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ABSTRACT 

Single-mode fiber transmission can no longer satisfy exponentially growing capacity 

demand.  Space-division multiplexing (SDM) appears to be the only way able to dramatically 

improve the transmission capacity, for which, novel optical fiber is one of the key technologies. 

Such fibers must possess the following characteristics: 1) high mode density per cross-sectional 

area and 2) low crosstalk or low modal differential group delay (DMGD) to reduce complexity 

of digital signal processing. In this dissertation, we explore the design and characterization of 

three kinds of fibers for SDM: few-mode fiber (FMF), few-mode multi-core fiber (FM-MCF) 

and coupled multi-core fiber (CMCF) as well as their applications in transmission and 

networking. 

For the ultra-high density need of SDM, we have proposed the FMMCF. It combines 

advantages of both the FMF and MCF. The challenge is the inter-core crosstalk of the high-order 

modes. By applying a hole-assisted structure and careful fiber design, the LP11 crosstalk has been 

suppressed down to -40dB per km. This allows separate transmission on LP01 and LP11 modes 

without penalty. In fact, a robust SDM transmission up to 200Tb/s has been achieved using this 

fiber. 

To overcome distributed modal crosstalk in conjunction with DMGD, supermodes in 

CMCFs have been proposed. The properties of supermodes were investigated using the coupled-

mode theory. The immediate benefits include high mode density and large effective area. In 

supermode structures, core-to-core coupling is exploited to reduce modal crosstalk or minimize 

DMGD. In addition, higher-order supermodes have been discovered in CMCFs with few-mode 
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cores. We show that higher-order supermodes in different waveguide array configurations can be 

strongly affected by angle-dependent couplings, leading to different modal fields. Analytical 

solutions are provided for linear, rectangular and ring arrays.  Higher-order modes have been 

observed for the first time using S
2
 imaging method. 

Finally, we introduce FMF to gigabit-capable passive optical networks (GPON). By 

replacing the conventional splitter with a photonic lantern, upstream combining loss can be 

eliminated. Low crosstalk has been achieved by a customized mode-selective photonic lantern 

carefully coupled to the FMF. We have demonstrated the first few-mode GPON system with 

error-free performance over 20-km 3-mode transmission using a commercial GPON system 

carrying live Ethernet traffic. We then scale the 3-mode GPON system to 5-mode, which resulted 

in a 4dB net gain in power budget in comparison with current commercial single-mode GPON 

systems. 
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CHAPTER 1 INTRODUCTION TO SPACE DIVISION 

MULTIPLEXING 

1.1 Limit of Single-Mode Transmission 

Optical fiber communication is the backbone for the telecommunications infrastructure 

that supports the internet. Fueled by emerging bandwidth-hungry applications and the increase in 

computer processing power that follows the Moore’s Law, the internet traffic has sustained an 

exponential growth in the past and this trend is expected to continue for the foreseeable future. It 

is well known that the capacity of a communication channel cannot exceed the Shannon limit, In 

the past two decades, the internet traffic demand was mainly met by the wavelength-division 

multiplexing (WDM) technology [1], which can increase the spectral bandwidth of the fiber-

optic communication channel by two orders of magnitude. It should be noted that the spectral 

bandwidth of the fiber-optic communication channel can be further increased by exploiting the 

low-loss transmission window of the optical fiber beyond the C and L bands.  However, this 

bandwidth expansion is limited to below one order of magnitude. Furthermore, lack of an 

integrated amplification platform makes such a system unattractive from a technical and 

economic perspective. 

Recently, coherent detection has attracted much attention to provide capacity increase for 

optical fiber communication systems [2]. Coherent detection can maximize the signal-to-noise 

ratio (SNR) of the fiber-optic communication channel in comparison with direct detection. High 

SNR enables high-spectral efficiency quadrature amplitude modulation (QAM) that transmits 
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information in both the amplitude and phase of the optical signal. Digital coherent fiber-optic 

communication systems have recently become commercially available. Further increase in SNR 

can only be achieved by increasing the signal power. However, the increase in channel capacity 

scales logarithmically with the increase in signal power. This logarithmical channel capacity 

scaling ultimately cannot meet the demand of exponential traffic growth from a technical 

perspective as well as the perspective of power consumption per bit.  In addition, fiber 

nonlinearity imposes an upper limit on how much power that can be transmitted in a fiber.  

Digital coherent optical communication does make polarization multiplexing practical, providing 

a factor of two increase in channel capacity. 

While it might be impossible to provide exponential growth in optical fiber 

communication capacity to match the exponential growth in capacity demand, multiplicative 

growth in optical communication capacity, for example using WDM,  has satisfied traffic 

demand in the past. As today’s WDM coherent optical communication has already taken 

advantage of all degrees of freedom of a lightwave in a single-mode fiber (SMF), namely 

frequency, polarization, amplitude, and phase, further multiplicative growth has to explore new 

degrees of freedom that do not exist in single-mode fibers. Similar to the multiple-input-

multiple-output (MIMO) architecture in wireless communication, space is the degree of freedom 

that is being considered for optical fiber communication beyond WDM.  Space-division 

multiplexing, including mode-division multiplexing (MDM) using multimode fibers or few-

mode fibers (FMF) [3-31] and/or core multiplexing using multi-core fibers (MCF) [32-71], has 

attracted much attention in the last three to five years for the next multiplicative capacity growth 

for optical communication [72-76]. 
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1.2 Space Division Multiplexed Transmission 

In optical fiber transmission, two SDM schemes have been proposed. These are (i) core 

multiplexing using multicore fibers (MCF), where a single strand of glass fiber contains a 

number of independent single- (or multi-) mode cores each capable of communicating optical 

signals; and (ii) mode division multiplexing (MDM) using multimode fibers (MMF) or few-

mode fibers (FMF), where a single strand of fiber has one core with sufficiently large cross-

section area to support a number of independent guiding modes. 

1.2.1 Core Multiplexing using Multi-Core Fibers 

Mode coupling, or called mode crosstalk is a major and fundamental obstacle for SDM 

transmission, which is unavoidable after long-distance propagation within imperfect fibers. One 

important reason that makes MCF a strong candidate for high capacity SDM transmission is that 

mode crosstalk is maintained low enough within MCFs, not to cause any noticeable signal 

penalty even after hundreds, or thousands of kilometers transmission. MCF has been used in 

fiber lasers for a long time. But only in the latest years, MCF has been introduced to optical 

transmission due to high spatial density with low loss and low crosstalk [77-79]. For each single 

core of MCFs, single mode condition is still applied. The crosstalk level is determined by the 

core-to-core distance, the core index and radius, as well as the cladding index profile. The core 

density is dominated by the core-to-core distance (or called pitch). However, the maximum 

cladding diameter is restricted by mechanical properties of silica, causing that the number of core 
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within an MCF is limited to about 20 [80, 81]. To further reduce crosstalk, a lower-index inner-

cladding or a trench assisted inner cladding is generally needed shown in Fig. 1-1[81-84]. 

 

Figure 1-1. Cross-sectional view of a fabricated trench-assisted multi-core fiber and its index profile 

Core multiplexing using MCFs is generally easy to implement as mode crosstalk is too 

low to be addressed. But it requires all the components to maintain a low crosstalk level at the 

same time, including (de)multiplexers and amplifiers. So far the highest capacity (1.01Pb/s) of 

core-multiplexed transmission is demonstrated by H. Takara [85] in a 52 km single span of 12-

core MCF. In the other experiment by K. Igarashi et.al.[37], the reach is extended to 7326 km 

and net total capacity is 140.7Tb/s leading to a record capacity-distance product of 1030.8 

Pb/s×km.  

1.2.2 Mode Division Multiplexing using Few-Mode Fibers 

A few-mode fiber is similar to a multi-mode fiber but with reduced number of modes so 

that each mode can be handled with care. The fiber mode concept is elaborated in the following 

as preliminary knowledge for the discussion afterwards.  
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Figure 1-2. Schematic of a step-index circular fiber with an increasing cross-sectional area and profiles of 

supported modes along the fiber. 

In MDM, we explore other modes other than the fundamental mode that can be supported 

in optical fibers. Figure 1-2 schematically illustrates a step-index circular fiber with an increasing 

cross-sectional area. This fiber will always support the fundamental mode, the 01LP mode, 

characterized by its propagation constant 01 and the normalized mode profile 01( , )r   such that 

the power contained in the mode 01 01 01( , )exp{ [ ]} A r i t z    is
2

01| |A . When the fiber 

diameter is increase to a point where the V number, 2 2

1 2(2 / ) V a n n  , of the fiber is 

greater than 2.405, the fiber can guide light in the next higher order mode, the 11LP mode, 

characterized by its propagation constant 11 and the normalized mode profile 11( , )r  .  The 

11LP mode has a two-fold degeneracy, rotated by
090 illustrated in Fig. 1-2. Fibers guide light 

using a high-index core and low-index cladding, which can be intuitively understood as by 

means of total internal reflection at the core-cladding boundary. In step-index fiber, the refractive 

index 1n  is uniformly distributed across the core surrounded by a cladding with refractive index 

n1

n2

2 2

1 2

2
2.405V a n n




  

Mode

Profiles

LP11bLP11aLP01

2aFiber

5.52V 
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2n . The propagation constant   of any guide mode is thus bounded by  1 0 2 0,n k n k  where 0k  is 

the propagation constant of light in vacuum. In typical fiber used for optical communication, the 

relative index difference defined by  1 2 1/  n n n is less than 10
-2

, therefore, fiber modes are 

weakly guided. Under the weakly-guided approximation, the vectorial modes of the fiber can be 

simplified using linearly polarization (LP) modes whose transverse field in the core is of the 

form 

   
 

 
 , cos

p r

y y

p r

J k a
E r E a p

J k r
   ( 1-1 ) 

where a   is the radius of the core,  
1/2

2 2 2

1 rk k n  and p  is a non-negative integer 

referred to as the azimuthal mode number. For the same p value, rk  can take on discrete values, 

labeled by a non-negative integer q  corresponding to the number of zero crossings of the field 

along radial direction. The LP modes can be labeled as pqLP , each having two-fold degeneracies 

in polarizations in x and y , and for 0p  two fold degeneracies in spatial orientations separated 

by a rotation of / p . The total number of modes of the step index core fiber is approximately 

[86] 

21

2
M V . 

By definition, modes supported by the fiberare orthonormal, i.e., 

*  rs pq pr qsrdrd      ( 1-2 ) 

which is the basis for mode-division multiplexing: transmitting and receiving 

independent information simultaneously in each fiber mode.  
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Figure 1-3. Schematic of (a) an ideal two-mode fiber in which the two parallel line represent two 

orthogonal modes and (b) a real fiber that has distributed cross talk. 

The concept of MDM has been around for a very long time [87] but has not been pursued 

until recently. The reason is that the orthogonality of modes can only be maintained in practical 

application for a very short distance because of crosstalk among modes due to fiber 

imperfections, bending and twisting as shown in Fig. 1-3. Here we discuss the origin of the mode 

coupling first before going to the solutions and applications. Within the degenerate mode group 

having the same propagation constant, the modes couple to each other when the index 

distribution of the fiber deviates from the ideal circular-symmetric distribution. For the non-

degenerate modes, mode coupling is introduced due to fiber longitudinal variations. Such a 

variation can be caused by fiber manufacturing process as well as micro- and macro-bending of 

the fiber. Therefore the coupling is random in both strength and location and thus has to be dealt 

statistically. Furthermore, because the non-degenerate modes propagate at different velocities, 

the signal sent into the modes would accumulate a differential modal group delay (DMGD) 

eventually at the end of fiber as well as the mode coupling, which is a major obstacle for MDM 

transmission. There are several ways to address the problem. One solution widely used for long-

distance high capacity transmission is to adopt MIMO digital signal processing (DSP) to 

compensate the penalty caused by mode coupling as well as the DMGD, similar to the MIMO 

technique used in wireless communication. Basically, the compensation is to invert the coupling 

matrix in the electronic domain since coherent detection is able to get both intensity and phase 
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information of the signal. But the algorithm complexity and required memory length is always a 

big concern even though a lot of good efforts have been put in [28, 88-90]. Another way to deal 

with the mode coupling is to transmit the same data in the mode group where the DMGD within 

the group is reduced to be much less than the symbol period so that the mode coupling itself 

would no longer be a problem. The DMGD can be minimized by careful fiber design [91, 92] or 

compensated by optical fiber with the opposite sign of DMGD [93, 94], both of which has been 

investigated intensively. Besides, the mode coupling also can be decreased by careful fiber 

design, for example increasing the propagation constant difference of the modes so that small 

perturbations would have less impact. Other than the mode coupling problem, MDM 

transmission also requires high performance (de)multiplexer [95-97], efficient amplification [98, 

99], mature splice technique etc [100]. All of them need to be taken care of to give a final 

integrated high capacity transmission. 

1.3 Dissertation Outline 

The outline of the proposal report is laid out as follows: 

In Chapter 1, Introduction presents the motivation, background and organization of the 

dissertation. 

In the chapter 2, the motivation using FMMCF for high capacity SDM system is 

explained after a brief introduction of the current dilemma using few-mode fibers (FMFs) and 

multi-core fibers (MCFs) separately.  By applying hole-assisted structure and careful fiber design, 
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we show that both high mode density and low crosstalk can be achieved in a FMMCF, which is 

then fabricated, tested and applied for 1km transmission enabling petabits capacity. 

Chapter 3 shows our study of using CMCFs as another candidate for high capacity SDM, 

where mode coupling (sometimes called crosstalk) is taken advantaged instead of being avoided. 

First, we demonstrate that optical properties can be engineered by proper design of coupled 

single-mode core structure. We then move on to study the higher-order supermodes in CMCFs 

with few-mode cores, which can be predicted by the coupled-mode theory with angle-dependent 

couplings. Analytical description for higher-order supermodes in different array configurations 

are provided, including linear, square and ring array lattices. We also present an experimental 

observation of higher-order supermodes in a coupled 3-core fiber. 

Chapter 4 focuses on applying SDM in commercial access transmission. In this chapter, 

we proposed the use of space-division multiplexing (SDM) in a single few-mode fiber (FMF), 

acting as the feeder fiber in the optical distribution network (ODN), to effectively eliminate the 

upstream combining loss. Moreover, this concept has been realized by using a commercial 

GPON system carrying live Ethernet traffic, achieving the first reported few-mode GPON. The 

principle and alternative schemes are discussed as well as a horizon for future works. In addition, 

a 5-mode PON experiment is discussed with a record net gain of 4dB as an important extended 

work. 

Chapter 5 is dedicated to summarize the above works. 
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CHAPTER 2 FEW-MODE MULTI-CORE FIBERS FOR SDM 

TRANSMISSION 

2.1 Introduction 

Multi-core fibers (MCF) and few-mode fibers (FMF) are transmission fiber candidates 

for space-division multiplexing (SDM) [59, 88]. MCFs with lower crosstalk and long-distance 

transmission in such MCFs have been reported [59, 101]. Transmission in FMFs using up to 5 

spatial modes including amplified transmission has also been demonstrated [8]. One of the main 

goals of SDM is to provide orders of magnitude increase in transmission capacity by increasing 

the number of space channels. For MCFs demonstrated so far, each core supports only the 

fundamental mode. The number of cores is limited by the desired low crosstalk at sufficiently 

large core pitch and the maximum fiber cladding diameter (~225microns) from mechanical 

considerations. The largest number of cores demonstrated for a MCF so far is 19 [66]. Although 

it is not difficult to increase the number of spatial modes for FMFs, there are some disadvantages 

associated with FMF with a large number of spatial modes. First, the confinement factor and 

consequently the bending loss of the higher-order modes will be larger than the lower-order 

modes. Second, multiplexing and demultiplexing of a large number of modes are complicated 

and generally introduce more losses. In order to achieve higher capacity for future SDM, the 

number of spatial channels per fiber needs to be further increased from MCFs and FMFs 

demonstrated so far. Therefore, the authors have designed and fabricated a few-mode MCF 

(FMMCF) [102-104], in which each core supports both the linearly-polarized (LP) LP01 mode 

and the two fold-degenerate LP11 modes. 
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2.2 Fiber Design and Fabrication 

2.2.1 Fiber Design 

The few-mode MCF was primarily designed to demonstrate both high mode density and 

ultra-low crosstalk. Theoretically, the crosstalk of a few-mode MCF includes inter-core crosstalk 

01LPXT  and 
11LPXT  for LP01 and LP11, and intra-core crosstalk between LP01 and LP11. It is 

known that an effective index difference (∆Neff) larger than 
310

would significantly reduce 

intra-core crosstalk between the two modes. For inter-core crosstalk, LP11-crosstalk is generally 

more severe than LP01-crosstalk because the LP11 mode is less confined. Therefore the main 

design goal is to achieve sufficiently low 
11LPXT . It has been demonstrated [101] that the inter-

core crosstalk is statistical, obeying the chi-square distribution with mean crosstalk given by 

2

2  
R

XT L
D




 ( 2-1 ) 

where ,  , R, D   are the coupling coefficient, propagation constant, bend radius and 

core pitch, respectively. A large core-to-core distance is a straightforward way to reduce inter-

core crosstalk but it would decrease the mode density. Therefore, other than keeping a large core-

to-core distance, we applied two approaches to reduce 
11LPXT . First, a hole-assisted structure 

proposed by [105] has been added outside of each core to improve the mode confinement and 

hence reduce inter-core crosstalk. This structure has large control flexibility as both the air-hole 

diameter d and the air-hole pitch can be tuned. A simulation has been conducted shown in Fig. 

2-1 to compare the 
11LPXT  performance between two adjacent cores of this hole-assisted structure 
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and a trench-assisted structure at λ=1550nm [101]. Notice that the center core and outer core 

would experience 7.8dB and 4.8dB higher crosstalk than that shown in Fig. 2-1 when seven 

cores are simultaneously excited. The coupling coefficient  of the LP11 mode between two 

adjacent cores was obtained by calculating the LP11 mode profile for this fiber structure using a 

full-vector finite-element method and substituting it into the following formula [106] 

11 11

11

11 11 11 11

2 2 *

0 2 1, 2,

12,

* *

1, 2, 1, 2,

( )

,

( )

 

 
 

 





  

 

 

LP LP

LP

z LP LP LP LP

N N E E dxdy

u E H E H dxdy



  ( 2-2 ) 

where N, N2 are the refractive index distributions of the entire structure and the second 

waveguide, respectively, zu  is the unit vector in z direction. For fair comparison, a typical 

trench-assisted single-mode multi-core fiber in ref. [101] is linearly scaled to a trench-assisted 

few-mode multi-core fiber, which has the same core radius of 6.55μm, core index difference 0.36% 

and core pitch 40μm as the hole-assisted FMMCF in the simulation. The trench index difference, 

inner cladding radius and the trench width of the scaled trench-assisted FMMCF are -0.55%, 

9.8μm and 9.5μm respectively. The air-hole pitch of the hole-assisted FMMCF is 13.3μm. It can 

be seen in the simulation that as the air hole-to-pitch ratio / d  increases to above 0.7, or 

equivalently the air-hole diameter to above 9.3μm, the hole-assisted FMMCF starts to 

outperform the trench-assisted one in terms of low 
11LPXT . Secondly, a large V-number close to 

LP21 / LP02 cut-off condition is selected to better confine LP11 mode and reduce inter-core 

crosstalk without introducing any higher-order modes. With the above design, this novel 

FMMCF achieves a mode density 8 times larger than a standard single mode fiber (SSMF).  
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Figure 2-1. Inter-core 11LP  mode crosstalk between two adjacent cores of a hole-assisted few-mode MCF 

as a function of the air hole-to-pitch ratio /d  as well as that of a trench-assisted few-mode MCF at 

λ=1550nm. 

2.2.2 Fiber Fabrication 

A 1 km fiber was successfully fabricated using the stack-and-draw method. Its cross 

section and geometry parameters are shown in Fig. 2-2 and Table 2-1. Because homogeneous 

MCFs have shown to exhibit lower crosstalk than heterogeneous MCFs with bend-induced 

coupling, this fiber design is intended to be homogeneous in spite of a slight fabrication size 

variation from core to core. It should be pointed out that although the fabricated fiber cladding 

diameter is relatively large, it could be reduced to around 150μm without affecting its 

transmission properties. 
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Figure 2-2. Cross section of the fabricated FMMCF 

Table 2-1. Parameters of Fabricated FMMCF 

Parameters Value 

Core index difference 0.36% 

Core diameter 13.1μm 

Core pitch 40μm 

Air-hole diameter 8.2μm 

Air-hole pitch 13.3μm 

Air hole-to-pitch ratio 0.62 

Cladding diameter 192μm 

Coating diameter 375μm 
 

According to the geometric parameters in Table I, the theoretical properties of the 

MFMCF are listed in Table 2.II. An effective index difference ∆Neff more than 
32 10 is 

provided between LP01 and LP11, as well as LP11 and cladding to suppress macro-bending loss. 

The transmission loss of all modes within 1km is negligible. The differential modal group delay 

(DMGD) is measured to be 4.6ps/m using an interferometric method.  

  



15 

 

Table 2-2. Simulated and Measured characteristics of Fabricated FMMCF 

Fiber characteristics LP01 LP11 

Measured mode field diameter (MFD) [μm] 11.8 / 

Simulated effective area (Aeff) [μm2] 113  170 

Simulated cut-off wavelengtha (λc) [nm] / ~2100a 

Simulated chromatic dispersion [ps/nm/km] 23 28 

Simulated dispersion slope [ps/nm2/km] 0.06 0.07 

Simulated effective index difference (∆Neff) 2.4×10-3 

Measured differential modal group delay (DMGD) [ps/m] 4.6 

Simulated Inter-core crosstalkb [dB/km] -100 -70 
aThe simulated cut-off wavelength for LP21/LP02 modes is ~1300nm. 
bInter-core crosstalk is between two adjacent cores. 

2.3 Fiber Characterization 

The 1km FMMCF is winded on a fiber drum with a mandrel radius of 15.9cm. The LP01 

and LP11 inter-core crosstalk are obtained at λ=1550nm. Given a large effective index difference 

between LP01 and LP11, intra-core crosstalk is assumed to be very small. This is also confirmed 

by an offset-launch impulse response measurement which, after 1 km propagation, only displays 

two pulses corresponding to the LP01 and LP11 modes, respectively. 

The LP01 crosstalk measurement is achieved by using a SSMF butt coupled to the 

FMMCF for both excitation and reception. This method ensures that no LP11 is received even 

with unintentional offset excitation or intra-core mode coupling. The average measured value of 

01LPXT  is -60dB, which was limited by the dynamic range of our measurement capability.  
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Figure 2-3. The schematic setup for LP11 crosstalk measurement 

In order to measure LP11 crosstalk, both excitation and reception were conducted in free-

space using phase plates shown in Fig. 2-3. For excitation, light was launched from a SMF into 

free space and through a phase plate, which has a π phase difference between two semicircles 

and hence filters out most of the LP01 mode. The extinction ratio of the phase plate is estimated 

to be about 20dB at 1550nm. For reception, another phase plate was used to convert LP11 mode 

into LP01 so that it can be captured by the receiving SMF and at the same time reject residual 

LP01 mode in the FMMCF if there is any. The free-space excitation at the input FMMCF facet is 

not a perfect LP11 field and thus introduces a discrete crosstalk, which is named excitation-

induced crosstalk in this letter. This imperfection is caused by lack of intensity modulation, the 

simple structure of the phase plate and free-space propagation. To simulate this effect, the real 

field at the input FMMCF facet is calculated by using the following equation: 

2 2 2 1 1 1 1 1( , ) { ( , ) { ( , ) ( , ) { ( , )}}}o o o i i iE x y FT A x y Fresnel P x y A x y FT E x y     ( 2-3 ) 

where ( , )i i iE x y  represents the field of the fundamental mode output from an SMF, 1 1 1( , )A x y and 

2 2 2( , )A x y denote the aperture functions of the first and second 20x microscope objective lens, 

SMF
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respectively, 1 1( , )P x y refers to the phase structure of the phase plate, the symbol FT  and 

Fresnel represent Fourier transform and Fresnel diffraction operation. The inset in Fig. 2-4 

shows the calculated intensity pattern at the input FMMCF facet, which contains two tails 

instead of a clean LP11 mode. The excitation-induced crosstalk value varies with the angle with 

respect to the axis of the phase plate. The excitation is maximum (minimum) for a neighboring 

core that is placed perpendicular (parallel) to the line dividing the two phases on the phase plate.  

The maximum excitation-induced crosstalk can be obtained by evaluating the overlap integral 

between the field at the FMMCF input facet and LP01 and LP11 mode profiles of the FMMCF. 

Figure 2-4 shows that the induced crosstalk also depends on the propagation distance from the 

phase plate to the FMMCF. Experimental results agree with this trend when the distance between 

the phase plate and the input FMMCF facet is shorter than 0.5 m, when the crosstalk reaches a 

floor of about -40dB for 1km fiber. The reason might be the simulation does not take account of 

leaky LP21 / LP02 modes and cladding modes within the FMMCF. Initially,  the measured 

11LPXT  only after a short piece of 2m fiber  and of  1 km fiber were observed to be the same at 

around -40dB [103]. As a result, it was concluded that crosstalk floor was due to the 

measurement setup.  
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Figure 2-4. Simulated 
11LP  free-space excitation-induced crosstalk value as a function of the propagation 

distance from phase plate to the FMMCF as well as the intensity pattern at FMMCF facet 

However, we have confirmed recently that the value of -40dB/km is the actual LP11 

crosstalk due to the FMMCF itself.  This is made possible by adding another step in the 
11LPXT  

crosstalk measurement in which one turn of tight bend was introduced near the excitation end of 

the fiber. The mandrel diameter of the bend is 50mm. This small amount of tight bend effectively 

eliminates the leaky LP21 mode and cladding modes caused by imperfect excitation. The 

measured 
11LPXT  after 1km FMMCF with tight bend is still around -40dB while that after 2m 

fiber is less than -47dB. These results infer that the detected -40dB 
11LPXT  is from 1km of 

propagation along the fiber. The large discrepancy of 
11LPXT  between experimental measurement 

and simulation is under investigation. It could be contributed by fiber imperfections, such as the 

longitudinal variance along the fiber or the hexagonal core shape, which result from the fiber 

drawing process. Another possible reason is that the leaky LP21 / LP02 mode can act as an 
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intermediary and mediate 
11LPXT  through a considerable intra-core crosstalk with LP11 mode. 

For example, during propagation, a fraction of the launched LP11mode may couple into LP21 / 

LP02 mode within the same core, and then the LP21 / LP02 mode would leak into the modes of 

the other cores, including LP11 modes and be detected as 
11LPXT . 

2.4 Initial Transmission Experiment 

The 1km few-mode MCF has been tested in a single channel transmission experiment for 

both 01LP  and 11LP  respectively. The experimental setup is shown in Fig. 2-5(a) and the fiber was 

wound on a fiber drum whose mandrel radius is15.9cm. Light from an external cavity laser at 

1550nm is modulated to produce a 10Gsym/s BPSK signal using a pattern generator. Then the 

signal is coupled into either the LP01 or LP11 mode of an arbitrary core of the 1km FMMCF. 

Each mode is excited and received in free space with objective lenses for better comparison. The 

insets in Fig. 2-5(a) show the LP01 and LP11 mode profiles at the transmitter and receiver.  It is 

observed that both mode profiles are highly preserved through transmission over the 1 km 

FMMCF. When LP11 is transmitted, one phase plate is added at the input to excite an almost 

pure LP11 mode and another one is inserted at the output to convert the LP11 mode back to the 

LP01 mode. The received signal is then sent to a 90 degree hybrid followed by four photo 

detectors. The variable attenuator and the following amplifier before the hybrid are used for 

noise loading. The received waveforms were recorded using a real-time oscilloscope and 

analyzed offline. Fig. 2-5(b) shows the Q2-factors as a function of the optical signal-to-noise 

ratio (OSNR) for the LP01 and LP11 modes after transmission as well as for back-to-back 



20 

 

measurement. The transmission penalties for the LP01 and LP11 modes are less than 1dB and 

2dB, compared to back-to-back, respectively. These penalties could be due to discrete mode 

coupling induced by the imperfect excitation. For example, LP11 free-space excitation using a 

phase plate cannot completely filter out the LP01 mode. The residual LP01 would transmit 

together with LP11 and produce a small amount of modal dispersion-induced penalty in the LP11 

transmission experiment. 

 

Figure 2-5. (a) The setup for LP01 and LP11 transmission over 1km FMMCF (b) Q2 factor v.s. OSNR for 

back-to-back, LP01 and LP11 transmission. 

2.5 Collaborated 200Tb/s Transmission Experiment 

A few-mode multi-core fiber consisting of 7 cores each supporting 3 spatial modes per 

polarization has been designed and fabricated. Low core-to-core crosstalk levels have been 

achieved for both LP01 and LP11 modes. Data transmission in LP01 / LP11 mode over 1km of 

FMMCF has been demonstrated. The fiber is able to support petabits transmission for next 

generation high capacity communication. 
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A robust transmission of 42 spatial channels has been achieved by using this novel hole-

assisted FM-MCF as shown in Fig. 2-6 [107]. The signal is coupled into and out of the FMMCF 

employing custom designed low loss (<1.5dB) 3D waveguide (de)multiplexers, indicating the 

high integration potential into emerging core network transponders. Furthermore, low 

computational complexity MIMO digital signal processing was employed to enable an aggregate 

transmission capacity of 255 Tbit/s (200 Tbit/s net), consisting of 50 spatial super channels 

transmitting 5.103 Tbit/s per carrier (4 Tbit/s per carrier net) on a dense 50 GHz wavelength ITU 

grid with a spectral efficiency of 102 bits s-1 Hz-1 for fully mixed MIMO transmission per core. 

To the best of our knowledge, to date, this is a record for single-carrier transmission. Whilst 

readily enabling beyond next generation capacity per wavelength, the demonstrated transmission 

system has the potential to combine 21 legacy SMFs operating on an ITU standardized 50 GHz 

spaced wavelength grid into a single fibre. Considering the emerging amplifier multimode and 

multicore technologies, this work proves that a new class of fibres combining few-modes and 

multi-core paves the way to potential future long-haul transmission systems. 
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Figure 2-6. FMMCF PDM/WDM/SDM transmission experimental setup. (a) the entire experimental setup; 

(b) the decorrelated wavelength spectrum after being interleaved by a wavelength selective switch; (c) 3D 

waveguide facet; (d) FM-MCF facet which butt-coupled to the 3D waveguide; (e) saturated camera image 

taken at the FM-MCF receiver side.  
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CHAPTER 3 COUPLED MULTI-CORE FIBERS FOR SDM 

TRANSMISSION 

3.1 Introduction 

Supermodes are eigenmodes of composite structures involving coupled constituent 

elements, each of which also supporting guided modes in isolation [108, 109]. As indicated in a 

number of studies, such multi-core systems can be effectively analyzed using coupled-mode 

theory (CMT) - which is particularly effective when the coupling between neighboring elements 

is relatively weak. Over the years, the properties of supermodes in either linear [110] or ring 

arrays of coupled waveguides have been analyzed using CMT methods [111-113]. Even in the 

simplest possible configuration of two coupled channels, supermodes play an important role 

given that their interference is the one responsible for the energy exchange behavior in a 

directional coupler. 

Quite recently, supermodes have received renewed interest within the context of mode-

division multiplexing (MDM), a new transmission method aimed at overcoming the capacity 

limit of single-mode fiber communication systems. Since modes tend to couple during long-

distance fiber transmission, unravelling mode crosstalk using multiple-input-multiple-output 

(MIMO) digital signal processing (DSP) is necessary for demultiplexing MDM channels [18]. In 

the presence of modal group dispersion, the computational load for MIMO DSP is proportional 

to the modal group delay [114, 115]. Interestingly, coupled multi-core fibers can be designed to 

have reduced modal group delays and/or larger effective areas in comparison with few-mode 

fibers (FMF) [116]. In a recent experiment, the modal delay was also found to depend 
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sublinearly on transmission distance in the presence of strong supermode coupling [117]. It is 

thus imperative to study the properties of optical supermodes in a systematic manner.  

In this chapter, we introduce the coupled multi-core fiber (CMCF) structure with strong 

core-to-core coupling [118]. Coupling between cores can be manipulated to achieve better 

transmission properties for coupled modes. Field distribution of a coupled mode can be seen as a 

superposition of isolated modes, which is the reason why the coupled modes are also called 

supermodes. For this reason, supermodes generally have much larger effective area. Due to the 

unique properties of supermodes, CMCFs can support larger mode effective areas and higher 

mode densities than the conventional multi-core fiber. In addition, these CMCFs can also have 

lower modal dependent loss, mode coupling and differential modal group delay than the few-

mode fiber. These advantages enable this new type of fiber as a potential candidate for 

applications of both spatial division multiplexing and single-mode operation. 

The content is organized as follows. Section 3.2 focuses on the supermodes in CMCFs 

with single-mode cores. Section 3.2.1 introduces the basic properties of supermodes by 

analyzing a four-core CMCF structure using the coupled-mode theory. Section 3.2.3 

demonstrates CMCF designs for short-distance SDM applications with the primary goal of 

achieving low crosstalk between the supermodes. Section 3.2.4 gives CMCF designs for the 

long-distance SDM applications where the DMGD has to minimized over the transmission band. 

In addition, supermode structures with multimode constituent elements were first introduced in 

[119].In section 3.3.1-4, we provide analytical description for higher-order supermodes in 

different array configurations, including linear, ring and square array lattices. Finally in section 

3.3.5, we present an experimental observation of higher-order supermodes in a 3-core fiber array. 
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3.2 Supermodes in Coupled Single-Mode Core Fibers 

3.2.1 Coupled-Mode Theory for Supermodes 

In this section, we present the basic supermode analysis of CMCFs. A four-core CMCF 

structure, shown in Fig. 3-1, is selected as an example. Fiber cores are assumed to be identical 

and each of them supports only one mode. The radius of the cores is r , and the distances between 

adjacent cores and non-adjacent cores are 1d  and 2d , respectively. The cores and the cladding 

have refractive indices of 1n and 2n , respectively. The mode of each isolated core has the same 

normalized frequency (V-number) 
2 2

1 2

0

2
 V r n n




.  

 

Figure 3-1. Schematic of a coupled four-core fiber structure. 

According to the coupled-mode analysis [120], the interaction between the modes of the 

four individual cores can be described by the following coupled-mode equation 

2r

1d

2d
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[ ] , ,  ( 1,2,3,4)A M

 
 
   
 
 
 

T

i

c c c

c c c
A A A A A i

c c c

c c c









 refers to the 

complex amplitude of the electrical field of the ith core, 0 is the propagation constant of the 

single mode, 1c and 2c  are the coupling coefficients between adjacent and non-adjacent cores, 

respectively. Since M is Hermitian for a lossless system, it can be diagonalized by a unitary 

matrix such that  

1 ,Q MQ    ( 3-2 ) 

where  is a diagonal matrix, 

1

2

3

4

0 0 0

0 0 0
,

0 0 0

0 0 0









 
 
 
 
 
 

  ( 3-3 ) 

in which  ( 1,2,3,4)m m is the propagation constant of the mth supermode supported by the 

CMCF. The amplitude matrix for the supermodes is represented as  

1 ,B Q A  ( 3-4 ) 

under which the coupled-mode equation (1) reduces to 
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.B  
d

j
dz

 ( 3-5 ) 

Under the weakly guiding approximation, a general expression of the coupling coefficient 

 ( 1,2)jc j is given as [121] 

2 2 2
01 2

2 3 2

1 1

( / )1
.

( )

j

j

K Wd rn n U
c

n r V K W


     ( 3-6 ) 

Where U and W can be found by solving equation 0 1 1 0( ) ( ) ( ) ( )    U K W J U W K W J U  and 

2 2 2 U W V . The J’s and the K’s are Bessel functions of the first kind  and modified Bessel 

functions of the second kind. After obtaining the coupling coefficients 1c and 2c , the supermodes 

can be solved as eigen-modes. The propagation constant of the supermodes are the eigenvalues, 

given by: 

1 0 1 2 2 0 2 3 0 2 4 0 1 22 ; ; ; 2 .         c c c c c c         ( 3-7 ) 

The second and third supermodes are degenerate, having the same propagation constants. Using 

1 21.47,  1.468,  7 ,  14    n n r m d m  and 1.55  m  , the field distributions of each 

supermode is calculated and shown in Fig. 3-2.  
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Figure 3-2. Field distributions of the 1st (a), 2nd (b), 3rd (c) and 4th (d) supermodes for four-core CMCFs. 

(Black lines indicate the boundaries of the cores) 

One important characteristic of supermodes in four-core CMCFs is that they are 

superpositions of isolated modes with equal amplitude but not always the same phase. As shown 

in Fig. 3-2 (a), the fundamental supermode is the in-phase mode with the largest propagation 

constant. The higher-order supermodes have the field reversals between adjacent or non-adjacent 

core regions, shown in Fig. 3-2(b)-(d). This equal-amplitude characteristic gives similar 

confinement factors for the supermodes, leading to very small modal dependent loss. It is clear 

from this example that the properties of supermodes are determined not only by the parameters 

of each cores but the pitch between cores. In other words, CMCFs have more degrees of freedom 

or large design space than MCFs and FMFs. 

For mode-division-multiplexing, two concepts can be simultaneously applied in CMCFs. 

One is to utilize zero DMGD between the two degenerate supermodes and the other is to 

(a)

(c) (d)

(b)
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eliminate mode coupling between the non-degenerate supermodes. Demultiplexing can be 

realized by first detecting the non-degenerate ones separately and then recover signals mixed in 

the degenerate supermodes by MIMO DSP techniques. Compared to FMF modes, the 

supermodes can maintain less mode coupling, nonlinearity and similar loss. Considering the 

accumulated mode coupling level after long distance can be big, this scheme is best for short-

distance applications which is discussed in the section 3.2.2. The other possibility is to design 

CMCFs with zero DMGD (or DMGD much less than the symbol period), between all the 

supermodes and a DMGD slope small enough for WDM system. This scheme can be applied to 

long-distance applications which we would talk in the section 3.2.3. In that section, a 60 ps/km 

DMGD between any two supermodes across the C-band has been demonstrated in a step-index 

three-core CMCF. This DMGD value can be further reduced by reducing the index difference 

between the core and cladding. It has been reported that graded-index profiles can decrease 

DMGD in FMFs [122]. It is likely that a more sophisticated index profile including the graded-

index profile for CMCFs may further reduce the DMGD. 

3.2.2 Design for Short-Distance Applications 

It is expected that space-division-multiplexed (SDM) optical transmission can operate 

successfully either without mode coupling [21] or with mode coupling but with negligible or 

small differential modal group delay (DMGD) [18]. For the case that there is no mode coupling, 

modes propagate independently and therefore can be separately detected. For the case with mode 

coupling but small DMGD , modes may couple to each other, but they can be detected together 
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and then separated by using multiple-input-multiple-output (MIMO) based digital signal 

processing (DSP) technique [18]. These two methods can be combined in supermode 

multiplexing as will be explained below. 

In this simulation, the number of mode is selected to be 6 again.  However, the core 

arrangement is without a center core so higher-order supermodes and the fundamental 

supermode are more symmetrical. The field distributions of the supermodes are shown in Fig. 3-

3. Again, both six-core CMCFs and six-mode fibers support six modes including two pair of 

degenerate modes and two other non-degenerate modes. For six-mode fibers, the two pairs of 

degenerate modes are the degenerate LP11 and LP21 modes. For CMCFs, the two pairs of 

degenerate modes are the 2rd and 3rd, 4th and 5th supermodes. The degenerate supermodes have 

identical effective indexes and thus there is no DMGD between them. The non-degenerate 

supermodes have different effective indexes. Fortunately, these non-degenerate 

supermodes/supermode groups can be designed to have low crosstalk by maintaining a large

 effN between them. Therefore demultiplexing in SDM using CMCFs can be successfully 

performed in two steps: i) the non-degenerate supermodes/supermode groups are separately 

detected while the degenerate supermodes are still mixed together; ii) mixed signals in the 

degenerate supermodes are recovered by the MIMO-based DSP techniques [18].  
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Figure 3-3. Field distributions of the 1st (a), 2nd (b), 3rd (c), 4th (d), 5th (e) and 6th (f) supermodes for 

the six-core CMCF. (Black lines indicate the boundaries of the cores) 

There are three design goals to optimize the performance for SDM: (1)  effN between 

any two modes should be sufficiently large to avoid mode coupling; (2) mode losses need to be 

similar to each other and as low as possible; (3) large effective areas are always required for 

reducing nonlinearity. Based on these goals, 6-core CMCFs and 6-mode fibers are designed 

respectively and their performances are shown in Fig. 3-4(a) and (b). The macro-bending losses 

of the fundamental modes for both fibers are fixed at 0.0308 dB/m at a mandrel radius of 20mm. 

Confinement factor is used here to characterize the mode loss. Higher confinement factor implies 

lower loss as it indicates less bending loss. From Fig. 3-4(a) and (b), one can see that CMCFs 

show a significant advantage of attaining large and similar  effN , confinement and effA for all 

supermodes. In other words, the supermodes tend to preserve less mode coupling, lower loss and 

lower nonlinearity than regular modes. All supermodes have similar properties (including mode 

coupling, loss and nonlinearity), which is crucial for long-distance mode-division-multiplexing. 

(c)(b)(a)

(d) (e) (f)
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Higher-order modes in FMF seem to have larger effective areas in Fig. 3-4(a), but these large 

effective areas actually result from low confinement (as indicated in Fig. 3-4(b)) and hence has 

no practical benefit.  

 

Figure 3-4. effA  vs. effN for CMCFs and FMFs ( effN refers to the minimum effN for one mode to any 

other mode); (b) Confinement factor vs.  effN for CMCFs and FMFs. 

3.2.3 Design for long-distance applications 

A CMCF design with zero or small DMGD between supermodes has also been 

considered. In this case, even though supermode coupling may still exist, they travel at the 

same/similar group velocities. Therefore the supermodes could be detected together and 

demultiplexing can be performed using MIMO DSP techniques as we mentioned above. 

According to Eq. (3.6), DMGD between the ith and jth supermodes, can be represented as 
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2

1

DMGD(i,j) ( )


    
j i ji n

n n

n

dd dc
a a

d d d



  
 ( 3-8 ) 

where 
i

na and
j

na relate the supermode propagation constant   for the ith and jth supermode, 

respectively, to the coupling coefficients nc as given in Eq. (3.7). Using Eq. (3.6), ( 1,2)ndc
n

d
is 

obtained as,  

2 2

2 0

2 3 2

1 1

2 2

2 0

2 3 2

1 1

( ) ( / )
1 ...

( ) ( )1

( ) ( ( ) / )
1

( ) ( ( ))

n

n

n

n U K Wd r

n V K Wdc

d r n U K W d r

n V K W



 

  

  

  
     

   
   

   
       

 ( 3-9 ) 

It should be noted that Eq. (3.8) is presented for four-core CMCFs, in which DMGD is a 

linear combination of 1dc

d
 and 2dc

d
with different weighting coefficients for different 

supermodes.  It is clear that in order to achieve zero DMGD among all the supermodes, both 

1dc

d
 and 2dc

d
should vanish, which is unlikely if not impossible to realize in a simple step-index 

profile CMCF. This problem also exists for other CMCF structures where the number of cores is 

more than three. Therefore three-core CMCFs are chosen here for zero DMGD design as they 

only contain adjacent core coupling, i.e., only one value of c exists. As a result, total DMGD 

scales with 1dc

d
, and it is equivalent to attain zero for 1dc

d
in order to achieve zero DMGD in this 

structure. The mode fields of three-core CMCFs are given in Fig. 3-6, (b), (c) and (d). As shown 

in Eq. (3.9), 
dc

d
consists of two parts: a frequency dependent index ( 1n , 2n ) component and a 

frequency dependent waveguide parameters (V, U, W) component, i.e., the material and 
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waveguide DMGD. At the first glance, one might think that material DMGD is larger than 

waveguide DMGD (material dispersion is dominant in chromatic dispersion of standard SMFs). 

However, it is incorrect to draw an analogy between DMGD and chromatic dispersion because 

the nature of DMGD is differential modal group delay (DMGD) between modes instead of 

dispersion within one mode. In fact, all supermodes propagate in the same material but with 

different propagation constants, implies that the material DMGD should be negligible compared 

to waveguide DMGD. This conclusion is verified by simulation. Since material DMGD is 

significantly smaller than waveguide DMGD, they will be neglected in the following discussion 

to simplify the analysis. 

 

Figure 3-5. (a) (b) (c) 
dc

d
at V=1.6, 1.7 and 1.9.  (d) 

d dc

d d 

 
 
 

at V=1.7. 
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As indicated in Eq. (3.9), 
dc

d
is determined by the pitch-to-core ratio (d/r), V number and 

core radius r (or equivalently, V number and index difference ∆ since
2 2

1 2

0

2
 V r n n




). Their 

relationship is shown in Fig. 3-5(a), (b) and (c). It is confirmed by both analysis and simulation 

that when the V-number is fixed, zero DMGD is attained if and only if d/r reaches a certain value. 

As the V-number increases, zero DMGD is realized for a smaller value of d/r, as indicated in Fig. 

3-5(a), (b) and (c). So in order to attain zero DMGD, V-number is limited to below 1.71 because 

d/r cannot less than 2. This is demonstrated by the zero DMGD horizontal lines and their 

locations with different V-numbers in Fig. 3-5(a), (b) and (c) [in Fig. 3-5(c), with V-

number >1.71, the zero DMGD line does not exist]. Apart from zero DMGD, a sufficiently small 

DMGD is enough for practical use as well. This can be obtained by reducing index difference ∆.  

To meet the practical application requirements in a WDM system, CMCFs further require 

small DMGD variation within a certain range of wavelength, i.e., a small differential modal 

group delay slope (DMGDS). (DMGDS can be regarded as linear within a narrow range of 

wavelength). Similar to DMGD, DMGDS between the ith and jth supermodes in a three-core 

structure can be represented as 

1
1 1(i,j) ( )

   
       

  

ji
i j

dd d d dc
DMGDS a a

d d d d d



    
 ( 3-10 ) 

Given that material DMGD is negligible, the 
 
 
 

d dc

d d 
term can be further expressed as 
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d dC n U K W d r

d d r n V K W

 

     
 ( 3-11 ) 

In Fig. 3-5(d), DMGDS is plotted vs. (d/r) and ∆. Even though zero DMGDS can be 

realized, they occur at a larger value of d/r with respect to zero DMGD. Therefore, it will be 

difficult to achieve zero DMGD and DMGDS simultaneously. Even so, DMGDS can still be 

reduced by decreasing index difference ∆. Wavelength-dependent DMGD as well as mode fields 

of a specific three-core CMCF design is given in Fig. 3-6 (a) and (b). The DMGD is below 60 

ps/km over the entire C band, which is the same value achieved by three-mode fiber using a 

depressed cladding index profile [18]. 

   

Figure 3-6. (a) maximum DMGD vs. wavelength at V=1.707 @1.55μm and ∆=0.06%, (b) (c) (d) field 

distribution of  the 1st, 2nd and 3rd supermode of a three-core CMCF 
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3.3 Higher-Order Supermodes in Coupled Few-Mode Core Fibers 

When the guiding power is increased for an isolated core, it can guide high-order modes. 

For optical fibers with low refractive index contrast, the vector modes are weakly guided and 

therefore can be treated as linear polarization (LP) modes. In essence, the LP modes are scalar 

approximations of the vector mode fields and contain only one transverse field component given 

by, 

( )
cos( ),  for 

( )
( , )

( )
cos( ),  for 

( )

p pq

p pq

pq

p pq

p pq

J r
U p r a

J a
E r

K r
U p r a

K a


 





 




  

 
  

 

 ( 3-12 ) 

where U  is the complex amplitude, J  and K  are Bessel functions of the first and 

second kind, a  is the core radius,   is an arbitrary start angle, and p  is a non-negative integer 

referred to as the azimuthal mode order. For the same p  value, pq  and pq  can take on 

multiple discrete values determined from the dispersion relation. Therefore it is appropriate to 

label each of the aforementioned terms with another non-negative integer corresponding to the 

number of times the field crosses zero along the radial direction. Thus, the LP  modes can be 

labeled as pqLP . The orthogonal field component is the same as Eq. (3-12) therefore the results 

presented here applies to either polarization. According to Eq. (3-12), when 0p  , the modal 

field has an additional degree of freedom in the azimuthal direction because the start angle   is 

arbitrary, which generates spatially orthogonal modes even if both p  and q  are the same. For 

example the 11xLP  and 11yLP  modes correspond to the cases of 0   and  respectively, shown 
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in Fig. 3-7. This is very different from the case of 0p   where the 0qLP  modal field is 

azimuthally uniform and has no spatial degeneracy.  

To the best of our knowledge, until now the study of supermodes has been limited to the 

supermodes composed of these azimuthally uniform pqLP ( p =0) “core modes”, particularly 01LP

supermodes. However, the higher-order pqLP ( p >0) “core modes” can also form supermodes. 

Moreover, these supermodes are strongly affected by the geometrical distribution of the cores 

within the MCF, because the coupling of pqLP ( p >0) modes between two cores varies 

significantly with initial angles of the modes. We name these angle-dependent supermodes as 

“higher-order supermodes.” Unlike the higher-order core modes ( p  or q >0), higher-order 

supermodes specifically refer to the supermodes formed because of coupling among “core modes” 

with p >0. In this section, we begin the study of higher-order supermodes from the simplest two-

core structure by demonstrating how angle-dependent coupling influences the eigenmode 

formation. Then, we extend the theory to more complex geometrical structures, using 

symmetries to produce analytical formulas for higher-order supermodes. More specifically, we 

derive formulas for commonly used formations, including linear-array, grid-array and ring-array 

structures. 
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3.3.1 Higher-Order Supermodes in a Two-Core Structure 

As described above, the coupling between two pqLP ( p >0) modes strongly depends on 

the initial angles of both modes. In order to focus on this angular dependence, the pqLP ( p >0) 

modal field of Eq. (3-12) is written as a function of the initial angle   

( ) cos( )

         cos sin

r

x y

E F p

E E

  

 

  

   
 ( 3-13) 

where rF  represents the radial component of the modal field, ( 0)xE E   and ( )
2

yE E


   

correspond to the modal fields aligned with the horizontal axis x and vertical axis y. A 

coordinate system is selected where the azimuthal reference axis is parallel to the edge of the 

graph formed by vertices at the center of the isolated cores as shown in the inset of Fig. 3-7. The 

coupling coefficient between two pqLP ( p >0) modal fields with initial angles of 1  and 2 , 

respectively, in the two identical cores 1 and 2 is given by 

2 2

1 1 2 2 0 1 1 2 2

2

1 2 1 2 1 2 1 2

( ( ), ( )) ( ) ( ) ( )
2

          cos cos sin sin cos sin sin cos

CoreB Clad

Core

x y xy yx

E E n n E E dxdy


     

           

   

       


 ( 3-14) 

where 1, 2,( , )x x xE E  , 1, 2,( , )y y yE E  ,  1, 2,( , )xy x yE E  , 1, 2,( , )yx y xE E  . The modal 

fields are normalized, 0  and   are vacuum permittivity and angular frequency, 2Coren  and Cladn  

are the refractive indices of core 2 and the cladding, respectively. Fig. 3-7 represents the typical 

behavior of the coupling coefficient as the initial angles of two LP11 modes change, according to 

Eq. (3-14). 0x y    is observed as a result of the specific geometrical distribution of modal 

fields with respect to the cores. More importantly, coupling vanished for two specific initial 
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angles, i.e., 0xy yx   , as illustrated in by the arrow in Fig. 3-7. This phenomenon occurs 

because the mirror-reversal of two modal fields across an axis parallel to the reference axis 

should have the same coupling coefficient, which can be mathematically elaborated as 

2 2

0 1, 1 2, 2

2

2 2

0 1, 1 2, 2

2

( ) cos( ) sin( )
2

( ) cos( ) sin( )
2
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xy CoreB Clad r r
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Core
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n n F F dxdy

n n F F dxdy
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   


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





   

     
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

  ( 3-15 ) 

With this result, Eq. (3-14) can be immediately simplified as 

1 1 2 2 1 2 1 2( ( ), ( )) cos cos sin sin .x yE E             ( 3-16 ) 

 

Figure 3-7. Coupling between two arbitrarily oriented 11LP  degenerate modes as a function of their initial 

angles 1  and 2 . The arrow points to the position of zero coupling 1 2( 0, / 2) 0       between the

11xLP  and 11yLP modes; the inset shows the coordinate system of the two cores including reference axes 

and two initial angles. 

Similar to the 01LP supermodes, higher-order supermodes can be investigated using 

coupled-mode theory under the assumption of weak coupling. For the simplest case of the two-
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core structure, the basis set for each core is strategically chosen as the 
xE  and yE  pair, even 

though it could have been any orthogonal set with an arbitrary initial angle. Then the interactions 

between the “core modes” can be described by the following coupled-mode equation in a matrix 

form 

0,
d

i
dz

 U MU  ( 3-17 ) 

where 1, 2, 1, 2,[ ]T

x x y yu u u uU ; ,m xu or ,m yu  are the complex amplitude of the 

horizontally or vertically aligned modal field of the m
th

 core after adopting the gauge 

transformation 0

, / , /

i z

m x y m x yu U e


   in which 0  is the propagation constant of any isolated core 

mode pqLP ; and hence is a 4-by-4 coupled matrix 

0 0

0 0
.

0 0

0 0

x xy

x xy

yx y

yx y

 

 

 

 

 
 
 
 
 
 

M  ( 3-18 ) 

The standard procedure of solving the coupled-mode equation is to diagonalize the 

coupled matrix 1Q MQ =   where the eigenvalues   give the normalized propagation constants 

of the supermodes. The corresponding eigenvectors 1U = Q U describes the supermode field 

amplitudes and the row vectors of 1A = Q represents the amplitude coefficients of superposition 

of core modes in forming the supermodes. In the supermode basis, the coupled-mode equation 

reduces to 

0.
d

i
dz

  U U  ( 3-19 ) 
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For this particular coupled-mode equation, one can apply 0xy yx    first and then 

divide the equation into two reduced ones as follows, 

1, 1,

2, 2,

0
0

0

x xx

x xx

u ud
i

u udz





    
     
    

 ( 3-20a ) 

1, 1,

2, 2,

0
0.

0

y y y

y y y

u ud
i

u udz





     
      

     
 ( 3-20b ) 

The above equations mean that xE  and yE , the horizontally and vertically aligned “core 

modes” do not “talk to” each other and their formation of higher-order supermodes can be solved 

separately. Eqs. (3-20a) and (3-20b) turn out to be very similar to those for the case of 01LP

supermodes. The amplitude coefficients of the higher-order supermode corresponding to the row 

vectors of 
1 1

[1,1;1, 1]
2

  A Q  are the same as those for the 01LP supermodes. For higher-

order supermodes composed of xE  and yE  respectively, as shown in Fig. 3-8, the propagation 

constants of the four higher-order supermodes 0     are calculated to be 0 2 x   and 

0 2 y  , respectively. 
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Figure 3-8. Modal fields of 01LP supermodes (a & b) and 11LP supermodes (c-f) of a basic two-core 

structure. In-phase supermodes are shown in (a), (c) and (d) while out-of phase supermodes are shown in 

(b), (e) and (f). 

3.3.2 Higher-Order Supermodes in Linear-Array Structures 

A slightly more complex structure is the linear array where the cores are linearly aligned 

with each other with equal core-to-core distances as shown in Fig. 3-9. In this case, couplings 

between non-adjacent cores are expected to be negligible. Let us start with the 01LP supermodes, 

which do not have angular dependence. One could solve the eigen-problem of the coupled-mode 

equation as described in the last section and obtain the supermodes. The alternative method is to 

find the solutions that satisfy the boundary conditions 0 1 0Nu u    [123]. As a result, the 

amplitude of the m
th

 core within any 01LP supermode can be described as 

,  1,2,imQ imQ

mA a e b e m N      ( 3-21 ) 

two-core structure (a) (b)

(c) (d) (f)(e)
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where a  and b  are coefficients; Q  is the common phase acquired by shifting any one lattice due 

to the translational symmetry. The boundary conditions applied to both sides of the linear 

structure ( 0m  and 1m N  ) 

( 1) ( 1)

1

0 0

0

    

0,

i N Q i N Q

N

i i

A a e b e

A a e b e

  





   

     
 ( 3-22 ) 

yield 0a b   and ,  1,2,
1

l
Q l N

N


 


. Therefore the 01LP supermode can be written as  

, , , ,sin ,  , 1,2,
1

l m l m l m l m

lm
u A u u m l N

N

 
      

 
 ( 3-23 ) 

where l  corresponds to the order of different supermodes and mu  represents the complex 

amplitude of the thm  “core mode”. For the thl  01LP supermode, comparing the coupled-mode 

equation  

1 1( ) 0,m m m

d
i u u u
dz

      ( 3-24 ) 

with the supermode equation 

0m l m

d
i u u

dz
    ( 3-25 ) 

where   is the coupling coefficient between two adjacent 01LP  “core modes”, the propagation 

constant of the thl  01LP supermode  0l l     can be obtained as 

0 2 cos ,  1,2 .
1

l

l
l N

N


  

 
    

 
 ( 3-26 ) 

For higher-order supermodes, because only coupling between adjacent cores is 

considered, xE  modes would only couple to themselves as would yE  modes, according to 

0xy yx   . Therefore the higher-order supermodes of the linear-array structure can be divided 
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into the 
xE - and yE -families; each of them can be solved independently using the same relations 

as used for the 01LP supermode. The propagation constants are attained as 

, 0 2 cos ,  1,2
1

l x x

l
l N

N


  

 
    

 
 ( 3-27a ) 

, 0 2 cos ,  1,2
1

l y y

l
l N

N


  

 
    

 
 ( 3-27b) 

respectively. An example of the 11LP supermodes as well as the 01LP supermodes of a 4-core 

linear-array structure is shown in Fig. 3-9. 

 

Figure 3-9. Modal fields of 01LP supermodes (a-d) and 11LP supermodes (e-l) of a 4-core linear-array 

structure. 

(a) (b) (c) (d)

(h)(g)(f)(e)

(i) (j) (k) (l)

…… linear-array structure
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3.3.3 Higher-Order Supermodes in 2D Rectangular-Array Structures 

We then analyze the supermodes in two dimensional (2D) discrete waveguide arrays. 

These are composed of M N  identical optical waveguides arranged in a rectangular geometry. 

The distance between cores is taken here to be D . For generality, we also include in our analysis 

not only nearest neighbor interactions   (occurring along the horizontal and vertical directions) 

but also higher-order couplings  c  taking place along the two diagonals as shown in Fig. 3-10(a). 

For weakly guiding structures, the coupling strengths can be obtained from 

 
 

2
0

3 2

1

/2Δ K WD aU

a V K W
  . We first consider supermodes derived from the 01LP  mode supported 

by each waveguide channel in a square lattice (see Fig. 3-10(a)). In such an arrangement, the 

modal fields evolve according to : 

 

 

,

0 , 1, 1, , 1 , 1

1, 1 1, 1 1, 1 1, 1

 

0

m n

m n m n m n m n m n

c m n m n m n m n

dU
i U U U U U

dz

U U U U

 



   

       

     

   

 ( 3-28 ) 

where ,  n mU  represents the modal field amplitude at site n , m  in this rectangular array and the 

discrete site indices take values from the sets 1,2, ,n N   and 1,2, ,m M  . To identify the 

eigenmodes of this system, we look for solutions of the type 0

, ,

i z

m n m nU e u


  that also satisfy the 

boundary conditions ,0 , 1 0, 1, 0m m N n M nu u u u      [124]. Based on these requirements, one can 

directly show that the ,k lU  supermodes of this structure are ,0, ,

, ,
k li zi zk l k l

m n m nU eA e


  with the 

amplitudes given by  
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,

, sin sin
1 1

k l

m n

k l
A m n

M N

    
    

    
 ( 3-29 ) 

where 1,2, ,k M   and   1, ,l N  . In addition, the eigenvalue associated with ,k lU  

supermode is given by 

, 2 cos cos 4 cos cos
1 1 1 1

k l c

k l k l

M N M N

   
  

        
                     

 ( 3-30 ) 

Evidently, altogether this array supports M N  supermodes. 

 

Figure 3-10. (a) A rectangular array of waveguides. The 
01

LP  mode in each waveguide cross-talks with 

nearest neighbors along the horizontal and vertical directions as well as with diagonal elements. (b) 

Coupling interactions in this same array when each element involves instead the 
11

LP  mode. 

Similarly, one can investigate the eigenmodes of this same array arising from the 11LP  

mode of each waveguide (Fig. 3-10(b)). In a weakly coupled array, the 11LP  mode tends to orient 

itself either along the x  or y  direction ( 11xLP , 11yLP ). As a result the coupling strengths x  and 

y  are different because of their respective overlap integrals. Hence, the field evolution is 

described by 
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   

 

,

0 , 1, 1, , 1 , 1

1, 1 1, 1 1, 1 1, 1 0

m n

m n x m n m n y m n m n

c m n m n m n m n

dU
i U U U U U

dz

U U U U

  



   

       

     

   

 ( 3-31 ) 

The supermodes ,k lU  of this latter equation are exactly identical in form with those provided by 

Eq. (3-29). In this case however, the corresponding eigenvalues are given by 

, 2 cos 2 cos 4 cos cos
1 1 1 1

k l x y c

k l k l

M N M N

   
   

       
         

          
 ( 3-32 ) 

In all cases our results (based on coupled-mode theory) are in excellent agreement with finite 

element simulations using COMSOL as shown in Fig. 3-11. 

 

Figure 3-11. (a) Scheme of mode basis selection for 11LP supermode analysis of a 4-core grid-array 

structure; modal fields of 01LP supermodes (a-d) and 11LP supermodes (e-l) of a 4-core grid-array structure 

computed using COMSOL 

grid-array structure

(a) (b) (c) (d)

(f) (g) (h)(e)

(j) (k) (l)(i)

………

………

…
…
…

…
…
…
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3.3.4 Higher-Order Supermodes in Ring-Array Structures 

Ring-array structure is another interesting geometry for higher-order supermodes as it 

possesses rotational symmetry. Here also, we only consider coupling between adjacent cores. We 

start from 01LP supermodes of N-core ring-array structure. In this case, the coupled matrix M  is 

a symmetric circulant matrix. If 0  and   are defined as the propagation constant of the “core 

mode” and the coupling coefficient between two adjacent 01LP  “core modes” respectively, the 

elements of the N-by-N coupled matrix are given as  

 0 1, , 1( )lm lm l m l m       M  ( 3-33 ) 

where lm ,  1,l m   and , 1l m  are Kronecker deltas; l  and m  are integer numbers mod N . This 

matrix can be diagonalized by a lattice Fourier transform as 1Q MQ  [112]. 1
Q  is a unitary 

matrix with elements given as 

2

1 1
( )

l
i m

N
lm e

N




 Q  ( 3-34 ) 

which represents the amplitude of thm  core for the thl  01LP supermode. These discrete helical 

phases give supermodes an appearance similar to optical vortices but in a discrete form and thus 

carry orbital angular momentum [111]. The propagation constant of the thl  01LP supermode 

equals the corresponding eigenvalue and can be calculated as 

0

2
2 cos ,  1,2 .l

l
l N

N


  

 
    

 
 ( 3-35 ) 

According to Eq. (3.24), it is obvious that the thl  and ( )thN l  supermodes are degenerate 

modes. This has a physical explanation from the equivalence between clockwise and counter-
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clockwise mode orders. A unitary transformation can project the vortex-like basis of the thl  and 

( )thN l  supermodes into another orthogonal basis. In particular, the degenerate supermodes can 

be transformed into a basis in real fields with amplitude transformation as below 

, ,

, ,

1 11

1 12

l m l m

N l m N l m

B A

B A 

    
        

 ( 3-36 ) 

where ,

2 2
cosl m

l
B m

N N

 
  

 
and ,

2 2
sinN l m

l
B m

N N




 
  

 
. 

The higher-order supermodes of ring-array structure are particularly interesting because 

they can no longer be divided into xE - and yE -basis for independent analysis. Instead, the 

tangential and normal mode basis 
mt

E and 
mnE  ( m  refers to the core number) are selected, which 

correspond to “core modes” aligned horizontally or vertically with respect to the reference axis 

pointing from the ring center to the thm  core. Figure 3-12(a) shows such a mode basis for a 3-

core ring-array structure. In that case, 1,2 2,3 3,1     is obtained because of the rotational 

symmetry. In addition, the coupling coefficients between the pqLP  modes are real so that 

, ,i j j i  . Therefore the number of coupling coefficients for the N-core ring-array structure is 

reduced from 2N to 4 given by 

1 2

2 2

, sin cos ,t t x y
N N

 
  

   
     

   
 ( 3-37a ) 

1 2, sin cos sin cos ,t n x y
N N N N

   
  

       
         

       
 ( 3-37b) 

1 2, sin cos sin cos ,n t x y
N N N N

   
  

       
        

       
 ( 3-37c) 
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1 2

2 2

, cos sin .n n x y
N N

 
  

   
    

   
 ( 3-37d) 

Then the coupled-mode equation for the N-core ring-array can be written as 

0,
t t

n n

d
i

dz

   
    

   

U U
M

U U
 ( 3-38 ) 

where tU  and nU  are column vectors of dimension N. the coupled matrix
tt tn

nt nn

 
  
 

M M
M

M M
is a 

rank-2N Hermitian matrix and each sub-matrix is a circulant matrix with elements described as 

   
1 2, 1, , 1 ,tt t t l m l mlm

    M  ( 3-39a ) 

 
1 2 1 2, 1, , , 1,tn t n l m n t l mlm

     M  ( 3-39b ) 

 
1 2 1 2, 1, , , 1,nt n t l m t n l mlm

     M  ( 3-39c ) 

   
1 2, , 1 1, .nn n n l m l mlm

     M  ( 3-39d ) 

where lm , 1,l m   and , 1l m   are the Kronecker deltas; l  and m  are integer numbers mod N. 

Diagonalization of the coupled matrix M  is the key to solving the higher-order supermodes. It 

takes two steps as follows as described in appendix A. 

Both the eigenvalues and eigenvectors can be obtained after successful diagonalization of 

the coupled matrix. After plugging the coupling coefficients into the eigenvalues and 

eigenvectors using Eq. (3.22), the higher-order supermodes can be divided into    groups and 

solved as 

2 2

( )

1 1( )

2 2

1 1

2
,  if sin 0

2
 or , if sin 0

m m

m m

l lN Ni m i m
N N

t l n

m m

l l lN Ni m i m
N N

t n

m m

l
e E e E

N
E

l
e E e E

N

 

 






 


 

 

 

      
        

     
 

     
          

 

 

 ( 3-40 ) 
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where  ( ) 21l i        and 

2
( )cot

2
( )sin

x y

x y

l

N

l

N


 




 

 
  

 
 

  
 

. The propagation constants of the 

higher-order supermodes are the eigenvalues 

 
0

2 2 2 2 2

2 2
( ) cos cos ...

2 2 2
   ( ) cos ( ) sin sin ,

l x y

x y x y

l

N N

l l

N N N

 
   

  
   

    
        

   

     
          

     

 ( 3-41 ) 

where 1,2l N . Same as the 01LP supermodes, the thl  and ( )thN l  higher-order supermodes 

for both    groups are degenerate. Real-field basis can be obtained by applying a unitary 

transformation on the current basis. An example of the 11LP supermodes as well as the 01LP -

supermodes of a 3-core ring-array structure is shown in Fig. 3-12(b-j). 



53 

 

 

Figure 3-12. (a) Scheme of mode basis selection for 11LP supermode analysis of a 3-core ring-array 

structure; modal fields of 01LP supermodes (b-d) and 11LP supermodes (e-j) of a 3-core ring-array 

structure computed using COMSOL. 

3.3.5 Observation of Higher-Order Supermodes 

A coupled few-mode 3-core fiber was fabricated in order to observe higher-order 

supermodes. The cross-section of the fiber is shown in Fig. 3-14(a), where the Ge-doped cores 

are hexagonally-shaped as a result of the stack-and-draw fabrication process. The cladding 

ring-array structure

(b) (c) (d)

(g)(f)(e)

(j)(i)(h)

(a1) (a2) En3

En1 En2

Et3

Et1 Et2
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diameter is ~120μm, and the index difference between the core and cladding is ~0.6%. The core 

diameter was selected to be ~9μm to ensure that the cut-off wavelength of the fundamental 

modes is well above 1.5μm. In addition, the core pitch was chosen to be ~11.5μm, a small 

enough distance to allow for strong coupling. Therefore the fiber supports both 01LP  and 11LP

supermodes around 1.5μm.  

A spectrally-and-spatially resolved imaging ( 2S  imaging) setup was built to acquire the 

modal fields from the fiber. The 2S  imaging procedure, first developed by J. W. Nicholson et al. 

[125], is a technique specially designed for quantifying mode content in fibers. The principle is 

to spatially resolve, in a point-by-point fashion, the spectral multi-path interference patterns 

produced by mode beatings. The imaging setup can either involve a broadband source 

accompanied by a spatial-scanning system or a tunable laser source accompanied by a CCD 

camera. For the purposes of this experiment, we chose the latter setup as shown in Fig. 3-13(a) 

due to its fast scanning speed and high frequency resolution. Both the tunable laser and the 

camera scan in sub-seconds and can be easily synchronized by computer control. In addition, the 

tunable laser supports a fine resolution of 0.0001nm with a tuning range of 1510nm-1640nm. 

Light coupled from the tunable laser source was launched into approximately 7m of the 

fabricated 3-core fiber through free space. The output of the 3-core fiber is imaged onto the 

camera through a 4-f optical system. A polarizer was added in front of the camera to guarantee a 

single polarization. During the scanning operation, the laser wavelength was incremented in 

discrete steps and a mode-interference image was captured by the camera at each step. The 

measured 2S  results can be expressed as wavelength-interference patterns for every image pixel. 

Because modes travel at different group velocities, if three modes are assumed to be excited with 



55 

 

amplitudes A , B , C  and phase a , b , c , the measured intensity at each pixel location ( , )x y  

would be 

( , ) ( , ) ( , )0

( , )

2 2 2

( ) | ( , ) ( , ) ( , ) |

              ( ) 2 cos( ) ...

                  2 cos( ) 2 cos( ),

a b ab c aci x y i x y i i x y ii

x y

ab ab

ac ac bc bc

I A x y e e B x y e e C x y e e

A B C AB

AC BC

      

  

     

            

        

        

( 3-42 ) 

where   is the angular frequency and ij  represents the differential group delay between mode i  

and mode j . An example of a measurement at a particular pixel location is plotted as shown in 

Fig. 3-13(b). Using that data, one can extract all the mode information by simply applying a 

Fourier transform as follows 

2 2 2

( , )
ˆ( ) ( ) ( ) ( ) ( ) ...

   ( ) ( ) ( ) ( ) ,

ab ab
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i i i i
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           

  

     

             

                  

( 3-43 ) 

Fig. 3-13(c) represents the same pixel location after Fourier transform, where every peak 

corresponds to each mode beating. Therefore, the amplitude, phase, and group delay of the 

modes can be resolved from the peak strength, phase and locations. Using this method, each 

mode profile can be extracted from the series of images by performing the Fourier transform on 

each pixel as shown in the inset of Fig. 3-13(c). 
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Figure 3-13. (a) Schematic of S2 imaging setup using a tunable laser and a CCD camera; (b) wavelength-

scanning results of the multi-path interference pattern for one pixel of the CCD camera and (c) the result 

of intensity vs. differential group delay (DGD) after taking Fourier transform of (b). Inset of (c) shows the 

resolved LP modes after picking the information for every pixel at the corresponding DGDs of different 

modes and mapping them together. 

All the supermodes of the 3-core fiber were obtained using the 2S  imaging method. One 

difficulty of the experiment is that the mode identification became very complicated due to the 

large number of fiber modes. Since every peak is the result of the beating of any two modes, the 

number of the mode-beating peaks scales quadratically with the number of modes. In this 

experiment, the problem was solved by using intentional offset launching to excite only one 

dominant mode with a few other modes for each wavelength sweep. Then, multiple excitations 

were required in order to resolve different modes. 2S  imaging also suffers from the inherent 

inability to separate degenerate modes, which share same group delays. However, due to the 

hexagonal shape of the cores in this 3-core fiber, the degenerate modes actually have a subtle 
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difference in group delay, making it possible to reconstruct each of them separately. Therefore, a 

total of 9 modes supported by the 3-core fiber were successfully reconstructed in both amplitude 

and phase, as shown in Fig. 3-14. The first three images are of 01LP supermodes, in which the 

field is slightly better resolved than in those of the 11LP supermodes. This is because significantly 

less power is coupled into the higher-order modes during center or offset excitation. The 

degenerate higher-order mode images are slightly blurry because their group delay difference is 

too small to allow them to be clearly differentiated. Nevertheless, the resolved fiber modes are in 

good agreement with the simulations shown in Fig. 3-14. 
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Figure 3-14. (a) Cross-sectional view of the fabricated coupled-3-core fiber and (b-j) resolved supermodes 

of the fabricated coupled-3-core fiber shown in amplitude (x1) and phase (x2): (b) the fundamental 01LP

supermode; (c, d) the degenerate pair of 01LP supermodes; (d) the fundamental 11LP supermode; (e, f) the 

first degenerate pair of 11LP supermodes; (g) the fourth 11LP supermode; (h, i) the second degenerate pair 

of 11LP supermodes.  
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CHAPTER 4 FEW-MODE PASSIVE OPTICAL NETWORKS 

4.1 Introduction and Background 

Time-division multiplexed (TDM) passive optical networks (PON) (e.g. GPON and 

EPON) are currently being widely deployed worldwide to satisfy the traffic demand in access 

networks. There is an increasing interest in PONs towards longer reach and larger splitting ratios 

to increase coverage and reduce overall cost. To do so, the power budget needs to be improved 

using innovative solutions. In most practical systems, a large power loss is incurred at collector 

locations by optical splitters that combine/split signals from/to the optical network units (ONUs). 

The downstream power splitting enables the essential one-to-many function from the optical line 

terminal (OLT) to ONUs and thus the splitting losses are unavoidable, but the excess upstream 

combining loss incurred in one-to-one communication from an ONU to the OLT is neither 

necessary nor fundamental and can be reduced in a variety of ways. There has been much effort 

aiming to eliminate the upstream combining loss, such as the use of a multi-mode combiner (MC) 

[126, 127]. The MC solution, however, requires multiple feeder fibers as shown in Fig. 4-1(a), 

which defeats one of the main purposes of fan-out improvement using splitters, that is, the 

reduction of the total amount of fibers needed in the network.  

Recently, we proposed the use of space-division multiplexing (SDM) in a single few-

mode fiber (FMF), acting as the feeder fiber in the optical distribution network (ODN), to 

effectively eliminate the upstream combining loss [128]. Moreover, this concept has been 

realized by using a commercial GPON system carrying live Ethernet traffic, achieving the first 

reported few-mode GPON [129, 130]. In this paper, we discuss different approaches to achieve 
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TDM few-mode PON, including the previously demonstrated low-crosstalk method and the low 

modal group delay (DMGD) method. The experimental setup and results of the few-mode GPON 

system are presented in more depth and details.  Future work in this area such as mode-division 

multiplexing for PON is also discussed. 

It should be noted that the application of FMF to access is not simply the transplantation 

of a long distance optical transport technique to access.  Instead, it focuses on the unique 

requirements of optical access. While in optical transport the usual goal is to maximize spectral 

efficiency and total information throughput, in access it is most important to maximize the loss 

budget and split ratio, and reduce cost per subscriber.  While throughput is important, it must be 

balanced against other factors.  This brings us to different design strategies which leverage better 

fiber designs to enable simple direct detection schemes.   

 

Figure 4-1. PON architectures with low upstream loss using (a) multiple feeder fibers and a multimode 

combiner (MC); and (b) a single FMF with a mode transforming coupler (MTC). 

4.2 Principle of Few-Mode PON 

Figure 4-1(b) shows the proposed few-mode PON architecture which consists of a FMF 

and a mode-transforming coupler (MTC) in place of a traditional single-mode combiner/splitter 
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in standard PON systems. The MTC couples multiple single-mode fibers (SMFs) into the FMF. 

The MTC can combine signals from feeder fibers with negligible losses [95-97, 131] and thus is 

able to increase the fan-out number by a factor equal to the number of the spatial modes, 

including the degenerate modes. The critical challenge is from inter-mode crosstalk generated in 

the MTC as well as along the FMF, and the modal group delay (DMGD). In long-haul SDM 

transmission, inter-mode crosstalk and DMGD are equalized by using sophisticated joint 

coherent detection of all the modes, followed by multiple-input-multiple-output (MIMO) signal 

processing [88, 132]. For PON applications, coherent detection and MIMO are undesirable due 

to their high complexity and cost.  Fortunately, one can utilize the unique feature of TDM-PON 

that only one ONU is active upstream at any given time and preserve direct detection in the PON 

architecture. Given ( )sI t  is the only signal transmitted at a time, the detected signal hence can 

be written as below 

det ,( ) ( ) ( ) ( ) ,              s i s i j s j i j MGD

i j

I t a I t b I t c I t     ( 4-1 ) 

where the first term is the signal carried by the desired mode while the other terms 

represents crosstalk from the other modes generated at different locations. Eq. (4-1) reveals two 

different approaches for successful TDM-PON operation. One is to reduce DMGD to be much 

less than a symbol period and thus the crosstalk becomes part of the signal. The other approach is 

to suppress the modal crosstalk to be low enough that DMGD would no longer be an issue. For 

the first approach, one needs to design FMF with very low DMGD or apply the DMGD-

compensation method using FMFs of positive and negative DMGDs [93, 94]. For the second 

approach of crosstalk suppression, note that direct detection of all the FMF modes actually 

relaxes the requirement for crosstalk as mode crosstalk becomes incoherent in intensity detection 
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due to mode orthogonality. Here we first demonstrate the low-crosstalk approach combined with 

the low-DMGD approach for the real experiment on a 20km 3-mode fiber. Because among the 

three modes, the DMGD between the two degenerate LP11 modes is close to zero while between 

the LP01 and LP11 modes modal crosstalk of the FMF can be low but the DMGD is usually 

large. Therefore the problem is reduced to suppress the crosstalk between the LP01 and LP11 

modes for both the MTC and along the FMF. In Section 4.5 we present simulation results to 

introduce the possibility of using the low-DMGD approach for 10 Gb/s 10-mode transmission 

without the need of suppressing mode crosstalk. 

4.3 Low-Crosstalk Few-Mode PON 

 

Figure 4-2. (a) The cross-section of the mode-selective lantern output; (b) measured LP01, LP11a & 

LP11b intensity patterns at the lantern near-field, far-field and the end of lantern-to-20km FMF. 

In order to demonstrate the low-crosstalk few-mode PON, we first establish the low-loss 

and low-crosstalk few-mode segment of the optical distribution network (ODN) consisting of the 

transmission FMF and the MTC. The implementation of the low-loss and low-crosstalk MTC 

20km FMF

Photonic lantern
In

te
n

si
ty

0 2 4 6 8 10

0

0.5

1

Time, ns

In
te

n
s
ity

0 2 4 6 8 10

0

0.5

1

Time, ns

In
te

n
s
ity

0 2 4 6 8 10

0

0.5

1

Time, ns

In
te

n
s
ity

Time, ns

LP01

LP11a

LP11b

(a) (b) (c)(a)



6 

 

can be done in several ways. Generally speaking, all low-loss mode-division multiplexers that 

are mode-group selective is suitable for this application, including directional couplers [133], 

free-space phase-selective devices [134] and mode-group selective photonic lanterns [95, 131]. 

Here the MTC is a mode-selective photonic lantern which converts three single-mode inputs 

from SSMFs into the LP01, LP11a and LP11b modes of the FMF. The photonic lantern was 

fabricated by inserting three input fibers into a fluorine-doped capillary with an index difference 

of 4×10
-3

 and then tapering the entire structure adiabatically. Of the three input fibers, two of 

them are SMF-28 fibers with propagation constant matched to LP11 modes of the photonic 

lantern while the other has a slightly larger core of ~15µm and an index difference of 5×10
-3

 so 

that its propagation constant is matched to that of LP01 mode of the photonic lantern to achieve 

mode selectivity. The cross-section of the lantern output has a near-triangular core of a diameter 

of ~27µm as shown in Fig. 4-2(a). The FMF has a depressed cladding index profile that supports 

3 modes, the fundamental LP01 mode and two degenerate LP11 modes, at 1310nm, the upstream 

wavelength of GPON. Additionally, the LP11 modes are near cut-off at 1550nm and thus become 

very lossy. The attenuations of the LP01 and LP11 modes at 1310nm are 0.33dB/km and 

0.35dB/km respectively while at 1550nm the attenuation of the LP11 mode is 0.192dB/km, all 

comparable to those of SSMF. The FMF modes are about half sizes of the lantern modes. In 

order to reduce the coupling loss due to the mode-size mismatch, a lens combination was used 

for free-space lantern-to-FMF coupling. The near-field and far-field output mode intensity 

patterns of the photonic lantern and those at the end of the 20km FMF are shown in Fig. 4-2(b), 

demonstrating excellent mode selectivity. The insertion loss of the photonic lantern including the 

splice loss to the single-mode input fibers was 1.3dB, 0.8dB and 1.4dB for the LP01, LP11a and 
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LP11b mode, respectively, representing an average 3.5 dB improvement in the combining loss 

compared to conventional single-mode splitters. The coupling loss from the lantern output to the 

FMF, mainly due to mode mismatch between the lantern and the FMF as well as the scattering, 

was estimated to be 2.4dB for LP01 and 6.7dB, 6.2dB for LP11a&b. Those coupling losses can 

be substantially decreased by using a photonic lantern better matched to the FMF [128]. The 

crosstalk of the entire few-mode segment shown in Fig. 4-3(a) was measured by the impulse-

response method. In order to do so, a narrow pulse was sent into each input port of the photonic 

lantern, transmitted through 20km FMF and received by a high-speed free-space-coupled photo-

detector. The crosstalk levels were optimized to be less than 9dB for all the three inputs, as 

shown in Fig. 4-3(b). The DMGD between the LP01 and LP11 modes was characterized at the 

same time to be ~0.6ns over 20km FMF.  

 

Figure 4-3. (a) Picture of the few-mode segment of the ODN; (b) measured LP01, LP11a and LP11b 

impulse responses of the few-mode ODN segment. 
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4.4 Demonstration of the First Few-Mode GPON System 

We then demonstrate the world’s first few-mode GPON system by seamlessly integrating 

the few-mode ODN in a commercial GPON system with one Huawei OLT and four Echolife 

ONUs, as shown in Fig. 4-4. To enable the integration between the few-mode ODN and the 

otherwise SSMF-based PON optical components, a novel reach extender was added before the 

OLT to separately detect the upstream data from the FMF in burst mode and to regenerate the 

data onto a single-mode fiber because the current OLT SFP optical module only accepts single-

mode input. Two stages of splitters were created to imitate a real PON network. The WDM filters 

separate 1310nm and 1490 nm light for the upstream and downstream flow. Since our focus is 

combining loss for upstream traffic, downstream signals were transmitted over SMF ODN. 

Modification of the OLT transmitter is required if downstream signals needs to be transported in 

the few-mode ODN. For upstream, data streams from different ONUs were coupled into the 

FMF by the 3-mode photonic lantern and transmitted over 20km FMF link. The variable 

attenuators before the photonic lantern were used to equalize and monitor the power levels. The 

reach extender regenerates and interleaves upstream and downstream signals, and finally 

connects to the OLT. Gigabit/s real traffic was monitored by an Ethernet tester.  
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Figure 4-4. Schematic of a few-mode GPON system using a 20km FMF and a mode-selective lantern for 

upstream transmission. OLT: commercial optical line terminal; ONUs: commercial optical network units.  

The upstream transport performance through the few-mode ODN was characterized via 

bit-error-rate (BER) measurements at 1.25 Gb/s using a 1.3µm DFB laser and an APD ROSA 

without limiting amplification and clock data recovery. The transmitter output was switched to 

the three photonic lantern input ports one at a time to test each mode.  The BER results are 

plotted in Fig. 4-5(a). The back-to-back (B2B) receiver sensitivity at a BER of 10-3 is -30 dBm. 

The B2B eye diagram and those after 20km transmission for each mode are shown as Fig. 4-5(b).  

The eye diagrams of LP01 and B2B cases are almost identical. The LP11s have slightly degraded 

performance. Nevertheless, all the modes can achieve a BER of <10-9, which is good enough for 

successful commercial GPON operation. Compared to B2B, the LP11a and LP11b modes exhibit 

power penalties of 1.5 dB and 2.7 dB, respectively. We attribute these moderate implementation 

penalties to imperfect matching between the LP11 modes and the free-space-coupled photo-

detector area, which was matched to SSMF inputs. This penalty is expected to be eliminated 
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using a properly designed photo-detector. The error-free performance of the few-mode ODN 

allowed us to carry live Ethernet traffic in the few-mode GPON system using a commercial 

Ethernet tester.  Long-term measurement was done with no packet loss observed over tens of 

millions of Ethernet packets received.  

 

Figure 4-5. (a) BER measurements of the few-mode ODN segment; (b) eye diagrams of the cases of B2B 

(with SSMF), 20km LP01, LP11a and LP11b transmission. 

4.5 Alternatives and Discussion 

Even though the low-crosstalk approach has been demonstrated successfully for three-

mode transmission, crosstalk suppression for both the MTC and the FMF is still difficult in 

general, especially when it scales to larger number of modes. On the other hand, the alternative 

approach only requires the FMF to have low-DMGD between all the modes. As a result the 

requirement for MTC relaxes to be simply low insertion loss, which can be easily achieved [135]. 

In this section we consider the alternative low-DMGD approach when the number of modes 

scale to 10 (i.e., LP01, LP02 and degenerate LP11s/ LP21s/ LP12s/ LP31s modes). Based on 
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previous works for fewer modes [91, 136], trench-assisted graded-index profile has been found 

to be useful for DMGD optimization and hence will be applied here as well. The inset of Fig. 4-6 

shows the graded-index profile, with a cladding trench for low DMGD, given by  

1/2
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n a r a

n r a



 ( 4-2 ) 

where n  is the power coefficient of the GI profile. With fiber parameters chosen as 

1 2 2 1 215.32 ,  17.2 ,  22.12 ,  0.4375% and 0.33%      a m a m a m   , the differential 

modal group delay of a 10-mode GI FMF (referenced to the average modal group delay) at 1310 

nm as a function of the power coefficient is shown in Fig. 4-6. The maximum DMGD (between 

the fastest and slowest mode) is less than 7 ps/km, achieved near 2.0n . This fiber design 

should be able to support few-mode transmission of reach up to 20 km for standard PON (data 

rate of 2Gb/s) in presence of mode crosstalk. The high sensitivity of DMGD to the power 

coefficient and other fiber parameters should be studied and improved, possibly using different 

fiber structures.  
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Figure 4-6. Simulation results of modal group delay for 10-mode fiber design of trench-assisted graded-

index profile. Inset: the FMF index profile with parameters indicated. 

4.6 Scaling to 5-mode PON 

Scaling to larger number of modes, which means a larger splitting ratio, is seen as a key 

requirement for the potential commercialization of the FM PON system. Therefore, we extend 

the initial 3-mode FM PON to 5-mode FM PON with a record 4dB net gain in power budget, 

integrated with commercial GPON. This is also the first FM PON with photonic lantern and 

FMF being fusion spliced together, giving a significant step towards further integration. 
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Figure 4-7. (a) The cross-sectional view of the photonic lantern output. (b) Intensity patterns of 5 modes 

for the near-field and far-field output of the photonic lantern and after 20km propagation via the FMF at 

1.3μm. 

The key to realizing direct detection without any MIMO processing is to either have very 

low crosstalk or very small differential group delay between the mode groups [129]. Notice that 

within a mode group, modes usually have strong crosstalk in between but the differential group 

delay is negligible. Here we choose the low crosstalk approach and hence have a critical 

crosstalk requirement for both the photonic lantern and the FMF. The cross-section of the low-

loss mode-selective photonic lantern [137] used for this work is shown in Fig. 4-7(a). In order to 

enable the fusion splicing, the photonic lantern was fabricated by inserting different input fibers 

into a low-index capillary of a customized size so that it can be adiabatically tapered to the 

typical diameter of ~125μm. And each input fiber of the photonic lantern was designed to have a 

propagation constant matched to the desired mode and hence achieved good mode selectivity 

shown in Fig. 4-7(b). The loss of the photonic lantern itself is < 1dB. The photonic lantern was 

fusion spliced to a 20km low-crosstalk FMF to improve both the stability and simplicity of the 

setup. The FMF supports up to the LP21 modes at both the upstream and downstream 

wavelengths. The index profile of the FMF is shown in Fig. 4-8, allowing large effective index 
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difference between mode groups for reduced mode crosstalk. Mode patterns have been captured 

at 1.3µm right after the photonic lantern and after propagation via the 20km FMF, shown in Fig. 

4-7(b). The entire link losses for LP01, LP11a&b and LP21a&b at 1.3µm are 10.1dB, 12.5dB, 

9.5dB, 10.1dB and 10.1dB respectively. The attenuation of FMF is around 0.4dB/km even for 

the highest-order mode. On average, the use of the PL increases the system power budget by at 

least 4 dB. Extra losses are attributed to the coupling losses from the photonic lantern to the FMF 

because of mode mismatch and the splicing losses of SSMFs to the photonic lantern's 5 input 

fibers of different core sizes.  

 

Figure 4-8. Index profile of the few-mode fiber. Inset: cross-sectional view. 

The link crosstalk is characterized by the impulse-response method where a narrow pulse 

is sent into the input port of each mode, transmitted over the photonic lantern and 20km FMF, 

and received by a high-speed free-space-coupled photo-detector. The crosstalk levels are below 6 

dB as shown in Fig. 4-9(a) where it also shows that the differential group delays of the LP11 and 

LP21 mode are 75ns and 165ns with respect to the LP01 mode. The small peaks at the delays of 

206ns and 255ns are the higher-order modes close to cut-off and can be easily suppressed by 
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tight bends. The bit-error-rate (BER) performance, shown in Fig. 4-10, was measured by using a 

1.3μm DFB laser and the same free-space-coupled detector without amplification at 1 Gb/s. Eye 

diagrams are plotted in Fig. 4-10(b) where crosstalk displays as double eyelids. Because the 

direct detection of the orthogonal modes adds the intensity of the different modes incoherently, it 

actually eases the crosstalk requirement largely [130]. Therefore, all modes can achieve a BER 

of <10
-9

. Power penalties compared to back-to-back (B2B) were due to residual mode crosstalk 

and imperfect matching between the FMF modes and photo-detector area, which was only 

intended for single-mode inputs. 

 

Figure 4-9. Impulse measurements and (b) eye diagrams of the 5-mode optical link composed of the 

photonic lantern spliced with 20km FMF spool. 
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Figure 4-10. BER measurements of the 5-mode optical link 

The FMF link was integrated into the optical distribution network of a commercial 

GPON system as shown in Fig. 4-11. The GPON equipment includes one Huawei optical line 

terminal (OLT) and eight Echolife optical networking units (ONUs). Two stages of splitting at 

the ONU side were created to emulate a real PON network. Since our focus is to eliminate the 

upstream combining loss, downstream transport at 1490nm was separated by WDM filters and 

was still transmitted via 20km SSMF and split into ONUs by a traditional single-mode splitter. 

For upstream traffic, data streams from commercial ONUs were sent into each input port of the 

photonic lantern, converted into different modes and propagated along the FMF for 20km. 

Because the commercial OLT SFP optical module only accepts single-mode input, a reach 

extender was added to detect signals from the FMF in burst mode and regenerate the data onto a 

SSMF before going into the OLT. In addition, the reach extender contains a WDM filter which 

interleaves upstream and downstream signals. Packet loss of bidirectional traffic was monitored 

using the Ethernet tester. Transmission on all 5 modes without any packet loss was successfully 

demonstrated. 
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Figure 4-11. Schematic of 5-mode GPON system using the PL spliced to 20km FMF for upstream 

transmission with commercial Huawei OLT and ONUs. OLT: optical line terminal; ONU: optical 

networking unit; PL: photonic lantern. Red line represents 1490nm downstream transport; blue line stands 

for 1310nm downstream transport; and gray line corresponds to: bidirectional transmission. 

As a short summary of the section 4.6, we demonstrate the first 5-mode PON which 

achieved to save an upstream combining loss of at least 4dB. Link crosstalk as low as <6dB has 

been obtained for the 5 modes with a mode-selective lantern fusion spliced to a 20km FMF. 

Therefore a BER of <10
-9

 is realized for all the 5 modes and thus enables integration with 

commercial GPON system. High-density FMF technique realized in access networks may open 

up the opportunities for future MDM research, development and commercialization. 
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CHAPTER 5 SUMMARY  

This dissertation focuses on two critical requirements of optical fibers for SDM 

transmission: 1) high mode density and 2) either low modal crosstalk or low DMGD. Because 

SDM system is only beneficial once integrated, the efforts are not only put on the fiber design 

and characterization, but also on how to implement such fibers to SDM transmission and 

networking. 

In Chapter 1, a FMMCF has been designed and fabricated to increase the mode density 

for the first time. The fiber consists of 7 cores each supporting 3 spatial modes per polarization. 

Low core-to-core crosstalk levels have been achieved for both LP01 and LP11 modes. Data 

transmission in LP01 / LP11 mode over 1km of FMMCF has been demonstrated with negligible 

penalty. A SDM transmision of 42 spatial channel has been achieved using this novel fiber as a 

collaborated work, enabling an aggregate transmission capacity of 255 Tbit/s. 

In Chapter 2, we have proposed a coupled multi-core fiber (CMCF) design for SDM 

transmission. The new design exploits the coupling between the cores of a conventional multi-

core fiber instead of avoiding it. This design has advantageous over the conventional multi-core 

fiber in terms of higher mode density and larger mode effective area. The applications of CMCFs 

can be either short-distance transmission with low crosstalk or long-haul transmission with low 

DMGD. As an example, a DMGD design of less than 60ps/km throughout the C band has been 

achieved for a coupled-3-core fiber. 

In addition, we have investigated higher-order supermodes in the latter part of this 

chapter, based on the weakly-coupled assumption. The angle-dependent couplings are able to 

strongly affect the modal fields of the higher-order supermodes in different waveguide array 
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configurations. Therefore higher-order supermodes have been analyzed for the linear arrays, 

square lattices and ring arrays. General solutions of higher-order supermodes in those structures 

of arbitrary sizes are provided. In addition, an experimental observation of higher-order 

supermodes has been achieved for the first time in a coupled few-mode 3-core fiber. This study 

enriches the concept of supermodes in coupled multi-core waveguides, which may have potential 

applications not only in MDM systems, but also in other areas related to waveguide optics, such 

as optical phased arrays, beam combining and fiber imaging systems. 

In Chapter 3, we demonstrate, for the first time, a few-mode PON that utilizes mode 

multiplexing to eliminate the combining losses for upstream traffic. Seamless integration 

between a few-mode ODN and a commercial GPON system carrying live Ethernet traffic is 

achieved without any packet loss. Simulation results also indicated the possibility of using the 

alternative low-DMGD approach. The beneficial combination of SDM and PON may open 

exciting opportunities for future research, development, and commercialization. As an important 

extended work, we then scaled the few-mode PON to 5 modes, which achieved to save an 

upstream combining loss of at least 4dB. Link crosstalk as low as <6dB has been obtained for the 

5 modes with a mode-selective lantern fusion spliced to a 20km FMF. Therefore error-free 

performance has been realized for all the 5 modes and thus enables integration with commercial 

GPON system. High-density FMF technique realized in access networks may open up the 

opportunities for future MDM research, development and commercialization. 
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APPENDIX:  

DERIVATIONS 
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In order to solve the higher-order supermodes for ring-array structure, diagonalization of 

the coupled matrix M  is the key. It takes two steps as follows. Because each sub-matrix of M  

has the similar form as the coupled matrix of 01LP supermodes, the first step is to utilize the 

previous solution and diagonalize the sub-matrixes all together. In order to do so, a rank-2N 

modal matrix is defined as 

,
N

N

 
  
 

Q 0
P

0 Q
 ( A-1 ) 

where N0  is a N-by-N null matrix and  
2

1
l

i m
N

lm
e

N


 

Q according to Eq. (3-34). P  then 

transforms M  into a block matrix composed of diagonal sub-matrixes as below 
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where all the diagonal elements can be calculated 
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D  is a block matrix composed of 4 diagonal N-by-N sub-matrixes, which are commutable with 
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is still a diagonal matrix, whose elements are the same function of the original matrix elements, 

i.e.,     lm ml
f D f D [112]. With these properties, the second step of diagonalization can be 

operated on D  similar to a simple 2-by-2 matrix of 
a b

c d

 
 
 

 

1 .
= R DR  ( A-4 ) 

The eigenvalue matrix is solved as 
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and the modal matrix is 
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D . Therefore the higher-order supermodes 
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