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ABSTRACT 

 The single largest cause of compound attrition during drug development is due to 

inadequate tools capable of predicting and identifying protein interactions. Several tools have 

been developed to explore how a compound interferes with specific pathways. However, these 

tools lack the potential to chronically monitor the time dependent temporal changes in 

complex biochemical networks, thus limiting our ability to identify possible secondary signaling 

pathways that could lead to potential toxicity. To overcome this, we have developed an in silico 

neuronal-metabolic model by coupling the membrane electrical activity to intracellular 

biochemical pathways that would enable us to perform non-invasive temporal proteomics. This 

model is capable of predicting and correlating the changes in cellular signaling, metabolic 

networks and action potential responses to metabolic perturbation. 

The neuronal-metabolic model was experimentally validated by performing biochemical 

and electrophysiological measurements on NG108-15 cells followed by testing its prediction 

capabilities for pathway analysis. The model accurately predicted the changes in neuronal 

action potentials and the changes in intracellular biochemical pathways when exposed to 

metabolic perturbations. NG108-15 cells showed a large effect upon exposure to 2DG 

compared to cyanide and malonate as these cells have elevated glycolysis. A combinational 

treatment of 2DG, cyanide and malonate had a much higher and faster effect on the cells. A 

time-dependent change in neuronal action potentials occurred based on the inhibited pathway. 

We conclude that the experimentally validated in silico model accurately predicts the changes 

in neuronal action potential shapes and proteins activities to perturbations, and would be a 
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powerful tool for performing proteomics facilitating drug discovery by using action potential 

peak shape analysis to determine pathway perturbation from an administered compound.  



 

v 

 

 

 

 

 

 

 

 

 

Dedicated to my parents 



 

vi 

 

ACKNOWLEDGMENTS 

 First and foremost, I would like to thank Dr. James Hickman for giving me the 

opportunity to work in his laboratory. This dissertation would not have been possible without 

his continuous support, encouragement and confidence in my abilities. During my long research 

stint at UCF, which is a given in the field of interdisciplinary research, Dr. Hickman has provided 

me with the necessary time and freedom to pursue my research goals. His mentorship helped 

me steer my research while laying a strong foundation in fundamental methodologies to 

analyze and solve scientific problems. On a personal note, he was always there during the ups 

and downs of my graduate career. I could always walk up to him to get his advice, feedback or 

support. I consider myself fortunate to have him as my advisor. 

 I am deeply grateful to Dr. Peter Molar for his informative discussions and continuous 

guidance. He taught me the basic aseptic technique, cellular electrophysiology and helped me 

develop the neuronal module over time. Dr. Molnar had helped me understand the biophysical 

concepts for modeling the biophysical phenomena. 

A special thanks to Dr. Vaibhav Thakore for his unconditional support and help in 

teaching me the essentials modeling. He had always been approachable for consultations and 

helped me understand the importance of building test cases and modular approaches for 

model development.  Dr. Thakore helped me equip myself with the modeling tools that lead to 

an exponential increase in my learning abilities and modeling progress.  Moreover, I thank him 

for motivating and giving me that extra-push which I needed to finish the project. 



 

vii 

 

I thank Dr. Jerry Jenkins for helping me in developing the metabolic module by providing 

his key insights into the metabolic model. He had constantly analyzed my progresses, provided 

his valuable insight and mentored me during the development and optimization phases of the 

metabolic module. It was a great learning experience working with him.  

I thank Dr. Frank Sommerhage and Dr. Nesar Akanda for providing the intrinsic details 

for patch clamp electrophysiology. I would also like to thank Maria Stancescu for preparing 

surface modified coverslips. I had enjoyed working with her on the characterization of the 

microfluidic system followed by testing drug effects.  

I also thank Dr. Balaji Srinivasan for giving me an opportunity to write a review paper.  

His helpful inputs and direction not only helped me developing my scientific writing skills but 

also played a key role in helping me finish writing the dissertation in a short span of time. I also 

thank the past and present members of the hybrid systems laboratory for their support.  

I acknowledge my committee members, Dr.Christian Clausen, Dr. Jack Ballantyne, Dr. 

Andre Gesquiere and Dr. Sumit Kumar Jha for their suggestions and encouragement.  

Lastly and most importantly, I am grateful to have such a wonderful family and friends. 

Staying away from home was hard and I remember those long late night conversations with my 

family and friends that made me feel at home.  They have always supported me at every stage 

of life and consider myself truly fortunate. 

Sincerely, 

Aditya Reddy Kolli 



 

viii 

 

TABLE OF CONTENTS 

LIST OF FIGURES ............................................................................................................................. xii 

LIST OF TABLES ............................................................................................................................... xx 

CHAPTER-1: INTRODUCTION .......................................................................................................... 1 

1.1. Proteomics ........................................................................................................................... 1 

1.2. Applications of proteomics .................................................................................................. 6 

1.3. Tools for proteomics ............................................................................................................ 9 

1.4. Challenges in proteomics ................................................................................................... 12 

1.5. Systems biology driven proteomics ................................................................................... 13 

1.6. Motivation .......................................................................................................................... 15 

1.7. Previously developed models ............................................................................................ 17 

1.8. Objectives of dissertation .................................................................................................. 19 

1.9. Dissertation outline ............................................................................................................ 20 

CHAPTER-2: THEORY ..................................................................................................................... 22 

2.1. Cellular Metabolism ........................................................................................................... 22 

2.1.1. Glycolysis and PPP ....................................................................................................... 22 

2.1.2. Mitochondria ............................................................................................................... 24 

2.1.3. Endoplasmic reticulum ................................................................................................ 25 

2.1.4. Metabolic alterations in cancer cell ............................................................................ 26 

2.1.5. Metabolic Modeling .................................................................................................... 27 

2.2. Cellular electrophysiology .................................................................................................. 28 

2.2.1. Ionic basis of action potentials .................................................................................... 29 

2.2.2. Measurement techniques ........................................................................................... 31 

2.2.3. Hodgkin-Huxley model ................................................................................................ 32 

CHAPTER-3: EXPERIMENTAL METHODS ....................................................................................... 35 

3.1. Surface modification .......................................................................................................... 35 

3.2. Preparation of culture medium and patching Solutions .................................................... 36 

3.2.1. Culturing and differentiation medium ........................................................................ 36 

3.2.2. Intracellular patch solution ......................................................................................... 36 



 

ix 

 

3.3. NG108-15 cell culture......................................................................................................... 37 

3.4. Biochemical assays ............................................................................................................. 39 

3.4.1. Glucose assay ............................................................................................................... 40 

3.4.2. Lactate assay ................................................................................................................ 42 

3.4.3. ATP assay ..................................................................................................................... 44 

3.4.4. ADP assay ..................................................................................................................... 46 

3.5. Patch clamp electrophysiology .......................................................................................... 48 

3.5.1. Instrumentation ........................................................................................................... 48 

3.5.2. Whole cell recordings .................................................................................................. 50 

CHAPTER-4: MODEL DEVELOPMENT ............................................................................................ 53 

4.1. Reconstruction of metabolic model ................................................................................... 54 

4.1.1. Glycolysis model .......................................................................................................... 54 

4.1.2. Mitochondrial model ................................................................................................... 57 

4.1.3. Endoplasmic reticulum Model ..................................................................................... 59 

4.1.4. Ensemble metabolic model ......................................................................................... 61 

4.1.5. Parameter estimation for metabolism model ............................................................. 63 

4.2. Development of neuronal module ..................................................................................... 66 

4.2.1. Voltage gated channels ............................................................................................... 67 

4.2.2. ATP dependent potassium channel ............................................................................. 69 

4.2.3. ATP dependent sodium-potassium pump ................................................................... 70 

4.2.4. Sodium-calcium exchanger .......................................................................................... 70 

4.2.5. ATP dependent calcium pump .................................................................................... 71 

4.2.6. Leakages ...................................................................................................................... 72 

4.2.7. Ionic concentrations .................................................................................................... 73 

4.2.8. Parameter estimation for electrophysiological recordings ......................................... 76 

4.3. Integration of neuronal and metabolic models ................................................................. 77 

4.4. Simulating experimental conditions .................................................................................. 78 

CHAPTER-5: RESULTS .................................................................................................................... 80 

5.1. Bioenergetics of NG108-15 cells ........................................................................................ 80 



 

x 

 

5.1.1. Glucose and lactate flux .............................................................................................. 80 

5.1.2. ATP and ADP concentrations ....................................................................................... 82 

5.2. Deconvolution of Electrophysiological Recordings ............................................................ 84 

5.2.1. Thermodynamic dependent Hodgkin-Huxley Model .................................................. 84 

5.2.2. Modeling ionic exchangers, pumps and leaks ............................................................. 86 

5.2.3. Extraction of electrophysiological parameters ........................................................... 93 

5.2.4. Statistical analysis ........................................................................................................ 97 

5.3. Steady state analysis ........................................................................................................ 103 

5.3.1. Forcing metabolic model to steady state .................................................................. 103 

5.3.2. Simulating neuronal-metabolic model to steady state ............................................. 109 

5.4. Perturbing glycolysis ........................................................................................................ 115 

5.4.1. Analysis of carbon flux ............................................................................................... 116 

5.4.2. ATP production and utilization .................................................................................. 118 

5.4.3. Predicting action potentials and ionic concentrations .............................................. 122 

5.5. Perturbing mitochondrial electron transport chain ......................................................... 125 

5.5.1. Analysis of carbon flux ............................................................................................... 126 

5.5.2. ATP production and utilization .................................................................................. 128 

5.5.3. Predicting action potentials and ionic concentrations .............................................. 132 

5.6. Perturbing mitochondrial TCA cycle and electron transport chain ................................. 136 

5.6.1. Analysis of carbon flux ............................................................................................... 136 

5.6.2. ATP production and utilization .................................................................................. 139 

5.6.3. Predicting action potentials and ionic concentrations .............................................. 142 

5.7. Perturbing glycolysis and mitochondrial electron transport chain.................................. 146 

5.7.1. Analysis of carbon flux ............................................................................................... 146 

5.7.2. ATP production and utilization .................................................................................. 149 

5.7.3. Predicting action potentials and ionic concentrations .............................................. 153 

5.8. Perturbing glycolysis, mitochondrial TCA cycle and electron transport chain ................ 156 

5.8.1. Analysis of carbon flux ............................................................................................... 156 

5.8.2. ATP production and utilization .................................................................................. 159 



 

xi 

 

5.8.3. Predicting action potentials and ionic concentrations .............................................. 163 

5.9. Distinguishing the effects of metabolic inhibitors ........................................................... 166 

5.9.1. Analysis of action potentials ...................................................................................... 167 

5.9.1.1. Action potential peak height ............................................................................. 167 

5.9.1.2. Holding potential ............................................................................................... 168 

5.9.1.3. Area of an action potential ................................................................................ 169 

5.9.1.4. Half-width at peak amplitude ............................................................................ 170 

5.9.2. Comparison of cellular ATP levels ............................................................................. 171 

5.10. Temporal proteomic analysis ......................................................................................... 173 

5.10.1. Heat map of predicted protein activities ................................................................ 173 

5.10.2. Time-dependent functional activities of proteins ................................................... 177 

CHAPTER-6: CONCLUSIONS AND FUTURE WORK ....................................................................... 183 

6.1. Conclusions ....................................................................................................................... 183 

6.2. Future work ...................................................................................................................... 186 

APPENDIX A: METABOLIC MODEL DIFFERENTIAL EQUATIONS .................................................. 188 

APPENDIX B: METABOLIC MODEL FLUXES .................................................................................. 194 

APPENDIX C: METABOLIC MODEL PARAMETERS ........................................................................ 210 

APPENDIX D: METABOLIC MODEL INITIAL VALUES .................................................................... 229 

REFERENCES ................................................................................................................................ 235 

  



 

xii 

 

LIST OF FIGURES 

Figure 1: Biochemical contexts of different studies for disease progression ................................. 1 

Figure 2: A representative image of NG108-15 cells after reaching 90% confluency on Day 3. .. 38 

Figure 3: Differentiation of NG108-15 cells. The morphology of cells on DETA coated coverslips 

on DIV-1 (A), 3 (B), 4 (C) and 5 (D) is shown at 10x ...................................................................... 39 

Figure 4: Glucose assay standard curve ........................................................................................ 41 

Figure 5: Lactate assay standard curve ......................................................................................... 43 

Figure 6: ATP assay standard curve .............................................................................................. 45 

Figure 7: ADP assay standard curve .............................................................................................. 47 

Figure 8: Set up of the electrophysiology rig having the microscope mounted on a gibraltor 

stage (A). Pipette puller (B), Amplifier (C), micromanipulator (D) is also shown ......................... 49 

Figure 9: An image showing the glass electrode, ground electrode, patching chamber, objective 

lens on an electrophysiology rig ................................................................................................... 51 

Figure 10: Picture of NG108-15 cell during electrophysiological recording ................................. 52 

Figure 11: Glycolytic module consisting of glycolysis, pentose phosphate pathway and 

glutathione .................................................................................................................................... 55 

Figure 12: Diagram showing mitochondrial module in Simbiology .............................................. 58 

Figure 13: Implemented endoplasmic reticulum module in Simbiology...................................... 60 

Figure 14: Reconstructed NG108-15 metabolic model in MATLAB Simbiology ........................... 62 

Figure 15: Flowchart for estimation of metabolic model parameters ......................................... 65 

Figure 16: Schematic representation of neuronal module ........................................................... 66 

Figure 17: Measured glucose uptake (O) and lactate output (□) flux of NG108-15 cells ............ 81 

Figure 18: Measured intracellular ATP (O) and (□) ADP levels in NG108-15 cells ....................... 82 

Figure 19: Voltage clamp simulation. (A) The voltage steps protocol used during a voltage clamp 

recording. (B) Simulated voltage clamp recording for NG108-15 cell .......................................... 84 

Figure 20: IV Curve for NG108-15 cell showing the changes in sodium (green), potassium (blue) 

and total current (red) at different voltages ................................................................................ 85 

Figure 21: Simulated current clamp recording showing an action potential ............................... 85 



 

xiii 

 

Figure 22: The activation and inactivation of voltage gated ion channel gates during an action 

potential ........................................................................................................................................ 86 

Figure 23: Effect of cellular ATP levels on action potential peak shape ....................................... 87 

Figure 24: Restoration of intracellular sodium concentration by Na/K-ATPase pump. (A) Without 

Na/K-ATPase and (B) with Na/K-ATPase ....................................................................................... 88 

Figure 25: Restoration of intracellular potassium concentration by Na/K-ATPase pump. (A) 

Without Na/K-ATPase and (B) with Na/K-ATPase ........................................................................ 88 

Figure 26: Rationale for implementation of other ionic pumps ................................................... 88 

Figure 27: Sodium-calcium exchanger currents mediated by changes in membrane potential .. 89 

Figure 28: Remodeled the IV curve for sodium calcium exchanger showing the exchanger 

activity for different calcium concentrations ............................................................................... 89 

Figure 29: Calcium dependence on Ca-ATPase pump .................................................................. 91 

Figure 30: ATP dependence on Ca-ATPase pump ......................................................................... 91 

Figure 31: Calibration of the neuronal module to simulate steady state. (A) The resting 

membrane potential (red line) of the cell is determined based on holding potential (blue line). 

The changes in (B) sodium, (C) potassium and (calcium) concentrations are simulated ............. 92 

Figure 32: Simulated (red) voltage clamp were fitted to an experimental (blue) recording ....... 93 

Figure 33: Simulated (red) action potentials were fitted to experimental (blue) action potential 

recording ....................................................................................................................................... 94 

Figure 34: Simulated changes in subcellular and bulk cytosolic sodium concentration during 

action potential ............................................................................................................................. 95 

Figure 35: Simulated changes in subcellular and bulk cytosolic potassium concentration during 

action potential ............................................................................................................................. 95 

Figure 36: Simulated changes in subcellular and bulk cytosolic calcium concentration during 

action potential ............................................................................................................................. 96 

Figure 37: Box plot for voltage gated sodium channel parameters ............................................. 97 

Figure 38: Box plot for voltage gated potassium channel parameters ........................................ 98 

Figure 39: Box plot for voltage gated calcium channel parameters ............................................. 99 

Figure 40: Box plot for (A) leakage currents and (B) maximum conductance of ATP dependent 



 

xiv 

 

potassium channel ...................................................................................................................... 101 

Figure 41: Box plot for experimentally obtained (A) membrane resistance, (B) membrane 

capacitance and (C) resting membrane potential ...................................................................... 102 

Figure 42: Simulating glucose uptake and lactate release to steady state ................................ 105 

Figure 43: Simulated steady state of intracellular adenosine levels .......................................... 105 

Figure 44: Fate of carbon in NG108-15 cell ................................................................................ 106 

Figure 45: ATP Production by different pathways in NG108-15 cell .......................................... 107 

Figure 46: ATP utilization by different cellular processess in NG108-15 cell ............................. 108 

Figure 47: Predicted NAD/NADH recycling between glycolytic lactate dehydrogenase (LDH) and 

glycerol-3-phosphate (G3P) shuttle ............................................................................................ 109 

Figure 48: Simulated (red) and measured (blue) action potentials of NG108-15 cell ............... 110 

Figure 49: Predicted changes in subcellular and bulk cytosolic sodium concentrations during 

action potentials ......................................................................................................................... 111 

Figure 50: Predicted changes in subcellular and bulk cytosolic potassium concentrations during 

action potentials ......................................................................................................................... 111 

Figure 51: Predicted changes in subcellular and bulk cytosolic calcium concentrations during 

action potentials ......................................................................................................................... 112 

Figure 52: Compared glucose (blue) and lactate (red) flux obtained from neuronal-metabolic 

model (solid line) to experimental values (dotted line) ............................................................. 112 

Figure 53: Compared ATP (blue) and ADP (red) flux obtained from neuronal-metabolic model 

(solid line) to experimental values (dotted line) ........................................................................ 113 

Figure 54: Predicted extracellular (green), mitochondrial (red) and cytosolic (blue) pyruvate 

concentrations ............................................................................................................................ 113 

Figure 55: Predicted mitochondrial membrane potential of NG108-15 cell .............................. 114 

Figure 56: Predicted glucose uptake and lactate flux of 2DG compared to experimental data 116 

Figure 57: Carbon flux analysis of NG108-15 cell exposed to 2DG ............................................ 117 

Figure 58: Predicted pyruvate flux during simulating the effects of 2DG .................................. 118 

Figure 59: Predicted (solid line) and experimentally (O-dotted line) measured ATP production 

exposed to 2DG ........................................................................................................................... 119 



 

xv 

 

Figure 60: Predicted (solid line) and experimentally (O-dotted line) measured ADP production 

exposed to 2DG ........................................................................................................................... 119 

Figure 61: Predicted (solid line) AMP levels exposed to 2DG..................................................... 120 

Figure 62: Predicted ATP production by NG108-15 cell upon exposure to 2DG ........................ 121 

Figure 63: Predicted ATP utilization by NG108-15 cell upon exposure to 2DG ......................... 121 

Figure 64: Predicted mitochondrial membrane potential of NG108-15 cell exposed to 2DG ... 122 

Figure 65: Predicted (red) action potential time series compared to experimental (blue) 

recordings when treated with 2DG ............................................................................................ 123 

Figure 66: Predicted 2DG induced changes in subcellular and bulk cytosolic sodium 

concentrations ............................................................................................................................ 124 

Figure 67: Predicted 2DG induced changes in subcellular and bulk cytosolic potassium 

concentrations ............................................................................................................................ 124 

Figure 68: Predicted 2DG induced changes in subcellular and bulk cytosolic calcium 

concentrations ............................................................................................................................ 125 

Figure 69: Cyanide treated simulated glucose uptake and lactate flux compared to experimental 

data ............................................................................................................................................. 126 

Figure 70: Simulated pyruvate fluxes during cyanide treatment ............................................... 127 

Figure 71: Predicted carbon utilization by NG108-15 cells during cyanide treatment .............. 128 

Figure 72: Predicted (solid line) and experimentally (O-dotted line) measured ATP production 

exposed to Cyanide ..................................................................................................................... 129 

Figure 73: Predicted (solid line) and experimentally (O-dotted line) measured ADP production 

exposed to Cyanide ..................................................................................................................... 129 

Figure 74: Predicted AMP levels exposed to 2DG ...................................................................... 130 

Figure 75: Predicted ATP production by NG108-15 cell upon exposure to Cyanide .................. 131 

Figure 76: Predicted ATP utilization by NG108-15 cell upon exposure to Cyanide.................... 131 

Figure 77: Predicted mitochondrial membrane potential of NG108-15 cell exposed to Cyanide

..................................................................................................................................................... 132 

Figure 78: Predicted (red) action potential time series compared to experimental (blue) 

recordings when treated with cyanide ....................................................................................... 133 



 

xvi 

 

Figure 79: Predicted cyanide induced changes in subcellular and bulk cytosolic sodium 

concentrations ............................................................................................................................ 134 

Figure 80: Predicted cyanide induced changes in subcellular and bulk cytosolic potassium 

concentrations ............................................................................................................................ 135 

Figure 81: Predicted cyanide induced changes in subcellular and bulk cytosolic calcium 

concentrations ............................................................................................................................ 135 

Figure 82: Simulated glucose uptake lactate release flux compared to experimental data by 

treating NG108-15 cells with malonate ...................................................................................... 137 

Figure 83: Analysis of pyruvate concentrations in cytosol, mitochondria and extracellular 

compartments during malonate treatment ............................................................................... 138 

Figure 84: Analysis of carbon fluxes for cells exposed to malonate ........................................... 138 

Figure 85: Experimental and predicted changes in intracellular ATP concentration during 

malonate treatment.................................................................................................................... 139 

Figure 86: Experimental and predicted changes in intracellular ADP concentration during 

malonate treatment.................................................................................................................... 140 

Figure 87: Mitochondrial membrane potential of NG108-15 cell during treatment with malonate

..................................................................................................................................................... 140 

Figure 88: Predicted changes in intracellular AMP concentration during malonate treatment 141 

Figure 89: Analysis of ATP production pathways during malonate treatment .......................... 141 

Figure 90: ATP utilization by different pathways upon exposure to malonate .......................... 142 

Figure 91: Simulated (red) and experimental (blue) malonate treated action potential time 

series ........................................................................................................................................... 143 

Figure 92: Predicted changes in subcellular (red) and bulk (blue) cytosolic sodium 

concentrations in NG108-15 cells exposed malonate ................................................................ 144 

Figure 93: Predicted changes in subcellular (red) and bulk (blue) cytosolic potassium 

concentrations in NG108-15 cells exposed malonate ................................................................ 145 

Figure 94: Predicted changes in subcellular (red) and bulk (blue) cytosolic calcium 

concentrations in NG108-15 cells exposed malonate ................................................................ 145 

Figure 95: Experimental lactate production compared to the model generated lactate and 



 

xvii 

 

glucose flux during combinational treatment with 2DG and cyanide ........................................ 147 

Figure 96: Predicted cytosolic, mitochondrial and extracellular concentrations of pyruvate in 

NG108-15 cell exposed to 2DG and Cyanide .............................................................................. 147 

Figure 97: Flux balance analysis of carbon usage by different pathways during 2DG and cyanide 

treatment .................................................................................................................................... 148 

Figure 98: Measured and simulated ATP concentrations in NG108-15 cell exposed to a 

combinational treatment of 2DG and Cyanide ........................................................................... 149 

Figure 99: Measured and simulated ADP concentrations in NG108-15 cell exposed to a 

combinational treatment of 2DG and Cyanide ........................................................................... 150 

Figure 100: Simulated AMP concentrations in NG108-15 cell exposed to a combinational 

treatment of 2DG and Cyanide ................................................................................................... 150 

Figure 101: Predicted changes in mitochondrial membrane potential of NG108-15 cell exposed 

to 2DG and cyanide ..................................................................................................................... 151 

Figure 102: Analysis of ATP production by glycolysis and mitochondrial process during 2DG and 

Cyanide ........................................................................................................................................ 152 

Figure 103: ATP utilization by different cellular process exposed to 2DG and cyanide ............. 152 

Figure 104: Predicted action potentials compared to experimental recordings exposed to 2DG 

and cyanide ................................................................................................................................. 153 

Figure 105: Predicted changes in subcellular and bulk cytosolic sodium concentrations during 

combinational treatment with 2DG and cyanide ....................................................................... 154 

Figure 106: Predicted changes in subcellular and bulk cytosolic sodium concentrations during 

combinational treatment with 2DG and cyanide ....................................................................... 155 

Figure 107: Predicted changes in subcellular and bulk cytosolic sodium concentrations during 

combinational treatment with 2DG and cyanide ....................................................................... 155 

Figure 108: Simulated glucose and lactate flux compared to experimental lactate flux of NG108-

15 cell during combinational treatment with 2DG and malonate ............................................. 157 

Figure 109: Predicted pyruvate flux during simulating the effects of combinational treatment of 

2DG and malonate ...................................................................................................................... 158 

Figure 110: Carbon flux analysis of NG108-15 cell exposed to 2DG and malonate ................... 158 



 

xviii 

 

Figure 111: Measured and simulated ATP concentrations in NG108-15 cell exposed to a 

combinational treatment of 2DG and malonate ........................................................................ 159 

Figure 112: Measured and simulated ADP concentrations in NG108-15 cell exposed to a 

combinational treatment of 2DG and malonate ........................................................................ 160 

Figure 113: Simulated AMP concentrations in NG108-15 cell exposed to a combinational 

treatment of 2DG and malonate ................................................................................................ 160 

Figure 114: Predicted mitochondrial membrane potential during treatment combinational 

treatment with 2DG and malonate ............................................................................................ 161 

Figure 115: Analysis of ATP production by glycolysis and mitochondrial process during 2DG and 

malonate ..................................................................................................................................... 162 

Figure 116: ATP utilization by different cellular process exposed to 2DG and malonate .......... 163 

Figure 117: Predicted action potentials compared to experimental recordings exposed to 2DG 

and cyanide ................................................................................................................................. 164 

Figure 118: Predicted changes in subcellular and bulk cytosolic sodium concentrations during 

combinational treatment with 2DG and malonate .................................................................... 165 

Figure 119: Predicted changes in subcellular and bulk cytosolic potassium concentrations during 

combinational treatment with 2DG and malonate .................................................................... 165 

Figure 120: Predicted changes in subcellular and bulk cytosolic calcium concentrations during 

combinational treatment with 2DG and malonate .................................................................... 166 

Figure 121: Normalized action potential peak height of cells exposed to different metabolic 

inhibitors ..................................................................................................................................... 167 

Figure 122: Normalized initial holding potential of cells exposed to different metabolic 

inhibitors ..................................................................................................................................... 169 

Figure 123: Normalized area of an action potential of cells exposed to different metabolic 

inhibitors ..................................................................................................................................... 170 

Figure 124: Normalized action potential half-width at maximum peak height of cells exposed to 

different metabolic inhibitors ..................................................................................................... 171 

Figure 125: Percent ATP levels after 20 min exposure to metabolic inhibitors ......................... 172 

Figure 126: Heat map of cellular proteins activities exposed to different metabolic inhibitors 



 

xix 

 

after 10 min ................................................................................................................................. 174 

Figure 127: Heat map of cellular proteins activities exposed to different metabolic inhibitors 

after 60 min ................................................................................................................................. 176 

Figure 128: Predicted activities of Calcium ATPase (Ca-ATPase), Sodium-potassium-ATPase 

(Na/K-ATPase), phosphoribosyl pyrophosphate synthase (PRPPS), general ATPases (ATPase), 

phosphofructokinase (PFK) and hexokinase (HK) during (A) control, (B) 2DG, (C) cyanide, (D) 

malonate,  (E) 2DG+cyanide and (F) 2DG+malonate exposure. Their activities are normalized to 

total ATP usage by NG108-15 ..................................................................................................... 179 

Figure 129: Predicted activities of glucose transporter (GluT), pyruvate dehydrogenase (PDH), 

monocarboxylate transporter (MCT) and ribose-5-phosphate isomerase (Ri5PI) during (A) 

control, (B) 2DG, (C) cyanide, (D) malonate,  (E) 2DG+cyanide and (F) 2DG+malonate exposure.  

The protein activities are normalized based on total carbon utilization in NG108-15 cell ........ 181 

Figure 130: Predicted activities of phosphoglycerate kinase (PGK), pyruvate kinase (PK), succinyl 

CoA synthase (SCaS) and F-type ATP synthase (F1F0ATPase) during (A) control, (B) 2DG, (C) 

cyanide, (D) malonate,  (E) 2DG+cyanide and (F) 2DG+malonate exposure. The protein activities 

are normalized based on the amount total amount of ATP generated by NG108-15 cell ........ 182 

 

  



 

xx 

 

LIST OF TABLES 

Table 1: Classification of proteins into functional categories based on human genome .............. 5 

Table 2: Composition of intracellular patch solution ................................................................... 37 

Table 3: Volumetric ratios of nested cellular compartments ....................................................... 53 

Table 4: Parameters for flux determination ................................................................................. 74 

Table 5: List metabolic inhibitors and their targets ...................................................................... 79 

Table 6: Literature reported cellular ATP levels in different cell lines ......................................... 83 

Table 7: Average electrophysiological parameters for NG108-15 cells obtained from fitting to 

voltage clamp and current clamp recordings. Data are mean + SD (n = 49) .............................. 100 

Table 8: Activities of exchangers and leaks ................................................................................ 101 

 

  



 

1 

 

CHAPTER-1: INTRODUCTION 

1.1. Proteomics 

A good understanding of the factors affecting disease progression is essential for 

commencing treatments and making therapeutic monitoring decisions. The study of disease 

progression in humans has been accomplished through several approaches as listed in Figure 1 

and includes genomics, transcriptomics and proteomics.  

 

Figure 1: Biochemical contexts of different studies for disease progression  

Deoxyribonucleic acid (DNA) contains all the necessary information required to build and 

maintain the cell. Great progress has been made to understand the structure of a DNA in 

identifying the genetic abnormalities caused in a specific disease condition [1]. Genes are 

expressed in varying combinations and nearly 21,000 genes have been identified and 

sequenced [2]. The complete set of DNA in a single cell of an organism is referred to as genome. 

Genomics is the study of structure and function of genomes. DNA transcribes into ribonucleic 

acid (RNA), followed by translation into a protein.  

All genome sequences are now available and researchers are trying to determine the 

molecular and functional properties of each gene to understand the role of gene products in 

complex biological processes. The transcriptome is the set of all RNA molecules that include 
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messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), and other non-coding 

RNA produced in the cells. The analysis of mRNA has become popular in recent years [3]. 

Several methods such as serial analysis of gene expression and DNA microarray technology are 

applied. However, the quantification of mRNA does not reflect the cellular proteins. Several 

factors including pH, hypoxia and drug administration define the expression and activity of 

proteins. The proteins interact and work in conjunction to maintain a functional biological 

system. Cells respond to stimuli by regulating the level and activity of cellular proteins the cell 

responds to any stimuli. Cellular processes are mediated through a large network of protein-

protein interactions that are spatially and temporally regulated in the cell. A poor correlation 

has been shown between mRNA and protein expression levels [4]. 

Proteomics is the study of the expression, function and interactions of proteins in the 

proteome on a large scale [5]. The term proteomics was coined by Marc Wilkins during the 

1990’s, redefining the thought process of a biological working system. Proteomics offers a 

comprehensive analysis of a specific proteome, including abundances, variations and 

modifications in order to understand cellular processes. The phenotype of the cell is 

determined by the proteins that carryout cellular activities [6]. Each protein such as the 

membrane receptor, ion channel, transcription factor, kinases or chaperones has a specific 

function. Malfunction of the definitive proteins is the major cause of disease and serves as an 

indicator for the disease. Proteins are also the primary targets for several drugs [6]. Therefore, 

a logical step is to study the structure and functional properties of the working parts of the 

biological systems at different levels. Such a study would provide a comprehensive global 

comparison between different cell types, tissues, organs and the entire organism. More 
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importantly the study of proteomics enables us to grain a deeper insight into the mechanism of 

disease progression which could eventually help in developing a therapy. 

Proteome is the expressed protein complement of a genome and represents the subset of 

all the gene products. A proteome is more complex than a genome, since any protein that is a 

product of a single gene can exist in multiple forms in the same cell or different types of cells 

due to post translational modifications. A proteome may vary with time and cellular 

requirements. For example, exposure of a cell to elevated temperatures causes an increase in 

expression of heat shock proteins. These changes affect the structure and function of the 

proteins. The survival of the cells is dictated by the gene expression and activity of their 

corresponding proteins. The proteome of the cell can comprise all the different forms of 

proteins and is complicated to study. Protein metabolism, the production and degradation of 

proteins is responsible for regulating the rate of cellular processes. Proteins after synthesis 

undergo major biochemical changes due to post translational modifications. Proteins are also 

involved in the energy metabolism networks in a cell. The life time and expression of proteins 

also varies, as some proteins may rapidly degrade, are only expressed in certain situations or a 

few may even last for a life time [7]. Proteins are synthesized and released into the cytosol or 

other compartments from the ribosomal machinery.  There are two major mechanisms by 

which cells degrade proteins, namely, the lysosome and the proteasome.  The degradation of 

cytosolic and nuclear proteins occurs within the proteasomes. In lysosome degradation, the 

entire protein enters the lysosome, followed by protein disassembly and degradation. The 

proteasome mechanism, unlike the lysosome system, is equipped to achieve metabolic balance. 

The rate of protein synthesis is determined by factors such as the amount of messenger RNA 
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(mRNA) and the rate of degradation by ubiquitination. Both lysosome and proteasome 

mechanisms are irreversible and do not respond to the rate of mass action kinetics of their 

products [7]. Posttranslational modification (PTM) is a step in protein biosynthesis where 

polypeptide chains undergo folding, cutting and other processes before becoming an active 

mature protein. Protein phosphorylation is a PTM of proteins in which a serine, a threonine or a 

tyrosine residue is phosphorylated by a protein kinase by the addition of a covalently bound 

phosphate group. Protein phosphorylation regulates protein functions by turning the control 

on/off during cell cycle, cellular signaling cascades and other cellular processes [1]. Proteins 

undergo wear and tear upon exposure to free-radicals and other biological agents leading to 

protein damage. External factors including environmental agents such as radiation, chemicals 

and drugs can lead to protein modification followed by inactivation. It is critical to maintain a 

balance between protein synthesis and degradation. The steady state of the cell reflects the 

ratio of the equilibrium constant between these two processes. Wheatley et al. has shown that 

30 - 90% of all proteins are defective and improperly folded even after transferring to the 

endoplasmic reticulum [8]. When a change in the protein concentration occurs, either due to 

altered physiological process or an onset of a disease condition, a new steady state 

concentration is achieved by the cell [7]. 

The human genome project led to the classification of proteins encoded by the human 

genome and enabled the classification of genes based on their functions [2].  Table 1 lists the 

classification of proteins into functional categories based on human genome. The expression of 

different genes is required for the synthesis of different proteins in different functional 

categories. Proteins associated with intermediary and nucleic acid metabolism account for 
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about 15% of proteins in the proteome. 

Table 1: Classification of proteins into functional categories based on human genome 

Functional category % Genes Functional category % Genes 

Cell adhesion 1.9 Ion channel 1.3 

Hydrolase 4.0 Motor 1.2 

Carrier protein 0.7 Structural 1.0 

Transcription factor 6.0 Protooncogene 2.9 

Nucleic acid enzyme 7.5 Calcium binding 0.1 

Signaling molecule 1.2 transporters 1.7 

Receptor 5.0 Immunoglobulin 0.9 

Kinase 2.8 Extracellular matrix 1.4 

Regulatory molecule 3.2 Cytoskeletal 2.8 

Transferase 2.0 Chaperone 0.5 

Synthase 1.0 Lyase 0.4 

Oxidoreductase 2.1 Ligase 0.2 

Isomerase 0.5 Intracellular transporter 1.1 

Miscellaneous 4.3 Unknown 41.7 
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The proteins involved in protein synthesis and turnover are about 15-20%. The signaling and 

DNA binding proteins constitute 20-25% of the proteins. Around 41.7% of the function of the 

genome is still unknown and determining their functionality is a challenge. It is important to 

identify and quantify huge variations in the protein profiles that are observed in different cell 

types. 

Proteomics focuses on the interactions between multiple proteins as a part of a large-

scale analysis and should be performed at a much higher level [1].The information from the 

functional characterization of a proteome will help us gain new insights into biology and 

medicine. Recent advances in the development of proteomic tools have allowed the evaluation 

of systemic changes in protein expression in responses to perturbations to a biological system 

[5]. In addition, proteomic biomarkers deliver a more reliable result when compared to 

traditional biomarkers since multiple interacting protein species are evaluated simultaneously 

in response to metabolic perturbation [5]. Proteomics is applied to characterize the behavior of 

the entire system rather than a single protein. Proteomics is a potential tool for drug discovery 

with an inception to identify novel biomarkers. 

1.2. Applications of proteomics 

Proteomics technology is advancing rapidly and could revolutionize our fundamental 

understanding of how a cell ‘works’ by identifying the responses to both internal and external 

stimuli. The major applications of proteomics are performing mining, profiling including steady 

state determination, mapping interaction and identifying protein modifications/functions [1]. 

These applications enable scientists to perform pathway analysis which involves examining 



 

7 

 

thousands of proteins simultaneously involved in several pathways. 

Protein mining is the identification of all the proteins present in the sample followed by 

cataloging to determine how levels have changed in an experiment. Protein mining is 

performed to resolve numerous proteins and uses tools such as mass spectrometry (MS) in 

combination with software to determine the identity of the protein. Several approaches, each 

offering a set of advantages, have been adapted for protein mining and build a database. By 

combining the database and software tools, the protein of interest could be studied which 

otherwise could only be achieved by performing gene-expression analysis [1]. 

The largest application of proteomics is in profiling protein expression. Protein profiling 

facilitates the identification of the state of proteins in a biological sample or a cell exposed to 

physical/chemical stimuli and is mainly performed to compare the states of proteins in healthy 

vs. diseased cells. Protein profiling is an advanced form of protein mining and the obtained 

information could lead to identification of drug targets. Protein profiling is mostly conducted by 

employing two dimensional gel electrophoresis (2D-GE). Cancer proteomics relies on protein 

profiling to compare the transformed and non-transformed cells directly. Many novel tumor 

biomarkers and clues for cancer development have been identified. Protein profiling has been 

performed on several tissues such as breast, bladder, esophageal and prostate [3]. Protein 

microarrays are now widely used and are the fastest method to profile a protein. 

Mapping the protein-protein interactions enable us to understand how protein 

interactions occur in living systems. The study of protein-protein interactions allows us to 

simultaneously assess the status of all the proteins in a pathway. Most of the cellular processes 
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occur in close association with other proteins. The process of cell growth, cell death and cell 

cycle are all regulated by signaling pathways through protein complexes. The interactions 

between protein networks dictate cellular functions such as cellular signaling and metabolic 

pathways. A majority of information has been obtained by performing in-vitro studies using 

single and purified proteins with a yeast two-hybrid system. Most proteomic techniques offer 

the ability to characterize multiple proteins interactions by pairing them. Multiple protein 

complexes have been identified and their role in cellular pathways has been determined. 

Protein-protein interaction is one of the most resourceful and demanding application of the 

pharmaceutical industry. 

Identification of protein modifications allows us to map the structural and functional 

changes in proteins. Proteins undergo PTM in response to extracellular and intracellular signals. 

In addition, exposure to environmental hazards generates reactive species that may modify 

proteins. MS is a powerful tool for analyzing protein modifications. Antibodies are widely used 

for detecting protein modifications but with this method the precise sites where the 

modifications occur cannot be determined. Simultaneous characterization of the modified 

regulatory proteins during a signaling cascade is important. Analysis of protein function is 

performed to understand the molecular mechanisms underlying the biochemical process 

occurring in the cell. It includes the study of how proteins interact with other compounds or 

metabolites. The interactions of proteins occur at multiple stages such as with a single pathway, 

whole cells, tissues or an entire organism [9]. It is important to understand all these functions 

as several disease conditions arise as a consequence of alterations in protein functions. 

Furthermore, all the physiological functions such as signaling networks, energy production and 
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consumption of the cells are dependent upon the activity of the proteins. 

1.3. Tools for proteomics 

 Several tools have been developed to systematically characterize and obtain a 

comprehensive profile of the functions in biological systems. Biochemical assays have 

reproduced some of the cellular pathways outside the cell but do not address the interactions 

with the myriad of other pathways within the cell [10]. Early stages of proteomics have heavily 

relied on biochemical assays but it is a very low throughput technology. Biochemical assays 

were also involved in studying gene regulation, especially the interactions between nucleic 

acids and proteins [11].  

Imaging using high-throughput microscopic screening instruments have generated a 

large set of images by incubating cells with one or more fluorescent probes [12]. However, it is 

a difficult task to derive the patterns that link the generated images back to the biochemical 

reactions. Although fluorescent probes have supplied a wealth of information, they suffer from 

several draw backs such as toxicity due to photobleaching and triggering a cascade of signaling 

pathways due to the interaction of the probe with cellular proteins or metabolites. Live cells 

when exposed to an excitation light may be subjected to photodynamic effect, causing cellular 

damage by direct contact with molecular oxygen [13]. The optical resolution affected by the 

noise and photobleaching could alter the image quality leading to altered intracellular protein 

levels. Imaging is a powerful tool with high resolution and even small objects are identified. 

However, the images needs to be interpreted carefully as few images could be exaggerated and 

may not appear according to scale [13]. 
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 MS is the workhorse for performing proteomics and offers high sensitivity to detect 

digested or intact proteins [14]. Current modifications allow targeting the protein modification 

of interest such as phosphorylation, oxidation and ubiquination [15]. MS requires the proteins 

or peptides to be in gas phase for analyzing them. MS is used to detect and quantify proteins in 

biological matrix but is not yet capable of separating the complex protein mixtures from the 

unprocessed biological matrix [16]. Matrix assisted laser desorption/ionization (MALDI) is 

employed where the sample is dissolved into a matrix followed by exposure to laser [3]. The 

major advantage of MALDI is that no purification of the sample in 2D-gel is required to separate 

the proteins. A disadvantage of MALDI is that the matrix aids ionization and desorption when 

hit with a short laser pulse and can also cause a drift in the protein mass. 

2D-GE is widely used and allows the separation of numerous proteins in a single 

experiment. 2D-GE can also determine the extent of a proteins expressions and changes in their 

expression levels from sample to sample. Several drug targets have been identified employing 

2D-GE technique. Separated proteins may be identified using MS or by using antibodies.  A 

multidimensional 2D-GE offers an advantage over the traditional gel electrophoresis by 

allowing the separation of several samples in a single experiment by comparing the controls 

with the diseased samples [15].  As an alternative to 2D-gel for protein quantification, isotope-

coded affinity tags (ICAT) have been developed. ICAT relies on labeling proteins obtained from 

different sources with chemicals of different isotope composition. The application of different 

labels allows quantifying the difference using a mass spectrometer. The ICAT method also 

enables the detection of low concentration of proteins. The major drawback of profiling using 

the ICAT method is that the proteins must contain cysteine residues and these must be spaced 



 

11 

 

far enough apart for the proteases to cleave them. Liquid chromatography (LC) has advanced in 

the recent years and offers an advantage of separating proteins in the liquid phase. LC can be 

coupled to MS (LC-MS) for identifying and further characterizing the sample. The volume of 

sample required for LC is in the nanoscale, making it more useful to do proteomics in a 

microfluidic device. The major disadvantage of LC is that during the separation of small 

volumes, the flow rates are restricted [15].  

Protein microarrays (PMAs) are powerful tools for capturing and measuring multiple 

proteins in a high throughput fashion for the study of potential biomarkers but are expensive 

[16]. In this method, cells are typically lysed and exposed to protein arrays along with specific 

antibodies. PMAs are designed specifically to ‘catch’ the protein of interest and characterize it. 

PMAs can be used in combination with other approaches to identify a specific protein. The 

changes in protein concentrations, modifications and interactions can all be studied using 

PMAs. Another major advantage of PMAs is that a specific set of proteins such as all the 

mitochondrial proteins can be targeted for analysis [15]. 

Nanoproteomics (NP) addresses the current limitations in selectively reaching a target 

protein in vivo by applying physical and biological barriers to detect low concentration targets 

[17]. NP offers rapid and miniaturized assay, real time analysis, low sample consumption and 

high sensitivity. However, the toxicity and biocompatibility of these techniques needs to be 

studied further [18]. 

Several reagents such as antibodies have been developed and characterized to improve 

proteomics but are limited to capturing and detecting a specific protein. Many other methods 
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such as immunoblotting, analytical ultracentrifugation, surface plasma resonance (SPR) and 

circular dichrosim are also employed to perform proteomics [15]. All these tools are excellent 

and powerful to perform proteomics but are incompetent to chronically monitor the 

interactions non-invasively.  

1.4. Challenges in proteomics 

 The biggest challenge for proteomics lies in the proteome’s complexity. A single gene 

encodes multiple proteins. The human genome contains 21,000 protein encoded genes that 

generate an estimated 250,000 to one million different proteins in a human cell [19]. The 

genome is a static blueprint of a cell whereas the proteome is dynamic and dependent on 

varying extracellular stimuli [20]. PTM leads to protein variability, causing different expression 

profiles and polymorphism that makes it difficult to detect [16]. The isolated proteins during 

cellular interactions must be in their native forms for an accurate analysis. In spite of the 

availability of several new advanced technologies, detection of low levels of proteins in a 

complex biological mixture still remains a challenge. Few eukaryotic cells have a low to high 

protein ratio of 1:106, making it difficult to analyze and track the changes in the sample. Also, it 

is difficult to identify transcription factors, protein kinases and regulatory proteins as they are 

expressed in low number. Further purification or extractions methods may be employed to 

isolate the protein of interest from the proteome [3]. Also, certain protein extraction and 

separation techniques are skill-based and remain difficult to automate [21]. 

Most of the methods including 2D-GE or performing biochemical assays are not high-

throughput. Performing an MS may require a substantial amount of time for data acquisition, 
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processing and analysis [3]. Quantification of hundreds of proteins can be achieved by 

performing MALDI time-of-flight MS (MALDI-TOF MS) but not all proteins in the sample can be 

detected, yielding a low-resolution analysis. A higher resolution of the sample can be obtained 

by using a MS/MS but it would require significant time and resources to interpret data. 

Performing a wide dynamic range of analysis has been another limitation of MS/MS [19]. Most 

of these systems are invasive, thereby activating other signaling pathways which lead to cellular 

apoptosis. Moreover, these systems detect only the end-point, cost ineffective, lack the 

capability for chronic monitoring of cellular functions interactions and are limited to the 

pathways being analyzed. Instead, a study of the entire biological system as a single entity is 

necessary and would provide profound insights. 

1.5. Systems biology driven proteomics 

Systems biology employs a centralizing approach to characterize biological systems, where 

the interactions described mathematically to establish a computable model. Systems biology 

aims to increase our understanding and predicting the behavior of a biological system. The key 

utilities of model building are (1) to organize information from different sources into a cohesive 

model, (2) to determine what species and interactions play a vital role a specific pathway of 

interest or the entire cell, (3) identification of new inter-dependencies on cellular process and 

(4) to learn all the quantitative features on a large scale. System biology based tools are now 

widely used to perform drug discovery due to the physiological relevance of results and the 

ability to perform high content screening. These tools aid in analyzing cellular pathways 

providing a deeper understanding of several biochemical processes including metabolic 
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pathways [22]. 

Most biological systems behavior cannot be limited to a single molecule or pathway instead 

they result due to the interactions occurring at different levels among different cellular 

compartments. Modeling of the reconstructed system, if possible at different levels, would 

allow performing simulations and predicting hypothesis. The earlier stages of the developed 

systems could be small containing few proteins representing a signaling pathway and 

eventually lead to a whole-cell model [23]. Since systems biology is hypothesis driven, the 

model is validated by perturbations and validating with the experimental datasets. A dynamic 

analysis of the changes in the model enables the identification of changes in protein activity. In 

modeling biological systems, cellular networks are divided into signaling, regulatory and 

metabolic that responds to perturbations and alters cellular activities.  Currently, a biological 

system is best characterized using metabolic models [24]. The basis of reconstruction and 

development of cellular networks is well documented and have also received much interest. 

Analysis of these networks can be aimed at performing a quantitative or qualitative analysis 

[25]. For example, a boolean network can be implemented to perform quantitative and kinetic 

models for quantitative analysis of cellular signaling pathways.  

Proteomics was identified as an essential discipline for building precise network models 

[23]. Proteomic analysis and Systems Biology have come closer during the past decade and 

present a promising approach to unveil functions of proteins in complex cellular networks. 

Proteomic analysis by employing systems biology would be a powerful tool. It has become 

obvious that protein analysis needs to be performed on a large- scale as the rate of drug 
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attrition has increased. The complex dynamics of proteins makes it difficult to study. Proteins 

are the actual effectors for maintaining cellular hemostasis by driving the cellular pathway and 

cannot be simply be studied by looking at a gene, mRNA or in fact a single protein. A large 

amount of experimental data is being generated using several tools such as PMAs, imaging and 

LC-MS/MS [24]. The data obtained from all the proteomic tools can be integrated into a single 

system for further analysis. Proteomic tools can be applied to study the protein-protein 

interactions and protein functions as a result of perturbations in biological process on a large 

scale. Most of the limitations and challenges of the proteomic tools could be addressed by 

coupling existing tools and data to systems biology driven models. However, none of the 

current standalone tools or tools coupled to systems biology can monitor the cellular pathways 

or the dynamic changes that a protein undergoes in response to perturbations [23]. 

1.6. Motivation 

A system capable of determining temporal profiles of living cells to perturbations of a 

compound as it interacts with a cell over a period of time providing a rich set of information 

that could be captured non-invasively would be beneficial [26,27]. Such system would provide 

insight into the mechanistic details of cellular pathways, predict the response of proteins 

interactions in cellular systems to multiple perturbations beyond those from which models are 

derived and guide the design of perturbations for a desired response. Tools based on 

monitoring the state and activities of the excitable cells are frequently used to quantify the 

physiological responses to external stimuli [28,29].  
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Neurons exhibit an action potential (AP) that gives complex information about the 

internal/external environment of excitable cells. The AP shape contains a significant amount of 

information, as it is dependent on concerted action of ion channels located on cell membrane 

that are tightly regulated by receptors and intracellular messenger systems [30,31]. Ion 

channels are regulated by all common intracellular mechanisms including phosphorylation and 

second-messenger dependent systems [32] as intracellular ions play the significant role of 

second messengers in cells [33]. The membrane electrical activity is highly dependent on the 

state, physiology and pathophysiology of the cells [34].  The AP generation and shape are 

determined by Na+, K+, Ca2+, ATP, other second messenger dependent channels and pumps [35-

37]. Calcium [38], sodium [39], and potassium [40] channel modulators have been shown to 

affect the shape of cellular action potentials [27].  

Cellular metabolism and membrane electrical properties are tightly integrated. The 

changes in AP are characteristic to the biochemical pathway affected by chemical or biological 

entities [26,27,41]. Deconvolution is the quantitative determination of underlying ionic currents 

of AP which would not only enable the detection of altered pathways but also potentially 

differentiate compounds with different mechanisms of actions [27,41]. Cellular 

electrophysiology is the gold-standard technique for measuring ionic currents of an excitable 

cell and the electrical components in the cell membrane, including primary ion channels. The 

information obtained from the system is highly complex in nature and needs to be 

deconvoluted using an in silico tool to gain a deeper understanding on the dynamics of the 

physiological processes [26].  
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1.7. Previously developed models 

Previously developed models of cellular pathways in cells have been effective in 

modeling pathways and enhancing drug discovery. Techniques for network modeling of cellular 

pathways span a wide spectrum of complexity. Models of signaling pathways have been 

reconstructed by combing and analyzing information available in the public domain, including 

DNA sequence data, protein sequence data, literature, pathways recorded in public databases, 

gene expression data, mass spectrum data and metabolic profiles. However, these networks 

often have delivered several false positives or false negatives due to noise and incomplete data. 

The great majority of cell models were also tailored towards one or two specific cell 

activities, mostly carbon flux, respiration, signaling, gene activation and electrophysiology. 

Computational models incorporating ion channels to represent whole-cell AP models relate the 

changes in membrane potential to the sum of inward and outward ionic currents. They typically 

consisted of 10-70 differential equations with multiple parameters. Gleeson et al. introduced 

NeuroML, which offers a multilayer approach of electrophysiological features from individual 

cells with selected ion channels to morphologically reconstructed multi-compartment neurons 

forming networks with others [42].  However, the modeled neurons were limited to their 

electrophysiological function since metabolic events were not included. Lewis et al. modeled 

complex signaling interactions between astrocytes and motor neurons by including metabolic 

pathways for each cell type [43].  Zhou et al. published their comprehensive work on the 

electrophysiological activity of cardiac myocytes and influences of the mitochondrial TCA cycle 

[44]. Masson et al. explored the link between electrical activity and insufficient metabolic 

energy by merging the classical Hodgkin-Huxley conductance model [45]. Their model provided 
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theoretical basis to study the dependence of cellular bioenergetics on membrane electrical 

activity. The metabolic model was not detailed enough to perform analysis of cellular pathways. 

Cortassa et al. developed a computational model by integrating cardiac electrophysiology, 

contraction and mitochondrial bioenergetics to obtain a greater insight into their interactions 

and dependencies [46]. The model lacked the detailed glycolytic and pentose phosphate 

pathway along with the deconvolution module to predict the responses of action potentials.  

Experimentally validated models have already been developed which are coupled to the 

electrophysiological properties of the cell membrane to complex intracellular pathways [47,48]. 

These models have been used to predict the physiological changes in the intracellular 

mechanisms such as gene expression, activation of secondary messenger systems and 

phosphorylation [49]. Several publications from leading groups in systems biology are all 

extraordinary milestones towards large-scale and whole-cell modeling. A first ‘real’ whole-cell 

model of Mycoplasma genitalium was built by combining all the molecular components to 

study the unexplored cellular behavior [50]. However, experimentally validated computational 

models including all major functions and organelles of mammalian cells, especially neurons, are 

currently not available.  

A popular way to develop more complex and comprising models is to extend existing 

pathway models with further reactions and species or in some cases the combination of two or 

more existing models. The latter approach comes with challenges as the employed models 

were usually proposed by different groups, which used different time frames, units, and often 

worked with pathways of different cell types if not species. In our previous work, we have 
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demonstrated the use of neuronal cells as sensor elements for toxin detection [27,41]. The 

interrupted AP showed differences we believe could vary depending upon the pathway being 

inhibited by a compound, protein or gene.  

1.8. Objectives of dissertation 

The objective of this dissertation is to develop and experimentally validate an insilico tool 

that would predict action potential time-series by enabling chronic monitoring of intracellular 

networks and intracellular proteins activities.  

To achieve the aforesaid objectives the following tasks have been performed 

1. The basal metabolism of NG108-15 cells has been determined by performing 

biochemical measurements. 

2. The NG108-15 cellular metabolic model was reconstructed and experimentally validated 

by employing the biochemical measurements.  

3. A neuronal module for deconvolution of neuronal action potentials was constructed and 

the electrophysiological parameters were extracted.  

4. The effects of inhibition of cellular proteins involved in energy producing metabolic 

pathways were evaluated by measuring the biochemical and electrophysiological 

changes in NG108-15 cells. 

5. A coupled neuronal-metabolic model including the sub-cellular compartment was built 

to generate a series of action potentials followed by predicting the changes in 

intracellular ion concentrations and protein activities. 
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6. An experimental validation of neuronal-metabolic model was performed by simulating 

multiple scenarios of inhibiting cellular proteins involved in cellular bioenergetic 

pathways for predicting protein activities and action potential time-series. 

7. An in-depth analysis of predicted temporal activities of cellular proteins during 

metabolic perturbations was carried out to evaluate the model predictive capabilities. 

1.9. Dissertation outline 

This dissertation describes development and experimental validation of neuronal 

metabolic model. 

Chapter 2 provides the theory behind the cellular metabolic pathways and general 

approach for model development is discussed. The ionic basis of membrane electrical 

properties, cellular electrophysiological techniques and the theory behind Hodgkin-Huxley 

model are explained.  

Chapter 3 describes the experimental methods employed in measuring the effects 

metabolic inhibitors. This chapter includes details of the modifications of surfaces, cell culture, 

biochemical assays and patch clamp electrophysiology protocols that were utilized. 

Chapter 4 illustrates the development of neuronal-metabolic model. The coupling of 

different intracellular pathways including the metabolic reactions was explained. The chapter 

also includes the reconstruction and a detailed description of biophysical components involved 

in neuronal module. The integration of both the modules followed by methodologies employed 

for parameter estimation is described. The chapter also included a detailed description on how 
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experimental conditions were simulated 

Chapter 5 provides a discussion on the results obtained from the model. The basal 

metabolic properties of NG108-15 cell are presented. The calibration of model to steady state 

using the experimental data is explained. The deconvolution of action potentials to extract the 

ion channel parameters has been described in detail. Also, a discussion on how the neuronal-

metabolic model was simulated to steady state and perturbations induced were estimated is 

provided. The experimental validation of simulated results for all the drugs and drug 

combinations including the characteristic analysis of action potential time series data is 

presented. The predicative capabilities of the model are demonstrated in this chapter. 

Chapter 6 concludes the dissertation by outlining the outcomes from the model and the 

future work involved in developing the model is discussed in detail. 
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CHAPTER-2: THEORY 

 

In this chapter the cellular metabolism and membrane electrical properties were reviewed. 

An understanding of the fundamental theory behind the biochemical and biophysical 

interactions occurring during cellular function is a prerequisite. The core cellular pathways 

involved in energy metabolism followed by describing the basics of modeling and kinetic 

analysis are presented. The second half of the chapter describes the characterization of 

membrane electrical properties following the description of the measurement techniques and 

their mathematical basis. 

2.1. Cellular Metabolism 

Cellular metabolism plays a vital role in cellular functions. The metabolic reactions can be 

categorized into two broad categories, namely degradation and synthetic pathways. The 

biochemical reactions occurring in a pathway are organized, localized and regulated in a cell 

[51]. The rates of intracellular enzymes i.e., regulatory proteins dictate cellular activities. The 

protein activities are modified in a cell to maintain a favorable environment for obtaining highly 

efficient cellular processes. At steady state, a cell requires carbon for biosynthesis and ATP for 

cellular functions [51]. These requirements are met by central metabolic pathways that include 

glycolysis, pentose phosphate pathway (PPP), mitochondria and endoplasmic reticulum. 

2.1.1. Glycolysis and PPP 

The glycolytic pathway is one of the core metabolic process during which one molecule 
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of glucose is converted into two molecules of pyruvate by producing ATP. Glycolysis is also 

known as the Embden-Meyerhof pathway that has two phases [51]. In phase one, conversion of 

glucose into fructose-1,6-bisphosphate is catalyzed by hexokinase (HK), phosphogluccose 

isomerase (PGI) and phosphofructokinase (PFK). HK and PFK consume two molecules of ATP to 

mediate conversions. During the second phase of glycolysis, fructose-1,6-biphosphate is further 

metabolized into pyruvate by consuming two ADP molecules and produces four molecules of 

ATP. The fate of pyruvate is dependent on cellular oxygen utilization. In hypoxia conditions, 

pyruvate generated gets converted into lactate and is transported by monocarboxylate 

transporters (MCT) [52]. In contrast, during normoxia pyruvate enters the mitochondria and 

gets further metabolized to generate ATP. Additionally, the glycolytic enzymes such as HK, 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and enolase have been shown to be 

multifunctional as they play a role in cellular transcription [52]. 

The pentose phosphate pathway (PPP) is an alternative pathway for metabolizing 

carbon entering glycolysis. The end product of PPP, ribose-5-phosphate, is utilized in the 

synthesis of nucleic acids. PPP generates NADPH that is utilized for ATP production. The activity 

of PPP differs from cell-to-cell. For example, muscle cells lack PPP as they utilize carbohydrates 

for energy generation whereas red blood cells lack mitochondria forcing the cell to completely 

rely in PPP for NADH generation [53]. On the other hand, neurons, which are of interest here, 

have been shown to possess active PPP [54]. The PPP and glycolysis are interconnected. The 

enzyme transketolase in PPP mediate the conversion of xylulose-5phosphate to glyceraldehyde-

3-phosphate. The produced glyceraldehyde-3-phosphate enters the second phase of glycolysis 

directly to generating pyruvate and ATP [52].  
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2.1.2. Mitochondria 

Mitochondria are considered as the power house of the cell. Two major mitochondrial 

pathways namely, the TCA cycle and electron transport chain generate ATP.  Pyruvate 

generated during glycolysis is transported into mitochondria by monocarboxylate transporters 

present on the mitochondrial membrane. Pyruvate is converted into mitochondrial acetyl-CoA 

which acts as the starting point for the TCA cycle. The acetyl group from Acetyl-CoA is 

transferred to oxaloacetate to generate citrate. A series of cyclic reactions convert citrate to 

oxaloacetate by performing two decarboxylations and four steps of oxidation to form malate 

followed by regenerating oxaloacetate. The ATP production from the TCA cycle occurs during 

the conversion mediated by succinyl-CoA lyase [53]. The TCA cycle generated NADH and FADH2 

are transported by succinate dehydrogenase (SDH) to the electron transport chain for ATP 

production. The TCA cycle generates precursors for biosynthesis of several amino acids. The 

major sites of regulations of TCA cycle were citrate synthase, isocitrate dehydrogenase and α-

ketoglutarate dehydrogenase. The TCA cycle is also sensitive to the buildup of metabolites by 

lowering its activity [53].  

The electrons generated in glycolysis are transported into mitochondria by the malate-

aspartate shuttle (MAS) or glyceraldegyde-3-phosphate shuttle (G3P). The expression and 

efficiency of these shuttles varies in different cell types [51]. MAS and G3P transport 6 and 3 

electron equivalents respectively. The electrons from NADH and FADH2 are passed into the 

inner mitochondrial membrane by complexes I, III and IV. The electrons then move towards 

oxygen and protons from the cytosol are consumed to increase the pH in the mitochondrial 

membrane creating a potential difference. The protons move through F1F0-ATPase to 
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synthesize ATP. The mitochondrial ATP is transferred into the cytosol by the adenine nucleotide 

transporter [53]. 

2.1.3. Endoplasmic reticulum 

The endoplasmic reticulum (ER) has several functions including folding and transport of 

proteins. The ER also acts as stress modulator by altering intracellular calcium levels. The 

intracellular calcium levels in a cell are maintained at low concentrations when compared with 

sodium and potassium concentrations. The low calcium concentrations are necessary as several 

proteins get activated or deactivated from calcium binding. Thus, cellular calcium 

concentrations must always be maintained in homeostasis and in check to avoid activation of 

unwanted signaling cascades [55]. The intracellular calcium concentrations are maintained by 

two mechanisms, buffering and sequestering. Buffers are calcium-binding proteins that absorb 

95-99% of free cytosolic calcium [55]. Calcium sequestering usually occurs in the ER.   

The ER consists of three major channels that mediate calcium fluxes. The 

sarco/endoplasmic calcium ATPase (SERCA) pump moves cytosolic calcium into the ER against 

the concentration gradient by consuming cellular ATP. To generate feedback and maintain 

homeostasis, cells have inositol triphosphate (IP3) and ryanodine (RyR) receptors. A negative 

and positive feedback is obtained from channels when calcium is bound to them. These 

receptors have been shown to control several cellular processes such as cell cycle and 

membrane electrical activity [55]. 
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2.1.4. Metabolic alterations in cancer cell 

Cancer cells have exhibited aerobic glycolysis i.e., higher glycolytic activity compared to 

normal cells even in the presence of sufficient oxygen. This phenomenon was first described by 

Otto Warburg in the year 1930. The prime cause for metabolic alterations was due to lowered 

mitochondrial activity and was resolved by Warburg in 1956. This effect of cells possessing 

aerobic glycolysis was termed as the ‘Warburg effect’. The Warburg effect was considered as 

one of the prominent symptoms in cells with altered metabolic activities. Researchers have 

rationalized this effect to describe (a) defective mitochondria, (b) adaption to hypoxia, (c) 

oncogenic signaling and (d) overexpression of cellular proteins [52].  

Impaired mitochondrial function forces the cell to depend on glycolysis for ATP 

generation. Mitochondrial damage was assumed as low levels of ATP were being produced. 

Analysis of mitochondrial DNA (mtDNA) levels revealed high mutations in cancer cells [52]. 

Several factors such as reactive oxygen species (ROS) and low levels of chaperones could cause 

mutations [52]. Hypoxia has been shown to directly modulate energy metabolism. Tumors have 

been shown to have a restricted supply of oxygen creating a hypoxic environment that would 

increase glucose utilization and lactate production leading to acidification. It’s well established 

that inhibiting glycolytic activity with 2-deoxy-glucose (2DG), Oxamate or 3-bromopyruvate has 

a significant effect on cancer cells [52,56,57].  

The enzymes that play a vital role in TCA cycle dependent ATP production are fumarate 

hydratase (FH) and succinate dehydrogenase (SDH). Studies have showed that inhibiting SDH 

caused accumulation of succinate and suppresses the TCA cycle activity [52]. SDH is an 
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important enzyme as it is involved in both the TCA cycle and electron transport chain. A loss in 

SDH activity would arrest mitochondrial energy metabolism completely. Cancer cells have been 

shown to possess increased ROS levels. It is possible that increased ROS levels may lower or 

inhibit ROS-sensitive enzymes [52]. 

2.1.5. Metabolic Modeling 

Metabolic modeling employs systemic integration of experimental knowledge into a 

mathematical framework that enables the prediction of dynamic behavior in cellular 

machinery. Currently metabolic models are largely validated based on constrained-based 

approaches. Most metabolic models are usually aimed at the identification of molecular targets 

for controlling cellular activities. Models based on ordinary differential equations (ODEs) have 

been successful at determining cellular fluxes, metabolite concentrations and protein activities. 

An ODE for a certain component (C) is usually represented by determining the rate of 

production (𝑣𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛) and consumption (𝑣𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛) as shown in equation 1. 

𝑑

𝑑𝑡
[𝐶] = 𝑣𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 − 𝑣𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 

(1) 

The rate of production and consumption depends on kinetics of proteins involved in 

pathways. The basic kinetic method that describes the activity of most proteins is Michaelis-

Menten kinetics. Proteins are complex and so it their activity. A biochemical determination of 

protein activities and estimation of their kinetics has enabled the derivation of kinetics of 

specific proteins or a common kinetic equation for describing a set of proteins [58,59]. 

Several tools, such as Pathways Tools [60], have been developed to implement and 
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model the kinetics of a set of proteins. The initial conditions were usually estimated using 

experimental data. The numerical equations can then be solved using an ODE solver. Due to a 

large interest in model development, a Systems Biology Markup Language (SBML) has been 

developed to exchange models of different biochemical networks [61]. Parameter estimation 

currently is one of the biggest challenges in systems biology. An increase in the number of 

interactions exponentially increases the parameter estimation space. To overcome this several 

strategies have been proposed. A toolbox (COBRA) in MATLAB has been developed by 

constraint-based modeling for quantitative prediction of cellular networks [62]. The model 

predictions obtained from COBRA have delivered the best set of parameters and when 

evaluated the model predications were accurate [62]. 

2.2. Cellular electrophysiology 

The flow of ions across the membrane creates a voltage difference called biopotential. 

The changes in the biopotential may occur due to several factors such as temperature, pH, ionic 

concentrations or extrinsic current [63]. Cellular electrophysiology is the study of membrane 

electrical properties of a cell. The goal of performing electrophysiology is to detect electrical 

signals generated by excitable cells such as neurons, muscle, cardiac, pancreatic and sensory 

neurons. Cellular electrophysiology involves measuring changes in voltage or current across the 

membrane. A voltage clamp recording is performed to measure changes in sodium and 

potassium currents by holding voltage constant and a current clamp is obtained by holding 

current constant thereby measuring changes in membrane potential. 
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2.2.1. Ionic basis of action potentials 

Cells at rest have a certain potential called a resting membrane potential, due to 

difference in ionic concentrations across the membrane. The intracellular potassium 

concentration is about 10-14 times higher compared to the extracellular potassium 

concentration leading to a negative reversal potential. The concentrations of sodium and 

calcium are very low intracellular and high extracellularly generating a positive reversal 

potential. The plasma membrane contains ‘open’ potassium channels that allow the passage of 

potassium ions. The resting membrane potential is mainly determined by the movement of 

potassium ions since it is occurring down the concentration gradient through the open 

potassium channels. The resting membrane potential of a typical cell is about -60 mV to -70 mV 

and the reversal potential of potassium is close to the resting potential. A change in resting 

membrane potential always changes the intracellular potassium concentration and reversal 

potential [64]. 

An action potential (AP) represents changes in cellular membrane potentials generated 

when a required strength of electric current is passed through the membrane of an electrically 

excitable cell. Different cells exhibit action potentials of different shapes including a variation in 

AP amplitude and time course. The time course of AP’s varies from 1 ms in neurons to 5s in 

cardiomyocytes [63]. AP is a cyclic process where membrane depolarization, hyperpolarization 

and resting membrane potential cycle are a result of alterations in ion permeability. 

During an AP, an initial depolarization changes the conformation of voltage-gated 

sodium channels and allows an influx of sodium ions. The propagation of this AP depolarizes the 
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adjacent region thereby opening voltage-gated sodium channels and increasing the sodium 

influx. A combination of factors established due to differences in ionic concentrations and 

resting membrane potential drives sodium ions into the cell. As more sodium ions enter the 

cell, the membrane is depolarized, further causing a larger influx of sodium and the 

permeability of sodium in that specific region increases. But when the reversal potential of 

sodium matches the cellular membrane potential, the sodium influx ceases [64]. During the 

closure of voltage gated sodium channels, voltage gated potassium channels open leading to an 

increased potassium permeability. The potassium efflux causes the membrane to repolarize 

back to the resting membrane potential. The voltage-gated calcium channels are also opened 

simultaneously with potassium channels and closed upon reaching resting membrane potential. 

Upon reaching the resting membrane potential the sodium, potassium and calcium ion 

channels close [64]. 

Action potentials cause characteristic changes in membrane potentials by rearranging 

ionic balances across the membrane. The movement of ions across the membrane generates a 

change in voltage. Although the changes in voltage are significant, the actual number of ions 

that move across the membrane are very small compared to number of ions in the total volume 

of the cytosol. The ionic fluxes during AP were measured initially by performing an experiment 

on giant squid axons. The movement of ions across the membrane was characterized by using 

radioactive sodium and potassium. It was found that depending on the size of a neuron, during 

single AP generation about one potassium ion per 300,000 in the cytosol is exchanged for 

extracellular sodium. So the changes in the total cytosolic ionic concentrations during an AP are 

negligible [64].  
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2.2.2. Measurement techniques 

Several techniques such as patch-clamp, extracellular recordings and planar patch clamp 

are employed for performing cellular electrophysiology. Each technique offers a set of 

advantages and disadvantages. Both intracellular and extracellular recordings have been 

performed to study membrane activity. During patch clamp electrophysiology, the recordings 

are usually performed by patching cell using a sharp electrode to measure changes in 

membrane potential. Several variations in patch clamp techniques have been exercised 

depending on the study. An on-cell patch is performed where patch membrane is kept intact 

and currents are measured without disturbing intracellular pathways. Another variation is an 

inside-out patch. During an inside out-patch, the cell is patched and pipette is withdrawn 

quickly to exposing intracellular contents of the cell to external environment. A whole-cell 

patch is the most common patch employed during patch clamp electrophysiology. Patch clamp 

techniques enables measurements of single ion channel properties. The principle behind patch 

clamp relies on the high-resistance seal formed between sharp electrode and cell membrane. 

The resistance of the seal varies from patch-to-patch but usually a giga-ohm seal is necessary to 

maintain a stable patch. During a whole-cell patch, a small surface of the cell membrane is 

drawn into the pipette, and by applying suction the membrane is broken enabling access into 

the whole-cell. A ground electrode lies in the extracellular chamber acting as a reference 

electrode. The electrodes are connected to an amplifier for detecting and measuring changes 

across cellular membrane. An outside-out patch is formed by patching a cell and slowly 

withdrawing the pipette along with a bleb of cellular membrane containing the ion channel of 

interest. The activity of ion channels in the bleb can then be measured. Perforated patch clamp 
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employs rupturing the cell membrane by incorporating a small amount of antibiotic. A giga-ohm 

seal is formed during perforated patch by just touching pipette to the membrane. Since the 

membrane is not ruptured, a long term measurements can be performed. 

Patch clamp electrophysiology is the gold standard for measuring membrane electrical 

activity. It is a short term and technique driven. To overcome this microelectrode arrays have 

been developed and are capable of measuring electrical activity over long periods. Optical 

measurement systems based on changes in emitted fluorescence signal upon incorporation of a 

dye are also used. The fluorescent probes are voltage sensitive and emit fluorescence when a 

change in voltage occurs. The changes in fluorescent intensities need to be tracked and 

processed for quantifying. To perform high throughput electrophysiology, the planar patch 

clamp technique has been developed. During planar patch clamp, cells are suspended in a 

solution and added to a chip containing micro pipettes. Suction is applied in the micropipettes 

to create a seal followed by record membrane electrical activities. 

2.2.3. Hodgkin-Huxley model 

Hodgkin & Huxley’s mathematical description of AP formalism is the most widely used to 

describe an AP and relies on the opening and closing of channels, selectively allowing ions to 

move across the membrane [65].  A series of voltage clamp experiments were performed and 

the experimental data was fitted to obtain sodium conductance of voltage gated sodium 

channels consisting of activation ‘m’ and inactivation ‘h’ gates. The potassium conductance was 

also determined which consisted of a single activation gate ‘n’. The ionic conductances were 

obtained from, 
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𝑔𝑁𝑎 = 𝑔𝑚𝑎𝑥𝑚
3ℎ (2) 

𝑔𝐾 = 𝑔𝑚𝑎𝑥𝑛
3 (3) 

Where 𝑔𝑚𝑎𝑥 is the maximum conductance of ion channel. The exponents on m, n and h were 

determined by obtaining a fitting of the model to experimental data. The gating variables were 

postulated and determined for voltage-gated time constants i.e., τm , τh and τn. The leak 

conductances were incorporated to account for small conductances in the membranes. The 

ODE’s for the HH model are given by, 

𝐶 𝑑𝑉

𝑑𝑡
= −𝑔𝑁𝑎𝑚

3ℎ(𝑉𝑚 − 𝑉𝑁𝑎) − 𝑔𝐾𝑛
4 (𝑉𝑚 − 𝑉𝐾) − 𝑔𝑙𝑒𝑎𝑘(𝑉𝑚 − 𝑉𝑙𝑒𝑎𝑘) + 𝐼𝑎𝑝𝑝 

(4) 

𝑑𝑛

𝑑𝑡
=  𝛼𝑛(1 − 𝑛) − 𝛽𝑛𝑛 

(5) 

𝑑𝑚

𝑑𝑡
=  𝛼𝑚(1 − 𝑚) − 𝛽𝑚𝑚 

(6) 

𝑑ℎ

𝑑𝑡
=  𝛼ℎ(1 − ℎ) − 𝛽ℎℎ 

(7) 

The model could mimic the neuronal dynamics accurately but were computationally 

inefficient for parameter estimation and model simulation [66]. To create a more accurate 

estimation of parameters, a functional form for the voltage dependence of the rate constants 

that takes into account more realistic effect of the electrical field on the ion channel protein 

was developed by Destexhe et al. [67]. Mohan et.al have developed a linear thermodynamic 

formalism that was then used to describe the voltage and time dependence of the ionic 

conductance, which eliminated the need for ‘guessing’ the function for the voltage-dependence 
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of rate constants and the same form could be used for characterization of all ion channels [27].  
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CHAPTER-3: EXPERIMENTAL METHODS 

 

In this chapter, the methodology implemented to perform experiments is described in 

detail. NG108-15 cells, a neuroblastoma-glioma hybrid neuronal cell line were used for 

developing and charactering the model. The NG108-15 cell line was developed by fusing a 

mouse N18TG2 neuroblastoma cell with a rat C6-BU-1 glioma cell in the presence of an 

inactivated Sendai virus. The NG108-15 cells line was developed in 1971 by Bernd Hamprecht 

[68]. These cells do not form synapses and possess functional properties of neurons making 

them ideal for performing high-throughput drug screening and pathway analysis. A 

combination of biochemical and electrophysiological measurements were performed to 

characterize and develop the model. 

3.1. Surface modification 

Glass coverslips (22 mm × 22 mm, Thomas Scientific) were coated with N-1[3-

(trimethoxysilyl) propyl] diethylenetriamine (DETA) according to previously published protocols 

[10]. The protocol involved cleaning coverslips using a mixture (1:1) of hydrochloric acid and 

methanol followed by soaking it in concentrated H2SO4 for 30 min. The cover slips were rinsed 

with deionized (DI) water for 30 min, immersed in boiling in deionized water for 30 min, rinsed 

with acetone and placed in an oven at 70 oC for 20 min to allow drying. The cleaned surfaces 

were treated with a 0.1% (v/v) mixture of organosilane in toluene to form a thin film of DETA 

(United Chemical Technologies., Bristol, PA). The DETA coated coverslips were heated to a 

temperature just below the boiling point of toluene, rinsed with toluene, reheated to a 
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temperature just below the boiling point again and then oven dried [27]. The DETA surface was 

analyzed using contact angle measurements and X-ray photon spectroscopy (XPS) [69]. 

3.2. Preparation of culture medium and patching Solutions 

3.2.1. Culturing and differentiation medium 

NG108-15 culturing medium was prepared by adding 50ml of 10% fetal bovine serum 

(FBS) (Gibco, NY, USA ) and 10ml of hypoxanthine-aminopetrin thymidine (HAT) medium 

supplement (Sigma-Aldrich Corp, St.Louis, USA) to 500ml of Dulbecco’s modified eagle’s 

medium (DMEM, Gibco). The differentiation medium was prepared by adding 10 ml of B27 

(Gibco) to 500ml of DMEM (Gibco) media. The prepared medium was sterilized by filtration and 

stored at 4 oC. 

3.2.2. Intracellular patch solution 

Intracellular solution was prepared by dissolving 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES) and ethylene glycol tetraacetic acid (EGTA) in water. The 

mixture was sonicated to ensure that EGTA is completely dissolved. Following sonication, NaCl, 

KCl, MgCl2 and CaCl2 were added to the solution. DI water was added to make up the volume to 

50 mL. The osmolarity of the solution was verified using an osmometer (Fiske) and adjusted to 

280-290 mOsm by adding HEPES. The pH of the solution was adjusted to 7.2 at room 

temperature. The prepared solution was aliquoted into 1mL vials and stored at 4 oC. The 

osmolarity was checked prior to performing the experiment. The composition of the solution is 

listed in Table 2.  
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Table 2: Composition of intracellular patch solution 

Compound Concentration (mM) 

Sodium chloride 10 

Potassium chloride 140 

Magnesium chloride 2 

Calcium chloride 0.5 

Ethylene glycol tertaacetic acid 1 

HEPES buffer 10 

 

3.3. NG108-15 cell culture 

The NG108-15 cell line (passage number: 16) was obtained from Dr. M. W. Nirenberg, 

National Institute of Health (NIH) and was sub-cultured according to previously published 

protocols [27,41]. A vial of NG108-15 cells stored under liquid nitrogen was thawed and 

immediately resuspened in 9ml of culturing medium. The medium with the cells was 

centrifuged at 1000 RPM for 5 min. The supernatant was removed and the cells were 

resuspened in 1ml of fresh culturing medium. A cell count was performed using tryphan blue in 

a hemocytometer. During resuspension, cells were mixed slowly to avoid cell damage and care 

was also taken to avoid bubbles. The suspension containing cells was then added to a T-75 flask 

(Corning, NY, USA) containing 20ml of fresh differentiation medium. The flask was placed in a 



 

38 

 

standard cell culture incubator at 37 oC for 72 hours to achieve 90% confluency (Figure 2).  

 

Figure 2: A representative image of NG108-15 cells after reaching 90% confluency on Day 3. 

DETA coated cover slips were sterilized by rinsing with ethanol in a biosafety hood. The 

coverslips were allowed to dry in the hood and transferred to 6-well plates (Corning, NY) 

followed by the addition of 3ml of fresh differentiation media. The plates were placed in the 

incubator for 20 min. Cells were collected from the T75 flask by removing the culturing media 

and adding 10ml of fresh differentiation media. The flask was tapped to detach the cells. The 

medium with cells was centrifuged for 5 min at 1000 RPM.  The supernatant were removed and 

resuspened in 1ml of fresh differentiation medium. Cell count was performed using tryphan 

blue in a hemocytometer. The cell mixture was diluted and plated at different densities. Cells 

were plated at 4×105 cells per well for patch clamp electrophysiology and 8×105 to 1×106 cells 
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per well for biochemical assays. A half media change was performed every 2 days. The 

morphology of cells was examined every day and experiments were performed after 4 days 

(Figure 3). 

 

Figure 3: Differentiation of NG108-15 cells. The morphology of cells on DETA coated coverslips on DIV-1 (A), 3 (B), 4 
(C) and 5 (D) is shown at 10x 

3.4. Biochemical assays 

The basal metabolism of the NG 108-15 cells was determined by performing biochemical 

assays on day four. The rate of glucose uptake, lactate production, ATP and ADP concentrations 

were determined. 

A B 

C D 
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3.4.1. Glucose assay 

The differentiation medium was taken out from the 6 well plate and 1ml of fresh 

differentiation medium or differentiation medium containing drug was added. Samples were 

collected every 20 min and the glucose concentration was analyzed using a colorimetric assay 

kit.  (Biovision, Inc; Catalog #K606-100).  A sample of 4 µL was diluted by adding 16µL of assay 

buffer solution and 2µL of the diluted sample was further diluted to total volume of 50µL/well. 

The glucose standard curve was prepared by diluting the glucose standard to 1nmol/µL 

by adding 10µL of the glucose standard to 990µL of glucose assay buffer. Various volumes, 

namely 0, 2, 4, 6, 8 and 10 µL of the above solution were added into each well individually. The 

volume was adjusted to 50µL/well with glucose assay buffer to generate 0, 2, 4, 6, 8 and 10 

nmol/well of the glucose standard.  

Enough reagents for the number of assays to be performed were pre-mixed. For each 

well, a total 50µL reaction mix was prepared by adding 46µL glucose assay buffer, 2µL glucose 

probe and 2µL glucose enzyme mix. Then 50µL of glucose reaction mix was added to each well 

to obtain 100µL per well. The plate/reaction was then placed in an incubator at 370C for 30 min. 

The absorbance was measured at 570nm using a Synergy HT mulitwell plate reader (BioTek 

Instruments, Inc.). A calibration curve was performed simultaneously and the background was 

corrected using the blank (Figure 4).  



 

41 

 

 

Figure 4: Glucose assay standard curve 

The concentrations of the samples were determined by the following equations: 

𝐶 =
𝑆𝑎 × 𝐷

𝑆𝑣
 

(8) 

Where, C = Actual concentration from the graph; Sa = Sample amount (in nmol) from standard 

curve; Sv = Sample volume added to the sample wells; D = Dilution factor 

Calculation of Flux per minute per cell (Fmc), 

𝐹𝑚𝑐 = 
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(9) 

Where, C2 = Concentration of glucose present at time (T2), C1 = Concentration of glucose 

present at time (T1) and Cc = Cell count. 
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3.4.2. Lactate assay 

Samples were collected every 20 min and the lactate concentration was analyzed using 

a colorimetric assay kit (Biovision, Inc; Catalog #K606-100). Samples were collected 

simultaneously while performing the glucose assay. A sample of 4 µL was diluted by adding 

16µL of assay buffer solution and 2µL of the diluted sample was further diluted to total volume 

of 50µL/well. 

The lactate standard curve was prepared by diluting the lactate standard to 1nmol/µL by 

adding 10µL of the lactate standard to 990µL of lactate assay buffer and it was mixed well. 

Various volumes, namely 0, 2, 4, 6, 8 and 10 µL of the above solution were added into each well 

individually. The volume was adjusted to 50µL/well with glucose assay buffer to generate 0, 2, 

4, 6, 8 and 10 nmol/well of the lactate standard.  

Sufficient reagents for the number of assays to be performed were pre-mixed. For each 

well, a total 50µL reaction mix was prepared by adding 46µL lactate assay buffer, 2µL lactate 

probe and 2µL lactate enzyme mix. Then 50µL of lactate reaction mix was added to each well so 

that each well totaled 100µL in volume. The plate/reaction was then placed in the incubator at 

370C for 30 min. The absorbance was measured at 570nm using as Synergy HT mulitwell plate 

reader (BioTek Instruments, Inc.). A calibration curve was performed simultaneously and the 

background was corrected using the blank (Figure 5). 
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Figure 5: Lactate assay standard curve 

Calculation of the Unknown concentration using linear trend:  

𝐶 =
𝑆𝑎 × 𝐷

𝑆𝑣
 

(10) 

Where, C = Actual concentration from the graph; Sa = Sample amount (in nmol) from standard 

curve; Sv = Sample volume added to the sample wells; D = Dilution factor 

Calculation of Flux per minute per cell (Fmc), 

𝐹𝑚𝑐 = 
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Where, C2 = Concentration of glucose present at time (T2), C1 = Concentration of glucose 

present at time (T1) and Cc = Cell count. 
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3.4.3. ATP assay 

On day 4, differentiation medium was replaced with the either fresh or drug containing 

medium. Cells were incubated and samples were collected for every 20 min and 60 min. Cells 

were rinsed twice and collected by trypsinization. The detached cells were resuspended in 

extracellular solution and cell count was performed. Cells were centrifuged and 100uL of ATP 

assay buffer was added to the cells followed by adding 20 µL of PCA and 5 µL of neutralization 

solution (Deproteinizing Sample Preparation Kit, Biovision, Inc, Catalog#: K808-200). The sample 

was then frozen until all the remaining samples were collected. 50 µL of the sample was 

analyzed using the ATP assay kit (Biovision, Inc; Catalog #K354-100). 

The ATP standard curve was prepared by diluting the ATP standard to 1nmol/µL by 

adding 10µL of the ATP standard to 990µL of ATP assay buffer. Various volumes, namely 0, 2, 4, 

6, 8 and 10 µL of the above solution was added into each well individually. The volume was 

adjusted to 50µL/well with ATP assay buffer to generate 0, 2, 4, 6, 8 and 10 nmol/well of the 

ATP standard. 

 Reagents for the number of assays to be performed were pre-mixed. For each well, a 

total 50µL reaction mix was prepared by adding 44µL ATP assay buffer, 2µL ATP probe, 2µL ATP 

developer min and 2µL ATP converter. Then 50µL of ATP reaction mix was added to each well 

so that each well totaled 100µL in volume. The plate/reaction was then placed in the incubator 

at 370C for 30 min. The absorbance was measured at 570nm using as Synergy HT mulitwell 

plate reader (BioTek Instruments, Inc.). The calibration curve was performed and the 

background was corrected by subtracting the value from the 0 lactate control from all readings 
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(Figure 6). 

 

Figure 6: ATP assay standard curve 

Calculation of the ATP concentration(C) using linear trend:  

𝐶 =
𝑆𝑎 × 𝐷

𝑆𝑣
 

(12) 

Where, C = Actual concentration from the graph, Sa = Sample amount (in nmol) from standard 

curve, Sv = Sample volume added to the sample wells, D = Dilution factor, Total cell volume = 

number of cells × cell volume. 

Dilution factor (D) was calculated as, 

𝐷 =
𝑇𝑜𝑡𝑎𝑙 𝑐𝑒𝑙𝑙 𝑣𝑜𝑙𝑢𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑐𝑒𝑙𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 + 𝑃𝐶𝐴 + 𝑁𝑒𝑢𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
 

(13) 
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3.4.4. ADP assay 

An ADP assay was performed in parallel with the ATP assay. On day 4, differentiation 

medium was replaced with either fresh or drug containing medium. Cells were incubated and 

samples were collected for every 20 min and 60 min. Cells were rinsed twice and collected by 

trypsinization. The detached cells were resuspended in extracellular solution and cell count was 

performed. Cells were centrifuged and 100µL of ADP assay buffer was added to the cells 

followed by adding 20µL of PCA and 5µL of neutralization solution (Deproteinizing Sample 

Preparation Kit, Biovision, Inc, Catalog#: K808-200). The sample was then frozen until all the 

remaining samples were collected. 50uL of the sample was analyzed using the ADP assay kit 

(Biovision, Inc; Catalog #K355-100). 

The ADP standard curve was prepared by diluting the ADP standard to 1nmol/µL by 

adding 10µL of the ADP standard to 990µL of ADP assay buffer and it was mixed well. Various 

volumes, 0, 2, 4, 6, 8 and 10 µL, of the above solution was added into each well individually. The 

volume was adjusted to 50µL/well with ADP assay buffer to generate 0, 2, 4, 6, 8 and 10 

nmol/well of the ADP standard. 

 Required quantity of reagents for the number of assays to be performed was pre-mixed. 

For each well, a total 50µL reaction mix was prepared by adding 44µL ADP assay buffer, 2µL 

ADP probe, 2µL ADP developer min and 2µL ADP converter. Then 50µL of ATP reaction mix was 

added to each well so that each well totaled 100µL in volume. The plate/reaction was then 

placed in the incubator at 370C for 30 min. The absorbance was measured at 570nm using as 

Synergy HT mulitwell plate reader (BioTek Instruments, Inc.). The calibration curve was 
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performed and the background was corrected by subtracting the value from the blank from all 

readings (Figure 7). 

 

Figure 7: ADP assay standard curve 

Calculation of the ADP concentration(C) using linear trend:  

𝐶 =
𝑆𝑎 × 𝐷

𝑆𝑣
 

(14) 

Where, C = Actual concentration from the graph; Sa = Sample amount (in nmol) from standard 

curve; Sv = Sample volume added to the sample wells; D = Dilution factor; Total cell volume = 

number of cells × cell volume. 

Dilution factor (D) was calculated as, 
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𝐷 =
𝑇𝑜𝑡𝑎𝑙 𝑐𝑒𝑙𝑙 𝑣𝑜𝑙𝑢𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑐𝑒𝑙𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 + 𝑃𝐶𝐴 + 𝑁𝑒𝑢𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
 

(15) 

3.5. Patch clamp electrophysiology 

Patch clamp electrophysiology was performed on the NG108-15 cells to collect 

parameters for the model. Whole cell recordings were performed to assess changes in cellular 

membrane electrical activity. The instrumentation and the methodology to record cellular 

electrical activity are described in the following sections. 

3.5.1. Instrumentation 

The experimental setup for performing patch clamp electrophysiology is shown in figure 

2A. It consists of a a Zeiss Axioscope 2 FS plus upright microscope (Figure 8B) which was 

mounted on a Gibraltar platform with motors for movement in X and Y directions (Figure 8B). 

The whole system was mounted on a vibration-isolation table to avoid unwanted vibrations 

during recording. A Faraday cage was also installed round the system and grounded to protect 

the interior against external electric fields and electrostatic discharges. Micromanipulators 

were used to precisely manipulate the patch pipette at a micrometer resolution. The pipette 

holder was attached to the headstage (Figure 2B) and was also equipped with a flexible tube to 

control pressure.  

The electrodes were prepared using a Shutter 97 pipette puller (BF150-86-10; Sutter, 

Novato, CA) as shown in Figure 8B. The voltage clamp and current clamp measurements were 

performed on a Multiclamp 700B amplifier (Axon Instrument, Foster City, CA, USA) as shown in 
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Figure 2C. An Axon Digidata 1322A (Figure 8C) interface was used to filter the signals at 2 kHz 

and digitized at 20 kHz. The probe from Axon Digidata 1322A was connected to the 

micromanipulators and pipette holder. All data acquisition was performed using pClamp 10 

software (Axon Instruments, Foster City, CA, USA).  

 

Figure 8: Set up of the electrophysiology rig having the microscope mounted on a gibraltor stage (A). Pipette puller 
(B), Amplifier (C), micromanipulator (D) is also shown 

 

A B 

C 
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3.5.2. Whole cell recordings 

Whole-cell patch recordings were performed on the stage of a Zeiss Axioscope 2 FS Plus 

upright microscope (Axiovert 200, Carl Zeiss, Göttingen, Germany). The recordings were 

obtained at room temperature (21-25 oC) in the recording chamber containing differentiation 

medium. The recording chamber was continuously perfused with the differentiation medium. 

To investigate the effect of the drugs on action potential, metabolic inhibitors were added to 

the medium. Patch pipettes (4–6 MΩ resistance) were prepared from borosilicate glass with a 

Sutter P97 pipette puller and filled with intracellular solution.  

The cell to be patched was observed under a 40X objective. The electrode was 

positioned till the tip was bright on the monitor and immerse in the patch chamber (Figure 9). 

The pipette offset was compensated. The objective was lowered followed by the electrode until 

one could see the electrode was above the cell (Figure 10). The Seal Resistance was recorded 

and the electrode was pushed towards the cell membrane. The pipette then touched the cell 

and an increase of 0.5mohms was observed. The initially applied pressure was removed and 

gentle suction was applied by mouth. If required, constant pressure was applied to form a seal. 

The image of the cell was saved. A holding potential of -70mV (in Multiclamp) was applied to 

form the gigaohm seal. The leakage current on the amplifier was less than 30pA. The gigaohm-

seal formed was recorded and the pipette capacitance (fast & slow) was compensated. A short 

slight suction ‘Kiss’ was applied to open the cell membrane and the capacitive transient was 

observed. The membrane resistance was recorded and the seal test window was switched off.  

The membrane potential was checked by switching to I=0 mode. The whole cell 



 

51 

 

parameters (click Auto) followed by leak subtraction (auto) were compensated. The stability of 

the patch was checked by clicking on membrane test and results were saved. The gain and 

Bessel were set to 5 and 3 respectively. The ionic currents were measured in voltage clamp 

mode using 10mV voltage steps from a holding potential of -85mV. By holding the voltage 

constant the changes in current was measured in voltage clamp mode. A p/6 protocol was 

implemented upon compensating for the whole cell capacitance and series resistance. The 

access resistance of the patched cells was less than 20 MΩ. Experimental parameters such as 

membrane resistance, membrane capacitance, resting membrane potential and injected 

stimulus current were noted. The protocol in clampex was then initiated. The membrane test 

was again performed and the results were saved. 

 

Figure 9: An image showing the glass electrode, ground electrode, patching chamber, objective lens on an 
electrophysiology rig 



 

52 

 

The action potentials were recorded by switching to IC mode and by compensating for 

bridge balance. The holding current was adjusted to get a membrane potential of -70mV. A 2 

ms depolarizing current injections was injected to initiate action potentials. The perfusion 

system was switched to add the drug. The APs were continuously recorded until either the 

patch was lost or the cell could no longer generate an AP. The membrane test was checked and 

results were saved.  

 

Figure 10: Picture of NG108-15 cell during electrophysiological recording 

A voltage clamp recording was again performed at the end to see the effects of drugs on 

VC recording. All the recordings were corrected for a junction potential that developed during 

the interface between the patch electrode and the bath solution. The Multiclamp 700B files 

were also saved for extraction of any other parameters, if necessary. Data was saved and 

imported into MATLAB using a custom code for parameter estimation. 
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CHAPTER-4: MODEL DEVELOPMENT 

 

The neuronal-metabolic model was built in a top-down approach by integrating the 

ensemble metabolic model to a modified Hodgkin Huxley based neuronal module. The models 

were implemented with physiological compartments, including physiological volumes. The 

metabolic compartments were nested in the cytosolic volume and the total cellular volume was 

nested in the extracellular volume. The compartments were implemented as volumetric ratios 

as shown in Table 3.  

Table 3: Volumetric ratios of nested cellular compartments 

Compartment Volumetric ratio Reference 

Total Intracellular volume 1 Estimated 

Bulk cytosolic space 0.65 [70] 

Sub-cellular space 0.02 [70] 

Mitochondria 0.05 [71] 

Endoplasmic reticulum 0.1 Estimated 

Others (Nucleus, Lysosomes) 0.28 Estimated 

 

A modular approach was utilized during model reconstruction. The model development was 

completed in 3 major developmental stages, (1) reconstruction of a neuronal metabolism, (2) 
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development of neuronal module and (3) the integration of models for predicting effects of 

metabolic perturbations. Each of these modules is described in the following sections. 

4.1. Reconstruction of metabolic model 

The metabolic module for NG108-15 cells includes the core metabolic pathways for 

carbon metabolism and cellular bioenergetics and was reconstructed by combining glycolysis 

[72], mitochondria [59] and endoplasmic reticulum [73,74] modules. The model was 

reconstructed in MATLAB Simbiology. Simbiology allows for rapid expansion of the model by 

facilitating the addition of other cellular processes through Systems Biology Markup Language 

(SBML). It also provides access to several solvers for simulation of dynamic models of cellular 

process. The equations can be programmed directly in MATLAB but Simbiology enables us to 

implement it in a graphic user-interface (GUI) by creating a diagram for visualization. The data 

can be imported and exported easily from Simbiology. Moreover, it is backed up by the entire 

MATLAB suite which can help perform various analyses using any custom code. A detailed list of 

reactions, fluxes, parameters and metabolite concentrations are depicted in the Appendix. 

4.1.1. Glycolysis model 

The glycolysis module was adapted from a comprehensive model of energy and redox 

metabolism for human erythrocytes [58]. This mathematical model converts glucose to lactate 

through a series of 13 reactions, from hexokinase to lactate dehydrogenase via 2,3-

biphosphoglyceate shunt involving 19 reactants (Figure 11). Glycolysis requires oxidized 

Nicotinamide adenine dinucleotide (NAD+) and reduced Nicotinamide adenine dinucleotide 
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(NADH). The NADH is utilized by the cells and is recycled back to NAD+.  Several reactions are 

capable of performing this conversion and one of them is the lactate dehydrogenase (LDH) that 

converts pyruvate into lactate. The lactate is then transported out of the cell via the 

monocarboxylate transporters (MCT). The MCT’s are also equipped to transport pyruvate. 

 

Figure 11: Glycolytic module consisting of glycolysis, pentose phosphate pathway and glutathione 
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In addition, the glycolytic module also contains ten other reactions that include 

glutathione oxidation, glutathione reduction and pentose phosphate pathway (PPP). The 

glutathione reduction and oxidation dictates the conversion of Nicotinamide adenine 

dinucleotide phosphate (NADPH) to NADP thereby influencing the lactate dehydrogenase 

enzyme activity. The glutathione process has been lumped together into a generalized reaction. 

A sink for phosphoribosylpyrophosphate (PRPP) has been included for the consumption of 

carbon entering the PPP to avoid the accumulation of intracellular metabolites. The ATP 

dependent exchangers were incorporated and calibrated to match the activities obtained from 

the neuronal module. A generalized ATP consumption reaction has been implemented to 

represent all the other ATP utilizing pathways. The total adenine concentration has been 

maintained constant by including the conservation condition and an adenine kinase reaction 

that mediates the conversion of ADP to AMP and ATP [72]. The total adenine nucleotides 

including the NAD+ and NADH, NADP and NADPH and FAD+ and FADH2 were held constant. The 

temporal behavior of the metabolite concentration is based on ordinary differential equations. 

All the rate equations have a general form as described in equation 16,  

𝑣 = 𝑉𝑚𝑎𝑥 ×  𝑟(𝑋) × (∏ 𝑥
𝑖

𝑐+𝑖𝑗

𝑖
− 
1

𝑞
∏𝑥

𝑖

𝑐−𝑖𝑗

𝑖

) 
(16) 

Where c+ and c- are the positive and negative elements of the stoichiometric matrix, q is the 

equilibrium constant and r(X) is the regulatory function for saturation, allostery, etc [58]. Earlier 

models have described the HK, PFK, PK, DPGM, DPG, G6PD, 6PGD and GSSR to be completely 

irreversible. An increase of backward fluxes by several orders of magnitude due to high 
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accumulation of metabolites was avoided by using rate equations based on equation 16. The 

equilibrium constants and kinetic equations were taken from several other sources [58]. The 

equations for AK, PGK and enolase were based on data from previously published results [58]. 

AK and PGK were considered to have a random BiBi mechanism. PGM and enolase are based on 

an UniUni mechanism [58]. 

4.1.2. Mitochondrial model 

The mitochondrial model was adapted from a cardiac mitochondrial metabolism model 

and consists of 22 reactions involving 27 reactants [59]. The total mitochondrial volume was set 

to be 5% of the total cell volume [71]. The model incorporates the main mitochondrial 

electrophysiological and metabolic process including the oxidative phosphorylation and matrix-

based process in mitochondria (Figure 12). The reaction rates of the enzymes in the TCA cycle 

namely, citrate synthase, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase and malate 

dehydrogenase have been implemented as described and implemented as described by 

Cortassa et al [59]. Sensitivity to calcium is also incorporated for IDH and KDGH. The TCA cycle 

in the model can be divided into two pathways, the tricarboxylate (oxaloacetate to α-

ketoglutarate) and the dicarboxylate (α-ketoglutarate to oxaloacetate) pathway. Acetyl-CoA 

and oxaloacetate react and produce α-ketoglutarate (αKG), NADH, and CO2. αKG serves as a 

substrate of the dicarboxylate pathway producing OAA that resupplies and initiates the 

tricarboxylate pathway. 

The mitochondrial model involves the complete oxidation of acetyl CoA to generate 

NADH and ATP. Acetyl CoA is the point of convergence for carbohydrate, amino acid and fatty 
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acid metabolism. The oxidation of acetyl CoA produces NADH and FADH2, which are oxidized to 

propel oxidative phosphorylation. The model includes both the explicit electrical gradient (ΔΨm) 

and the proton gradient across the mitochondrial inner membrane established by oxidative 

phosphorylation. The protons from NADH and FADH2 are oxidized pumping protons across the 

mitochondrial inner membrane establishing a proton motive force and proton gradient. The 

large ΔΨm of the inner mitochondrial membrane determines the electrochemical transport of 

ions across, including calcium influx and efflux. The proton motive forces drive the 

phosphorylation of matrix ADP to ATP by F1F0-ATPase. The F1F0-ATPase activity accounts for the 

reversibility of the enzyme when the ΔµH collapses. 

 

Figure 12: Diagram showing mitochondrial module in Simbiology 

The Adenine Nucleotide Transporter (ANT) transports the ATP from the inner 
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membrane of the mitochondria to the cytosol and reaction was implemented. The model also 

incorporates a proton leak that influences the mitochondrial membrane potential and proton 

motive force that follows a thermokinetic formulation. The mitochondrial membrane potential 

is determined by, 

dΔΨm
dt

=
𝑉𝐻𝑒 + 𝑉𝐻𝑒(𝐹) − 𝑉𝐻𝑢 − 𝑉𝐴𝑁𝑇 − 𝑉𝐻𝑙𝑒𝑎𝑘 − 𝑉𝑁𝑎𝐶𝑎 − 2𝑉𝑢𝑛𝑖

𝐶𝑚𝑖𝑡𝑜
 

(17) 

Where, 𝑉𝐻𝑒 , 𝑉𝐻𝑒(𝐹), 𝑉𝐻𝑢, 𝑉𝐴𝑁𝑇, 𝑉𝐻𝑙𝑒𝑎𝑘 , 𝑉𝑁𝑎𝐶𝑎 𝑎𝑛𝑑  𝑉𝑢𝑛𝑖 are the rates of NADH oxidation, FADH2 

oxidation, F1F0-ATPase , adenine nucleotide transporter, sodium-calcium exchanger and calcium 

uniporter. The redox (Ares), phosphorylation (AF1) potentials and the proton motive force (ΔµH) 

are the driving forces. The coefficients in the equations and the rate constants of are obtained 

from Cotrassa et.al [59]. In addition, the model considers the explicit dependence of the TCA 

cycle dehydrogenases on mitochondrial calcium concentration. The influx of calcium through 

the Ca+2 uniporter and the Na-dependent Ca+2 efflux driven by Na+/Ca+2 antiporter determines 

the mitochondrial calcium concentration. The phosphate transport into the mitochondria also 

has the general form described in equation 16. 

4.1.3. Endoplasmic reticulum Model 

The endoplasmic reticulum (ER) model was included to study the effect of calcium on 

cellular dynamics. The ER model consists for the IP3 receptor, sarcoplasmic reticulum calcium 

ATPase (SERCA) and a calcium leak (Figure 13). These pumps were implemented as described in 

Chen et.al [74]. The activation/inhibition of the general plasma membrane receptor has been 

coupled with the activation of phospholipase C (PLC), which converts phosphatidylinositol 4,5-
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biphosphate (PIP2) to inositol 1,4,5-triphosphate and diacylglycerol (DAG). The rate equation 

for the hydrolysis of PIP2 and IP3 and DAG by PLC was implemented using Michaelis-Menten 

kinetics and multiplied by its Boolean value. Therefore, when the Boolean value is zero, the 

reaction rate is zero, and when the Boolean value is one, the reaction rate is given by equation 

18, 

𝑣 = 𝑉𝑚 ∗  (
[𝑃𝐼𝑃2]

𝐾𝑚+[𝑃𝐼𝑃2]
)    

(18) 

 

Figure 13: Implemented endoplasmic reticulum module in Simbiology 

A simple rate equation was implemented for IP3 and DAG consumption, which used 

mass action kinetics IP3 then, activates IP3R calcium channels on the endoplasmic reticulum 

membrane, through which endoplasmic reticulum calcium is released into the cytosol. While 

the flux of calcium to and from the mitochondria has been addressed by the implementation of 
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the mitochondrial metabolism model [59], the ER calcium flux has been addressed by 

implementing reactions as described in Marhl et al. [73]. The IP3 calcium channel kinetics was 

modified as described by Chen et al and includes a dependence of IP3 that was absent in the 

channel reaction rate as described by Marhl et al.  

4.1.4. Ensemble metabolic model 

The glycolysis and the mitochondrial model were coupled by including the reactions for 

pyruvate transport into mitochondria followed by conversion of acetyl Co-A by pyruvate 

dehydrogenase (Figure 14). The rate equation for pyruvate transport into mitochondrial space 

had the general form previously described in equation 16, 

𝑣 = 𝑉𝑚𝑎𝑥 ([𝑃𝑦𝑟]𝑐𝑒𝑙𝑙 − 
[𝑃𝑦𝑟]𝑚𝑖𝑡𝑜
𝐾𝑒𝑞𝑃𝑇

) 
(19) 

Where, 𝐾𝑒𝑞𝑃𝑇 is the equilibrium constant for pyruvate transport, [𝑃𝑦𝑟]𝑀𝑖𝑡𝑜 and [𝑃𝑦𝑟]𝑐𝑒𝑙𝑙 are 

the concentrations of pyruvate in the mitochondria and cytosol. The rate equation for pyruvate 

dehydrogenase was implemented using the irreversible mass action kinetics as described by 

Nazaret et al. [75] and is shown below. 

𝑣 = 𝐾𝑃𝐷𝐻 ([𝑃𝑦𝑟]𝑀𝑖𝑡𝑜 − 
[𝐴𝑐𝐶𝑜𝐴]𝑚𝑖𝑡𝑜
𝐾𝑒𝑞𝑃𝐷𝐻

) [𝐶𝑜𝐴]𝑚𝑖𝑡𝑜 [𝑁𝐴𝐷]𝑚𝑖𝑡𝑜 
(20) 

Where, 𝐾𝑃𝐷𝐻  is the Michaelis constant for PDH, 𝐾𝑒𝑞𝑃𝐷𝐻 is the equilibrium constant for PDH, 

[𝑃𝑦𝑟]𝑀𝑖𝑡𝑜, [𝐴𝑐𝐶𝑜𝐴]𝑚𝑖𝑡𝑜, [𝐶𝑜𝐴]𝑚𝑖𝑡𝑜and [𝑁𝐴𝐷]𝑚𝑖𝑡𝑜are the concentrations of pyruvate, Acetyl-

CoA, CoA and NAD in mitochondria. 
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Figure 14: Reconstructed NG108-15 metabolic model in MATLAB Simbiology 

The Glycerol-3 Phosphate (G3P) shuttle for transferring the NADH equivalents into the 

mitochondria was incorporated using irreversible mass action kinetics. The shuttle is 

irreversible and not as efficient as the malate-aspartate shuttle (MAS). It can generate only 1.5 

ATP compared to 2.5 ATP transferred by MAS [51]. The reducing equivalents of NADH are 

transferred to glycerol-3 phosphate which is converted to dihydroxyacetone phosphate on the 

mitochondrial membrane by mitochondrial glycerol-3phosphate dehydrogenase. Thus the 

reducing equivalents are transferred to FAD to form FADH2 in the mitochondria which are 

further oxidized to generate the required proton motive force for ATP production. 

The cytosolic ATP and ADP levels are linked to the mitochondrial Adenine Nucleotide 
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Transporter activity. The ATP consumption by the ATP-dependent pumps was incorporated and 

matched to the activity of that obtained in the neuronal module. The generalized ATPase 

reaction was also included to represent all the other ATP consuming processes in the cell. The 

general ATPase reaction will further be categorized upon incorporation of other modules and 

ATP dependent reactions. The mitochondrial calcium uptake and release was tied to the 

cytosolic calcium concentration. The cytosolic calcium concentration is again dependent on the 

calcium fluxes from the endoplasmic reticulum and the neuronal module. The phosphate 

transport into the cell and mitochondria was implemented based on equation 16. 

The cellular volume of NG108-5 cells was calculated using the equation of volume for a 

sphere. A radius of 22.5µm was used and is within the experimentally observed range published 

by American Type Culture Collection (ATCC) and also in agreement with the cell volume 

reported by Dubois el al. [76].  

4.1.5. Parameter estimation for metabolism model 

The rate equations in the metabolic model contain several parameters such as Vmax, Km, 

Ki etc. The values of the parameters are dependent on mutations, binding of effectors, lack of 

cofactors, etc.. In the glycolytic module only specific parameters such as the maximum activity 

Vmax is considered to alter as it reflects the concentration of the enzymes and the structural 

modifications of the enzyme [58]. The Vmax’s for the set of glycolytic, PPP, pyruvate transport 

and lactate transport reactions were scaled directly. The mitochondrial module has no Vmax’s 

but instead the mitochondrial enzyme concentration (E) is altered directly.  
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The flux of all the reactions in the metabolic reaction was obtained by forcing the model 

to a steady state. The steady state fluxes were set to obey the flux balance condition as shown 

below to represent the conservation of mass for reaction system. In steady state, the 

dependent change of metabolic concentrations in equation 21 is zero. The sundials solver was 

used with an absolute tolerance of 1.0e-8 and a relative tolerance of 1.0e-5. Sundials solver was 

recommended by MATLAB for running simulations that use rules and events. 

∑𝑁𝑖𝑗

𝑟

𝑗=1

𝑉𝑗 =  ∑𝑁𝑖𝑗

𝑟

𝑗=1

(𝑉𝑗
(+)
− 𝑉𝑗

(−)
) = 0 

(21) 

Optimization was performed using built-in MATLAB optimization routines. The function 

‘fmincon’ computes a constrained minimum of a function by varying the variables within 

specific bounds. Metabolites fluxes have been included as constraints in FBA. The fluxes of 

glucose uptake and lactate release were constrained during parameter estimation. The 

intracellular levels of ATP and ADP were also constrained during flux balance analysis by 

applying sum of squared residuals. 

Model optimization was carried out by applying the weighted least squares fitting 

method. The least square method minimizes the summed square of residuals. The residuals are 

the difference between simulated values and experimental values, 

𝑟𝑛 = 𝑆𝑛 − 𝐸𝑛  (22) 

The fit was improved by incorporating an additional scaling factor (weight) in the fitting 

process. The error estimate with weighted least-squares regression was determined by 
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𝑠𝑠𝑟 =  ∑𝑤(𝑟

𝑛

)2 (23) 

Where, the simulated flux is given by 𝑆 and the experimental flux by 𝐸. The influence of 

parameter estimate is response is determined by weight 𝑤. An arbitrary weight has been 

implemented to prioritize parameters during estimation. The algorithm implemented during 

parameter extraction is shown in Figure 15. 

 

Figure 15: Flowchart for estimation of metabolic model parameters 
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4.2. Development of neuronal module 

The neuronal module was implemented on the cell membrane (Figure 16). The ions 

move from the extracellular space to the sub-cellular space and from the subcellular space to 

the bulk cytosol. A modified Hodgkin-Huxley formulation based on incorporating a 

thermodynamic approach was employed to implement the neuronal module. The rate of 

change in membrane potential (Vm) was determined using, 

𝑑𝑉

𝑑𝑡
=  
− 𝐼𝑖𝑜𝑛 + 𝐼𝑠𝑡𝑖𝑚

𝐶𝑚
  

(24) 

Where, Cm is the membrane capacitance, Istim is the stimulus current and Iion is the sum of all the 

ionic currents.  

 

Figure 16: Schematic representation of neuronal module 
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The total ionic current 𝐼𝑖𝑜𝑛 and the leakage current 𝐼𝐿 were defined as, 

𝐼𝑖𝑜𝑛 = 𝐼𝑁𝑎 + 𝐼𝐾 + 𝐼𝐶𝑎  + 𝐼𝐾𝐴𝑇𝑃 + 𝐼𝑁𝑎𝐾𝐴𝑇𝑃𝑎𝑠𝑒 + 𝐼𝑁𝐶𝑋 + 𝐼𝐶𝑎𝐴𝑇𝑃𝑎𝑠𝑒 + 𝐼𝐿𝑁𝑎 + 𝐼𝐿𝐾

+ 𝐼𝐿𝐶𝑎 + 𝐼𝐿𝐺𝑒𝑛  
(25) 

Where, 𝐼𝑁𝑎, 𝐼𝐾  𝑎𝑛𝑑 𝐼𝐶𝑎 is the current generated from the voltage gated sodium, potassium and 

calcium channels, 𝐼𝐾𝐴𝑇𝑃  is from ATP-dependent potassium channel, 𝐼𝑁𝑎𝐾𝐴𝑇𝑃𝑎𝑠𝑒 is from the 

sodium-potassium exchanger, 𝐼𝐶𝑎𝐴𝑇𝑃𝑎𝑠𝑒 is from the calcium pump, 𝐼𝑁𝐶𝑋 is from the sodium 

calcium exchanger. 𝐼𝐿𝑁𝑎 + 𝐼𝐿𝐾  𝑎𝑛𝑑 𝐼𝐿𝐶𝑎are the specific ionic leakages for sodium, potassium and 

calcium ions. 𝐼𝐿𝐺𝑒𝑛represents the general leak. The method for determination of all the ionic 

currents is described in the following sections. 

4.2.1. Voltage gated channels 

The voltage gated sodium, potassium and calcium ion channels were implemented using 

the thermodynamic formulation [27]. These gates are controlled and activated by changes in 

membrane potential. A simple two state (open/close) formalism is adapted to describe the 

channel activation and inactivation. The voltage gated ionic currents are given by 

𝐼𝑁𝑎 = 𝑔𝑁𝑎𝑚
3ℎ(𝑉𝑚 − 𝑉𝑁𝑎) (26) 

𝐼𝐾 = 𝑔𝐾𝑛
4(𝑉𝑚 − 𝑉𝐾) (27) 

𝐼𝐶𝑎 = 𝑔𝐶𝑎𝑒
3(𝑉𝑚 − 𝑉𝐶𝑎) (28) 

Where 𝑔𝑁𝑎, 𝑔𝐾, 𝑔𝐶𝑎, 𝑉𝑁𝑎, 𝑉𝐾 and 𝑉𝐶𝑎 are maximum ion channel conductance and reversal 
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potentials of sodium, potassium and calcium respectively. The dynamics of gating variables 𝑚, 

ℎ, 𝑛, and 𝑒 with their steady state values 𝑚∞, ℎ∞, 𝑛∞, and 𝑒∞ as and the respective voltage 

dependent time constants 𝜏’s are given by,  

𝑑𝑚

𝑑𝑡
=
𝑚∞ −𝑚

𝜏𝑚
 (29) 

𝑑ℎ

𝑑𝑡
=
ℎ∞ − ℎ

𝜏ℎ
 (30) 

𝑑𝑛

𝑑𝑡
=
𝑛∞ − 𝑛

𝜏𝑛
 (31) 

𝑑𝑒

𝑑𝑡
=
𝑒∞ − 𝑒

𝜏𝑒
 (32) 

The voltage dependent steady state parameters and their respective time constants were 

determined using the general formula, 

𝑚∞ =
1

1 + 𝑒−𝑧𝐹(𝑉𝑚−𝑉1/2)/𝑅𝑇
 (33) 

𝜏𝑚 =
𝐴

𝑒(𝑧𝐹𝜉/𝑅𝑇)(𝑉𝑚−𝑉1/2)cosh (𝑧𝐹(𝑉𝑚 − 𝑉1/2)/2𝑅𝑇)
 (34) 

Where, 𝑧 is relates to the number of moving charges during the opening and closing of the ion 

channels, 𝑉1/2 is the half activation/inactivation potential of an ion channel; 𝐴 is related linearly 

to the activation or inactivation time constant, 𝜉 is the asymmetric position of the moving 

charge in the cell membrane, 𝑅 is real gas constant, 𝐹 is Faraday’s constant, 𝑇 is temperature, 

𝑅𝑚 is membrane resistance and 𝑉𝑚 is the resting membrane potential. 
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The reversal potentials were calculated as follows, 

𝑉𝑁𝑎 = 59.16 log10 (
[𝑁𝑎]𝑜𝑢𝑡
[𝑁𝑎]𝑖𝑛

) =  65 𝑚𝑉 (35) 

𝑉𝐾 = 59.16 log10 (
[𝐾]𝑖𝑛
[𝐾]𝑜𝑢𝑡

) = − 85 𝑚𝑉 (36) 

𝑉𝐶𝑎 =
59.16

2
log10 (

[𝐶𝑎]𝑜𝑢𝑡
[𝐶𝑎]𝑖𝑛

) =  124 𝑚𝑉 (37) 

Where the Na+, K+ and Ca+2 are the intracellular and extracellular ionic concentrations. The 

resting membrane potential was back calculated from the experimental holding potentials 

using the reversal potentials and the maximum ionic conductance using equation 38. 

𝑉𝑚 = 
𝑔𝑁𝑎𝑉𝑁𝑎 + 𝑔𝑘𝑉𝐾 + 𝑔𝐶𝑎𝑉𝐶𝑎 + 𝑔𝑙𝑒𝑎𝑘𝑉𝑙𝑒𝑎𝑘

𝑔𝑁𝑎 + 𝑔𝐾 + 𝑔𝐶𝑎 + 𝑔𝑙𝑒𝑎𝑘
  

(38) 

4.2.2. ATP dependent potassium channel 

An ATP-dependent potassium channel was incorporated and is activated when the 

cellular ATP decreases. The equation has been adapted from Cunningham et al. [77] and is 

defined as, 

𝐼𝐾𝐴𝑇𝑃 = 𝑔𝐾𝐴𝑇𝑃  𝑧(𝑉𝑚 − 𝑉𝐾) (39) 

𝑧 =  
1

1 + (
[𝐴𝑇𝑃]
𝑘12

)
𝛾 

(40) 

Where, 𝑔𝐾𝐴𝑇𝑃  is the maximum conductance of z is the gating variable, [ATP] is the ATP 
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concentration, k12 is 0.06, 𝑉𝐾 is the reversal potential of potassium and the hill coefficient (𝛾) is 

1. 

4.2.3. ATP dependent sodium-potassium pump 

The sodium potassium exchanger has been implemented as described by Kager et al.  

[78] to restore the balance for sodium and potassium ions. The pump contributes an 

electrogenic factor as it transports 3 Na+ in exchange for 2 K+ by consuming ATP. The ATP 

dependence was incorporated for ATP consumption and to determine its activity based on 

changes in intracellular ATP levels [79]. 

𝐴𝑝𝑢𝑚𝑝 = ((1 +
𝐾𝑚𝐾
[𝐾𝑜]

)
−2

) × ((1 +
𝐾𝑚𝑁𝑎
[𝑁𝑎𝑖]

)
−3

) × ((1 +
𝐾𝐴𝑇𝑃
[𝐴𝑇𝑃]

)
−1

) (41) 

𝐼𝐾𝐴𝑇𝑃𝑎𝑠𝑒 = −2 ∗ 𝐼𝑚𝑎𝑥
𝑁𝐾𝐴 ∗ 𝐴𝑝𝑢𝑚𝑝 (42) 

𝐼𝑁𝑎𝐴𝑇𝑃𝑎𝑠𝑒 = 3 ∗ 𝐼𝑚𝑎𝑥
𝑁𝐾𝐴 ∗ 𝐴𝑝𝑢𝑚𝑝 (43) 

The pump is modeled using the above modified rate equation where 𝐾𝑚𝐾 is 3.5 mM/L, 𝐾𝑚𝑁𝑎 of 

10 mM/L and 𝐾𝐴𝑇𝑃 = 5 mM [78,79]. 𝐼𝑚𝑎𝑥
𝑁𝐾𝐴 is the maximal flux generated by the pump to 

compensate the leaks and other pumps to obtain a steady state at rest. The literature reported 

value for 𝐼𝑚𝑎𝑥
𝑁𝐾𝐴 is 0.013 mA/cm2[78]. 

4.2.4. Sodium-calcium exchanger  

The sodium calcium exchanger (NCX) transports 3 Na+ in exchange for Ca+2 and is 

electrogenic. The exchanger was implemented using the formulation as described by 
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Courtemanche et al. [80,81].  

𝐾𝑏 = 𝑒
(
𝛾 𝑉𝑚 𝐹
𝑅𝑇

) (44) 

𝐾𝑞𝑎 = 𝑒
(
(𝛾−1) 𝑉𝑚 𝐹

𝑅𝑇
)
 (45) 

𝐴𝑁𝐶𝑋 =
([𝑁𝑎]𝑖

3  ×  [𝐶𝑎]𝑜 × 𝐾𝑏) − ([𝑁𝑎]𝑜
3  ×  [𝐶𝑎]𝑖 × 𝐾𝑞𝑎)

(𝐾𝑚𝑁𝑎
3 + [𝑁𝑎]𝑜

3  ) (𝐾𝑚𝐶𝑎 + [𝐶𝑎]𝑜) (1 + 0.1𝐾𝑞𝑎)
  (46) 

𝐼𝑁𝑎𝑁𝐶𝑋 = −3 ∗ 𝐼𝑚𝑎𝑥
𝑁𝐶𝑋 ∗ 𝐴𝑁𝐶𝑋 (47) 

𝐼𝐶𝑎𝑁𝐶𝑋 = 2 ∗ 𝐼𝑚𝑎𝑥
𝑁𝐶𝑋 ∗ 𝐴𝑁𝐶𝑋 (48) 

Where, 𝐾𝑚𝑁𝑎   is 87.5 mM, 𝐾𝑚𝐶𝑎  is 1.38 mM, 𝐼𝑚𝑎𝑥
𝑁𝐶𝑋 is the maximal flux, and the voltage 

dependence parameter 𝛾 is 0.35. 

4.2.5. ATP dependent calcium pump 

The ATP dependent calcium pump has been incorporated as described by Kager et al. 

[81]. The ATP dependence was incorporated to calculate ATP consumption. 

𝐴𝐶𝑎𝑎𝑡𝑝 = ((1 +
𝐾𝑚𝐶𝑎
[𝐶𝑎𝑖]

)
−1

) × ((1 +
𝐾𝑚𝐴𝑇𝑃
[𝐴𝑇𝑃]

)
−1

) (49) 

𝐼𝐶𝑎𝐴𝑇𝑃𝑎𝑠𝑒 = 𝐼𝑚𝑎𝑥
𝐶𝑎𝑎𝑡𝑝 ∗ 𝐴𝐶𝑎𝑎𝑡𝑝 (50) 

Where, 𝐾𝑚𝐶𝑎 is 6.9 µM [81] and 𝐾𝑚𝐴𝑇𝑃 is 2.5 mM (estimated). 𝐼𝑚𝑎𝑥
𝐶𝑎𝑎𝑡𝑝 is the maximal flux for the 

Ca-ATPase pump and is estimated to simulate steady state. 
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4.2.6. Leakages 

Specific ionic leakages were implemented as described by Kager et al. [78].  

𝐼𝐿𝑁𝑎 = 𝑔𝑙𝑒𝑎𝑘𝑁𝑎(𝑉𝑚 − 𝑉𝑁𝑎) (51) 

𝐼𝐿𝐾 = 𝑔𝑙𝑒𝑎𝑘𝐾(𝑉𝑚 − 𝑉𝐾) (52) 

𝐼𝐿𝐶𝑎 = 𝑔𝑙𝑒𝑎𝑘𝐶𝑎(𝑉𝑚 − 𝑉𝐶𝑎) (53) 

𝐼𝐿𝑔𝑒𝑛 = 𝑔𝑙𝑒𝑎𝑘𝑔𝑒𝑛(𝑉𝑚 − 𝑉𝑙𝑒𝑎𝑘) (54) 

The 𝑔𝑙𝑒𝑎𝑘𝑁𝑎, 𝑔𝑙𝑒𝑎𝑘𝐾  and 𝑔𝑙𝑒𝑎𝑘𝐶𝑎  are the maximum leak conductance of sodium, potassium and 

calcium ions. The maximum leak conductance and reversal potential for general leak are 

determined by choosing the holding potentials of -85 and -80 mV. At these potentials the cell is 

hyperpolarized and has no significant contribution from the voltage gated ion channels. The 

maximum leak conductance of leakage is, 

𝑔𝐿𝑒𝑎𝑘𝑔𝑒𝑛 =
(5 − 𝑅𝑚) (𝐼85 − 𝐼80)

(5 𝑅𝑚)
  (55) 

The 𝐼85 𝑎𝑛𝑑 𝐼80 are the total ionic currents at the holding potential of -85 and -80 mV. 𝑅𝑚 is the 

membrane resistance. The leakage reversal potential was determined using, 

𝑉𝑙𝑒𝑎𝑘 =
𝐼𝑖𝑜𝑛𝑖𝑐
𝑉𝑚

𝑔𝑙𝑒𝑎𝑘𝑔𝑒𝑛
+ 𝑉𝑚  (56) 
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𝐼𝑖𝑜𝑛𝑖𝑐
𝑉𝑚 = 𝐼𝑁𝑎 + 𝐼𝐾 + 𝐼𝐶𝑎  + 𝐼𝐾𝐴𝑇𝑃 + 𝐼𝑁𝑎𝐾𝐴𝑇𝑃𝑎𝑠𝑒 + 𝐼𝑁𝐶𝑋 + 𝐼𝐶𝑎𝐴𝑇𝑃𝑎𝑠𝑒 + 𝐼𝐿𝑁𝑎

+ 𝐼𝐿𝐾 + 𝐼𝐿𝐶𝑎  

(57) 

The reversal potential for leakage was calculated based on the fact that the membrane current 

at resting membrane potential was zero. The membrane resistance and resting membrane 

potential were experimentally determined. 

4.2.7. Ionic concentrations 

The ionic currents were converted into chemical units to determine the changes in the 

ionic concentrations. Ionic concentration was obtained by multiplying ionic current in 𝑝𝐴 with a 

surface factor (𝐹𝑆). The surface factor was determined by, 

𝐹𝑆 =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 

𝐹𝑎𝑟𝑎𝑑𝑎𝑦 ∗ 𝐶𝑒𝑙𝑙 𝑉𝑜𝑙𝑢𝑚𝑒
 

(58) 

𝐹𝑆  =  
10−12  

𝑚𝑜𝑙 𝐶
𝑠

96485 
𝐶
𝑠  ∗

(50 × 10−15) 𝑚3
 

 

𝐹𝑆  =  2.073 × 10
−7

𝑚𝑜𝑙

𝑚3 𝑚𝑠
 

 

The model was compartmentalized and the diffusion of ions was considered to take place from 

the center of the sub-cellular space to the center of the bulk cytosolic space. The diffusion of 

ion (I) is given by [70], 
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𝐽𝐼(𝐶1−𝐶2) = 𝐷𝐼(𝐶1−𝐶2)𝐴 
[𝐼]𝐶1 − [𝐼]𝐶2
𝛥𝑥𝐶1−𝐶2

 
(59) 

Where, the ion diffuses a distance (x) through area (A) from the center of one compartment 

(C1) to another compartment (C2). The parameters (Table 4) were obtained from the Rabbit 

ventricular myocyte [70]. The diffusion distance of 0.45 from the subcellular space to middle of 

the bulk cytosolic space was calculated assuming a length of 1.8 m. The distance determines 

the transfer functions for the ionic fluxes between compartments. The lumped nature of the 

compartments was thereby adjusted to the physical geometry [70]. 

Table 4: Parameters for flux determination 

Parameter Value Reference 

Cell length 100 µm [70] 

Cell radius 10  µm [70] 

Sub-cellular space depth 45 nm [70] 

Area (Subcell - bulk) 3.01 × 10-6 cm2 [70] 

DNa (Subcell - bulk) 1.09 × 10-5  cm2/s [82] 

DK (Subcell - bulk) 1. 96 × 10-5  cm2/s [83] 

DCa (Subcell - bulk) 1.22 × 10-6  cm2/s [82] 

Distance (𝛥𝑥) 0.5  µm [70] 
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The changes in the subcellular space and bulk cytosol sodium concentration was determined 

using the equation, 

𝑑

𝑑𝑥
[𝑁𝑎]𝑆𝑢𝑏𝑐𝑒𝑙𝑙 = 

−𝐼𝑁𝑎
𝑡𝑜𝑡𝑎𝑙 𝐹𝑆 + 𝐽𝑁𝑎([𝑁𝑎]𝐵𝑢𝑙𝑘 − [𝑁𝑎]𝑆𝑢𝑏𝑐𝑒𝑙𝑙)

𝑉𝑆𝑢𝑏𝑐𝑒𝑙𝑙
 

(60) 

𝑑

𝑑𝑥
[𝑁𝑎]𝐵𝑢𝑙𝑘 = 

𝐽𝑁𝑎([𝑁𝑎]𝑆𝑢𝑏𝑐𝑒𝑙𝑙 − [𝑁𝑎]𝐵𝑢𝑙𝑘)

𝑉𝐵𝑢𝑙𝑘
 

(61) 

The changes in the subcellular space and bulk cytosol potassium concentration was determined 

using the equation, 

𝑑

𝑑𝑥
[𝐾]𝑆𝑢𝑏𝑐𝑒𝑙𝑙 = 

−𝐼𝐾
𝑡𝑜𝑡𝑎𝑙  𝐹𝑆 + 𝐽𝐾([𝐾]𝐵𝑢𝑙𝑘 − [𝐾]𝑆𝑢𝑏𝑐𝑒𝑙𝑙)

𝑉𝑆𝑢𝑏𝑐𝑒𝑙𝑙
 

(62) 

𝑑

𝑑𝑥
[𝐾]𝐵𝑢𝑙𝑘 = 

𝐽𝐾([𝐾]𝑆𝑢𝑏𝑐𝑒𝑙𝑙 − [𝐾]𝐵𝑢𝑙𝑘)

𝑉𝐵𝑢𝑙𝑘
 

(63) 

The changes in the subcellular space and bulk cytosol calcium concentration was determined 

using the equation, 

𝑑

𝑑𝑥
[𝐶𝑎]𝑆𝑢𝑏𝑐𝑒𝑙𝑙 = 

−𝐼𝐶𝑎
𝑡𝑜𝑡𝑎𝑙 𝐹𝑆 + 𝐽𝐶𝑎([𝐶𝑎]𝐵𝑢𝑙𝑘 − [𝐶𝑎]𝑆𝑢𝑏𝑐𝑒𝑙𝑙)

𝑉𝑆𝑢𝑏𝑐𝑒𝑙𝑙
 

(64) 

𝑑

𝑑𝑥
[𝐶𝑎]𝐵𝑢𝑙𝑘 = 

𝐽𝐾([𝐶𝑎]𝑆𝑢𝑏𝑐𝑒𝑙𝑙 − [𝐶𝑎]𝐵𝑢𝑙𝑘)

𝑉𝐵𝑢𝑙𝑘
 

(65) 

Where, 𝐼𝑁𝑎
𝑡𝑜𝑡𝑎𝑙, 𝐼𝐾

𝑡𝑜𝑡𝑎𝑙  and 𝐼𝐶𝑎
𝑡𝑜𝑡𝑎𝑙  are the total specific currents generated by the movement of 

sodium, potassium and calcium respectively. 𝑉𝑆𝑢𝑏𝑐𝑒𝑙𝑙 and 𝑉𝐵𝑢𝑙𝑘 are the volumes of the sub-

compartments. 
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4.2.8. Parameter estimation for electrophysiological recordings 

The coupled ordinary differential equations were numerically integrated in MATLAB 

using a built-in differential equation solver ‘ode15s’ to solve a set of differential equations. A 

relative tolerance of 10-5 and an absolute tolerance of 10-6 were used. A custom graphical user 

interface (GUI) was created in MATLAB for parameter estimation and all the ion channels of the 

neuronal module including the leakage correction were incorporated.  

The experimentally measured voltage clamp and current clamp were imported into 

MATLAB for deconvolution. The initial fitting parameters were obtained from the previously 

published average values [27,78].  The potassium currents in the voltage clamp recordings were 

fitted followed by calcium and sodium currents. A simultaneous fit was then performed on the 

voltage gated ion channels to obtain a first estimate for ion channel parameters. Using the 

obtained ion channel parameters and to avoid numerous solutions considering the large set of 

parameters being fitted, a second optimization was performed to extract a quasi-unique set of 

parameters by fitting the simulated action potentials to experimental measurements. The 

fittings were not sufficiently optimized to balance the ionic concentrations and could not 

produce a steady state. So, a third optimization routine was performed by optimizing the 

activities of pumps, exchangers and specific leakages. The 𝐼𝑚𝑎𝑥 for ion exchanges and 𝑔𝑚𝑎𝑥 for 

specific ionic leakages were determined. The action potential time series data was then fitted 

to further validate the experimental action potentials. The second and third steps of the 

optimization routines were repeated to fit the experimental recordings. 

The optimization was performed using built-in MATLAB optimization routines. The 
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function ‘fmincon’ computes a constrained minimum of a function by varying the variables 

within specific bounds. This was carried out in combination with the sum of squared residuals 

(ssr) as described in the following equation, 

𝑠𝑠𝑟 =  ∑(𝑆(𝑡𝑛) − 𝐸(𝑡𝑛)

𝑛

)2 (66) 

Where, the simulated value is given by 𝑆 and the experimental value by 𝐸 at time 𝑡𝑛. 

4.3. Integration of neuronal and metabolic models 

The model was numerically integrated using MATLAB (2014a) in a modular approach. It 

was modeled and simulated using a desktop computer running Windows 7 on a 2.95GHz Intel 

Core2-Quad CPU and 8GB RAM. The obtained results were analyzed and plotted in MATLAB. 

The neuronal module and the metabolic model were coupled to form the neuronal-

metabolic model. The models were interfaced to exchange the intracellular ATP, ionic 

concentrations and the membrane potentials. Additional ATP consumption reactions such as 

NaK-ATPase and Ca-ATPase were incorporated into the metabolic model. The activity of these 

reactions was matched to that of the neuronal model. The metabolic model can sense only the 

bulk cytosolic concentrations. The neuronal module coupled to the deconvolution algorithm 

extracted the ion channel parameters which were then imported into the neuronal-metabolic 

model. The neuronal module calculates currents and the changes in the ionic concentrations. 

The obtained concentrations were fed into the metabolic model. The metabolic model was 

simulated following the determination of the metabolic activity. The new metabolite and ionic 
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concentrations were again feed into the neuronal module. 

The action potential was simulated for every one second. The ionic exchangers usually 

restored the ionic balances within a few milliseconds. Stimulating an action potential every one 

second gives the ionic exchanges ample time to restore ion balances. The model was simulated 

to simultaneously generate a series of action potentials and run the metabolic model to 

determine the intracellular fluxes and changes in ionic concentrations. The model also 

predicted the changes in intracellular protein activities and metabolic concentrations. To 

simulate drug effects, the event created in Simbiology was turned ‘on’ and the model was 

simulated. The simulation results were compared to the experimentally determined values. 

4.4. Simulating experimental conditions 

To simulate the drug effects an event was created in the metabolic model (Simbiology-

MATLAB) to introduce a drug effect that inhibits the enzyme activity. The inhibitors tested 

(Table 5) only bind and inhibit the enzymes in the metabolic pathway. The inhibitors do not 

bind to ion channels, so the ion channel parameters were held constant while fitting the drug 

induced time-series data. The only parameters allowed to change are the reversal potentials for 

the ion channels and cellular ATP concentrations in the neuronal module. So when fitting the 

effects of ion channel inhibitors, the ion channel parameters can be changed as they bind to the 

ion channel directly, thereby modifying its properties. 

The Vmax of the targeted enzyme was reduced, using a scaling factor. The scaling factor 

allows a function for the dose-response curve, describing the effect of a compound on the 
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enzyme [84]. The scaling factor ‘b’ typically relates the drug concentration [D] according to, 

𝑏 =
1

1 + (
[𝐷]
𝐼𝐶50

)
𝑛 

(67) 

Where IC50 is the drug concentration at which a 50% reduction in the enzyme activity is 

observed, which n is the Hill coefficient of the dose-response curve and is often assumed to be 

one as one drug molecule is necessary to inhibit the enzyme [84]. The IC50 values were obtained 

by fitting the model to metabolic experimental data.  

The neuronal-metabolic model was simulated to predict the changes in cellular 

metabolism and action potentials. The specific Vmax’s or the enzyme concentration that were 

reduced to simulate the drug effects are listed below. 

Table 5: List metabolic inhibitors and their targets 

Drug Enzyme 

2DG Hexokinase 

Cyanide Mitochondrial Oxidative Phosphorylation 

Malonate Succinate Dehydrogenase 

2DG + Cyanide Hexokinase and Oxidative Phosphorylation 

2DG + Malonate Hexokinase and Succinate Dehydrogenase 
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CHAPTER-5: RESULTS 

 

The results obtained from the experiments and computational model are analyzed in this 

chapter. The basal metabolism was evaluated for calibrating the metabolic model to steady 

state. The core energy producing metabolic pathways namely glycolysis, mitochondrial TCA 

cycle and the electron transport chain were inhibited using 2DG, cyanide and malonate. A 

combinational inhibition of these pathways was also performed to experimentally validate the 

metabolic and electrophysiological responses. The neuronal-metabolic model was simulated to 

predict the metabolic fluxes and action potential time-series. The simulation data was 

compared to the experimental measurements. The results presented in this chapter 

demonstrate the predictive capabilities of the model. 

5.1. Bioenergetics of NG108-15 cells 

The NG108-15 cells were obtained by fusing mouse N18TG2 neuroblastoma and rat C6-

BU-1 glioma cells in presence of sendai virus. During the fusion process reprogramming of core 

cellular metabolic pathways may occur. The reprogramming of cellular metabolic pathways 

impacts cellular functions and bioenergetics. To characterize and quantify NG108-15 cellular 

bioenergetics, the basal metabolism was determined by measuring the glucose utilization, 

lactate secretion, cellular ATP and ADP levels. 

5.1.1. Glucose and lactate flux 

The carbon flux was determined by measuring glucose uptake and lactate release. The 
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glucose uptake was found to be 495.19 + 63.72 pM/hr/cell and is in close range to that found in 

glioblastoma cells previously [85]. The lactate flux was determined to be 851.05 + 74.72 

pM/hr/cell. The rates of lactate production are consistent with the expected flux for glioma 

cells [86]. The measurement of carbon flux revealed that 85% of the carbon entering the cell 

was ending up as lactate and only 15% of carbon is being utilized by other pathways in the cell. 

The glycolytic and lactate fluxes remained steady over time (Figure 17). The carbon flux was 

compared to Murine hybridoma cell line. Murine hybridoma cell had a glucose uptake of 380 

nmol/hr/106 cells and a lactate release of 630 nmol/hr/106 cells indicating a carbon flux of 83% 

into lactate production [87]. 

 

Figure 17: Measured glucose uptake (O) and lactate output (□) flux of NG108-15 cells 

Lactate excretion causes the cell to waste three carbons that can either be incorporated 

into macromolecular precursor biosynthesis or get utilized in ATP production [88]. The 

increased lactate excretion elevates carbon uptake and simultaneously increases the pentose 

phosphate pathway activity. The elevated carbon utilization and lactate production regardless 



 

82 

 

of the availability of oxygen suggests the presence of aerobic glycolysis. This phenomenon was 

found by Otto Warburg and termed as ‘the Warburg effect’. The effect was mostly found in 

cancer cells with lower mitochondrial respiration rates. This elevated glycolysis helps the cell to 

maintain higher proliferation rates or in differentiation mode enables the cell to produce 

neuronal process faster compared to primary neurons. Moreover, a sufficient amount of energy 

for maintaining cellular functions is produced by glycolysis in cancer cells. 

5.1.2. ATP and ADP concentrations 

Cellular ATP levels act as an indicator of cellular health and any disruption in cellular 

pathways may lead to impaired cellular bioenergetics. The assay kits measure the total cellular 

ATP and ADP levels including free and Mg-bound ATP/ADP. The intracellular ATP and ADP levels 

in NG108-15 cell were found to be 0.22 + 0.03 mM and 0.11 + 0.02 mM respectively. The ATP 

and ADP levels were stable over time (Figure 18) matching the literature reported values [89].  

 

Figure 18: Measured intracellular ATP (O) and (□) ADP levels in NG108-15 cells 
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A literature search on intracellular ATP levels in different cell lines has shown that they 

possess lower levels (Table 6). Furthermore, most cell lines depend on aerobic glycolysis, an 

inefficient pathway for ATP production. The alterations in cellular bioenergetic pathways 

produce different metabolites supporting rapid cell growth and proliferation [88]. Normal cells 

utilize the nutrients efficiently and cell lines have no selective pressure to optimize their 

metabolism for ATP production. Glycolysis is an inefficient mode of ATP generation compared 

to mitochondrial pathway. The intracellular ATP/ADP ratio is also maintained at steady state 

and determines which pathway the cell adapts for ATP production. A lower ATP/ADP ratio has 

been shown to favor glycolysis and a higher ratio would favor mitochondrial ATP production 

[88]. A slight change in cellular ATP/ADP or ADP/AMP ratio may impair cellular homeostasis and 

trigger apoptosis [90]. 

Table 6: Literature reported cellular ATP levels in different cell lines 

Cell type Origin ATP  

(nmol/106 cells) 

ADP  

(nmol/106 cells) 

ATP/ADP 
ratio 

Reference 

HeLa Cervical cancer cells (glycolysis dominated) 5.2 1.64 3.2 [91] 

BSC-40 Kidney epithelial cell line (oxidative phosphorylation 
dominated) 

9.47 1.08 8.8 [91] 

SH-SYSY Human dopaminergic neuroblastoma cell line 1.33 0.24 5.5 [92] 

NG108-15 Hybrid neuroblastoma and glioma cell 8 - 10 - - [89,93] 

NG108-15 Hybrid neuroblastoma and glioma cell 10 + 0.83 5.13 + 0.44 1.9 Measured 
values 
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5.2. Deconvolution of Electrophysiological Recordings 

5.2.1. Thermodynamic dependent Hodgkin-Huxley Model 

To deconvolute the electrophysiological recordings the neuronal model was constructed 

in a modular approach. The basic voltage gated ion channels were modeled by incorporating 

the thermodynamic dependences and simulated using previously published ion channel 

parameters [27]. The voltage clamp and the current clamp recordings were simulated for a 

NG108-15 cell. 

 

Figure 19: Voltage clamp simulation. (A) The voltage steps protocol used during a voltage clamp recording. (B) 
Simulated voltage clamp recording for NG108-15 cell 

During a voltage clamp recording, the voltage was held constant at different ‘steps’  

(Figure 19A) and the changes in the current were recorded (Figure 19B). The voltage 

dependence on the ionic current is demonstrated by plotting the current-voltage relationship 

(Figure 20). The properties of NG108-15 cells were demonstrated by varying the current during 

incremental impositions of voltage or the responses of voltage to current injections through a 

whole-cell patch. The IV-curve for NG108-15 defines the input resistance. 
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Figure 20: IV Curve for NG108-15 cell showing the changes in sodium (green), potassium (blue) and total current 
(red) at different voltages 

The current clamp recording was also simulated to generate an action potential using 

the same parameters by application of a stimulus current (Figure 21). 

 

Figure 21: Simulated current clamp recording showing an action potential 
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The activation and inactivation of gates determines the generation of action potentials. The 

probabilities during NG108-15 action potential are shown in the Figure 22. At rest, the 

activation variable for sodium (m) is small and inactivation variable (h) for sodium is large. The 

activation of potassium (n) and calcium (e) are also small. When a stimulus is applied, the 

membrane depolarizes causing an increase in m leading to the peak in action potential. The 

activation of potassium gate (n) also increases and h decreases. The activation of the calcium 

gate (e) also takes place during the action potential generation. The gates h and n slowly return 

to their initial state when compared to other gates where as other gates act rapidly (Figure 22). 

 

Figure 22: The activation and inactivation of voltage gated ion channel gates during an action potential 

5.2.2. Modeling ionic exchangers, pumps and leaks 

The ATP dependent potassium channel (KATP) has emerged as an important ion channel 

especially in neurodegenerative diseases and acute brain ischemia adapting to changes in 

metabolic activity. The probability of activation and inactivation depends on the intracellular 
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ATP levels directly coupling the metabolic activity and membrane electrical activity. The 

channel was modeled and simulated to visualize the changes in action potential peak shape due 

to changes in cellular ATP concentration (Figure 23). 

 

Figure 23: Effect of cellular ATP levels on action potential peak shape 

The resting membrane potential is mainly determined by the ionic pumps and leakages. 

The sodium and potassium ion leaks are counterbalanced by the Na/K-ATPase pump. The ATP 

dependent sodium potassium exchanger is a major pump responsible for maintaining sodium 

and potassium homeostasis. The current generated by moving three sodium ions out and two 

potassium ions against the concentration gradients has been added to the respective total 

specific ionic currents. At rest, the pump balances the sodium (Figure 24) and potassium (Figure 

25) fluxes of the ion channels and leaks. A stoichiometric balance of intracellular potassium and 

sodium ions was not achieved by Na/K-ATPase pump alone. Additional ionic pumps have been 

incorporated to maintain cellular ionic concentrations (Figure 26). 
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Figure 24: Restoration of intracellular sodium concentration by Na/K-ATPase pump. (A) Without Na/K-ATPase and 
(B) with Na/K-ATPase 

 

Figure 25: Restoration of intracellular potassium concentration by Na/K-ATPase pump. (A) Without Na/K-ATPase 
and (B) with Na/K-ATPase 

 

Figure 26: Rationale for implementation of other ionic pumps 
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Figure 27: Sodium-calcium exchanger currents mediated by changes in membrane potential 

 

Figure 28: Remodeled the IV curve for sodium calcium exchanger showing the exchanger activity for different 
calcium concentrations 

The sodium calcium exchanger (NCX) activity is dependent on the membrane potential 

and intracellular calcium concentration. NCX exchanges one calcium ion for three sodium ions 
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and has an electrogenic contribution to the membrane electrical properties. At rest, the 

exchanger activity is reversed transferring three sodium ions out and one calcium ion thereby 

generating a very small sodium and calcium current (Figure 27). The membrane depolarization 

reverses the pump activity again resulting in an outflow of calcium and influx of sodium [81]. A 

shift in curve representing the calcium influx and efflux is observed (Figure 27). The pump 

activity depends on the intracellular calcium concentration. Two intracellular calcium 

concentrations were used to model validate the exchanger activity (Figure 28). The slope of the 

curve varies with the increased calcium concentration leading to a faster extrusion of 

intracellular calcium ions. The activity from Courtemanche et al. [80] and Kager et al. [81] has 

been reproduced to validate NCX and adapted into the neuronal module. 

 The ATP dependent calcium pump (Ca-ATPase) transports intracellular calcium ions 

against the concentration gradient by consuming intracellular ATP. The pump activity increased 

with an accumulation of intracellular calcium (Figure 29). Kager at al. have assumed an 

unlimited availability of cellular ATP and modeled the pump [81]. Since ATP could be a limiting 

factor in the model, ATP dependence has been incorporated so that the pump could lower the 

extrusion of calcium ions upon lowering the intracellular ATP levels. The ATP dependence has 

been modeled to match the Ca-ATPase activity previously reported by Kager et al. (Figure 30). 

The activity of pump is made very sensitive to intracellular ATP levels so a slight decrease in ATP 

concentration would lower the pump activity and lead to an accumulation of intracellular 

calcium. 
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Figure 29: Calcium dependence on Ca-ATPase pump 

 

Figure 30: ATP dependence on Ca-ATPase pump 

Specific ionic leakages were implemented to represent all the other sodium, potassium 

and calcium ion channels [78]. The ions diffuse long the diffusion gradient and the ionic 

exchangers restore the altered intracellular levels. All the equations were implemented and the 

steady state was simulated using the experimental holding potential. The holding potential was 
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varying due to the experimental conditions. The resting membrane potential was calculated as 

shown in Figure 31A. The sodium, potassium and calcium ionic concentrations were at steady 

state when the model was simulated for 40 min (Figure 31). The parameter estimation for Imax 

of all the pumps and conductance for leakages was performed to simulate steady state. Model 

was compartmentalized by incorporating the ionic fluxes of subcellular space and bulk cytosol. 

The fluxes were simultaneously determined while generating the action potential. 

 

Figure 31: Calibration of the neuronal module to simulate steady state. (A) The resting membrane potential (red 
line) of the cell is determined based on holding potential (blue line). The changes in (B) sodium, (C) potassium and 
(calcium) concentrations are simulated 
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5.2.3. Extraction of electrophysiological parameters 

NG108-15 cells were observed to be fully differentiated on day-4 in serum-free 

differentiation medium and were patched to record their electrophysiological activity (Figure 

32). Voltage clamp and current clamp data were imported into Matlab and fitted using the 

custom graphical user interface. The curves were fitted after an initial 0.1ms delay to eliminate 

the effect of experimental artifacts. The voltage clamp recordings were fitted initially and an 

agreeable fit was obtained to the sodium, potassium and calcium ion channel data (Figure 32).  

 

Figure 32: Simulated (red) voltage clamp were fitted to an experimental (blue) recording 

Ion channel parameters were then automatically fitted using the fitting algorithm that 

converged in less than 4 minutes. Weighted least square error function was applied to quantify 

the difference between the simulated and the experimentally recorded data [27]. The 

implemented error function is: 

 Least square: ELsquare
=∑(𝑆(𝑡𝑛) − 𝐸(𝑡𝑛)

𝑛

)2 
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Weighted least square: E𝑊Lsquare
=ELsquare

 if tn<30ms and EWLsquare
=5 ×ELsquare

 if tn≥30ms 

 

Figure 33: Simulated (red) action potentials were fitted to experimental (blue) action potential recording 

The action potentials (Figure 33) were evoked with a short 2 ms current injection in 

current clamp mode at holding potential. The following parameters were obtained from the 

patch-clamp recordings and used in the modeling: membrane resistance, resting membrane 

potential, membrane capacitance and injected current. The maximum conductance of the 

leakage current was calculated form the resting membrane potential in the model. The earlier 

averaged ion-channel parameters were used as initial values for AP fitting. Using the voltage 

dependent sodium, potassium and calcium ion channels, ATP-dependent potassium channel, 

ATP-dependent exchangers, sodium-calcium exchanger and specific leakages an excellent fit to 

the entire AP was obtained (Figure 33). The first action potential was fitted simultaneously with 

the voltage clamp recording and the extracted parameters were fed into the coupled neuronal-

metabolic model.  

The model showed a sharp rise in the subcellular ionic concentrations of sodium (Figure 
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34), potassium (Figure 35) and calcium (Figure 36) ions. However, the bulk cytosolic 

concentrations did not change significantly.  

 

Figure 34: Simulated changes in subcellular and bulk cytosolic sodium concentration during action potential 

 

Figure 35: Simulated changes in subcellular and bulk cytosolic potassium concentration during action potential 

These results were observed to be in agreement with the physiological observations. It is well 
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known that during action potential generation and propagation, the ionic concentrations close 

to the membrane change rapidly causing the membrane potential to alter. The bulk 

intracellular ionic concentrations do not change significantly. The ion channels on the plasma 

membrane only sense the ionic concentrations close to the membrane and act rapidly to 

restore the ionic balances. 

 

Figure 36: Simulated changes in subcellular and bulk cytosolic calcium concentration during action potential 

The sodium and calcium buffering takes place in the cell [70]. To keep the model simple, 

buffering systems have not been included. A sudden rise in ionic concentration leads to an 

increased activity of the exchangers and pumps to extrude and restore the intracellular ionic 

concentrations. The diffusion of ions takes place from the subcellular space to the bulk cytosol 

initially and when the pumps are reestablishing the sub-cellular concentrations, the bulk 

cytosolic concentrations also slowly reached the initial values.  
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5.2.4. Statistical analysis 

Ion channel parameters were extracted by fitting the voltage clamp recoding and the 

initial action potential of a total of forty nine data sets. Several fitting parameters were applied 

in fitting the action potentials. Each dataset produced a different set of parameters. Statistical 

analysis was performed to determine the variations in fitting parameters. A box plot has been 

created to visualize the skewness of parameters and to identify outliers. The box plot of 

voltage-gated sodium channel parameters is shown in Figure 37. 

 

Figure 37: Box plot for voltage gated sodium channel parameters 

The maximum conductance of sodium channel has a wide range and is much higher 

than the conductance of other ion channels. These conductances are unique for a particular cell 

to support its cellular functions. The variations in voltage thresholds and time constants for 
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channel activation and inactivation vary the ion channel conductance [94]. Moreover the 

location where the cells are patched can also cause variations. The activation and inactivation 

parameters are used to fit the exponential and sigmoidal functions of Hodgkin-Huxley model. 

No large change was found in these parameters while fitting it to the experimental data. The 

estimated half-activation potential was -43.41 + 6.47 mV and was agreement with that found in 

neuronal models. The experimentally determined half-activation potential from central neurons 

is -60 mV [95]. The variations could be due to the different resting membrane potentials of the 

cells (Figure 41C). 

 

Figure 38: Box plot for voltage gated potassium channel parameters 

The box plot of potassium channel parameters showed the variability in activation 

amplitude, half-activation potential and the maximum conductance (Figure 38). The half-
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activation potential of cortical pyramidal neurons was found to be -24.5mV and was close to 

the fitted result of -16.04 + 9.62 mV for NG 108-15 cells [96]. The activation time constant 

(Act_amp) has a higher standard deviation but the box plot shows that 25% of the values are in 

the 3rd quartile close to 22 ms. The maximum conductance (gmax) for voltage gated potassium 

channel is very low compared to the sodium channel.  

 

Figure 39: Box plot for voltage gated calcium channel parameters 

Similarly, the calcium parameters showed slight variations (Figure 39). The activation 

time constant and half-membrane potential had a few outliers. The fitted gmax of voltage gated 

calcium channel for NG108-15 cells is 6.77 + 3.69 mS and is in agreement with the earlier 

reported values [27]. Few recordings had a higher calcium conductance causing a ‘hump’ in 

action potential. The calcium entering the cell acts as serves as secondary messenger during AP. 
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A list of all the ion channel parameters with the standard deviations is given below in Table 7 

and 8. 

Table 7: Average electrophysiological parameters for NG108-15 cells obtained from fitting to voltage clamp and 
current clamp recordings. Data are mean + SD (n = 49) 

Ion channel Parameters Sodium Potassium Calcium Leak 

Conductance (g) 241.21 + 104.08 14.62 + 7.43 6.77 + 3.69 3.24 + 2.34 

Reversal potential (VRev) 67.85 -85.61 124.05 - 53 + 86 

Activation exp (m,n,e) 3 4 3 - 

Inactivation exp (h) 1 - - - 

Activation q (q) 14.92 + 8.97 1.61 + 0.42 1.71 + 1.67 - 

Half activation potential (V1/2) -43.41 + 6.47 -16.04 +  9.62 -25.41 + 14.44 - 

Act.assim (ξ) -0.43 + 0.08 -0.04 + 0.22 -0.17 + 0.05 - 

Act.Ampl (A) 0.83 + 0.77 35.39 + 30.38  32.19 + 18.29 - 

Inactivation q (q) -4.66 + 0.4 - - - 

Inact. Half-activation -73.9 + 7.07 - - - 

Inact. Assim 0.36 + 0.04 - - - 

Inact.Ampl 4.95 + 4.38 - - - 

 



 

101 

 

Table 8: Activities of exchangers and leaks 

 NaK-ATPase Ca-ATPase NCX K-ATP Na leak K leak Ca leak 

Imax 1520 + 351 1700 + 147 502 + 55 - - - - 

Conductance - - - 2.54 + 1.98 0.39 + 0.21 4.2 + 1.6 0.12 + 0.2 

 

The Imax’s for the exchangers also varied from cell to cell as the membrane potential, 

capacitance and fluxes varied (Table 8). The fitted Imax for Na/K-ATPase is close to that reported 

in the literature for neurons [78,79]. The Ca-ATPase was slightly higher than the Na/K-ATPase as 

NG108-15 cells have higher intracellular calcium levels similar to cancer cells. The cellular 

resting membrane potential was determined based on separation of potassium ions since the 

cellular membrane has higher permeability towards potassium. The potassium leak 

conductance is higher compared to the sodium and calcium leak conductances. 

 

Figure 40: Box plot for (A) leakage currents and (B) maximum conductance of ATP dependent potassium channel 
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The maximum conductance and reversal potential for general leak have also been analyzed 

(Figure 40A). The implementation of ion channels in the model lead to a decrease in leakage 

conductance. The maximum conductance of the ATP dependent potassium channel was 2.54 + 

1.98 (Table 8) and is higher than that of primary cortical neurons [77]. The sensitivity of KATP 

channel varies from cell to cell [97]. A decrease in cellular ATP level causes the KATP channel to 

activate and prevents the potassium ions to move across the membrane. The experimental 

membrane resistance is 0.64 + 0.30 GΩ and the membrane capacitance which is indicative of 

the cell size is 69.19 + 37.87 pF. The resting membrane potential (RMP) of the patched cells was 

-43.88 + 5.99 mV with 25% of the recordings in the third quartile showing a RMP of -47 mV 

(Figure 41C). The resting membrane potential of NG108-15 cell has been reported to range 

from -33.2 to -47 mV [98,99]. 

 

Figure 41: Box plot for experimentally obtained (A) membrane resistance, (B) membrane capacitance and (C) 
resting membrane potential 
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5.3. Steady state analysis 

Modeling cellular metabolic pathways integrates all the information into a functional 

networking model that simulates all the intracellular interactions. The aim is to construct and 

validate the model to predict cellular protein activities, fluxes, metabolite concentrations and 

action potentials at steady state. 

5.3.1. Forcing metabolic model to steady state 

The method for reconstructing large models is to obtain a validated model and 

recalibrate it to match the experimental data for the cell type of our interest. The cellular 

pathways possess a very complex feedback and feed-forward interactions that control the 

overall flux and must be maintained continuous check [100]. This means that the relative ratios 

of kinetic constants are important and any disruptions in the balance will render the model 

causing an accumulation of intracellular metabolites. In reality, cell controls the flux by 

adjusting protein concentrations. Metabolic genes are typically located in blocks within the 

genomes and are expressed together. In our model, we are essentially altering the Vmax of the 

reactions to mimic the changes in protein concentration within a cell as a means of controlling 

flux [58,72,101].  

The glycolytic model derived from red blood cell [72] was more favorable as it utilizes 

glucose as the primary source of carbon. This is important because glucose is the major source 

of carbon in brain and neuronal glycolysis is regulated by hexokinase [54]. In addition, the 

glycolytic model consists of the PPP that is active in brain [54]. Red blood cells lack 

mitochondria forcing them to completely rely on glycolysis for carbon and ATP [102]. Since the 
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glycolytic module from red blood cells has higher a glycolytic activity, we have lowered the Vmax 

of the glycolytic enzymes between 1-100% to match the experimentally measured data 

[58,101]. Similarly, the mitochondrial model obtained from cardiac cell provides 90% of the 

energy from mitochondrial oxidative phosphorylation and is highly active [103]. The TCA cycle 

activity was lowered by altering the enzyme concentrations. The total concentration of the TCA 

cycle metabolites was conserved [59] to match the experimental data.  

The ensemble metabolic model was calibrated by scaling a set of pathways 

simultaneously. At steady state, the rate of production and consumption of all metabolic 

concentrations is balanced and equals zero. A fitting algorithm was written to fit the model to 

experimental data in a modular approach. The fitting algorithm scaled the pathways by 

computing the range of possible fluxes for each pathway that enables a close-to-optimal fit with 

the experimental data. The fitting algorithm also iteratively performed the metabolic flux 

analysis while constraining the flux through each pathway. The metabolic model was 

constrained to match the glucose and lactate flux to 495 and 851 pM/hr/106 cells respectively. 

The total cellular ATP and ADP levels were constrained to 220 and 110 µM. The reassembled 

model attained steady state after running it for 120 min (Figure 42 and Figure 43).  

The initial concentrations of all species in the metabolic model were then changed to 

run the model in steady state from beginning. The overall adenosine pool was kept constant. 

The ATP/ADP and ATP/AMP ratios were 2.2 and 5 respectively. The Na/K-ATPase and Calcium-

ATPase activity were tied matched to the activities obtained from the neuronal module and 

later integrated in the coupled model. 
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Figure 42: Simulating glucose uptake and lactate release to steady state 

 

Figure 43: Simulated steady state of intracellular adenosine levels 
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The metabolic flux analysis of NG108-15 cells showed that 83.09 % of carbon ends up in 

lactate production, 14.76% enters the mitochondrial TCA cycle, 2.02% is used by pentose 

phosphate pathway (PPP) for PRPP synthesis and 0.13% is secreted out of cells as pyruvate 

(Figure 44). The activity of pentose phosphate pathway in cancer cells or cell lines has been 

shown to vary depending on the cellular activity that ranges from 0.1 % to 11% and considering 

that NG108-15 cells were in differentiation stage 2% seems to be reasonable. The transport of 

pyruvate into extracellular space is very less as most of it got converted into lactate or entered 

mitochondria. 

 

Figure 44: Fate of carbon in NG108-15 cell 

Analysis of the ATP production by NG108-15 cell showed that 81.3% of ATP is being 

produced by glycolysis and only 18.7% of ATP is being contributed by the mitochondria towards 

the total cellular ATP concentration (Figure 45). Due to the increased carbon flux through 

glycolysis, NG108-15 cells produced more ATP from glycolysis and less from mitochondria. The 

total concentrations of ATP and ADP represented in the figure include free and magnesium 
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(Mg)-bound ATP and ADP. The total magnesium concentration has been held constant in the 

model. 

 

Figure 45: ATP Production by different pathways in NG108-15 cell 

During steady state, the rate of ATP production is equivalent to ATP utilization. The 

analysis of ATP utilization revealed that 45% of total cellular ATP is used back in glycolysis to 

mediate the conversions by hexokinase and phosphofructokinase enzyme (Figure 46). Although 

the net production of ATP is more by glycolysis, 45% is a significant amount that is being used 

back. A higher utilization of ATP by glycolysis also enables the cells to consume more glucose 

which would be available for both glycolysis and pentose phosphate pathway. The ATP 

dependent sodium-potassium and the ATP-dependent calcium exchangers consumed 17 and 

11% of the total cellular ATP respectively. The PPP and AK consumed less than 2% of the total 

ATP levels. The general ATPases representing all the other ATP-dependent process consumed 

26% of the ATP (Figure 46). 
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Figure 46: ATP utilization by different cellular processess in NG108-15 cell 

NG108-15 cells lack glutamate [104] indicating the absence or a non-functional malate-

aspartate-shuttle. The other shuttle capable of transferring the high-energy electrons 

generated in the glycolytic pathway into mitochondria and simultaneously active in brain could 

be the Glyceraldehyde-3-phosphate shuttle (G3P shuttle) [102]. The G3P shuttle transfers four 

high-energy electrons from the cytosol to mitochondrial electron transport chain by the flavin 

nucleotides. The efficiency of G3P shuttle is lower compared to malate-aspartate shuttle (MAS). 

MAS transfers six high-energy electrons into mitochondria. The activity of NAD/NADH recycling 

was compared as it determines the activity of glycolysis and mitochondria. The glycolytic lactate 

dehydrogenase has recycled 93% of NAD/NADH and 7% was recycled by mitochondria (Figure 

47). The lower mitochondrial recycling of NAD/NADH demonstrates that not too many 

electrons are entering the mitochondria leading to a lower mitochondrial membrane potential 

generation. This lowered membrane potential reduced the drive for ATP synthase and resulted 

in lower mitochondrial ATP production. 
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Figure 47: Predicted NAD/NADH recycling between glycolytic lactate dehydrogenase (LDH) and glycerol-3-
phosphate (G3P) shuttle 

5.3.2. Simulating neuronal-metabolic model to steady state 

Cellular membrane properties are sensitive to changes in cellular metabolism especially 

in neurons. So, the calibrated metabolic model was coupled to neuronal module for building 

the neuronal-metabolic model. The coupled model was simulated to steady state and the 

activities of ATP-dependent pumps were matched. The extracted parameters (Table 7 and 

Table 8) including ion pumps and leaks parameters were exported into the neuronal-metabolic 

model for simulating steady state. The neuronal-metabolic model is simulated to continuously 

generate action potentials and predict the changes in the intracellular ionic concentrations. The 

model-generated action potentials were in good agreement with the experimentally obtained 

recordings (Figure 48A). The coupled model was simulated for 80 min and only the first 1000 

action potentials generated a time span of 12 min are shown here. 
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Figure 48: Simulated (red) and measured (blue) action potentials of NG108-15 cell 

The sub-cellular ionic concentrations of all ions change rapidly during AP generation and 

reaches back to a steady state. Moreover, the bulk cytosolic concentrations have increased 

slightly and reached steady state. Simulating multiple action potentials also caused the sub 

cellular sodium (Figure 49- blue), potassium (Figure 50- red) and calcium (Figure 51- pink) 

concentrations to spike along with the action potential. The exchangers sensed a rapid increase 

in subcellular ionic concentration and extruded increased concentrations from the cell to 

restore ionic balance. A certain amount of ions also diffused into the cell increasing intracellular 

concentrations. The altered concentrations sodium (Figure 49 – green), potassium (Figure 50 - 

green) and calcium (Figure 51- gold) were also determined. The change in bulk concentration is 

small and usually assumed to be negligible. The metabolic model senses changes in bulk 

cytosolic concentrations and alters the metabolic activity. The rate change of concentrations 

usually varies by the membrane electrical activities and cell types [105]. 
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Figure 49: Predicted changes in subcellular and bulk cytosolic sodium concentrations during action potentials 

 

Figure 50: Predicted changes in subcellular and bulk cytosolic potassium concentrations during action potentials 
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Figure 51: Predicted changes in subcellular and bulk cytosolic calcium concentrations during action potentials 

The fluxes obtained from the neuronal-metabolic model was also extracted and 

compared to the experimentally determined values. An excellent fit was obtained to glucose 

and lactate flux (Figure 52). The intracellular ATP and ADP levels were also in agreement with 

the measured values (Figure 53).  

 

Figure 52: Compared glucose (blue) and lactate (red) flux obtained from neuronal-metabolic model (solid line) to 
experimental values (dotted line) 
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Figure 53: Compared ATP (blue) and ADP (red) flux obtained from neuronal-metabolic model (solid line) to 
experimental values (dotted line) 

The low levels of intracellular pyruvate levels were predicated by the model (Figure 54). The 

lower pyruvate levels enable cells to avoid cell death by inhibiting the HDAC1/HDAC3 [106]. The 

extracellular and mitochondrial levels of pyruvate levels are low compared to the cytosolic 

levels. However, most of the pyruvate ended up as lactate due to elevated glycolysis.  

 

Figure 54: Predicted extracellular (green), mitochondrial (red) and cytosolic (blue) pyruvate concentrations 
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Phosphoribosyl pyrophosphate (PRPP) in pentose phosphate pathway is a precursor for 

several biomolecules. The predicted PRPP levels are in close range to that found in B16 

melanoma cells [107]. PRPP transfers a high energy phosphate for the phosphorylation of 

purines bases and synthesis of purines, pyrimidines and pyridine nucleotides.  

A proton gradient is established across inner mitochondrial membrane as a result of 

transport of electrons by cytochrome complexes. The mitochondrial membrane potential of 

NG108-15 cells was found to be -122 mV (Figure 55) and was in range as with the other 

neuroblastoma cell lines [108]. This potential difference drives the ATP synthesis by F1F0ATPase 

pump. The redox mechanisms have a huge effect on the cellular metabolic activities. The 

metabolic activities, ATP levels and redox levels are tightly integrated into the model. The redox 

mechanism is sensitive to alterations in glycolytic enzyme activities. The intracellular metabolite 

concentrations are dependent on changes in protein activities. 

 

Figure 55: Predicted mitochondrial membrane potential of NG108-15 cell 

The metabolite concentrations and flux rates in the model were at steady state and the 

protein functions were dependent on the maximum activity of the enzymes. The activities of 
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these enzymes lie mostly at plateau. An increase or decrease in protein activity will determine 

the metabolite concentration and will also restore the model back to original steady state upon 

perturbations in metabolite levels. The stability of metabolic activity is not only due to the 

stoichiometry of metabolites but due to regulatory protein mechanisms. 

5.4. Perturbing glycolysis 

The first rate limiting step in glycolysis is the ATP dependent conversion of glucose to 

glucose-6-phosphate (G6P). The phosphorylation converts non-ionic form of glucose to anionic 

G6P. G6P act as the entry point for PPP and glycolysis. Several studies have shown that 

hexokinase plays a crucial role in initiating and maintain high glycolytic rates in rapidly 

proliferating cells [52]. To inhibit the glycolytic pathway, cells were treated with 2-Deoxy-

glucose (2DG). The molecular structure of 2DG is similar to glucose and the cell transports it 

through the glucose transporters. 2DG is an effective glycolytic inhibitor as it not only competes 

with cellular glucose for phosphorylation but also directly decreases cellular ATP levels by 

consuming ATP during the conversion to 2-deoxyglucose-6-phosphate (2DG6P). The metabolite 

2DG6P cannot be further metabolized down the glycolysis and get accumulated in the cell 

[105]. Moreover, neuronal cells lack glycogen stores and they depend on glycolysis as a source 

for carbon and energy production making glycolytic inhibition more pronounced. 

To determine and experimentally validate the metabolic perturbations induced by 

glycolysis, the NG108-15 were exposed to 2DG followed by determining the metabolic activity 

and electrophysiological changes. To mimic the experimental conditions, the hexokinase 

enzyme was inhibited in the neuronal-metabolic model using an event in Simbiology.  
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5.4.1. Analysis of carbon flux 

The scaling factor ‘b’ for inhibiting the hexokinase activity was estimated by predicting 

the IC50 values. The simulated lactate flux was initially fitted to experimentally measured values 

(Figure 56– red line) for determining the scaling factor (and IC50). The rapid decline of glucose 

flux during the first 20 min shows that NG108-15 cells are sensitive to 2DG treatment due to 

elevated glycolytic activity. A 60 min exposure to NG108-15 cells decreased the lactate flux by 

68%. The lactate flux has remained constant after 60 min and reached a plateau. The lactate 

flux obtained from the metabolic model gave a good fit to experimental measurements. The 

model predicted a decline in glucose flux upon inhibiting hexokinase activity (Figure 56 - blue 

line). A 60 min exposure of 2DG leads to a 61% decrease in glucose flux into the cell. The model 

predicts that a prolong exposure of 2DG has further lowered the glycolytic flux.  The glucose 

uptake rates were not determined as the assay kit was detecting both glucose and 2DG.  

 

Figure 56: Predicted glucose uptake and lactate flux of 2DG compared to experimental data 
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The metabolic flux analysis of carbon usage by NG108-15 cell upon exposure to 2DG is 

shown in Figure 57. The amount of carbon that ended up as lactate decreased from 83% to 

66%. The overall carbon flux into all the pathways decreased. But due to lowered carbon usage 

by glycolysis during 2DG treatment, the mitochondrial carbon usage has increased from 15% to 

33%. (Figure 44 and 57). 

 

Figure 57: Carbon flux analysis of NG108-15 cell exposed to 2DG 

The cellular pyruvate levels were also analyzed to examine the amount and rates of 

pyruvate flux into different pathways. Inhibition of glycolysis reduced the cytosolic pyruvate 

flux significantly and provoked a decrease in transport of pyruvate into mitochondria (Figure 

58). Moreover, an external supply of pyruvate could have significantly delayed the effect of 

glycolysis inhibition [105]. 



 

118 

 

 

Figure 58: Predicted pyruvate flux during simulating the effects of 2DG 

5.4.2. ATP production and utilization 

The exposure of 2DG decreased carbon flux into the cell resulting in a lowered cellular 

ATP levels. The model predicted intracellular ATP (Figure 59) and ADP levels (Figure 60) were in 

agreement with the experimentally measured ATP and ADP levels. Since the adenosine level in 

the model is conserved, a decrease in ATP and ADP levels caused the cellular AMP levels to rise 

(Figure 61). The conversion of ATP, ADP to AMP is mediated by the enzyme Adenylate kinase 

(AK). After 20 min, the cellular ADP level predicted by the model decreased faster compared to 

the experimental measurements. It may be due to the production of adenosine by cells or other 

mechanisms that are currently not accounted in the model. The overall trend of changes in the 

adenine nucleotide predicated by the model is in good agreement with the experimentally 

determined values. 
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Figure 59: Predicted (solid line) and experimentally (O-dotted line) measured ATP production exposed to 2DG 

 

Figure 60: Predicted (solid line) and experimentally (O-dotted line) measured ADP production exposed to 2DG 
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Figure 61: Predicted (solid line) AMP levels exposed to 2DG 

The ATP production by individual pathways exposed to 2DG were analyzed. The over all 

ATP production by both glycolysis and mitochondria has decreased. But the percent amount of 

ATP produced by glycolsyis has lowered from 81% to 60% (Figure 62). The mitochondrial ATP 

production has increased from 19% to 40%. The increase in mitochondrial activity is due to the 

inhibitoion of glycolysis which focred the cell to rely on mitochondrial ATP generation to meet 

its cellular requirments.  

The usage of ATP by difference cellular pathways was also evaluated simulaneously 

(Figure 63). The total ATP usage by cellular pathways went down. The ATP utilized in glycoslysis 

ishas reduced from 46% to 41%. The ATP consumption by general ATPases, NaK-ATPase, PPP 

and AK were 29%, 11%, 18% and 1% respectively. The lowered carbon influx into mitochondria 

has decreased the generation of protons necessary for maintaining the required mitochondrial 
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membrane potential for driving ATP synthase. The simulated mitochondrial membrane 

potential (ΔΨ) changed from -120mV to -107 mV (Figure 64). The decline in ΔΨ was not 

suffieicent enough inhibiting ATP generation infact a higher amount of mitochondrial ATP were 

synthesised and transported into cytosol by Adenine nucleotide transloactor (ANT). The ANT is 

responsible for exporting ATP from mitochondrial matrix and importing ADP from cytosol. 

 

Figure 62: Predicted ATP production by NG108-15 cell upon exposure to 2DG 

 

Figure 63: Predicted ATP utilization by NG108-15 cell upon exposure to 2DG 
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Figure 64: Predicted mitochondrial membrane potential of NG108-15 cell exposed to 2DG 

5.4.3. Predicting action potentials and ionic concentrations 

The neuronal-metabolic model predicted the changes in action potential peaks shapes 

as the cellular metabolism was being affected. The experimentally measured action potentials 

exposed to 2DG were compared to model generated action potentials and were in good 

agreement (Figure 65). The entire action potential time series was matched to experimental 

recordings to validate model predictions. The evaluation of time series data is crucial as most of 

the drugs reduced might cause similar effects in AP but the time scale of those effects would be 

significantly different. 

Inhibiting glycolysis caused a compelling change in intracellular ATP levels. Reduction of 

intracellular ATP levels lead to decreased ATP-dependent electrogenic pump activity and also 

activated ATP dependent potassium channel. The changes in membrane electrical activity cause 

changes in intracellular ionic concentrations. The intracellular accumulation of sodium (Figure 
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66) and calcium (Figure 68) followed by a decline in potassium (Figure 67) concentration was 

observed. 

 

Figure 65: Predicted (red) action potential time series compared to experimental (blue) recordings when treated 
with 2DG 

The sodium, potassium and calcium concentrations reached to 13.82, 132.8 and 0.085 

mM respectively after 17 min. It has been found that neurons are more sensitive and loose 

cellular homeostasis than glial cells upon exposure to metabolic perturbations [105]. The 
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simulation showed the calcium concentration has increased rapidly after 15 min (Figure 68) and 

is in agreement with the literature reported changes [105]. 

 

Figure 66: Predicted 2DG induced changes in subcellular and bulk cytosolic sodium concentrations 

 

Figure 67: Predicted 2DG induced changes in subcellular and bulk cytosolic potassium concentrations 
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Figure 68: Predicted 2DG induced changes in subcellular and bulk cytosolic calcium concentrations 

5.5. Perturbing mitochondrial electron transport chain 

The mitochondrial electron transport induced perturbations were studied by inhibiting 

oxidative phosphorylation reaction using cyanide. Cyanide is a potent reversible inhibitor of 

mitochondrial cytochrome oxidase and causes sudden death by acting on central nervous 

system. Cyanide predominately inhibits the consumption of oxygen required for ATP 

production. Although cyanide inhibition is reversible, a prolong exposure will lower cellular ATP 

levels inducing an irreversible damage to cell. The biochemical events during cyanide exposure 

have been studied on a wide variety of cells including neurons and NG108-15 cells [89]. To 

determine and experimentally validate the metabolic perturbations induced by electron 

transport chain, the NG108-15 were exposed to cyanide followed by determining the metabolic 

activity and electrophysiological changes.  
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To mimic the experimental conditions, the oxidative phosphorylation in the 

mitochondria was inhibited in neuronal-metabolic model by creating an event in Simbiology. 

Simultaneously, even the contribution of oxidative phosphorylation towards mitochondrial 

membrane potential was inhibited. 

5.5.1. Analysis of carbon flux 

The scaling factor ‘b’ for inhibiting oxidative phosphorylation was estimated by 

predicting the IC50 values. The IC50 values were obtained by fitting the simulated lactate flux to 

experimental data (Figure 69– red line). The model showed a decreased glucose flux into the 

cell upon inhibiting mitochondrial activity (Figure 69 - blue line). The lactate flux obtained from 

the metabolic model gave a satisfactory fit to experimental measurements. The experimental 

and simulated results showed an initial increase in lactate production by NG108-15 cell.  

 

Figure 69: Cyanide treated simulated glucose uptake and lactate flux compared to experimental data 
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The increase in lactate production was due to the inhibition of mitochondrial process 

forcing the cell to rely on glycolysis for ATP production. The mitochondrial pyruvate levels have 

increased during the first couple of minutes as the mitochondria were unable to metabolize 

pyruvate through TCA cycle (Figure 70 – red line). The mitochondrial pyruvate levels have 

increased to 203% whereas the cytosolic levels have lowered by 14% after a 5 min exposure to 

cyanide.  The prolonged exposure has caused the cytosolic pyruvate levels to lower as pyruvate 

was used during glycolysis to generate lactate and ATP (Figure 70 –blue line). The reduction in 

cytosolic levels of pyruvate caused the mitochondrial pyruvate to be transported back to into 

cytosol for ATP generation. The overall cytosolic pyruvate levels were reduced by 35% and the 

mitochondrial pyruvate levels were reduced by 24% after 80 min. 

 

Figure 70: Simulated pyruvate fluxes during cyanide treatment 

The metabolic flux analysis of carbon utilization showed that carbon utilization by 

glycolysis has increased from 83% to 88% upon exposure to cyanide (Figure 71). The 
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mitochondrial carbon utilization decreased from 15% to 10%. No significant change in PPP was 

observed as the glycolytic metabolites were deplting faster leaving no excess metabolities to 

enter PPP. The transport of pyruvate into the extracellular space was less than 1%. These 

results indicate a shift in metabolic activity from mitochondria to glycolysis occurs during 

hypoglycemia. 

 

Figure 71: Predicted carbon utilization by NG108-15 cells during cyanide treatment 

5.5.2. ATP production and utilization 

The contribution of ATP production by mitochondrial oxidative phosphorylation was 

determined by treating cells with cyanide, a respiratory chain inhibitor. Treatment with cyanide 

not only eliminates the utilization of pyruvate but also other endogenous fuels such as amino 

acids and fatty acids that may contribute high energy electrons for ATP synthesis [105]. The ATP 

production during cyanide treatment was measured and compared to simulated values. The 

model accurately predicted change in cellular ATP (Figure 72) and ADP (Figure 73) levels. These 

results were in accordance with the cyanide effects tested by Ray et al. [89].  Glycolysis alone 

could not maintain the cellular ATP level and the rate of decline in cellular ATP was slow 
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compared to 2DG treatment. The AMP levels slightly increased as the cellular ATP and ADP 

were converted by AK (Figure 74). A 60 minute exposure of cyanide lowered the cellular ATP 

levels to 148 + 29 µM. The ADP levels did not change significantly and remained at 109 + 15 µM 

indicating the conversion of cellular ATP to AMP. 

 

Figure 72: Predicted (solid line) and experimentally (O-dotted line) measured ATP production exposed to Cyanide 

 

Figure 73: Predicted (solid line) and experimentally (O-dotted line) measured ADP production exposed to Cyanide 
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Figure 74: Predicted AMP levels exposed to 2DG 

The ATP production by individual pathways exposued to cyanide was analyzed. The total 

production of ATP by both glycolysis and mitochondria has declined but the percent amount of 

ATP produced by glycolsyis has increased from 81% to 85% (Figure 75). The mitochondrial ATP 

production has decreased from 19% to 15%. Inhibition of mitochondria has focred the cell to 

rely on glycolysis for ATP generation. The ATP generated by glycolysis was sufficient enough for 

cellular functions. The ATP utilization by difference cellular pathways was determined (Figure 

76). The ATP utilization by glycoslysis has increased from 41% to 49%. The ATP consumption by 

general ATPases, NaK-ATPase, Ca-ATPase, PPP and AK was 25%, 15%, 10%, < 1% and < 1%. The 

activity of general ATPases decreased by 4%. The carbon influx into mitochondria has decreased 

and lower number of protons were generated by TCA cycle. 
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Figure 75: Predicted ATP production by NG108-15 cell upon exposure to Cyanide 

 

Figure 76: Predicted ATP utilization by NG108-15 cell upon exposure to Cyanide 

Since the activity of glycolytic enzymes has not decreased significaantly, the NAD/NADH 

recycling has elevated and electrons are probably being transported into the mitochondria by 

the G3P shuttle thereby enabling the maintainence of mitocondrial membrane potetnial. The 

simulated mitochondrial membrane potential (ΔΨ) changed from -121 mV to -100 mV within 2 

minutes due to usage of the existing electrons and slowly reached back to -110mV as the 
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electrons from glycolysis were transferred into mitochondria  (Figure 77). 

 

Figure 77: Predicted mitochondrial membrane potential of NG108-15 cell exposed to Cyanide 

5.5.3. Predicting action potentials and ionic concentrations 

The neuronal-metabolic model generated action potentials and predicted the changes in 

action potential peaks shapes as the cellular metabolism was inhibited. The action potential 

time series obtained from the model was plotted against the experimental recordings to 

validate the model. The measured action potentials matched the simulated action potentials 

(Figure 78). A visual analysis showed no change in the action potential peak shapes as the 

cellular ion channels and ATP dependent exchangers were functional. The required amount of 

ATP was being generated by glycolytic pathway. A detailed analysis of action potential time 

series has been performed in chapter 5.9. 
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Figure 78: Predicted (red) action potential time series compared to experimental (blue) recordings when treated 
with cyanide 
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Inhibiting mitochondrial membrane potential has slightly reduced cellular ATP levels. 

The electrogenic ATP-dependent exchangers activity were unaffected (Figure 76) and have 

been successful at restoring ionic concentrations (Figure 79, Figure 80 and Figure 81). The 

sodium, potassium and calcium concentrations reached to 10.78, 138.1 and 0.125 mM 

respectively after 17 min. The action potential peak shape has not significantly altered. The 

change in intracellular ionic concentrations less initially as the cellular ATP levels were not 

lowered. After 17 min of exposure to cyanide, the ATP levels slightly reduced and the 

intracellular ionic concentrations were altered. The changes in sodium, potassium and ATP 

concentrations lead to a rapid rise in intracellular calcium concentration. The changes in the 

subcellular space are swift and achieved equilibrium with the bulk cytosolic concentrations. The 

above results obtained from simulating neuronal-metabolic model and experiments suggests 

that NG108-15 cells are insensitive to cyanide. 

 

Figure 79: Predicted cyanide induced changes in subcellular and bulk cytosolic sodium concentrations 
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Figure 80: Predicted cyanide induced changes in subcellular and bulk cytosolic potassium concentrations 

 

Figure 81: Predicted cyanide induced changes in subcellular and bulk cytosolic calcium concentrations 
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5.6. Perturbing mitochondrial TCA cycle and electron transport chain 

Succinate dehydrogenase (SDH) was inhibited to investigate metabolic perturbations 

induced by mitochondrial TCA cycle and electron transport chain. SDH is the only enzyme that 

couples mitochondrial TCA cycle and electron transport chain. SDH is complex-II in the electron 

transport chain and does not pump protons directly across inner mitochondrial membrane. 

Complex-II transfers reducing equivalents through co-enzyme Q10 that gets re-oxidized by 

complex-III in inner mitochondrial membrane. Malonate is a competitive inhibitor of SDH and 

causes an accumulation of succinate in mitochondria. Malonate has been shown to induce in 

vivo and in vitro neuronal toxicity in a dose-dependent manner [109].  

To investigate the metabolic perturbations induced by malonate, NG108-15 cells were 

exposed to Malonate followed by determining the metabolic activity and electrophysiological 

changes. To simulate experimental conditions, SDH enzyme in TCA cycle was inhibited in the 

neuronal-metabolic model by creating an event in Simbiology. The inhibition factor was 

predicted by fitting the model to experimental lactate flux. The IC50 values obtained are used 

for simulating the neuronal-metabolic model. 

5.6.1. Analysis of carbon flux 

The carbon flux into the cell has increased upon treating cells with malonate. A 20 min 

exposure of malonate has increased the glucose flux into cell by 30% (Figure 82 – blue line). The 

increased glycolytic flux subsequently resulted in an elevated lactate flux. The lactate flux was 

increased by 22.5% (Figure 82 – red line). The model also predicted an overall increase in 

glucose and lactate flux which is in agreement with the experimentally determined values 
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(figure 82). The increased glucose and lactate flux were lowered by 10% and 6% respectively 

after 60 min exposure. The mitochondrial flux decreased and an increase in cellular glycolysis 

was observed indicating that the cell was probably running at its maximum glycolytic capacity. 

 

Figure 82: Simulated glucose uptake lactate release flux compared to experimental data by treating NG108-15 cells 
with malonate 

The pyruvate flux was analyzed to track the flow of carbon into different pathways over 

time (Figure 83). A 9x increase in mitochondrial pyruvate concentration was observed upon a 

30 min exposure to malonate. Similarly, the cytosolic pyruvate has also increased as the 

pyruvate was not metabolized in TCA cycle leading to a build-up in mitochondria and cytosolic 

compartments. The pyruvate levels were slowly reaching back to steady state adjusting to the 

perturbations caused by malonate. Due to increased requirement of pyruvate in glycolysis, a 

very small amount of carbon is exported out of the cell as pyruvate. Further analysis of the 

carbon flux into different pathways was performed. The glycolytic flux has increased by 2%. The 
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mitochondrial flux has decreased only by 2% since the pyruvate was getting accumulated in the 

mitochondrial compartment as shown in Figure 83. The carbon flux into PPP and extracellular 

pyruvate remained unaltered when compared with controls (Figure 44).  

 

Figure 83: Analysis of pyruvate concentrations in cytosol, mitochondria and extracellular compartments during 
malonate treatment 

 

Figure 84: Analysis of carbon fluxes for cells exposed to malonate 



 

139 

 

5.6.2. ATP production and utilization 

The changes in ATP and ADP levels were measured by exposing cells to malonate. The 

experimentally determined and simulated results of ATP (Figure 85) and ADP (Figure 86) 

measurements were in good agreement. The predicted AMP levels have also increased when 

treated with malonate (Figure 88). A 60 min exposure to malonate caused cellular ATP levels to 

decline by 22%. The reduction in ATP levels increased the ADP and AMP levels by 37% and 47% 

respectively. The adenine nucleotide levels were conserved in the model and their levels are 

governed by AK.  

 

Figure 85: Experimental and predicted changes in intracellular ATP concentration during malonate treatment 

The rate of decline in ATP production was slightly less compared to cells treated with 

cyanide. The protons generated from elevated glycolysis were transferred into the 

mitochondria by G3P shuttle. The transferred protons contribute towards the mitochondrial 

membrane potential. The mitochondrial membrane potential was reduced from -121 mV to -
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117 mV (Figure 87).  The mitochondrial membrane potential has been shown to be lowered by 

decrease in the cellular ATP production during malonate treatment in neurons. But due to the 

altered metabolic activity the mitochondrial membrane potential was not significantly altered. 

 

Figure 86: Experimental and predicted changes in intracellular ADP concentration during malonate treatment 

 

Figure 87: Mitochondrial membrane potential of NG108-15 cell during treatment with malonate 
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Figure 88: Predicted changes in intracellular AMP concentration during malonate treatment 

A complete analysis of cellular ATP production and utilization was performed to gain 

metabolic insights and identify protein activities. Since the mitochondrial membrane potential 

was not altered significantly, the mitochondrial ATP production declined by 2% and 

simultaneously the ATP production increased by 2%.   

 

Figure 89: Analysis of ATP production pathways during malonate treatment 
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The ATP utilization by glycolysis increased by 7% as glucose uptake was heighted. 

Despite a decrease in cellular ATP level, a sufficient amount of ATP was still being synthesised 

by the cell to carryout the necessary functions. The ATP utilization flux by Ca-ATPase, NaK-

ATPase, general ATPase, AK and PPP were 10%, 15%, 26%, <1% and <1%.  

 

Figure 90: ATP utilization by different pathways upon exposure to malonate 

5.6.3. Predicting action potentials and ionic concentrations 

The model generated action potentials (AP’s) were compared to experimentally 

determined action potentials. The simulated AP’s were in good agreement with the 

experimental recordings (Figure 91). The action potential peak height was maintained as the ion 

channels and exchangers were functional. The rate of decline in membrane resistance was 

estimated and included in the model during action potential simulation. The action potential 

parameters were not altered as malonate does not bind to ion channels and only the reversal 

potentials of all ions are allowed to change. 



 

143 

 

 

Figure 91: Simulated (red) and experimental (blue) malonate treated action potential time series  
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The neuronal and metabolic modules are driven by changes in the cellular ATP and ionic 

concentrations. The model predicted ATP concentrations were analyzed during malonate 

treatment. The intracellular sodium concentration increased by 1.7 mM (Figure 92) and 

potassium concentration decreased by 18.6 mM (Figure 93). The calcium concentrations did not 

change significantly (Figure 94). The subcellular calcium concentrations reached a maximum of 

8.48×10-4 mM. The maximum flux of ionic concentrations depends on the fitting parameters 

obtained during action potential deconvolution. The intracellular ionic concentrations were 

slowly altered and no rapid change was observed as cellular ATP levels were slowly lowered. A 

rapid significant decline might have caused intracellular ionic concentrations to rise quickly. 

 

Figure 92: Predicted changes in subcellular (red) and bulk (blue) cytosolic sodium concentrations in NG108-15 cells 
exposed malonate 
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Figure 93: Predicted changes in subcellular (red) and bulk (blue) cytosolic potassium concentrations in NG108-15 
cells exposed malonate 

 

Figure 94: Predicted changes in subcellular (red) and bulk (blue) cytosolic calcium concentrations in NG108-15 cells 
exposed malonate 
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5.7. Perturbing glycolysis and mitochondrial electron transport chain  

Most diseases such as cancer are being treated with some combination of surgery, 

radiation and/or multiple drug treatment. Drug treatment mainly involves using drugs that kill 

rapidly dividing cells. Cellular pathways in cancer cells are modified and certain pathways are 

over expressed. The rationale behind using such treatment is to use a combination of drugs that 

inhibit cellular pathways at multiple points. NG108-15 cells are insensitive to mitochondrial 

inhibitors, so a combinational treatment with a glycolytic inhibitor was tested to increase the 

sensitivity. Cells were treated with 2DG and cyanide simultaneously to induce metabolic 

perturbations in glycolysis and the mitochondrial pathways. The metabolic perturbations were 

validated by determining the metabolic and neuronal responses. 

5.7.1. Analysis of carbon flux 

The cellular glucose uptake and lactate production were measured by exposing the cells 

to 2DG and cyanide. These drugs significantly inhibited glycolysis and mitochondrial oxidative 

phosphorylation and lowered the carbon fluxes in the cell. A rapid decline in cellular glucose 

consumption and lactate production was observed within the first 20 min (Figure 95). The 

glucose and lactate fluxes were lowered by 66% and 72%, respectively, in 20 min. The decline 

was much faster than the standalone treatment of either drug. Prolonged exposure to 2DG and 

cyanide has further decreased the carbon fluxes and a complete inhibition of glucose flux was 

observed after 80 min. Inhibition glycolysis caused a decline in cytosolic pyruvate 

concentrations in 4 min (Figure 96). The pyruvate levels in the mitochondria have rapidly 

increased reaching a peak concentration of 0.02 mM. 
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Figure 95: Experimental lactate production compared to the model generated lactate and glucose flux during 
combinational treatment with 2DG and cyanide 

 

Figure 96: Predicted cytosolic, mitochondrial and extracellular concentrations of pyruvate in NG108-15 cell 
exposed to 2DG and Cyanide 
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The increased mitochondrial pyruvate levels were accumulated and transported back to 

the cytosol causing the cytosolic pyruvate concentrations to rise. Since carbon influx has been 

inhibited, the cellular metabolite levels got exhausted. This expedited depletion of the 

glycolytic metabolites forced the carbon flux towards lactate production. The cytosolic pyruvate 

decreased as it was converted to lactate and simultaneously the accumulated mitochondrial 

pyruvate was transported into the cytosol (Figure 96). 

 The flux balance analysis of carbon into different pathways was performed (Figure 97). 

The global fluxes have decreased and the ratio of carbon fluxes had also changed. The 

mitochondrial flux of carbon was lower than the lactate flux. The carbon in glycolysis and the 

mitochondria were 94% and 5% respectively. The PPP flux has also been lowered to 0.57%. The 

extracellular flux of carbon as pyruvate was less than 0.3%. The combinational treatment had a 

larger effect on glycolysis and significantly lowered its activity. Metabolic perturbations induced 

by inhibition of glycolysis and mitochondrial respiration had a huge effect on cellular functions. 

 

Figure 97: Flux balance analysis of carbon usage by different pathways during 2DG and cyanide treatment 
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5.7.2. ATP production and utilization 

The changes in ATP and ADP levels in cells exposed to a combinational treatment of 2DG 

and cyanide were assessed by experimental determination at different time intervals. The 

simulated ATP (Figure 98) and ADP (Figure 99) concentrations were compared to 

experimentally determined values. A 20 min exposure of 2DG and cyanide lowered the ATP 

levels to 32%. Prolonged exposure beyond 20 min caused cellular ATP levels to decrease further 

down to 18%. The ADP levels increased by 36% during the first 20 min and were decreased by 

18%, almost reaching the initial concentrations. The predicted AMP levels increased from 75 

µM to 345 µM (Figure 100). 

 

Figure 98: Measured and simulated ATP concentrations in NG108-15 cell exposed to a combinational treatment of 
2DG and Cyanide 
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Figure 99: Measured and simulated ADP concentrations in NG108-15 cell exposed to a combinational treatment of 
2DG and Cyanide 

 

Figure 100: Simulated AMP concentrations in NG108-15 cell exposed to a combinational treatment of 2DG and 
Cyanide 
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The mitochondrial membrane potential depolarized from -121 mV to -88 mV (Figure 

101). An initial small transient was observed lowering the potential to -113 mV due to the 

aberrant arrest of mitochondrial respiration by cyanide. As carbon flux was inhibited by 

metabolic inhibitors, the generation of protons required to maintain mitochondrial membrane 

potential had decreased. This decrease in mitochondrial membrane potential resulted in a 

decline in mitochondrial ATP generation mechanisms. 

 

Figure 101: Predicted changes in mitochondrial membrane potential of NG108-15 cell exposed to 2DG and cyanide 

The flux balance analysis was perfomed on the ATP production and utilization of 

different pathways during treatment with 2DG and cyanide. The analysis indicated an overall 

reduction in cellular ATP generation. After 80 min of combinational treatment, the glycolytic 

and mitochondrial ATP production were 93% and 7% respectively (Figure 102). The utilization of 

ATP by different pathways has shown that only 27% of ATP was used back again in cellular 

glycolysis pathway (Figure 103). The reduction in ATP levels have also decreased the conversion 
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of glucose by hexokinase. The NaK-ATPase and Ca-ATPase were utilized appromimately 14 and 

22% of cellular ATP, respectively, to restore cellular homeostasis. The general ATPases were 

utilizing around 36% of ATP. The ATP usage by PPP and AK was lowered and consumed less than 

1% of ATP. 

 

Figure 102: Analysis of ATP production by glycolysis and mitochondrial process during 2DG and Cyanide  

 

Figure 103: ATP utilization by different cellular process exposed to 2DG and cyanide 
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5.7.3. Predicting action potentials and ionic concentrations 

The model generated action potentials during metabolic perturbation induced by 2DG 

and cyanide were significantly altered. The simulated action potentials were compared to the 

experimental measurements (Figure 104) and an excellent fit was obtained between them. 

 

Figure 104: Predicted action potentials compared to experimental recordings exposed to 2DG and cyanide 
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The action potential peak height decreased and membrane potentials depolarized. The 

reversal potentials and cellular ATP concentrations were allowed to change during simulation. 

The changes in the subcellular and bulk ionic concentrations were predicted by the model. The 

calcium concentration initially increased linearly from 1.25e-4 mM to 2.64e-3 mM, but cellular 

ATP concentration did not significantly decrease (Figure 107). But after 8 minutes of exposure 

to 2DG and cyanide, a significant reduction in cellular ATP levels caused the calcium 

concentration to rise exponentially leading to a rapid influx of sodium and efflux of potassium 

ions. The bulk cytosolic sodium concentration increased from 10 mM to 20.4 mM (Figure 105). 

The potassium concentration decreased from 140 mM to 84 mM in 17 minutes (Figure 106). 

These results were in agreement with the ionic concentration changes found in C6 glioma cells 

treated with 2DG and cyanide [105]. 

 

Figure 105: Predicted changes in subcellular and bulk cytosolic sodium concentrations during combinational 
treatment with 2DG and cyanide  
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Figure 106: Predicted changes in subcellular and bulk cytosolic sodium concentrations during combinational 
treatment with 2DG and cyanide 

 

Figure 107: Predicted changes in subcellular and bulk cytosolic sodium concentrations during combinational 
treatment with 2DG and cyanide 
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5.8. Perturbing glycolysis, mitochondrial TCA cycle and electron transport chain 

Inhibiting the TCA cycle by malonate had no significant effect on cellular activities as the 

required ATP was being generated by glycolysis. The effects of inhibiting glycolysis with 2DG 

and the mitochondrial TCA cycle and electron transport chain with malonate were tested. 

Malonate inhibits complex-II (SDH enzyme) but does not completely seize the electron 

transport chain as the electrons from oxidation of NADH and FADH2 are directly transported 

into inner mitochondrial membrane. The metabolic perturbations that are due to inhibition of 

glycolysis and the TCA cycle were evaluated. 

To simulate the effect of combination treatment of drugs, both the events representing 

the effect of glycolysis and TCA cycle inhibition are turned on. The scaling factors for inhibiting 

the pathways were obtained from the earlier obtained fitting data for standalone drugs. 

5.8.1. Analysis of carbon flux 

The fate of carbon was analyzed to determine the effects of combinational treatment 

with 2DG and malonate. The model predicted glucose flux and lactate flux were compared to 

the experimental data (Figure 108). The glucose flux was not measured as 2DG and glucose 

have a similar molecular structure and the assay kit was unable to distinguish between them. 

The glucose uptake and lactate production were lowered to 55% and 51% respectively in 20 

min. The declines in carbon flux continued upon prolong exposure. The predicted glucose flux 

and lactate flux decreased to 10 and 18%, respectively, after 80 min.  
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Figure 108: Simulated glucose and lactate flux compared to experimental lactate flux of NG108-15 cell during 
combinational treatment with 2DG and malonate 

 The cytosolic and mitochondrial pyruvate concentrations decreased over time (Figure 

109). Unlike malonate treatment where accumulation of pyruvate was observed, the 

combinational treatment caused only a small increase in cytosolic and mitochondrial pyruvate 

levels. 2DG inhibited glucose flux which resulted in the transport of carbon to the mitochondria. 

The mitochondrial pyruvate slowly decreased as the cytosolic pyruvate was preferably being 

converted into lactate. The extracellular pyruvate flux initially remained unaltered but was 

completely inhibited after 80 min. 

 Carbon flux analysis has identified the percent of carbon being used by different 

pathways within the cell. Although the total carbon flux decreased, around 91% of carbon was 

routed through glycolysis and converted to lactate and only 8% of the carbon entered the 

mitochondria. The carbon flux towards the pentose phosphate pathway and extracellular 
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pyruvate were 0.01% and 0.7%. The decrease of carbon flux to PPP was significantly lowered as 

the reduction in glycolytic metabolites favored the carbon to route towards lactate generation 

by producing ATP for cellular functions. 

 

Figure 109: Predicted pyruvate flux during simulating the effects of combinational treatment of 2DG and malonate 

 

Figure 110: Carbon flux analysis of NG108-15 cell exposed to 2DG and malonate 
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5.8.2. ATP production and utilization 

The cellular ATP and ADP levels were measured by exposing the cells to 2DG and 

malonate simultaneously. The predicted ATP (Figure 111) and ADP (Figure 112) concentrations 

were in good agreement with the experimental data. A 40 min exposure to these drugs lowered 

the cellular ATP levels to 21%. The model predicted cellular ATP levels declined further after 

exposure to 2DG and malonate for 60 min. The experimental results have shown cellular ATP 

levels to remain at a plateau probably due to the production of ATP by other endogenous 

factors such as fatty acids. The decrease in cellular ATP levels caused the ADP levels to rise 

initially. The AMP levels (Figure 113) increased as the cellular ATP levels were decreasing. An 

uninterrupted exposure lowered the cellular ADP level, and subsequently increased the 

intracellular AMP level. 

 

Figure 111: Measured and simulated ATP concentrations in NG108-15 cell exposed to a combinational treatment 
of 2DG and malonate 
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Figure 112: Measured and simulated ADP concentrations in NG108-15 cell exposed to a combinational treatment 
of 2DG and malonate 

 

Figure 113: Simulated AMP concentrations in NG108-15 cell exposed to a combinational treatment of 2DG and 
malonate 

The mitochondrial membrane potential became more sensitive when treated with 2DG 
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and malonate. Treatment with malonate alone had reduced the mitochondrial membrane 

potential by -4 mV, but when the cells were treated with malonate in the presence of 2DG, the 

mitochondrial membrane potential depolarized to -32 mV (Figure 114). The reason behind this 

significant depletion of the mitochondrial membrane potential was due to lowered transport of 

high energy electrons generated during glycolytic inhibition. The G3P shuttle was unable to 

transfer the electrons as sufficient electron equivalents were not generated. On the other hand, 

malonate has lowered the TCA cycle activity, thereby obstructing the generation and transfer of 

electrons. Malonate has been shown to reduce cellular functions by depolarizing the 

mitochondrial membrane potential and increasing the oxidative stress in SH-SY5Y 

neuroblastoma cells [110]. 

 

Figure 114: Predicted mitochondrial membrane potential during treatment combinational treatment with 2DG and 
malonate 

ATP production and usage by different pathways in NG108-15 cell after 60 min exposure 
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to 2DG and malonate was analyzed. The ATP production from glycolysis and the mitochondria 

were 96% and 4% respectively (Figure 115). Although the total amount of ATP produced by the 

cell decreased to 21%, the glycolytic pathway was still active generating ATP. The low amount 

of ATP present in the cell was mainly used by hexokinase (HK), NaK-ATPase, Ca-ATPase and 

general ATPases (Figure 116). The activity of the HK enzyme increased due to lowered ATP and 

G6P levels. The lowered G6P levels triggered the influx of glucose and, more importantly, 2DG 

into the cell. 2DG was preferentially metabolized in the cell leading to an accumulation of 

2DG6P, a metabolitite that could not be metabolized futher down the glycolysis pathway. The 

next highest ATP consuming process was the NaK-ATPase and Ca-ATPase proteins. These 

proteins bind to free-cytosolic ATP and transfer ions across the memebrane to restore ionic 

balance. 

 

Figure 115: Analysis of ATP production by glycolysis and mitochondrial process during 2DG and malonate 
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Figure 116: ATP utilization by different cellular process exposed to 2DG and malonate 

5.8.3. Predicting action potentials and ionic concentrations 

The time dependent changes in action potential peak shapes were predicted by the 

neuronal-metabolic model. The action potentials generated by the model were plotted against 

the experimental recordings (Figure 117). An excellent fit was obtained between the simulated 

and experimental recordings. The fit to tail of an action potential was acceptable. A prolonged 

exposure to 2DG and malonate has caused the cellular action potentials to alter significantly.  

The intracellular ionic concentrations were predicted by the neuronal-metabolic model. 

The sodium, potassium and calcium ionic concentrations changed rapidly. The intracellular 

sodium reached a peak concentration of 21.1 mM in 18 min (Figure 118). The potassium 

concentration decreased to 90 mM in 18 min (Figure 119). The changes in ionic concentrations, 

and even cellular ATP levels, have caused a rapid exponential increase in calcium concentration 

after 15 min (Figure 120). The calcium concentration increased to 0.92 mM. 
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Figure 117: Predicted action potentials compared to experimental recordings exposed to 2DG and cyanide 
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Figure 118: Predicted changes in subcellular and bulk cytosolic sodium concentrations during combinational 
treatment with 2DG and malonate 

 

Figure 119: Predicted changes in subcellular and bulk cytosolic potassium concentrations during combinational 
treatment with 2DG and malonate 
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Figure 120: Predicted changes in subcellular and bulk cytosolic calcium concentrations during combinational 
treatment with 2DG and malonate 

5.9. Distinguishing the effects of metabolic inhibitors 

We hypothesized that the rate of change in action potentials would be characteristic to 

the pathway being inhibited and their deconvolution would enable the ability to back tract the 

effected pathways and allow continuous monitoring of the protein functions. Metabolic 

perturbations and changes in cellular proteins activities occur in the cellular network at 

different rates. The metabolic inhibitors tested act by lowering the cellular ATP levels, which 

cause impaired cellular homeostasis leading to alterations in the membrane electrical activity.  

Although the model was able to accurately predict the changes in action potential peaks 

shapes based on the pathways being inhibited, an analysis of the characteristic changes would 

enable us to gain a deeper insight. To characterize and differentiate the effects of the metabolic 

inhibitors, changes in cellular action potential time series and ATP levels were compared. 
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5.9.1. Analysis of action potentials 

  The time dependent changes in action potentials were determined by measuring the 

rate of change in the action potential peak amplitude, holding potential, area and half-width at 

the peak amplitude. The data were normalized to compare the effects of different inhibitors. 

5.9.1.1. Action potential peak height 

 The normalized rate of change in action potential peak amplitude for different drugs is 

shown in Figure 121. The peak height in control recordings remained stable and unaltered. The 

mitochondrial inhibitors had the least effect on cellular metabolic activity which was reflected 

in the AP peak height.  

 

Figure 121: Normalized action potential peak height of cells exposed to different metabolic inhibitors 

Cyanide and malonate lowered the action potential peak height by only 9% and 15% 
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respectively whereas 2DG lowered the peak height to 54%.  The rate of decline in 2DG treated 

and combinational treatment was similar for the first 5 min. Prolonged exposure to the drugs 

changed the peak height in a time-dependent manner. The combinational treatment of 2DG 

with cyanide and malonate reduced the peak height to 21% and 37%. The reduction in action 

potential is due to the reduction in cellular ATP levels. The reduced ATP levels failed to restore 

the ionic concentrations, which resulted in huge changes in the intracellular ionic 

concentrations. The intracellular accumulation of sodium concentrations reduced the drive for 

the sodium ions to enter into the cell, which caused a decrease in sodium current. 

5.9.1.2. Holding potential 

The membrane potential was altered by injecting the cell initially with a sufficent 

current to hyperpolarize the membrane to -70 mV. Although a stimulus pulse was given to 

generate action potential. The current required to hold the membrane potential was not 

altered during the course of the experiment. The holding potential reached the initial state in 

one second and assuming that cellular machinery was functional, the ionic balances would have 

also been restored. The holding potentials in the controls recordings did not change 

significantly (Figure 122). The holing potential of cyanide was slightly depolarized by 9% but the 

change was very small. The activity of cyanide had varied depending on the resting membrane 

potential of the cell. Cyanide exposed to the cells with a resting membrane potential less than -

38 mV caused the membrane potential to hyperpolarize and deplolarize in cells with resting 

membrane potentials between -38 mV and -50 mV [111]. This result was in agreement with the 

cyanide experiments perfomed on hippocampal pyrimidal neurons. 
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During the first five minutes of exposure to Malonate, a slight decline in ATP levels and 

changes in the intracellular ionic concentrations caused a decrease in the holding potential by 

13% (Figure 122). Similar to the effects on peak amplitude, the holding potetnial of the cells 

treated with 2DG alone and 2DG in combination with another drug had an immense effect. The 

holding potential of 2DG, 2DG with cyanide and 2DG with malonate was lowered by 38%, 65% 

and 88% (Figure 122). In accordance with the metabolic data, 2DG+cyanide treatement had an 

extensive effect on AP. 

 

Figure 122: Normalized initial holding potential of cells exposed to different metabolic inhibitors 

5.9.1.3. Area of an action potential 

The area under an action potential was also measured to characterize the drug effects 

(Figure 123). The area in the control, 2DG, cyanide, malonate, 2DG+cyanide and 2DG+malonate 
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had decreased to 96%, 51%, 90%, 82%, 25% and 34%. The treatment of the NG108-15 cell with 

2DG and cyanide had the highest decline in the area. The area for malonate recording had 

increased as the KATP channel was activated leading to a prolong depolarization of the action 

potential.   

 

Figure 123: Normalized area of an action potential of cells exposed to different metabolic inhibitors 

5.9.1.4. Half-width at peak amplitude 

The half width at peak amplitude (HWPA) varied in all conditions (Figure 124). The 

HWPA for 2DG treated cells decreased as the peak was shortened. After five minutes, the half 

width of the combinational treated 2DG and cyanide has increased due to elevated intracellular 

calcium concentration. The calcium flux is usually responsible for the hump generated in the 

action potential during depolarization. Combinational treatment with 2DG and malonate had 
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no initial effect but reduced the HWPA after 5 minutes. Cyanide and malonate had showed no 

significant effect on action potential peak height, holding potential and area of action potential. 

Instead the HWPA of cells treated with cyanide and malonate showed a 20% and 19% decline in 

amplitude. These results demonstrated that the changes in action potential are characteristic to 

the pathway being inhibited. 

 

Figure 124: Normalized action potential half-width at maximum peak height of cells exposed to different metabolic 
inhibitors 

5.9.2. Comparison of cellular ATP levels 

Intracellular ATP levels act as indicators of cellular health. Since neurons are sensitive to 

ATP levels, the effect of energy depletion on neuronal damage was studied [93]. Several cell 

viability assays have been developed based on the determination of the cellular ATP levels. The 

ATP levels in cells exposed to mitochondrial inhibitors, namely cyanide and malonate are 
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reduced to 81% and 85% respectively (Figure 125).  

 

Figure 125: Percent ATP levels after 20 min exposure to metabolic inhibitors 

Primary neuronal cells incubated with cyanide have been shown to lower the ATP level 

to 33% [89] and the clonal pheochromocytoma PC12 cell line has also been shown to be 

sensitive to cyanide [89]. Treatment of cells with 2DG had lowered cellular ATP levels to 45%. 

The combinational treatment had the highest effect on NG108-15 cellular ATP levels. After a 20 

min exposure ATP levels were reduced in 2DG with cyanide and 2DG with malonate treated 

cells to 32 and 38% respectively. These results clearly indicated that NG108-15 cells were more 
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sensitive to 2DG. Ray et al. have demonstrated that pre-treatment of NG108-15 cells with CoCl2 

prevented the depletion of ATP during the combinational treatment with 2DG and cyanide [89]. 

5.10. Temporal proteomic analysis 

Proteomics deals with the identification of protein expression profiles and their 

interactions within the cell. Most proteins are not only expressed at various concentrations, 

their activities also differ in the cell. A certain subset of proteins synthesized in the cell might be 

inactive due to several rate limiting steps governing their activation. So, it is important to 

chronically monitor the activities of these proteins and their interactions in a large network. 

The overall goal of this dissertation is to be able to perform temporal proteomic analysis. 

5.10.1. Heat map of predicted protein activities 

The experimentally validated neuronal-metabolic model was able to predict the changes 

in neuronal action potentials and cellular metabolism. The predicted activity of all the proteins 

was analyzed to gain a deeper insight into the protein functions. The activities of the proteins 

involved in the core metabolic pathways were analyzed at different time points. Figure 126 

shows the changes in the proteins after a 10 minute exposure to metabolic perturbation. The 

first column indicates the activity of proteins in a steady state. The activity of these proteins has 

been normalized based on their activity. The activities of glycolytic proteins exposed to 2DG 

were reduced and the mitochondrial enzyme activities were slightly increased which was in 

accordance with the metabolic flux analysis of carbon (Figure 126).  
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Figure 126: Heat map of cellular proteins activities exposed to different metabolic inhibitors after 10 min 

The activity of glycerol-3 phosphate dehydrogenase (G3P shuttle) was also lowered as sufficient 

amount of electrons were not generated due to a decline in cellular glycolysis. The lowered 
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transport of electrons also resulted in decreased FADH2 oxidative phosphorylation. The activity 

of phosphoribosyl pyrophosphate synthase (PRPPs) also decreased along with a decreased flux 

into PPP. 

Cyanide inhibited the mitochondrial respiration and caused a drop in oxidative 

phosphotylation. The activity of F1F0 ATPase also deteriorated due to a lowered mitochondrial 

potential. The activity of the F1F0 ATPase protein was compared between the malonate and 

cyanide treatments. The inhibition of cellular respiration by cyanide increased the activity of 

the TCA cycle as sufficient amounts of ATP were not being produced the by mitochondria. 

Malonate had a mild effect on the TCA cycle and showed similar effects of cyanide induced 

perturbations. The effect of the combinational treatment on protein activies was also 

determined. The effect of 2DG and cyanide treatment had lowered protein activites in both the 

pathways. Whereas, the treatment with 2DG and malonate had slighly lowered the glycolytic 

activity compared to the 2DG and cyanide treatment. The activities of the metabolic proteins 

were also lowered during 2DG and cyanide treatment wheres 2DG and malonate treatment had 

a very low effect (Figure 126). 

A snapshot of the protein activities after 60 minutes exposure to specific drugs was 

analysed for changes in protein activites (Figure 127). Exposure to metabolic inhibitors varied 

protein activities. Prolonged exposure to 2DG lowered the activity of all glycolytic proteins and, 

specifically, reduced the actvity of phosphoglycerate  kinase (PGK). The primary function of PGK 

is to generate ATP by obtaining phosphate from 1,3 biphosphoglycerate.  
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Figure 127: Heat map of cellular proteins activities exposed to different metabolic inhibitors after 60 min 
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This is an important reaction where glycycolytic ATP is generated and inhibition could be a 

viable option for cancer treatment. The acitvity of PRPPs also decreased as most of the carbon 

ended up as lactate. Cyanide had lowered the activity of all  glycolytic poteins by   1̴0% and 

mitochondial TCA cycle proteins activities were lowered by   ̴40%. Malonate effected protein 

activities in both the glycolysis and mitochondrial pathways. The activity of G3P protein activity 

was significantly decreased during malonate treatment as the transport of electrons from 

glycolysis has decreased. The activities of all proteins decreased significantly after a 60 min 

combinational treatment of 2DG+ cyanide and 2DG+malonate. 

5.10.2. Time-dependent functional activities of proteins  

The activation and inactivation of proteins occurs in a time-dependent manner. Current 

proteomic tools lack the resolution to predict the changes in a large network simultaneously. 

The model’s ability to chronically monitor functional changes in cellular protein activities of the 

core metabolic pathways was demonstrated. Since the perturbations were induced using 

cellular bioenergetic inhibitors, the activities of the proteins with respect to changes in cellular 

ATP fluxes were investigated. The protein activities involved in carbon usage, ATP production 

and usage are shown below (Figure 128, 129 and 130). 

Temporal analysis of proteins involved in the cellular ATP consumption was determined 

(Figure 128). The activities of proteins that depend on cellular ATP levels are ATP dependent 

plasma membrane calcium transporter (Ca-ATPase), sodium-potassium ATPase (Na/K-ATPase), 

phosphoribosyl pyrophosphate synthase (PRPPS), general ATPase’s (ATPase), 

phosphofructokinase (PFK) and hexokinase (HK). The activities were normalized to the total ATP 
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consumption. These protein activities were in agreement with the results obtained from the 

metabolic flux analysis. Analysis of cellular proteins between treatments with 2DG, cyanide, 

malonate, 2DG+Cyanide and 2DG+malonate was performed. Similar to the metabolic flux 

analysis, the activities of the proteins decreased when the cells were exposed to 2DG alone or 

combinational treatment involving 2DG.  
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Figure 128: Predicted activities of Calcium ATPase (Ca-ATPase), Sodium-potassium-ATPase (Na/K-ATPase), phosphoribosyl pyrophosphate synthase (PRPPS), 
general ATPases (ATPase), phosphofructokinase (PFK) and hexokinase (HK) during (A) control, (B) 2DG, (C) cyanide, (D) malonate,  (E) 2DG+cyanide and (F) 
2DG+malonate exposure. Their activities are normalized to total ATP usage by NG108-15
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The time dependent changes of the major proteins involved in determining carbon 

fluxes is shown in Figure 129. Although all the enzymes are important in maintaining a proper 

carbon flux throughout the cell, a few proteins were chosen to demonstrate the predictive 

capabilities of the model. The activities of glucose transporter, pyruvate dehydrogenase, 

monocarboxylate transporter and ribose-5 phosphate isomerase were analyzed. The glucose 

transporter senses the intracellular concentration of glucose in the cell and imports glucose. 

The monocarboxylate transporter (MCT) is responsible for transporting the intracellular lactate 

outside. These transporters are diffusion based and exchange metabolites by sensing the 

intracellular concentrations. The MCT’s have been shown to be highly active in cells with 

elevated glycolysis especially in astrocytes and cancer cells. Pyruvate dehydrogenase 

metabolizes the carbon entering the mitochondria so that it can be used in the TCA cycle. 

Several inhibitors have been designed to impede the activity of these enzymes in order to 

modulate and create a shift in cellular metabolism. 

The temporal analysis of proteins engaged in ATP production is shown in Figure 130. The 

major proteins involved in glycolytic ATP production are phosphoglycerate kinase (PGK) and 

pyruvate kinase (PK). These enzymes have lowered significantly upon exposure to 2DG (figure 

130 B). The PGK protein activity was completely inhibited after 60 min. The mitochondrial 

proteins were still actively generating ATP. The combinational exposure of 2DG with cyanide 

and malonate inhibited the protein activities completely. The protein activities were inhibited 

on a different time scale by a different metabolic inhibitor. For example, PGK activity was 

completely inhibited in 70 min when exposed to 2DG whereas the activity of the same enzyme 

decreased much faster when exposed to a combinational treatment with 2DG and cyanide. 



 

181 

 

 

Figure 129: Predicted activities of glucose transporter (GluT), pyruvate dehydrogenase (PDH), monocarboxylate transporter (MCT) and ribose-5-phosphate 
isomerase (Ri5PI) during (A) control, (B) 2DG, (C) cyanide, (D) malonate,  (E) 2DG+cyanide and (F) 2DG+malonate exposure.  The protein activities are 
normalized based on total carbon utilization in NG108-15 cell 
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Figure 130: Predicted activities of phosphoglycerate kinase (PGK), pyruvate kinase (PK), succinyl CoA synthase (SCaS) and F-type ATP synthase (F1F0ATPase) 
during (A) control, (B) 2DG, (C) cyanide, (D) malonate,  (E) 2DG+cyanide and (F) 2DG+malonate exposure. The protein activities are normalized based on the 
amount total amount of ATP generated by NG108-15 cell 
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CHAPTER-6: CONCLUSIONS AND FUTURE WORK 

6.1. Conclusions 

Proteomics is a dynamic and rapidly growing field where many advances have occurred 

during the past decade. Several high-throughput and high content screening technologies such 

as MS have been developed but none of them have the capability to perform non-invasive 

temporal analysis of cellular protein on a large-scale. The determination of protein activities 

over time would enable us to better understand disease progression and also analyze 

perturbations of pharmacologically active compounds. Pharmaceutical companies are in great 

need of tools capable of characterizing perturbations induced by active compounds in cellular 

networks. The work presented in this dissertation addresses this need with the development 

and experimental validation of a novel in silico model capable of predicting the changes in 

cellular protein activities and action potentials over time. 

To accurately predict protein activities, a validated in silico model is a prerequisite. 

Hence, the basal metabolism and cellular bioenergetics of NG108-15 cells were first 

experimentally determined to validate the metabolic model. The analysis of cellular carbon 

fluxes and ATP levels showed that metabolic pathways in a NG108-15 cell are reprogrammed. 

The reconstructed metabolic module included the core metabolic pathways, namely, glycolysis, 

pentose phosphate pathway, mitochondria and endoplasmic reticulum, which are essential to 

study energy metabolism. The model calibration was accomplished using a parameter 

estimation algorithm to simulate steady state by concurrently constraining the model to control 

experimental data. The metabolic model produced an excellent fit to experimental data and 
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predicted the activities of cellular proteins. A detailed analysis of cellular protein activities 

revealed that NG108-15 cells are utilizing the ‘Warburg effect’. 

A more realistic neuronal module was also constructed by incorporating additional ion 

channels and exchangers to predict the membrane electrical properties of NG108-15 cell. The 

electrophysiological readout from the NG108-15 cell was complex and deconvoluted by 

employing a custom algorithm to estimate ion channel parameters and exchanger activities. 

Deconvolution of the electrophysiological readout provided an excellent fit to voltage clamp 

and current clamp recordings. This estimation of ion channel parameters was important as 

these parameters determine ion fluxes. The developed neuronal module was coupled with a 

metabolic model to build a more comprehensive neuronal-metabolic model. The coupled 

neuronal-metabolic model accurately predicted cellular metabolic and neuronal protein 

activities along with the changes in intracellular ionic and metabolite concentrations. The 

model was capable of generating multiple action potentials over time. The neuronal module 

also included a subcellular compartment, a distinct feature that provides a more physiological 

representation of ionic fluxes during action potential generation in a neuron. 

The predictive capability of the neuronal-metabolic activity was confirmed by performing 

a series of known perturbations by inhibiting cellular proteins and simulating model behavior. 

The model predictions were supported with experimental measurements. The proteins 

involved in major energy producing pathways were perturbed. Initially, in silico perturbations of 

glycolytic enzymes were analyzed. Glycolytic perturbations identified a significant effect on 

cellular protein activities, leading to a decrease in carbon flux, cellular ATP levels and action 
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potentials. The experimental determination of metabolic and neuronal activity to glycolysis 

perturbations were in very good agreement with the model predictions. The glycolytic 

inhibition lowered the activities of several proteins which lead to time-dependent changes in 

neuronal AP.  

The inhibition of mitochondrial protein activities was also evaluated by exposing cells to 

cyanide and malonate. These mitochondrial inhibitors induced changes in metabolic and 

electrophysiological activity and were measured experimentally and simulated using the 

neuronal-metabolic model. The changes in neuronal APs predicted by the model were in good 

agreement with the experimental recordings. In addition, the carbon and adenosine fluxes 

were also in good agreement. The model predicted that the mitochondrial protein activity in 

the NG108-15 cells was lower compared to the activity of glycolytic proteins. This lower 

mitochondrial activity was reflected in metabolic and electrophysiological experiments where 

no significant changes were found upon cyanide and malonate exposure. A combinational 

perturbation in the neuronal-metabolic model showed that the sensitivity of the NG108-15 cells 

could be enhanced. An experimental determination of neuronal electrophysiological recordings 

and metabolic measurements showed that the model predictions were in good agreement.  

Analysis of AP time series data revealed that the shape of APs varies based on the 

pathway being inhibited. The characterization of these AP changes enabled the distinguishing of 

the pathways being affected. The developed model also allowed temporal analysis of cellular 

protein activities involved in core energy producing pathways. Thus, the developed model and 

validated results demonstrate the use of a system biology driven electrophysiological model as 
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an attractive platform for functional temporal proteomic analysis based on an 

electrophysiology readout. 

6.2. Future work 

Future work could focus on extending the current model by incorporating additional 

pathways representing all functional categories. The functional categories can be broadly 

divided into 6 categories, namely, 1) energy metabolism, 2) biosynthesis of aminoacids, 3) 

cellular processes, 4) fatty acid metabolism, 5) transcriptional regulation, 6) trasporters and 

binding proteins [26]. Currently, the energy metabolism has been incorporated and tied to 

neuronal actvitiy. A top-down model development approach has been followed that allows the 

flexibility of incorporating any new functional modules later on. 

The short-term future goals of the project could be to include cell-cycle to develop 

nuclear-signaling process, followed by a more precise implementation of calcium handling. At 

present the neuronal module is capable of predicting the ion concentration changes over time. 

In future work, the incorporation of secondary messenger systems and its activation based on 

altered ion concentrations would be useful to predict modifications in cellular activities. The 

model would have to be adapted and validated for NG108-15 cells followed by 

electrophysiological characterization, since time-scale of activities and corresponding AP peak 

shapes could be different. 

The long-term goal would be to include cellular process of functional categories listed 

above and experimentally validate them followed by building a database of their effects. This 
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would then enable analysis of APs after being treated with a compound to predict pathway 

perturbations. For understanding disease progression or identification of long-term effects of a 

drug, it is necessary to analyze APs on a longer time-scale. Long-term electrophysiological 

recordings obtained from MEAs would have to be deconvoluted using a custom algorithm. 

Although the resolutions of signals obtained from MEAs are not as high as compared to patch-

clamp electrophysiology, they could still be deconvoluted. In the event of complexity, other 

viable approaches can be adapted. Recent advances in electrophysiological recordings have 

enabled researchers to culture cells on carbon nanotubes [112] for achieving whole-cell 

recordings on a longer time scale. But these techniques need to be validated confirming that no 

other cellular mechanisms were triggered while using carbon nanotubes. 

Further, advancement in model development would allow cellular APs to be measured 

directly from a microfluidic system, followed by deconvolution of AP time-series to predict 

protein-protein interaction and changes in protein activities for performing high-throughput, 

non-invasive temporal proteomics. 
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APPENDIX A: METABOLIC MODEL DIFFERENTIAL EQUATIONS 
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dt
=

1

mitochondrial
∗ (v39 −  v40) 

Mitochondrial ADP d(ADPm)

dt
=

1

mitochondrial
∗ (−v41 +  v47 −  v48) 

Mitochondrial calcium d(Cam)

dt
=

1

mitochondrial
∗ (v45 −  v46) 

Succinyl CoA d(SucCoA)

dt
=

1

mitochondrial
∗ (v40 −  v41) 

Mitochondrial phosphate d(Pim)

dt
=

1

mitochondrial
∗ (−v41 −  v48 +  v57) 

Succinate d(Suc)

dt
=

1

mitochondrial
∗ (v41 −  v42) 



 

190 

 

Mitochondrial ATP d(ATPm)

dt
=

1

mitochondrial
∗ (v41 −  v47 +  v48) 

Fumarate d(Fum)

dt
=

1

mitochondrial
∗ (v42 −  v43) 

Malate d(Mal)

dt
=

1

mitochondrial
∗ (v43 −  v44) 

Mitochondrial membrane potential d(dPsi)

dt
=

1

mitochondrial
∗ (−2 ∗ v50 −  v51 −  v52 −  v53 +  v54 +  v55 −  v56) 

Mitochondrial FAD d(FAD)

dt
=

1

mitochondrial
∗ (−v42 −  v64 +  v65) 

Mitochondrial FADH2 d(FADH2)

dt
=

1

mitochondrial
∗ (v42 +  v64 −  v65) 

Endoplasmic reticulum calcium d(Caer)

dt
=
1

er
∗ (−v59 +  v60 −  v61) 

Cytosolic Glucose d(Glc)

dt
=

1

cellular
∗ (v1 −  v2) 

Magnesium bound ATP d(MgATP)

dt
=

1

cellular
∗ (−v2 −  v4 +  v8 +  v13 −  v16 −  v17 −  v26 −  v31 −  v67 −  v68) 

Glucose-6-phosphate d(G6P)

dt
=

1

cellular
∗ (v2 −  v3 −  v18) 

Magnesium bound ADP d(MgADP)

dt
=

1

cellular
∗ (v2 +  v4 −  v8 −  v13 +  v16 +  v17 −  v32 +  v67 +  v68) 

2,3-bisphosphoglycerate d(BPG23)

dt
=

1

cellular
∗ (v9 −  v10 +  v34) 

Magnesium d(Mg)

dt
=

1

cellular
∗ (v31 +  v32 +  v33 +  v34) 
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Magnesium bound 2,3-
bisphosphoglycerate 

d(MgBPG23)

dt
=

1

cellular
∗ (−v34) 

Fructose 6-phosphate d(F6P)

dt
=

1

cellular
∗ (v3 −  v4 +  v25 +  v27) 

AMP d(AMP)

dt
=

1

cellular
∗ (−v17 +  v33) 

ATP d(ATP)

dt
=

1

cellular
∗ (v31 +  v47) 

Fructose 1,6-biphosphate d(F16BP)

dt
=

1

cellular
∗ (v4 −  v5) 

Magnesium bound AMP d(MgAMP)

dt
=

1

cellular
∗ (v26 −  v33) 

Glyceraldehyde-3-phosphate d(GAP)

dt
=

1

cellular
∗ (v5 +  v6 −  v7 +  v24 −  v25 +  v27) 

Dihydroxyacetone phosphate d(DHAP)

dt
=

1

cellular
∗ (v5 −  v6) 

Cytosolic phosphate d(Pi)

dt
=

1

cellular
∗ (−v7 +  v10 +  v16 +  v29 −  v57 +  v67 +  v68) 

Cytosolic NAD d(NAD)

dt
=

1

cellular
∗ (−v7 +  v14 +  v64) 

1,3-bisphosphoglycerate d(BPG13)

dt
=

1

cellular
∗ (v7 −  v8 −  v9) 

Cytosolic NADH d(NADH)

dt
=

1

cellular
∗ (v7 −  v14 −  v64) 

3-Phosphoglycerate d(PG3)

dt
=

1

cellular
∗ (v8 +  v10 −  v11) 
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2-Phosphoglycerate d(PG2)

dt
=

1

cellular
∗ (v11 −  v12) 

Phosphoenolpyruvate d(PEP)

dt
=

1

cellular
∗ (v12 −  v13) 

Cytosolic pyruvate d(Pyr)

dt
=

1

cellular
∗ (v13 −  v14 −  v15 +  v30 −  v35) 

Cytosolic lactate d(Lac)

dt
=

1

cellular
∗ (v14 +  v15 +  v28) 

Cytosolic NADPH d(NADPH)

dt
=

1

cellular
∗ (−v15 +  v18 +  v19 −  v20) 

Cytosolic NADP d(NADP)

dt
=

1

cellular
∗ (v15 −  v18 −  v19 +  v20) 

ADP d(ADP)

dt
=

1

cellular
∗ (v17 +  v32 −  v47) 

6-phosphoglucono-δ-lactone d(PGL)

dt
=

1

cellular
∗ (v18 −  v19) 

Ribuloase-5-phosphate d(Ru5P)

dt
=

1

cellular
∗ (v19 −  v22 −  v23) 

Glutathione disulphide d(GSSG)

dt
=

1

cellular
∗ (−v20 +  v21) 

Glutathione d(GSH)

dt
=

1

cellular
∗ ( 2 ∗ v20 − −2 ∗ v21) 

Xyulose-5-phosphate d(X5P)

dt
=

1

cellular
∗ (v22 −  v24 −  v27) 

Ribose-5-phosphate d(Ri5P)

dt
=

1

cellular
∗ (v23 −  v24 −  v26) 
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Sedoheptulose 7-phosphate d(S7P)

dt
=

1

cellular
∗ (v24 −  v25) 

Erythrose 4-phosphate d(E4P)

dt
=

1

cellular
∗ (v25 −  v27) 

Phosphoribosyl pyrophosphate d(PRPP)

dt
=

1

cellular
∗ (v26 −  v66) 

Cytosolic calcium d(Ca)

dt
=

1

cellular
∗ (−v45 +  v46 +  v59 −  v60 +  v61) 

Phosphatidylinositol 4,5-bisphosphate D(PIP2)

dt
=

1

cellular
∗ (−v58) 

Inositol triphosphate d(IP3)

dt
=

1

cellular
∗ (v58 −  v62) 

Diacyl-glycerol d(DAG)

dt
=

1

cellular
∗ (v58 −  v63) 

Extracellular glucose d(Glce)

dt
=

1

extracellular
∗ (−v1) 

Extracellular lactate d(Lace)

dt
=

1

extracellular
∗ (−v28) 

Extracellular phosphate d(Pie)/dt =  1/extracellular ∗ (−v29) 

Extracellular pyruvate d(Pyre)

dt
=

1

extracellular
∗ (−v30) 
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APPENDIX B: METABOLIC MODEL FLUXES 
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Glucose transporter 

v1 =
Vmaxgt

KmGlcoutgt
∗

Glce −
Glc
Keqgt

1 +
Glce

KmGlcoutgt
+

Glc
KmGlcingt

+
Glce ∗ Glc

KmGlcoutgt ∗ KmGlcingt

 

Hexokinase 

v2 =
Glc

Glc + KmGlchk
∗ (

Vmax1hk
KmMgATPhk

) ∗
MgATP +

Vmax2hk
Vmax1hk

MgATP
Mg

KmMgATPMghk
 –  G6P ∗

MgADP
Keqhk

(
(1 +

MgATP
KmMgATPhk

)(1 +
Mg

KmMgATPMghk
) +

Mg
KmMghk

+

(1.55 +
G6P

KmG6Phk
) (1 +

Mg
KmMghk

) +
BPG23 + MgBPG23

KmBPG23hk
+Mg

BPG23 + MgBPG23
KmMghk ∗ KmMgBPG23hk

)

 

Glucosephosphate isomerase 

v3 =  Vmaxgpi ∗

G6P −
F6P
Keqgpi

G6P + KmG6Pgpi ∗ (1 +
F6P

KmF6Pgpi
)

 

Phosphofructokinase 

v4 = Vmaxpfk  ∗

F6P ∗ MgATP − F16BP ∗
MgADP
Keqpfk

(

 
 
 
 

(F6P + KmF6Ppfk) ∗ (MgATP + KmMgATPpfk) ∗

(

 
 
1+ Lopfk ∗

(

 
 
(1 +

ATP
KmATPpfk

) ∗
1 +

Mg
KmMgpfk

(1 +
AMP +MgAMP
KmAMPpfk

) ∗ (1 +
F6P

KmF6Ppfk
)

)

 
 

4

)

 
 

)

 
 
 
 

 

Aldolase 

v5 =
Vmaxald

KmF16BPald
∗

F16BP − GAP ∗
DHAP
Keqald

1 +
F16BP

KmF16BPald
+

GAP
KiGAPald

+ DHAP ∗
GAP + KmGAPald

KmDHAPald ∗ KiGAPald
+ F16BP ∗

GAP
KmF16BPald ∗ KiiGAPald

 



 

196 

 

Triosephosphate isomerase 

v6 =  Vmaxtpi ∗

DHAP −
GAP
Keqtpi

DHAP + KmDHAPtpi ∗ (1 +
GAP

KmGAPtpi
)

 

Glyceraldehyde phosphate 
dehydrogenase 

v7 =  
Vmaxgapdh

KmNADgapdh ∗ KmGAPgapdh ∗ KmPigapdh

∗

NAD ∗ GAP ∗ Pi − BPG13 ∗
NADH
Keqgapdh

(1 +
NAD

KmNADgapdh
) ∗ (1 +

GAP
KmGAPgapdh

) ∗ (1 +
Pi

KmPigapdh
) + (1 +

NADH
KmNADHgapdh

) ∗ (1 +
BPG13

KmBPG13gapdh
) − 1

 

Phosphoglycerate kinase 

v8 =
Vmaxpgk

KmMgADPpgk ∗ KmBPG13pgk
∗

MgADP ∗ BPG13 −MgATP ∗
PG3
Keqpgk

(1 +
MgADP

KmMgADPpgk
) ∗ (1 +

BPG13
KmBPG13pgk

) + (1 +
MgATP

KmMgATPpgk
) ∗ (1 +

PG3
KmPG3pgk

) − 1
 

Bisphosphoglycerate mutase 

v9 =  Kdbpgm ∗

BPG13 −
BPG23 + MgBPG23

Keqbpgm

1 +
BPG23 +MgBPG23
KmBPG23bpgm

 

Bisphosphoglycerate 
phosphatase 

v10 =  Vmaxbpgp ∗

BPG23+ MgBPG23−
PG3

Keqbpgp

BPG23 +MgBPG23+ KmBPG23bpgp
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Phosphoglycerate mutase 

v11 =  Vmaxpgm ∗

PG3 −
PG2
Keqpgm

PG3 + KmPG3pgm ∗ (1 +
PG2

KmPG2pgm
)

 

Enolase 

v12 =  Vmaxeno ∗
PG2 −

PEP
Keqeno

PG2 + KmPG2eno ∗ (1 +
PEP

KmPEPeno
)

 

Pyruvate kinase 

v13 =  Vmaxpk ∗

PEP ∗ MgADP − Pyr ∗
MgATP
Keqpk

(PEP+ KmPEPpk) ∗ (MgADP+ KmMgADPpk) ∗

(

 1 + Lopk ∗
(1 +

ATP + MgATP
KmATPpk

)
4

((1 +
PEP

KmPEPpk
)
4

) ∗ ((1 +
F16BP

KmF16BPpk
)
4

)
)

 

 

Lactate dehydrogenase (NADH) 

v14 =  Vmaxldh ∗ (Pyr ∗ NADH− Lac ∗
NAD

[Lactate dehydrogenase (NADH)]
. Keqldh) 

Lactate dehydrogenase 
(NADPH) 

v15 =  kldh ∗ (Pyr ∗ NADPH − Lac ∗
NADP

[Lactate dehydrogenase (NADPH)]
. Keqldh) 



 

198 

 

ATPase 

v16 =  kATPase ∗ MgATP 

Adenylate kinase 

v17 = =

Vmaxak
KmATPak ∗ KmAMPak

∗ (MgATP ∗ AMP −MgADP ∗
ADP
Keqak

)

(1 +
MgATP
KmATPak

) ∗ (1 +
AMP

KmAMPak
) +

MgADP+ ADP
KmADPak

+MgADP ∗ (
ADP

(KmADPak)
2)

 

Glucose phosphate 
dehydrogenase 

v18 =
Vmaxgpdh

KmG6Pgpdh ∗ KmNADPgpdh
∗

G6P ∗ NADP − PGL ∗
NADPH
Keqgpdh

1 + NADP ∗
1 +

G6P
KmG6Pgpdh

KmNADPgpdh
+
ATP+MgATP
KmATPgpdh

+
NADPH

KmNADPHgpdh
+
BPG23+ MgBPG23
KmBPG23gpdh

 

Phosphogluconate 
dehydrogenase 

v19 =
Vmaxpgldh

KmPGL1pgldh ∗ KmNADPpgldh
∗

PGL ∗ NADP − Ru5P ∗
NADPH
Keqpgldh

(

 
 
(1 +

NADP
KmNADPpgldh

) ∗ (1 +
PGL

KmPGL1pgldh
+
BPG23 + MgBPG23
KmBPG23pgldh

) +
ATP +MgATP
KmATPpgldh

+

NADPH ∗
1 +

PGL
KmPGL2pgldh

KmNADPHpgldh )

 
 

 

Glutathione reductase 

v20 =  Vmaxgr ∗

GSSG ∗
NADPH

KmGSSGgr ∗ KmNADPHgr
−

(GSH)2

(KmGSHgr)
2 ∗

NADP
KmNADPgr ∗ Keqgr

1 + NADPH ∗
1 +

GSSG
KmGSSGgr

KmNADPHgr
+

NADP
KmNADPgr

∗ (1 + GSH ∗
1 +

GSH
KmGSHgr

KmGSHgr
)
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Glutathione oxidation 

v21 =  Kgo ∗ GSH 

Phosphoribulose epimerase 

v22 =  Vmaxpre ∗

Ru5P −
X5P
Keqpre

Ru5P + KmRu5Ppre ∗ (1 +
X5P

KmX5Ppre
)

 

Ribose phosphate isomerase 

v23 =  Vmaxrpi ∗

Ru5P−
Ri5P
Keqrpi

Ru5P+ KmRu5Prpi ∗ (1 +
Ri5P

KmRi5Prpi
)

 

Tranketolase (Ri5P) 

v24 =  

[Tranketolase (Ri5P)]. Vmaxtk ∗ ∗  Ri5P ∗ X5P −
GAP ∗ S7P

[Tranketolase (Ri5P)]. 𝐾𝑒𝑞𝑡𝑘

(

 
 

(

 

([Tranketolase (Ri5P)]. K1tk + Ri5P) ∗ X5P +
([Tranketolase (Ri5P)]. K2tk + [Tranketolase (Ri5P)]. K6tk ∗ S7P) ∗ Ri5P +
([Tranketolase (Ri5P)]. K3tk + [Tranketolase (Ri5P)]. K5tk ∗ S7P) ∗ GAP+

[Tranketolase (Ri5P)]. K4tk ∗ S7P +@[Tranketolase (Ri5P)]. K7tk ∗ X5P ∗ GAP)

 

)

 
 

 

Transaldolase 

v25 =  Vmaxta ∗
S7P ∗ GAP − E4P ∗

F6P
Keqta

(K1ta + GAP) ∗ S7P + (K2ta + K6ta ∗ F6P) ∗ GAP+ (K3ta + K5ta ∗ F6P) ∗ E4P + K4ta ∗ F6P +
K7ta ∗ S7P ∗ E4P
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Phosphoribosylpyrophosphate 
synthetase 

v26 =  Vmaxprpps ∗

Ri5P ∗ MgATP − PRPP ∗
MgAMP
Keqprpps

(KmATPprpps +MgATP) ∗ (KmRi5Pprpps + Ri5P)
 

Transketolase (E4P) 

v27 =

(
[Transketolase (E4P)]Vmaxtk  ∗  E4P ∗ X5P −

GAP ∗
F6P

[Transketolase (E4P)]Keqtk

)

(

  
 

([Transketolase (E4P)]K1tk + E4P) ∗ X5P +
([Transketolase (E4P)]K2tk + [Transketolase (E4P)]K6tk ∗ F6P) ∗ E4P +
([Transketolase (E4P)]K3tk + [Transketolase (E4P)]K5tk ∗ F6P) ∗ GAP +

[Transketolase (E4P)]K4tk ∗ F6P +
[Transketolase (E4P)]K7tk ∗ X5P ∗ GAP )

  
 

 

Monocarboxylate transporter, 
Lactate transport 

v28 =  Vmaxlt ∗ (Lace −
Lac

Keqlt
) 

Phosphate transporter on 
plasma membrane 

v29 =  [Phosphate transport (Plasma membrane)]. Vmaxpt ∗ (Pie −
Pi

[Phosphate transport (Plasma membrane)]
. Keqpt) 

Pyruvate transporter on 
plasma membrane 

v30 = [Pyruvate transport (Plasma membrane)]. Vmaxpt ∗ (Pyre − (
Pyr

[Pyruvate transport (Plasma membrane)]
. Keqpt)) 
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MgATP dissociation 

v31 =  EqMgATP ∗ (MgATP −Mg ∗
ATP

KdMgATP
) 

MgADP dissociation 

v32 =  EqMgADP ∗ (MgADP −Mg ∗
ADP

KdMgADP
) 

MgAMP dissociation 

v33 =  EqMgAMP ∗ (MgAMP −Mg ∗ AMP/KdMgAMP)) 

MgBPG23 dissociation 

v34 =  EqMgBPG23 ∗ (MgBPG23 − Mg ∗ BPG23/KdMgBPG23)) 

Pyruvate transport 
(Mitochondrial membrane) 

v35 =  [Pyruvate transport (Mitochondrial membrane)]. Vmaxpt ∗ (Pyr −
Pyrm

[Pyruvate transport (Mitochondrial membrane)]
. Keqpt) 
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Pyruvate dehydrogenase 

v36 =  kpdh ∗ (Pyrm−
AcCoA

KpdhEQ
) ∗ CoA ∗ NADm 

Citrate synthase 

v37 =  
Kcatcs ∗ Etcs

1 +
KmAcCoAcs
AcCoA

+
KmOAAcs
OAA

+ KmAcCoAcs ∗
KmOAAcs
AcCoA ∗ OAA

 

Aconitase 

v38 =  Kfaco ∗ (Cit −
IsoCit

Keqaco
) 

Isocitrate dehydrogenase 
v39 =

Kcatidh Etidh

(

 
 
 
 
 1+ (

Hm
kH1idh

) + (
kH2idh
Hm

) +
(
KmIsoCitidh
IsoCit

)
nidh

(1 +
ADPm
KaADPidh

) ∗ (1 +
Cam
KaCaidh

)
+
KmNADidh
NADm

∗ (1 +
NADHm
KiNADHidh

) +

(
KmIsoCitidh
IsoCit

)
nidh

∗
KmNADidh
NADm

∗
1 +

NADHm
KiNADHidh

(1 +
ADPm
KaADPidh

) ∗ (1 +
Cam
KaCaidh

)
)

 
 
 
 
 

 

α-Ketoglutarate 
dehydrogenase v40 =

KcatakgdhEtakgdh

1 +

KmaKGakgdh
aKG

(1 +
Mgm

KaMgakgdh
) ∗ (1 +

Cam
KaCaakgdh

)
+

(
KmNADakgdh
NADm

)
nakgdh

(1 +
Mgm

KaMgakgdh
) ∗ (1 +

Cam
KaCaakgdh

)
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Succinyl CoA lyase 

v41 =  Kfscl ∗ (SucCoA ∗ ADPm− Suc ∗ ATPm ∗
CoA

Keqscl
) 

Succinate dehydrogenase 

v42 =  
Kcatsdh ∗ Etsdh

1 +
KmSucsdh
Suc

∗ (1 +
OAA

KiOAAsdh
) ∗ (1 +

Fum
KiFumsdh

)
 

Fumarate hydratase 

v43 =  Kffh ∗ (Fum−
Mal

Keqfh
) 

Malate dehydrogenase 

v44 =  Kcatmdh Etmdh  (
1

1 +
Hm

kH1mdh
+

Hm2

kH1mdh ∗ kH2mdh

+ koffset)

∗

1

(1 +
kH3mdh
Hm

+ kH3mdh ∗
kH4mdh
Hm

)
2

1 +
KmMalmdh
Mal

∗ (1 +
OAA

KiOAAmdh
) +

KmNADmdh
NADm

+
KmMalmdh
Mal

∗ (1 +
OAA

KiOAAmdh
) ∗ (

KmNADmdh
NADm

)
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Calcium uniporter 

v45 =
Vmaxuni ∗ (

Ca
Ktrans

) ∗ (1 +
Ca

Ktrans
)
3

(1 +
Ca

Ktrans
)
4

+ (
L

(1 +
Ca
Kact

)
nauni) ∗

2F(dPsi − dPsio)
R ∗ T

∗ (1 − exp (−2F
dPsi − dPsio

R ∗ T
))

 

Sodium-Calcium exchanger 

v46 =

(Vmaxex ∗ exp (bF
dPsi − dPsio

R ∗ T
) ∗ (

Cam
Ca
))

 (1 +
KNa
Na
)
nex

∗ (1 +
KCa
Cam

)
 

 

Adenine nucleotide 
translocator 

v47 =  Vmaxant ∗
1 − 0.018 ∗ ATP ∗

ADPm
0.0225 ∗ ADP ∗ ATPm

∗ exp (−F ∗
dPsi
R ∗ T

)

(1 + 0.05 ∗
ATP

0.45 ∗ ADP
∗ exp (−h ∗ F ∗

dPsi
R ∗ T

)) ∗ (1 + 0.36 ∗
ADPm

0.05 ∗ ATPm
)

 

F1F0 ATPase 

v48 =  −rhoF1 ∗
(

 
 

(100 ∗ pa + pc1 ∗ exp (3F ∗
dPsiB
R ∗ T

)) ∗ KF1 ∗
Cm− ADPm
ADPm ∗ Pim

−

(pa − pc2 ∗ KF1 ∗
Cm− ADPm
ADPm ∗ Pim

) ∗ exp(3F ∗
R ∗ T ∗

dpH
F
+ dPsi

R ∗ T )

)

 
 

(

 
 

(1 + p1 ∗ KF1 ∗
Cm− ADPm
ADPm ∗ Pim

) ∗ exp (3F ∗
dPsiB
R ∗ T

) +

(p2 + p3 ∗ KF1 ∗
Cm− ADPm
ADPm ∗ Pim

) ∗ exp(3F ∗
R ∗ T ∗

dpH
F
+ dPsi

R ∗ T )

)
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Oxidative phosphorylation 

v49 =  0.5 ∗ rhoNADH ∗
(

 
 
 
 (ra + rc1 ∗ exp (6F

dPsiB
R ∗ T

)) ∗ KNADH ∗ sqrt (
NADHm
NADm

) − ra ∗ exp(g ∗ 6F
R ∗ T ∗

dpH
F
+ dPsi

R ∗ T )+

rc2 ∗ KNADH ∗ sqrt (
NADHm
NADm

) ∗ exp(g ∗ 6F
R ∗ T ∗

dpH
F
+ dPsi

R ∗ T )

)

 
 
 
 

(

 
 
 

(1 + r1 ∗ KNADH ∗ sqrt (
NADHm
NADm

)) ∗ exp (6F
dPsiB
R ∗ T

) +

(r2 + r3 ∗ KNADH ∗ sqrt (
NADHm
NADm

)) ∗ exp(g ∗ 6F
R ∗ T ∗

dpH
F
+ dPsi

R ∗ T )

)

 
 
 

 

dPsi (Calcium uniporter) 

v50 =
Vmaxuni
Cmito

∗
(
Ca

Ktrans
) ∗ (1 +

Ca
Ktrans

)
3

(1 +
Ca

Ktrans
)
4

+(
L

(1 +
Ca
Kact

)
nauni) ∗

2F(dPsi − dPsio)
R ∗ T

∗ (1 − exp (−2F
dPsi − dPsio

R ∗ T
))

 

dPsi (Sodium-Calcium 
exchanger) 

v51 =  
Vmaxex
Cmito

(exp (bF
dPsi − dPsio

R ∗ T
) ∗ (

Cam
Ca
))

 (1 +
KNa
Na
)
nex

∗ (1 +
KCa
Cam

)
 

dPsi (Adenine nucleotide 
translocator) 

v52 =
Vmaxant
Cmito

∗
1 − 0.018 ∗ ATP ∗

ADPm
0.0225 ∗ ADP ∗ ATPm

∗ exp (−F ∗
dPsi
R ∗ T

)

(1 + 0.05 ∗
ATP

0.45 ∗ ADP
∗ exp(−h ∗ F ∗

dPsi
R ∗ T

)) ∗ (1 + 0.36 ∗
ADPm

0.05 ∗ ATPm
)

 



 

206 

 

dPsi (F1F0 ATPase) 

v53 =  − (
3 ∗ rhoF1

Cmito
) ∗

100 ∗ pa ∗ (1 + KF1
Cm− ADPm
ADPm ∗ Pim

) − (pa + pb) ∗ exp(3F
R ∗ T ∗

dpH
F
+ dPsi

R ∗ T )

(

 
 
 

(1 + p1 ∗ (KF1
Cm− ADPm
ADPm ∗ Pim

)) ∗ exp (3F
dPsiB
R ∗ T

) +

(p2 + p3 (KF1
Cm− ADPm
ADPm ∗ Pim

)) ∗ exp(3F
R ∗ T ∗

dpH
F
+ dPsi

R ∗ T )

)

 
 
 

 

dPsi (Oxidative 
phosphorylation NADH) 

v54 =  
6 ∗ rhoNADH

Cmito
∗

ra ∗ KNADH ∗ sqrt (
NADHm
NADm

)− (ra + rb) ∗ exp(g ∗ 6 ∗ F ∗
R ∗ T ∗

dpH
F
+ dPsi

R ∗ T )

(

 
 
 

(1 + r1 ∗ KNADH ∗ sqrt (
NADHm
NADm

)) ∗ exp (6 ∗ F ∗
dPsiB
R ∗ T

) +

(r2 + r3 ∗ KNADH ∗ sqrt (
NADHm
NADm

)) ∗ exp(g ∗ 6 ∗ F ∗
R ∗ T ∗

dpH
F
+ dPsi

R ∗ T )

)

 
 
 

 

dPsi (Oxidative 
phosphorylation FADH2) 

v55 =  
4 ∗ rhoFADH2

Cmito
∗

ra ∗ KFADH2 ∗ sqrt (
FADH2
FAD

) − (ra + rb) ∗ exp(g ∗ 4F
R ∗ T ∗

dpH
F
+ dPsi

R ∗ T )

(

 
 
 

(1 + r1 ∗ KFADH2 ∗ sqrt (
FADH2
FAD

)) ∗ exp (4F
dPsiB
R ∗ T

) +

(r2 + r3 ∗ KFADH2 ∗ sqrt (
FADH2
FAD

)) ∗ exp(g ∗ 4F
R ∗ T ∗

dpH
F
+ dPsi

R ∗ T )

)

 
 
 

 

dPsi (Leak) 

v56 =  gh ∗
R ∗ T ∗

dpH
F
+ dPsi

Cmito
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Phosphate transport 
(Mitochondrial membrane) 

v57 =  [Phosphate transport (Mitochondrial membrane)]. Vmaxpt ∗ (Pi −
Pim

[Phosphate transport (Mitochondrial membrane)]
. Keqpt) 

Phospholipase C 

v58 =  (PLC ∗ (Vmaxplc ∗
PIP2

KmPIP2plc + PIP2
)) 

ER calcium leak 

v59 =  (kLeak ∗ (Caer − Ca)) ∗ er 

ER calcium pump 

v60 =  (kPump ∗ Ca) ∗ cellular 

ER calcium channel 

v61 =  (Lchannel + Pchannel ∗ (IP3
3) ∗

Ca3

(IP3 + KmIP3channel)
3 ∗ (Ca + KmCachannel)

3
) ∗ (Caer − Ca) 
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IP3 consumption 

v62 =  kIP3 ∗ IP3 

DAG consumption 

v63 =  kDAG ∗ DAG 

G3P shuttle 

v64 =  VmaxG3P ∗ FAD ∗ NADH 

Oxidative phosphorylation 
FADH2 

v65 =  0.5 ∗ rhoFADH2 ∗
(

 
 
 
 (ra + rc1 ∗ exp (4F

dPsiB
R ∗ T

)) ∗ KFADH2 ∗ sqrt (
FADH2
FAD

) − ra ∗ exp(g4F
R ∗ T ∗

dpH
F
+ dPsi

R ∗ T ) +

rc2 ∗ KFADH2 ∗ sqrt (
FADH2
FAD

) ∗ exp(g ∗ 4 ∗ F ∗
R ∗ T ∗

dpH
F
+ dPsi

R ∗ T )

)

 
 
 
 

(

 
 
 

(1 + r1 ∗ KFADH2 ∗ sqrt (
FADH2
FAD

)) ∗ exp (4F
dPsiB
R ∗ T

) +

(r2 + r3 ∗ KFADH2 ∗ sqrt (
FADH2
FAD

)) ∗ exp(g ∗ 4F
R ∗ T ∗

dpH
F
+ dPsi

R ∗ T )

)
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Sink for protein synthesis 

v66 =  Vmaxproteinsyn ∗ PRPP 

Na/K-ATPase 

v67 =  

(

 
 1

((1 +
KmK
Ke

)
2

) ∗ ((1 +
KmNa
Na

)
3

) ∗ ((1 +
KATP
MgATP

))
)

 
 

 

Ca-ATPase 

v68 =
1

(1 + (
𝐾𝑚𝐶𝑎
Ca

)) ∗ (1 + (
KATP
MgATP

))
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APPENDIX C: METABOLIC MODEL PARAMETERS 
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Description Symbol Value Units Ref 

Faraday constant F 96480 C mol-1 [59] 

Activation constant Kact 0.00038 mM [59] 

Kd for translocated Ca+2 Ktrans 0.019 mM [59] 

Keq for conformational transitions in uniporter L 110 - [59] 

Gas constant R 8.3145 V C mol-1 0K-1 [59] 

Temperature T 302.15 0K [59] 

Vmax uniport Ca+2 transport Vmax_uni 0.625 uM s-1 [59] 

Offset membrane potential dPsio 0.091 Volts [59] 

Uniporter activation cooperativity na_uni 2.8 - [59] 

Antiporter Ca+ constant KCa 0.000375 mM [59] 

Antiporter Na+ constant KNa 9.4 mM [59] 

Vmax of Na+/Ca+2 antiporter Vmax_ex 9 ∗ 10−7 mM s-1 Fitted 

dPsi dependence on Na+/Ca+2 antiporter b 0.5 - [59] 

Na+/Ca+2 antiporter cooperativity n_ex 3 - [59] 

Maximal rate of ANT Vmax_ant 0.005 mM [59] 
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Description Symbol Value Units Ref 

Fraction of ΔdPsi  h 0.5 - [59] 

Total sum of mitochondrial adenine nucleotides Cm 2.5 mM Fitted 

Equilibrium constant of ATP hydrolysis KF1  1.71e+06 - [59] 

Phase boundary potential dPsiB  0.05 V [59] 

pH gradient across the inner membrane dpH -0.6 pH units [59] 

Sum of products of rate constants p1 1.346e-08 - [59] 

Sum of products of rate constants p2 7.739e-07 - [59] 

Sum of products of rate constants p3 6.65e-15 - [59] 

Sum of products of rate constants pa 1.656e-05 s-1 [59] 

Sum of products of rate constants pc1 9.651e-14 s-1 [59] 

Sum of products of rate constants pc2 4.585e-14 s-1 [59] 

Concentration of electron carriers (respiratory 
complexes II-III-IV) 

rhoF1 0.003 mM Fitted 

Equilibrium constant of respiration KNADH 1.35e+18 - [59] 

Correction factor for voltage g 0.85 - [59] 

Sum of products of rate constants r1 2.077e-18 - [59] 
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Description Symbol Value Units Ref 

Sum of products of rate constants r2 1.728e-09 - [59] 

Sum of products of rate constants r3 1.059e-26 - [59] 

Sum of products of rate constants ra 6.394e-10 s-1 [59] 

Sum of products of rate constants rc1 2.656e-19 s-1 [59] 

Sum of products of rate constants rc2 8.632e-27 s-1 [59] 

Concentration of electron carriers (respiratory 
complexes I-III-IV) 

rhoNADH 0.005 mM [59] 

Inner membrane capacitance Cmito 1.812 mM V-1 [59] 

Sum of products of rate constants pb 2.023e-05 s-1 [59] 

Sum of products of rate constants rb 1.762e-13 s-1 [59] 

Equilibrium constant of FADH2 oxidation KFADH2 5.497e+13 - [59] 

Concentration of electron carriers (respiratory 
complexes II-III-IV) 

rhoFADH2 0.06 mM Fitted 

Ionic conductance of the inner membrane gh 0.01 mM s-1 V-1 [59] 

Equilibrium constant for PDH K_pdh_EQ 8.0 - [75] 

Rate constant G3P shuttle Vmax_G3P 0.031 s-1 Fitted 

Rate constant for protein synthesis/degradation  Vmax_proteinsyn 3.084 s-1 Fitted 
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Description Symbol Value Units Ref 

Michaelis constant for ATP in NaK-ATPase KATP 5 mM Fitted 

Michaelis constant for K+ in NaK-ATPase KmK 3.5 mM [78] 

Michaelis constant for Na in NaK-ATPase KmNa 10 mM [78] 

Equilibrium constant of glucose transporter Keq_gt 0.25 - [58] 

Michaelis constant for forward glucose transporter KmGlcin_gt 6.9 mM [58] 

Michaelis constant for reverse glucose transporter KmGlcout_gt 1.7 mM [58] 

Maximal rate of glucose transporter Vmax_gt 0.0953 mM s-1 Fitted 

Equilibrium constant of HK Keq_hk 3900 mM [58] 

Michaelis constant for HK KmBPG23_hk 2.7 mM [58] 

Michaelis constant for HK KmG6P_hk 0.0045 mM [58] 

Michaelis constant for HK KmGlc_hk 0.1 mM [58] 

Michaelis constant for HK KmMgATPMg_hk 1.14 mM [58] 

Michaelis constant for HK KmMgATP_hk 1.44 mM [58] 

Michaelis constant for HK KmMgBPG23_hk 3.44 mM [58] 

Michaelis constant for HK KmMg_hk 1.02 mM [58] 
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Description Symbol Value Units Ref 

Maximal rate of HK Vmax1_hk 0.045 mM s-1 Fitted 

Maximal rate of HK Vmax2_hk 1.1067 mM s-1 [58] 

Equilibrium constant of GPI Keq_gpi 0.3925 - [58] 

Michaelis constant for GPI KmF6P_gpi 0.071 mM [58] 

Michaelis constant for GPI KmG6P_gpi 0.182 mM [58] 

Maximal rate for GPI Vmax_gpi 2.652 mM s-1 Fitted 

Equilibrium constant of PFK Keq_pfk 1e+05 mM [58] 

Michaelis constant for PFK KmAMP_pfk  0.033 mM [58] 

Michaelis constant for PFK KmATP_pfk  0.01 mM [58] 

Michaelis constant for PFK KmF6P_pfk  0.1 mM [58] 

Michaelis constant for PFK KmMgATP_pfk  0.068 mM [58] 

Michaelis constant for PFK KmMg_pfk  0.44 mM [58] 

Lo for PFK Lo_pfk  0.001072 - [58] 

Maximal rate of PFK Vmax_pfk  0.6779 mM s-1 Fitted 

Equilibrium constant of ALD Keq_ald  0.114 mM [58] 
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Description Symbol Value Units Ref 

Inhibition constant for ALD KiGAP_ald  0.0572 mM [58] 

Inhibition constant for ALD KiiGAP_ald 0.176 mM [58] 

Michaelis constant for ALD KmDHAP_ald 0.0364 mM [58] 

Michaelis constant for ALD KmF16BP_ald 0.0071 mM [58] 

Michaelis constant for ALD KmGAP_ald 0.1906 mM [58] 

Maximal rate of ALD Vmax_ald 0.2857 mM Fitted 

Equilibrium constant of TPI Keq_tpi 0.0407 mM [58] 

Michaelis constant for TPI KmDHAP_tpi 0.838 mM [58] 

Michaelis constant for TPI KmGAP_tpi 0.428 mM [58] 

Maximal rate of TPI Vmax_tpi 15.4784 mM s-1 [58] 

Equilibrium constant of GADPH Keq_gapdh 0.000192 mM [58] 

Michaelis constant for GADPH KmBPG13_gapdh 0.0035 mM [58] 

Michaelis constant for GADPH KmGAP_gapdh 0.005 mM [58] 

Michaelis constant for GADPH KmNADH_gapdh 0.0083 mM [58] 

Michaelis constant for GADPH KmNAD_gapdh 0.05 mM [58] 
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Description Symbol Value Units Ref 

Michaelis constant for GADPH KmPi_gapdh 3.9 mM [58] 

Maximal rate of GADPH Vmax_gapdh 12.197 mM s-1 Fitted 

Equilibrium constant of PGK Keq_pgk 1455 mM [58] 

Michaelis constant for PGK KmBPG13_pgk 0.002 mM [58] 

Michaelis constant for PGK KmMgADP_pgk 0.35 mM [58] 

Michaelis constant for PGK KmMgATP_pgk 0.48 mM [58] 

Michaelis constant for PGK KmPG3_pgk 1.2 mM [58] 

Maximal rate of PGK Vmax_pgk 14.184 mM s-1 Fitted 

Dissociation constant of bPGM Kd_bpgm 215.5866 Fitted [58] 

Equilibrium constant of bPGM Keq_bpgm  1e+05 mM [58] 

Michaelis constant for bPGM KmBPG23_bpgm 0.04 mM [58] 

Equilibrium constant of bPGM Keq_bpgp 1e+05 mM [58] 

Michaelis constant for bPGM KmBPG23_bpgp 0.2 mM [58] 

Maximal rate of bPGM Vmax_bpgp 0.0015 mM s-1 Fitted 

Equilibrium constant of PGM Keq_pgm 0.145 mM [58] 
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Description Symbol Value Units Ref 

Michaelis constant for PGM KmPG2_pgm 1 mM [58] 

Michaelis constant for PGM KmPG3_pgm 5 mM [58] 

Maximal rate of PGM Vmax_pgm 5.673 mM s-1 Fitted 

Equilibrium constant of ENO Keq_eno 1.7 mM [58] 

Michaelis constant for ENO KmPEP_eno 1 mM [58] 

Michaelis constant for ENO KmPG2_eno 1 mM [58] 

Maximal rate of ENO Vmax_eno 4.255 mM s-1 Fitted 

Equilibrium constant of PK Keq_pk 13790 mM [58] 

Michaelis constant for PK KmATP_pk 3.39 mM [58] 

Michaelis constant for PK KmF16BP_pk 0.005 mM [58] 

Michaelis constant for PK KmMgADP_pk 0.474 mM [58] 

Michaelis constant for PK KmPEP_pk 0.225 mM [58] 

Lo for PK Lo_pk 19 - [58] 

Maximal rate of PK Vmax_pk 1.617 mMs-1 Fitted 

Equilibrium constant of LDH (Lactate 
dehydrogenase-NADH) 

Keq_ldh 9090 mM [58] 
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Description Symbol Value Units Ref 

Maximal rate of LDH (NADH) Vmax_ldh 104.99 mM s-1 [58] 

Equilibrium constant of LDH (Lactate 
dehydrogenase-NADPH) 

Keq_ldh 32 mM [58] 

Maximal rate of LDH (NADPH) k_ldh 2 mM s-1 [58] 

Maximal rate of ATPase k_ATPase 0.015 mM s-1 Fitted 

Equilibrium constant of AK Keq_ak 0.25 mM [58] 

Michaelis constant for AK KmADP_ak 0.11 mM [58] 

Michaelis constant for AK KmAMP_ak 0.08 mM [58] 

Michaelis constant for AK KmATP_ak 0.09 mM [58] 

Maximal rate of AK Vmax_ak 46 mM s-1 Fitted 

Equilibrium constant of GPDH Keq_gpdh 2000 mM [58] 

Michaelis constant for GPDH KmATP_gpdh 0.749 mM [58] 

Michaelis constant for GPDH KmBPG23_gpdh 2.289 mM [58] 

Michaelis constant for GPDH KmG6P_gpdh 0.0667 mM [58] 

Michaelis constant for GPDH KmNADPH_gpdh 0.00312 mM [58] 

Michaelis constant for GPDH KmNADP_gpdh 0.00367 mM [58] 
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Description Symbol Value Units Ref 

Maximal rate of GPDH Vmax_gpdh 0.108 mM s-1 Fitted 

Equilibrium constant of PGLDH Keq_pgldh 141.7 mM [58] 

Michaelis constant for PGLDH KmATP_pgldh 0.154 mM [58] 

Michaelis constant for PGLDH KmBPG23_pgldh 0.12 mM [58] 

Michaelis constant for PGLDH KmNADPH_pgldh 0.0045 mM [58] 

Michaelis constant for PGLDH KmNADP_pgldh 0.018 mM [58] 

Maximal rate of PGLDH Vmax_pgldh 1.05 mM s-1 Fitted 

Michaelis constant for PGLDH KmPGL1_pgldh 0.01 mM [58] 

Michaelis constant for PGLDH KmPGL2_pgldh 0.058 mM [58] 

Equilibrium constant of Glutathione reduction Keq_gr  1.04 mM [58] 

Michaelis constant for Glutathione reduction (GR) KmGSH_gr  20 mM [58] 

Michaelis constant for GR KmGSSG_gr  0.0652 mM [58] 

Michaelis constant for GR KmNADPH_gr  0.00852 mM [58] 

Michaelis constant for GR KmNADP_gr  0.07 mM [58] 

Maximal rate of GR Vmax_gr  3 mM s-1 [58] 
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Description Symbol Value Units Ref 

Rate constant for Glutathione oxidation (GO) K_go 0.01 mM [58] 

Equilibrium constant of GO Keq_pre 2.7 mM [58] 

Michaelis constant for PRE KmRu5P_pre 0.19 mM [58] 

Michaelis constant for PRE KmX5P_pre 0.5 mM [58] 

Maximal rate of PRE Vmax_pre 3.0894 mM s-1 Fitted 

Equilibrium constant of RPI Keq_rpi 3 mM [58] 

Michaelis constant for RPI KmRi5P_rpi 2.2 mM [58] 

Michaelis constant for RPI KmRu5P_rpi 0.78 mM [58] 

Maximal rate of RPI Vmax_rpi 0.4866 mM Fitted 

Constant for Tranketolase (Ri5P) K1_tk  0.4177 mM [58] 

Constant for Tranketolase (Ri5P) K2_tk 0.3055 mM [58] 

Constant for Tranketolase (Ri5P) K3_tk 12.432 mM [58] 

Constant for Tranketolase (Ri5P) K4_tk 0.00496 mM [58] 

Constant for Tranketolase (Ri5P) K5_tk 0.41139 mM [58] 

Constant for Tranketolase (Ri5P) K6_tk 0.00774 mM [58] 
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Description Symbol Value Units Ref 

Constant for Tranketolase (Ri5P) K7_tk 48.8 mM [58] 

Equilibrium constant of Tranketolase (Ri5P) Keq_tk 1.05 mM [58] 

Maximal rate of Tranketolase (Ri5P) Vmax_tk 0.0157 mM Fitted 

Constant for Transaldolase (TA) (Ri5P) K1_ta 0.00823 mM [58] 

Constant for TA (Ri5P) K2_ta 0.04765 mM [58] 

Constant for TA (Ri5P) K3_ta 0.1733 mM [58] 

Constant for TA (Ri5P) K4_ta 0.006095 mM [58] 

Constant for TA (Ri5P) K5_ta 0.8683 mM [58] 

Constant for TA (Ri5P) K6_ta 0.4653 mM [58] 

Constant for TA (Ri5P) K7_ta 2.524 mM [58] 

Equilibrium constant of TA (Ri5P) Keq_ta 1.05 mM [58] 

Maximal rate of Transaldolase (Ri5P) Vmax_ta 0.01813 mM s-1 Fitted 

Equilibrium constant of PRPPS Keq_prpps 1e+05 mM [58] 

Michaelis constant for PRPPS KmATP_prpps 0.03 mM [58] 

Michaelis constant for PRPPS KmRi5P_prpps 0.57 mM [58] 
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Description Symbol Value Units Ref 

Maximal rate of PRPPS Vmax_prpps 0.001 mM s-1 Fitted 

Constant for Transketolase (E4P) K1_tk 0.00184 mM [58] 

Constant for Transketolase (E4P) K2_tk 0.3055 mM [58] 

Constant for Transketolase (E4P) K3_tk 0.0548 mM [58] 

Constant for Transketolase (E4P) K4_tk 0.0003 mM [58] 

Constant for Transketolase (E4P) K5_tk 0.0287 mM [58] 

Constant for Transketolase (E4P) K6_tk 0.122 mM [58] 

Constant for Transketolase (E4P) K7_tk 0.215 mM [58] 

Equilibrium constant of Transketolase (E4P) Keq_tk 1.2 mM [58] 

Maximal rate of Transketolase (E4P) Vmax_tk 0.0157 mM s-1 Fitted 

Equilibrium constant of LT Keq_lt  0.5 mM [58] 

Maximal rate for LT Vmax_lt 0.0015 mM s-1 Fitted 

Equilibrium constant of phosphate transport 
(Plasma membrane) 

Keq_pt 1 mM [58] 

Maximal rate of phosphate transport (Plasma 
membrane) 

Vmax_pt 3.3333 mMs-1 Fitted 

Equilibrium constant of pyruvate transport (Plasma 
membrane) 

Keq_pt 1 mM Fitted 
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Description Symbol Value Units Ref 

Maximal rate of pyruvate transport (Plasma 
membrane) 

Vmax_pt 0.0003 mM Fitted 

Equilibrium constant of MgATP EqMgATP 3.3333 ∗ 105 s-1 [58] 

Dissociation constant for MgATP KdMgATP 0.072 mM [58] 

Equilibrium constant of MgADP EqMgADP 3.3333 ∗ 105 s-1 [58] 

Dissociation constant for MgADP KdMgADP 0.76 mM [58] 

Equilibrium constant of MgAMP EqMgAMP 3.3333 ∗ 105 s-1 [58] 

Dissociation constant for MgAMP KdMgAMP 16.64 mM [58] 

Equilibrium constant of MgBPG23 EqMgBPG23 3.3333 ∗ 105 s-1 [58] 

Dissociation constant for MgBPG23 KdMgBPG23 1.667 mM [58] 

Equilibrium constant of pyruvate transport (Mito 
membrane) 

Keq_pt 2 - Fitted 

Maximal rate of pyruvate transport (Mito 
membrane)]. 

Vmax_pt 0.04 s-1 Fitted 

Rate constant of PDH k_pdh 1.2 - [75] 

Concentration of CS Et_cs 0.0258 mM Fitted 

Catalytic constant of CS Kcat_cs 3.2 s-1 [59] 

Michaelis constant for AcCoA KmAcCoA_cs 0.0126 mM [59] 
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Description Symbol Value Units Ref 

Michaelis constant for OAA KmOAA_cs 0.00063 mM [59] 

Equilibrium constant of ACO Keq_aco 2.22 - [59] 

Forward rate constant of ACO Kf_aco 12.5 s-1 [59] 

Concentration of IDH Et_idh 0.007 mM Fitted 

Activation constant by ADP KaADP_idh 0.062 mM [59] 

Activation constant for Ca+2 KaCa_idh 0.00141 mM [59] 

Rate constant of IDH Kcat_idh 16.3 s-1 [59] 

Inhibition constant by NADH KiNADH_idh 0.19 mM [59] 

Michaelis constant for isocitrate KmIsoCit_idh 1.52 mM [59] 

Michaelis constant for NAD  KmNAD_idh 0.923 mM [59] 

Ionization constant of IDH kH1_idh 8.1e-05 mM [59] 

Ionization constant of IDH kH2_idh 5.98e-05 mM [59] 

Hill coefficient of IDH n_idh 2 - [59] 

Concentration of α-KGDH Et_akgdh 0.0323 mM Fitted 

Activation constant for Ca+2 KaCa_akgdh 0.00127 mM [59] 
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Description Symbol Value Units Ref 

Activation constant for Mg+2 KaMg_akgdh 0.0308 mM [59] 

Rate constant of KGDH Kcat_akgdh 5 s-1 [59] 

Michaelis constant for NAD KmNAD_akgdh 38.7 mM [59] 

Michaelis constant for αKG KmaKG_akgdh 1.94 mM [59] 

Hill coefficient of KGDH for αKG n_akgdh 1.2 - [59] 

Equilibrium constant of SL Keq_scl 3.115 - [59] 

Forward rate constant of SL Kf_scl 0.127 mM-1 s-1 [59] 

Concentration of SDH Et_sdh 0.0323 mM Fitted 

Rate constant of SDH Kcat_sdh 1 s-1 [59] 

Inhibition constant by fumarate KiFum_sdh 1.3 mM [59] 

Inhibition constant by oxalacetate KiOAA_sdh 0.15 mM [59] 

Michaelis constant for succinate KmSuc_sdh 0.03 mM [59] 

Equilibrium constant of FH Keq_fh 1 - [59] 

Forward rate constant for FH Kf_fh 1.83 s-1 [59] 

Total MDH enzyme concentration Et_mdh 0.001 mM Fitted 
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Description Symbol Value Units Ref 

Rate constant of MDH Kcat_mdh 27.75 s-1 [59] 

Inhibition constant by oxalacetate KiOAA_mdh 0.0015 mM [59] 

Michaelis constant for malate KmMal_mdh 1.493 mM [59] 

Michaelis constant for NAD+ KmNAD_mdh 0.2244 mM [59] 

Ionization constant of MDH kH1_mdh 1.131e-05 mM [59] 

Ionization constant of MDH kH2_mdh 26.7 mM [59] 

Ionization constant of MDH kH3_mdh 6.68e-09 mM [59] 

Ionization constant of MDH kH4_mdh 5.62e-06 mM [59] 

pH-independent term in the pH activation factor of 
MDH 

koffset 0.0399 - [59] 

Equilibrium constant of phosphate transport (Mito 
membrane) 

Keq_pt 20 - Fitted 

Maximal rate of phosphate transport (Mito 
membrane) 

Vmax_pt 5.002 s-1 Fitted 

Michaelis constant for PLC  KmPIP2_plc 0.00045 mM [74] 

Maximum flux across PMCA Vmax_plc 0.001 mM s-1 [74] 

Maximal rate of IP3 production kPump 20 s-1 [74] 

Dissociation constant of IP3 sites on IP3R KmIP3_channel 0.001 mM [74] 
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Description Symbol Value Units Ref 

Ca2+ leak from ER to cytoplasm L_channel 0.00093 s-1 [74] 

Maximal total permeability of IP3 channels P_channel 66.6 s-1 [74] 

Dissociation constant of Ca2+-activation sites on 
IP3R 

KmCa_channel 0.0004 mM [74] 

Half maximal inhibitory concentration for 2DG 2DG IC50  23.34 mM Fitted 

Half maximal inhibitory concentration for cyanide CYN IC50 0.005 mM Fitted 

Half maximal inhibitory concentration for malonate MAL IC50 24.17 mM Fitted 
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APPENDIX D: METABOLIC MODEL INITIAL VALUES 
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Description Symbol Value (mM) 

Mitochondrial pyruvate  Pyrm 0.0032449 

Mitochondrial NAD  NADm  10 

Acetyl-CoA  AcCoA  0.00013565 

Mitochondrial NADH  NADHm  5.4748e-07 

Oxaloacetate  OAA 0.0046568 

Citrate  Cit 0.025474 

Isocitrate  IsoCit 0.054419 

α-Ketoglutarate  aKG 0.00060511 

Mitochondrial ADP  ADPm 0.27199 

Mitochondrial calcium  Cam 0.00013734 

Succinyl CoA  SucCoA  0.3477 

Mitochondrial phosphate  Pim 19.99 

Succinate  Suc 0.00078309 

Mitochondrial ATP  ATPm 2.228 

Fumarate  Fum 0.037381 



 

231 

 

Description Symbol Value (mM) 

Malate  Mal 0.030819 

Mitochondrial FAD  FAD 5.25 

Mitochondrial FADH2  FADH2 3.2402e-05 

Endoplasmic reticulum calcium  Caer 0.044987 

Mitochondrial membrane potential  dPsi  0.12203 

Cytosolic Glucose  Glc  5.8843 

Magnesium bound ATP  MgATP  0.20011 

Glucose-6-phosphate  G6P 0.0014076 

Magnesium bound ADP  MgADP  0.070602 

2,3-bisphosphoglycerate  BPG23  0.31498 

Magnesium  Mg  1.0641 

Magnesium bound 2,3-bisphosphoglycerate  MgBPG23  0.20106 

Fructose 6-phosphate  F6P  0.00050133 

AMP  AMP  0.071164 

ATP  ATP  0.013541 
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Description Symbol Value (mM) 

Fructose 1,6-biphosphate  F16BP  0.06041 

Magnesium bound AMP  MgAMP  0.0045507 

Glyceraldehyde-3-phosphate  GAP  0.016302 

Dihydroxyacetone phosphate  DHAP  0.40075 

Cytosolic phosphate  Pi  0.9999 

Cytosolic NAD  NAD  0.062889 

1,3-bisphosphoglycerate  BPG13  7.4997e-05 

Cytosolic NADH  NADH  0.0026113 

3-Phosphoglycerate  PG3  0.036012 

2-Phosphoglycerate  PG2  0.0045566 

Phosphoenolpyruvate  PEP  0.0056698 

Cytosolic pyruvate  Pyr  0.02099 

Cytosolic lactate  Lac  1.4259 

Cytosolic NADPH  NADPH  3.0797e-07 

Cytosolic NADP  NADP 0.004 
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Description Symbol Value (mM) 

ADP  ADP  0.050427 

6-phosphoglucono-δ-lactone  PGL  0.00032077 

Ribuloase-5-phosphate  Ru5P  0.02701 

Glutathione disulphide  GSSG  1.4447 

Glutathione  GSH  0.225 

Xyulose-5-phosphate  X5P  0.072808 

Ribose-5-phosphate  Ri5P  0.079043 

Sedoheptulose 7-phosphate  S7P  0.00085122 

Erythrose 4-phosphate  E4P  0.00045071 

Phosphoribosyl pyrophosphate  PRPP  3.4337e-05 

Cytosolic calcium  Ca  0.00012546 

Phosphatidylinositol 4,5-bisphosphate  PIP2  2000 

Inositol triphosphate  IP3  3.7369e-12 

Diacyl-glycerol  DAG  3.7369e-12 

Extracellular glucose  Glce  25 
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Description Symbol Value (mM) 

Extracellular lactate  Lace  3.3388e-05 

Extracellular phosphate  Pie  1 

Extracellular pyruvate  Pyre  1.1601e-07 

Extracellular potassium  Ke  5.4 

Extracellular calcium  Cae  1.8 

Extracellular magnesium  Mge  0.8 

Extracellular sodium  Nae  130.2 

CoA  CoA  0.02 

Mitochondrial proton  Hm 2.5e-05 

Mitochondrial magnesium   Mgm 0.4 
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