW 

Though research done on the safety of unsignalized intersections is not highly 

documented, the contributions from researchers across the nation and the world have 

proven to be significantly essential. This chapter indicates a very comprehensive review 

of literature for studies analyzing safety of unsignalized intersections. 

2.1 Significant Factors Contributing to Safety of Unsignalized Intersections 

Previous research on the safety of unsignalized intersections focused on topics 

related to geometric design characteristics such as left and right turn lanes, 

channelization, number of intersecting legs, intersection skewness, intersection sight 

distance, approach lanes, approach width, shoulder width, median width and type, 

vertical and horizontal alignment on approaches, lighting, etc. (Intersection Safety, 

Nebraska Department of Roads, 2006). The following sections discuss previous studies 

that addressed the contributing factors to safety at unsignalized intersections. Most of 

these studies are found in the research “Intersection Safety, Nebraska Department of 

Roads (2006)”. 

2.1.1 Left and Right-Turn Lanes 

Foody and Richardson (1973) concluded that crash rates decreased by 76 percent 

at unsignalized intersections when adding a left-turn lane. Moreover, Kulmala (1997) 

found that the inclusion of a left-turn lane on the major approach reduced the number of 

rear-end crashes on this approach. Similarly, Vogt (1999) found that the presence of one 

or more left-turn lanes for four-leg unsignalized intersections resulted in a reduction in 

total crashes.  
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Harwood et al. (2002) found a 5 percent reduction in the number of crashes when 

providing a right-turn lane on one major approach to a rural stop-controlled intersection, 

and a 10 percent reduction when the provision is done along both major approaches. 

Hauer (1988) found that providing left-turn lanes at unsignalized intersections, 

and at the same time combined with installation of curbs or raised medians, reduced 

crashes by 70, 65, and 60 percent at urban, suburban, and rural areas, respectively.  

California study (1967) indicated larger reductions in crashes at unsignalized 

intersections given the use of left-turn lanes in a raised medians than with painted left-

turn lanes. 

2.1.2 Number of Intersecting Legs 

David and Norman (1976) found that four-legged stop-controlled intersections in 

urban areas experienced twice as many crashes as the corresponding three-legged 

intersections. 

Hanna et al. (1976) found that four-legged intersections experienced more crashes 

than three-legged intersections in rural locations. 

Harwood et al. (1995) showed that divided four-legged intersections experienced 

almost twice as many crashes as three-leg intersections for narrow medians. 

Bauer and Harwood (1996) showed that rural and urban stop-controlled four-

legged intersections had twice crashes as the three-legged ones. 

Leong (1973), Hanna et al. (1976), O'Brien (1976) and David and Norman (1975) 

have found that 3-legged unsignalized intersections are safer than 4-legged unsignalized 

intersections, while accounting for the traffic volume variable.  
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Kulmala (1997) has found that a four-legged intersection is safer than two three-

legged intersections for low minor approach traffic volume, but less safe for high minor 

approach volume. The opposite was concluded by Del Mistro (1979).  

2.1.3 Land Use 

A recent analysis in California found that an annual average of 1.5 crashes occurs 

at unsignalized intersections in rural locations, compared with an average of 2.5 crashes 

per year in urban locations (Bauer and Harwood, 1996). 

2.1.4 Intersection Skewness 

McCoy et al. (1994) found that as the skew angle increased, crashes at rural two-

way stop-controlled (TWSC) three and four-legged intersections increased as well. 

2.1.5 Median Width 

David and Norman (1975) found that multi-vehicle crashes decreased with the 

existence of lane dividers (such as raised reflectors, painted lines, barriers and medians).  

Harwood et al. (1995) concluded that crashes increased while increasing median 

width at unsignalized intersections in urban and suburban areas. Likewise, Leong (1973) 

found that narrow medians on major roads reduced crashes’ mean rate at three-leg 

intersections, but had small effect at four-leg intersections. Moreover, Van Maren (1980) 

found that median barriers had an increase on crash rates.  

Summersgill and Kennedy (1996) found that the presence of an island on the 

minor approach increased crashes. By contrast, Layfield (1996) found that the presence 

of an island on the major road had a mixed effect, where some crash types were lower, 

and others were higher.  
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Pickering and Hall (1986) found that, at high traffic flow conditions, the presence 

of painted separation islands resulted in a reduction in crash rates for crashes occurring 

within 20 m of the intersection’s center.  

2.1.6 Lighting 

The presence of lighting at unsignalized intersections appears to be associated 

with lower crash rates. For example, Bauer and Harwood (1996) found that lighted rural 

four-legged stop-controlled intersections experienced fewer crashes than no lighted 

intersections. In the same trend, Brude (1991) found that in dark hours, there were 30 

percent fewer crashes at lighted intersections than unlighted.  

The study done by Walker and Roberts (1976) showed night crash reduction after 

lighting was installed.  

2.1.7 Channelization 

In general, for intersection safety research, David and Norman (1976) showed that 

there was an intersection safety improvement when channelization is found.  

As shown in “Intersection Safety, Nebraska Department of Roads (2006)”, 

Templer (1980) found that a raised median reduced number of conflicts between both 

pedestrians and vehicles, however the difference was not significant. 

Washington et al. (1991) found that the presence of raised medians on intersection 

approaches reduced crash rates when compared to other approaches having other median 

types. 
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2.1.8 Intersection Sight Distance 

Mitchell (1972) concluded that intersection crashes were reduced by removing 

intersection sight obstructions. Moreover, Poch and Mannering (1996) found that the 

presence of an intersection sight distance obstruction significantly increased crash 

frequency. 

David and Norman (1975) indicated that unsignalized intersections with an 

average daily traffic (ADT) greater than 15,000, and with obstructions within the first 20 

ft from the stop bar showed more annual crashes than unobstructed intersections within 

the same recorded distance. Hanna et al. (1976) found that rural unsignalized 

intersections with poor sight distance tend to have higher crash rates than normal values.  

On the other side, Pickering and Hall (1986) found that better visibility resulted in 

a higher crash frequency. Moreover, Stockton and Bracckett (1981) concluded that at 

low-volume intersections, sight distance had no observable effect on crash rates.  

Thus, it is well noticed that there is inconsistency between the results obtained for 

the effect of visibility on crash rates. 

2.1.9 Number of Approach Lanes 

Using an NB regression model, Bauer and Harwood (1996) concluded that 

crashes at unsignalized intersections were higher on facilities with one approach lane than 

intersections with two or more approach lanes.  

Moreover, studies done by Summersgill and Kennedy (1996) and Layfield (1996) 

concluded that the increase in the number of approach lanes increased the number of rear-

end and lane-change crashes at the analyzed unsignalized intersections.  
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Weerasuriya and Pietrzyk (1998) developed conflict descriptive tables for 

Florida’s three-legged unsignalized intersections. The introduced tables provided mean, 

variance, and 90th and 95th percentile conflict rates. The number of lanes was used for 

classification purposes. 

2.1.10 Shoulder Width 

The influence of shoulder width on intersection safety was analyzed by Van 

Maren (1980) as well as Harwood et al. (1995). Both studies concluded that shoulder 

width has no influence on intersection safety. 

2.1.11 Vertical and Horizontal Alignment on Approaches 

Fambro (1989) found high crash rates at intersections with crest vertical curves. 

Moreover, the existence of horizontal curves adds some problems to intersections.  

Kuciemba and Cirillo (1992) concluded that the existence of horizontal curves 

near intersections could affect safety. 

2.1.12 Traffic Flow 

Studies done by Bauer and Harwood (1996), Huang and May (1991), Del Mistro 

(1981), Kulmala (1997) and Vogt and Bared (1998) for relating unsignalized 

intersections’ geometry to safety have found that traffic flow is the most important 

exogeneous variable.  

2.1.13 Traffic Control Type 

David and Norman (1975) found that signalized intersections showed higher crash 

rates than stop-controlled intersections. Hanna et al. (1976) concludedthat, for a certain 
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ADT, rural signalized intersections experienced higher crash rate than those with stop or 

yield signs.  

Van Maren (1980) found that multi-lane unsignalized intersections have lower 

crashes per million conflicts than the signalized ones. The number of crashes per million 

conflicts was used as the dependent (or target) variable. Moreover, Leong (1973) found 

that the presence of traffic signals reduced the average crash rate at four-legged 

unsignalized intersections, but had negligible effect at the three-legged ones. 

2.1.14 Size of Intersection  

Van Maren (1980) concluded that large unsignalized intersections (intersections 

with a large distance across the intersection) had higher crashes per million conflicts than 

small unsignalized intersections.  

2.1.15 Minor Road Approach Geometry  

Kulmala (1997) concluded that crash rates are lower than the average at four-

legged unsignalized intersections with a curve on the minor road approach just before the 

intersection.  

2.1.16 Grades  

Pickering and Hall (1986) found that downhill unsignalized intersections showed 

higher crash rates than other intersections. On the other hand, Hanna et al. (1976) 

concluded that intersections with severe grades operate safely than others.  
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2.1.17 Signing and Delineation  

David and Norman (1975) found that unsignalized intersections operating with 

signs having white lettering on a dark background had more annual crashes than those 

having dark lettering on a white background. Moreover, they found that unsignalized 

intersections with raised pavement markers showed fewer crashes than those without 

raised markers. 

Van Maren (1980) found that large-sized stop signs on the minor approaches 

tended to decrease the number of crashes per million conflicts.  

Huang and May (1991) found that intersections with stop signs on major streets 

had higher crash rates than those with stop signs on minor streets, since drivers did not 

expect the existence of stop signs on main streets.  

A study done by Kitto (1980) showed that unsignalized intersections with yield 

(or give-way) signs showed almost the same crash rates to those with stop signs. 

2.1.18 Spacing between Intersections 

A study done by Layfield (1996) concluded that a relatively large spacing 

between the minor approaches of urban unsignalized intersections resulted in fewer 

crashes.  

2.1.19 Pedestrian Crossing Facilities 

Summersgill and Kennedy (1996) as well as Layfield (1996) concluded that the 

existence of crossing facilities for pedestrians at 3 and 4-legged intersections resulted in 

higher pedestrian crashes.  
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2.1.20 Speed Parameters  

Summersgill and Kennedy (1996) and Pickering and Hall (1986) found that there 

was no sufficient evidence that vehicles’ speed on both major and minor roads had an 

influence on crashes. It is to be noted that this result was based on a narrow band of speed 

data, since Pickering and Hall analyzed only rural unsignalized intersections with speed 

limits over 50 mph, and Summersgill and Kennedy analyzed only 3-legged unsignalized 

intersections on 30 and 40 mph roadways. Hence, a significant trend between speed and 

crash occurrence was difficult to result with such limited speed data.  

By contrary, the study done by Brude (1991) showed that lower speeds were 

found to improve intersection safety. 

2.1.21 Beacons Use 

King and Goldblatt (1975) found that the installation of flashing beacons to stop-

controlled intersections led to favorable effect on safety. However, this result is different 

from that obtained by Pant and Park (1999).  

2.1.22 Turn Lanes Configuration 

Poch and Mannering (1996) found that intersection approaches with combined 

through and left lanes were found to have higher crash frequencies than approaches 

without this combined configuration.  

2.1.23 Pavement Condition 

A study done by Chovan et al. (1994) found that around 74% of unsignalized-

intersection crashes occurred on dry pavement, around 25% on wet or snowy pavement, 

and the remaining 1% was misclassified.  
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2.2 Some Facts about Unsignalized Intersections 

According to Marek et al. (1997), under certain traffic volume and geometric 

characteristics, all-way stop control (AWSC) intersections operate much safer than 

signalized intersections as well as two-way stop-controlled intersections. Supporting this 

finding, Briglia (1982) and Hauer and Lovell (1986) showed that AWSC intersections 

have much lower crash rates than TWSC intersections. Moreover, Byrd and Stafford 

(1984) showed that traffic flow characteristics for AWSC intersections are different than 

those controlled by two-way stop signs. 

Sayed and Rodriguez (1999) developed an accident prediction model for 

estimating safety at unsignalized urban junctions using the generalized linear model 

(GLM) formulation. They estimated the model’s parameters based on a methodology 

presented in the work of Bonneson and McCoy (1997). This methodology was done 

using the Poisson error structure. For assessing the model goodness-of-fit, Pearson’s chi-

square was used. The model was useful in some applications such as identifying accident-

prone-locations (APLs), ranking identified APLs, and evaluating before-and-after studies. 

Sayed and Zein (1999) applied the traffic conflict technique while analyzing 

safety at unsignalized intersections. The used data were collected from 30 different 

surveys to establish conflict frequency and severity standard values. These standard 

values were later applied to compare the relative conflict risk rates between intersections 

using an intersection conflict index. They developed predictive models to relate traffic 

conflicts to traffic volumes and crashes.  

A study done by Salman and Al-Maita (1995) focused on traffic volume on 18 

three-legged unsignalized intersections located in Amman, Jordan. In this study, the 
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authors found that the sum of major and minor volumes were correlated with the number 

of traffic conflicts.  

Vogt (1999) developed a model for four-legged rural stop-controlled 

intersections. This model showed a crash reduction of 38 percent for total crashes due to 

the installation of a left-turn lane on the major road. 

Lau and May (1988, 1989) used CART (Classification and Regression Trees) 

analysis, and concluded that left-turn prohibition was a significant factor in predicting 

injury crashes at unsignalized intersections.  

Van Maren (1980) used the number of crashes per million conflicts as the 

dependent variable, and he found that multi-lane unsignalized intersections have a lower 

number of crashes per million conflicts than the signalized ones. 

As shown by Wang and Abdel-Aty (2006), Poch and Mannering (1996) fitted a 

rear-end crash frequency model at the approach level. They analyzed 63 four-legged 

signalized and unsignalized intersections over 7 years (from 1987 till 1993) using the NB 

model. They used the number of through, right and left-turn lanes on the minor approach 

as surrogate variables for the magnitude of through, right and left-turning volumes, 

respectively. They concluded that NB formulation was an appropriate model for isolating 

traffic and geometric factors influencing crash frequency. 

A study done by Retting et al. (2003) who investigated crashes at 4 U.S. cities, 

Germantown, Tennessee; Oxnard, California; Springfield, Missouri; and Westfield, New 

Jersey, recommended some countermeasures for an improvement of stop-controlled 

intersections. They recommended that stop signs should be frequently inspected to ensure 

they are not obscured by trees or other blockings.  
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2.3 Types of Crashes Occurring at  Unsignalized Intersections and their Modeling 

Scheme 

Summersgill and Kennedy (1996), Layfield (1996), Pickering and Hall (1986), 

Agent (1988) and Hanna et al. (1976) found that the most common crashes at 

unsignalized intersections appear to be angle crashes (right-turn or through movement 

from the minor approach colliding with a through-moving vehicle on the major road) and 

rear-end crashes. Moreover, they found that single vehicle, head-on, side-swipe and left-

turn crashes were common, but were fewer in number.  

At unsignalized intersections, McCoy and Malone (1989) found that there was a 

significant increase in right-angle crashes. However, McCoy et al. (1985) concluded that 

there was no significant difference in rear-end and left-turn crash rates between 

unsignalized intersections with and without left-turn lanes. 

Chovan et al. (1994) analyzed the crash statistics of stop-controlled intersections 

having straight-crossing-path crashes. They defined those crashes as crashes in which two 

vehicles, one with right-of-way and one without, cross each other’s path perpendicularly.  

Najm et al. (2001) concluded that there were 1.72 million crossing-path crashes. 

Of these crashes, LTAP (Left Turn Across Path) crashes accounted for the largest 

percentage (47.2%), followed by SCP (Straight Cross Path) crashes (29.9%). The great 

majority of these crossing-path crashes occurred at intersections (75.1%), followed by 

driveways (21.0%). In general, they found that 41.6% of crashes occurred at signalized 

intersections, 36.3% at stop-signed intersections, and 22.1% at intersections with no 

controls or other control types. 
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The research “Strategies to Address Nighttime Crashes at Rural, Unsignalized 

Intersections, 2008” evaluated crashes for rural unsignalized intersections in the state of 

Iowa for 2001 to 2005. Results show that 26% of crashes at rural unsignalized 

intersections occur during nighttime conditions, and another 4% occur during dawn or 

dusk. Moreover, it was found that 29% of fatal and injury crashes occur during at night.  

2.4 Analysis of Unsignalized Intersections 

An example of some studies that used stepwise multiple linear regression analysis 

techniques that assume normal distribution of data is Kitto (1980). Recent studies 

assumed nonlinear distributions such as the Poisson distribution. An example of this is 

Agent (1988). Moreover, Vogt (1999) used NB models for analysis, and Bauer and 

Harwood (1996) used log-normal models in their analysis..  

Bauer and Harwood (1996) showed that the use of the Poisson distribution is only 

relevant when the variance in the crash data is equal to the mean. But, this is not the 

common case for crash data, as crash data always suffer over-dispersion, where the 

variance is much greater than the mean. Thus, the use of the Poisson distribution is not 

valid any longer, as it can result in biased estimated model coefficients and erroneous 

standard errors. The remedy for this is using the NB model, as it can overcome the over-

dispersion issue.  

Studies performed by Tijerina et al. (1994), Chovan et al. (1994) and Wang and 

Knipling (1994) were summarized in a report by Najm et al. (1995). This report provided 

further insight into the general characteristics of intersection crashes. This report 

accounted for the following variables: 

 Time of day. 
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 Lighting condition. 

 Atmospheric condition. 

 Roadway surface condition. 

 Roadway alignment. 

 Roadway profile. 

 Speed limit – the higher-profile road of the intersection is coded. 

 Relation to junction. 

 Alcohol involvement. 

 Maximum severity – police reported severity of worst-injured person. 

2.5 Safety Effectiveness of Converting Unsignalized Intersections to Signalized 

Ones 

Studies done by Datta and Dutta (1990), Datta (1991) and King and Goldblatt 

(1975) as well as the research “Effects of Signalization on Intersection Safety, 1982” 

found that the number of right-angle crashes decreased at an intersection when the traffic 

control device was changed from a stop-controlled to a traffic signal. Moreover, Agent 

(1988) concluded that there was a decrease in right-angle crash rates when a rural stop-

controlled intersection with a beacon was changed to a traffic signal.  

As for rear-end crashes, research done by Datta (1991), King and Goldblatt 

(1975) showed rear-end crash increase after signalizing their analyzed intersections. 

Datta and Dutta (1990) concluded that there was a 53% increase in rear-end crashes after 

signalization. Other research “Effects of Signalization on Intersection Safety, 1982” 

found a reduction in rear-end crash frequency after signalization.  
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2.6 Studies Using the NB Formulation 

Traditional NB models are widely used in the prediction of crash frequencies at 

intersections and have been applied extensively in various types of highway safety 

studies. These studies varied from the identification of black spots to the development of 

accident modification factors using the coefficients of the model (Miaou, 1996; Harwood 

et al., 2000; Vogt, 1999; Lord and Bonneson, 2006). The traditional NB model is 

developed using a fixed dispersion parameter (Miaou, 1996). However, as shown by 

Hauer (2001), it is not understood why a constant dispersion parameter could exist. Some 

other researchers hypothesized that the dispersion parameter has a fixed value (Miaou 

and Lord, 2003; Heydecker and Wu, 2001; Lord et al., 2005; Miranda-Moreno et al., 

2005; El-Basyouny and Sayed, 2006). Heydecker and Wu (2001) estimated varying 

dispersion parameters as a function of the locations’ covariates, such as minor and major 

traffic volumes at intersections. They concluded that the NB model with a varying 

dispersion parameter fits data better than the traditional NB model with a fixed dispersion 

parameter. Later on, it has been found that the estimated dispersion parameter of NB 

models can be affected when the data are have a small sample size and low sample mean 

(Piegorsch, 1990; Dean, 1994; Lord, 2006), and crash data are usually characterized by 

these two criteria (Lord and Bonneson, 2006). Other improvement in the NB formulation 

was done by Anastasopoulos and Mannering (2009), who examined the random-

parameters NB model, and found that it has the potential of providing a fuller 

understanding of the factors affecting crash frequency. 

The NB model is usually characterized by two parameters, the mean μ and the 

dispersion parameter α. Park and Lord (2008) used simulation to adjust the maximum 
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likelihood estimate of the NB dispersion parameter. Simulation runs were used to 

develop a relationship between the estimated and the true dispersion parameters. Also, 

Geedipally and Lord (2008) tested the effects of varying the dispersion parameter on the 

estimation of confidence intervals of safety performance functions. They concluded that 

models having a varying dispersion parameter usually produce smaller confidence 

intervals than those with a fixed dispersion parameter. Hence, varying the dispersion 

parameter α provides more precise estimates. Zhang et al. (2007) used the bootstrapped 

maximum likelihood method to estimate the dispersion parameter of the NB distribution 

while analyzing crash count data.  

In traffic safety analysis, the dispersion parameter of NB models introduced the 

role of empirical Bayes “EB” estimates. Those estimates are used to account for random 

fluctuation of crash counts. The Bayesian concept was extensively used in crash analysis. 

The primary application of it is using the EB estimates. The EB approach was originally 

developed to account for the regression-to-the-mean effect in before-and-after studies 

(e.g. Powers and Carson, 2004). Moreover, the EB estimates were used for locating black 

spot locations (Saccomanno et al., 2001). Black spot locations are those locations having 

high frequency of crashes (and especially severe crashes). Moreover, Persaud et al. 

(2009) compared the results from the EB and full Bayesian approaches while converting 

a 4-lane roadway to a 3-lane one (with a two-way left turn lane in the middle). They 

found that both results are very comparable.  

As shown in the abovementioned studies in this section, in spite of the fact that 

the Bayesian concept was extensively used in traffic safety analysis, using a reliability 

method based on full Bayesian updating to reduce the uncertainties from the predictive 
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models is not extensively applied. This was the key behind the analysis conducted in 

Chapter 5, where the NB and log-gamma likelihood functions were examined in the 

Bayesian updating procedure using informative and non-informative priors. 

2.7 Studies Analyzing Injury Severity 

Researchers have employed many statistical techniques to analyze injury severity, 

and those techniques have been used extensively in traffic safety analysis. Examples of 

those techniques are the multinomial logit, nested logit, and ordered probit models.  

Abdel-Aty (2003) used the multinomial logit, nested logit and ordered probit 

frameworks to identify those factors that affect injury severity at toll plazas. He 

concluded that the multinomial logit model produced poor results when compared to the 

ordered probit model. Moreover, it was found that the ordered probit model is better than 

the nested logit model due to its simplicity. In addition to toll plazas, the author used the 

ordered probit model to compare those factors that affect injury severity at other roadway 

locations, including roadway sections and signalized intersections.  

For the nested logit model formulation, Savolainen and Mannering (2007) 

analyzed motorcyclists’ injury severities in single and multi-vehicle crashes using nested 

logit frameworks. The used data were drawn from all police-reported motorcycle crashes 

in the state of Indiana between 2003 and 2005. They concluded that crashes were less 

severe under wet pavement conditions, near intersections, and when passengers were on 

the motorcycle. 

Shankar et al. (1996) analyzed single-vehicle injury severity on rural freeways. 

They found that the nested logit formulation fits the data well. The results showed the 
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significant effect of some rs such as environmental conditions, highway design, accident 

type, driver characteristics and vehicle characteristics. 

Nassar et al. (1994) used three nested logit models to model crash severity. These 

models were calibrated for three crash situations: single-vehicle, two-vehicle, and multi-

vehicle crashes. It was concluded that road surface condition was not significant in the 

models. They reported that bad weather conditions may alert drivers to slow down and 

keep enough spacing from other vehicles. 

For the ordered probit framework, Quddus et al. (2002) analyzed motorcycle’s 

injury severity resulting from crashes using a 9-year crash data in Singapore. An 

interesting result found is that a higher road design standard increases the probability of 

severe injuries and fatalities. Also, the authors did not find that age increase could 

increase severity. 

Hutchinson (1986) used the ordered probit modeling for studying occupants’ 

injury severity involved in traffic crashes. British crash data for 1962–1972 were used in 

the analysis, and it was concluded that passengers tend to be more seriously injured than 

drivers in non-overturning crashes, but that there is no significant difference in 

overturning crashes. 

Kockelman and Kweon (2002) used the ordered probit formulation to investigate 

the risk of different injury levels for single and two-vehicle crashes. They concluded that 

pickups and SUVs are less safe than passenger cars for single-vehicle crashes. However, 

in two-vehicle crashes, they were found them to be safer for drivers and more hazardous 

for passengers. 
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Duncan et al. (1998) used the ordered probit framework to examine occupant 

characteristics as well as roadway and environmental conditions influencing injury 

severity in rear-end crashes involving truck-passenger car crashes. Two models were 

developed, one with the main-effect exogeneous variables, and the other with interactions 

among those exogeneous variables. They found that there is an increased severity risk for 

high speed crashes, those occurring at night, for women, when alcohol is involved, and 

for crashes when a passenger car rear-ends a truck at a large differential speed between 

both of them. 

From the aforementioned studies in this section, almost no study addressed injury 

severity at unsignalized intersections. Hence, this was the introductory part for 

investigating injury severity at unsignalized intersections for exploring the effect of 

traffic and roadway covariates on crash injury severity, as will be seen in Chapter 6.  

2.8 Studies Related to Crash Prediction 

Using crash prediction models in safety studies can be found in previous literature 

(e.g., Hauer et al., 1988; Persaud and Dzbik, 1993; Sawalha and Sayed, 2006 and Abdel-

Aty and Radwan, 2000). Miaou (1994) used the NB, Poisson and zero-inflated Poisson 

models to relate roadway factors to crashes. He recommended the use of NB models 

when over-dispersion exists in the data. Ivan and O’Mara (1997) applied the Poisson 

model for predicting traffic crashes. The most significant predictors identified were the 

speed limit and annual average daily traffic “AADT”. Poch and Mannering (1996) used 

the NB formulation to predict crash frequency on certain sections of principal arterials in 

Washington State. They concluded that the NB model is a powerful predictive tool and it 

is strongly recommended to be applied in other crash frequency studies. 
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2.9 Studies Using Advanced Prediction Techniques 

Recently, researchers have proposed new pioneering statistical methods for 

modeling and predicting crashes that are very comparable to NB and Poisson models. 

Examples of those methods are neural networks (Mussone et al., 1999 and Abdelwahab 

and Abdel-Aty, 2002), Bayesian neural networks (Xie et al., 2007 and Riviere et al., 

2006) and support vector machine “SVM” (Li et al., 2008). However, neural networks 

models always suffer from their interpretation complexity, and sometimes they over-fit 

the data (Vogt and Bared, 1998). For this, Bayesian neural networks were introduced that 

can accommodate data over-fitting. For example, Xie et al. (2007) applied the Bayesian 

neural networks in predicting crashes, and found that they are more efficient than NB 

models. Also, Li et al. (2008) applied a simpler technique than the Bayesian neural 

networks, which is SVM, to data collected on rural frontage roads in Texas. They fitted 

several models using different sample sizes, and compared the prediction performance of 

those models with the NB and Bayesian neural networks models. They found that SVM 

models are more efficient predictors than both NB and Bayesian neural networks models.  

MARS is a multivariate non-parametric regression technique that was introduced 

by Friedman (1991). MARS is considered a nonparametric technique as it does not 

require any priori assumption about the form of the relationship between dependent and 

independent variables, and can reveal the required relationship in a piecewise regression 

function. This technique is effective when analyzing complex structures in the data such 

as nonlinearities and interactions. Crash data are those types of data that are characterized 

by a nonlinear relationship between the predictors and the dependent variable. Also, 
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MARS is a regression-based technique, not suffering from the “black-box” limitation, 

where the output is easily understood, and can explain the model. 

The application of MARS from the methodological point of view can be found in 

previous studies (e.g., De Veaux et al., 1996; Nguyen-Cong et al., 1996; Lahsen et al., 

2001; Put et al., 2004; Sephton, 2001; Leathwick et al., 2005; Francis, 2003 and Attoh-

Okine et al., 2003). For example, Put et al. (2004) concluded that MARS has some 

advantages compared to the more traditionally complicated techniques such as neural 

networks. Attoh-Okine et al. (2003) used the MARS technique to develop a flexible 

pavement roughness prediction model. They concluded that MARS allows easy 

interpretation of the pavement, environmental and traffic predictors found in the model. 

From the abovementioned studies in this section, it can be noted that MARS has 

promising advantages that can be implemented for improving prediction and for 

accommodating nonlinearities in crash count data, however, there was no research 

conducted to implement MARS in traffic safety to show its potential characteristics. This 

was the motivation behind the analysis conducted in Chapter 7.  

2.10 Access Management and Traffic Safety  

A study done in Ohio (1964) at 316 at-grade intersections on divided highways 

with partial or no access control analyzed annual crash occurrence as a fraction of divided 

highway and minor road AADT. It was concluded that crash frequency was more 

sensitive to minor road traffic (i.e., unsignalized access points) than to divided highway 

traffic (i.e., arterial corridors). This demonstrates the significant need to deeply analyze 

access management related to unsignalized intersections. 
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According to the FDOT Median Handbook (2006), access management is “the 

location, spacing and design of driveways, medians, median openings, signals and 

interchanges”. Thus, medians are an application of an access management design. 

According to the aforementioned handbook, restricted medians (such as directional and 

closed medians), as well as well designed median openings are known to be very 

important features in efficient highway system design. The design and placement of those 

medians and those median openings is an essential part of the access management design. 

According to the FDOT Median Handbook (2006), the benefits of installing 

medians are the following: 

1. Safety, i.e. fewer severe crashes, and less motor vehicle/pedestrian conflict. 

2. Efficiency, i.e. higher level of service, and less “stop and go” traffic. 

3. Aesthetics, i.e. more space for landscaping and pedestrian facilities, and more 

attractive arterials.  

Many studies have shown that restricted medians are of larger safety benefits than 

those unrestricted medians. One of those studies for evaluating urban multilane highways 

in Florida in 1993 (FDOT Median Handbook, 2006), revealed that the crash rate for 

restricted medians is 25% lower than those having a two-way left turn lane. This indeed 

shows the negative safety effect of installing two-way left turn lane medians. 

2.10.1 Safety of Median Openings  

A study done by Dissanayake and Lu (2003) showed that the conversion of a full 

median opening to a directional one reduced the average number of hourly conflicts by 

around 50%. Moreover, the conflict rate per thousand involved vehicles was also 

significantly reduced. Additionally, the severity of conflicts was also found to have a 
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reduction after some time period. They also found that the total average travel delay was 

significantly reduced after the median opening was converted to a directional median. 

McDonald (1953) analyzed median openings’ safety of 150 at-grade intersections 

on 180 miles of divided highways in California. He concluded that low crossroad volume 

intersections experienced higher crash rates per vehicle than did high crossroad volume 

intersections.   

Priest (1964) analyzed at-grade intersections on divided highways with partial or 

no control access. He found that crash frequency was more sensitive to crossroad traffic 

than to divided highway traffic, i.e., more sensitive to unsignalized intersection access 

points. Hence, deep investigation is needed to analyze access management at 

unsignalized intersections. 

Based on their crash data analysis at unsignalized median openings, Levinson et 

al. (2005) found that crashes related to U-turn and left-turn maneuvers occur infrequently. 

Hence, they are not of major safety concern. Also, they concluded that the average 

median opening crash rates for three-legged intersections at urban corridors are lower 

than the corresponding four-legged intersections. 

A study done by FDOT (1995) found that reductions in the number of median 

openings (i.e., reduction in the number of conflict points) along roadways resulted in 

crash rate reductions, despite the increased through traffic volume per median opening.  

According to Koepke and Levinson (1992), for median openings installation, they 

recommended that they should be set back far enough from nearby signalized 

intersections to avoid conflict with intersection queues (backward shock waves). 
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Cribbins et al. (1967) concluded that median openings do not experience high 

crash rates under some specific conditions of low vehicle volumes and wide medians. 

However, as traffic volume increases, the frequency of median openings significantly 

affects crash risk.  

The Florida DOT Median Handbook (1997) identified some important factors that 

should be considered in determining the spacing of median openings. These are 

deceleration length, queue storage, turning radius and perception/reaction distance. For 

urban arterials, Florida identified a “1070 feet” as a minimum median opening spacing.  

Harwood et al. (1995) concluded that at rural four-legged unsignalized 

intersections, crash frequency decreases with the increase in median width. At rural three-

legged unsignalized intersections, they found that there is no statistical significance 

relationship between crash frequency and median width. At urban/suburban three and 

four-legged unsignalized intersections, they showed that crash frequency increases as 

median width increases. 

From their research, Lu et al. (2005) recommended specific values for the offset 

distance for median opening (i.e., the distance between the driveway exit and the 

downstream U-turn location). For four lanes, they recommended an offset distance of 400 

feet, whereas for 6 or more lanes, they recommended 500 feet. 

2.10.2 Safety of Left-Turn Lanes 

As shown in Levinson et al. (2005), an ITE study (Traffic Safety Toolbox, 1987) 

concluded that there was a crash reduction of around 30% to 65% at unsignalized 

intersections due to the installation of left-turn lanes. Also, Gluck et al. (1999) found 

crash reduction of 50% to 77% at unsignalized intersections.  
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2.10.3 Safety of U-turns  

As shown in Levinson et al. (2005), indirect left-turns (or U-turns) are mainly 

used in many states (e.g., Florida and Michigan) as an alternative to direct left-turn 

maneuvers. For a study done in Florida, Gluck et al. (1999) concluded that there is 

around 18% to 22% reduction in crash rate by substituting direct left-turns from 

driveways with right turns followed by U-turns. In Michigan, they found a 15% to 61% 

crash rate reduction while replacing direct left-turns from driveways with right turns 

followed by U-turns.   

Potts et al. (2004) concluded that is no statistical regression relationships relating 

median opening crash frequency to the U-turn and left-turn volumes. 

2.10.4 Studies on Safety of Some Median Types 

On their analysis on intersections, Bowman and Vecellio (1994) showed that 

undivided medians are safer than two-way left turn lane medians. 

Margiotta and Chatterjee (1995) collected data for 25 highway segments in 

Tennessee including 12 median-divided segments and 13 segments with two-way left 

turn lanes. They concluded that medians had fewer crashes than do two-way left turn 

lanes. Crashes on median divided segments were more frequent at signalized 

intersections, while those on two-way left turn lane segments were more frequent at 

unsignalized intersections. Also, they found that rear-end crashes were more likely to 

occur on a median divided segment, whereas head-on crashes were more probably to 

occur on a segment with a two-way left turn lane. 
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2.10.5 Access Management Design Policies 

As indicated by the AASHTO Green Book, it reported some essential factors for 

the design policies of U-turn maneuvers at unsignalized median openings, which were: 

 Median width. 

 Traffic characteristics that include AADT and truck percentage in the fleet. 

 Crash frequency, especially angle and rear-end crashes. 

 Spatial covariate in terms of the location of median openings with respect to 

the signalized intersections. (It is worth mentioning that the spatial covariate 

in this study was explored in this study in terms of the upstream and 

downstream distances to the nearest signalized intersection from the 

unsignalized intersection of interest, as well as the distance between 

successive unsignalized intersections). 

 Presence of exclusive left-turn lanes. 

 

An access management analysis with respect to the identified median types in this 

study is shown in Chapter 8. 
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CHAPTER 3. DATA COLLECTION 

3.1 Introduction 

The data collection process is critical for obtaining good results at the analysis 

stage and for reaching valuable conclusions, which as a whole fulfill the study’s 

objectives initially specified in the introductory chapter, Chapter 1. The more extensive 

the data collection process is, the more robust the results will be. Thus, the procedures 

involved should be done in the most accurate way in order to get a very high confidence 

level for the results. 

In order to start the data collection procedure, it is first better to understand the 

FDOT’S (FDOT Map, 2007) procedure for classifying the districts in the state of Florida. 

In Florida, there are 7 districts, and 67 counties. A district is the major entity classified by 

the FDOT after the state. The second big entity is the county, which is mainly a region 

with borders, consisting of cities, towns, villages, and so on. The distribution of counties 

in each district in the state of Florida is shown in Table  3-1. Moreover, Figure  3-1 shows 

a pie chart for this distribution. 

Table  3-1: County Distribution in Each District in Florida State according to FDOT 

District 
Number of 

counties 
County name 

1 12 
Charlotte, Collier, DeSoto, Glades, Hardee, Hendry, Highlands, Lee, Manatee, 

Okeechobee, Polk and Sarasota 

2 18 
Alachua, Baker, Bradford, Clay, Columbia, Dixie, Duval, Gilchrist, Hamilton, 

Lafayette, Levy, Madison, Nassau, Putnam, St. Johns, Suwannee, Taylor and Union 

http://www.dot.state.fl.us/safety/SRTS_files/SRTSCoordinators1_18_07Map2a.gif


 

District 
Number of 

counties 
County name 

3 16 
Bay, Calhoun, Escambia, Franklin, Gadsden, Gulf, Holmes, Jackson, Jefferson, Leon, 

Liberty, Okaloosa, Santa Rosa, Wakulla, Walton and Washington 

4 5 Broward, Indian River, Martin, Palm Beach and St. Lucie 

5 9 Brevard, Flagler, Lake, Marion, Orange, Osceola, Seminole, Sumter and Volusia 

6 2 Miami-Dade and Monroe 

7 5 Citrus, Hernando, Hillsborough, Pasco and Pinellas 

 

County distribution in each district in Florida
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Figure  3-1: Pie Chart for County Distribution in Each of the 7 Districts in Florida 

 
From this chart, it is clear that district 2 has the highest percentage of counties 

(28%), followed by district 3 (24%), and district 1 (18%). District 6 has the smallest 

percentage (3%).  

Despite the fact that unsignalized intersections have less number of crashes 

compared to signalized intersections, unsignalized intersections are more frequent than 

the signalized ones. This makes the process of data collection much more difficult in the 

essence that the required sample size should be much more than that of the signalized 

intersections to accurately depict the population size.  
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In order to represent the population of 67 counties in Florida, a sample of 6 

counties was selected to represent this population. This selection was not based on the 

random selection, but was based on the geographic location in Florida, so as to represent 

the Northern, Southern, Central, Eastern and Western parts in Florida. Leon County was 

selected to represent the Northern part, Miami-Dade was selected to represent the 

Southern part, Orange and Seminole Counties were selected to represent the Central part, 

Brevard County was selected to represent the Eastern part, and finally Hillsborough 

County was selected to represent the Western part. Moreover, the selection was based on 

having a combination of both urban and rural areas, so as to make the conclusion from 

the analysis procedure valid to all types of land use, and not only leaned to a specific 

type. This indeed will lead to more robust and accurate results. It is known that Leon 

County has a high percentage of rural roads, and in addition, it has the capital of Florida, 

Tallahassee. It is to be noted that those selected counties concur with the selected 

counties in the study done by Wang (2006), who analyzed the spatial and temporal effect 

of signalized intersections in the state of Florida. 

   It was decided to collect 2500 unsignalized intersections from those 6 selected 

counties. This sample was deemed sufficient for the analysis procedure. Moreover, it was 

decided to collect 500 unsignalized intersections from Orange County, and 400 

unsignalized intersections from the other 5 counties. The following sections explain the 

initial and final data collection procedures, the list of variables (representing the 

geometric, traffic and control fields) used in data collection, some difficulties 

encountered during the data collection procedure in each selected county and some 

unfamiliar intersections captured.  
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3.2 Variables Description 

A “MS Excel” spreadsheet that lists all the required geometric, traffic and control 

fields required for getting a full understanding of the identified unsignalized intersections 

was created. There was a total of 46 variables listed in this table. It is to be noted that 

these 46 variables were not defined all at once, but the table was expanding until these 46 

variables were captured. Below is a detailed description of these 46 variables: 

 
I. Geometric fields:  

1. District: This variable shows the district number as indicated in the FDOT 

database. 

2. Roadway ID: This variable shows the state road (SR) ID as indicated in 

the FDOT database. 

3. Intersection Node: This variable shows the intersection node number as 

indicated in the FDOT database.      

4. Mile Point: This variable shows the mile post for each intersection (i.e. 

node) as indicated in the FDOT database.      

5. County: This variable shows the county name to which each analyzed 

state road belongs.  

6. County ID: This variable shows the ID of the county to which each 

analyzed state road belongs as indicated in the FDOT database. 

7. Major Road Name: This variable shows the name of the major road in the 

intersection. 

8. Minor Road Name: This variable shows the name of the minor road in the 

intersection.  
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9. Stop Sign Minor 1: This variable shows whether there is a stop sign on 

Minor 1 (“1” if it exists, “0” if it does not exist and “N/A” if not 

applicable). The main difference between “0” and “N/A” is that “0” is 

used when Minor 1 leg exists, but there is no stop sign existing, while 

“N/A” means that Minor 1 leg does not exist. 

Figure  3-2 shows the concept for identifying the 4 approaches; Major 1, Major 2, 

Minor 1 and Minor 2 while collecting data on unsignalized intersections. 
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Figure  3-2: Conceptual Road Layout for “Major 1, Major 2, Minor 1 and Minor 2” Approaches 

 

10. Stop Sign Minor 2: This variable shows whether there is a stop sign on 

Minor 2 (“1” if it exists, “0” if it does not exist and “N/A” if not 

applicable). The difference between “0” and “N/A” is the same as that 

mentioned in variable “9”. 
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11. Stop Sign Major 1: This variable shows whether there is a stop sign on 

Major 1 (“1” if it exists, “0” if it does not exist and “N/A” if not 

applicable). 

12. Stop Sign Major 2: This variable shows whether there is a stop sign on 

Major 2 (“1” if it exists, “0” if it does not exist and “N/A” if not 

applicable). 

13. Stop Line Minor 1: This variable shows whether there is a stop line (i.e. 

stop bar) on Minor 1 (“1” if it exists, “0” if it does not exist and “N/A” if 

not applicable). 

14. Stop Line Minor 2: This variable shows whether there is a stop line (i.e. 

stop bar) on Minor 2 (“1” if it exists, “0” if it does not exist and “N/A” if 

not applicable). 

15. Stop Line Major 1: This variable shows whether there is a stop line (i.e. 

stop bar) on Major 1 (“1” if it exists, “0” if it does not exist and “N/A” if 

not applicable). 

16. Stop Line Major 2: This variable shows whether there is a stop line (i.e. 

stop bar) on Major 2 (“1” if it exists, “0” if it does not exist and “N/A” if 

not applicable). 

17. Crosswalk Minor 1: This variable shows whether there is a crosswalk for 

pedestrians on Minor 1 (“1” if it exists, “0” if it does not exist and “N/A” 

if not applicable). 
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18. Crosswalk Minor 2: This variable shows whether there is a crosswalk for 

pedestrians on Minor 2 (“1” if it exists, “0” if it does not exist and “N/A” 

if not applicable). 

19. Crosswalk Major 1: This variable shows whether there is a crosswalk for 

pedestrians on Major 1 (“1” if it exists, “0” if it does not exist and “N/A” 

if not applicable). 

20. Crosswalk Major 2: This variable shows whether there is a crosswalk for 

pedestrians on Major 2 (“1” if it exists, “0” if it does not exist and “N/A” 

if not applicable). 

21. Size of Intersection: This variable shows the number of through lanes for 

both the major and minor roads, based on the normal cross-section of each 

(e.g., 2x2, 2x3 and 2x4). The first number represents the number of 

through lanes for the minor approach for both directions, and the second 

number represents the number of through lanes for the major approach for 

both directions. 

22. Type: This variable was listed as “the total number of approach lanes for 

the minor approach x the total number of through lanes for the major 

approach”. An example for this, if the minor approach configuration  for a 

three-legged unsignalized intersection has 1 right-turn approach lane, 1 

left-turn approach lane and 1 receiving lane, and the major approach has 6 

through lanes for both directions, then the type of this intersection is “3x6”. 

This variable was captured so as to relate the geometric configuration of 

the intersection to the crash pattern occurring at that specific intersection. 
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23. Number of Intersecting Legs: This variable shows the number of legs of 

the intersection (e.g. 3 legs and 4 legs). 

24. Number of Through Lanes for Major 1: This variable shows the number of 

through lanes for Major 1 approach. 

25. Number of Through Lanes for Major 2: This variable shows the number of 

through lanes for Major 2 approach. 

26. Number of Through Lanes for Minor 1: This variable shows the number of 

through lanes for Minor 1 approach. 

27. Number of Through Lanes for Minor 2: This variable shows the number of 

through lanes for Minor 2 approach. 

28. Number of Right Turn Lanes for Major 1: This variable shows the number 

of right turn lanes for Major 1 approach. 

29. Number of Right Turn Lanes for Major 2: This variable shows the number 

of right turn lanes for Major 2 approach. 

30. Number of Right Turn Lanes for Minor 1: This variable shows the number 

of right turn lanes for Minor 1 approach. 

31. Number of Right Turn Lanes for Minor 2: This variable shows the number 

of right turn lanes for Minor 2 approach. 

32. Number of Left Turn Lanes for Major 1: This variable shows the number 

of left turn lanes for Major 1 approach. 

33. Number of Left Turn Lanes for Major 2: This variable shows the number 

of left turn lanes for Major 2 approach. 
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34. Number of Left Turn Lanes for Minor 1: This variable shows the number 

of left turn lanes for Minor 1 approach. 

35. Number of Left Turn Lanes for Minor 2: This variable shows the number 

of left turn lanes for Minor 2 approach. 

36. Median Type for Major 1: This variable shows the type of median for 

Major 1 (e.g. open, directional, closed, two-way left turn lane and 

undivided). A detailed explanation of those median types is shown in the 

following sections, accompanied with some snap shots for better 

understanding. 

37. Median Type for Major 2: This variable shows the type of median for 

Major 2 (e.g. open, directional, closed, two-way left turn lane and 

undivided). 

38. Adjacent Upstream Signalized Intersection Distance for Major 1: This 

variable determines the closest upstream signalized intersection distance 

(in miles) to the specified unsignalized one with respect to Major 1. This 

distance can be written as “not applicable” (N/A) if the distance exceeds 1 

mile. Also, this variable was listed in the table with the attempt to test the 

spatial correlation of the unsignalized intersections with the nearest 

signalized intersections.    

39. Adjacent Downstream Signalized Intersection Distance for Major 1: This 

variable determines the closest downstream signalized intersection 

distance (in miles) to the specified unsignalized one with respect to Major 

1. 
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40. Adjacent Upstream Signalized Intersection Distance for Major 2: This 

variable determines the closest upstream signalized intersection distance 

(in miles) to the specified unsignalized one with respect to Major 2. It is to 

be noted that this distance is exactly the same distance as variable “38”. 

41. Adjacent Downstream Signalized Intersection Distance for Major 2: This 

variable determines the closest downstream signalized intersection 

distance (in miles) to the specified unsignalized one with respect to Major 

2. It is to be noted that this distance is exactly the same distance as 

variable “37”. 

42. Distance between Successive Unsignalized Intersections: This distance 

was specific for each roadway ID. So, the first intersection within each 

assigned roadway ID always takes a distance value of zero, and the second 

intersection takes a value of the smaller distance from the upstream or 

downstream intersection (to account for both stream sides), and so on until 

the last intersection within the same roadway ID. Then the first 

intersection in another roadway ID takes a distance value of zero, and the 

procedure continues for all the collected roadway IDs. 

43. Skewness: This variable shows the angle between the centerlines of both 

major and minor roads (e.g. 45, 60 and 90 degrees). Also, if both minor 

approaches have different angles with the major approach, it was decided 

to take the smallest angle as the skewness, so as to get the worst possible 

case. 
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II. Control fields:  

44. Major Control Type: This variable shows the traffic control type on the 

major road being considered. For unsignalized intersections on state roads, 

there will be always no traffic control on the major approach, i.e. no stop 

or yield traffic control, as this major approach always represents a traffic 

stream with no stops. However, for unsignalized intersections on non-state 

roads (i.e., three and four-way stopped-controlled intersections), there 

exists a stop sign on one or both major approaches. 

45. Minor Control Type: This variable shows the traffic control type on the 

minor road being considered (e.g. 1-way stop, 2-way stop, yield traffic 

control and no traffic control). 

 

Finally, the last variable listed in the table is: 

46. Important (Useful) Note: This indicates an important note to be included 

in the table for some unsignalized intersections that have uncommon 

characteristics. Also, it indicates special notes for some unsignalized 

intersections that have been noticed through the data collection procedure. 

 

III. Traffic fields:  

Traffic fields like AADT on the major approach as well as speed limit on the 

major approach were collected after merging the previously collected fields with the 

Roadway Characteristic Inventory (RCI) and Crash Analysis Reporting System (CAR) 

databases, as it was impossible to collect these data from “Google Earth”. Further 

explanation of how the merging procedure was done is shown  as well. 
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3.3 Median Classification 

Median classification was the hardest issue before starting the data collection 

procedure, and before coming up with the list of variables that represent all the required 

fields that will be used for collecting data. For the scope of this study, the median type on 

the major approach is to be considered for classification and analysis purposes. After 

going back and forth, it was decided to include 6 main types of medians, these are: open, 

directional, closed, two-way left turn lane, undivided and markings. It is to be noted that 

open, two-way left turn lane, undivided and markings medians are unrestricted medians; 

i.e. the vehicle from both major and minor approaches can pass through those median 

types. On the other hand, directional and closed are restricted medians, i.e. the vehicle on 

the minor approach can never pass through those two medians.   

3.3.1 Closed Median 

For the scope of this study, the unsignalized intersection that has a closed median 

on the major road is always treated as 3-legged intersection with a one-way direction on 

the major road. An example of a closed median is shown in Figure  3-3. 

  
Figure  3-3: A 2x2 Unsignalized Intersection with a Closed Median 
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From this figure, we can note that the size of the intersection is 2x2 because the 

major road just near the minor road has 2 through lanes (one-way), and the minor road 

has 2 lanes on both directions. 

3.3.2 Directional Median 

The unsignalized intersection that has a directional median on the major road is 

always treated as two 3-legged intersections. But, it is to be noted that the directional 

median can be dual (from both major directions) or one-way (from one major direction 

only). So, for the dual directional median, both major approaches in addition to one of the 

minor approaches are to be considered. An example of a dual directional median is 

shown in Figure  3-4.  

Side “a” 
Side “b” 

 
Figure  3-4: Two 2x6 Unsignalized Intersections with a Dual Directional Median 

 
From this figure, we can note that there are two 3-legged intersections; i.e. the 

two sides; “a” and “b. For side “a”, the minor road on that side in addition to the 2 major 

road approaches are considered. So, for side “a” (the first 3-legged intersection), the size 

of the intersection is 2x6. For side “b”, the minor road on that side in addition to the 2 
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major road approaches are considered. So, for side “b” (the second 3-legged intersection), 

the size of the intersection is 2x6 as well. 

An aerial photo of a one-way directional median is shown in Figure  3-5.  

 

Side “b” 

Side “a” 

Figure  3-5: An Aerial Photo of a One-Way Directional Median 

 
From this figure, we can note that there are two 3-legged intersections; i.e. sides 

“a” and “b. Side “a” can be treated as if there is a closed median, while side “b” can be 

treated as if there is a directional median. For side “a”, the minor road on that side in 

addition to the major road just near that minor road are considered. So, for side “a” (the 

first 3-legged intersection), the size of the intersection is 2x3. While for side “b”, the 

minor road on that side in addition to the 2 major road approaches are considered. So, for 

side “b” (the second 3-legged intersection), the size of the intersection is 2x6. 

3.3.3 Open Median 

The open median was the hardest type of median for classification. There was a 

confusion on how to classify an unsignalized intersection that has an open median on the 

major road and the two minor roads are existing. That is whether to classify this 

intersection as 2 “3-legged” intersections or one 4-legged intersection. Finally, it was 
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agreed to consider this type of intersection as one 4-legged intersection from the 

geometry point of view, even if the number of lanes on both major approaches exceeds 6 

lanes because there is no geometric restriction for vehicles to pass from the first minor 

road to the second minor road, crossing the whole major road width. This scope was 

considered although it was found that drivers do not intend to do this maneuver so often. 

Drivers usually risk to do this maneuver at late night when the roads are nearly empty. 

Thus, this scope was considered although this type of maneuver is very rare at daylight.  

So, unsignalized intersections with two minor roads and an open median on the 

major road are treated as a four-legged intersection from the geometric point of view. An 

aerial photo of a four-legged unsignalized intersection with an open median on the major 

road is shown in Figure  3-6.   

 
Figure  3-6: A 2x6 Four-Legged Unsignalized Intersection with an Open Median 

 

3.3.4 Two-Way Left Turn Lane Median 

An unsignalized intersection having a two-way left turn lane median on the major 

road is either treated as a 4-legged intersection if both minor roads exist, or a 3-legged 

intersection if only one minor road exists. Two aerial photos for a 3-legged unsignalized 
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intersection and a 4-legged unsignalized intersection are shown in Figures 3-7 and 3-8, 

respectively. 

 

 
Figure  3-7: A 2x4 Three-Legged Unsignalized Intersection with a Two-Way Left Turn Lane Median  

 

 
Figure  3-8: A 2x2 Four-Legged Unsignalized Intersection with a Two-Way Left Turn Lane Median 

 

3.3.5 Undivided Median 

The fifth type of medians are undivided medians. Those undivided medians are 

mainly two solid yellow lines separating directional traffic, and are most common on 

two-lane roadways. So, an unsignalized intersection having an undivided median on the 
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major road is treated as 3-legged intersection with both major road approaches in addition 

to one of the minor road approaches, and as 4-legged intersection if both minor road 

approaches exist. Two aerial photos for 3 and 4-legged unsignalized intersections with an 

undivided median on the major road are shown in Figures 3-9 and 3-10, respectively. 

 
Figure  3-9: A 2x4 Three-Legged Unsignalized Intersection with an Undivided Median 

 

 
Figure  3-10: A 2x2 Four-Legged Unsignalized Intersection with an Undivided Median 

 

3.3.6 Median with Markings 

The last type of medians are medians having yellow pavement markings. The 

main difference between those markings and undivided medians is that for markings, 
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there is a yellow restricted region just in front of the intersection, which acts as a storage 

area for left turning vehicles to stop by in case there is heavy traffic on the opposing 

direction. Those markings can act as a storage area for broken down vehicles as well. So, 

an unsignalized intersection having markings as a median on the major approach is 

treated as 3-legged intersection with both major road approaches in addition to one of the 

minor road approaches, and as 4-legged intersection if both minor road approaches exist. 

Two aerial photos for 3 and 4-legged unsignalized intersections having markings as a 

median on the major road are shown in Figures 3-11 and 3-12, respectively. 

 
Figure  3-11: A 2x2 Three-Legged Unsignalized Intersection with Pavement Markings as a Median 

 
 

 
Figure  3-12: A 2x2 Four-Legged Unsignalized Intersection with Pavement Markings as a Median 
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3.4 Initial Data Collection Procedure 

The initial data collection procedure was done by randomly selecting some 

unsignalized intersections along randomly selected SRs in Orange County using the 

“Google Earth” software. These randomly selected unsignalized intersections were 

chosen on the basis of having as many types of unsignalized intersections as possible. 

The first chosen road for the data collection process was “SR 50”, and the starting 

intersection (i.e. node) was the “SR 434/SR 50” signalized intersection. Then afterwards, 

there was an agreement to move in the westbound direction, heading towards downtown. 

While moving in the westbound direction of “SR 50”, 25 unsignalized intersections 

(including access points and driveway intersections) were randomly identified. A sample 

of these intersections is shown in Figure  3-13. 

 
Figure  3-13: Aerial Image from “Google Earth” for 7 Unsignalized Intersections along SR 50 in 

Orange County during the Initial Data Collection Procedure 

 

After identifying the 25 randomly selected unsignalized intersections along SR 

50, it was concluded that it would be extremely hard to identify the respective roadway 

ID, mile point and node number for each. As a solution, it was decided to think in the 

reverse manner (i.e. to first identify the unsignalized intersections with their 
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corresponding roadway ID, mile point and node number as indicated in the RCI database 

using the “Video Log Viewer Application”, and then to assign those intersections on 

“Google Earth”. A screen shot of the “Video Log Viewer Application” from the RCI 

database is shown in Figure  3-14. This application is an advanced tool developed by the 

FDOT, and has the advantage of capturing the driving environment through any roadway. 

Moreover, this advanced application has two important features, which are the “right 

view” and the “front view”. The “right view” option provides the opportunity of 

identifying whether a stop sign and a stop line exist or not. The “front view” feature 

provides the opportunity of identifying the median type as well as the number of lanes 

per direction more clearly. 

 
Figure  3-14: Screen Shot of the “Video Log Viewer Application” from FDOT’s RCI Database 

 

Thus, the reverse thinking just described led to the last procedure of data 

collection, which will be detailed in the next section. 
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3.5 Final Data Collection Procedure 

3.5.1 Orange County 

As previously mentioned, this procedure came up after deciding to use the RCI 

database first for identifying unsignalized intersections along state roads. The procedure 

started with Orange County; and it was noted that there are 31 state roads in Orange 

County. So, the random selection method was used for choosing some state roads until 

ending up with 500 unsignalized intersections in this county. The randomly selected state 

roads were 10, which are: SR 50, SR 434, SR 436, SR 414, SR 423, SR 426, SR 438, SR 

424, SR 482 and SR 551. The number of selected intersections on each state road is 

shown in Table  3-2.  

Table  3-2: The Used SRs, and the Corresponding Number of Unsignalized Intersections on Each of 
them in Orange County 

SR 
Number of unsignalized 
intersections on each SR 

SR 
Number of unsignalized 
intersections on each SR 

50 201 426 42 

434 39 438 35 

436 65 424 29 

414 8 482 9 

423 42 551 30 

 

Then, using the “Video Log Viewer Application” accompanied with an “MS 

Excel” spreadsheet that has all the unsignalized nodes in the whole state of Florida with 

their respective roadway ID, mile point and node number, the final data collection 

procedure was introduced. This procedure was used afterwards for collecting data 
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throughout the remaining 5 counties as well, as this procedure proved to be the most 

efficient and fastest way. It is to be noted that the previously listed variables in the “MS 

Excel” spreadsheet was used for collecting data from all the selected 6 counties. 

3.5.1.1 Difficulties Faced during the Data Collection Process 

The first difficulty encountered was the difficulty of collecting some traffic fields 

in all the 6 selected counties like AADT on the major approach as well as speed limit on 

the major approach, as previously mentioned. Thus, it has been decided that these fields 

are to be filled later on after importing the used “MS Excel” spreadsheet into the “SAS” 

software, and also importing another “MS Excel” spreadsheet from the RCI database that 

has all the required characteristics for every roadway ID and mile point. Then, a “SAS” 

code was used to merge these 2 databases by roadway ID and mile point; thus, all the 

blank fields will be filled in automatically after the merging procedure in “SAS”.       

Another difficulty encountered in Orange County was while observing the aerial 

images from “Google Earth” (e.g. visibility was not too clear to determine the required 

number of lanes, presence or lack of stop signs, stop bars,  extensive presence of trees 

that blocked the vision, etc.). As a solution, it was decided to use the website 

“http://www.live.com”; this was used when there was a difficulty in defining some fields 

that could not be identified through “Google Earth”. A screen shot of 3 unsignalized 

intersections that present some difficulties in defining their geometric characteristics is 

shown in Figure  3-15. 
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Figure  3-15: Aerial Image from “Google Earth” for 3 Unsignalized Intersections in Orange County 

where Difficulty was Encountered in Identifying their Geometry due to Tree Blockage 

3.5.2 Brevard County 

After collecting the 500 unsignalized intersections in Orange County, the data 

collection procedure proceeded in the same manner. The second selected county is 

Brevard County. There were 10 arterials used for collecting the 401 intersections in 

Brevard County. The used arterials were SRs. The used state roads, and the number of 

selected unsignalized intersections on each road are shown in Table  3-3. 

Table  3-3: The Used SRs, and the Corresponding Number of Unsignalized Intersections on Each of 
them in Brevard County 

SR 
Number of unsignalized 
intersections on each SR 

SR 
Number of unsignalized 
intersections on each SR 

3 44 46 24 

507 34 50 33 

514 30 5 80 

518 18 405 24 

519 55 A1A 59 
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3.5.2.1 Some Unfamiliar Intersections Collected 

After illustrating the SRs used in Brevard County, as well as the number of 

intersections collected on each, this section discusses some unfamiliar unsignalized 

intersections collected. Figure  3-16 shows a roundabout just on a 4-legged unsignalized 

intersection, which is an unfamiliar type. The size of the intersection in this case is “2x4”, 

and the type of median on the major approach is a two-way left turn lane. 

 
Figure  3-16: An Aerial Image from “Google Earth” for an Unfamiliar Unsignalized Intersection in 

Brevard County 

 

3.5.3 Hillsborough County 

The third selected county is Hillsborough County. There were 10 arterials (SRs) 

used for collecting 485 intersections in Hillsborough County. The used state roads, and 

the number of selected unsignalized intersections on each road are shown in Table  3-4. 
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Table  3-4: The Used SRs, and the Corresponding Number of Unsignalized Intersections on Each of 
them in Hillsborough County 

SR 
Number of unsignalized 
intersections on each SR 

SR 
Number of unsignalized 
intersections on each SR 

60 65 574 70 

39 28 580 31 

45 95 597 33 

43 68 676 10 

39 31 45 54 

 

3.5.3.1 Some Unfamiliar Intersections Collected 

Figure  3-17 shows a 4-legged unsignalized intersection, where both minor 

approaches are not on the same line, which is an unfamiliar type. The size of the 

intersection in this case is “2x4”, and the type of median on the major approach is an 

open median. 

 
Figure  3-17: First Aerial Image from “Google Earth” for an Unfamiliar Unsignalized Intersection in 

Hillsborough County 

 

Figure  3-18 shows a 4-legged unsignalized intersection, where the major 

approach has a total of 8 lanes (4 lanes per direction), which is an unfamiliar, as it is 
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rarely to see a total of 8 lanes on both directions on arterials. Usually 4 lanes per direction 

exist on interstate roads. The size of the intersection in this case is “2x8”, and the type of 

median on the major approach is an open median. 

 
Figure  3-18: Second Aerial Image from “Google Earth” for an Unfamiliar Unsignalized Intersection 

in Hillsborough County 

 

3.5.4 Miami-Dade County 

The fourth selected county is Miami-Dade County. There were 10 arterials (SRs) 

used for collecting 488 intersections in Miami-Dade County. The state roads used and the 

number of selected unsignalized intersections on each road are shown in Table  3-5. 
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Table  3-5: The Used SRs, and the Corresponding Number of Unsignalized Intersections on Each of 
them in Miami-Dade County 

SR 
Number of unsignalized 
intersections on each SR 

SR 
Number of unsignalized 
intersections on each SR 

5 36 826 22 

9 128 25 49 

817 29 90 75 

823 64 916 23 

94 35 953 27 

 

3.5.4.1 Some Unfamiliar Intersections Collected  

Figure  3-19 shows a 3-legged unsignalized intersection on a signalized one. It is 

clear that there is channelized lane, having a stop sign, for making right on the major 

approach. Thus, this intersection is not that familiar, where it is very rare to find a stop 

sign on a signalized intersection. The size of the intersection is “1x3”, and the type of 

median on the major approach is a closed median.  

 
Figure  3-19: First Aerial Image from “Google Earth” for an Unfamiliar Unsignalized Intersection in 

Miami-Dade County  
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Figure  3-20 shows a 4-legged unsignalized intersection. It can be noticed that 

there is a subway bridge just above the median, so, this intersection is not familiar. The 

size of the intersection is “2x4”, and the type of median on the major approach is an open 

median. It is noted also that there is a crosswalk crossing the major approach, without 

stopping the major road traffic, thus, it is expected to have high percentage of pedestrian 

crashes at those types of intersections. 

 
Figure  3-20: Second Aerial Image from “Google Earth” for an Unfamiliar Unsignalized Intersection 

in Miami-Dade County 

 

Figure  3-21 shows a 3-legged unsignalized intersection. The strange thing in this 

intersection is the very wide grassed median, as well as having two stop signs on this 

median for both maneuvers The size of the intersection is “2x4”, and the type of median 

on the major approach is an open median.  
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Figure  3-21: Third Aerial Image from “Google Earth” for an Unfamiliar Unsignalized Intersection in 

Miami-Dade County 

 
Figure  3-22 shows a 3-legged unsignalized intersection, where the major 

approach has a total of 8 lanes (4 lanes per direction), and the minor approach has 4 lanes 

(two approaching lanes and two receiving lanes), so, the size of the intersection is “4x8”. 

It is to be noted that this large size of intersection is an unfamiliar type. The type of 

median on the major approach is an open median.  

 
Figure  3-22: Fourth Aerial Image from “Google Earth” for an Unfamiliar Unsignalized Intersection 

in Miami-Dade County 

3.5.5 Leon County 

As previously illustrated, Leon County was selected to be representative of a rural 

county. There were 7 arterials selected for collecting 364 unsignalized intersections in 

Leon County. Those used arterials were SRs. The used state roads, and the number of 
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selected unsignalized intersections on each road are shown in Table  3-6. It is to be noted 

that the total number of collected intersections is 364, and not 400. This is attributed to 

the fact that Leon is a small county, which is much smaller than the previous 4 counties 

(Orange, Brevard, Hillsborough and Miami-Dade), so it was extremely hard to capture 

more than those 364 intersections.   

Table  3-6: The Used SRs, and the Corresponding Number of Unsignalized Intersections on Each of 
them in Leon County 

SR 
Number of unsignalized 
intersections on each SR 

SR 
Number of unsignalized 
intersections on each SR 

10 67 261 31 

20 79 263 34 

61 83 363 43 

63 27 

 

3.5.5.1 Some Unfamiliar Intersections Collected  

Figure  3-23 shows a signalized intersection, where a stop sign exists for the right 

channelized lane. This type of intersection is uncommon. The size of the intersection in 

this case is “1x2”, and the type of median on the major approach is closed. 
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Figure  3-23: First Aerial Image from “Google Earth” for an Unfamiliar Unsignalized Intersection in 

Leon County 

 
Figure  3-24 shows a 3-legged unsignalized intersection with a stop sign on the 

minor leg, where the major approach has a three-direction traffic. Each direction is 

separated from the other by a median. The size of the intersection in this case is “2x4”, 

and the type of median on the major approach is closed. 

 
Figure  3-24: Second Aerial Image from “Google Earth” for an Unfamiliar Unsignalized Intersection 

in Leon County 

 

Figure  3-25 shows a 3-legged unsignalized intersection with a stop sign on the 

minor leg, and the type of median on the major approach is directional. This directional 

median is uncommon, where the maneuver is only allowed for a left turn from the minor 

leg. The common shape of the directional median is to allow only the left-turn maneuver 
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from the major approach, and not the minor one. The size of the intersection in this case 

is “2x4”. 

 
Figure  3-25: Third Aerial Image from “Google Earth” for an Unfamiliar Unsignalized Intersection in 

Leon County 

 
Figure  3-26 shows a 3-legged unsignalized intersection with a stop sign on the 

minor leg, and the type of median on the major approach is open. This open median is 

uncommon, as there is a small-sized middle median at the centre of the median opening. 

The traditional way of designing any open median is to have a full median opening. Still, 

this median type is open, as the left-turn maneuver from both major and minor 

approaches is permitted. The size of the intersection is “2x4. 

 
Figure  3-26: Fourth Aerial Image from “Google Earth” for an Unfamiliar Unsignalized Intersection 

in Leon County 
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Figure  3-27 shows a 3-legged unsignalized intersection, where the major 

approach has a total of 6 lanes (3 lanes per direction), and the minor approach has 4 lanes 

(two approaching lanes and two receiving lanes), so, the size of the intersection is “4x6”. 

It is to be noted that this large size of intersection is an uncommon type. The type of 

median on the major approach is an open median. Moreover, the exclusive left-turn lane 

on the northbound major approach is mainly used for U-turns, while the opposing left-

turn lane on the southbound major approach can be used for either making a U-turn, or 

entering the minor leg. 

 
Figure  3-27: Fifth Aerial Image from “Google Earth” for an Unfamiliar Unsignalized Intersection in 

Leon County 

 

3.5.6 Seminole County 

The last selected county is Seminole County. There were 5 arterials selected for 

collecting 267 unsignalized intersections in Seminole County. Those used arterials were 

SRs. The used state roads, and the number of selected unsignalized intersections on each 

road are shown in Table  3-7. Once more, it is to be noted that the total number of 

collected intersections is 267, and not 400. This is attributed to the fact that Seminole is a 

small county, which is much smaller than the previous 4 counties (Orange, Brevard, 
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Hillsborough and Miami-Dade), so it was extremely hard to capture more than those 267 

intersections.   

Table  3-7: The Used SRs, and the Corresponding Number of Unsignalized Intersections on Each of 
them in Seminole County 

SR 
Number of unsignalized 
intersections on each SR 

SR 
Number of unsignalized 
intersections on each SR 

15 68 426 27 

434 73 419 21 

46 78 

 

3.5.6.1 Some Unfamiliar Intersections Collected  

Figure  3-28 shows a 3-legged unsignalized intersection (at the yellow pin), where 

the major road has a total of 6 lanes (3 lanes per direction), and the minor road has 4 

lanes (two approaching lanes and two receiving lanes), so, the size of the intersection is 

“4x6, which is an uncommon type. The type of median on the major approach is an open 

median. Moreover, with the aid of both Figures 3-28 and 3-29, it can be seen that there 

are two left-turn lanes on the southbound major approach. Actually, those two left-turn 

lanes are the extension of the exclusive left-turn lanes of the upstream signalized 

intersection. So, having 2 left-turn lanes in front of the unsignalized intersection is very 

dangerous, and can encourage many drivers to use the outer left-turn lane, which is a 

risky maneuver. It is expected to have large number of angle (left-turn) and side-swipe 

crashes at this intersection. Angle crashes can result from the conflict between the left-

turn maneuver from the southbound major approach with that through maneuver from the 
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northbound major approach. Side-swipe crashes can result from the conflict between the 

two left-turn maneuvers from the southbound major approach. 

 

 
Figure  3-28: First Aerial Image from “Google Earth” for an Unfamiliar Unsignalized Intersection in 

Seminole County 

 

 
Figure  3-29: A Further View of the Unsignalized Intersection in Figure 3-28 for Better Clarification 

of the Extension of the Two Left-Turn Lanes to the Signalized Intersection 
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Figure  3-30 shows a 4-legged unsignalized intersection, where both minor 

approaches are not on the same line, which is an unfamiliar type as well. The size of the 

intersection in this case is “2x4”, and the type of median on the major approach is a two-

way left turn lane. 

 
Figure  3-30: Second Aerial Image from “Google Earth” for an Unfamiliar Unsignalized Intersection 

in Seminole County 

 

3.6 Summary Table for the Data Collection Procedure throughout the Six 

Selected Counties 

Tables 3-8 to 3-13 present summary tables for the number of unsignalized 

intersections collected on each state road in each of the six counties, as well as the total 

number of intersections collected in each county. 
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Table  3-8: Summary Table for the Data Collection Procedure in Orange County* 

SR 
Number of unsignalized 
intersections on each SR 

SR 
Number of unsignalized 
intersections on each SR 

50 201 426 42 

434 39 438 35 

436 65 424 29 

414 8 482 9 

423 42 551 30 

 

* Total number of intersections is 500 

 

 

Table  3-9: Summary Table for the Data Collection Procedure in Brevard County* 

SR 
Number of unsignalized 
intersections on each SR 

SR 
Number of unsignalized 
intersections on each SR 

3 44 46 24 

507 34 50 33 

514 30 5 80 

518 18 405 24 

519 55 A1A 59 

 
* Total number of intersections is 401 
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Table  3-10: Summary Table for the Data Collection Procedure in Hillsborough County* 

Number of unsignalized 
intersections on each SR 

SR 
Number of unsignalized 
intersections on each SR 

SR 

60 65 574 70 

39 28 580 31 

45 95 597 33 

43 68 676 10 

39 31 45 54 

 

* Total number of intersections is 485 

 

Table  3-11: Summary Table for the Data Collection Procedure in Miami-Dade County* 

SR 
Number of unsignalized 
intersections on each SR 

SR 
Number of unsignalized 
intersections on each SR 

60 65 574 70 

39 28 580 31 

45 95 597 33 

43 68 676 10 

39 31 45 54 

 

* Total number of intersections is 488 
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Table  3-12: Summary Table for the Data Collection Procedure in Leon County* 

Number of unsignalized 
intersections on each SR 

SR SR 
Number of unsignalized 
intersections on each SR 

10 67 261 31 

20 79 263 34 

61 83 363 43 

63 27 

 

* Total number of intersections is 364 

 

 

Table  3-13: Summary Table for the Data Collection Procedure in Seminole County* 

SR 
Number of unsignalized 
intersections on each SR 

SR 
Number of unsignalized 
intersections on each SR 

15 68 426 27 

434 73 419 21 

46 78 

 

* Total number of intersections is 267 
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3.7 Preliminary Categorization of Unsignalized Intersections  

In order to classify unsignalized intersections, various steps were followed in 

order to fulfill this categorization. Following are the details of these procedures as well as 

the final categories obtained. It is to be noted that this categorization was not based on 

any data, but rather from a perspective approach. 

1) First of all, unsignalized intersections were classified based on five main 

factors. These five categories are: 

i. Classification based on the number of legs (3 and 4-legged 

intersections). 

ii. Classification based on the size of the intersection (the number of 

total approach through lanes on the major approach and the 

number of through lanes on the minor approach) (2x2, 2x4, 2x6 

and 4x4). 

iii. Classification based on land use (urban and rural). 

iv. Classification based on median type on the major approach 

(divided and undivided). 

v. Classification based on type of control on the minor approach (no 

control, yield control and stop control). 

It is to be noted that the stop control can be a “1-way stop control” and a “3-way 

stop control” on a 3-legged unsignalized intersection, and a “2-way stop control” and a 

“4-way stop control” on a 4-legged unsignalized intersection. Moreover, 2x2, 2x4, 2x6 

and 4x4 intersections were used in the categorization procedure, as they were thought to 
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be the dominant intersection sizes. So, the number of possible combinations is: 2 x 4 x 2 

x 2 x 2 x 2 = 128 categories.    

2) Secondly, after searching for previous literature on modeling crashes at 

unsignalized intersections, it was found that AADT was a significant factor 

while modeling crash frequencies occurring at unsignalized intersections. 

Examples of those studies are those done by Bauer and Harwood (1996), 

Huang and May (1991), Del Mistro (1981), Kulmala (1997) and Vogt and 

Bared (1998). Moreover, the posted speed limit on the major approach was an 

important factor, as indicated by Summersgill and Kennedy (1996), Pickering 

and Hall (1986) and Brude (1991). Hence, unsignalized intersections were 

further classified based on seven main factors. These seven categories are: 

i. Classification based on the number of legs (3 and 4-legged 

intersections). 

ii. Classification based on the size of the intersection (the number of 

total approach through lanes on the major approach and the 

number of through lanes on the minor approach) (2x2, 2x4, 2x6 

and 4x4). 

iii. Classification based on land use (urban and rural). 

iv. Classification based on median type on the major approach 

(divided and undivided). 

v. Classification based on type of control on the minor approach (no 

control, yield control and stop control). 

vi. Classification based on AADT per lane on the major approach. 
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vii. Classification based on the speed limit on the major approach. 

If the AADT to be classified into two categories (high AADT and low AADT) by 

cutting the AADT at its median, as well as classifying the posted speed into two 

categories (high speed and low speed limits), the number of  possible combinations is: 2 x 

4 x 2 x 2 x 2 x 2 x 2 x 2 = 512 categories.  

3) In order to be more specific, it was found that classifying median types on the 

major approach into two categories only was not sufficient. Thus, divided 

medians were further classified into more specific categories. These categories 

are open, directional, two-way left turn lane and closed medians. Thus, the 

seven main categories of unsignalized intersections now become: 

i. Classification based on the number of legs (3 and 4-legged 

intersections). 

ii. Classification based on the size of the intersection (the number of 

total approach through lanes on the major approach and the 

number of through lanes on the minor approach) (2x2, 2x4, 2x6 

and 4x4). 

iii. Classification based on land use (urban and rural). 

iv. Classification based on median type on the major approach (open, 

directional, two-way left-turn lane, closed and undivided). 

v. Classification based on type of control on the minor approach (no 

control, yield control and stop control). 

vi. Classification based on AADT per lane on the major approach. 

vii. Classification based on the speed limit on the major approach. 
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So, the number of possible combinations is: 2 x 4 x 2 x 5 x 2 x 2 x 2 x 2 = 1280 

categories.  

4) Then, afterwards, it was realized that this introduced number of categories 

(1280) was a relatively large number. So, this leads to the final step of 

categorization, which reveals using as few general categories as possible to 

describe nearly all dominant types of unsignalized intersections.  

Summarizing the categorization process, the final classification possibilities have 

been defined as follows: 

 Aggregated number of possible combinations = 34 categories. 

 Maximum number of possible combinations = 52 categories. 

Figures 3-31 and 3-32 show a conceptual flow diagram for the final classification 

of unsignalized intersections based on the maximum and the aggregated categories, 

respectively. 



 

 76
 

Urban* 

Yes 

Is median 
restricted? 

No 

3 legs

1-way stop No control 

2x3 2x4

Yes Is “yield” 
the traffic 
control? 

Yield control

No 

 
No control      1-way stop 

2x6

Go to 1 ** 

1-way stopNo control1-way stopNo control

Unsignalized intersections 

2x2 
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3 legs 4 legs Go to 2 ** 

No control 

2x2 2x4 2x6

1-way stop 3-way stop No control 1-way stop No control 1-way stop   

4x4

1-way stop   3-way stop  
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No control 

2x2 2x4

2-way stop 4-way stop No control 2-way stop 4-way stop 
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4-way stop   2-way stop   
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Figure  3-31:Conceptual Flow Chart for the Maximum Preliminary Number of Categories at Unsignalized Intersections 
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* The same categorization is done for rural unsignalized intersections  



 

3 legs 4 legs Go to 2 ** 

No control 

2x2 2x4, 2x6 

1-way stop 3-way stop No control 1-way stop

4x4

1-way stop   3-way stop   

1** 
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No control 

2x2, 2x4 

2-way stop 4-way stop

4x4

4-way stop   2-way stop   

2** 

Figure  3-32: Conceptual Flow Chart for the Aggregated Preliminary Number of Categories at Unsignalized Intersection
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For the maximum preliminary number of categories (as shown in Figure  3-31), 

the number of terminal nodes (leaves) in “yellow” color for urban unsignalized 

intersections is 26, but the same categorization is done for rural unsignalized 

intersections, so the total number of categorization is 26 * 2 = 52 categories. 

For the aggregated preliminary number of categories (as shown in Figure  3-32), 

the number of terminal nodes (leaves) for urban unsignalized intersections is 17, but the 

same categorization is done for rural unsignalized intersections, so the total number of 

categorization is 17 * 2 = 34 categories. It is to be noted that for the 3-legged median- 

restricted unsignalized intersections, the “2x2” and the “2x3” classification is aggregated 

together since both of them are usually found on closed and undivided medians, and there 

is not that much difference between both intersection sizes. Also, the “2x4” and the “2x6” 

classification is aggregated together since both of them are usually found on two-way left 

turn lane, open and directional medians.  

From Figures 3-31 and 3-32, it is well noticed that the “YIELD” control is used 

only as one category to summarize all crashes occurring at unsignalized intersections 

having a “YIELD” control. This “YIELD” control can be either the first traffic control or 

the second traffic control. This classification of all “YIELD” control crashes as one 

unsignalized intersection category was concluded through a detailed inspection of crash 

data for 3 years (2002 – 2004) at all the “YIELD” control types. These crash data include 

all the crashes occurring in the whole state of Florida with the exception of crashes 

occurring at freeways. The most important notes from these crash data are summarized as 

follows: 

 Total number of crashes analyzed = 745,342 crash records. 



 

 Number of “YIELD” crashes (“YIELD” is the 1st traffic control) = 3312 crashes 

(0.49%). 

 Number of “YIELD” crashes (“YIELD” is the 2nd traffic control) = 507 crashes 

(0.08%).  

 Number of crashes for a “YIELD” sign as the 2nd traffic control, and a traffic 

signal as the 1st traffic control = 238 crashes (0.04%). 

 Number of crashes for a “YIELD” sign as the 1st traffic control, and a traffic 

signal as the 2nd traffic control = 84 crashes (0.01%). 

 The highest number of “YIELD” crashes (“YIELD” is the 2nd traffic control) 

occurs at intersections. The number of crashes is 267 crash records (percentage = 

267 / 507 = 52.66%). The second highest number occurs at driveway accesses 

(15.38%). 

 The highest number of “YIELD” crashes (“YIELD” is the 1st traffic control) 

occurs at intersections. The number of crashes is 1299 crash records (percentage = 

1299 / 3312 = 39.22%). The second highest number occurs at driveway accesses 

(16.79%). 

 The number of “YIELD” crashes occurring at ramps (entrance or exit ramps) is 

very small, and can be neglected. 

Thus - from the above mentioned points - it is very obvious that crashes occurring 

at “YIELD” control types are very rare. That is why crashes occurring at “YIELD” traffic 

control are only categorized as one unsignalized intersection category. This category 

accounts for crashes occurring at a “YIELD” traffic control on on and off-ramps, on 

signalized intersections, and on unsignalized intersections (which is very rare).  
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CHAPTER 4. PRELIMINARY ANALYSIS 

The first part of the preliminary analysis conducted in this chapter deals with 

descriptive statistics plots for the 2500 collected unsignalized intersections. The used 

crash data were the 4-year crash “2003-2006” aggregated over the 4 years for each 

intersection. Figure  4-1 shows the plot of the average total crash per intersection in 4 

years “from 2003 until 2006” associated with each median type for 3 and 4-legged 

intersections. The new identified median type is the mixed median (same as the 

directional one, but allows access from one side only). It is noticed that directional, 

closed and mixed medians do not exist across from 4-legged intersections. A fast glance 

at this plot shows that the 4-legged average crashes are much higher than those for 3-

legged intersections. Also, the highest average total crashes exist at 3 and 4-legged 

intersections having open medians across from their approach. This is mainly due to the 

relatively large number of conflict patterns at open medians, when compared to other 

types.   

Average total crash per intersection associated with each median type for 
both 3 and 4-legged intersections
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Figure  4-1: Plot of the Average Total Crash per Intersection Associated with Each Median Type  
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A second plot for the average total crash per intersection in 4 years “from 2003 

until 2006” associated with each major road configuration for 3 and 4-legged 

intersections is shown in Figure  4-2. In fact, the number of 4-legged intersections existing 

on 8-lane arterials in the dataset was very limited, thus they were excluded. From this 

plot, it is noticed that as the lane configuration on the major road increases, the average 

crashes at both 3 and 4-legged intersections increase as well. This shows the hazardous 

effect of large unsignalized intersection sizes on safety, and this result conforms to the 

study done by Van Maren (1980).  

Average total crash per intersection associated with each major road 
configuration for both 3 and 4-legged intersections 
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Figure  4-2: Plot of the Average Total Crash per Intersection Associated with Each Median Type 

 

A third plot for the average total crash per intersection type in 4 years “from 2003 

until 2006” for 3 and 4-legged intersections is shown in Figure  4-3. Intersections were 

categorized into four main types, access points or driveways, ramp junctions, regular 

intersections and intersections close to railroad crossings. Regular intersections are those 

intersections with distant minor road stretches. Intersections in the vicinity of railroad 

crossings can exist either upstream or downstream the crossing. It is noted that ramp 

junctions are always 3-legged. From this plot, it is noticed that intersections close to 
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railroad crossings have the highest average, followed by regular intersections, ramp 

junctions and finally access points. Also, 4-legged intersections experience higher 

averages than the 3-legged ones. 

Average total crash per intersection type for both 3 and 4-legged 
intersections
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Figure  4-3: Plot of the Average Total Crash per Intersection Associated with Each Median Type 

 

4.1 Safety Effect of the Presence of Both Stop Sign and Line, and Stop Sign Only 

at Intersections in Orange County 

This section is testing the safety effect of the presence of both stop sign and line 

vs. a stop sign only. The main objective of this analysis is to determine whether the 

presence of both stop sign and line would help increase or decrease crash frequency at 

unsignalized intersections. The used county is Orange, since it was the first county 

collected.  

In order to perform this analysis, 4 years of data from (2003 till 2006) were used. 

Each of the 4-year data includes geometric, traffic and control fields, as previously 

indicated in Chapter 3. The total number of unsignalized intersections used is 433 

intersections, which is deemed a sufficient sample size to perform this type of analysis. 
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As previously mentioned in Chapter 3, some of those geometric, traffic and 

control fields were collected using “Google Earth” and “Video Log” applications, and the 

remaining fields were collected by merging those fields with the RCI database and the 

CAR database for each year separately. Then afterwards, all these 4 databases 

representing the 4 years were appended with each other in one database. 

 Since the collected unsignalized intersections contain both 3 and 4-legged 

intersections, thus this analysis was done for each type separately. It is to be noted that 

only stop-controlled intersections were used in the analysis. Thus, any intersection having 

yield control sign or no control was excluded from this analysis. The number of 3-legged 

unsignalized intersections for the 4-year database after excluding yield and non-

controlled intersections was 237. Of those 237 intersections, 160 intersections have both 

stop signs and lines (group 1), and 77 intersections have stop signs only, with no stop 

lines (group 2). For 4-legged unsignalized intersections, the number of unsignalized 

intersections for the 4-year database after excluding yield and non-controlled 

intersections was 58. Of those 58 intersections, 25 intersections have both stop signs and 

lines (group 1), and 33 intersections have stop signs only, with no stop lines (group 2). 

Table  4-1 shows a summary descriptive statistics for both groups for the 3 and 4-

legged stop-controlled intersections. 

Table  4-1: Summary Descriptive Statistics for Group 1 and Group 2 

3-legged stop-controlled 
intersections 

4-legged stop-controlled 
intersections 

 

Group 1 Group 2 Group 1 Group 2 
Sample size 160 77 25 33 

Total number of crashes 
through all the selected 
intersections in 4 years 

1348 485 336 319 

Average number of crashes 
per intersection in 4 years 

8.425 6.299 13.44 9.667 
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From this table, it is noticed that the total number of crashes for all the 

intersections in the 4 years as well as the average number of crashes per intersection in 

the 4 years for group 1 is more than that for group 2, for both 3 and 4-legged stop-

controlled intersections. Moreover, it is well noticed that the average number of crashes 

per intersection for 4-legged stop-controlled intersections is much higher than the 

corresponding 3-legged stop-controlled ones. This indicates that 4-legged stop-controlled 

intersections are much more hazardous than 3-legged stop-controlled intersections, as 

more conflicts are found for the 4-legged intersections, especially for through maneuvers 

crossing the whole major road width.  

This finding concurs with many studies dealing with safety of unsignalized 

intersections. For example, David and Norman (1976) as well as Bauer and Harwood 

(1996) found that four-leg intersections experienced twice as many crashes as three-leg 

intersections. On the same pattern, Harwood et al. (1995) showed that divided highway 

intersections with four legs experienced about twice as many crashes as three-leg 

intersections for narrow medians and more than five times as many crashes as for wide 

medians. Also, Hanna et al. (1976) found that in rural areas, four-leg intersections 

experienced 69 percent more crashes than three-leg intersections. Moreover, Leong 

(1973), O'Brien (1976) and David and Norman (1975) have shown that 3-legged 

unsignalized intersections are much safer than 4-legged unsignalized intersections, while 

taking into account the traffic volume parameter.  

In order to statistically compare the 2 groups, a student’s t-test (for two 

independent samples) is used to achieve this comparison. However, there are two types of 

tests existing, which are the student’s t-test assuming equal variances for 2 independent 
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samples, and the student’s t-test assuming unequal variances. In order to choose one of 

them, an F-test is initially used to test whether the 2 samples have equal variances or not.  

Following this aspect, the aforementioned procedure was done for 3-legged and 4-

legged stop-controlled intersections. For 3-legged stop-controlled intersections, the F-test 

indicated unequal variances for the two tested groups (1 and 2), as the resulted p-value 

was 0.000215. Then afterwards, the student’s t-test assuming unequal variances was 

used, and the resulted p-value (for a two-tailed distribution) was 0.042976. Thus, there is 

a sufficient evidence to indicate that there is a significant difference between the 2 groups 

at the 95% confidence level (5% significance level). This in turn indicates that group 1 

(both stop signs and stop lines exist) has a significant higher crash frequency than group 

2 (stop signs only exists). So, having both stop signs and lines for 3-legged stop-

controlled intersections is much riskier than having stop signs only.  

Although this finding is unexpected, this is mainly attributed to the fact that 

taking care of the existence of both stop signs and stop lines is always done at hazardous 

intersections. Another reason is that there were some trees blocking stop signs’ visibility 

in group’s 1 sample while collecting geometric fields in the data collection procedure. 

Those dense trees can act as visibility blockage for motorists approaching the 

intersection. Thus, in spite of having a stop line on the pavement, motorists could not 

make a full stop due to the inexistence of stop sign (from their perspective), and thus a 

crash happens, as most motorists do not consider an intersection as a stop-controlled 

intersection unless a stop sign is provided.    

For 4-legged stop-controlled intersections, the F-test indicated equal variances for 

the two tested groups (1 and 2), as the resulted p-value was 0.22262. Then, the student’s 
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t-test assuming equal variances was used, and the resulted p-value (for a two-tailed 

distribution) was 0.21175. Thus, there is not a sufficient evidence to indicate that there is 

a significant difference between the 2 groups at the 95% confidence level. So, the 

existence of both stop signs and lines for 4-legged stop-controlled intersections has 

significantly the same safety effect (in terms of crash frequency at those selected 

intersections) as having stop signs only.  

4.2 General Conclusions and Recommendations from the Analysis 

This analysis has examined the safety effect of the existence of both stop signs 

and stop lines, and stop signs only for 3-legged and 4-legged stop-controlled intersections 

in Orange County. Although it was concluded that having both stop signs and lines for 3-

legged stop-controlled intersections is significantly much riskier than having stop signs 

only, this should not be a misleading finding. The reason is that this analysis is based on 

simple statistics, and also the minor road AADT was not reflected in this analysis (since 

it was not available). And for 4-legged stop-controlled intersections, it was concluded 

that there is no significant difference between those two categories in terms of the safety 

pattern.  

Thus, as a recommendation, installing another stop sign on the left side of the 

minor road (or minor driveway, or access point) at those 3-legged stop-controlled 

intersections with both stop signs and lines is one of the safety countermeasures for 

alleviating that significant high crash occurrence. This countermeasure was examined by 

Polaris (1992), who found it to be effective in some cases. 

Also, in order to increase drivers’ awareness of the existence of stop signs, rumble 

strips can be installed at intersection approaches in order to call their attention. Figure  4-4 
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shows how rumble strips are installed on the pavement. Rumble strips are usually 

recommended for application when measures such as pavement markings or flashers 

were tried and showed failure to alleviate high crash occurrence. Moreover, rumble strips 

can be coordinated with a "STOP AHEAD" device, i.e. when the driver crosses the 

rumble strip, this control device starts flashing. More literature review about rumble strip 

usage can be found in Harwood (1993). He suggests that installing rumble strips on stop-

controlled approaches can provide a reduction of at least 50 percent in rear-end crashes as 

well as crashes involving running through a stop sign. Moreover, installing advance stop 

sign rumble strips was one of the countermeasures recommended by the research 

“Strategies to Address Nighttime Crashes at Rural, Unsignalized Intersections, 2008”.   

  
Figure  4-4: Rumble Strips Installation 

 

Finally, maintenance of stop signs should be performed at a high standard to 

ensure that their effectiveness is obtained. According to the Manual on Uniform Traffic 

Control Devices “MUTCD” criteria, stop signs should be kept clean, and visible at all 

times (at day and night). Improper signs should be replaced without delay. Special care 

should be taken to make sure that trees, shrubs, and other vegetations do not block stop 

signs.  
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CHAPTER 5. USING A RELIABILITY PROCESS TO REDUCE 

UNCERTAINTY IN PREDICTING CRASHES  

5.1 Background 

In spite of the fact that intersections constitute only a small part of the overall 

highway system, intersection-related crashes are considered high. According to the 

Florida Department of Transportation (2006), there is an average of 5 crashes at 

intersections every minute and one person dies every hour at an intersection somewhere 

in the nation. Additionally, almost one in every four fatal crashes occurs at or near an 

intersection. In 2004, Florida led the nation in intersection fatalities, where 30% of 

fatalities occurred at intersections, and in 2006, around 43% of fatalities occurred at or 

were influenced by intersections. 

This chapter deals with investigating and predicting crash frequency at 3 and 4-

legged unsignalized intersections using the NB statistical model, which helps to identify 

those geometric and traffic factors leading to crashes at those intersections. In addition, 

reducing uncertainty developed from the probabilistic NB model was explored using the 

full Bayesian updating approach by updating the estimated coefficients from the fitted 

NB models for better prediction. For the scope of this analysis, the 2-year “2003-2004” 

crash data were used for modeling purposes, and the 2-year “2005-2006” crash data were 

used for predictions and assessments. 

Statistical models are common tools for estimating safety performance functions 

of many transportation systems (Abbess et al., 1981; Kulmala, 1995; Lord, 2000; Miaou 

and Lord, 2003; Oh et al., 2003; Miaou and Song, 2005; Caliendo et al., 2007). The most 
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common probabilistic models used by transportation safety analysts for modeling motor 

vehicle crashes are the traditional Poisson and Poisson-gamma (or NB) distributions. NB 

regression models are usually favored over Poisson regression models because crash data 

are usually characterized by over-dispersion (Lord et al., 2005), which means that the 

variance is greater than the mean. The NB distribution takes care of the over-dispersion 

criterion (Hauer, 1997). Other advantages of using the NB model can be found in Park 

and Lord (2007) and Miaou and Lord (2003). 

A Bayesian formulation combines prior and current information to derive an 

estimate for the expected safety performance of that site being evaluated (Persaud et al., 

2009). Empirical Bayes and full Bayes are the two types of Bayesian approaches. 

According to Persaud et al. (2009), “the full Bayesian approach has been suggested lately 

as a useful, though complex alternative to the empirical Bayes approach in that it is 

believed to better account for uncertainty in analyzed data, and it provides more detailed 

causal inferences and more flexibility in selecting crash count distributions”. 

The analysis in the chapter aims at achieving the following objectives: 

1) Providing a crash frequency model (safety performance function) for 3 and 4-

legged unsignalized intersections using the NB statistical model. Detailed data are 

collected to identify significant factors contributing to crashes at unsignalized 

intersections. 

2) Applying the Bayesian updating approach to update not only the best estimates of 

the parameter coefficients, but also to generate full probability distributions for the 

coefficients.  
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3) Evaluating and comparing the fitted NB models before updating and the Bayesian-

structure models after updating using several criteria, like the capability of reducing 

uncertainty (“standard errors” of the fitted models were used as surrogate measure 

for “uncertainty”), the Akaike information criterion (AIC), the mean absolute 

deviance (MAD), the mean square prediction error (MSPE), and the overall 

prediction accuracy.  

5.2 Methodological Approach 

NB regression is widely used to model otherwise over-dispersed Poisson models. 

Over-dispersion can lead to biased standard errors, resulting in predictors appearing to 

significantly contribute to the model, when in fact they do not. The NB methodological 

approach can be found in previous studies (e.g., Miaou, 1994; Poch and Mannering, 

1996; Park and Lord, 2008; Saha and Paul, 2005).  

The following discussion addresses the Bayesian updating concept. For applying 

the Bayesian updating framework with the log-gamma likelihood function, the following 

equation describes the log-gamma distribution of crash frequency. 

ii
T
ii hXC

^

)exp()exp(                                                                                 (5.1) 

 
where Ci is the number of crashes, Xi is the vector of variables or uncertain parameters 

considered in the analysis,  is the vector of coefficients to these parameters,  is the 

best estimate of the crash prediction model, and hi = exp(

^



i ) is the error term that has the 

one parameter gamma distribution with mean = 1, and variance  equals the over-

dispersion parameter (= 1/

2

g ). 
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with hi > 0, g  > 0 and p( g ) = 1/ g .                                                 

 

i  = ln(hi) so that i  has a log-gamma distribution, as shown in Equation (5.3). 
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with -  < hi <  , and g  > 0, and   as the gamma function. 

 
Bayesian updating provides a framework for including subjective data, rather than 

objective data, into a probabilistic or reliability analysis. An existing state of knowledge 

regarding uncertain parameters in a model can be updated by observations that may take 

the form of actual data points, upper or lower bounds, and ranges of values. The vector of 

uncertain parameters considered in the model is denoted as. The input to and the result 

after Bayesian updating are both joint probability distributions )(f . 

The prior distribution of  is updated using the following formula: 

)()()(  pLcf                                                                                              (5.4) 
 
 
where  is the likelihood function that contains observations regarding the model 

that are used to update the prior joint distribution of parameters . The resulting 

posterior distribution of the parameters is obtained after determination of the 

normalization constant c that guarantees the joint posterior distribution normalizes to a 

unit value. 

)(L

)(p

For the log-gamma model considered in this chapter, the likelihood function is: 

)]exp()([),(
^

iig CpL                                                                       (5.5)    
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Applying Equation (5.6) in Equation (5.2) yields the following: 
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                                                                (5.7) 

The NB Bayesian model uses the same functional form as shown in Equation 

(5.1); however, the error term is described by the NB distribution.  

There are many choices of possible prior distributions )(p , making the use of 

Bayesian updating less intuitive for some. In this study, it was assumed that the error 

term was statistically independent of other parameter estimates of the NB model for 

estimating the prior distribution. In the absence of prior information, one can make use of 

a non-informative prior. Depending on the domain of parameters, Box and Tiao (1992) 

have suggested non-informative priors. As the parameters  considered in this study are 

diffuse, the non-informative prior is a constant and absorbed by the normalization 

constant c, except for the parameters describing the one-parameter log-gamma 

distribution ( g ) and negative binomial distribution ( ). These two parameters are 

limited to the positive domain; therefore the non-informative prior takes the form of 1/ g  

and 1/ , respectively. 

In this study, both non-informative and informative priors were explored. For 

both priors, two likelihood distributions were examined, the NB and log-gamma 

distributions. The non-informative prior reflects a lack of information at the beginning of 

the analysis and can be used to estimate the joint distribution of the parameters )(f . 
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Informative priors use known information and often result in lower uncertainty in the 

posterior distributions for each of the parameters being updated. As the informative prior 

distribution need not be exact to obtain accurate posterior results, it is assumed in this 

paper that the parameters follow a multinormal distribution. This was applied for the NB 

and log-gamma likelihood functions with informative priors. 

The multinormal prior distribution is specified according to: 

)]()(
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exp[
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 MMp T

n                              
(5.8)

      
 
where  is the mean parameter vector, M   is the covariance matrix so as to have a 

desirable confidence interval for the updated parameters, and n is the total number of 

parameters being estimated. 

For the case of the NB likelihood function updated using an informative prior in 

Equation (5.8), the mean parameter values were selected based on expert traffic 

engineering judgment and opinion. To illustrate this point, for example, it is expected that 

the logarithm of AADT increases crash frequency at intersections, as shown in Wang and 

Abdel-Aty (2006), hence, it was assigned a high positive sign (e.g., +1). Other new 

variables that were not examined before such as the presence of right and left turn lanes 

on the major approach were based on the engineering assessment. The presence of a right 

turn lane on each major approach is expected to reduce crash more than the existence on 

one approach only. Hence, the presence of one right turn lane on each approach was 

assigned a value of -1, and on one approach only was assigned a value of -0.5. The 

covariance matrix was assigned values that could yield a 70% confidence interval, by 
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assuming the standard deviation is equal to or greater than the parameter estimate (i.e., a 

coefficient of variation of one).  

For the log-gamma likelihood with informative prior,  is the mean parameter 

vector determined from the posterior estimates of the log-gamma likelihood with non-

informative prior, and  is the covariance matrix determined from the same posterior 

estimates. As the unsignalized intersection data were used to estimate these posterior 

statistics, a set of additional 66 three and four-legged intersection data was collected from 

a neighboring county (Seminole County) and used to populate the log-gamma likelihood 

function for the second updating (to avoid using same data twice). As an illustration, for 

the 3-legged model, the values 0, 1, 1 and 10.31 correspond to an intersection having no 

stop sign on the minor approach, one right turn lane on each major approach, one left turn 

lane on each major approach and a natural logarithm of AADT of 10.31.  

M



The difficulty in applying the Bayesian updating formula “Equation (5.4)” for a 

value of parameters with order higher than 3 is the determination of the normalization 

constant and posterior statistics. The normalization constant is computed according to, 

c  L  p  d 1

                                                                           
               

(5.9)
     

 
where the integral is over as many dimensions as the order of . Standard numerical 

integration techniques are cumbersome and not well behaved in terms of convergence, 

especially when the domain of the integrals is from -∞ to ∞. There are many numerical 

approaches for computing the posterior statistics, including crude Monte Carlo 

simulation, importance sampling, directional simulation, and Markov chain Monte Carlo 

(MCMC) simulation. 
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An importance sampling method of computing the Bayesian integrals is adopted 

in this study based on the approach taken by Gardoni et. al. (2002). The Bayesian integral 

is rewritten in a more general form as,  

 dpLWI )()()(                                                                                      (5.10) 

 
The normalization constant (c) can be calculated by setting = 1 in Equation 

(5.10). Similarly, the posterior statistics are easily found by setting  equal to c * 

)(W

)(W   

for mean of the posterior ( ), and setting M )(W  equal to c *   *  for the mean 

square. Thus, the covariance for the posterior (

T

 ) =  - . ][ TE  M M

Equation (5.10) is solved used importance sampling by letting: 

)(B =                                                                                    (5.11), and  )()()(  pLW
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where  is the importance sampling density function, and  0 whenever 

 0. The solution of the integration in Equation (5.12) is equal to the expectation of  
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Also following the recommendations of Gardoni et al. (2002), the joint sampling 

distribution is calculated based on a Nataf distribution (Nataf, 1962) with marginals and 

correlations specified for each one of the model parameters. Only the first two parameters 

of the marginals are estimated both using the method of maximum likelihoods. The mean 

is obtained from the maximum likelihood estimate of  and the covariance is obtained 

 97



 

from the negative inverse of the Hessian of the log-likelihood function, evaluated at the 

maximum likelihood estimate.  

To examine the effect before and after updating, there were two evaluations 

performed. One was based on comparing the mean estimates of the parameters, and four 

MOE criteria were used for assessment, AIC, MAD, MSPE and the overall prediction 

accuracy. AIC offers a relative measure of the information lost when a given model is 

used to describe reality. Also, AIC is used to describe the tradeoff between bias and 

variance in model construction, as well as between precision and complexity of the 

model. So, the lower the AIC, the better is the model. The MAD and MSPE criteria were 

also used in the study done by Lord and Mahlawat (2009) for assessing the goodness-of-

fit of the fitted models. Moreover, the same MOE criteria were used by Jonsson et al. 

(2009) to assess the fitted models for both three and four-legged unsignalized 

intersections. The overall prediction accuracy is estimated by dividing the total predicted 

crashes by the total observed crashes at the collected intersections. Equations (5.13) and 

(5.14) show how to evaluate MAD and MSPE, respectively.  

iiy
n

MAD  1
                                                                                           (5.13) 

 
2)(

1
iiy

n
MSPE                                                                                          (5.14) 

where n is the sample size in the prediction dataset (2005-2006); yi is the observed crash 

frequency for intersection i; and i  is the predicted crash frequency for intersection i. 

The second evaluation was done for comparing uncertainty reduction before and 

after updating. For measuring uncertainty, standard errors of the estimated and updated 

parameters were used as surrogated measure for uncertainty. 
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5.3 Description of Variables 

The data collection process was performed after identifying unsignalized 

intersections in Orange County. The CAR database retrieved from the FDOT was used to 

identify all the SRs in Orange County, and it was noted that there are 31 SRs in Orange 

County. The random selection method was used for choosing some state roads. Then, 

unsignalized intersections were identified along these randomly selected SRs using 

“Google Earth” and “Video Log Viewer Application”, hence leading to identifying 328 

unsignalized intersections in Orange County (257 three-legged and 71 four-legged). The 

“Video Log Viewer Application” requires the roadway ID for the SR, the mile point and 

the direction of travel. This application is an advanced tool developed by the FDOT, and 

has the advantage of capturing the feeling of driving along this roadway. Moreover, this 

advanced application has two important features, which are the “right view” and the 

“front view”. The “right view” option provides the opportunity of identifying whether a 

stop sign and a stop line exist or not, as these are important variables, as will be discussed 

later. The “front view” feature provides the opportunity of identifying the median type as 

well as the number of lanes per direction more clearly. 

Afterwards, all the geometric, traffic and control fields of these 328 intersections 

were filled out in a spreadsheet. These collected fields were merged with the RCI 

database for the 4 years (2003, 2004, 2005 and 2006) separately. The RCI database – 

which is developed by the FDOT -  includes physical and administrative data, such as 

functional classification, pavement, shoulder and median data related to the roadway (the 

New Web-based RCI Application). Each of these facilities is indexed by a roadway ID 

number with beginning and ending mile points. The used criteria for merging the data are 
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the roadway ID and the mile point. The crash frequency for those identified unsignalized 

intersections was determined from the CAR database. Then once more, this crash 

frequency database for the 4 years was merged with the already merged database 

(geometric, traffic and control fields with RCI database) for the 4 years separately. In this 

case, the used criterion for merging is the intersection ID. All these merging procedures 

were done using SAS (2002). In Florida, a distance of 250 feet – measured from the 

centre of the intersection - is set as the default value for “influenced by intersection” 

crashes. A full description of the important variables used in the modeling procedure for 

3 and 4-legged unsignalized intersections is shown in Table  5-1. 

From Table  5-1, it is important to note the existence of mixed medians on the 

major road (level “7”). This is shown in Figure  5-1, and it depicts one of the cases 

encountered in the data collection procedure. This case is presented to illustrate the 

complexity of the data collection phase. The intersection on the right side of the figure is 

an unsignalized intersection, where the median type on the major road is a directional 

median. The intersection on the left side of the figure is an unsignalized intersection, 

where the median type on the major road is a closed median. Since no vehicles can cross 

from one side to the other, we consider these two intersections as two 3-legged 

unsignalized intersections.  
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Figure  5-1: Mixed Median Type on the Major Road (Directional from One Side, and Closed from the 

Other Side) (Retrieved January 20, 2008, from Google Earth) 

 

From Table  5-1, the cutoff value for classifying the skewness angle into 2 

categories is 75 degrees. This value is based on previous studies (Gattis and Low, 1998; 

Wang, 2006). Wang (2006) has found that a minimum of 37 to 75 degrees will offer an 

improved line of sight. For the size of the intersection (e.g. “2x4” intersections), the first 

number indicates the number of lanes for both directions in the minor road, and the 

second number indicates the number of through lanes for both directions in the major 

road.  
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Table  5-1: Variables Description for 3 and 4-Legged Unsignalized Intersections 

Variable Description Variable Levels for 3 Legs Variable Levels for 4 Legs 

Existence of stop sign on the minor approach 
= 0; if no stop sign exists; and 

= 1; if stop sign exists 

= 1; if only one stop sign exists on one of the minor 
approaches; and 

= 2; if one stop sign exists on each minor approach 

Existence of stop line on the minor approach 
= 0; if no stop line exists; and 

= 1; if stop line exists 

= 1; if only one stop line exists on one of the minor 
approaches; and 

= 2; if one stop line exists on each minor approach 

Existence of crosswalk on the minor approach 
= 0; if no crosswalk exists; and 

= 1; if crosswalk exists 

= 0; if no crosswalk exists; and 
= 1; if only one crosswalk exists on one of the minor 

approaches; and 
Size of the intersection (the first number 

represents total number of approach lanes for the 
minor approach, and the second number 

represents total number of through lanes for the 
major approach) 

= 1; for “2x2” and “2x3” intersections; 
= 2; for “2x4” intersections; and 

= 3; for “2x6” intersections 

= 1; for “2x2” intersections; 
= 2; for “2x4” intersections; and 

= 3; for “2x6” intersections 

Number of right turn lanes on the major approach 
= 0; if no right turn lane exists;  

= 1; if one right turn lane exists on only one direction; and  
= 2; if one right turn lane exists on each direction* 

= 0; if no right turn lane exists; 
= 1; if one right turn lane exists on only one direction; 

and 
= 2; if one right turn lane exists on each direction 

Number of left turn lanes on the major approach  
= 0; if no left turn lane exists; 

= 1; if one left turn lane exists on only one direction; and 
= 2; if one left turn lane exists on each direction** 

= 0; if no left turn lane exists;  
= 1; if one left turn lane exists on only one direction; and  

= 2; if one left turn lane exists on each direction 

Number of through movements on the minor 
approach 

N/A*** 

= 1; if one through movement exists on one minor 
approach only; and 

= 2; if one through movement exists on each minor 
approach 

Median type on the major approach 

= 1; for open median; 
= 2; for directional median; 

= 3; for closed median; 
= 4; for two-way left turn lane; 

= 5; for markings in front of the intersection; 
= 6; for undivided median; and 

= 7; for mixed median (directional from one side, and 
closed from the other side) 

= 1; for open median; and 
= 4; for two-way left turn lane 

Median type on the minor approach 
= 1; for undivided median, two-way left turn lane and 

markings; and 
= 2; for any type of divided median 

= 1; for undivided median, two-way left turn lane and 
markings; and 

= 2; for any type of divided median 
   



 

Variable Description Variable Levels for 3 Legs Variable Levels for 4 Legs 

Skewness level 
= 1; if skewness angle <= 75 degrees; and 

= 2; if skewness angle > 75 degrees 
= 1; if skewness angle <= 75 degrees; and 

= 2; if skewness angle > 75 degrees 
Natural logarithm of the section annual average 

daily traffic “AADT” on the major road 
---**** --- 

Natural logarithm of the upstream distance (in 
feet) to the nearest signalized intersection from 

the unsignalized intersection of interest 
--- --- 

Natural logarithm of the downstream distance (in 
feet) to the nearest signalized intersection from 

the unsignalized intersection of interest 
--- --- 

Left shoulder width near the median on the major 
road (in feet) 

--- --- 

Right shoulder width on the major road (in feet) --- --- 
Percentage of trucks on the major road --- --- 
* One right turn lane on each major road direction for 3-legged unsignalized intersections: Two close unsignalized intersections, one on each side of the 
roadway, and each has one right turn lane. The extended right turn lane of the first is in the influence area of the second. 
** One left turn lane on each major road direction for 3-legged unsignalized intersections: One of these left turn lanes is only used as U-turn. 
*** N/A means not applicable 
**** A continuous variable 
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Figures 5-2 and 5-3 show a distribution for the frequency of intersections by some 

variables (e.g., natural logarithm of AADT and right shoulder width, respectively) at both 

3 and 4-legged intersections.     
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Figure  5-2: Distribution of Intersections by the Natural Logarithm of AADT at 3 and 4-Legged 

Intersections  
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Figure  5-3: Distribution of Intersections by the Right Shoulder Width (in “feet”) at 3 and 4-Legged 

Intersections  

 
                                                                                             
                                                                                                            



 

5.4 Data Preparation                        

The four-year databases (from 2003 until 2006) were merged into one dataset. 

The 2 initial years (2003 and 2004) of data were used for modeling the frequency of 

crashes during this period, and for predicting the frequency of crashes in 2005 and 2006 

(combined together). For the calibration dataset (2003-2004), there were 257 three-legged 

intersections with 497 total crashes, and 71 four-legged intersections with 176 total 

crashes. It was decided to use two separate models for 3-legged and 4-legged 

intersections as the attempt of having one model that includes both of them as a dummy 

variable did not show good results. Moreover, other studies (e.g. Jonsson et al., 2009) 

modeled total crash frequency and specific crash types at three and four-legged 

unsignalized intersections separately. For the scope of this chapter’s analysis, the 

modeled unsignalized intersections include only intersections having a stop sign or no 

control. So, intersections having a yield sign as the control type were not used in the 

model, as they were very rare (mostly at ramps). 

The use of the NB framework was very appropriate in this study, as it was found 

that crash frequency variance was greater than the mean (i.e., over-dispersion exists) for 

both 3 and 4-legged datasets. For the 3-legged calibration dataset, the crash frequency 

mean per intersection was 1.93, and the standard deviation was 2.35 (i.e., variance equals 

5.52). As for the 4-legged dataset, the crash frequency mean was 2.48, and the standard 

deviation was 2.88 (i.e., variance equals 8.29).  
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5.5 Fitted NB Regression Models (Safety Performance Functions) 

5.5.1 Modeling Crash Frequency at 3-Legged Intersections 

After using SAS (2002), the NB crash frequency model for 3-legged unsignalized 

intersections is shown in Table  5-2. It is to be noted that the model parameters () were 

obtained using the maximum likelihood estimation. 

Table  5-2From , it can be noticed that having a stop sign on the minor road 

increases the frequency of crashes significantly when compared to the case of having no 

stop sign (no control). While this result seems questionable, it can be explained that stop 

signs are possibly installed at hazardous intersections with relatively higher AADT 

(especially on the minor approach), but traffic volume on the minor approach was not 

used in this study due to data limitations. Therefore, intersections having a stop sign on 

the minor approach might be considered more hazardous than those with no stop sign, 

and thus crash frequency could be higher. 
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Table  5-2: NB Crash Frequency Model at 3-Legged Unsignalized Intersections 

Parameter  Variable Description Estimate 
Standard 

Error 
P-value 

Intercept   -14.4469 2.3492 <.0001 

stop_sign_mnr 1 A stop sign exists on the minor approach 0.5107 0.2297 0.0262 

stop_sign_mnr 0 No stop sign exists on the minor approach --- a   

major_RT 2 One right turn lane exists on each major road direction -0.6699 0.2659 0.0118 

major_RT 1 One right turn lane exists on only one major road direction -0.3909 0.1555 0.0119 

major_RT 0 No right turn lane exists --- a   

major_LT 2 One left turn lane exists on each major road direction 0.0648 0.1872 0.7293 

major_LT 1 One left turn lane exists on only one major road direction -0.5351 0.1814 0.0032 

major_LT 0 No left turn lane exists --- a   

dir 2 One-way major road is related to the intersection 0.3182 0.2095 0.1288 

dir 1 Two-way major road is related to the intersection --- a   

log_AADT  
Natural logarithm of the section annual average daily traffic 

on the major road 1.4084 0.2245 <.0001 

Dispersion   0.3494 0.0809  

AICb   898.29 

Rho-squaredc   0.09 
a Used base case in SAS    
b Akaike Information Criterion 
c Pseudo R-squared or McFadden’s Log-likelihood Ratio Index 
 
 

Having 2 right turn lanes on both major road directions is much safer than having 

only 1 right turn lane, as shown in the higher negative coefficient for 2 right turn lanes 

than that for 1 right turn lane, and both decrease the frequency of crashes when compared 

to having no right turn lanes. Moreover, both coefficients are statistically significant.  

In contrast to the previous finding, having 2 left turn lanes on both major road 

directions is more dangerous than having only 1 left turn lane, as shown in the positive 

coefficient for the 2 left turn lanes and the negative coefficient for the 1 left turn lane, 

when compared to having no left turn lanes. Mainly, this is because one of those 2 left 

turn lanes is used as a U-turn, which creates more traffic conflict. Moreover, the 



 

coefficient for the 1 left turn lane is statistically significant, but it is not significant for the 

2 left turn lanes. 

An odd finding is that when two-way major road is related to the unsignalized 

intersection, it is safer than when one-way major road is related to the intersection. It is 

worth mentioning that intersections with one-way major road always occur when closed 

medians exist on the major approach. The only explanation for this is that drivers coming 

from the minor approach are more attentive when both major approaches exist, while the 

opposite can happen when one of the major approaches do not exist. However, the 

coefficient is not statistically significant at the 90% confidence interval. 

As expected, increasing the logarithm of AADT on the major road increases the 

frequency of crashes. Other studies (Wang and Abdel-Aty, 2006; Lord and Persaud, 

2000; Anastasopoulos and Mannering, 2009; Chin and Quddus, 2003; Maher and 

Summersgill, 1996; Mountain et al., 1998) reached the same outcome while analyzing 

crashes at other locations. For example, Wang and Abdel-Aty (2006) has found that the 

logarithm of the AADT per lane increases the rear-end crash frequency at signalized 

intersections, and it was one of the most significant variables. The remaining 

aforementioned studies found that AADT (or AADT in thousands) increases crash 

frequency. Lord and Persaud (2000) analyzed crashes at 4-legged signalized intersections 

in Toronto, Canada from 1990 till 1995, and found AADT to be significant. Moreover, 

Anastasopoulos and Mannering (2009) used the random-parameters NB model, and 

found that AADT (in thousand vehicles) significantly increases crash frequency at rural 

interstate highways in Indiana.   
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Finally, for the dispersion parameter, it is noticed that the standard error is much 

less than the coefficient itself, indicating that the data are statistically over-dispersed (i.e. 

variance is much higher than the mean). Accordingly, choosing the NB model was 

appropriate for the data.  

5.5.2 Modeling Crash Frequency at 4-Legged Intersections 

After using SAS (2002), the NB crash frequency model for 4-legged unsignalized 

intersections is shown in Table  5-3.  

From Table  5-3, the results show that having 2 stop signs on both minor 

approaches increases the frequency of crashes significantly when compared to the case of 

having only 1 stop sign on one of the minor approaches (similar result obtained and 

explained in Table  5-2).  

Having 2 right turn lanes on both major road directions is more dangerous than 

having only 1 right turn lane, as shown in the positive coefficient for 2 right turn lanes 

and the negative coefficient for 1 right turn lane. This is attributed to the fact that in the 

case of 4-legged intersections, there is a possible conflict between through (from the 

minor approach) and right turn (on the major approach) maneuvers. Thus, as the number 

of right turn lanes increases, the probability of having a conflict increases, and this indeed 

increases the crash risk. Moreover, both coefficients are statistically significant, with 

having 2 right lanes more significant. 

Having 2 through lanes on both minor approaches significantly decreases the 

frequency of crashes due to the fact that much care is given by drivers while crossing the 

major road.  
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Table  5-3: NB Crash Frequency Model at 4-Legged Unsignalized Intersections 

Parameter  Variable Description Estimate 
Standard 

Error 
P-value 

Intercept   -13.4765 5.1569 0.009 

stop_sign_mnr 2 One stop sign exists on each minor approach 0.5636 0.2606 0.0306 

stop_sign_mnr 1 One stop sign exists on one of the minor approaches --- a   

major_RT 2 
One right turn lane exists on each major road 

direction 0.6775 0.3673 0.0651 

major_RT 1 
One right turn lane exists on only one major road 

direction -0.6274 0.3725 0.0921 

major_RT 0 No right turn lane exists --- a   

minor_through 2 
Two through movements exist on both minor 

approaches (one on each minor approach) -1.0664 0.3851 0.0056 

minor_through 1 
One through movement exists on one minor 

approach only --- a   

major_MDT 4 A two-way left turn lane median on the major road 0.4737 0.2412 0.0495 

major_MDT 1 An open median on the major road --- a   

log_AADT 
Natural logarithm of the section annual average 

daily traffic on the major road 1.3501 0.4761  0.0046 

SLDWIDTH_num  Right shoulder width on the major road (in feet) 0.0818 0.0503 0.104 

ISLDWDTH_num 
Left shoulder width near the median on the major 

road (in feet)  -0.1443 0.1023 0.1585 

Dispersion   0.2889 0.1321  

AICb   283.65 

Rho-squaredc   0.11 
a Used base case in SAS 
b Akaike Information Criterion 
c Pseudo R-squared or McFadden’s Log-likelihood Ratio Index 
 
 

Having a two-way left turn lane as a median on the major road significantly 

increases the frequency of crashes, when compared to the case of having an open median. 

This indeed shows the dangerous effect of having two-way left turn lanes. 

Increasing the logarithm of AADT on the major road increases the frequency of 

crashes. Moreover, the coefficient is statistically significant. 
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Increasing the shoulder width increases the frequency of crashes, as shown by the 

positive sign, and the coefficient is statistically significant at the 90% confidence. 

Increasing the shoulder width by 0.33 m (1 feet) increases crash frequency by e0.0818 

(1.085 crashes). 

As the left shoulder width near the median on the major approach increases, the 

frequency of crashes decreases. However, the coefficient is not statistically significant at 

the 90% confidence interval. Thus, increasing the left shoulder width near the median by 

0.33 m (1 feet) decreases crash frequency by e0.1443 (1.155 crashes). This illustrates the 

importance of having a relatively large width beside the median, so that vehicles do not 

hit medians immediately. 

5.6 Bayesian Updating Models for 3 and 4-Legged Unsignalized Intersections 

Mathematica (Wolfram Mathematica 6) was used to perform the Bayesian 

updating procedure for both the 3 and 4 legs NB model. There is no built-in code for 

executing the Bayesian updating concept. Hence, this was done by writing a code for 

estimating the posterior estimates of the parameters using the method described 

previously. The main objective was to update the distribution of the parameters in the NB 

model for more accurate prediction of crashes in 2005 and 2006, to reduce the 

uncertainty of the associated predicted crashes across all the selected intersections and to 

generate a full probability distribution for the parameters’ coefficients. Two types of 

priors were used while performing the Bayesian updating framework, the non-

informative and the informative priors, to give clear insight of various types of priors on 

the prediction performance of crashes. This will indeed lead to a more concrete 

conclusion than only attempting a specific type.  
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In this study, two different likelihood functions for each of the non-informative 

and informative priors were used, the log-gamma and NB likelihood functions. For the 

informative prior using the NB likelihood function, engineering judgment was used to 

provide values for the different parameters to be used as a starting prior. For the 

informative prior using the log-gamma likelihood function, a second iteration for 

performing the full Bayesian updating was done using the posterior estimates from the 

non-informative prior with the log-gamma likelihood function. However, to avoid using 

data twice, additional intersection data from Seminole County were used. The updated 

estimates (based on the posterior mean) using those 4 Bayesian updating structures for 

both the 3 and 4-legged models are shown in Tables 5-4 and 5-5, respectively. 
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Table  5-4: Updated Parameter Estimates for the 3-Legged Model After Using the Bayesian Updating Framework (for 4 Different Structures) 

   
Non-informative 

Prior (Log-gamma*)

(Structure 1)  

Non-informative 
Prior (NB*) 

(Structure 2) 

Informative Prior 
(NB*) 

(Structure 3) 

Second Bayesian 
Updating Iteration 

Using Posterior from 
Structure 1 (Log-

gamma *) 

(Structure 4) 

Parameter  Variable Description Estimate
Standard 

Error 
Estimate 

Standard 
Error 

Estimate 
Standard 

Error 
Estimate 

Standard 
Error 

Intercept   -7.6744 1.6073 -14.6336 2.3163 -10.449 0.8152 -9.1249 1.2869 

stop_sign_mnr 1 
A stop sign exists on the minor 

approach 0.1969 0.1687 0.526 0.2311 0.2814 0.1269 0.1626 0.1471 

stop_sign_mnr 0 
No stop sign exists on the minor 

approach 
--- a  --- a  --- a  --- a  

major_RT 2 
One right turn lane exists on each 

major road direction 0.0002 0.2462 -0.7055 0.2664 -0.8919 0.2155 0.0041 0.1999 

major_RT 1 
One right turn lane exists on only one 

major road direction -0.2317 0.108 -0.4037 0.1499 -0.3641 0.1181 -0.2193 0.1022 

major_RT 0 No right turn lane exists --- a  --- a  --- a  --- a  

major_LT 2 
One left turn lane exists on each major 

road direction -0.004 0.1454 0.07 0.1955 -0.0029 0.1647 -0.0200 0.1317 

major_LT 1 
One left turn lane exists on only one 

major road direction -0.4962 0.1315 -0.5375 0.1803 -0.6118 0.1497 -0.4863 0.1177 

major_LT 0 No left turn lane exists --- a  --- a  --- a  --- a  

dir 2 
One-way major road is related to the 

intersection 0.1585 0.1532 0.3253 0.2129 -0.0371 0.0638 0.2373 0.1311 

dir 1 
Two-way major road is related to the 

intersection ---a  ---a  ---a  --- a  



 

Second Bayesian 
Updating Iteration 

Non-informative Non-informative Informative Prior 
Using Posterior from 

   Prior (Log-gamma*)

(Structure 1)  

Prior (NB*) (NB*) 
Structure 1 (Log-

(Structure 2) (Structure 3) gamma *) 

(Structure 4) 

Standard Standard Standard Standard 
Parameter  Variable Description Estimate Estimate Estimate Estimate 

Error Error Error Error 

log_AADT  
Natural logarithm of the section annual 
average daily traffic on the major road 

(for both directions) 
0.8189 0.1538 1.4284 0.2216 1.0523 0.0727 0.9551 0.1236 

Dispersion   0.3576 0.0361 0.3738 0.0838 0.3214 0.0523 0.3212 0.0269 

AICb   106.85 540.12 549.17 48.69 

DICc   106.40 539.75 542.91 35.69 
*Used likelihood function 
a Base case 
b Akaike Information Criterion 
c Deviance Information Criterion 
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Table  5-5: Updated Parameter Estimates for the 4-Legged Model After Using the Bayesian Updating Framework (for 4 Different Structures) 

   
Non-informative 

Prior (Log-gamma*)

(Structure 1)  

Non-informative 
Prior (NB*) 

(Structure 2) 

Informative Prior 
(NB*) 

(Structure 3) 

Second Bayesian 
Updating Iteration 

Using Posterior from 
Structure 1 (Log-

gamma *) 

(Structure 4) 

Parameter  Variable Description Estimate
Standard 

Error 
Estimate 

Standard 
Error 

Estimate 
Standard 

Error 
Estimate 

Standard 
Error 

Intercept   -5.3639 2.6324 -14.0285 5.6094 -11.4059 3.3946 -9.8359 2.0104 

stop_sign_mnr 2 
One stop sign exists on each minor 

approach 0.5567 0.2225 0.5799 0.2748 0.5012 0.2143 0.3355 0.1984 

stop_sign_mnr 1 
One stop sign exists on one of the 

minor approaches --- a --- --- a  --- a  --- a  

major_RT 2 
One right turn lane exists on each 

major road direction 0.4828 0.3193 0.6839 0.4379 1.083 0.2358 0.5388 0.2755 

major_RT 1 
One right turn lane exists on only one 

major road direction -0.2075 0.3027 -0.6384 0.391 -1.028 0.2774 -0.286 0.2473 

major_RT 0 No right turn lane exists --- a --- --- a  --- a  --- a  

minor_through 2 
Two through movements exist on both 
minor approaches (one on each minor 

approach) 
-1.2026 0.3475 -1.0578 0.4379 -0.602 0.2025 -1.1567 0.2807 

minor_through 1 
One through movement exists on one 

minor approach only --- a --- --- a  --- a  --- a  

major_MDT 4 
A two-way left turn lane median on the 

major road 0.5101 0.2049 0.4874 0.2486 0.2217 0.1217 0.3732 0.1464 

major_MDT 1 An open median on the major road ---a --- ---a  ---a  --- a  

log_AADT  
Natural logarithm of the section annual 
average daily traffic on the major road 

(for both directions) 
0.6270 0.2412 1.3995 0.5127 1.1693 0.3118 1.0465 0.1838 
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Second Bayesian 
Updating Iteration 

Non-informative Non-informative Informative Prior 
Using Posterior from 

   Prior (Log-gamma*)

(Structure 1)  

Prior (NB*) (NB*) 
Structure 1 (Log-

(Structure 2) (Structure 3) gamma *) 

(Structure 4) 

Standard Standard Standard Standard 
Parameter  Variable Description Estimate Estimate Estimate Estimate 

Error Error Error Error 

SLDWIDTH_num  
Right shoulder width on the major road 

(in feet) 0.0802 0.0402 0.0826 0.0567 -0.0029 0.0092 0.0936 0.0325 

ISLDWDTH_num  
Left shoulder width near the median on 

the major road (in feet) -0.0657 0.0763 -0.1728 0.1145 -0.1618 0.072 -0.0912 0.0631 

Dispersion   0.3521 0.066 0.4218 0.1779 0.3717 0.1582 0.2696 0.0345 

AICb   111.26 184.15 190.1 42.96 

DICc   112.67 184.02 180.37 30.52 
*Used likelihood function 
a Base case 
b Akaike Information Criterion 
c Deviance Information Criterion 
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5.6.1 Evaluating NB and Bayesian Models Using Mean Estimates of Parameters 

When comparing Tables 5-2 and 5-4, and Tables 5-3 and 5-5, the coefficients’ 

estimates using the non-informative and informative priors with NB as the likelihood 

function are close to those before updating. On the other hand, using the non-informative 

prior with log-gamma as the likelihood function, as well as the second Bayesian iteration 

structure led to different coefficients, due to using a different likelihood function (log-

gamma) other than the NB link function initially utilized to fit the parameters before 

updating. Moreover, from Tables 5-4 and 5-5, it is noticed that structure 4 led to the least 

standard errors (bolded values) for all the parameters, compared to the other three 

structures. 

It is noted that the Bayesian model with structure 4 (with log-gamma as the 

likelihood function) is the best Bayesian-structure model, since it has the lowest AIC 

value. The AIC value for structure 4 after applying the Bayesian updating framework 

equals 48.69 for the 3-legged model, and 42.96 for the 4-legged model. The other three 

MOE values (MAD, MSPE and the overall prediction accuracy) for the 5 models (before 

and after updating) for both 3 and 4-legged models are shown in Tables 5-6 and 5-7, 

respectively. 

  



 

Table  5-6: MOE Values for the Five 3-Legged Models (Before and After Bayesian Updating) 

 
Before Bayesian 

Updating 
After Bayesian Updating 

MOE 
NB Model 

Before 
Updating 

Non-informative 
Prior (Log-gamma) 

(Structure 1) 

Non-
informative 
Prior (NB) 

(Structure 2) 

Informative 
Prior (NB) 

(Structure 3) 

Second Bayesian 
Updating 

Iteration Using 
Posterior from 

Structure 1 (Log-
gamma ) 

(Structure 4) 
MAD 1.39 1.41 1.38 1.35 1.38 
MSPE 3.50 3.03 3.33 3.41 2.99 
Overall 

Prediction 
Accuracy 

0.78 0.95 0.85 0.74 0.97 

 

 

Table  5-7: MOE Values for the Five 4-Legged Models (Before and After Bayesian Updating) 

 
Before Bayesian 

Updating 
After Bayesian Updating 

MOE 
NB Model 

Before 
Updating 

Non-informative 
Prior (Log-gamma) 

(Structure 1) 

Non-
informative 
Prior (NB) 

(Structure 2) 

Informative 
Prior (NB) 

(Structure 3) 

Second Bayesian 
Updating 

Iteration Using 
Posterior from 

Structure 1 (Log-
gamma ) 

(Structure 4) 
MAD 1.79 1.79 1.80 1.80 1.71 
MSPE 5.55 4.98 5.52 6.33 4.98 
Overall 

Prediction 
Accuracy 

0.68 0.92 0.71 0.81 0.84 

 

From Table  5-6, the best overall model for prediction is the Bayesian model with 

structure 4, as it has the second least MAD, least MSPE and the highest overall prediction 

accuracy. Also, the second best model in prediction accuracy is the Bayesian model with 

structure 1. From Table  5-7, the two best models are structures 1 and 4 (for the log-

gamma likelihood function). It can be noted that structure 1 has the highest overall 

prediction accuracy (0.92), followed by structure 4 (0.84); however, structure 4 was 

deemed the best Bayesian-structure model, as it has a lower MAD value and there is little 

difference between both prediction accuracies. This indeed demonstrates the importance 
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of using the log-gamma likelihood function as a valid distribution for updating the 

parameters. Moreover, these results show the significant effect of applying the Bayesian 

updating approach to increase the prediction accuracy, and reduce the AIC, MAD and 

MSPE. 

The plot of the residuals (the difference between the actual and predicted crash 

frequencies at each intersection) against one of the key covariates (Log_AADT on the 

major road) for both 3 and 4-legged intersections is shown in Figures 3 and 4, 

respectively. This plot was obtained by arranging the residuals in an increasing order for 

the “Log_AADT” covariate. The indication that the model has a good fit for the key 

covariate happens when the residuals oscillate around the value of zero, and the residuals 

are not widely spread. From these two plots, it is noticed that the structures 1 and 4 

(structure 4, shown in thicker line weight) have the least spread among all other 

structures. For example, for 3-legged intersections, the residuals for structures 1 and 4 

range from around -3 till 4.8. These results show the significant effect of applying the 

Bayesian updating approach to reduce the spread of the residuals, with the log-gamma 

likelihood function being the best Bayesian updating structure. 

Plot of the residuals (x-axis) vs. Log_AADT on the major road (y-axis) 
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Figure  5-4: Plot of the Residuals vs. Log_AADT on the Major Road at 3-Legged Unsignalized 

Intersections  
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Plot of the residuals (x-axis) vs. Log_AADT on the major road (y-axis) 
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Figure  5-5: Plot of the Residuals vs. Log_AADT on the Major Road at 4-Legged Unsignalized 

Intersections 

 

5.6.2 Evaluating NB and Bayesian Models Using Uncertainty Estimates 

To assess one of the main objectives in this chapter, which is reducing uncertainty 

from those probabilistic models, a comparison between the standard errors (a surrogate 

measure for uncertainty) for those fitted parameters from the fitted NB model before 

updating and those for the best Bayesian-structure model (structure 4) after updating the 

parameters for both 3 and 4-legged models is shown in Tables 5-8 and 5-9, respectively. 
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Table  5-8: Assessing Uncertainty Reduction After Applying the Bayesian Updating Framework for 
Structure 4 by Comparing Standard Errors Before and After Updating for the 3-Legged Model 

Parameter  Variable Description 
Standard Error 

(Before Updating) 

Standard Error 
for Structure 4 

(After Updating)
% Change* 

Intercept   2.3492 1.2869 -45.22 

stop_sign_mnr 1 A stop sign exists on the minor approach 0.2297 0.1471 -35.96 

major_RT 2 
One right turn lane exists on each major road 

direction 0.2659 0.1999 -24.82 

major_RT 1 
One right turn lane exists on only one major road 

direction 0.1555 0.1022 -34.28 

major_LT 2 
One left turn lane exists on each major road 

direction 0.1872 0.1317 -29.65 

major_LT 1 
One left turn lane exists on only one major road 

direction 0.1814 0.1177 -35.12 

dir 2 One-way major road is related to the intersection 0.2095 0.1311 -37.42 

log_AADT  
Natural logarithm of the section annual average 

daily traffic on the major road 0.2245 0.1236 -44.94 

*Negative sign indicates an uncertainty reduction after applying the Bayesian updating framework 

 
Table  5-9: Assessing Uncertainty Reduction After Applying the Bayesian Updating Framework for 
Structure 4 by Comparing Standard Errors Before and After Updating for the 4-Legged Model 

Parameter  Variable Description 
Standard Error 

(Before Updating)

Standard Error 
for Structure 4 

(After Updating)
% Change*

Intercept   5.1569 2.0104 -61.02 

stop_sign_mnr 2 One stop sign exists on each minor approach 0.2606 0.1984 -23.87 

major_RT 2 
One right turn lane exists on each major road 

direction 0.3673 0.2755 -24.99 

major_RT 1 
One right turn lane exists on only one major 

road direction 0.3725 0.2473 -33.61 

minor_through 2 
Two through lanes exist on both minor 

approaches (one on each minor approach) 0.3851 0.2807 -27.11 

major_MDT 4 
A two-way left turn lane median on the major 

road 0.2412 0.1464 -39.30 

log_AADT  
Natural logarithm of the section annual 
average daily traffic on the major road 0.4761 0.1838 -61.39 

SLDWIDTH_num  
Right shoulder width on the major road (in 

feet) 0.0503 0.0325 -35.39 

ISLDWDTH_num  
Left shoulder width near the median on the 

major road (in feet) 0.1023 0.0631 -38.32 

*Negative sign indicates an uncertainty reduction after applying the Bayesian updating framework 
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From Tables 5-8 and 5-9, it is noticed that there is an uncertainty reduction after 

updating those parameters for both the 3 and 4-legged models. There is always a standard 

error reduction for all the fitted parameters in both models. The highest uncertainty 

reduction (highlighted) for the parameters (other than the intercept) in the 3-legged model 

is 44.94%, whereas for the 4-legged model is 61.39%. Thus, in conjunction with previous 

findings in this study, the importance of using the log-gamma likelihood function as a 

valid distribution for updating the parameters is assessed. 

5.7 General Conclusions from the Reliability Process in Terms of the Bayesian 

Updating Framework 

The analysis performed in this chapter used a coordinated application of the NB 

model, as well as a reliability method (in terms of the full Bayesian updating framework) 

for reducing uncertainty in predicting crash frequency at 3-legged and 4-legged 

unsignalized intersections. A broad exploration of both non-informative and informative 

priors was conducted using both the NB and the log-gamma likelihood functions. 

Moreover, a second Bayesian updating iteration was explicitly investigated in terms of 

the informative prior with the log-gamma likelihood function. 

The fitted NB regression models (before updating) showed several important 

variables that affect the safety of unsignalized intersections. These include the traffic 

volume on the major road and the existence of stop signs, and among the geometric 

characteristics, the configuration of the intersection, number of right and/or left turn 

lanes, median type on the major road, and left and right shoulder widths. 

It was concluded that all the four Bayesian-structure models (after updating) 

perform much better than before updating (NB model). Measuring uncertainty was done 
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using a surrogate measure of the parameters’ standard error. The second Bayesian 

updating using the log-gamma likelihood function (structure 4) was deemed the best 

structure by having the least standard error values. The highest uncertainty reduction for 

structure 4 for the 3-legged model is around 45%, and that for the 4-legged model is 

around 61%. 

Other assessment criteria (such as the AIC, MAD, MSPE and overall prediction 

accuracy) demonstrated the significant effect of structure 4 as being the best Bayesian-

structure model. Structure 4 succeeded in producing a 97% prediction accuracy for the 3-

legged model, and an 84% prediction accuracy for the 4-legged model. The plot of the 

“residuals” against “Log_AADT on the major road” showed that structure 4 has the least 

spread when compared to the other three structures, and before updating as well. 

Thus, the findings from this chapter point to that the log-gamma likelihood 

function is strongly recommended as a robust distribution for updating the parameters of 

the NB probabilistic models. Also, results from this study show that the full Bayesian 

updating framework for updating parameter estimates of probabilistic models is 

promising. However, the use of the estimates from the NB regression models (without 

updating) led to favorable results, where the prediction accuracy was 78% for the 3-

legged model, and 68% for the 4-legged model. Thus, traffic safety researchers and 

professionals are recommended to use parameter estimates from the NB regression model 

for prediction purposes, but the prediction accuracy will not be as high as after updating 

those estimates using the full Bayesian method with the log-gamma likelihood function. 
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CHAPTER 6. CRASH INJURY SEVERITY ANALYSIS  

6.1 Background 

According to the Florida Department of Transportation (2006), almost one in 

every four fatal crashes occurs at or near an intersection. In 2004, Florida led the nation 

in intersection fatalities, where 30% of fatalities occurred at intersections. Identifying 

those geometric and traffic factors leading to severe crashes at unsignalized intersections 

is an essential task of traffic safety analysts. This helps identify appropriate 

countermeasures for any observed safety deficiency. Crash injury severity is considered 

the most serious crash outcome, which is the core of this paper.  

The analysis conducted in this chapter focuses on analyzing crash injury severity 

with respect to its inherently ordered nature, not its frequency. The most common 

statistical frameworks for analyzing crash severity are multinomial logit, ordered probit 

and nested logit models (Abdel-Aty, 2003; Savolainen and Mannering, 2007 and Chang 

and Mannering, 1999). The use of the ordered probit model formulation in this study was 

deemed more beneficial than multinomial logit and probit models for while accounting 

for the categorical nature of the dependent variable, they do not account for the ordinal 

nature of the modeled response categories (Duncan et al., 1998), which can be a serious 

issue. 

In this chapter, crash injury severity is analyzed at 1547 three-legged and 496 

four-legged unsignalized intersections (i.e., a total of 2043 intersections, including stop-

controlled, yield-controlled and non-controlled intersections) in the state of Florida in 4 

years (from 2003 till 2006) using the ordered probit, binary probit and nested logit 
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methodologies. Florida’s six counties (Orange, Hillsborough, Brevard, Seminole, Leon 

and Miami-Dade) were used in the analysis. 

Thus, the main objective of the analysis in this chapter is to identify the 

significant factors contributing to injury severity at unsignalized intersections. This helps 

identify those geometric, traffic and driver-related factors leading to severe crashes at 

those intersections. A comparison between the three formulations is attempted to select 

the best modeling scheme for analyzing crash injury severity at unsignalized 

intersections. Finally, some countermeasures are recommended as a remedy for 

alleviating some safety problems identified. 

6.2 Methodological Approach: Probit Model Specification 

 Bliss (1935) introduced Probit models. Ordered probit models are types of probit 

models, which assume standard normal distribution for the parameters. Similar to many 

models for qualitative dependent variables, the ordered probit model is originated from 

bio-statistics (Aitchison and Silvey, 1957). It was brought into the social sciences by the 

two political scientists, McKelvey and Zavoina (1975). 

The modeled response variable (crash injury severity) is inherently ordered with 

five main categories, no injury or property damage only (PDO), possible injury, non-

incapacitating injury, incapacitating injury and fatal (within 30 days). Thus, the response 

variable y takes the following ordered values: 
















)30(;5

;4

;3

;2

;1

accidenttheafterdayswithininjuryfatalaislevelseverityinjuryaccidenttheif

injurytingincapacitaanislevelseverityinjuryaccidenttheif

injurytingincapacitaonnaislevelseverityinjuryaccidenttheif

injurypossibleaislevelseverityinjuryaccidenttheif

PDOaislevelseverityinjuryaccidenttheif

y

 

 125

http://en.wikipedia.org/wiki/Chester_Ittner_Bliss


 

For the aggregated binary probit model, incapacitating injury and fatal injury were 

combined to represent severe injuries, whereas non-severe crash level included PDO, 

possible injury and non-incapacitating injury. The reason for this aggregation is to 

increase the number of observations to reduce the variability caused by random effects 

(Chang and Mannering, 1999). This is essential since the data used in this study had too 

few observations on incapacitating and fatal injuries to set apart their individual effects. 

Thus, the response variable y takes the following binary values: 



 


severeisaccidenttheif

severenonisaccidenttheif
y

;1

;0
 

The ordered probit models have come into fairly wide use as a framework for 

analyzing such response variables. The ordered choice model assumes the relationship to 

be as shown in Equations (6.1) and (6.2). 
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where:  is the probability that subject (intersection) n (n = 1, 2, ---, N) belongs to 

category j (with N = total number of intersections); 

)( jPn

J is the total number of categories; 
 

j  is a specific parameter (to be estimated with  );  

 
Xn is a vector of measurable characteristics specific to subjects (intersections); 
 
  is a vector of estimated coefficients; and  
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  is a shape parameter parameter that controls the cumulative probability distribution F. 

(For an ordered probit model, the assumed cumulative probability distribution F is the 

cumulative standard normal distribution Φ).   

The marginal effects (also called elasticities, as shown by Chang and Mannering, 

1999) are equivalent to the partial derivative of the expectation of the targeted response 

variable with respect to the vector of covariates (X). Assuming that the used model is: 

  TXY                                                                                                       (6.3) 
 

Thus, the expectation of the target response variable Y is F( ), i.e. E(Y) = 

F( ). For ordered probit models, E(Y) = Φ( ), and the marginal effects can be 

estimated as shown in Equation (6.4).  
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It is worth mentioning that the nested logit framework was also examined in this 

chapter, and the nested logit model formulation can be found in previous literature (e.g., 

Chang and Mannering, 1999; Ben-Akiva and Lerman, 1985; Abdel-Aty and Abdelwahab, 

2004; McFadden, 1978 and McFadden, 1981).   
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6.3 Data Preparation 

The analysis done in this chapter was performed on 2043 unsignalized 

intersections collected from six counties in the state of Florida. The CAR database 

maintained by the FDOT was used to identify all SRs in those 6 counties. Then, a random 

selection method was used for choosing some state roads. Unsignalized intersections 

were then identified along these randomly selected SRs using “Google Earth” and “Video 

Log Viewer Application”. In order to use the “Video Log Viewer Application”, the 

roadway ID for the used SR, the mile point and the direction of travel should be 

specified. This application is an advanced tool developed by FDOT, and has the 

advantage of capturing the driving environment through the roadway. Moreover, this 

advanced application has two important features allowing different video perspectives, 

the “right view” and the “front view”. The “right view” feature provides the opportunity 

of identifying whether a stop sign and a stop line exist or not. The “front view” feature 

provides the opportunity of identifying the median type as well as the number of lanes 

per direction more clearly. 

Afterwards, all the geometric and control fields of the collected intersections were 

identified and added to the database. These collected fields were then merged with the 

RCI database to capture those important traffic (such as annual average daily traffic and 

percentage of trucks) and roadway (such as right shoulder width, left shoulder width and 

median width) features. The RCI database – which is developed by the FDOT -  includes 

physical and administrative data, such as functional classification, pavement, shoulder 

and median data related to the roadway (the New Web-based RCI Application). Each of 

these facilities is indexed by a roadway ID number with beginning and ending mile 
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points. The criteria used for merging the two databases (intersections and RCI) were the 

roadway ID and the mile point. The merging procedure was done using SAS (2002).  

Crash data for the 4 years used in the analysis were collected from the CAR 

database. In order to capture the most important crash variables (e.g., crash injury 

severity), the 2043 intersections from the 6 counties were merged with crash data from 

2003 till 2006. The criteria used for merging purposes were the roadway ID, mile point, 

and intersection node number. The final merged dataset has 10722 observations, with 

6808 observations (63.5%) representing 3-legged unsignalized intersections, and 3914 

observations (36.5%) representing 4-legged unsignalized intersections. 

For the 3-legged dataset, the percentages of the five injury levels were as follows, 

42.14% PDO, 27.7% possible injury, 21.71% non-incapacitating injury, 7.48% 

incapacitating injury, and 0.97% fatal. This means that there are 91.55% non-severe 

injuries, and 8.45% severe injuries.  

For the 4-legged dataset, the percentages of the five injury levels were as follows, 

47.34% PDO, 25.52% possible injury, 19.09% non-incapacitating injury, 7.15% 

incapacitating injury, and 0.89% fatal. In other words, there are 91.96% non-severe 

injuries, and 8.04% severe injuries.  

6.4 Variables’ Description 

It was decided to use two separate models for 3-legged and 4-legged intersections 

as both intersection types have different operating characteristics. A full description of 

the important variables used in the ordered and binary probit, and nested logit modeling 

procedure for 3 and 4-legged unsignalized intersections is shown in Table  6-1. 
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This analysis conducted in this chapter is considered comprehensive since it 

explores new important roadway and traffic covariates that were not examined before. 

Examples of those new roadway covariates are the existence of crosswalks on the minor 

and major approaches, effect of various minor approach control types (e.g., stop sign, no 

control and yield sign), various sizes of intersections, intersection type (whether it is a 

regular unsignalized intersection, access point or ramp junction), various median types on 

the major approach (open, closed, two-way left turn lane, etc.), distance between 

unsignalized intersections and signalized ones (from both the upstream and downstream 

aspects), distance between successive unsignalized intersections, and left (or median) 

shoulder width.  

Regular unsignalized intersections are those intersections having longer segments 

(distant stretches) on the minor approaches, whereas access points include parking lots at 

plazas and malls, and driveways that are feeding to the major approach. An important 

traffic covariate explored is the surrogate measure for AADT on the minor approach, 

which is represented by the number of through lanes on this approach. The AADT on the 

minor approaches was not available for most of the cases, since they are mostly non-state 

roads. Another traffic covariate explored is the percentage of trucks in the fleet. 
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Table  6-1: Variables Description for 3 and 4-Legged Unsignalized Intersections * 

Variable Description Variable Levels for 3 Legs Variable Levels for 4 Legs 
Crash location in any of 

the 6 counties 
Orange, Brevard, Hillsborough, Miami-Dade, Leon and Seminole Orange, Brevard, Hillsborough, Miami-Dade, Leon and Seminole 

Existence of stop sign on 
the minor approach 

= 0; if no stop sign exists; 
= 1; if stop sign exists 

= 0; if no stop sign exists; 
= 1; if only one stop sign exists on one of the minor approaches;  
= 2; if one stop sign exists on each minor approach 

Existence of stop line on 
the minor approach 

= 0; if no stop line exists; 
= 1; if stop line exists 

= 0; if no stop line exists; 
= 1; if only one stop line exists on one of the minor approaches;  
= 2; if one stop line exists on each minor approach 

Existence of crosswalk on 
the minor approach 

= 0; if no crosswalk exists; 
= 1; if crosswalk exists 

= 0; if no crosswalk exists;  
= 1; if only one crosswalk exists on one of the minor approaches;  
= 2; if one crosswalk exists on each minor approach 

Existence of crosswalk on 
the major approach 

= 0; if no crosswalk exists; 
= 1; if one crosswalk exists on one of the major approaches;  
= 2; if one crosswalk exists on each major approach 

= 0; if no crosswalk exists; 
= 1; if one crosswalk exists on one of the major approaches;  
= 2; if one crosswalk exists on each major approach 

Control type on the minor 
approach 

= 1; if stop sign exists (1-way stop); 
= 3; if no control exists;  
= 5; if yield sign exists 

= 2; if stop sign exists on each minor approach (2-way stop); 
= 3; if no control exists on both minor approaches;  
= 4; if stop sign exists on the first minor approach, and no control on 
the other 

Size of the intersection a 

= 1; for “1x2”, “1x3” and “1x4” intersections; 
= 2; for “2x2” and “2x3” intersections; 
= 3; for “2x4”, “2x5” and “2x6” intersections; 
= 4; for “2x7” and “2x8” intersections; 
= 5; for “3x2”, “3x3”, “3x4”, “3x5”, “3x6” and “3x8” intersections;  
= 6; for “4x2”, “4x4”, “4x6” and “4x8” intersections 

= 2; for “2x2” and “2x3” intersections; 
= 3; for “2x4”, “2x5” and “2x6” intersections; 
= 4; for “2x7” and “2x8” intersections; 
= 5; for “3x2”, “3x3”, “3x4”, “3x5”, “3x6” and “3x8” intersections;  
= 6; for “4x2”, “4x4”, “4x6” and “4x8” intersections 

Type of unsignalized 
intersection b 

= 1; for access point (driveway) intersections; 
= 2; for ramp junctions; 
= 3; for regular intersections;  
= 4; for intersections close to railroad crossings  

= 1; for access point (driveway) intersections; 
= 3; for regular intersections;  
= 4; for intersections close to railroad crossings  

Number of right turn 
lanes on the major 

approach  

= 0; if no right turn lane exists;  
= 1; if one right turn lane exists on only one direction;  
= 2; if one right turn lane exists on each direction c 

= 0; if no right turn lane exists; 
= 1; if one right turn lane exists on only one direction;  
= 2; if one right turn lane exists on each direction 

Number of left turn lanes 
on the major approach  

= 0; if no left turn lane exists;  
= 1; if one left turn lane exists on only one direction;   
= 2; if one left turn lane exists on each direction d 

= 0; if no left turn lane exists;  
= 1; if one left turn lane exists on only one direction;  
= 2; if one left turn lane exists on each direction 

Number of left turn 
movements on the minor 

approach 

= 0; if no left turn movement exists; 
= 1; if one left turn movement exists 

= 0; if no left turn movement exists; 
= 1; if one left turn movement exists on one minor approach only; 
= 2; if one left turn movement exists on each minor approach 



 

Variable Description Variable Levels for 3 Legs Variable Levels for 4 Legs 
Land use at the 

intersection area 
= 1; for rural area; 
= 2; for urban/suburban areas 

= 1; for rural area; 
= 2; for urban/suburban areas 

Median type on the major 
approach 

= 1; for open median; = 2; for directional median; 
= 3; for closed median; = 4; for two-way left turn lane; 
= 5; for markings; = 6; for undivided median; = 7; for mixed median e  

= 1; for open median; = 4; for two-way left turn lane; 
= 5; for markings; = 6; for undivided median 

Median type on the minor 
approach 

= 1; for undivided median, two-way left turn lane and markings;  
= 2; for any type of divided median 

= 1; for undivided median, two-way left turn lane and markings;  
= 2; for any type of divided median 

Skewness level 
= 1; if skewness angle <= 75 degrees;  
= 2; if skewness angle > 75 degrees 

= 1; if skewness angle <= 75 degrees; 
= 2; if skewness angle > 75 degrees 

Lighting condition 
= 1; for daylight; = 2; for dusk; = 3; for dawn;  
= 4; for dark (street light); = 5; for dark (no street light) 

= 1; for daylight; = 2; for dusk; = 3; for dawn;  
= 4; for dark (street light); = 5; for dark (no street light) 

Road surface type = 1; if gravel or brick/block; = 2; if concrete; = 3; if blacktop  = 1; if gravel or brick/block; = 2; if concrete; = 3; if blacktop 
Road surface condition = 1; if dry; = 2; if wet; = 3; if slippery = 1; if dry; = 2; if wet; = 3; if slippery 

Posted speed limit on the 
major road 

= 1; if posted speed limit < 45 mph;  
= 2; if posted speed limit >= 45 mph 

= 1; if posted speed limit < 45 mph;  
= 2; if posted speed limit >= 45 mph 

Number of through lanes 
on the minor approach f  

= 1; if one through lane exists; = 2; if two through lanes exist; 
= 3; if three through lanes exist; = 4; if four through lanes exist 

= 2; if two through lanes exist;  
= 3; if more than two through lanes exist 

At-fault driver’s age 
category 

= 1; if 15 <= age <= 19 (very young) 
= 2; if 20 <= age <= 24 (young) 
= 3; if 25 <= age <= 64 (middle) 
= 4; if 65 <= age <= 79 (old) 
= 5; if age >= 80 (very old) 

= 1; if 15 <= age <= 19 (very young) 
= 2; if 20 <= age <= 24 (young) 
= 3; if 25 <= age <= 64 (middle) 
= 4; if 65 <= age <= 79 (old) 
= 5; if age >= 80 (very old) 

 

a The first number represents total number of approach lanes for the minor approach, and the second number represents total number of through lanes for 
the major approach 
b Regular unsignalized intersections are those intersections having distant stretches on the minor approaches; whereas access points include parking lots 
at plazas and malls as well as driveways that are feeding to the major approach; and railroad crossing can exist upstream or downstream the intersection 
of interest 
c One right turn lane on each major road direction for 3-legged unsignalized intersections: Two close unsignalized intersections, one on each side of the 
roadway, and each has one right turn lane. The extended right turn lane of the first is in the influence area of the second. 
d One left turn lane on each major road direction for 3-legged unsignalized intersections: One of these left turn lanes is only used as U-turn. 
e Mixed median is directional from one side, and closed from the other side (i.e., allows access from one side only) 
f Surrogate measure for AADT on the minor approach 
* The continuous variables are the natural logarithm of AADT on the major road, the natural logarithm of the upstream and downstream distances to the 
nearest signalized intersection, the left shoulder width near the median on the major road, the right shoulder width on the major road, percentage of 
trucks on the major road, and the natural logarithm of the distance between 2 successive unsignalized intersections 
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6.5 Analysis of the Ordered Probit Framework 

The fitted ordered probit model for both 3 and 4-legged unsignalized intersections 

using the five crash injury levels of the response variable is shown in Table  6-2, which 

includes some goodness-of-fit statistics as well, such as log-likelihood at convergence, 

log-likelihood at zero and AIC. The marginal effects for the estimated models for both 3 

and 4-legged intersections are shown in Table  6-3. 

The marginal effects depict the effect of change in a certain explanatory variable 

on the probability of an injury severity level. Since, the main concern is on fatal injuries 

(as they are the most serious), the interpretation will be focused on them. Also, the 

interpretations for both the three and four-legged models are discussed separately.  
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Table  6-2: Ordered Probit Estimates for 3 and 4-Legged Unsignalized Intersections         

 Three-Legged Model Four-Legged Model 

Variable Description Estimate a P-value Estimate a P-value 

Intercept 1 -1.6936 (0.5295) 0.0014 -0.1144 (0.6773) 0.8659 

Intercept 2 0.9914 (0.0451) <0.0001 1.0151 (0.0629) <0.0001 

Intercept 3 1.8849 (0.0476) <0.0001 1.8539 (0.0659) <0.0001 

Intercept 4 2.6427 (0.0486) <0.0001 2.5772 (0.0672) <0.0001 

Natural logarithm of AADT on the major road -0.0807 (0.0332) 0.0151 -0.2447 (0.0518) <0.0001 

Natural logarithm of the upstream distance to the nearest signalized intersection  0.0442 (0.0153) 0.0039 0.0457 (0.0255) 0.0731 

Natural logarithm of the downstream distance to the nearest signalized intersection  N/S b  0.0383 (0.0250) 0.1262 

Posted speed limit on major road < 45 mph -0.1096 (0.0337) 0.0011 -0.0818 (0.0496) 0.0994 

Posted speed limit on major road >= 45 mph --- c  --- c  

Skewness angle <= 75 degrees N/S  0.1563 (0.0826) 0.0586 

Skewness angle > 75 degrees N/S  --- c  

No right turn lane exists on the major approach -0.1725 (0.0935) 0.0654 N/S  

One right turn lane exists on only 1 major road direction -0.1710 (0.0968) 0.0776 N/S  

One right turn lane exists on each major road direction --- c  N/S  

No left turn movement exists on the minor approach -0.0536 (0.0350) 0.1258 N/S  

One left turn movement exists on the minor approach --- c  N/S  

One through lane exists on the minor approach 0.7919 (0.3917) 0.0432 N/A d  

 Two through lanes exist on the minor approach 0.5098 (0.2827) 0.0713 N/S  

Three through lanes exist on the minor approach 0.5658 (0.3264) 0.0831 N/S  

 Four through lanes exist on the minor approach --- c  N/A  

15 <= At-fault driver’s age <= 19 (very young) -0.1391 (0.0954) 0.1448 N/S  

20 <= At-fault driver’s age <= 24 (young) -0.1705 (0.0946) 0.0716 N/S  

25 <= At-fault driver’s age <= 64 (middle) -0.1646 (0.0900) 0.0674 N/S  

65 <= At-fault driver’s age <= 79 (old) -0.0473 (0.1016) 0.6414 N/S  



 

 Three-Legged Model Four-Legged Model 

Estimate a Estimate a Variable Description P-value P-value 

At-fault driver’s age >= 80 (very old) --- c  N/S  

Left shoulder width near the median on the major road 0.0323 (0.0126) 0.0105 0.0807 (0.0194) <0.0001 

Right shoulder width on the major road N/S  -0.0189 (0.0076) 0.0130 

Daylight lighting condition -0.2718 (0.0615) <0.0001 N/S  

Dusk lighting condition -0.3030 (0.0999) 0.0024 N/S  

Dawn lighting condition -0.3372 (0.1477) 0.0225 N/S  

Dark (street light) lighting condition -0.1428 (0.0678) 0.0353 N/S  

Dark (no street light) lighting condition --- c  N/S  

“1x2”, “1x3” and “1x4” intersections -0.4077 (0.3135) 0.1935 N/A  

“2x2” and “2x3” intersections -0.2897 (0.1329) 0.0293 N/S  

“2x4”, “2x5” and “2x6” intersections -0.1482 (0.1281) 0.2474 N/S  

“2x7” and “2x8” intersections -0.0383 (0.1532) 0.8024 N/S  

“3x2”, “3x3”, “3x4”, “3x5”, “3x6” and “3x8” intersections -0.1384 (0.1367) 0.3113 N/S  

“4x2”, “4x4”, “4x6” and “4x8” intersections --- c  N/S  

Dummy variable for Brevard County -0.0378 (0.0796) 0.6346 0.2636 (0.0983) 0.0074 

Dummy variable for Hillsborough County -0.4935 (0.0664) <0.0001 -0.2668 (0.0757) 0.0004 

Dummy variable for Leon County -0.5359 (0.0678) <0.0001 -0.1392 (0.0884) 0.1153 

Dummy variable for Miami-Dade County -0.6560 (0.0659) <0.0001 -0.4452 (0.0805) <0.0001 

Dummy variable for Orange County -0.0060 (0.0663) 0.9277 0.3314 (0.0852) 0.0001 

Dummy variable for Seminole County --- c  --- c  

Log-likelihood at convergence -8514 -4696 

Log-likelihood at zero e -8783.5 -4890.6 

AIC 17091 9423 

a Standard error in parentheses    b N/S means not significant      c Base case      d N/A means not applicable     e Likelihood while fitting the intercept only      
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Table  6-3: Marginal Effects for Fatal Injury Probability for the Fitted Covariates in the 3 and 4-Legged Models                                                                              

 Three-Legged Model Four-Legged Model 

Variable Description 
Probability of fatal 

injury 
Probability of fatal 

injury 

Natural logarithm of AADT on the major road -0.002 -0.006 

Natural logarithm of the upstream distance to the nearest signalized intersection from the 
unsignalized intersection of interest 

0.001 0.001 

Natural logarithm of the downstream distance to the nearest signalized intersection from 
the unsignalized intersection of interest 

N/S a 0.001 

Posted speed limit on major road < 45 mph -0.003 -0.002 

Skewness angle <= 75 degrees N/S 0.004 

No right turn lane exists on the major approach -0.004 N/S 

One right turn lane exists on only 1 major road direction -0.004 N/S 

No left turn movement exists on the minor approach -0.001 N/S 

One through lane exists on the minor approach 0.021 N/A b 

 Two through lanes exist on the minor approach 0.013 N/S 

Three through lanes exist on the minor approach 0.015 N/S 

15 <= At-fault driver’s age <= 19 (very young) -0.004 N/S 

20 <= At-fault driver’s age <= 24 (young) -0.004 N/S 

25 <= At-fault driver’s age <= 64 (middle) -0.004 N/S 

65 <= At-fault driver’s age <= 79 (old) -0.001 N/S 

Left shoulder width near the median on the major road 0.001 0.002 

Right shoulder width on the major road N/S 0.000 

Daylight lighting condition -0.007 N/S 

Dusk lighting condition -0.008 N/S 

Dawn lighting condition -0.009 N/S 

Dark (street light) lighting condition -0.004 N/S 
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 Three-Legged Model Four-Legged Model 

Variable Description 
Probability of fatal 

injury 
Probability of fatal 

injury 

“1x2”, “1x3” and “1x4” intersections -0.011 N/A 

“2x2” and “2x3” intersections -0.008 N/S 

“2x4”, “2x5” and “2x6” intersections -0.004 N/S 

“2x7” and “2x8” intersections -0.001 N/S 

“3x2”, “3x3”, “3x4”, “3x5”, “3x6” and “3x8” intersections -0.004 N/S 

Dummy variable for Brevard County -0.001 0.006 

Dummy variable for Hillsborough County -0.013 -0.006 

Dummy variable for Leon County -0.014 -0.003 

Dummy variable for Miami-Dade County -0.017 -0.011 

Dummy variable for Orange County 0.000 0.008 

 
a N/S means not significant      b N/A means not applicable          
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6.5.1 Three-Legged Model Interpretation 

From Table  6-3, increasing the natural logarithm of AADT on the major road by 

unity (which inherently means increasing AADT) significantly reduces fatal injury 

probability by 0.2%. As the AADT increases, speed decreases, and hence fatal crashes 

decrease as well, whereas crashes occurring at higher AADT (like rear-end and sideswipe 

crashes) are not generally fatal. This result is consistent with that done by Klop and 

Khattak (1999), who found a significant decrease in bicycle injury severity with the 

increase in AADT. 

The spatial effect for the upstream distance to the nearest signalized intersection 

from the unsignalized intersection of interest showed that there is a 0.1% increase in the 

fatal injury probability for a unit increase in the natural logarithm of the distance. This 

could be attributed to the fact that as the distance between intersections increases, drivers 

tend to drive at (or above) the speed limit on that stretch (which is mostly high), and thus 

accident severity increases at high speeds, which is an expected outcome. This was also 

examined by Malyshkina and Mannering (2008), and Klop and Khattak (1999), as 

previously illustrated. Moreover, its probit coefficient is statistically significant at the 

95% confidence. 

Lower speed limits (less than 45 mph) significantly reduce fatal injury probability 

by 0.3%, when compared to speed limits greater than 45 mph. This result is consistent 

with the previous finding, and is very reasonable, as fatal crashes always occur at higher 

speeds. This conforms to the study done by Malyshkina and Mannering (2008) and 

Renski et al. (1998), who examined the safety effect of speed limits on severe accidents, 

and found that high speed limits are associated with high accident severities. Also, the 



 

study by Klop and Khattak (1999) found a significant increase in bicycle and passenger 

car injury severity with increase in speed limits. 

An interesting finding is that having no right turn lanes or 1 right turn lane on the 

major road decreases fatal injury probability by 0.4% when compared to having 2 right 

turn lanes. Their probit estimates are statistically significant at the 90% confidence. 

Having no left turn movement on the minor approach decreases the probability of 

fatal injury by 0.1%, when compared to having 1 left turn movement. This is mainly due 

to the reduction of conflict points while prohibiting the left turn maneuver. This result is 

consistent with the study done by Liu et al. (2007) and Lu et al. (2001 a; 2001 b; 2004 

and 2005), who found that there is a reduction in total crashes and fatality for right turns 

followed by U-turns, as an alternative to direct left turn maneuvers from driveways. 

However, the probit estimate is not statistically significant at the 90% confidence. 

Having one, two and three through lanes on the minor approach always increase 

the fatal injury probability when compared to having 4 though lanes. The highest increase 

is 2.1% where one through lane existed. One through lanes could exist at ramp junctions 

with yield signs, where merging and diverging maneuvers always occur, thus these traffic 

conflicts result in traffic problems and serious injuries. Its estimate is statistically 

significant at the 95% confidence. 

The highest significant reduction in the probability of having a fatal injury occurs 

in middle, young and very young at-fault drivers, which is 0.4% less than that at very old 

drivers. This result is consistent with the study by Abdel-Aty et al. (1998), who 

concluded that young and very young drivers are associated with fatal injury reduction as 
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well. Although very old drivers tend to drive slowly and carefully, their weak physical 

condition, as well as their higher reaction time could explain the higher fatality risk. 

Increasing the inside (left or median) shoulder width by 1 feet significantly 

increases fatal injury by 0.1%. This finding contradicts with the finding of Noland and 

Oh (2004), who found that there is no statistical association with changes in safety for 

inside shoulder widths. The use of the inside shoulder width was not explored extensively 

in traffic safety analysis in terms of severe crashes. For example, Klop and Khattak 

(1999) did not use the inside shoulder width in their analysis due to the unrealistic values 

documented in their dataset. 

The highest significant reduction in the probability of having a fatal injury occurs 

at dawn, which is 0.9% less than that at dark with no street lights. This might be 

attributed to the low traffic volume at dawn time (i.e., lower conflict risk). 

The only significant reduction in the probability of having a fatal injury occurs at 

“2x2” and “2x3” intersections, which is 0.8% less than that at “4x2”, “4x4”, “4x6” and 

“4x8” intersections. This result is considered reasonable, given the complexity of large 

intersections for some drivers. 

The highest reduction in the probability of having a fatal injury occurs at Miami-

Dade County, which is 1.7% (0.017) less than that at Seminole County. Miami-Dade 

County is the heaviest-populated and most urbanized county used in this study (U.S. 

Census, 2000), thus, more crash frequency is expected to occur, however, less fatal 

injuries could happen due to high-dense roadways (relatively high AADT). Moreover, its 

probit estimate is statistically significant, as shown in Table  6-2. 
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6.5.2 Four-Legged Model Interpretation 

From Table  6-3, as anticipated, increasing the natural logarithm of AADT on the 

major road by unity significantly reduces fatal injury probability by 0.6%. 

As expected, there is a 0.1% increase in the fatal injury probability for a unit 

increase in the natural logarithm of the upstream and downstream distances to the nearest 

signalized intersections. This is consistent with that at 3-legged unsignalized 

intersections. 

Lower speed limits (less than 45 mph) reduce fatal injury probability by 0.2%, 

when compared to speed limits greater than 45 mph. This finding is consistent with that 

at 3-legged unsignalized intersections. 

Intersection’s skewness angle less than or equal to 75 degrees significantly 

increases fatal injury probability by 0.4%, when compared to skewness angle greater than 

75 degrees. This is a very reasonable outcome, as the sight distance is a problem. This 

illustrates the significant importance of designing intersections with skewness angle 

around 90 degrees, to reduce severe crashes.  

As found in the three-legged model, increasing the inside (left or median) 

shoulder width by 1 feet significantly increases fatal injury by 0.2%.  

An increase in the right shoulder width by 1 feet has almost no effect on the 

probability of fatal injuries. This finding is consistent with that of Klop and Khattak 

(1999), who examined the effect on the right shoulder width on bicycle crash severity on 

two-lane, undivided roadways in North Carolina, and found that the right shoulder width 

has no statistical effect on severity compared to the absence of a shoulder. 
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The highest significant reduction in the probability of having a fatal injury occurs 

at Miami-Dade County, which is 1.1% less than that at Seminole County. This finding is 

consistent with the three-legged model. This might also be related to varying reporting 

thresholds at different counties. 

6.6 Analysis of the Binary Probit Framework 

The fitted binary probit model for both 3 and 4-legged unsignalized intersections 

using the two levels (severe vs. non-severe) of the response variable is shown in Table 

 6-4. The marginal effects for the estimated models for both 3 and 4-legged intersections 

are shown in Table  6-5.  
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Table  6-4: Binary Probit Estimates for 3 and 4-Legged Unsignalized Intersections         

 Three-Legged Model Four-Legged Model 

Variable Description Estimate a P-value Estimate a P-value 

Intercept -0.5872 (0.8890) 0.5089 0.6682 (0.6980) 0.3384 

Natural logarithm of AADT on the major road -0.1015 (0.0592) 0.0866 -0.1643 (0.0651) 0.0117 

Natural logarithm of the upstream distance to the nearest signalized intersection  0.0528 (0.0255) 0.0383 N/S b  

Natural logarithm of the downstream distance to the nearest signalized intersection  0.0639 (0.0265) 0.0161 N/S  

No stop line exists on the minor approach 0.1133 (0.0629) 0.0718 N/S  

A stop line exists on the minor approach --- c  N/S  

Posted speed limit on major road < 45 mph -0.1252 (0.0633) 0.0481 -0.2547 (0.0722) 0.0004 

Posted speed limit on major road >= 45 mph --- c  --- c  

Skewness angle <= 75 degrees N/S  0.3183 (0.1178) 0.0069 

Skewness angle > 75 degrees N/S  --- c  

No right turn lane exists on the major approach -0.2139 (0.1413) 0.1302 -0.1964 (0.1106) 0.0758 

One right turn lane exists on only 1 major road direction -0.2363 (0.1464) 0.1066 0.0133 (0.1236) 0.9142 

One right turn lane exists on each major road direction --- c  --- c  

No left turn lane exists on the major approach 0.0036 (0.0751) 0.9613 N/S  

One left turn lane exists on only 1 major road direction 0.1124 (0.0607) 0.0641 N/S  

One left turn lane exists on each major road direction --- c  N/S  

15 <= At-fault driver’s age <= 19 (very young) -0.2720 (0.1496) 0.0692 N/S  

20 <= At-fault driver’s age <= 24 (young) -0.2360 (0.1480) 0.1109 N/S  

25 <= At-fault driver’s age <= 64 (middle) -0.1837 (0.1391) 0.1867 N/S  

65 <= At-fault driver’s age <= 79 (old) -0.1401 (0.1591) 0.3785 N/S  

At-fault driver’s age >= 80 (very old) --- c  N/S  

Right shoulder width on the major road 0.0209 (0.0113) 0.0651 N/S  

Daylight lighting condition -0.4425 (0.0864) <0.0001 N/S  

Dusk lighting condition -0.6063 (0.1696) 0.0004 N/S  



 

 Three-Legged Model Four-Legged Model 

Variable Description Estimate a Estimate a P-value P-value 

Dawn lighting condition -0.3626 (0.2316) 0.1175 N/S  

Dark (street light) lighting condition -0.2314 (0.0971) 0.0172 N/S  

Dark (no street light) lighting condition --- c  N/S  

Access point unsignalized intersections 0.4426 (0.2853) 0.1209 N/S  

Ramp junctions -4.1439 (0.1987) <0.0001 N/A d  

Regular unsignalized intersections 0.4640 (0.2798) 0.0972 N/S  

Unsignalized intersections close to railroad crossings --- c  N/S  

“1x2”, “1x3” and “1x4” intersections 4.8632 (0.1987) <0.0001 N/A  

“2x2” and “2x3” intersections -0.1546 (0.2140) 0.4701 N/S  

“2x4”, “2x5” and “2x6” intersections 0.0419 (0.2064) 0.8391 N/S  

“2x7” and “2x8” intersections 0.1258 (0.2489) 0.6132 N/S  

“3x2”, “3x3”, “3x4”, “3x5”, “3x6” and “3x8” intersections 0.0174 (0.2199) 0.9367 N/S  

“4x2”, “4x4”, “4x6” and “4x8” intersections --- c  N/S  

Dummy variable for Brevard County -0.1314 (0.1216) 0.2798 0.1706 (0.1460) 0.6467 

Dummy variable for Hillsborough County -0.1444 (0.1018) 0.1562 -0.0534 (0.1166) 0.0975 

Dummy variable for Leon County -0.6443 (0.1109) <0.0001 -0.2390 (0.1442) 0.0109 

Dummy variable for Miami-Dade County -0.4746 (0.1070) <0.0001 -0.3263 (0.1281) 0.6467 

Dummy variable for Orange County -0.2244 (0.1041) 0.0312 -0.0477 (0.1331) 0.7198 

Dummy variable for Seminole County --- c  --- c  

Percentage of trucks on the major road -0.0096 (0.0085) 0.2612 N/S  

Log-likelihood at convergence -1869 -1039 

Log-likelihood at zero e -1971.1 -1095.7 

AIC 3804 2100 

a Standard error in parentheses    b N/S means not significant    c Base case   d N/A means not applicable  e Likelihood while fitting the intercept only
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Table  6-5: Marginal Effects for Severe Injury Probability for the Fitted Covariates in the 3 and 4-Legged Models                                                                              

 Three-Legged Model Four-Legged Model 

Variable Description 
Probability of severe 

injury 
Probability of severe 

injury 

Natural logarithm of AADT on the major road -0.015 -0.023 

Natural logarithm of the upstream distance to the nearest signalized intersection from the 
unsignalized intersection of interest 

0.008 N/S a 

Natural logarithm of the downstream distance to the nearest signalized intersection from 
the unsignalized intersection of interest 

0.009 N/S 

No stop line exists on the minor approach 0.017 N/S 

Posted speed limit on major road < 45 mph -0.018 -0.036 

Skewness angle <= 75 degrees N/S 0.045 

No right turn lane exists on the major approach -0.031 -0.028 

One right turn lane exists on only 1 major road direction -0.035 0.002 

No left turn lane exists on the major approach 0.001 N/S 

One left turn lane exists on only 1 major road direction 0.017 N/S 

15 <= At-fault driver’s age <= 19 (very young) -0.040 N/S 

20 <= At-fault driver’s age <= 24 (young) -0.035 N/S 

25 <= At-fault driver’s age <= 64 (middle) -0.027 N/S 

65 <= At-fault driver’s age <= 79 (old) -0.021 N/S 

Right shoulder width on the major road 0.003 N/S 

Daylight lighting condition -0.065 N/S 

Dusk lighting condition -0.089 N/S 

Dawn lighting condition -0.053 N/S 

Dark (street light) lighting condition -0.034 N/S 

Access point unsignalized intersections 0.065 N/S 

Ramp junctions -0.650 N/A 
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 Three-Legged Model Four-Legged Model 

Probability of severe Probability of severe 
Variable Description 

injury injury 

Regular unsignalized intersections 0.068 N/S 

“1x2”, “1x3” and “1x4” intersections 0.716 N/A b 

“2x2” and “2x3” intersections -0.023 N/S 

“2x4”, “2x5” and “2x6” intersections 0.006 N/S 

“2x7” and “2x8” intersections 0.019 N/S 

“3x2”, “3x3”, “3x4”, “3x5”, “3x6” and “3x8” intersections 0.003 N/S 

Dummy variable for Brevard County -0.019 0.024 

Dummy variable for Hillsborough County -0.021 -0.008 

Dummy variable for Leon County -0.095 -0.034 

Dummy variable for Miami-Dade County -0.070 -0.046 

Dummy variable for Orange County -0.033 -0.007 

Percentage of trucks on the major road -0.001 N/S 

 
a N/S means not significant      b N/A means not applicable
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6.6.1 Three-Legged Model Interpretation 

From Table  6-5, as expected, increasing the natural logarithm of AADT on the 

major road by unity reduces fatal injury probability by 1.5%. 

There is a 0.8 and 0.9% significant increase in severity probability for a unit 

increase in the natural logarithm of the upstream and downstream distances to the nearest 

signalized intersection, respectively.  

Having no stop lines on the minor approach increases severity probability by 

1.7%, when compared to having stop lines. This is a reasonable outcome, emphasizing 

the importance of marking stop lines at unsignalized intersections for reducing severity. 

Moreover, their probit estimates are statistically significant at the 90% confidence. 

Lower speed limits (less than 45 mph) significantly reduce severe injury 

probability by 1.8%, when compared to speed limits greater than 45 mph.  

As concluded from the ordered probit model, having no right turn lanes or 1 right 

turn lane on the major road decreases severe injury probability when compared to having 

2 right turn lanes. However, their probit estimates are not statistically significant at the 

90% confidence. 

An interesting finding is that having 1 left turn lane on one of the major 

approaches increases severe injury probability by 1.7%, when compared to having 2 left 

turn lanes. The estimate is statistically significant at the 90% confidence. 

As previously found, the highest reduction in the severity probability occurs in 

young and very young at-fault drivers.  

An increase in the right shoulder width by 1 feet increases the severity probability 

by 0.3%. This can be attributed to the fact that wide shoulders encourage to 



 

inappropriately using this shoulder, hence, there is a high sideswipe and rear-end crash 

risk, which might be severe at relatively high speeds. This finding indeed conforms to 

that of Noland and Oh (2004), who found that increasing the right shoulder width 

increases severity. 

The highest significant reduction in the probability of having a severe injury 

occurs at dusk, which is 8.9% less than that at dark with no street lights. This might be 

attributed to the relatively lower conflict risk. 

Although ramp junctions are usually controlled by a yield sign, and merging 

maneuvers are more dominant, those intersection types significantly reduce severe injury 

probability by 65% than intersections nearby railroad crossings.  

The highest significant increase in the probability of severe injury occurs at 

“1x2”, “1x3”  and “1x4” intersections, which is 71.6% higher than that at “4x2”, “4x4”, 

“4x6” and “4x8” intersections. Intersection’s configurations (“1x2”, “1x3”  and “1x4”) 

could exist at ramp junctions with yield signs, where merging and diverging maneuvers 

occur, hence traffic conflicts and serious injuries are more likely, especially at higher 

speeds.  

The second highest significant reduction in the probability of severe injury occurs 

at Miami-Dade County, which is 7% less than that at Seminole County. This assesses the 

previous finding that highly-urbanized areas experience less severity. 

Increasing the percentage of trucks on the major road by unity reduces the 

probability of severe injury. This could be interpreted as drivers are very attentive while 

overtaking or driving behind trucks. However, the probit estimate is not statistically 

significant at the 90% confidence. 

 148



 

6.6.2 Four-Legged Model Interpretation 

From Table  6-5, as expected, increasing the natural logarithm of AADT on the 

major road by unity significantly reduces severe injury probability by 2.3%. 

Lower speed limits (less than 45 mph) significantly reduce severe injury 

probability by 3.6%, when compared to speed limits greater than 45 mph. This finding is 

consistent with that at 3-legged unsignalized intersections. 

As previously found, having skewness angle less than or equal to 75 degrees 

significantly increases severity probability, when compared to skewness angle greater 

than 75 degrees.  

As concluded from the three-legged model, having no right turn lanes on the 

major road decreases severe injury probability when compared to having 2 right turn 

lanes. However, the probit estimate is not statistically significant at the 90% confidence. 

As previously found, the highest significant reduction in the probability of severe 

injury occurs at Miami-Dade County, which is 4.6% less than that at Seminole County. 

This finding is consistent with that from the three-legged model. 
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6.7 Comparing the Two Probit Frameworks 

By comparing the AIC and the log-likelihood values in the four fitted 3 and 4-

legged probit models, it is obvious that the aggregated binary probit models fit the data 

better than the disaggregated ordered probit models (lower AIC and higher log-likelihood 

at convergence). This demonstrates that the aggregate model works better in analyzing 

crash severity at unsignalized intersections.  

6.8 Nested Logit Model Estimates  

The last approach performed in this chapter is fitting a nested logit model for both 

3 and 4-legged intersections. Figures 6-1 and 6-2 show the two attempted nesting 

structures. For example, Figure  6-2 describes the analysis of crash injury level (PDO, 

possible injury, and non-incapacitating injury) conditioned on non-severe injury, as well 

as the analysis of crash injury level (incapacitating injury and fatal) conditioned on severe 

injury. The shown nesting structure has 2 levels. The first level (at the bottom of the nest) 

contains the five crash injury levels, whereas the second level (at the top of the nest) 

contains the two crash injury levels, severe and non-severe injuries.  
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Figure  6-1: First Attempted Two-level Nesting Structure for the Nested Logit Framework 
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Figure  6-2: Second Attempted Two-level Nesting Structure for the Nested Logit Framework 

 

The nesting structure shown in Figure  6-2 showed better results than Figure  6-1. 

This was concluded from the resulted AIC and log-likelihood values. The fitted nested 

logit model for 3-legged intersections using the nesting structure sketched in Figure  6-2 is 

shown in Table  6-6. 
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Table  6-6: Nested Logit Estimates for 3-Legged Unsignalized Intersections (Nesting Structure Shown 
in Figure  6-2) 

Variable Description Estimate 
Standard 

Error 
P-value 

Posted speed limit on the major road -0.0100 0.0015 <0.0001 

At-fault driver’s age -0.0011 0.0004 0.0173 

Left shoulder width near the median on the major road 0.0173 0.0084 0.0396 

Natural logarithm of the upstream distance to the nearest signalized 
intersection from the unsignalized intersection of interest 

-0.0110 0.0096 0.2532 

Size of the intersection -0.0136 0.0097 0.1657 

Inclusive parameter of the “severity” nest 4.8495 0.3695 <0.0001 

Log-likelihood at convergence -9182 

AIC 18375 

Number of observations 34040 

 

From this table, the inclusive parameter is significantly greater than one, hence 

the nested logit model is not accepted for the modeling purpose of these data. It is 

obvious that fewer variables are significant in the model and the goodness-of-fit criterion 

(e.g., AIC) is not as favorable as the ordered or binary probit models. Variables like the 

natural logarithm of the upstream distance and the speed limit have unexpected negative 

coefficients, as opposed to the corresponding probit estimates, hence, they are difficult to 

interpret.  

6.9 Summary of Results 

The important geometric, traffic, driver and demographic factors from this 

chapter’s analysis affecting fatal (severe) injury at unsignalized intersections are 

summarized in Table  6-7. The effect of the shown continuous variables is estimated 
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based on an increase of unity in each of them, while the effect of those categorical 

variables is estimated with respect to the base case for each. 

Table  6-7: Important Factors Affecting Fatal (Severe) Injury at Unsignalized Intersections 

Factors 
Effect on fatal (severe) injury 

(Statistical significance) 

Geometric and roadway factors 

Right shoulder width on the major approach (in feet) Increase* 

Left shoulder width near the median on the major approach (in feet) Increase** 

Natural logarithm of the upstream distance to the nearest signalized 
intersection from the unsignalized intersection of interest 

Increase* 

Natural logarithm of the downstream distance to the nearest signalized 
intersection from the unsignalized intersection of interest 

Increase* 

Posted speed limit on major road < 45 mph (Base is speed limit >= 45 mph) Decrease* 

No stop line exists on the minor approach (Base is 1 stop line) Increase* 

Skewness angle <= 75 degrees (Base is skewness angle > 75 degrees) Increase** 

Ramp junctions (Base are intersections close to railroad crossings) Decrease** 

One left turn lane on the major approach (Base is 2 left turn lanes) Increase* 

Traffic factors 

Natural logarithm of AADT on the major approach Decrease* 

One, two and three through lanes on the minor approach (Surrogate measure 
for AADT on the minor approach) (Base is 4 through lanes) 

Increase*** 

Driver-related factors 

Young at-fault drivers (Base is very old at-fault drivers) Decrease* 

Demographic factors 

Heavily-populated and highly-urbanized area (Base is less-populated area) Decrease** 
* Statistical significance at the 90% confidence           

** Statistical significance at the 95% confidence 

*** Existence of one through lane is the only statistically significant at the 90% confidence 
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6.10 General Conclusions from the Crash Severity Analysis 

The analysis conducted in this chapter attempted to put deep insight into factors 

affecting crash injury severity at 3 and 4-legged unsignalized intersections using the most 

comprehensive data collected by using the ordered probit, binary probit and nested logit 

frameworks. The common factors found in the fitted probit models are the logarithm of 

AADT on the major road, and the speed limit on the major road. It was found that higher 

severity (and fatality) probability is always associated with a reduction in AADT, as well 

as an increase in speed limit. The fitted probit models also showed several important 

traffic, geometric and driver-related factors affecting safety at unsignalized intersections. 

Traffic factors include AADT on the major approach, and the number of through lanes on 

the minor approach (a surrogate for AADT on the minor approach). Geometric factors 

include the upstream and downstream distance to the nearest signalized intersection, 

existence of stop lines, left and right shoulder width, number of left turn movements on 

the minor approach, and number of right and left turn lanes on the major approach. As for 

driver factors, young and very young at-fault drivers were always associated with the 

least fatal/severe probability compared to other age groups. Also, heavily-populated and 

highly-urbanized areas experience lower fatal/severe injury.  

Comparing the aggregated binary probit model and the disaggregated ordered 

probit model showed that the aggregate probit model produces comparable if not better 

results, thus for its simplicity the binary probit models could be used to model crash 

injury severity at unsignalized intersections. The nested logit models did not show any 

improvement over the probit models.  
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CHAPTER 7. APPLICATION OF THE MULTIVARIATE 

ADAPTIVE REGRESSION SPLINES FOR PREDICTING CRASH 

OCCURRENCE 

7.1 Introduction 

Statistical models (or safety performance functions) are mainly used for 

identifying some relationships between the dependent variable and a set of explanatory 

covariates. Also, predicting crashes is another important application of safety 

performance functions. Those predicted crashes can help identify hazardous sites, hence 

significant countermeasures can be applied for further safety remedy. The most common 

probabilistic models used by transportation safety analysts for modeling vehicle crashes 

are the traditional Poisson and NB distributions. NB regression models are usually 

favored over Poisson regression models since crash data are usually characterized by 

over-dispersion (Lord et al., 2005), which means that the variance is greater than the 

mean.  

Transportation safety analysts usually focus on comparing various statistical 

models based on some goodness-of-fit criteria (e.g., Miaou and Lord, 2003 and Shankar 

et al., 1997). Since prediction is an essential objective of crash models, some studies that 

focused on developing models for mainly predicting vehicle crashes are Lord (2000), Xie 

et al. (2007) and Li et al. (2008). Researchers are always trying to introduce and develop 

statistical tools for effectively predicting crash occurrence. 

Thus, one of the main objectives of the analysis in this chapter is to explore the 

potential of applying a recently developed data mining technique, the multivariate 
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adaptive regression splines (MARS), for a precise and efficient crash prediction. This was 

demonstrated in this chapter through various applications of MARS via data collected at 

unsignalized intersections. Another objective is to explore the significant factors that 

contribute to specific crash type occurrence (rear-end as well as angle crashes) at 

unsignalized intersections by utilizing a recently collected extensive dataset of 2475 

unsignalized intersections. 

7.2 Methodological Approach 

7.2.1 Multivariate Adaptive Regression Splines Model Characteristics 

Most of the methodology described here is found in Put et al. (2004). According 

to Abraham et al. (2001), splines are defined as “an innovative mathematical process for 

complicated curve drawings and function approximation”. To develop any spline, the X-

axis representing the space of predictors is broken into number of regions. The boundary 

between successive regions is known as a knot (Abraham et al., 2001). While it is easy to 

draw a spline in two dimensions (using linear or quadratic polynomial regression 

models), manipulating the mathematics in higher dimensions is best-accomplished using 

the “basis functions”, which are the elements of fitting a MARS model. 

According to Friedman (1991), the MARS method is a local regression method 

that uses a series of basis functions to model complex (such as nonlinear) relationships. 

The global MARS model is defined as shown in Equation (7.1) (Put et al., 2004). 
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where:  is the predicted response; 
^

y
 
a0 is the coefficient of the constant basis function; 
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Bm(x) is the mth basis function, which can be a single spline function or an interaction of  
 
two (or more) spline functions; 
 
am is the coefficient of the mth basis function; and  
 
M is the number of basis functions included in the MARS model. 
 

According to Put et al. (2004), there are three main steps to fit a MARS model. 

The first step is a constructive phase, in which basis functions are introduced in several 

regions of the predictors and are combined in a weighted sum to define the global MARS 

model (as shown in Equation (7.1)). This global model usually contains many basis 

functions, which can cause an over-fitting. The second step is the pruning phase, in which 

some basis functions of the over-fitting MARS model are deleted. In the third step, the 

optimal MARS model is selected from a sequence of smaller models. 

In order to describe in details the three MARS steps, the first step is created by 

continually adding basis functions to the model. The introduced basis functions consist 

either of a single spline function or a product (interaction) of two (or more) spline 

functions (Put et al., 2004). Those basis functions are added in a “two-at-a-time” forward 

stepwise procedure, which selects the best pairs of spline functions in order to improve 

the model. Each pair consists of one left-sided and one right-sided truncated function 

defined by a given knot location, as shown in Equations (7.2) and (7.3), respectively. For 

this, spline functions in MARS are piecewise polynomials.                                   
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Also, from (Put et al., 2004), it is to be noted that the search for the best predictor 

and knot location is performed in an iterative way. The predictor, as well as knot location 

which contribute most to the model, are selected first. Also, at the end of each iteration, 

the introduction of an interaction is checked so as to improve the model. As shown by Put 

et al. (2004), the order of any fitted MARS model indicates the maximum number of 

basis functions that interact (for example, in a second-order MARS model, the interaction 

order is not more than two). The iterative building procedure continues until a maximum 

number of basis functions “Mmax” is included. The value of “Mmax” should be 

considerably larger than the optimal model size “M*” produced by MARS. According to 

Friedman (1991), the order of magnitude of “Mmax” is twice that of “M*”.  

From Put et al. (2004), the second step is the pruning step, where a “one-at-a-

time” backward deletion procedure is applied in which the basis functions with the lowest 

contribution to the model are excluded. This pruning is mainly based on the generalized 

cross-validation (GCV) criterion (Friedman, 1991), and in some cases, the n-fold cross 
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validation can be used for pruning. The GCV criterion is used to find the overall best 

model from a sequence of fitted models. While using the GCV criterion, a penalty for the 

model complexity is incorporated. A larger GCV value tends to produce a smaller model, 

and vice versa. The GCV criterion is estimated using Equation (7.4) (Put et al., 2004). 
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where: N is the number of observations;  
 
yi is the response for observation i;  
 
^

y  is the predicted response for observation i; and  

C(M) is a complexity penalty function, which is defined as shown in Equation (7.5). 
 
C(M) = M + dM                                                                                                   (7.5) 
 
where: M is the number of non-constant basis functions (i.e., all terms of Equation (7.1) 

except for “a0”); and d is a defined cost for each basis function optimization. As shown 

by Put et al. (2004), the higher the cost d is, the more basis functions will be excluded. 

Usually, d is increased during the pruning step in order to obtain smaller models. Along 

with being used during the pruning step, the increase in the GCV value while removing a 

variable from the model is also used to evaluate the importance of the predictors in the 

final fitted MARS model. 
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As shown by Xiong and Meullenet (2004), the term “ ” measures the 

lack of fit on the M basis functions in the MARS model, which is the same as the sum of 

squared residuals, and “ ” is a penalty term for using M basis functions. 
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Finally, the third step is mainly used for selecting the optimal MARS model. The 

selection is based on an evaluation of the prediction characteristics of the different fitted 

MARS models. For more details on MARS formulation, Friedman (1991), Put et al. 

(2004) as well as Sekulic and Kowalski (1992) are relevant references. 

7.2.2 Random Forest Technique 

Since the random forest technique was attempted in this study in conjunction with 

MARS, a brief description of this technique is discussed. Random forest is one of the 

most recent promising machine learning techniques proposed by Breiman (2001) that is 

well known for selecting important variables from a set of variables. In this technique, a 

number of trees are grown by randomly selecting some observations from the original 

dataset with replacement, then searching over only a randomly selected subset of 

covariates at each split (Harb et al., 2009 and Kuhn et al., 2008).  

As well known, for each grown tree, the important covariates are shown on the 

root (top) of the tree, and leaves (terminal nodes) are shown on the bottom of the tree. 

Terminal nodes have no further splitting. For each split on the grown tree, rules are 

assigned for selecting other important covariates, and so on. For each tree, the prediction 

performance (based on the misclassification rate) is done on the terminal nodes. 
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As shown by Grimm et al. (2008), random forest is robust to noise in the 

covariates. The main advantages of random forest are that it usually yields high 

classification accuracy, and it handles missing values in the covariates efficiently. 

To test whether the attempted number of trees is sufficient enough to reach 

relatively stable results, the plot of the out-of-bag (OOB) error rate against various tree 

numbers is generated, as recommended by the R package. The best number of trees is 

that having the minimum error rate, as well as a constant error rate nearby. 

To select the important covariates, the R package provides the mean decrease 

Gini “IncNodePurity” diagram. This diagram shows the node purity value for every 

covariate (node) of a tree by means of the Gini index (Kuhn et al., 2008). A higher node 

purity value represents a higher variable importance, i.e., nodes are much purer.  

7.2.3 Assessing Prediction Performance 

To examine the significant prediction performance of the MARS technique (for 

example, while comparing with the NB model), there were two main evaluation criteria 

used, the MAD and the MSPE. The MAD and MSPE criteria were also used in the study 

done by Lord and Mahlawat (2009) for assessing the goodness-of-fit of the fitted models. 

The same criteria were used by Jonsson et al. (2009) to assess the fitted models for both 

three and four-legged unsignalized intersections. Also, Li et al. (2008) used the MAD and 

MSPE criteria while comparing NB to SVM models, as well as while comparing SVM to 

the Bayesian neural networks models. Equations (5.13) and (5.14) - previously mentioned 

in Chapter 5 - show how to evaluate MAD and MSPE, respectively. However, the 

estimated MAD and MSPE values in this chapter are normalized by the average of the 

response variable. This was done because crash frequency has higher range, hence error 
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magnitude is relatively higher. However, normalizing crash frequency by the logarithm 

of AADT or considering the logarithm of crash frequency results in having smaller range, 

hence error magnitude is relatively lower. By this, the comparison between the MARS 

models using discrete and continuous responses is valid. 

7.3 MARS Applications 

There were three main applications performed in this study using the MARS 

technique. Each application was performed separately for analyzing each of the rear-end 

and angle crashes. These crash types were specifically selected, as they are the most 

frequent crash types occurring at unsignalized intersections (Summersgill and Kennedy, 

1996; Layfield, 1996; Pickering and Hall, 1986; Agent, 1988 and Hanna et al., 1976).  

The first application dealt with a comparison between the fitted NB and MARS 

models while treating the response in each of them as a discrete variable (crash 

frequency). For the scope of this analysis, the traditional NB framework was used, and 

the training dataset used for calibration was 70% of the total data, while the remaining 

30% was used for prediction. Thus, two NB rear-end crash frequency models were 

developed for 3 and 4-legged unsignalized intersections using a training dataset (1735 

intersections) for four-year crash data from 2003 till 2006. Also, two NB angle crash 

models were developed for 3 and 4-legged unsignalized intersections using a training 

dataset (1732 intersections) for the same four years. Afterwards, using the same 

significant predictors in each of the NB models, MARS models were fitted and compared 

to the corresponding NB models. The prediction assessment criteria were performed on a 

test dataset (740 intersections for rear-end crashes analysis, and 743 intersections for 

angle crashes analysis) for the four-year crash data as well.  
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The second application dealt with treating the response in the fitted MARS 

models as a continuous variable. For rear-end crashes analysis, this was considered while 

normalizing the crash frequency by the natural logarithm of AADT. As for angle crashes 

analysis, the natural logarithm of AADT was considered as the response. The same 

training and test datasets were used as well. This application was proposed due to the 

high prediction capability of the MARS technique while dealing with continuous 

responses, as shown by Friedman (1991). 

The third application dealt with combining MARS with the random forest 

technique for screening the variables before fitting a MARS model. This was 

investigated, because the attempt to fit a MARS model using all possible covariates did 

not improve the prediction. Thus, important covariates were identified using random 

forest, then fitted in a MARS model, and a comparison between MARS models (with the 

covariates initially screened using random forest) and MARS models (with the covariates 

initially screened using the NB model) was held.  

7.4 Data Preparation and Variables’ Description  

The analysis conducted in this study was performed on 2475 unsignalized 

intersections collected from six counties in the state of Florida. The CAR database 

maintained by the FDOT was used to identify all SRs in those six counties. Then, the 

random selection method was used for choosing some state roads. Unsignalized 

intersections were then identified along these randomly selected SRs using “Google 

Earth” and “Video Log Viewer Application”. In order to use the “Video Log Viewer 

Application”, the roadway ID for the used SR, the mile point and the direction of travel 

should be specified. This application is an advanced tool developed by FDOT, and has 

 163



 

the advantage of capturing the driving environment through the roadway. Moreover, this 

advanced application has two important features allowing different video perspectives, 

the “right view” and the “front view”. The “right view” option provides the opportunity 

of identifying whether a stop sign and a stop line exist or not. The “front view” feature 

provides the opportunity of identifying the median type as well as the number of lanes 

per direction more clearly. 

Afterwards, all the geometric, traffic and control fields of the collected 

intersections were filled out in a spreadsheet. These collected fields were merged with the 

RCI database for the 4 years (2003, 2004, 2005 and 2006). The RCI database – which is 

developed by the FDOT -  includes physical and administrative data, such as functional 

classification, pavement, shoulder and median data related to the roadway (the New Web-

based RCI Application). Each of these facilities is indexed by a roadway ID number with 

beginning and ending mile points. The used criteria for merging the data are the roadway 

ID and the mile point. The rear-end as well as the angle crash frequency for those 

identified unsignalized intersections were determined from the CAR database. The crash 

frequency database for the 4 years was merged with the already merged database 

(geometric, traffic and control fields with RCI database) for the 4 years. In this case, the 

used criterion for merging is the intersection ID. All these merging procedures were done 

using SAS (2002). 

A summary statistics for rear-end and angle crashes in the modeling (training) and 

validation (test) databases for both 3 and 4-legged intersections is shown in Tables 7-1 

and 7-2, respectively. From both tables, it can be noticed that there is an over-dispersion 
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exists in the training datasets, hence, the use of the NB framework was appropriate for 

the scope of the analysis. 

Table  7-1: Summary Statistics for Rear-end Cashes in the Training and Test Databases in “2003-
2006” 

 
Three-legged 

training dataset in 4 
years “2003-2006” 

Four-legged training 
dataset in 4 years 

“2003-2006” 

Three-legged test 
dataset in 4 years 

“2003-2006” 

Four-legged test 
dataset in 4 years 

“2003-2006” 
Number of 

observations 
1338 397 599 141 

Total number of 
rear-end crashes 

1588 636 678 230 

Mean rear-end 
crash frequency 
per intersection 

1.186 1.602 1.131 1.631 

Rear-end crash 
standard 

deviation per 
intersection 

1.934 2.216 1.788 2.352 

 

Table  7-2: Summary Statistics for Angle Crashes in the Training and Test Databases in "2003-2006" 

 
Three-legged 

training dataset in 4 
years “2003-2006” 

Four-legged 
training dataset in 4 
years “2003-2006” 

Three-legged test 
dataset in 4 years 

“2003-2006” 

Four-legged test 
dataset in 4 years 

“2003-2006” 
Number of 

observations 
1341 391 596 147 

Total number of 
angle crashes 

1197 1008 585 312 

Mean angle crash 
frequency per 
intersection 

0.892 2.578 0.981 2.122 

Angle crash 
standard 

deviation per 
intersection 

1.734 3.856 2.079 2.808 

 

It was decided to use two separate models for 3 and 4-legged intersections as both 

intersection types have different operating characteristics. For example, for 4-legged 

unsignalized intersections, there is an additional maneuver, which is vehicles crossing the 

whole major road width from the first minor approach to the second minor approach, thus 

leading to a right-angle crash risk. Other studies (e.g., Jonsson et al., 2009) modeled total 
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crash frequency and specific crash types at three and four-legged intersections separately. 

A full description of the important variables used in the NB and MARS modeling 

procedures for 3 and 4-legged unsignalized intersections is shown in Table  7-3. 

From Table  7-3, regular unsignalized intersections are those intersections having 

distant stretches on the minor approaches, whereas access points include parking lots at 

plazas and malls, and driveways that are feeding to the major approach. Due to the 

unavailability of AADT on most minor roads, an important traffic covariate explored in 

this study is the surrogate measure for AADT on the minor approach, which is 

represented by the number of through lanes on this approach.  

The three MARS applications are shown for the analysis of rear-end crashes first, 

then are presented for angle crashes afterwards. 

To explore the three spatial covariates (logarithm of upstream and downstream 

distances to the nearest signalized intersection, and logarithm of the distance between 

successive unsignalized intersections) on rear-end and angle crashes, Figures 7-1 to 7-12 

are presented.  

Plot of the distance between successive unsignalized intersections and rear-end 
crashes at 3 legs

0 

5 

10 

15 

20 

25 

30 

3 4 5 6 7 8 9 10

Log_UNSIG_Dist

R
ea

r-
e

n
d

 c
ra

sh
 f

re
q

u
e

n
cy

 

 
Figure  7-1: Plot of the Distance between Successive Unsignalized Intersections and Rear-end Crashes 

at 3-Legged Intersections  
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From Figure  7-1, it is noticed that there is a fluctuation in the trend, and it is 

difficult to determine the effect of the distance between successive unsignalized 

intersections on rear-end crashes at 3 legs from this plot. 

 

 
Figure  7-2: Plot of the Upstream Distance to the Nearest Signalized Intersection and Rear-end 

Crashes at 3-Legged Intersections 

 

From Figure  7-2, it is noticed that rear-end crashes at 3 legs tend to decrease after 

a range of 7.6 to 7.8 for the log upstream distance (i.e., 0.38 to 0.46 miles), and there is 

no more trend fluctuation after this cut-off range. The highest rear-end crash frequency 

nearly occurs at a log upstream distance of around 6.5 (0.13 miles). Also, it can be 

deduced that rear-end crashes decrease with relatively large upstream distance at 3 legs. 

Plot of the upstream distance to the nearest signalized intersection and rear-end  
crashes at 3 legs
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Figure  7-3: Plot of the Downstream Distance to the Nearest Signalized Intersection and Rear-end 

Crashes at 3-Legged Intersections 

 

From Figure  7-3, it is noticed that rear-end crashes at 3 legs tend to decrease after 

a range of 7.6 to 7.8 for the log downstream distance (i.e., 0.38 to 0.46 miles), and there 

is no more trend fluctuation after this cut-off range. Also, it can be deduced that rear-end 

crashes decrease with relatively large downstream distance at 3 legs. 

Plot of the downstream distance to the nearest signalized intersection and rear- 
end crashes at 3 legs
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Plot of the distance between successive unsignalized intersections and rear-end 
crashes at 4 legs
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Figure  7-4: Plot of the Distance between Successive Unsignalized Intersections and Rear-end Crashes 

at 4-Legged Intersections 

 168



 

From Figure  7-4, it is noticed that there is a fluctuation in the trend, and it is 

difficult to determine the effect of the distance between successive unsignalized 

intersections on rear-end crashes at 4 legs from this plot. 

Plot of the upstream distance to the nearest signalized intersection and rear-end  
crashes at 4 legs
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Figure  7-5: Plot of the Upstream Distance to the Nearest Signalized Intersection and Rear-end 

Crashes at 4-Legged Intersections 

 

From Figure  7-5, it is noticed that rear-end crashes at 4 legs tend to decrease with 

relatively large upstream distance. Roughly, the cut-off range for the clear reduction 

starts from 7.6 to 7.8 (i.e., 0.38 to 0.46 miles). Also, the highest rear-end crash frequency 

nearly occurs at a log upstream distance of around 6.5 (0.13 miles). 
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Figure  7-6: Plot of the Downstream Distance to the Nearest Signalized Intersection and Rear-end 

Crashes at 4-Legged Intersections 

 

From Figure  7-6, it is noticed that the least magnitude of fluctuation occurs after a 

log downstream range distance of 7.6 to 7.8 (i.e., 0.38 to 0.46 miles), and generally, rear-

end crashes decrease with relatively large downstream distance at 4 legs. Also, the 

highest rear-end crash frequency nearly occurs at a log downstream distance of around 

6.5 (0.13 miles). 

 
Figure  7-7: Plot of the Distance between Successive Unsignalized Intersections and Angle Crashes at 

3-Legged Intersections 

Plot of the downstream distance to the nearest signalized intersection  
and rear-end crashes at 4 legs

0 

10 

20 

30 

40 

50 

60 

5 5.5 6 6.5 7 7.5 8 8.5 9

Log_DOWN_Dist

R
ea

r-
en

d
 c

ra
sh

 f
re

q
u

en
c

y 

7.8 

Plot of the distance between successive unsignalized intersections and 
angle crashes at 3 legs
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From Figure  7-7, it is noticed that there is a fluctuation in the trend, and it is 

difficult to determine the effect of the distance between successive unsignalized 

intersections on angle crashes at 3 legs from this plot. 

Plot of the upstream distance to the nearest signalized intersection and 
angle crashes at 3 legs
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Figure  7-8: Plot of the Upstream Distance to the Nearest Signalized Intersection and Angle Crashes 

at 3-Legged Intersections 

 
From Figure  7-8, it is noticed that angle crashes at 3 legs tend to decrease after a 

range of 7.6 to 7.8 for the log upstream distance (i.e., 0.38 to 0.46 miles), and there is no 

more trend fluctuation after this cut-off range. Also, it can be deduced that angle crashes 

decrease with relatively large upstream distance at 3 legs. 
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Figure  7-9: Plot of the Downstream Distance to the Nearest Signalized Intersection and Angle 

Crashes at 3-Legged Intersections  

 

From Figure  7-9, it is noticed that angle crashes at 3 legs tend to decrease after a 

range of 7.6 to 7.8 for the log downstream distance (i.e., 0.38 to 0.46 miles), and there is 

no more trend fluctuation after this cut-off range. Also, it can be deduced that angle 

crashes decrease with relatively large downstream distance at 3 legs. 

 
Figure  7-10: Plot of the Distance between Successive Unsignalized Intersections and Angle Crashes at 

4-Legged Intersections  

Plot of the downstream distance to the nearest signalized intersection  
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Plot of the distance between successive unsignalized intersections and 
angle crashes at 4 legs
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From Figure  7-10, it is noticed that there is a fluctuation in the trend, and it is 

difficult to determine the effect of the distance between successive unsignalized 

intersections on angle crashes at 4 legs from this plot. 

 
Figure  7-11: Plot of the Upstream Distance to the Nearest Signalized Intersection and Angle Crashes 

at 4-Legged Intersections  

Plot of the upstream distance to the nearest signalized intersection and 
angle crashes at 4 legs
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From Figure  7-11, it is noticed that angle crashes at 4 legs tend to decrease with 

relatively large upstream distance. Roughly, the cut-off range for the clear reduction 

starts from 7.6 to 7.8 (i.e., 0.38 to 0.46 miles). Also, the second highest angle crash 

frequency nearly occurs at a log upstream distance of around 6.5 (0.13 miles). 
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Plot of the downstream distance to the nearest signalized intersection  
and angle crashes at 4 legs
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Figure  7-12: Plot of the Downstream Distance to the Nearest Signalized Intersection and Angle 

Crashes at 4-Legged Intersections 

 
From Figure  7-12, it is noticed that angle crashes at 4 legs tend to decrease with 

relatively large downstream distance. 

7.5 Modeling Rear-end Crash Frequency at 3 and 4-Legged Unsignalized 

Intersections Using the NB Formulation 

After using SAS (2002) with the “proc genmod” procedure, the NB rear-end crash 

frequency model for both 3 and 4-legged unsignalized intersections is shown in Table 

 7-4. This table includes the generalized R-square criterion as a goodness-of-fit statistic. 
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Table  7-3: Variables Description for 3 and 4-Legged Unsignalized Intersections 

Variable Description Variable Levels for 3 Legs Variable Levels for 4 Legs 
Crash location in any of 

the 6 counties 
Orange, Brevard, Hillsborough, Miami-Dade, Leon and Seminole Orange, Brevard, Hillsborough, Miami-Dade, Leon and Seminole 

Existence of stop sign on 
the minor approach 

= 0; if no stop sign exists;  
= 1; if stop sign exists 

= 0; if no stop sign exists; 
= 1; if only one stop sign exists on one of the minor approaches;  
= 2; if one stop sign exists on each minor approach 

Existence of stop line on 
the minor approach 

= 0; if no stop line exists; 
= 1; if stop line exists 

= 0; if no stop line exists; 
= 1; if only one stop line exists on one of the minor approaches;  
= 2; if one stop line exists on each minor approach 

Existence of crosswalk on 
the minor approach 

= 0; if no crosswalk exists;  
= 1; if crosswalk exists 

= 0; if no crosswalk exists; 
= 1; if only one crosswalk exists on one of the minor approaches;  
= 2; if one crosswalk exists on each minor approach 

Existence of crosswalk on 
the major approach 

= 0; if no crosswalk exists; 
= 1; if one crosswalk exists on one of the major approaches;  
= 2; if one crosswalk exists on each major approach 

= 0; if no crosswalk exists; 
= 1; if one crosswalk exists on one of the major approaches;  
= 2; if one crosswalk exists on each major approach 

Control type on the minor 
approach 

= 1; if stop sign exists (1-way stop); 
= 3; if no control exists;  
= 5; if yield sign exists 

= 2; if stop sign exists on each minor approach (2-way stop); 
= 3; if no control exists on both minor approaches;  
= 4; if stop sign exists on the first minor approach, and no control on 
the other 

Size of the intersection a   

= 1; for “1x2”, “1x3” and “1x4” intersections; 
= 2; for “2x2” and “2x3” intersections; 
= 3; for “2x4”, “2x5” and “2x6” intersections; 
= 4; for “2x7” and “2x8” intersections; 
= 5; for “3x2”, “3x3”, “3x4”, “3x5”, “3x6” and “3x8” intersections;  
= 6; for “4x2”, “4x4”, “4x6” and “4x8” intersections 

= 2; for “2x2” and “2x3” intersections; 
= 3; for “2x4”, “2x5” and “2x6” intersections; 
= 4; for “2x7” and “2x8” intersections; 
= 5; for “3x2”, “3x3”, “3x4”, “3x5”, “3x6” and “3x8” intersections;  
= 6; for “4x2”, “4x4”, “4x6” and “4x8” intersections 

Type of unsignalized 
intersection 

= 1; for access point (driveway) intersections; 
= 2; for ramp junctions; 
= 3; for regular intersections; 
= 4; for intersections close to railroad crossings b 

= 1; for access point (driveway) intersections; 
= 3; for regular intersections; 
= 4; for intersections close to railroad crossings b 

Number of right turn 
lanes on the major 

approach 

= 0; if no right turn lane exists;  
= 1; if one right turn lane exists on only one direction;  
= 2; if one right turn lane exists on each direction c 

= 0; if no right turn lane exists; 
= 1; if one right turn lane exists on only one direction;  
= 2; if one right turn lane exists on each direction 

Number of left turn lanes 
on the major approach 

= 0; if no left turn lane exists;  
= 1; if one left turn lane exists on only one direction;  
= 2; if one left turn lane exists on each direction d 

= 0; if no left turn lane exists;  
= 1; if one left turn lane exists on only one direction;  
= 2; if one left turn lane exists on each direction 

Number of left turn 
movements on the minor 

approach 

= 0; if no left turn movement exists;  
= 1; if one left turn movement exists 

= 0; if no left turn movement exists; 
= 1; if one left turn movement exists on one minor approach only;  
= 2; if one left turn movement exists on each minor approach 



 

Variable Description Variable Levels for 3 Legs Variable Levels for 4 Legs 
Land use at the 

intersection area 
= 1; for rural area; = 2; for urban/suburban areas = 1; for rural area; = 2; for urban/suburban areas 

Median type on the major 
approach 

= 1; for open median; = 2; for directional median; 
= 3; for closed median; = 4; for two-way left turn lane; 
= 5; for markings;= 6; for undivided median; = 7; for mixed median e  

= 1; for open median; = 4; for two-way left turn lane; 
= 6; for undivided median 

Median type on the minor 
approach 

= 1; for undivided median, two-way left turn lane and markings;  
= 2; for any type of divided median 

= 1; for undivided median, two-way left turn lane and markings;  
= 2; for any type of divided median 

Skewness level 
= 1; if skewness angle <= 75 degrees; 
= 2; if skewness angle > 75 degrees 

= 1; if skewness angle <= 75 degrees;  
= 2; if skewness angle > 75 degrees 

Posted speed limit on the 
major road 

= 1; if posted speed limit < 45 mph;  
= 2; if posted speed limit >= 45 mph 

= 1; if posted speed limit < 45 mph;  
= 2; if posted speed limit >= 45 mph 

Number of through lanes 
on the minor approach f  

= 1; if one through lane exists; 
= 2; if two through lanes exist;  
= 3; if more than two through lanes exist 

= 2; if two through lanes exist;  
= 3; if more than two through lanes exist 

Natural logarithm of the section annual average daily traffic on the major road; Natural logarithm of the upstream and downstream distances (in feet) to the nearest signalized 
intersection from the unsignalized intersection of interest; Left shoulder width near the median on the major road (in feet); Right shoulder width on the major road (in feet); 
Percentage of trucks on the major road; Natural logarithm of the distance between 2 successive unsignalized intersections g  

 

a The first number represents total number of approach lanes for the minor approach, and the second number represents total number of through lanes for 
the major approach 
b Railroad crossing can exist upstream or downstream the intersection of interest 
c One right turn lane on each major road direction for 3-legged unsignalized intersections: Two close unsignalized intersections, one on each side of the 
roadway, and each has one right turn lane. The extended right turn lane of the first is in the influence area of the second. 
d One left turn lane on each major road direction for 3-legged unsignalized intersections: One of these left turn lanes is only used as U-turn. 
e Mixed median is directional from one side, and closed from the other side (i.e., allows access from one side only) 
f Surrogate measure for AADT on the minor approach 
g Continuous variables 
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Table  7-4: Rear-end Crash Frequency Model at 3 and 4-Legged Unsignalized Intersections 

 Three-Legged Model Four-Legged Model 

Variable Description Estimate a P-value Estimate a P-value 

Intercept -6.6300 (0.9229) <0.0001 -12.7601 (1.7815) <0.0001 

Natural logarithm of AADT on the major road 0.5830 (0.0811) <0.0001 1.2288 (0.1519) <0.0001 

Natural logarithm of the upstream distance to the nearest signalized intersection  -0.1376 (0.0406) 0.0007 N/S b  

Natural logarithm of the downstream distance to the nearest signalized intersection  N/S  -0.1244 (0.0681) 0.0678 

Natural logarithm of the distance between 2 successive unsignalized intersections N/S  0.0966 (0.0552) 0.0800 

Unsignalized intersections in urban/suburban areas 0.6919 (0.2399) 0.0039 N/S  

Unsignalized intersections on rural areas --- c  N/S  

Posted speed limit on major road >= 45 mph 0.2183 (0.0948) 0.0212 N/S  

Posted speed limit on major road < 45 mph --- c  N/S  

Divided median on the minor approach -0.2308 (0.1431) 0.1068 N/S  

Undivided median on the minor approach --- c  N/S  

Undivided median exists on the major approach N/S  0.4209 (0.1638) 0.0102 

Two-way left turn lane exists on the major approach N/S  0.3267 (0.1677) 0.0514 

Open median exists on the major approach N/S  --- c  

Left shoulder width near the median on the major road 0.0831 (0.0338) 0.0138 N/S  

Unsignalized intersections close to railroad crossings 0.5062 (0.4247) 0.2333 N/S  

Regular unsignalized intersections 0.4313 (0.1044) <0.0001 N/S  

Unsignalized ramp junctions 0.6043 (0.2414) 0.0123 N/A d  

Access point unsignalized intersections (Driveways) --- c  N/S  

One right turn lane exists on each major road direction -0.2822 (0.2843) 0.3208 N/S  

One right turn lane exists on only one major road direction 0.1932 (0.1113) 0.0826 N/S  

No right turn lane exists on the major approach --- c  N/S  



 

 Three-Legged Model Four-Legged Model 

Estimate a Estimate a Variable Description P-value P-value 

Dummy variable for Seminole County 0.2595 (0.1856) 0.1622 0.2199 (0.2681) 0.4121 

Dummy variable for Orange County 0.3032 (0.1587) 0.0561 0.1694 (0.2596) 0.5141 

Dummy variable for Miami-Dade County 0.7018 (0.1597) <0.0001 0.6764 (0.2596) 0.0092 

Dummy variable for Leon County 1.2358 (0.1550) <0.0001 0.8147 (0.2730) 0.0028 

Dummy variable for Hillsborough County 0.7221 (0.1545) <0.0001 1.1996 (0.2390) <0.0001 

Dummy variable for Brevard County --- c  --- c  

Dispersion 0.9376 (0.0828)  0.4463 (0.0870)  

Generalized R-square e 0.178 0.313 
a Standard error in parentheses      
b N/S means not significant 
c Base case 
d N/A means not applicable 
e Generalized R-square = 1 – (Residual deviance/Null deviance). The residual deviance is equivalent to the residual sum of squares in linear regression, 
and the null deviance is equivalent to the total sum of squares (Zuur et al., 2007)  
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7.5.1 Three-Legged Model Interpretation 

From Table  7-4, there is a statistical significant increase in rear-end crashes with 

the increase in the logarithm of AADT, as rear-end crashes always occur at high traffic 

volumes. This is consistent with that concluded by Wang and Abdel-Aty (2006), who 

found that the logarithm of AADT per lane increases rear-end crash frequency at 

signalized intersections. 

There is a reduction in rear-end crashes with the increase in the logarithm of the 

upstream distance to the nearest signalized intersection. This is expected since there is 

enough spacing for vehicles to accommodate high AADT and frequent stops in rush 

hours, and thus rear-end crash risk decreases. 

There is an increase in rear-end crashes in urban/suburban areas, when compared 

to rural areas. This is anticipated since there are higher volume and more intersections in 

urban (and suburban) areas, hence a higher rear-end crash risk. 

Compared to access points, regular unsignalized intersections have longer 

stretches on the minor approach, thus rear-end crashes increase, and as shown in Table 

 7-4, the increase is statistically significant. As expected, rear-end crashes are high at 

unsignalized intersections next to railroads due to sudden unexpected stops that can 

propagate to intersections nearby. Also, ramp junctions have high probability of rear-end 

crashes due to sudden stops in merging areas.  

The existence of one right turn lane from one major direction only increases rear-

end crashes, compared to no right turn lanes. This shows that separating right and through 

maneuvers near unsignalized intersections might not be beneficial in some cases. 



 

The highest significant increase in rear-end crashes occurs at Leon County (when 

compared to Brevard County). This might be explained that Leon County has the capital 

of Florida, thus having more central governmental agencies which generate more trips. It 

is mostly rural, and that is why it might have more unsignalized intersections. It can be 

also noticed that compared to the eastern part of Florida (represented by Brevard 

County), the highest increase in rear-end crashes occurs in the northern part (represented 

by Leon County), followed by the western part (represented by Hillsborough County), 

then the southern part (represented by Miami-Dade County), and finally the central part 

(represented by Orange and Seminole Counties). 

7.5.2 Four-Legged Model Interpretation 

From Table  7-4, as found in the 3-legged model, increasing the logarithm of 

AADT significantly increases rear-end crashes. 

There is a reduction in rear-end crashes with the increase in the logarithm of the 

downstream distance to the nearest signalized intersection. The estimated coefficient is 

statistically significant at the 90% confidence. 

The finding that there is an increase in rear-end crashes with the increase in the 

logarithm of the distance between successive unsignalized intersections should not be 

deceiving, as this could be masked by the variable “logarithm of the downstream distance 

to the nearest signalized intersection”. The relatively short downstream distance can 

cause a backward shockwave, resulting in turbulence at nearby unsignalized 

intersections, thus rear-end crash risk can be high.  

Two-way left turn lanes as well as undivided medians on the major approach 

significantly increase rear-end crashes, when compared to having an open median. This 

 180



 

shows the hazardous effect of having two-way left turn lanes for 4-legged intersections. 

This conforms to the study done by Phillips (2004) who found that two-way left turn 

lanes experience more crashes than raised medians. 

Similar to the 3-legged model, the central part in Florida (represented by Orange 

and Seminole Counties) experience the least rear-end crash increase when compared to 

the eastern part (represented by Brevard County). 

To show the result of the MARS model and the coefficients of different basis 

functions, the MARS model for 4-legged rear-end crash frequency is presented in Table 

 7-5. 

Table  7-5: Rear-end Crash Frequency Model at 4-Legged Unsignalized Intersections Using MARS  

* Standard error in parentheses 

Basis Function Basis Function Description Estimate * P-value 

Intercept Intercept 
23.0519 

(7.2920) 
0.0016 

Log_AADT Natural logarithm of AADT on the major road 
-2.2023 

(0.6749) 
0.0012 

Hills_County Hillsborough County 
-24.7873 

(4.9271) 
<0.0001 

Undivided_Median Undivided median on the major approach 
-1.1506 

(0.7342) 
0.1179 

Hills_County * Undivided_Median An interaction term 
1.3625 

(0.5361) 
0.0114 

Log_AADT * Hills_County An interaction term 
2.4150 

(0.4542) 
<0.0001 

(Log_AADT – 10.27505)+ 
A truncated power basis function for “Log_AADT” 

at “10.27505” 
2.8190 

(0.6533) 
<0.0001 

 Generalized R-square  0.55 
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For the shown MARS model, it is noticed that MARS selects only those 

significant levels of categorical variables, and it does not show all possible levels as the 

NB model. Also, it is noticed that there are two interaction terms. Thus, the two variables 

in each interaction term should be interpreted together. The first interaction term is 

between Hillsborough County and undivided median, while the second is between the 

logarithm of AADT and Hillsborough County. The equation representing the first 

interaction term is: “-24.7873 * Hills_County – 1.1506 * Undivided_Median + 1.3625 * 

Hills_County * Undivided_Median”. 

The interpretation for the shown equation is as follows: for the existence of 

undivided median on the major approach (i.e., Undivided_Median = 1), the equation 

becomes “(-24.7873 + 1.3625) * Hills_County – 1.1506”, which can be simplified as “-

23.4248 * Hills_County – 1.1506”. Thus, the individual coefficient of “Hills_County” is 

“-23.4248”. This means that, for the existence of undivided median on the major 

approach, the frequency of rear-end crashes decreases for Hillsborough County, when 

compared to the other five counties used in the analysis.  

The equation representing the second interaction term is: “-2.2023 * Log_AADT 

– 24.7873 * Hills_County + 2.4150 * Log_AADT * Hills_County + 2.8190 * 

(Log_AADT – 10.27505)+”. The interpretation for the shown equation is as follows: for 

Hillsborough County (i.e., Hills_County = 1) and Log_AADT > 10.27505 (i.e., AADT > 

29,000), the equation becomes “(-2.2023 + 2.4150) * Log_AADT + 2.8190 * 

(Log_AADT – 10.27505) – 24.7873”, which can be simplified as “3.0317 * Log_AADT 

– 53.7527”. Thus, the individual coefficient of “Log_AADT” is “3.0317”. This means 
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that, for Hillsborough County, the frequency of rear-end crashes increases as long as 

AADT is greater than 29,000 vehicles per day.  

From Table  7-5, it is noted that there is a nonlinear performance for the 

continuous variable “Log_AADT”, as shown in its truncated basis function at 

“10.27505”. In order to better understand the nonlinear function of “Log_AADT”, a plot 

for its basis function is shown in Figure  7-13. The basis function “f(Log_AADT)” 

according to the fitted MARS model is “-2.2023 * Log_AADT + 2.8190 * (Log_AADT 

– 10.27505)+”.  

As previously shown in Equation (7.3), the term “(Log_AADT – 10.27505)+” 

equals “Log_AADT – 10.27505” when Log_AADT > 10.27505, and zero, otherwise. By 

this, the plot in Figure  7-13 can be formed, where the basis function “f(Log_AADT)” is 

plotted against all the values of “Log_AADT”. From this figure, it can be noticed that 

there is only one knot (10.27505), when there is a sudden break in the straight line. This 

demonstrates the nonlinear performance of the variable “Log_AADT” with rear-end 

crash frequency. 
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Figure  7-13: Plot of the Basis Function for "Log_AADT" 
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7.6 Comparing MARS and NB Models 

For the first application of MARS in this study, a comparison between the two 

fitted MARS models and the corresponding NB models, while treating the response in 

each as a discrete one (i.e., crash frequency), is shown in Table  7-6. The R package (51) 

was utilized to estimate the MARS models via the library “polspline”. The MARS 

models were generated using the default GCV value “3” in R. From this table, it is 

noticed that the MSPE for MARS in the 3-legged model is slightly lower than the 

corresponding NB model, and the MAD values are the same. As for the 4-legged model, 

the MSPE value for MARS is lower than the NB model, while the MAD is higher. This 

indicates that the MARS technique has a promising prediction capability. Also, the 

generalized R-square is much higher for the MARS models. 

Table  7-6: Comparison between the Fitted MARS and NB Models in terms of Prediction and Fitting 

  Rear-end three-legged model Rear-end four-legged model 
  MARS NB MARS NB 

MAD * 1.01 1.01 0.96 0.82 
Prediction 

MSPE * 2.54 2.55 1.98 2.62 
Fitting Generalized R-square 0.42 0.17 0.55 0.31 

* MAD and MSPE values are normalized by the average of the response variable 
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7.7 Examining Fitting MARS Model with Continuous Response 

To examine the higher prediction capability of MARS while dealing with 

continuous responses (Friedman, 1991), the two MARS models using the same important 

NB covariates were fitted while considering the response as the crash frequency 

normalized by the natural logarithm of AADT. It is worth mentioning that the natural 

logarithm of AADT was only used as the denominator of the response variable, i.e., not 

an explanatory variable as in the previous case. A default GCV value of “3” was used 

while fitting the models. The assessment criteria for the generated MARS models are 

shown in Table  7-7. 

By comparing the MAD and MSPE values from this table with those from the 

previously fitted MARS models in Table  7-6, it is noticed that the MAD and MSPE 

values shown in Table  7-7 are lower. The estimated MSPE values are very close to 

“zero”, indicating a very high prediction capability. This demonstrates the higher 

prediction performance of MARS while dealing with continuous responses. Also, the 

generalized R-square values in Tables 7-6 and 7-7 are very close. 

Table  7-7: Prediction and Fitting Performance of the Two MARS Models Using a Continuous 
Response Formulation 

  Rear-end three-legged 
model 

Rear-end four-legged 
model 

  MARS 1 MARS 1 
MAD 2 1.07 0.95 

Prediction 
MSPE 2 0.27 0.31 

Fitting Generalized R-square 0.39 0.46 
1 Response is the crash frequency normalized by the natural logarithm of AADT 
 
2 MAD and MSPE values are normalized by the average of the response variable 
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7.8 Using MARS in Conjunction with Random Forest 

Since the MARS technique showed similar efficient prediction performance to the 

NB framework (with higher prediction capability while dealing with continuous 

responses), an additional effort to examine screening all possible covariates before fitting 

a MARS model, was attempted. This leads to utilizing the random forest technique 

(Breiman, 2001) before fitting a MARS model for variable screening and ranking 

important covariates. Using the R package, all possible covariates in the two attempted 

models were screened via the library “randomForest”. The random forest technique was 

performed with 50 trees grown in the two training datasets. To examine whether this 

number can lead to stable results, the plot of the OOB error rate against different tree 

numbers for the three-legged training dataset (just as an example for illustration 

purposes) is shown in Figure  7-14. From this figure, it can be noticed that after 38 trees, 

the OOB error rate starts to stabilize. Hence, the attempted number of trees “50” was 

deemed large enough to obtain stable results. This was also concluded for the four-legged 

training dataset. 

 
38

Figure  7-14: Plot of the OOB Error Rate against Different Number of Trees 
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Figure  7-15 shows the purity values for every covariate. The highest variable 

importance ranking is the percentage of trucks, followed by the natural logarithm of the 

distance between two unsignalized intersections, etc., until ending up with the existence 

of crosswalk on the major approach. The resulted variable importance ranking 

demonstrates the significant effect of the spatial covariates on rear-end crashes, with the 

distance between successive unsignalized intersections being the most significant. The 

second significant spatial variable is the upstream distance to the nearest signalized 

intersection, followed by the downstream distance. The upstream distance was also found 

significant in the fitted three-legged NB model. To screen the covariates, a cut-off purity 

value of “1.5” was used. This leads to selecting eight covariates (labeled from “1” till “8” 

in Figure  7-15). Those eight covariates were then fitted using MARS, with the response 

being the crash frequency normalized by the natural logarithm of AADT, since it 

revealed the best promising prediction performance. 

 
Figure  7-15: Variable Importance Ranking Using Node Purity Measure Node Purity Values 
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The final fitted MARS model using the eight selected covariates at 3-legged 

unsignalized intersections is presented in Table  7-8, where the response is the crash 

frequency normalized by the logarithm of AADT. From this table, it is noticed that the 

negative coefficient for the logarithm of the upstream distance concurs with that deduced 

from Table  7-4.  

Table  7-8: MARS Model at 3-Legged Unsignalized Intersections after Screening the Variables Using 
Random Forest  

* Standard error in parentheses 

Basis Function Basis Function Description Estimate * P-value 

Intercept Intercept 
0.1360 

(0.0521) 
0.0091 

Log_Up_Dist 
Natural logarithm of the upstream distance to the 

nearest signalized intersection 
-0.0263 

(0.0045) 
<0.0001 

Leon_County Leon County 
0.0938 

(0.0141) 
<0.0001 

Miami_County Miami-Dade County 
0.0017 

(0.0175) 
0.9196 

Hills_County Hillsborough County 
0.0421 

(0.0134) 
0.0017 

ISLDWDTH Inside shoulder width (in feet) 
-0.0737 

(0.0139) 
<0.0001 

ISLDWDTH * Miami_County An interaction term 
0.0754 

(0.0115) 
<0.0001 

 Generalized R-square  0.35 

 

To assess whether there is an improvement over the two generated MARS models 

using the important variables from the NB model, the same evaluation criteria were used, 

as shown in Table  7-9. Comparing the MAD and MSPE values in Tables 7-7 and 7-9, it 

is noticed that there is always a reduction (even if it is small) in the MAD and MSPE 

values in Table  7-9, hence higher prediction accuracy. The resulted generalized R-square 
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values are relatively high, hence encouraging model fit. This demonstrates that using 

MARS after screening the variables using random forest is quite promising. 

Table  7-9: Prediction and Fitting Assessment Criteria for the Two MARS Models after Screening the 
Variables Using Random Forest  

  Rear-end three-legged 
model 

Rear-end four-legged 
model 

  MARS MARS 
MAD * 1.03 0.87 

Prediction 
MSPE * 0.25 0.28 

Fitting Generalized R-square 0.35 0.50 
* MAD and MSPE values are normalized by the average of the response variable 
 

7.9 Predicting Angle Crashes Using the MARS Technique 

After exploring rear-end crashes in the previous sections of this chapter using 

MARS, another frequent crash type at unsignalized intersections (which is angle crash) 

was investigated in the following sections. The same unsignalized intersections sample 

was also used (2475 intersections). 

7.9.1 Modeling Angle Crash Frequency at 3 and 4-Legged Unsignalized 

Intersections Using the NB Technique 

The NB angle crash frequency model for both 3 and 4-legged unsignalized 

intersections is shown in Table  7-10. This table includes the generalized R-square 

criterion as a goodness-of-fit statistic. 
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Table  7-10: Angle Crash Frequency Model at 3 and 4-Legged Unsignalized Intersections 

 Three-Legged Model Four-Legged Model 

Variable Description Estimate a P-value Estimate a P-value 

Intercept -7.1703 (1.3369) <0.0001 -9.0650 (1.6736) <0.0001 

Natural logarithm of AADT on the major road 0.6741 (0.1120) <0.0001 0.7151 (0.1662) <0.0001 

Natural logarithm of the upstream distance to the nearest signalized intersection  -0.0878 (0.0493) 0.0747 N/S b  

Natural logarithm of the distance between 2 successive unsignalized intersections N/S  0.1200 (0.0604) 0.0471 

Percentage of trucks on the major road 0.0272 (0.0168) 0.1049 N/S  

Unsignalized intersections close to railroad crossings 0.4368 (0.5317) 0.4114 1.0322 (0.3608) 0.0042 

Regular unsignalized intersections 0.4069 (0.1193) 0.0007 0.4959 (0.1341) 0.0002 

Unsignalized ramp junctions 0.5238 (0.3137) 0.0949 N/A d  

Access point unsignalized intersections (Driveways) --- c  --- c  

One left turn lane exists on each major road direction 0.3495 (0.1754) 0.0463 0.4647 (0.2067) 0.0246 

One left turn lane exists on only one major road direction 0.1642 (0.1324) 0.2149 0.6440 (0.2420) 0.0078 

No left turn lane exists on the major approach --- c  --- c  

One right turn lane exists on each major road direction N/S  0.5842 (0.2678) 0.0292 

One right turn lane exists on only one major road direction N/S  0.0869 (0.2149) 0.6860 

No right turn lane exists on the major approach N/S  --- c  

One left turn exists on any of the minor approaches -0.6274 (0.2112) 0.0030 N/S  

No left turn lane exists on the minor approach ---c  N/S  

Mixed median exists on the major approach -0.7215 (0.2795) 0.0099 N/A  

Undivided median exists on the major approach -0.4342 (0.1504) 0.0039 0.3488 (0.2144) 0.1038 

Marking exists on the major approach -0.3797 (0.3128) 0.2248 N/A  

Two-way left turn lane exists on the major approach -0.3779 (0.1891) 0.0457 0.0059 (0.1828) 0.9743 

Closed median exists on the major approach -0.5805 (0.2529) 0.0217 N/A  



 

 Three-Legged Model Four-Legged Model 

Estimate a Estimate a Variable Description P-value P-value 

Directional median exists on the major approach -0.6773 (0.2874) 0.0184 N/A  

Open median exists on the major approach ---c  ---c  

Posted speed limit on major road >= 45 mph 0.2201 (0.1156) 0.0568 N/S  

Posted speed limit on major road < 45 mph --- c  N/S  

“4x2”, “4x4”, “4x6” and “4x8” intersections N/S  0.0443 (0.5968) 0.9408 

“3x2”, “3x3”, “3x4”, “3x5”, “3x6” and “3x8” intersections N/S  0.9531 (0.3527) 0.0069 

“2x7” and “2x8” intersections N/S  0.8813 (0.7924) 0.2660 

“2x4”, “2x5” and “2x6” intersections N/S  0.2661 (0.2806) 0.3430 

“2x2” and “2x3” intersections N/S  --- c  

Dummy variable for Seminole County 0.1889 (0.2394) 0.4302 -0.0427 (0.2795) 0.8786 

Dummy variable for Orange County 0.6930 (0.1911) 0.0003 0.0604 (0.2669) 0.8211 

0.0004 Dummy variable for Miami-Dade County 0.7522 (0.2104) 1.0695 (0.2575) <0.0001 

Dummy variable for Leon County <0.0001 0.8489 (0.1985) 0.5336 (0.2786) 0.0555 

Dummy variable for Hillsborough County 1.0528 (0.1988) <0.0001 1.1046 (0.2304) <0.0001 

Dummy variable for Brevard County --- c  --- c  

Dispersion 1.1442 (0.1113)  0.8379 (0.1043)  

Generalized R-square 0.19 0.31 

a Standard error in parentheses    b N/S means not significant      c Base case      d N/A means not applicable   
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7.9.1.1 Three-Legged Model Interpretation 

From Table  7-10, there is a statistical significant increase in angle crashes with 

the increase in the logarithm of AADT (which inherently means an increase in traffic 

volume). As AADT relatively increases, vehicles coming from the minor approach find it 

difficult to cross the major road due to congestion, hence angle crash risk might increase.  

There is a reduction in angle crashes with the increase in the logarithm of the 

upstream distance to the nearest signalized intersection. This is expected since there is 

enough spacing for vehicles on the minor approach to cross the major road, and thus 

angle crash risk decreases. 

There is an increase in angle crashes with the increase in truck percentage. This is 

anticipated due to possible vision blockage caused by trucks, thus angle crash risk could 

increase . 

Compared to access points, regular unsignalized intersections have longer 

stretches on the minor approach, thus angle crashes increase, and as shown in Table  7-10, 

the increase is statistically significant. Also, ramp junctions have high angle crashes due 

to traffic turbulence in merging areas.  

The existence of one left turn lane on each major road direction significantly 

increases angle crashes, compared to no left turn lanes. This is due to a high possible 

conflict pattern between vehicles crossing from both minor and major approaches. 

Compared to open medians, undivided medians have the least significant decrease 

in angle crashes due to the reduction in conflict points. 

Compared to the eastern part of Florida (represented by Brevard County), the 

highest increase in angle crashes occurs in the western part (represented by Hillsborough 



 

County), followed by the northern part (represented by Leon County), then the southern 

part (represented by Miami-Dade County), and finally the central part (represented by 

Orange and Seminole Counties). 

7.9.1.2 Four-Legged Model Interpretation 

From Table  7-10, as found in the 3-legged model, increasing the logarithm of 

AADT significantly increases angle crashes. 

The finding that there is an increase in angle crashes with the increase in the 

logarithm of the distance between successive unsignalized intersections could be masked 

by the variable “logarithm of the downstream distance to the nearest signalized 

intersection”. The relatively short downstream distance can cause a backward shockwave, 

resulting in turbulence at nearby unsignalized intersections, thus angle crash risk could be 

high.  

Similar to the 3-legged model, compared to access points, regular unsignalized 

intersections as well as unsignalized intersections next to railroads experience a 

significant increase in angle crashes. 

The existence of one left and right turn lane on each major road direction 

significantly increases angle crashes, compared to no left and right turn lanes, 

respectively. Once more, this is due to a high possible conflict pattern between vehicles 

crossing from both minor and major approaches. 

Two-way left turn lanes as well as undivided medians on the major approach 

increase angle crashes, when compared to open medians, and the increase is statistically 

significant for undivided medians. This shows the hazardous effect of having two-way 

left turn lanes for 4-legged intersections. This conforms to the study done by Phillips 
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(2004) who found that two-way left turn lanes experience more crashes than raised 

medians. 

As the size of intersections increase, angle crashes increase. This is anticipated 

due to the higher angle crash risk maneuver at relatively bigger intersections. 

Intersections with 3 total lanes on the minor approach have the only significant increase. 

Similar to the 3-legged model, the highest increase in angle crashes occurs in the 

western part (represented by Hillsborough County), followed by the northern part 

(represented by Leon County), then the southern part (represented by Miami-Dade 

County) when compared to the eastern part (represented by Brevard County). The central 

part (represented by Orange and Seminole Counties) has no significant effect on angle 

crashes. 

To show the result of the MARS model and the coefficients of different basis 

functions, the MARS model for 4-legged angle crash frequency is presented in Table 

 7-11. 
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Table  7-11: Angle Crash Frequency Model at 4-Legged Unsignalized Intersections Using MARS  

Basis Function Basis Function Description Estimate * P-value 

Intercept Intercept 
2.1314 

(5.3912) 
0.6928 

Log_AADT Natural logarithm of AADT on the major road 
0.6831 

(0.5134) 
0.1840 

Hills_County Hillsborough County 
-5.5343 

(1.9559) 
0.0049 

Orange_County Orange County 
-1.4406 

(0.4560) 
0.0017 

Size_Lanes_3 
“3x2”, “3x3”, “3x4”, “3x5”, “3x6” and “3x8” 

intersections 
-6.3123 

(2.2146) 
0.0046 

Acc_Point Access points 
-1.3737 

(0.3382) 
<0.0001 

Hills_County *  Size_Lanes_3 
7.4050 

(1.8259) 
An interaction term <0.0001 

* Standard error in parentheses 

(Log_AADT – 10.389)+ 
A truncated power basis function for “Log_AADT” 

at “10.389” 
6.4480 

(1.3054) 
<0.0001 

(Log_AADT – 11.112)+ 
A truncated power basis function for “Log_AADT” 

at “11.112” 
-25.5042 

(7.3651) 
0.0005 

 Generalized R-square  0.52 

 
 

From Table  7-11, it is noticed that MARS selects only those significant levels of 

categorical variables, and it does not show all possible levels as the NB model. Also, it is 

noticed that there is an interaction term. Hence, the two variables forming the interaction 

term should be interpreted together. The interaction term is between Hillsborough County 

and unsignalized intersections with three total lanes on the minor approach. The equation 

representing this interaction term is: “-5.5343 * Hills_County – 6.3123 * Size_Lanes_3 + 

7.4050 * Hills_County * Size_Lanes_3”. 

The interpretation for the formed equation is described as follows: for the case of 

Hillsborough (i.e., Hills_County = 1), the equation becomes “(-6.3123 + 7.4050) * 



 

Size_Lanes_3 – 5.5343”, which can be simplified as “1.0927 * Size_Lanes_3 – 5.5343”. 

Thus, the individual coefficient of “Size_Lanes_3” is “1.0927”. This means that, in 

Hillsborough County, the angle crash frequency increases for intersections with three 

total lanes on the minor approach, when compared to other intersection sizes used in the 

analysis.  

Also, from Table  7-11, it is noted that there is a nonlinear performance for the 

continuous variable “Log_AADT”, as shown in its truncated basis function at “10.389” 

and “11.112”. In order to understand the nonlinear function of “Log_AADT”, a plot for 

its basis function is shown in Figure  7-16. The basis function “f(Log_AADT)” according 

to the fitted MARS model is “0.6831 * Log_AADT + 6.4480 * (Log_AADT – 10.389)+ - 

25.5042 * (Log_AADT – 11.112)+”.  

As previously shown in Equation (7.3), the term “(Log_AADT – 10.389)+” equals 

“Log_AADT – 10.389” when Log_AADT > 10.389, and zero, otherwise. The same also 

applies for “(Log_AADT – 11.112)+”.  By this, the plot in Figure  7-16 can be formed, 

where the basis function “f(Log_AADT)” is plotted against all the values of 

“Log_AADT”. From this figure, it can be noticed that there are two knots, “10.389 and 

11.112”, when there is a sudden break in the straight line. This demonstrates the 

nonlinear performance of the variable “Log_AADT” with angle crash frequency. 
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Figure  7-16: Plot of the Basis Function for "Log_AADT" 

 

7.9.2 Comparing MARS and NB Models 

For the first application of MARS in this study, a comparison between the two 

fitted MARS models and the corresponding NB models, while treating the response in 

each as a discrete one (i.e., crash frequency), is shown in Table  7-12. The R package was 

utilized to estimate the MARS models via the library “polspline”. The MARS models 

were generated using the default GCV value “3” in R. From this table, it is noticed that 

the MSPE values for MARS in the 3 and 4-legged models are lower than the 

corresponding NB models. As for the MAD values, they are lower for the NB models. 

However, there is still a great potential of applying the MARS technique. The generalized 

R-square is much higher for the MARS models. 

Table  7-12: Comparison between the Fitted MARS and NB Models in terms of Prediction and Fitting 

  Angle three-legged model Angle four-legged model 
  MARS NB MARS NB 

MAD * 1.27 1.07 1.08 0.85 
Prediction 

MSPE * 3.08 3.96 2.95 3.30 
Fitting Generalized R-square 0.39 0.19 0.52 0.31 

* MAD and MSPE values are normalized by the average of the response variable 
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7.9.3 Examining Fitting MARS Model with Continuous Response 

To examine the higher prediction capability of MARS while dealing with 

continuous responses (Friedman, 1991), the two MARS models using the same important 

NB covariates were fitted while considering the natural logarithm of crash frequency. A 

default GCV value of “3” was used while fitting the models. The assessment criteria for 

the generated MARS models are shown in Table  7-13. 

By comparing the MAD and MSPE values from this table with those from the 

previously fitted MARS models in Table  7-12, it is noticed that the MAD and MSPE 

values shown in Table  7-13 are much lower, hence higher prediction capability. Also, the 

generalized R-square values in Table  7-13 are higher than those in Table  7-12. 

 

Table  7-13: Prediction and Fitting Performance of the Two MARS Models Using a Continuous 
Response Formulation 

  Angle three-legged model Angle four-legged model 
  MARS 1 MARS 1 

MAD 2 1.01 0.69 
Prediction 

MSPE 2 0.74 0.61 
Fitting Generalized R-square 0.47 0.67 

1 Response is the natural logarithm of crash frequency 
 
2 MAD and MSPE values are normalized by the average of the response variable 
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7.9.4 Using MARS in Conjunction with Random Forest 

Since the MARS technique showed promising prediction performance, especially 

while dealing with continuous responses, an additional effort to examine screening all 

possible covariates before fitting a MARS model, was explored. This leads to utilizing 

the random forest technique (Breiman, 2001) before fitting a MARS model for variable 

screening and ranking important covariates. Using the R package, all possible covariates 

in the two attempted models were screened via the library “randomForest”. The random 

forest technique was performed with 50 trees grown in the two training datasets. To 

examine whether this number can lead to stable results, the plot of the OOB error rate 

against different tree numbers for the four-legged training dataset (an example for 

illustration purposes) is shown in Figure  7-17. From this figure, it is noticed that after 38 

trees, the OOB error rate starts to stabilize. Hence, the attempted number of trees “50” 

was deemed large enough to obtain stable results. This was also concluded for the three-

legged training dataset. 

 
38

Figure  7-17: Plot of the OOB Error Rate against Different Number of Trees 
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Figure  7-18 shows the purity values for every covariate. The highest variable 

importance ranking is the natural logarithm of AADT, followed by the county location, 

then the natural logarithm of the distance between two unsignalized intersections, etc., 

until ending up with the existence of crosswalk on the major approach. The resulted 

variable importance ranking demonstrates the significant effect of the spatial covariates 

on angle crashes, with the distance between successive unsignalized intersections being 

the most significant. This variable was also found significant in the fitted four-legged NB 

model. To screen the covariates, a cut-off purity value of “10” was used. This leads to 

selecting seven covariates (labeled from “1” till “7” in Figure  7-18). Those seven 

covariates were then fitted using MARS, with the response being the natural logarithm of 

crash frequency, as it revealed the most promising prediction capability. 

 
Node Purity Values 

Figure  7-18: Variable Importance Ranking Using Node Purity Measure 
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The final fitted MARS model using the seven selected covariates at 4-legged 

unsignalized intersections is presented in Table  7-14, where the response is the logarithm 

of angle crash frequency. From this table, it is noticed that the positive coefficient for the 

logarithm of AADT concurs with that deduced from Table  7-10. Also, there is a 

nonlinear performance for the continuous variable “Log_AADT” with the logarithm of 

angle crashes , as shown in its truncated basis function at “10.778” and “11.112”. 

Table  7-14: MARS Model at 4-Legged Unsignalized Intersections after Screening the Variables 
Using Random Forest 

* Standard error in parentheses 

Basis Function Basis Function Description Estimate * P-value 

Intercept Intercept 
-2.9252 

(0.8759) 
0.0009 

Log_AADT Natural logarithm of AADT on the major road 
0.2376 

(0.0852) 
0.0055 

Hills_County Hillsborough County 
0.5529 

(0.0922) 
<0.0001 

Miami_County Miami-Dade County 
0.5362 

(0.1031) 
<0.0001 

(Log_AADT – 11.112)+ 
A truncated power basis function for “Log_AADT” 

at “11.112” 
-8.3871 

(1.9002) 
<0.0001 

(Log_AADT – 10.778)+ 
A truncated power basis function for “Log_AADT” 

at “10.778” 
2.6198 

(0.6390) 
<0.0001 

 Generalized R-square  0.65 

 
 

To assess whether there is an improvement over the two generated MARS models 

using the important variables from the NB model, the same evaluation criteria were used, 

as shown in Table  7-15. Comparing the MAD and MSPE values in Tables 7-13 and 7-15, 

it is noticed that there is a reduction (even if it is small) in the MAD and MSPE values in 

Table  7-15, hence better prediction accuracy. The resulted generalized R-square values 
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are relatively high, hence encouraging model fit. This demonstrates that using MARS 

after screening the variables using random forest is quite promising. 

Table  7-15: Prediction and Fitting Assessment Criteria for the Two MARS Models after Screening 
the Variables Using Random Forest  

  Angle three-legged model Angle four-legged model 
  MARS MARS 

MAD * 0.99 0.69 
Prediction 

MSPE * 0.74 0.58 
Fitting Generalized R-square 0.47 0.65 

* MAD and MSPE values are normalized by the average of the response variable 
 

7.10 General Conclusions from the MARS Analysis  

This chapter investigated multiple applications of a new methodology “MARS” 

for analyzing motor vehicle crashes, which is capable of yielding high prediction 

accuracy. This was the motivation of this study by applying it to extensive data collected 

at unsignalized intersections. Rear-end and angle crashes were selected for the scope of 

the analysis and assessment. 

The fitted NB rear-end regression models showed several important variables 

affecting safety at unsignalized intersections. These include traffic volume on the major 

road, the upstream and downstream distances to the nearest signalized intersection, 

median type on the major approach, land use at the intersection’s influence area, and the 

geographic location within the state. 

For the NB angle crash models, the important factors include traffic volume on 

the major road, the upstream distance to the nearest signalized intersection, the distance 

between successive unsignalized intersections, median type on the major approach, 

percentage of trucks on the major approach, size of the intersection and the geographic 

location within the state.  
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While comparing the MARS and NB models using a discrete response for both 

fitted rear-end and angle crash models, it was concluded that both MARS and NB models 

yielded efficient prediction performance, hence MARS can be used as an effective 

method for prediction purposes. 

Treating crashes as continuous response while fitting MARS models was 

explored. It was concluded that the fitted MARS models always yielded better prediction 

performance than MARS models with the discrete response.  

Finally, a smarter technique of fitting MARS models using the screened variables 

from the random forest technique was attempted. It was concluded that applying MARS 

in conjunction with the random forest technique showed better results than fitting MARS 

model using the important variables from the NB model.  

The findings of this study point to that the MARS technique is recommended as a 

robust method for effectively predicting crashes at unsignalized intersections if prediction 

is the sole objective. Hence, for achieving the most promising prediction accuracy, 

important variables should be initially selected using random forest before fitting a 

MARS model. Still, NB regression models are recommended as a valuable tool for 

understanding those geometric, roadway and traffic factors affecting safety at 

unsignalized intersections, as they are easy to interpret. 
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CHAPTER 8. ACCESS MANAGEMENT ANALYSIS 

8.1 Introduction 

This chapter is mainly concerned with access management analysis related to 

unsignalized intersections. This is performed with respect to the six median types 

specified in this research. The need to address the safety effects of different median types 

reflects an increased attention to access management analysis. As previously mentioned 

in Chapter 3, the six median types identified are closed, directional, open, undivided, 

two-way left turn lane and marking medians. An additional median type was identified in 

Chapter 4, which is the mixed median (directional from one side, and closed from the 

other). The first two types, as well as mixed medians are considered restricted medians 

(i.e., no vehicle can cross from the side streets or driveways “access points”), whereas the 

last four types are unrestricted medians (i.e., vehicles can cross from the side streets or 

driveways through each median). Restricted medians always exist at 3-legged 

intersections, as they restrict the full major street crossing, thus, even if two driveways 

exist on both sides of any of these medians, they are treated as two separate 3-legged 

intersections. On the other hand, unrestricted medians could exist on either 3 or 4-legged 

intersections. They could exist on 4-legged intersections, since from the geometry aspect, 

they can not restrict vehicles crossing the full major street’s width.  

An extensive literature review regarding access management analysis was 

previously presented in Chapter 3 of this dissertation. 
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8.2 Preliminary Analysis: Comparing Crashes at Different Median Types 

After identifying the seven median types at unsignalized intersections, it is 

essential to give insight to the number of intersections falling within each median type 

(based on the collected data in this study), as well as the frequency of crashes within each 

type. This will formulate a preliminary perspective for the safest and most hazardous 

median types at unsignalized intersections. The total number of intersections used in this 

analysis is 2498 intersections. The number of intersections associated with each identified 

median type is shown in Figure  8-1. From this figure, it is noticed that intersections 

associated with open medians were the most dominant in the dataset, followed by 

undivided medians, then closed medians, then two-way left turn lanes, then directional 

medians, then mixed medians, and finally marking medians (since they rarely exist at 

intersections’ approach). 

Number of intersections associated with each median type
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Figure  8-1: Plot of the Number of Intersections Associated with Each Median Type (Based on the 
Collected Data) 

 

 205



 

To provide an insight to the distribution of crashes at each median type, the plot 

of the average total crash per intersection in 4 years “from 2003 until 2006” associated 

with each median type is presented in Figure  8-2. The average total crash per intersection 

associated with each median type was presented - and not the total crashes - to account 

for the actual intersection sample at each median type (i.e., the normalization by the 

number of intersections was beneficial in this case).  
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Figure  8-2: Plot of the Average Total Crash per Intersection in Four Years Associated with Each 
Median Type (Based on the Collected Data) 

 

From Figure  8-2, the highest average number of crashes per intersection occurs at 

intersections associated with open medians, followed by directional medians, mixed 

medians, two-way left turn lanes, undivided and closed medians, and finally markings. 

Thus, it can be concluded that open medians are preliminarily considered as the most 

hazardous median type. This is attributed to the large number of conflict patterns at open 

medians, when compared to other median types.   
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To break down the most frequent types of crashes at unsignalized intersections in 

the 4-year analysis period “from 2003 until 2006” (based on the collected data in this 

study), the plot of the average total crash per intersection associated with each median 

type for each of the five most frequent crash types “rear-end, head-on, angle, left-turn and 

side-swipe” for each median type is presented in Figure  8-3.   
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Figure  8-3: Plot of the Average Total Crash per Intersection in Four Years for the Five Most 
Frequent Crash Types Associated with Each Median Type (Based on the Collected Data) 

 
From Figure  8-3, open medians have the highest average value for all the five 

most frequent crash types. This result is consistent with that from Figure  8-2. Marking 

medians have the lowest averages, except for left-turn and side-swipe crashes. Closed 

medians have the lowest average left-turn crash, since no left-turn maneuver is allowed at 

both major and minor intersection approaches. The explanation of having left-turn 

crashes at closed medians might be due to the existence of a nearby median opening at 

the intersections’ influence area, but not at the approach itself (i.e., the separation median 

between the two major directions in front of the intersection is relatively small in length, 
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thus allowing for left-turn maneuvers at a relatively small distance from the intersection 

of interest, but still in the influence area).  

Directional medians have the lowest average side-swipe crashes, since there is a 

separation raised median-structure between the two left-turn vehicles from each major 

road direction. However, the existence of some side-swipe crashes could be explained by 

two main reasons. The first one is the officer’s mistake in documenting the resulted crash 

pattern, and the second is the tiny thickness for the separation raised median (can act as if 

it is a painted marking), allowing some vehicles to go over it, hence, side-swipe crash is 

probable. 

The two highest crash averages at each median type are rear-end and angle 

crashes. This result conforms to previous studies (e.g., Summersgill and Kennedy, 1996; 

Layfield, 1996; Pickering and Hall, 1986; Agent, 1988 and Hanna et al., 1976). Since 

marking medians have a relatively low crash average per intersection, as well as low 

intersection sample representation (as shown in Figure  8-3, and aided by Figures 8-1 and 

8-2), they were excluded from further analysis in this chapter. 

8.3 Possible Median-related Crashes at Different Median Types 

Most of the safety research documents the safety performance of the intersection 

as a whole, and does not evaluate the safety performance of the median area by itself 

(e.g., Gluck et al., 1999). Thus, the main objective of the analysis done in this chapter is 

to identify various crash patterns that could occur at each of the identified median types, 

i.e., identify median-related crashes at the collected unsignalized intersections in the six 

counties. Thus, median-related crashes were isolated from other crash patterns that could 

occur at intersections. Hence, a clearer understanding (after removing unrelated median 
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crashes) can be done to investigate the relationship between median-related crash 

occurrence and those geometric, traffic and driver features. This will provide a precise 

mechanism to identify the safest and most hazardous medians at unsignalized 

intersections, thus, identification of the significant countermeasures as a remedy for any 

safety deficiency at different median types would be beneficial. 

Different median-related crash conflicts existing at open, closed, undivided, two-

way left turn lane, directional and mixed medians are shown in Tables 8-1 and 8-2 for 4 

and 3-legged intersections, respectively, where each possible conflict represents a certain 

crash pattern. Each possible crash pattern is sketched at 4-legged intersections for 

different median types in Figures 8-4 to 8-6. It is noted that for 3-legged intersections, 

patterns 4 till 9 do not exist at unrestricted medians (i.e., open, undivided and two-way 

left turn lane medians). Possible crash patterns at 3-legged intersections for directional 

and mixed medians are sketched in Figures 8-7 and 8-8, respectively. 
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Table  8-1: Possible Median-related Crash Conflicts at 4-legged Unsignalized Intersections 

Unrestricted medians Restricted medians 

 
Open median 

Undivided 

median 

Two-way left turn 

lane median 

Directional 

median 

Mixed 

median 

Closed 

median 

Pattern Crash type Crash type Crash type Crash type Crash type Crash type

1 
U-turn 

(Rear-end) 
N/A* 

U-turn 

(Rear-end) 
N/A N/A N/A 

2 
Left-turn 

(Angle) 

Left-turn 

(Angle) 

Left-turn 

(Angle) 
N/A N/A N/A 

Left-turn 

(Angle) 

Left-turn 

(Angle) 

Left-turn 

(Angle) 
N/A 3 N/A N/A 

4 
Side-swipe 

(Left-turn) 
N/A 

Side-swipe (Left-turn) 

or head-on 
N/A N/A N/A 

5 
Right-angle 

(Angle) 

Right-angle 

(Angle) 

Right-angle 

(Angle) 
N/A N/A N/A 

6 
Right-angle 

(Angle) 

Right-angle 

(Angle) 

Right-angle 

(Angle) 
N/A N/A N/A 

7 
Left-turn 

(Angle) 

Left-turn 

(Angle) 

Left-turn 

(Angle) 
N/A N/A N/A 

8 

Left-turn 

(Angle) 

(Head-on) 

Left-turn 

(Angle) 

(Head-on) 

Left-turn 

(Angle) 

(Head-on) 

N/A N/A N/A 

9 Rear-end Rear-end Rear-end N/A N/A N/A 

* N/A means not applicable 
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Table  8-2: Possible Median-related Crash Conflicts at 3-legged Unsignalized Intersections  

Unrestricted medians Restricted medians 

 Undivided 

median 

Two-way left 

turn lane median 

Directional 

median 

Mixed 

median 
Open median 

Closed 

median 

Pattern Crash type Crash type Crash type Crash type Crash type Crash type

1 
U-turn 

(Rear-end) 
N/A* 

U-turn 

(Rear-end) 

U-turn 

(Rear-end) 

U-turn 

(Rear-end) 
N/A 

2 
Left-turn 

(Angle) 

Left-turn 

(Angle) 

Left-turn 

(Angle) 

Left-turn 

(Angle) 

Left-turn 

(Angle) 
N/A 

3 
Left-turn 

(Angle) 

Left-turn 

(Angle) 

Left-turn 

(Angle) 
N/A N/A N/A 

4 N/A N/A N/A N/A N/A N/A 

5 N/A N/A N/A N/A N/A N/A 

6 N/A N/A N/A N/A N/A N/A 

7 N/A N/A N/A N/A N/A N/A 

8 N/A N/A N/A N/A N/A N/A 

9 Rear-end Rear-end Rear-end Rear-end Rear-end N/A 

* N/A means not applicable 
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Figure  8-4: Possible Median-Related Crash Patterns at Open Medians at 4-legged Intersections  
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Figure  8-5: Possible Median-Related Crash Patterns at Undivided Medians at 4-legged Intersections 
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Figure  8-6: Possible Median-Related Crash Patterns at Two-Way Left Turn Medians at 4-legged 

Intersections 
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Figure  8-7: Possible Median-Related Crash Patterns at Directional Medians at 3-legged Intersections  
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Figure  8-8: Possible Median-Related Crash Patterns at Mixed Medians at 3-legged Intersections  
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8.4 Screening for Median-related Crashes in the Dataset 

After identifying all possible median-related crash patterns, all crashes in the 4-

year analysis period were screened, so as to account for those crash patterns only. The 

variables used for screening is “ACCSIDRD”, which is defined as the location of the 

crash (accident) on the roadway. The used code for screening is “M” (i.e., crashes 

occurring on the median side). This was the only variable that could be relied on for 

separating median-related and intersection-related crashes. 

After screening for median-related crashes, the final number of crashes was 300. 

Afterwards, it was decided to select a representative sample to make sure that median-

related crashes (and not intersection-related crashes) exist in those identified crashes (i.e., 

the analysis dataset truly represents median-related crashes). The selected random crash 

sample was 30 crashes (10%). Long-form crash reports for those randomly selected 

crashes was extracted from the “Hummingbird” Web-based service released by FDOT. A 

sketched diagram from a sample crash report illustrating the existence of pattern 8 for 

two-way left turn lane medians is shown in Figure  8-9. 

 
 
Figure  8-9: A Sketched Diagram from a Sample Crash Report Demonstrating the Existence of 

Pattern 8 at Two-way Left Turn Lanes (Retrieved from “Hummingbird” Intranet Website) 
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For the crash report presented in Figure  8-9, the officer reported the crash pattern 

as a left-turn crash, as shown in Figure  8-10. The code “04” is for collision with motor 

vehicle in transport (Left-turn). 

 
 
Figure  8-10: Reported Left-turn Crash by the Officer for the Crash in Figure  8-9 

 
Another diagram from another sample crash report illustrating the existence of 

pattern 4 for open medians is shown in Figure  8-11. For this particular crash, the officer 

reported it as an angle crash, as shown in Figure  8-12. The code “03” is for collision with 

motor vehicle in transport (Angle).  

 

 
Figure  8-11: A Diagram from a Sample Crash Report Demonstrating the Existence of Pattern 4 at 

Open Medians (Retrieved from “Hummingbird” Intranet Website) 
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Figure  8-12: Reported Left-turn Crash by the Officer for the Crash in Figure  8-11 

 
 

A third diagram from a sample crash report illustrating the existence of pattern 9 

for two-way left turn lane medians is shown in Figure  8-13. For this particular crash, the 

officer reported it as a rear-end crash, as shown in Figure  8-14. The code “01” is for 

collision with motor vehicle in transport (Rear-end).  

 
Figure  8-13: A Diagram from a Sample Crash Report Demonstrating the Existence of Pattern 9 at 

Two-way Left Turn Lanes (Retrieved from “Hummingbird” Intranet Website) 
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Figure  8-14: Reported Left-turn Crash by the Officer for the crash in Figure  8-13 

 

From the randomly selected 30 crash reports, 22 were identified as a result of the 

patterns initially sketched. The remaining 8 were median-related crashes, but not as a 

result of the patterns sketched. They were rather single-vehicle crashes that occurred at 

the median (e.g., hitting a fixed object or a sign or a pole) or other two or multi-vehicle 

crashes apart from those nine identified crash patterns. Hence, there is enough evidence 

that the collected sample is a true representation of median-related crashes as a result of 

any of the patterns sketched at each median type. 

Since there were some other crash patterns outside the scope of the identified nine 

crash patterns, it was decided to identify two new crash patterns (pattern 10 and pattern 

11). Pattern 10 accounts for two or multi-vehicle median-related crashes other than those 

nine crash patterns. Pattern 11 accounts for any single-vehicle crash (such as hitting a 

fixed object or a sign or a pole on the median).  

Two sketched diagrams from two sample crash reports illustrating the existence 

of pattern 10 for two or multi-vehicle crashes other than those nine identified crash 

patterns are shown in Figures 8-15 and 8-16. 
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Figure  8-15: A Diagram from a Sample Crash Report Demonstrating the Existence of Pattern 10 for 

Two-vehicle Crashes other than the Nine Identified Crash Patterns (Retrieved from “Hummingbird” 

Intranet Website) 

 

 
 
Figure  8-16: A Diagram from a Sample Crash Report Demonstrating the Existence of Pattern 10 for 

Multi-vehicle Crashes other than the Nine Identified Crash Patterns (Retrieved from 

“Hummingbird” Intranet Website) 
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From Figure  8-15, vehicle 1 “v1” tried to change its lane, then it hit vehicle 2 

“v2”, causing “v2” to skid towards the median and “v2” finally hit the median. As for 

Figure  8-16, vehicle 1 tried to change its lane, and vehicle 2 was running at high speed. 

Vehicle 2 tried to avoid hitting vehicle 1, but it could not. Hence, vehicle 2 lost control 

and crossed over the tree and shrubbery median. Additionally, vehicle 2 – because of the 

high collision reaction – went on the other direction and hit vehicle 3 on the lane just 

beside the median, causing vehicle 3 to lose control and hit the bus stop sign on the very 

right side of the roadway. These two crashes are very uncommon, hence, they were not 

introduced in the nine identified patterns. 

Other two diagrams from two sample crash reports illustrating the existence of 

pattern 11 for single-vehicle crashes are shown in Figures 8-17 and 8-18. 

 
 
Figure  8-17: A Diagram from a Sample Crash Report Demonstrating the Existence of Pattern 11 for 

Single-vehicle Crashes (Retrieved from “Hummingbird” Intranet Website) 
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Figure  8-18: A Diagram from a Sample Crash Report Demonstrating the Existence of Pattern 11 for 

Single-vehicle Crashes (Retrieved from “Hummingbird” Intranet Website) 

 
From Figure  8-17, a vehicle was coming out from the minor approach at a high 

speed and could not see the stop sign. Thus, the vehicle crossed over the median, and 

ended up with hitting a utility pole on the further direction. As for Figure  8-18, the driver 

of vehicle 1 lost control, resulting in crossing over the median, and hitting both a utility 

pole and a property wall. 

Since closed medians were considered as the base case (as no median-related 

crash could exist in the ideal condition, except for some limited two or single-vehicle 

crashes such as vehicle crossing over the median), any crash occurring at closed medians 

is assigned a pattern zero (pattern 0). Thus, pattern 0 is always associated with closed 

median crashes. 
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In the median-related crash dataset, there were 300 observations (300 crashes), 

and 6 of those crashes have some missing values for some important variables, and the 

associated crash patterns for those crashes were difficult to identify. Hence, they were 

excluded, and the final dataset contains 294 observations.  

Additionally, due to data limitations, some of the identified crash patterns were 

extremely difficult to be differentiated from each other. For example, patterns 5 and 6 are 

very similar, as the vehicle’s movement on the minor approach is the same. The only 

difference is the vehicle’s movement on the major approach (on the lane just next to the 

median), and in the used dataset, the direction of travel on the major and minor 

approaches was not available. Hence, any crash associated with patterns 5 or 6 is 

assigned a pattern 5. Similarly, patterns 2, 3 and 7 are left-turn crashes, and they are hard 

to be differentiated, hence, any crash associated with patterns 2 or 3 or 7 is assigned a 

pattern 2. Additionally, patterns 1 and 9 could be rear-end crashes, and they are hard to 

be differentiated as well, hence, any crash associated with patterns 1 or 9 is assigned a 

pattern 1. 

Thus, the possible existing patterns in the identified median-related crashes are 

patterns 0, 1, 2, 4, 5, 8, 10 and 11. A cross-tabulation (2x2 contingency table for each 

median type by the crash pattern) is shown in Table  8-3. 
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Table  8-3: A 2x2 Contingency Table for Median Type by Crash Pattern 

  Pattern 

  0 1 2 4 5 8 10 11 
Total

Closed 
37 

(100.00)
* 

0 
(0.00) 

0 
(0.00) 

0 
(0.00) 

0 
(0.00) 

0 
(0.00) 

0 
(0.00) 

0 
(0.00) 

37 
 

Open 0 
(0.00) 

15 
(17.05) 

4 
(4.55) 

3 
(3.41) 

10 
(11.36) 

2 
(2.27) 

1 
(1.14) 

53 
(60.23) 

88 
 

Directional 0 
(0.00) 

1 
(10.00) 

1 
(10.00) 

0 
(0.00) 

0 
(0.00) 

0 
(0.00) 

1 
(10.00) 

7 
(70.00) 

10 
 

Two-way 
left turn 

lane 

0 
(0.00) 

9 
(7.03) 

35 
(27.34) 

14 
(10.94) 

39 
(30.47) 

6 
(4.69) 

3 
(2.34) 

22 
(17.19) 

128
 

Undivided 0 
(0.00) 

3 
(13.04) 

8 
(34.78) 

0 
(0.00) 

4 
(17.39) 

3 
(13.04) 

1 
(4.35) 

4 
(17.39) 

23 
 

Median 
type 

Mixed 0 
(0.00) 

2 
(25.00) 

3 
(37.50) 

0 
(0.00) 

0 
(0.00) 

0 
(0.00) 

0 
(0.00) 

3 
(37.50) 

8 
 

Total 37 30 51 17 53 11 6 89 294 
* Row percentages in parentheses 
 

 

From Table  8-3, it is noticed that the most frequent crash pattern in the dataset is 

pattern 11 (single-vehicle median-related crashes), followed by pattern 5 (right-angle 

crashes), then pattern 2 (left-turn or angle crashes), then pattern 0 (for any closed median 

crashes), then pattern 1 (mostly rear-end crashes), then pattern 4 (mostly side-swipe 

crashes), then pattern 8 (mostly head-on crashes), and finally pattern 10 (two or multi-

vehicle crashes other than the identified patterns). 

Also, it can be noticed that single-vehicle crashes are the most frequent crashes 

for open and directional medians, accounting for 60.23% and 70%, respectively of 

crashes at those median types. An important finding is that 54.5% of head-on median-

related crashes (pattern 8) occur at two-way left turn lanes. This is a relatively high 

percentage, and indicates the hazardous effect of two-way left turn lanes on head-on 

median-related crashes. 
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For two-way left turn lane medians, pattern 5 (right-angle crashes) is the most 

frequent crash pattern, accounting for 30.47% of crashes at these medians. 

For undivided medians, pattern 2 (left-turn or angle crashes) is the most frequent 

crash pattern, accounting for 34.78% of crashes at these medians. 

For mixed medians, patterns 2 and 11 (single-vehicle crashes) are the most 

frequent crash patterns, accounting for 75% (together) of crashes at these medians. 

8.5 Preliminary Methodological Approach: Multinomial Logit Framework 

According to Agresti (2007), logistic regression model is usually used to model 

binary response variables. A generalization of it models categorical responses with more 

than two categories (levels). This model is named multinomial logit, where the counts in 

the categories of the response variable follows a multinomial distribution. It is used to 

model nominal responses, where the order of the categories is not of concern. The 

multinomial logit model was described by Haberman (1982) and Press (1972).  

With j = 1, 2, 3, ---, J, let J denote the number of categories for the response y. 

Also, let  J ,,1 

.1

 denote the response probabilities, satisfying the condition that  

 Multinomial logit models simultaneously use all pairs of categories by 

specifying the odds “likelihood” of an outcome in a category relative to another.  

 j j

Multinomial logit models for nominal response variables pair each category with 

a baseline category. Assuming that the last category “J” is the baseline, the possible “J-1” 

logit models are: 

,log xjj
J

j 











                              j = 1, 2, ---, J-1                               (8.1) 
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where:   is the intercept to be estimated for each of the “J-1” models,   is the vector of 

parameter estimates for each of the “J-1” models and x is the vector of fitted covariates. 

This means that the possible number of equations is “J-1” and the number of 

parameters to be estimated is “(J-1) * (p+1)”, by assuming p covariates (excluding the 

intercept). The parameters of this model are estimable by maximization of the 

multinomial likelihood. 

The probability of all categories except for the baseline category within the 

response y is estimated as: 









1

1

)exp(1

)exp(
J

j

j

x

x



 ,                               j = 1, 2, ---, J-1                              (8.2) 

The probability of the baseline category “J” within the response y is estimated as: 









1

1

)exp(1

1
J

j

J

x
                                                                                       (8.3) 

A special case of the multinomial logit model exists when J=2, i.e., the response 

has only two categories. Hence, the multinomial logit model converges to the binomial 

logit one.  

8.6 Multinomial Logit Model Estimation  

In this chapter there were six median types identified, hence the multinomial logit 

model could be appropriate for possible interpretation of geometric and traffic factors 

leading to crashes at specific median types with respect to a base type. The base median 

type decided in the analysis procedure is closed median, since in the ideal condition, no 

median-related crash exists, except for some single-vehicle crashes. 
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The multinomial logit model was fitted for the five types “open, directional, two-

way left turn lane, undivided and mixed”, and the baseline category was closed medians. 

The fitted multinomial logit model did not converge in the beginning, because as 

previously mentioned, there were 294 median-related crashes, and this sample is 

considered limited with those specific median types. Hence, the best way was to combine 

some median types. The most relevant way for doing so is having two main median 

types, restricted and unrestricted medians.  

From the traffic perspective, restricted medians include closed, directional and 

mixed medians, since no vehicle from the minor approach could cross to the further 

major direction. Also, based on Table  8-3, the most frequent crash patterns at directional 

and mixed medians are single-vehicle crashes, as they almost have the same construction 

characteristics. For this, closed, directional and mixed medians were assigned as 

restricted medians. On the other hand, unrestricted medians include open, two-way left 

turn lane and undivided medians, as there is no restriction to prevent vehicles from 

crossing to the further major direction from the minor approach. Hence, the multinomial 

logit model was converged to the binomial one. It is worth mentioning that a binomial 

logit model was attempted with the specified crash patterns as dummy covariates, but the 

model did not converge properly. Thus, crash patterns were classified as single and non-

single vehicle crashes. 

The fitted binomial logit model is shown in Table  8-4. This model is fitted for 

restricted medians with respect to unrestricted medians. The goodness-of-fit statistics are 

shown at the end of the table. 
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Table  8-4: Binomial Logit Model for Restricted Medians (Baseline is Unrestricted Medians) 

Variable Description Estimate  
Standard 

Error 
P-value 

Intercept 26.2132 7.9672 0.0010 

Natural logarithm of AADT on the major road -1.4842 0.5954 0.0127 

Natural logarithm of the upstream distance to the nearest 
signalized intersection  

-0.6596 0.2372 0.0054 

Natural logarithm of the downstream distance to the nearest 
signalized intersection  

-1.1056 0.2625 <0.0001 

Posted speed limit on major road >= 45 mph 0.9245 0.2901 0.0014 

Posted speed limit on major road < 45 mph --- a   

Single-vehicle crashes 0.9235 0.2451 0.0002 

Non-single vehicle crashes --- a   

One left turn lane exists on each major road direction -1.4263 0.3406 <0.0001 

One left turn lane exists on only one major road direction 0.2463 0.3073 0.4228 

No left turn lane exists on the major approach --- a   

Number of observations 294 

Log-likelihood at convergence -77.55 

AIC b 171.11 

Pseudo R-square 0.45 
a Base case            b Akaike Information Criterion (= -2 * log-likelihood + 2 * number of parameters)  

 

From Table  8-4, the likeliness of having a median-related crash at restricted 

medians increases as the logarithm of AADT decreases (i.e., inherently decreasing traffic 

volume). This means a higher probability of single-vehicle crashes or lower chance of 

two or multi-vehicle crashes. This result is assessed by the positive coefficient of single-

vehicle crashes in the model. Hence, the probability of having single-vehicle median-

related crashes at restricted medians is exp(0.9235) “2.52” higher than that for non-single 

vehicle crashes. Also, the AADT interpretation indicates that median-related crashes at 

restricted medians increase at higher speeds. This is assessed as well in the model, where 

the probability of having median-related crashes at restricted medians at speeds equal to 
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or above 45 mph is exp(0.9245) “2.52” higher than that at lower speeds. This is logic, 

since single-vehicle median-related crashes always occur at relatively higher speeds. 

As the upstream and downstream distance to the nearest signalized intersection 

increases, the likeliness of having a median-related crash at restricted medians decreases. 

This indicates the importance of setting back restricted medians (closed or directional or 

mixed) from nearby signalized intersections to avoid conflict with intersection queues 

(backward shock waves). A similar finding related to median openings installation was 

concluded by Koepke and Levinson (1992). 

The likeliness of having a median-related crash at restricted medians while having 

one left turn on each major direction is exp(-1.4263) “0.24” times that while having no 

left turn lane at all. This indicates the importance of having an exclusive left turn lane on 

each major approach for separating left turning vehicles from through vehicles, hence 

median-related crashes are reduced. 

8.7 Second Methodological Approach: Bivariate Probit Framework 

After examining the multinomial (binomial) logit approach in the previous two 

sections, this section emphasizes another methodological approach for analyzing median-

related crashes, the bivariate probit framework. According to Greene (2003), the bivariate 

probit is a natural extension of the probit model that allows two equations with correlated 

disturbances. This is similar to the seemingly unrelated models. The general equation for 

the two-equation model is: 

,11
'

1
*
1   xy                  y1 = 1 if  > 0; 0 otherwise                                 (8.4) *

1y

,22
'

2
*
2   xy                 y2 = 1 if  > 0; 0 otherwise                                 (8.5) *

2y
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The characteristics of the error terms “ 1  and 2 ” are specified according to: 

    0,, 212211  xxExxE                                                                         (8.6) 

   1,, 212211  xxVarxxVar                                                                     (8.7) 

  2121 ,, xxCov                                                                                       (8.8) 

 
where   is the correlation coefficient between the two error terms. The bivariate probit 

model converges to two separate binomial probit models when   equals zero (i.e., when 

there is no correlation between the two error terms in both equations). 

The model parameters of the two probit equations are estimated simultaneously 

using the maximum likelihood estimation. A detailed explanation of the parameters’ 

estimation is found in Greene (2003). 

8.8 Bivariate Probit Model Estimation   

For estimating the bivariate probit model, the first dependent variable for the first 

probit equation was the median type (restricted or unrestricted), and the second 

dependent variable for the second equation was the median crash pattern (single vs. non-

single crashes). The fitted bivariate probit model is shown in Table  8-5. The first probit 

model has unrestricted medians as the baseline for the dependent variable, while the 

second probit model has non-single vehicle crashes as the baseline. The goodness-of-fit 

statistics are shown at the end of the table. Also, the correlation coefficient “rho” between 

the two error terms in both equations is presented. 
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Table  8-5: Bivariate Probit Model Estimates 

Variable Description Estimate  
Standard 

Error 
P-value 

First probit model (Baseline is unrestricted medians) 

Intercept 15.1250 3.9052 0.0001 

Natural logarithm of AADT on the major road -1.0831 0.2831 0.0001 

Natural logarithm of the upstream distance to the nearest 
signalized intersection  

-0.3905 0.1210 0.0013 

Natural logarithm of the downstream distance to the nearest 
signalized intersection  

-0.5164 0.1233 0.0000 

Posted speed limit on major road >= 45 mph 1.0396 0.2718 0.0001 

Posted speed limit on major road < 45 mph --- a   

Single-vehicle crashes 2.3885 0.2637 0.0000 

Non-single vehicle crashes --- a   

Second probit model (Baseline is non-single vehicle median crashes) 

Intercept -0.6685 0.1735 0.0001 

Width of the median on the major road (in feet) 0.0438 0.0081 0.0000 

Posted speed limit on major road >= 45 mph -0.4726 0.1850 0.0106 

Posted speed limit on major road < 45 mph --- a   

Error terms correlation coefficient (  ) -0.8775 0.1368 0.0000 

Number of observations 294 

Log-likelihood at convergence -271.04 

AIC b 560.08 

Pseudo R-square 0.15 
a Base case            b Akaike Information Criterion 

 

The signs of the parameters in the first probit model look identical to those from 

Table  8-4. This demonstrates a validation of using the binomial logit and bivariate probit 

frameworks for analyzing median-crashes.  

From the second probit model, as the median width on the major road increases, 

the likeliness of having a median-related crash at restricted medians increases as well. 

Since single-vehicle median-related crashes are more likely to occur at restricted 
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medians, thus hitting a wide median is considered more hazardous than hitting a narrow 

median. This is due to the denser physical nature of wide medians in collision.  

The probability of having single-vehicle median crashes at speeds equal to or 

above 45 mph is less than that at lower speeds, i.e., single-vehicle median crashes are 

more probable at lower speeds. Although this is unexpected, this might be explained as 

drivers are more likely to experience risky maneuvers nearby medians at relatively high 

congestion to escape from a traffic jam. Hence, drivers could end up hitting a median as a 

result of traffic rage. 

The coefficient of correlation “  ” between the two error terms in both models is 

statistically different from zero, hence illustrating the validity of using the bivariate probit 

framework.  

8.9 General Conclusions from the Access Management Analysis  

The access management analysis performed in this chapter dealt with analyzing 

six main median types associated with unsignalized intersections/access points. These six 

median types were open, closed, directional, two-way left turn lane, undivided and mixed 

medians. Also, crash conflict patterns at each of these six medians were identified and 

applied to a dataset including median-related crashes. In this case, separating median-

related and intersection-related crashes was deemed significant in this analysis. From the 

preliminary analysis, open medians were considered the most hazardous median type, 

and closed and undivided medians were the safest. 

It was concluded that single-vehicle crashes were the most probable crash patterns 

from a sample of around 300 median-related crashes in six counties in Florida. The 

second most frequent crashes were right-angle crashes. Of the least probable crashes 
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were head-on crashes. For open, directional and mixed medians, single-vehicle crashes 

were the most frequent, accounting for 60%, 70% and 38% of total crashes at those 

medians, respectively. For two-way left turn lane medians, right-angle crashes were the 

most frequent, accounting for 30%. As for undivided medians, left-turn and angle crashes 

were the most frequent, accounting for 35%. Since single-vehicle crashes were the most 

frequent at directional and mixed medians, these two medians - in addition to closed 

medians – were classified as restricted medians. This is also supported by the traffic 

perspective that they restrict minor vehicles’ path to the further major direction. In the 

same manner, open medians, two-way left turn lanes and undivided medians were 

classified as unrestricted medians. 

Using restricted and unrestricted medians showed better results than using the six 

median types individually. Similarly, using single and non-single median crash patterns 

was deemed significant for the modeling approach. The binomial logit and bivariate 

probit models demonstrated the importance of median-related variables affecting median-

related crashes. Examples of these variables are median width, speed limit on the major 

road, logarithm of AADT, logarithm of the upstream and downstream distances to the 

nearest signalized intersection and crash pattern.  
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CHAPTER 9. CONCLUSIONS 

9.1 Summary and Contributions 

This study attempted to provide insight into the safety analysis of unsignalized 

intersections. Few studies have addressed the safety of these intersection types. One 

important reason is the inadequacy and difficulty to obtain data at these intersections, as 

well as the limited crash counts. Another reason is that authorities mainly focus on 

signalized intersections, since they have more crashes and are relatively larger in size. 

Massive data collection effort has been conducted for the scope this study. There 

were 2500 unsignalized intersections collected from six counties in the state of Florida. 

These six counties were Orange, Seminole, Hillsborough, Brevard, Leon and Miami-

Dade. These selected counties are major counties representing the central, western, 

eastern, northern and southern parts in Florida, respectively. Hence, a geographic 

representation of the state of Florida was achieved. Important intersections’ geometric 

and roadway features, minor approach traffic control, major approach traffic flow and 

crashes were obtained. The analyzed years of crashes were four years (from 2003 till 

2006). 

In this study, traffic volume (or AADT) on the major approach was included as an 

explanatory variable in various crash models (i.e., total crashes, crash types such as rear-

end and angle crashes and crash severity). This covariate was usually found to be the 

most significant variable affecting intersection safety. 

The AADT on the minor approaches was not available for most of the cases, since 

they are mostly non-state roads. However, for the scope of this study, this was explored 
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by a surrogate measure, which was represented by the number of through lanes on this 

approach. This surrogate measure was investigated while analyzing crash injury severity 

as well as rear-end and angle crashes. However, this covariate was not usually found to 

be significant. 

This study explored new important roadway and traffic covariates that were not 

examined before. Examples of those new roadway covariates are the existence of 

crosswalks on the minor and major approaches, number of left and right turn lanes on the 

major approaches, effect of various minor approach control types (e.g., stop sign, no 

control and yield sign), various sizes of intersections, intersection type (whether it is a 

regular unsignalized intersection, access point or ramp junction), various median types on 

the major approach (open, closed, two-way left turn lane, etc.), distance between 

unsignalized intersections and signalized ones (from both the upstream and downstream 

aspects), distance between successive unsignalized intersections, and left (or median) 

shoulder width.  

The analysis conducted in the fifth chapter of this dissertation used a coordinated 

method of the NB model, as well as the reliability method (in terms of the full Bayesian 

updating framework) for reducing uncertainty in predicting crash frequency at 3 and 4-

legged unsignalized intersections. A broad exploration of both non-informative and 

informative priors was conducted using both the NB and the log-gamma likelihood 

functions.  

It was concluded that the log-gamma likelihood function is strongly 

recommended as a robust distribution for updating the parameters of the NB probabilistic 

models. Also, results from this study show that the full Bayesian updating framework for 
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updating parameter estimates of probabilistic models is promising. However, the use of 

the estimates from the NB regression models (without updating) still led to favorable 

results, where the prediction accuracy was 78% for the 3-legged model, and 68% for the 

4-legged model.. 

The analysis conducted in the sixth chapter attempted to provide deep insight into 

factors affecting crash injury severity at 3 and 4-legged unsignalized intersections using 

the most comprehensive data collected at those locations by using the ordered probit, 

binary probit and nested logit frameworks. The common factors found in the fitted probit 

models are the logarithm of AADT on the major road, and the speed limit on the major 

road. It was found that higher severity (and fatality) probability is always associated with 

a reduction in AADT, as well as an increase in speed limit.  

The fitted probit models showed several important traffic, geometric and driver-

related factors affecting safety at unsignalized intersections. Traffic factors include 

AADT on the major approach, and the number of through lanes on the minor approach 

(surrogate measure for AADT on the minor approach). Geometric factors include the 

upstream and downstream distance to the nearest signalized intersection, existence of 

stop lines, left and right shoulder width, number of left turn movements on the minor 

approach, and number of right and left turn lanes on the major approach. As for driver 

factors, young and very young at-fault drivers were always associated with the least 

fatal/severe probability compared to other age groups. Also, heavily-populated and 

highly-urbanized areas experience lower fatal/severe injury.  

Comparing the aggregated binary probit model and the disaggregated ordered 

probit model showed that the aggregate probit model produces comparable if not better 
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results, thus for its simplicity the binary probit models could be used to model crash 

injury severity at unsignalized intersections if the objective is to identify the factors 

contributing to severe injuries in general rather than the specific injury category. The 

nested logit models did not show any improvement over the probit models.  

The seventh chapter investigated multiple applications of a new methodology 

“MARS” for analyzing motor vehicle crashes, which is capable of yielding high 

prediction accuracy. Rear-end and angle crashes were selected for the scope of the 

analysis and assessment. 

The fitted NB rear-end regression models showed several important variables 

affecting safety at unsignalized intersections. These include traffic volume on the major 

road, the upstream and downstream distances to the nearest signalized intersection, 

median type on the major approach, land use at the intersection’s influence area, and the 

geographic location within the state. For the NB angle crash models, the important 

factors include traffic volume on the major road, the upstream distance to the nearest 

signalized intersection, the distance between successive unsignalized intersections, 

median type on the major approach, percentage of trucks on the major approach, size of 

the intersection and the geographic location within the state.  

MARS yielded the best prediction performance while dealing with continuous 

responses (either crash frequency normalized by the logarithm of AADT or the logarithm 

of crash frequency). Additionally, screening the covariates using random forest before 

fitting MARS model showed the best results. Hence, the MARS technique is 

recommended as a robust method for effectively predicting crashes at unsignalized 

intersections if prediction is the sole objective.  
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Finally, an access management analysis was performed with respect to six main 

median types associated with unsignalized intersections/access points. These six median 

types were open, closed, directional, two-way left turn lane, undivided and mixed 

medians. Also, crash conflict patterns at each of these six medians were identified and 

applied to a dataset including median-related crashes. In this case, separating median-

related and intersection-related crashes was deemed significant in the analysis. From the 

preliminary analysis, open medians were considered the most hazardous median type, 

and closed and undivided medians were the safest. 

It was concluded that single-vehicle crashes were the most probable median-

related crash patterns, followed by right-angle crashes. Of the least probable crashes were 

head-on crashes. For open, directional and mixed medians, single-vehicle crashes were 

the most frequent, accounting for 60%, 70% and 38% of total crashes at those medians, 

respectively. For two-way left turn lane medians, right-angle crashes were the most 

frequent, accounting for 30%. As for undivided medians, left-turn and angle crashes were 

the most frequent, accounting for 35%. 

The binomial logit and bivariate probit models demonstrated the importance of 

median-related variables affecting median-related crashes, such as median width, speed 

limit on the major road, logarithm of AADT, logarithm of the upstream and downstream 

distances to the nearest signalized intersection and crash pattern.  
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9.2 Research Applications 

The results from this study from the different methodological approaches for 

analyzing safety at unsignalized intersections can be applicable to diagnose some safety 

deficiencies identified.  

As a traffic application for alleviating crashes at intersections with only one stop 

sign, installing another stop sign on the left side of the minor road at those stop-controlled 

intersections might be useful. This countermeasure was examined by Polaris (1992), who 

found it to be effective in some cases. 

Also, in order to increase drivers’ awareness of the existence of stop signs, rumble 

strips can be installed at intersection approaches in order to call their attention. Rumble 

strips are usually recommended for application when measures such as pavement 

markings or flashers were tried and showed failure to alleviate high crash occurrence. 

Moreover, rumble strips can be coordinated with a "STOP AHEAD" device, i.e. when the 

driver crosses the rumble strip, this control device starts flashing. 

Additionally, maintenance of stop signs should be performed at a high standard to 

ensure that their effectiveness is obtained. According to MUTCD, stop signs should be 

kept clean, and visible at all times (at day and night). Improper signs should be replaced 

without delay. Special care should be taken to make sure that trees, shrubs, and other 

vegetations do not block stop signs.  

From the identification of various factors contributing to crash severity at 

unsignalized intersections using the probit modeling analysis, since it was found that 

prohibiting left turn maneuvers from the minor approaches reduces crash severity, hence, 

as an alternative, encouraging right turns from the minor approaches, followed by U-turns 
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from the major road is very essential. This is consistent with the study done by Liu et al. 

(2007) who found that there is a reduction in total crashes and fatality for right turns 

followed by U-turns, as an alternative to direct left turn maneuvers from driveways. 

Prohibiting left turns from the minor approaches could be enforced by designing closed 

medians at the intersection’s approach. This was also concluded from the access 

management analysis that closed medians are the safest median types. 

Also, some countermeasures that can be dealt with to reduce injury severity at 

unsignalized intersections could be done by designing safety awareness campaigns 

encouraging speed control, and enforcement on speeding. Also, having a 90-degree 

intersection design is the most appropriate safety design for reducing severity. Moreover, 

making sure of marking stop lines at unsignalized intersections is essential. 

From analyzing rear-end and angle crashes, since the increase in the upstream 

distance to the nearest signalized intersection from the unsignalized intersection of 

interest decreases both crash types, it is recommended to have a relatively large spacing 

between signalized and unsignalized intersections. The minimum spacing between both 

intersections (based on the analysis) from both the upstream and downstream sides is 

recommended to be around 0.38 to 0.46 miles. It was observed that a clear reduction in 

both crash types was gained after this distance range, and this effect was more obvious on 

rear-end crashes. Moreover, the least magnitude of crash fluctuation was observed after 

this specified range. 

Since two-way left turn lanes were always associated with higher rear-end crashes 

at 4-legged unsignalized intersections, it is strongly recommended to avoid installing this 

median type at 4-legged intersections. A similar conclusion was reached from the access 
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management analysis for another crash pattern, where two-way left turn lanes have right-

angle crashes as the most dominant. As a remedy, installing closed medians could be 

useful, hence both intersections on both sides of the major road will be treated as at two 

separate 3-legged intersections. Another possible remedy is to install two-way left turn 

lanes at 3-legged unsignalized intersections only. 

From the access management analysis, since open medians were always 

associated with the highest average crashes when compared to other median types (i.e., 

the most hazard median type), and closed median was the safest median, it is 

recommended to close median openings at most intersections. This indeed will help 

reduce traffic conflict points, hence, safety could be increased. 

Since left-turn and angle crash patterns were the most dominant at undivided 

medians, it is recommended to avoid left turn maneuvers at unsignalized intersections 

having undivided medians at their approach. This could be enforced by installing a left-

turn prohibition sign on both major and minor approaches. In this case, vehicles are only 

allowed to make a right turn maneuver. 

Also, it is recommended to set back signalized intersections from restricted 

medians (i.e., closed, directional and mixed) across from driveways and unsignalized 

intersections to reduce median-related crash risk. Additionally, it is essential to separate 

left turning vehicles from through vehicles for a suitable deduction in restricted median-

related crashes. 

9.3 Further Research 

From the reliability analysis in terms of the Bayesian updating concept, further 

research could be conducted to extend this work. This can be done by examining other 
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distributions that can be used as likelihood functions for updating the parameter estimates 

of the NB model, such as the log-normal and beta distributions. Moreover, validating the 

updating procedure can be performed at some other locations rather than unsignalized 

intersections, such as signalized intersections, toll plazas and roadway segments.  

From the crash severity analysis, although the work carried out provided useful 

information about various geometric, traffic and driver factors affecting crash injuries at 

3 and 4-legged unsignalized intersections, further research could be conducted to extend 

this work. Since the probit models illustrated the significance of the spatial effect of the 

spacing between signalized and unsignalized intersections, analyzing unsignalized 

intersections along with the stretches linking them as one entity can be an encouraging 

prospect. This result suggests that spatial correlation between intersections exists, and 

unsignalized intersections should not be treated as isolated locations. 

From the MARS analysis, even though the application of MARS models showed 

promising results, validating this method can be performed at some other locations rather 

than unsignalized intersections, such as signalized intersections and roadway segments. 

Additionally, using some other techniques for variables’ screening (such as classification 

and regression trees “CART”) before fitting a MARS model can be explored. 

From the access management analysis, exploring other covariates such as the 

length of the median opening across from the driveway or unsignalized intersection might 

be useful. This could help formulate a broad perspective for the effect of wide and narrow 

median openings on traffic safety.  
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