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ABSTRACT

In the present dissertation, we characterize the range of the attenuated Radon transform of zero,

one, and two tensor fields, supported in strictly convex set. The approach is based on a Hilbert

transform associated with A-analytic functions of A. Bukhgeim.

We first present new necessary and sufficient conditions for a function on ∂Ω × S1, to be in the

range of the attenuated Radon transform of a sufficiently smooth function supported in the convex

set Ω ⊂ R2. The approach is based on an explicit Hilbert transform associated with traces of

the boundary of A-analytic functions in the sense of A. Bukhgeim [18]. We then uses the range

characterization of the Radon transform of functions to characterize the range of the attenuated

Radon transform of vector fields as they appear in the medical diagnostic techniques of Doppler

tomography. As an application we determine necessary and sufficient conditions for the Doppler

and X-ray data to be mistaken for each other. We also characterize the range of real symmetric

second order tensor field using the range characterization of the Radon transform of zero tensor

field.
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CHAPTER 1: INTRODUCTION

Inverse Problems originate from practical situations such as medical imaging or exploration geo-

physics. In a typical Inverse Problem the mathematical model is assumed to be known, but the

media in which it takes place it is not. By sending some signals (electromagnetic waves) through

the object one measures the effect of the signals at the boundary of the object. The goal in an

inverse boundary value problem is to recover the interior structure of the object from the measured

data at the boundary of the object.

In general, even though the forward model is linear and well-posed in the sense of Hadamard [29],

the Inverse Problem is ill posed and often non-linear. For example in a coefficient identification

problem the boundary data depend on the products of the coefficients (to be determined) with so-

lutions of the equations (which in turn depend on the coefficients) also unknown. Solution of an

Inverse Problem requires understanding from different areas of mathematics, including Partial Dif-

ferential Equations, Harmonic Analysis, Complex Analysis, Functional Analysis and Differential

Geometry.

One of the inverse boundary value problem is X-ray tomography, where the structure of a two-

dimensional object is to be determined by its integrals over lines. In particularly, an object is

exposed with a beam of X-rays with known intensity from a source. On the other side of the

source a detector is placed to measure the intensity of these X-rays due to attenuating effects of

the object. If assume that the medium of the object is non-refractive (X-ray beams traveling along

straight line from the source when entered the object follow the same straight line) and X-rays

are monochromatic (single energy or wavelength), then the intensity of the X-ray beam, I satisfies

Beer’s law
dI

ds
= −f(x)I , where f is the linear attenuation coefficient of the object [24]. If the

initial intensity is I0 and after traveling the line L the intensity at the detector is I1, then integrating
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Beer’s law, we obtain log
I0

I1

=

∫
L

f(x)dx =: Rf , where Rf is the Radon transform of f over the

line L.

Rf(s, w) =

∫ ∞
∞

f(sw + tw⊥)dt, s ∈ R, w ∈ S1.

The properties of this transform have been well studied [31]. Radon transforms were developed

at the beginning of the twentieth century by P. Funk, G. Lorenz, and J. Radon [52]. In the 1970s,

Allan Cormack and Godfrey Hounsfield recognized their work and apply these transforms in the

field of medical imaging and was awarded a Nobel Prize in Medicine in 1979.

Further developments led to many different medical imaging methods in common use today, such

as X-ray Computerized Tomography (CT), Single Photon Emission Computerized Tomography

(SPECT), Positron Emission Tomography (PET), Electrical impedance Tomography (EIT), Ultra-

sound Tomography and Magnetic Resonance Imaging (MRI), see e.g. [44], [32], [45], [24], [40].

Due to the importance of Radon transform used in some of these medical imaging methods, range

characterization of Radon transform and inversion formula of it are of particular interest. Inversion

methods of the attenuated Radon transform in the plane appeared first in [10], and [47], and various

developments can be found in [46], [16], [26], [12]. Necessary and sufficient constraints on range

of the non-attenuated (classical) Radon Transform in the Euclidean space have been known since

the works of Gelfand-Graev [28], Helgason [30], and Ludwig [37]. These constraints, known as

the Cavalieri or the moment conditions, are in terms of the angular variable: They state that the

angular average of the p-moment
∫
R
spg(s, w)ds of the data g(s, w) are homogeneous polynomial

of degree p in w. For function in the Schwartz class, they are essentially unique due to a Paley-

Wiener type theorem. Moreover, the Helgason support theorem extends the conditions to smooth

functions of compact support [31]. However, in the case of functions of compact support, it is

possible to obtain essentially different range conditions since more than one operator can annihilate
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functions of compact support in the range of the Radon transform. The results here in chapter 4,

constitute one such example.

For the attenuating media in the Euclidean space analogous range characterization based on the

inversion procedure in [47] have been given by Novikov [48]. These constraints are also in terms

of the angular variable.

The new range characterization presented here in chapter 4, is in terms of a Hilbert transform

associated with the A-analytic maps à la Bukhgeim [18], and represents constraints in the spatial

variable; see Theorems 4.1.3, and 4.2.1. These results offer a completely different alternative to

Gelfand-Graev [28], Helgason [30], and Ludwig [37], because the constraints are in the spatial

variable. Range conditions for the exponential Radon transform [61] has been discussed in [2].

Range characterizations in terms of a Hilbert type transform were first introduced by L.Pestov

and G.Uhlmann [51] in the non-attenuated case for smooth functions on two dimensional compact

simple Riemmanian manifolds. Extensions to the attenuated case and to tensor tomography has

been recently obtained by G.Paternain, M.Salo, and G.Uhlmann [49]: these results are in terms of

the angular variable.

Range characterization for higher order tensors are much more recent. In the non-attenuated case,

range characterizations of the Doppler transform of one tensors on compact simple manifolds

were first introduced in [51] in the more general geometric setting of simple Riemannian surfaces

with boundary. Their characterization is in terms of the scattering relation (an involution on the

boundary of the unit tangent bundle). Extensions to tensors of higher order as in [35] for the

Euclidean case or [50] for the Riemannian case do not address range characterization.

We consider also the problem of the characterization of the attenuated Radon transform of vector

fields in the Euclidean plane in chapter 5, as they appear in the medical diagnostic technique of

Doppler tomography, e.g [17]. The approach is based on the theory of A-analytic functions devel-
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oped by A. Bukhgeim [18], and the Hilbert transform associated with A-analytic maps discussed

in chapter 4. As an application of zero and one tensor characterization, we address the question of

when can the Radon and the Doppler data be mistaken for each other, see chapter 5, section 5.3.

We carry similar range characterization for symmetric two tensor in chapter 6.
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CHAPTER 2: TRANSPORT EQUATION AND RADON TRANSFORM

In this chapter, we establish a close connection between an Inverse source problem for the transport

equation and the attenuated Radon transform. Boundary value problems for the transport equation

have been considered in [1], [14], [19], [20], [21], [22], [23], [63]. The identification coefficient

problem for the transport equation have been considered in [3], [4], [5], [6], [7], [8], [9], [11], [15],

[25], [36], [38], [39], [47], [43], [46], [53], [55].

Let Ω ⊂ R2 be a convex bounded domain with C2-smooth boundary Γ with strictly positive

curvature bound. By S1, we denote the unit circle.

Let a, f ∈ C(Ω) be extended by zero outside.

Definition 2.0.1. The divergence beam transform of a is defined as

Da(x, θ) :=

∫ ∞
0

a(x+ tθ)dt, (2.1)

for each x ∈ Ω and θ = (cosϕ, sinϕ) ∈ S1.

The integration in (2.1) is with respect to arc length.

If ∇ denote the gradient in x then the directional derivative of Da, is

θ · ∇ (Da(x, θ)) = −a(x, θ),

for each x ∈ Ω and θ = (cosϕ, sinϕ) ∈ S1.
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Consider the stationary linear transport equation

θ · ∇u(x, θ) + a(x)u(x, θ) = f(x), (x, θ) ∈ Ω× S1, (2.2)

where u(x, θ) is the density of particles at x moving in the direction θ, f(x) is the density of

radiating particles per unit path-length, and a(x) is the medium capability of absorption per unit

path-length at x.

The equation (2.2) can be multiplied by the integrating factor e−Da, where Da as in (2.1) and can

be rewritten in the advection form as

θ · ∇
(
e−Da(x,θ)u(x, θ)

)
= f(x)e−Da(x,θ), (2.3)

for every (x, θ) ∈ Ω× S1.

Definition 2.0.2. The attenuated Radon transform of f (with attenuation a) is defined as

∫ ∞
−∞

f(x+ tθ)e−Da(x+tθ,θ)dt. (2.4)

for each x ∈ Ω and θ = (cosϕ, sinϕ) ∈ S1.

The integral in (2.4) is constant in x in the direction of θ, and this defines a function on the cotan-

gent bundle of the circle S1.

For any (x, θ) ∈ Ω×S1, let τ±(x, θ) denote the distance from x in the±θ direction to the boundary,

and distinguish the endpoints x±θ ∈ Γ of the chord in the direction of θ passing through x by

x±θ := x± τ±(x, θ)θ. (2.5)
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Note that

τ(x, θ) = τ+(x, θ) + τ−(x, θ) (2.6)

is the length of the chord, see Figure (2.1).

x+
θ

θ

x

Ω

x−θ
θ

τ+
(x
, θ

)

τ−
(x
, θ

)

Figure 2.1: Definition of τ±(x, θ)

Definition 2.0.3. The function g on Γ ×S1 is an attenuated Radon transform of f with attenuation

a, if

g(x+
θ , θ)−

[
e−Dag

]
(x−θ , θ) =

∫ τ+(x,θ)

τ−(x,θ)

f(x+ tθ)e−Da(x+tθ,θ)dt, (2.7)

for every (x, θ) ∈ Ω× S1.

The function g in definition 2.0.3 is not unique, since we can add to g any function h on Γ × S1

such that

h(x+
θ , θ) =

[
e−Dah

]
(x−θ , θ). (2.8)

If g is an attenuated Radon transform in the sense above, we use the notation g ∈ Raf . In the case

a ≡ 0, we use the notation g ∈ Rf .

Note that the only way non-uniqueness occurs is as in (2.8), and that, for functions defined in the
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whole plane with Radon data at infinity, such an ambiguity cannot occur.

Returning to transport equation, the equation (2.3) can be integrated along lines in direction θ to

obtain

e−Da(x+tθ,θ)u(x+ tθ, θ)
∣∣τ+(x,θ)

τ−(x,θ)
=

∫ τ+(x,θ)

τ−(x,θ)

f(x+ tθ)e−Da(x+tθ,θ)dt, which implies

e−Da(x+θ ,θ)u(x+
θ , θ)− e

−Da(x−θ ,θ)u(x−θ , θ) =

∫ τ+(x,θ)

τ−(x,θ)

f(x+ tθ)e−Da(x+tθ,θ)dt, which implies

u(x+
θ , θ)− e

−Da(x−θ ,θ)u(x−θ , θ) =

∫ τ+(x,θ)

τ−(x,θ)

f(x+ tθ)e−Da(x+tθ,θ)dt, ∵ Da(x+
θ , θ) = 0, (2.9)

where the notation x±θ as in (2.5).

Note that if the function g is the trace on Γ ×S1 of solutions u to the transport equation (2.2), then

(2.9) becomes

g(x+
θ , θ)−

[
e−Dag

]
(x−θ , θ) =

∫ τ+(x,θ)

τ−(x,θ)

f(x+ tθ)e−Da(x+tθ,θ)dt.

This shows that g is an attenuated Radon transform of f with attenuation a, i.e. g ∈ Raf and so

the function g in our definition (2.7) is precisely the trace on Γ ×S1 of solutions u to the transport

equation (2.2).

As the transport equation (2.2) is a parametrized family of ordinary differential equations so to

find a solution u, boundary values of u should be known. If the incoming flux is known, u(x, θ) =

g(x, θ) for x ∈ Γ and θ · n(x) < 0, with n(x) denoting the outer unit normal at x, then the

transport equation (2.2) will have a unique solution. The theory of boundary value problems (2.2),

and u|Γ= g, started with the work of Vladimirov [63] in connection with neutron transport theory,

see also [19], [1] , [14], [20], [21], [22], [23].
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Thus if g ∈ Raf , then g in (2.7) completes the specification of the boundary values of u.

θ · ∇u+ au = f,

u|Γ= g,

⇐⇒ g ∈ Raf. (2.10)

2.1 Special Integrating factor

In this section, we will introduce a special integrating factor for (2.2), the significance of which

will be apparent later, see chapter 4, section 4.1.

Let h be defined in Ω× S1 by

h(z, θ) := Da(z, θ)− 1

2
(I − iH)Ra(z · θ⊥, θ), (2.11)

where Ra(s, θ) =

∫ ∞
−∞

a
(
sθ⊥ + tθ

)
dt is the Radon transform of the attenuation, and the classical

Hilbert transform Hh(s) =
1

π

∫ ∞
−∞

h(t)

s− t
dt is taken in the first variable and evaluated at s = z· θ⊥.

It is important to note that the second term in (2.11) varies only in the spatial variable and orthog-

onal to θ. Hence

θ · ∇
(
(I − iH)Ra(z · θ⊥, θ)

)
= 0,

yielding e−h is an integrating factor for (2.2).

The integrating factor in (2.11) was first considered in the work of Natterrer [44]; see also [16],

9



[26], and [57] for elegant arguments that show

∫ 2π

0

h(z, 〈cosϕ, sinϕ〉)einϕ = 0, ∀n ≤ 0.

One of the main result in chapter 4 , gives necessary and sufficient conditions for g ∈ Raf . These

conditions characterize the traces u|Γ×S1 of solutions of (2.2), as traces on Γ of solutions of A-

analytic functions.
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CHAPTER 3: A- ANALYTIC FUNCTIONS

We recall some preliminary notions and results from the theory of A-analytic sequence valued

maps developed by A. Bukhgeim [18], singular integral and harmonic analysis.

Let Ω ⊂ R2 be a convex bounded domain with C2-smooth boundary Γ with strictly positive

curvature bound.

Let l∞ be the space of bounded sequences and let L be the left shift operator

Lv = 〈v−1, v−2, v−3, ...〉,

with Lk the k-composition L ◦ · · · ◦ L︸ ︷︷ ︸
k

.

Definition 3.0.1. The sequence valued map z 7→ v(z) := 〈v0(z), v−1(z), v−2(z), ...〉 is called

A-analytic if v ∈ C(Ω; l∞) ∩ C1(Ω; l∞) and

∂v(z) + L2∂v(z) = 0, (3.1)

where

z = x1 + ix2, ∂ = (∂x1 + i∂x2) /2, ∂ = (∂x1 − i∂x2) /2.

For a compact set K ⊂ R2, such as Γ,Ω, S1, or Ω×S1, by Cα(K) we denote the Banach space of

uniform α- Hölder continuous functions endowed with the norm

‖f‖Cα(K) := sup
z∈K
|f(z)|+ sup

z,w∈K, z 6=w

|f(z)− f(w)|
|z − w|α

.
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By Cα(Ω) we denote the space of locally uniform α- Hölder continuous functions.

We note the general fact that, for a sequence of nonnegative numbers.

Lemma 3.0.1. Let {cn} be a sequence of nonnegative numbers. Then

(i)
∞∑
k=1

∞∑
n=0

k ck+n =
∞∑
j=1

j(j + 1)

2
cj,

(ii)
∞∑
k=1

∞∑
n=0

ck+n =
∞∑
j=1

j cj,

whenever one of the sides in (i) and (ii) is finite.

Proof. (i) Indeed, if we introduce the change of index j = k + n, for k ≥ 1, ( j − n ≥ 1, and

n ≤ j − 1 ) we get

∞∑
k=1

∞∑
n=0

kck+n =
∞∑
j=1

j−1∑
n=0

(j − n) cj =
∞∑
j=1

cj

j−1∑
n=0

(j − n) =
∞∑
j=1

j(j + 1)

2
cj.

(ii) Indeed the change of index j = k + n, for k ≥ 1, yields

∞∑
k=1

∞∑
n=0

ck+n =
∞∑
j=1

j−1∑
n=0

cj =
∞∑
j=1

cj

j−1∑
n=0

1 =
∞∑
j=1

jcj.

In several of the arguments we make use of the following Bernstein’s lemma below (see, e.g., [33]).

Lemma 3.0.2. Let f ∈ Ck,α(S1), α > 1/2, and {f̂n} be the sequence of its Fourier coefficients.

Then
∞∑

n=−∞

|n|k|f̂n| <∞.
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To characterize traces of A-analytic functions we need to control the decay in the Fourier terms.

We work in the following Banach spaces

l1,1∞ (Γ) :=

{
v = 〈v0, v−1, ...〉 : sup

w∈Γ

∞∑
j=1

j|v−j(w)| <∞

}
, (3.2)

and

Cε(Γ; l1) :=

v = 〈v0, v−1, ...〉 : sup
ξ∈Γ
‖v(ξ)‖l1 + sup

ξ,η∈Γ
ξ 6=η

‖v(ξ)− v(η)‖l1
|ξ − η|ε

<∞

 , (3.3)

where l1 is the space of sumable sequences. By replacing Γ with Ω and l1 with l∞ in (3.3) we sim-

ilarly define Cε(Ω; l1), respectively, Cε(Ω; l∞), where l∞ denotes the space of bounded sequences.

We describe next the two operators which define the Hilbert transform associated with A-analytic

maps. For v ∈ Cε(Γ, l1), we consider the Cauchy integral operators defined componentwise by

(Cv)n(ξ) := (Cvn)(ξ) =
1

2πi

∫
Γ

vn(w)

w − ξ
dw, ξ ∈ Ω, (3.4)

and

(Sv)n(ξ) := (Svn)(ξ) =
1

πi

∫
Γ

vn(w)

w − ξ
dw, ξ ∈ Γ, n = 0,−1,−2, ... (3.5)

The later integral is understood in the Cauchy principal value sense.

The following result is a componentwise extension of Sokhotski-Plemelj formula (e.g., [42]) to

sequence valued maps.

Proposition 3.0.1. Let v ∈ Cε(Γ ; l1) as in (3.3). Then, for every ξ0 ∈ Γ, the limit

lim
Ω3ξ→ξ0

∥∥∥∥(Cv)(ξ)− 1

2
v(ξ0)− 1

2
Sv(ξ0)

∥∥∥∥
l1

= 0, (3.6)
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defines an extension of Cv from Ω to Ω as a Holder continuous map with values in l1, i.e,

C : Cε(Γ ; l1) −→ Cε
(
Ω; l1

)
∩ C1 (Ω; l1) .

The fact that Cv ∈ C1(Ω; l1) follows directly from the local character of differentiability and from

the fact that
∑∞

n=1

∫
Γ
|v−n(w)dw| <∞.

Next we introduce the second operator which appears in the definition of the Hilbert transform. It

is defined componentwise for each index n ≤ 0, ξ ∈ Ω, w ∈ Γ , and v ∈ l1,1∞ (Γ) by

(Gv)n(ξ) =
1

πi

∫
Γ

{
dw

w − ξ
− dw

w − ξ

} ∞∑
j=1

vn−2j(w)

(
w − ξ
w − ξ

)j
. (3.7)

We will use the following mapping property of G.

Proposition 3.0.2.

G : Cε(Γ ; l1) ∩ l1,1∞ (Γ) −→ Cε
(
Ω; l∞

)
∩ C1 (Ω; l∞) .

Proof. Let ξ, ξ0 ∈ Ω. Since v ∈ l1,1∞ (Γ), it follows from (3.7) that each component (Gv)n(ξ) is

well-defined for n ≤ 0.

Now let w(ϕ) = ξ + lξ(ϕ)eiϕ be a parametrization of Γ, where lξ(ϕ) = |ξ − w(ϕ)|. Since the

boundary Γ is at least C1, we have that ξ 7→ lξ is Lipschitz in Ω uniformly in ϕ ∈ [0, 2π], i.e.,

|lξ(ϕ)− lξ0(ϕ)| ≤ L|ξ − ξ0|, (3.8)
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for some constant L > 0. Moreover,

dw

w − ξ
=

[
l′ξ
lξ

+ i

]
dϕ,

dw

w − ξ
=

[
l′ξ
lξ
− i
]
dϕ,

(
w − ξ
w − ξ

)
= e−2iϕ,

and note that the measure
dw

w − ξ
− dw

w − ξ
= 2idϕ, in (3.7), is nonsingular.

For each integer n ≤ 0, the equation (3.7) rewrites

(Gv)n(ξ) =
2

π

∫ 2π

0

∞∑
j=1

gn−2j(ξ + lξ(ϕ) eiϕ) e−2ijϕdϕ, ξ ∈ Ω.

Since v ∈ Cε(Γ ; l1), we have

κ := sup
w1,w2∈Γ
w1 6=w2

∞∑
n=0

|g−n(w1)− g−n(w2)|
|w1 − w2|ε

<∞.

We estimate for each n,

|(Gv)n(ξ)− (Gv)n(ξ0)|

≤ 2

π

∞∑
j=1

∫ 2π

0

∣∣vn−2j(ξ + lξ(ϕ) eiϕ)− vn−2j(ξ0 + lξ0(ϕ) eiϕ)
∣∣ dϕ

≤ 2κ

π

∫ 2π

0

∣∣(ξ − ξ0) + [lξ(ϕ)− lξ0(ϕ)] eiϕ
∣∣ε dϕ,

≤ 2κ

π

∫ 2π

0

(2 |ξ − ξ0|ε + |lξ(ϕ)− lξ0(ϕ)|ε) dϕ,

≤ (8κ+ 4κLε) |ξ − ξ0|ε .

In the third inequality above we used |a+ b|ε ≤ 2|a|ε + |b|ε, and the fourth inequality uses (3.8).

Next we show that Gv ∈ C1(Ω; l∞). Suffices to carry the estimates in the neighborhood
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B(ξ0, r0) ⊂ Ω of an arbitrary point ξ0 ∈ Ω, where r0 = dist(ξ0,Γ)/2 > 0.

For ξ ∈ B(ξ0, r0) arbitrary, we have

∣∣∣∣∇ξ

{
dw

w − ξ
− dw

w − ξ

}∣∣∣∣ =

∣∣∣∣2 Im( dw

(w − ξ)2

)∣∣∣∣ ≤ c|dw|, (3.9)

where c = 2/r2
0.

For each n ≤ 0, we have

∇ξ(Gv)n(ξ) =
1

πi

∫
Γ

∇ξ

{
dw

w − ξ
− dw

w − ξ

} ∞∑
j=1

vn−2j(w)

(
w − ξ
w − ξ

)j

+
1

πi

∫
Γ

{
dw

w − ξ
− dw

w − ξ

} ∞∑
j=1

vn−2j(w)∇ξ

(
w − ξ
w − ξ

)j
.

For v ∈ Cε(Γ ; l1) ∩ l1,1∞ (Γ), and ξ ∈ B(ξ0, r0), the right hand side above is bounded uniformly in

n, since

|∇ξ(Gv)n(ξ)| ≤ c

π

∫
Γ

∞∑
j=1

|vn−2j(w)| dw

+
c

π

∫
Γ

∞∑
j=1

j |vn−2j(w)| dw <∞.

Therefore Gv ∈ C1(Ω; l∞).
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CHAPTER 4: RANGE CHARACTERIZATION OF ZERO TENSOR

In this chapter, we first consider the zero tensor non-attenuated case, and gives necessary and

sufficient conditions for some function g to be in the range of attenuated Radon transform of

some f , i.e. g ∈ Rf as in Definition 2.0.3. These conditions characterize the traces u|Γ×S1 of

solutions of (2.2), as traces on Γ of solutions of A-analytic functions. We then consider the zero

tensor attenuated case and see that it will reduces to non-attenuated case. We use these results to

characterize the range of one and two tensor.

4.1 Non Attenuated Case

In the non-attenuated case (a ≡ 0) , the transport equation simplifies to

θ · ∇v(x, θ) = f(x), (x, θ) ∈ Ω× S1. (4.1)

With the complex notations

z = x1 + ix2, ∂ = (∂x1 + i∂x2) /2, ∂ = (∂x1 − i∂x2) /2,

the advection operator becomes

θ · ∇ = e−iϕ∂ + eiϕ∂,

where ϕ = arg(θ) denotes an angular variable .

Let v(z, θ) =
∞∑
−∞

vn(z)einϕ, be the (formal) Fourier expansion of v in the angular variable. Pro-

vided appropriate convergence of the series as specified in the theorems, we see that v solves (4.1)

17



if and only if its Fourier coefficients solve

∂v−1(z) + ∂v1(z) = f(z), (4.2)

and, for n 6= 1,

∂vn(z) + ∂vn−2(z) = 0.

Since v is real-valued, its Fourier coefficients appear in complex-conjugate pairs, vn = v−n, so

that it suffices to work with the sequence of non-positive indexes (this choice preserves the original

notation in [18]).

We characterize the range of the non-attenuated Radon transform by introducing the Hilbert trans-

formH0 associated with the traces on Γ of A-analytic maps in Ω.

Recall the operator S and G as defined in (3.5), and (3.7).

Definition 4.1.1. The Hilbert transform H0 for g = 〈g0, g−1, ...〉 ∈ l1,1∞ (Γ) ∩ Cε(Γ; l1) is defined

by

H0g := i[S +G]g, (4.3)

and written componentwise, for n = 0,−1,−2, ..., as

(H0g)n(ξ) =
1

π

∫
Γ

gn(w)

w − ξ
dw

+
1

π

∫
Γ

{
dw

w − ξ
− dw

w − ξ

} ∞∑
j=1

gn−2j(w)

(
w − ξ
w − ξ

)j
, ξ ∈ Γ.

The mapping properties of S, and G in Propositions 3.0.1, and 3.0.2, together with the continuous
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embedding of l1 ⊂ l∞, yields

Proposition 4.1.1.

H0 : Cε(Γ ; l1) ∩ l1,1∞ (Γ) −→ Cε (Γ; l∞) , (4.4)

is a continuous map.

The name of this transform will be motivated in the next section, where we show that traces on Γ

of A-analytic maps lie in the kernel of [I + iH0] in analogy with the classical Hilbert transform for

analytic functions.

At the heart of the theory of A-analytic maps lies a Cauchy integral formula. A class of such

Cauchy integral formulae were first introduced by Bukhgeim in [18]. The explicit form (4.5) below

is due to Finch [26]; see also [58, 59, 60] where one works with square summable sequences.

Theorem 4.1.1 (Bukhgeim-Cauchy Integral Formula). Let g = 〈g0, g−1, ...〉 ∈ l1,1∞ (Γ) ∩ Cε(Γ; l1)

be a sequence valued map defined at the boundary Γ . For ξ ∈ Ω, and each index n ≤ 0, we

consider the Bukhgeim-Cauchy operator (Bg)n(ξ) defined by

(Bg)n(ξ) :=
1

2
(Gg)n(ξ) + (Cg)n(ξ). (4.5)

Then v := 〈(Bg)0, (Bg)−1, (Bg)−2, ...〉 ∈ C1,ε(Ω; l∞), and for each n = 0,−1, ...,

∂(Bg)n(ξ) + ∂(Bg)n−2(ξ) = 0, ξ ∈ Ω.

Moreover, for each n = 0,−1, ...,

(Bg)n ∈ C∞(Ω). (4.6)
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Furthermore, for each n = 0,−1,−2, ..., the component (Bg)n extends continuously to Ω with

limiting values

(Bg)+
n (ξ0) := lim

Ω3ξ→ξ0∈Γ
(Bg)n(ξ), (4.7)

where

(Bg)+
n (ξ0) =

1

2
(Gg)n(ξ0) +

1

2
(S + I)gn(ξ0). (4.8)

Proof. Let ξ ∈ Ω and n ≤ 0 arbitrarily fixed. Since g ∈ l1,1∞ (Γ) ∩ Cε(Γ, l1), both (Gg)n(ξ)

and (Cg)n)(ξ) are well-defined. Moreover, from Propositions 3.0.1, and 3.0.2, we have that v ∈

C(Ω; l∞) ∩ C1(Ω; l∞).

For each n ≤ 0, by its definition in (4.5), we have

2πi(Bg)n(ξ) =
∞∑
j=0

∫
Γ

gn−2j(w)(w − ξ)
j

(w − ξ)j+1
dw

−
∞∑
j=1

∫
Γ

gn−2j(w)(w − ξ)
j−1

(w − ξ)j
dw.

From where

2πi∂(Bg)n−2(ξ) =
∞∑
j=1

∫
Γ

jgn−2j(w)(w − ξ)
j−1

(w − ξ)j+1
dw

−
∞∑
j=2

∫
Γ

(j − 1)gn−2j(w)(w − ξ)
j−2

(w − ξ)j
dw, (4.9)
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and

2πi∂(Bg)n(ξ) =−
∞∑
j=1

∫
Γ

jgn−2j(w)(w − ξ)
j−1

(w − ξ)j+1
dw

+
∞∑
j=2

∫
Γ

(j − 1)gn−2j(w)(w − ξ)
j−2

(w − ξ)j
dw. (4.10)

By summing (4.9) and (4.10) we obtain ∂(Bg)n + ∂(Bg)n−2 = 0 for each n = 0,−1,−2, ....

The regularity (Bg)n ∈ C∞(Ω) follows from the explicit formula (4.9), and the fact that ξ 7→
(w − ξ)

j

(w − ξ)j+k
, for k ≥ 2, are locally uniform ε-Hölder continuous.

The continuity to the boundary are consequences of Propositions 3.0.1, and 3.0.2. In the limits

below ξ ∈ Ω, and ξ0 ∈ Γ :

lim
ξ→ξ0

(Bg)n(ξ) = lim
ξ→ξ0

1

2
(Gv)n(ξ) + lim

ξ→ξ0
(Cg)n)(ξ),

=
1

2
(Gv)n(ξ0) +

1

2
gn(ξ0) +

1

2

∞∑
n=0

(Sg)n(ξ0),

=
1

2
(Gv)n(ξ0) +

1

2
(S + I)gn(ξ0).

The following theorem presents necessary and sufficient conditions for sufficiently regular se-

quence valued map to be the trace at the boundary of an A-analytic function.

Theorem 4.1.2. Let g = 〈g0, g−1, g−2, · · · ·〉 ∈ l1,1∞ (Γ) ∩ Cε(Γ, l1). For g to be boundary value of

an A-analytic function it is necessary and sufficient that

(I + iH0)g = 0. (4.11)
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Proof. For the necessity, let v = 〈v0, v−1, v−2, · · · ·〉 be A-analytic as in (3.1) whose trace v|Γ = g,

in the sense that

lim
Ω3ξ→ξ0∈Γ

vn(ξ) = gn(ξ0), n ≤ 0.

By (4.8), we obtain

gn(ξ0) =
1

2
(Gv)n(ξ0) +

1

2
Sgn(ξ0) +

1

2
gn(ξ0),

or,

[(I − S −G)g]n = 0, n ≤ 0. (4.12)

SinceH0 = i[S +G], (4.12) is a componentwise representation of (4.11).

Next we prove sufficiency. Let g ∈ l1,1∞ (Γ) ∩ Cε(Γ, l1) satisfy (4.11), and define

v := 〈(Bg)0, (Bg)−1, ...〉,

where B is the Bukhgeim-Cauchy operator as defined in (4.5). From Propositions 3.0.1, and

3.0.2, we have that v ∈ C1(Ω; l∞) ∩ C(Ω; l∞), and from Theorem 4.1.1, we see that ∂(Bg)n +

∂(Bg)n−2 = 0, for each n ≤ 0. Therefore v is A-analytic. Moreover,

lim
Ω3ξ→ξ0∈Γ

(Bg)n(ξ) =
1

2
(Gv)n(ξ0) +

1

2
(S + I)gn(ξ0),

=
1

2
(I − S)gn(ξ0) +

1

2
(S + I)gn(ξ0),

= gn(ξ0),

where the first equality uses (4.8), whereas the second equality uses (4.11).
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4.1.1 Range characterization of the non-attenuated Radon transform of zero tensors

This section concerns our main result in the non-attenuated case (a ≡ 0). The results require a

stronger topology. For ε > 0, we consider the space Yε = Cε(Γ ; l1,1(S1)) ∩ C0(Γ ; l1,2(S1)) i.e

Yε =

g ∈ l1,2∞ (Γ) : sup
ξ,µ∈Γ
ξ 6=µ

∞∑
j=1

j
|g−j(ξ)− g−j(µ)|
|ξ − µ|ε

<∞

 , (4.13)

where

l1,2∞ (Γ) :=

{
g = 〈g0, g−1, g−2, · · · ·〉 : sup

w∈Γ

∞∑
j=1

j2 |g−j(w)| <∞

}
. (4.14)

For the sake of clarity in the statement of the main result we introduce the following projections.

Definition 4.1.2. Given a function g ∈ C(Ω;L1(S1)), we consider the projections

P−(g) := 〈g0, g−1, g−2, ...〉, P+(g) := 〈g0, g1, g2, ...〉, (4.15)

where gn(z) = 1
2π

∫ 2π

0
g(z, θ)e−inϕdϕ, for z ∈ Ω, is the n-th Fourier coefficients for n ∈ Z.

Conversely, given g(z) = 〈g0(z), g−1(z), g−2(z), ...〉 ∈ C(Ω; l1), we define a corresponding real

valued function g on Ω× S1 by

P∗(g) := g0(z) + 2Re

(
∞∑
n=1

g−n(z)e−inϕ

)
. (4.16)

The properties below are immediate:
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If g is a function on Γ × S1 then

(i) P−P∗P−(g) = P−(g), (4.17)

(ii) P−(e±hg) = (P+e±h) ∗n (P−(g)), (4.18)

where ∗n is the convolution operator on sequences and h is a function on Γ × S1 with only non

negative Fourier modes.

The following result gives some of the properties of the P± and P∗ operators. Recall the definition

of the space Yε in (4.13).

Proposition 4.1.2. Let α > 1/2, and ε > 0 be arbitrarily small. Then

(i) P− : Cε (Γ ;C1,α(S1))→ l1,1∞ (Γ) ∩ Cε(Γ; l1),

(ii) P− : Cε (Γ ;C1,α(S1)) ∩ C0 (Γ ;C2,α(S1))→ Yε,

(iii) P∗ : C1,α(Ω; l1) ∩ Cα(Ω; l1)→ C1,α(Ω× S1) ∩ Cα(Ω× S1).

Proof. Let g ∈ Cε (Γ ;C1,α(S1)). Then

sup
ξ∈Γ
‖g(ξ, · )‖C1,α + sup

ξ,µ∈Γ
ξ 6=µ

‖g(ξ, · )− g(µ, · )‖C1,α

|ξ − µ|ε
<∞. (4.19)

From

sup
ξ∈Γ

∞∑
j=1

j |g−j(ξ)| ≤ sup
ξ∈Γ
‖g(ξ, · )‖C1,α <∞, (4.20)

and by Lemma 3.0.2, P−(g) ∈ l1,1∞ (Γ).
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Another application of Lemma 3.0.2, together with (4.19) imply

sup
ξ,µ∈Γ
ξ 6=µ

∞∑
j=1

j|g−j(ξ)− g−j(µ)|
|ξ − µ|ε

≤ sup
ξ,µ∈Γ
ξ 6=µ

‖g(ξ, · )− g(µ, · )‖C1,α

|ξ − µ|ε
<∞. (4.21)

By combining the estimates (4.20) and (4.21) we showed that P−(g) ∈ Cε(Γ ; l1). This proves part

(i).

Now let g ∈ Cε (Γ ;C1,α(S1)) ∩ C0 (Γ ;C2,α(S1)). Since g ∈ C0 (Γ ;C2,α(S1)), then

sup
ξ∈Γ
‖g(ξ, · )‖C2,α <∞.

Lemma 3.0.2, applied to g(ξ, · ) ∈ C2,α for ξ ∈ Γ, yields

sup
w∈Γ

∞∑
j=1

j2 |g−j(w)| ≤ ‖g(ξ, · )‖C2,α . (4.22)

This shows that P−(g) ∈ l1,2∞ (Γ). Now (4.21) yields P−(g) ∈ Yε.

By triangle inequality in (4.16), we have g ∈ C1,α(Ω; l1) ∩ Cα(Ω; l1), yields

sup
ξ∈Ω

‖g(ξ)‖l1 + sup
ξ,µ∈Ω
ξ 6=µ

‖g(ξ)− g(µ)‖l1
|ξ − µ|α

<∞.

For ξ ∈ Ω, and r > 0 with B(ξ; r) ⊂ Ω, there is an Mξ,r > 0, with

sup
ξ∈B(ξ;r)

‖∇g(ξ)‖l1 + sup
µ∈B(ξ;r)
ξ 6=µ

‖∇g(ξ)−∇g(µ)‖l1
|ξ − µ|α

≤Mξ,r.

These proves part(iii).
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The following result refines the mapping properties of the operator G in (3.7), when restricted to

the subspace Yε.

Proposition 4.1.3. Let Yε be the space defined in (4.13). Then

(i) G : Yε −→ Cε
(
Ω; l1

)
∩ C1

(
Ω; l1

)
,

(ii) H0 : Yε −→ Cε
(
Γ ; l1

)
.

Proof. (i) Let ξ, ξ0 ∈ Ω and g ∈ Yε. Using the parametrization w(ϕ) = ξ + lξ(ϕ)eiϕ, where

lξ(ϕ) = |ξ − w(ϕ)|, we obtain as in the proof in Proposition 3.0.2, that

(Gg)−n(ξ) =
2

π

∫ 2π

0

∞∑
j=1

g−n−2j(ξ + lξ(ϕ) eiϕ) e−2ijϕdϕ,

is well defined for ξ ∈ Ω.

Since g ∈ Yε, we have

κ := sup
ξ,µ∈Γ
ξ 6=µ

∞∑
j=1

j
|g−j(ξ)− g−j(µ)|
|ξ − µ|ε

<∞.
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We estimate

∞∑
n=0

|(Gg)−n(ξ)− (Gg)−n(ξ0)|

≤ 2

π

∞∑
n=0

∞∑
j=1

∫ 2π

0

∣∣g−n−2j(ξ + lξ(ϕ) eiϕ)− g−n−2j(ξ0 + lξ0(ϕ) eiϕ)
∣∣ dϕ,

≤ 2

π

∞∑
j=1

∫ 2π

0

j
∣∣g−j(ξ + lξ(ϕ) eiϕ)− g−j(ξ0 + lξ0(ϕ) eiϕ)

∣∣ dϕ,
≤ 2κ

π

∫ 2π

0

∣∣(ξ − ξ0) + [lξ(ϕ)− lξ0(ϕ)] eiϕ
∣∣ε dϕ,

≤ 2κ

π

∫ 2π

0

(2 |ξ − ξ0|ε + |lξ(ϕ)− lξ0(ϕ)|ε) dϕ,

≤ (8κ+ 4κLε) |ξ − ξ0|ε .

In the second inequality, we used Lemma 3.0.1 part (ii), in the third inequality we used |a+ b|ε ≤

2|a|ε + |b|ε, and in the fourth inequality we used (3.8). This shows Gv ∈ Cε(Ω; l1).

We will show next that Gg ∈ C1(Ω; l1). Suffices to carry the estimates in the neighborhood

B(ξ0, r0) ⊂ Ω of an arbitrary point ξ0 ∈ Ω, where r0 = dist(ξ0,Γ)/2 > 0. Recall the estimate

(3.9) where c = 2/r2
0.

For each n ≤ 0, we have

∇ξ(Gg)n(ξ) =
1

πi

∫
Γ

∇ξ

{
dw

w − ξ
− dw

w − ξ

} ∞∑
j=1

gn−2j(w)

(
w − ξ
w − ξ

)j

+
1

πi

∫
Γ

{
dw

w − ξ
− dw

w − ξ

} ∞∑
j=1

gn−2j(w)∇ξ

(
w − ξ
w − ξ

)j
,

27



which estimate using (3.9) by

∞∑
n=0

|∇ξ(Gg)−n(ξ)| ≤ c
π

∞∑
n=0

∫
Γ

∞∑
j=1

|g−n−2j(w)| dw

+
c

π

∞∑
n=0

∫
Γ

∞∑
j=1

j |g−n−2j(w)| dw.

By Lebesgue Dominated Convergence Theorem, Lemma 3.0.1, and g ∈ l1,2∞ (Γ), the right hand

side above is finite.

To prove part (ii), we note that Yε ⊂ Cε(Γ; l1), so that the Sokhotzki-Plemelj limit in (3.6) holds.

The result follows from Definition 4.1.1 ofH0 and part(i) above.

Corollary 4.1.1. Let Yε be the space defined in (4.13), and g ∈ Yε satisfying

(I + iH0)g = 0. (4.23)

Define v := 〈(Bg)0, (Bg)−1, ...〉 , where B is the Bukhgeim-Cauchy operator as defined in (4.5).

Then v ∈ C1,ε(Ω; l1) extends continuously to a map in Cε(Ω; l1). Moreover, v is A-analytic and

v|Γ= g, in the sense

lim
Ω3z→z0∈Γ

‖v(z)− g(z0)‖l1 = 0,

and, for P∗ in (4.16), we have

lim
Ω3z→z0∈Γ

P∗(v)(z) = P∗(g)(z0).

Proof. Since g ∈ Yε, by Proposition 4.1.3, we have v ∈ Cε(Ω; l1)∩C1(Ω; l1). By summing (4.9),

and (4.10), we obtain

∂(Bg)n + ∂(Bg)n−2 = 0, n = 0,−1,−2, ...,
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and so v is A-analytic. Next we will show that v|Γ= g. Let z ∈ Ω and z0 ∈ Γ . Then

‖v(z)− g(z0)‖l1 =

∥∥∥∥1

2
(Gg)(z) + (Cg)(z)− g(z0)

∥∥∥∥
l1

=

∥∥∥∥1

2
((Gg)(z)− (Gg)(z0)) +

(
(Cg)(z)− 1

2
g(z0)− 1

2
Sg(z0)

)∥∥∥∥
l1

In the equality above we use the fact that g satisfy (4.23). From Proposition 3.0.1, and Proposition

4.1.3 part (i), we have

lim
Ω3z→z0∈Γ

∥∥∥∥(Cg)(z)− 1

2
g(z0)− 1

2
Sg(z0)

∥∥∥∥
l1

= 0,

lim
Ω3z→z0∈Γ

‖(Gg)(z)− (Gg)(z0)‖l1 = 0,

and so

lim
Ω3z→z0∈Γ

‖v(z)− g(z0)‖l1 = 0, (4.24)

i.e.v|Γ = g.

Since v ∈ Cε(Ω; l1)∩C1(Ω; l1), it follows from Proposition 4.1.2 part (iii), thatP∗v(z) ∈ C1,ε(Ω×

S1) ∩ Cε(Ω× S1). The triangle inequality yields

|[P∗v](z, θ)− [P∗g](z0, θ)| ≤ ‖v(z)− g(z0)‖l1 ,

and the result follows from (4.24).

Lemma 4.1.1. Let Ω be a (convex) domain with C2-boundary Γ with a strictly positive curvature

lower bound δ > 0. Let τ(z, θ) be as in (2.6) for (z, θ) ∈ Ω × S1, then the angular derivative
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∂ϕτ(z, θ) has a jump discontinuity across the variety Z as defined by

Z := {(z, θ) ∈ Γ× S1 : n(z) · θ = 0}. (4.25)

Proof. Let z0 ∈ Γ be fixed and let θ0 := n(z0)⊥ with ϕ0 = arg(θ0).

Let τ̃(z0, θ) be the length of the chord corresponding to the osculating circle at z0 of radius R0 and

let ϕ = arg(θ). Let τ(z0, θ) be the length of the chord from z0 to the boundary in the θ direction

as defined in (2.6).

Consider a local parametrization t 7→ (t, y(t)) of the boundary near z0 = (0, y(0)) ∈ Γ, with

y(0) = y′(0) = 0. Then the curvature of the boundary at z0 is k(0) = y′′(0), and, by the Taylor

series expansion,

y(t) =
κ(0)t2

2
+ r(t)t2,

for some r(t) with limt→0 r(t) = 0.

The equation of the line passing through z0 and making an angle ϕ− ϕ0 with the positive t axis is

(t, tan(ϕ− ϕ0)t). The point of intersection of this line with Γ gives t =
2 tan(ϕ− ϕ0)

κ(0) + 2r(t)
. Thus,

τ(z0, θ) = t sec(ϕ− ϕ0),

=
sin(ϕ− ϕ0)

cos2(ϕ− ϕ0)

2

κ(0) + 2r(t)
,

≤ 2c1

κ(0)

sin(ϕ− ϕ0)

cos2(ϕ− ϕ0)
,

≤ 2c1R0| sin(ϕ− ϕ0)|
cos2(ϕ− ϕ0)

.
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Figure 4.1: Geometry of the osculating circle

From the geometry of the osculating circle (see Figure 4.1), we have

τ̃(z0, θ) = 2R0| sin(ϕ− ϕ0)| ≤ 2

δ
|ϕ− ϕ0|, (4.26)

and so there is a constant C > 0, such that, for all (z0, θ) ∈ Γ× S1,

τ(z0, θ) ≤ Cτ̃(z0, θ). (4.27)

A derivative in ϕ at ϕ0 in the equality in (4.26) also yields the jump value of 4R0, as the direction

θ crosses the tangent direction from outgoing to incoming.

In order for the integral in (2.4) to inherit the regularity of f it is then necessary for f to vanish at

the boundary. The following proposition makes this statement precise.

Corollary 4.1.2. Let Ω be a (convex) domain with C2-boundary Γ with a strictly positive curvature
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lower bound δ > 0. If f ∈ C1,α
0 (Ω), then Rf ∩ C1,α(Γ × S1) 6= ∅.

Proof. For every (z, θ) ∈ Γ× S1, let us define

g(z, θ) =


∫ 0

−τ(z,θ)
f(z + tθ)dt, n(z) · θ > 0,

0, n(z) · θ ≤ 0,
(4.28)

where n(z) is the unit outer normal at z ∈ Γ . Since

g(z+
θ , θ) =


∫ 0

−τ(z+θ ,θ)
f(z+

θ + tθ)dt, n(z+
θ ) · θ > 0,

0, n(z+
θ ) · θ ≤ 0,

and g(z−θ , θ) = 0, condition (2.7) is satisfied with a ≡ 0 to show that g ∈ Rf . We will show next

that g ∈ C1,α(Γ × S1). Let ∂ be the partial derivative with respect to one of the spacial or angular

variable. At points (z0, θ0) ∈ (Γ× S1) \ Z, differentiation in (4.28) together with f |Γ = 0 yield

∂g(z0, θ0) =


∫ 0

−τ(z0,θ0)
∂f(z0 + tθ0)dt, n(z0) · θ0 > 0,

0, n(z0) · θ0 < 0,
(4.29)

Since ∂f ∈ Cα(Ω), it remains to show that ∂f extends Cα across the variety Z. We first consider

the case for a fixed z0 ∈ Γ and study the dependence of ∂g in θ near the tangential direction

θ0 := n(z0)⊥. The other case, studying the dependence of ∂g as z ∈ Γ approach z1 along Γ for a

fixed θ1 ∈ S1 with (z1, θ1) ∈ Γ × S1 reduces to the first case.

For this we first analyze the speed of convergence of τ(z0, θ) → 0 as θ → θ0. Let τ̃(z0, θ) be the

length of the chord corresponding to the osculating circle at z0 of radius R0. From Lemma 4.1.1,
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we have that there is a constant C > 0, such that, for all (z0, θ) ∈ Γ× S1,

τ(z0, θ) ≤ Cτ̃(z0, θ). (4.30)

From the geometry of the osculating circle (see Figure 4.1), we have

τ̃(z0, θ) = 2R0| sin(ϕ− ϕ0)| ≤ 2

δ
|ϕ− ϕ0|, (4.31)

where ϕ = arg(θ) and ϕ0 = arg(θ0). A derivative in ϕ at ϕ0 in the equality in (4.31) also yields

the jump value of 4R0, as the direction θ crosses the tangent direction from outgoing to incoming

direction. Since limθ→θ0 τ(z0, θ) = 0, the formula (4.28) shows that g ∈ C1(Γ × S1). To prove

that ∂g is α-Hölder continuous, we estimate using (4.26)

|∂g(z0, θ)| ≤ ‖∇f‖∞τ(z0, θ) ≤ ‖∇f‖∞Cτ̃(z0, θ)| ≤ C̃|ϕ− ϕ0|, (4.32)

for some constant dependent on the sup-norm of the |∇f | and the minimum curvature δ.

|g(z0, θ)− g(z0, θ0)|

=

∣∣∣∣∣
∫ 0

−τ(z0,θ0)

(∂f(z0 + tθ0)− ∂f(z0 + tθ0))dt+

∫ −τ(z0,θ)

−τ(z0,θ0)

∂f(z0 + tθ0)dt

∣∣∣∣∣ ,
≤ C1|ϕ− ϕ0|ατ(z0, θ) + ‖∇f‖∞|τ(z0, θ)− τ(z0, θ0)|,

≤ C̃|ϕ− ϕ0|α + ‖∇f‖∞C2|ϕ− ϕ0|,

≤ C|ϕ− ϕ0|α.

Therefore, g ∈ Rf ∩ C1,α(Γ × S1).

One of our main results establishes necessary and sufficient conditions for a sufficiently smooth
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function on Γ × S1 to be the Radon data of some sufficiently smooth source as follows.

Theorem 4.1.3 (Range characterization for Radon transform). Let Ω ⊂ R2 be a domain with C2

boundary Γ of strictly positive curvature, and α > 1/2.

(i) Let f ∈ C1,α
0 (Ω) be real valued, and g ∈ Rf ∩ Cα(Γ ;C1,α(S1)). Then P−(g) as defined in

(4.15), solves

[I + iH0]P−(g) = 0, (4.33)

whereH0 is the Hilbert transform in (4.3).

(ii) Let g ∈ Cα (Γ ;C1,α(S1)) ∩ C0(Γ ;C2,α(S1)) be real valued and such that P−(g) satisfies

(4.33). Then there exists a real valued f ∈ Cα(Ω) ∩ L1(Ω), and such that g ∈ Rf .

Proof. (i) By Corollary 4.1.2, we note first that Rf ∩ Cα (Γ ;C1,α(S1)) ⊃ Rf ∩ C1,α(Γ × S1) 6=

∅. Since g ∈ Cα (Γ ;C1,α(S1)), by Proposition 4.1.2 part (i), we have that P−(g) ∈ l1,1∞ (Γ) ∩

Cα(Γ; l1). Now the necessity in Theorem 4.1.2, yields (I + iH0)P−(g) = 0.

Next we prove the sufficiency of (4.33) in part (ii).

Since g ∈ Cα (Γ ;C2,α(S1))∩C0 (Γ ;C2,α(S1)), it follows from the Proposition 4.1.2 part (ii), that

g := P−(g) ∈ Yε. For each z ∈ Ω, construct the vector valued function v = 〈v0, v−1, v−2, ...〉 by

vn(z) = (Bg)(z), n = 0,−1,−2...

whereB is the Bukhgeim-Cauchy operator as defined in (4.5). By Corollary 4.1.1, v ∈ C1,ε(Ω; l1)∩

Cε(Ω; l1) is A-analytic, in particular for each n = 0,−1,−2, ..., we have

∂vn + ∂vn−2 = 0.
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Using v−1 ∈ C1,α(Ω), we define the Hölder continuous function f ∈ Cα(Ω) by

f(z) := 2Re (∂v−1(z)) , z ∈ Ω, (4.34)

and show that f integrates along any line and that g ∈ Rf .

Since v ∈ C1,ε(Ω; l1) ∩ Cε(Ω; l1), it follows from the Proposition 4.1.2 part (iii), that

v(z, θ) := P∗(v(z)) ∈ C1,α(Ω× S1) ∩ Cα(Ω× S1).

Also from Corollary 4.1.1, v|Γ= g and lim
Ω3z→z0∈Γ

v(z, θ) = P∗g(z0). Now using the fact that g is

real valued yields

lim
Ω3z→z0∈Γ

v(z, θ) = g(z0, θ),

i.e. v|Γ×S1 = g.

Using θ · ∇v = e−iϕ∂v + eiϕ(∂v), we obtain

θ · ∇v(z, θ) = 2Re (∂v−1(z)) + 2Re

(
∞∑
n=0

(∂v−n(z) + ∂v−n−2(z))e−inϕ

)
,

= 2Re (∂v−1(z)) ,

= f(z).
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By integrating f(z) = θ · ∇v(z, θ), we obtain

∫ τ+(z,θ)

τ−(z,θ)

f(z + sθ)ds = lim
t1→−τ−(z,θ)
t2→τ+(z,θ)

∫ t2

t1

f(z + sθ)dsm

= lim
t1→−τ−(z,θ)
t2→τ+(z,θ)

[v(z + t2θ, θ)− v(z + t1θ, θ)] ,

= g (z + τ+(z, θ) θ , θ)− g (z − τ−(z, θ) θ , θ) .

This shows that f integrates along any arbitrary line, in particular f ∈ L1(Ω), and that g ∈ Rf .

4.2 Attenuated Case

In this section, we consider the attenuated case, where a 6≡ 0 is a real valued map. The method of

proof is based on the reduction to the non-attenuated case. Since e−Da where Da is as in (2.1), and

the equation (2.2) can be rewritten as

θ · ∇
(
e−Da(z,θ)u(z, θ)

)
= f(z)e−Da(z,θ).

However, the right hand side is now angularly dependent with nonzero positive and negative

modes, and one cannot use the A-analytic equations (3.1) directly.

The key idea in the reduction of the attenuated to the non-attenuated case is to choose a special

integrating factor in such a way that all the negative Fourier modes vanish.

Recall the special integrating factor e−h where h is as in (2.11), extends from S1 inside the disk as

an analytic map, see [44], [26], and [16]. Since e±h are also extension of analytic functions in the

disk they still have vanishing negative modes.
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Now the equation (2.2) can be rewritten as

θ · ∇
(
e−h(z,θ)u(z, θ)

)
= f(z)e−h(z,θ).

Proposition 4.2.1. Let a ∈ C1,α
0 (Ω), α > 1/2, and h be defined in (2.11). Then h ∈ C1,α(Ω×S1).

Proof. Since a ∈ C1,α
0 (Ω), we use the proof of Corollary 4.1.2 applied to a to conclude Da ∈

C1,α(Ω× S1) and also Ra ∈ C1,α(R× S1). The Hilbert Transform in the linear variable preserve

the smoothness class to yeild HRa ∈ C1,α(Ω× S1) and thus h ∈ C1,α(Ω× S1).

Consider the Fourier expansions of e−h(z,θ) and eh(z,θ)

e−h(z,θ) =
∞∑
k=0

αk(z)eikϕ, eh(z,θ) =
∞∑
k=0

βk(z)eikϕ, (z, θ) ∈ Ω× S1, (4.35)

where h ∈ C1,α(Γ × S1) is as defined in (2.11). Since e−heh = 1 the Fourier modes αk, βk, k ≥ 0

satisfy

α0β0 = 1,
k∑

m=0

αmβk−m = 0, k ≥ 1. (4.36)

The following mapping property is used in defining Hilbert Transform associated with attenuated

Radon Transform. Recall the operator P+ in (4.15), eh be as in (4.35), and Yα in (4.13) with ε = α.

Proposition 4.2.2. Let a ∈ C1,α
0 (Ω) with α > 1/2. Then P+(e±h) ∈ Cα(Ω; l1). Moreover

(i) P+(eh) ∗n (·) : Cα(Ω; l∞)→ Cα(Ω; l∞);

(ii) P+(eh) ∗n (·) : Cα(Ω; l1)→ Cα(Ω; l1);

(iii) P+(eh) ∗n (·) : Yα → Yα,
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where ∗n denotes the convolution operator on sequences.

Proof. Since a ∈ C1,α
0 (Ω), it follows from Proposition 4.2.1 that

e±h ∈ C1,α(Ω× S1) ⊂ Cα(Ω;Cα(S1)).

Then

sup
z∈Ω

‖eh(ξ,·)‖Cα(S1) + sup
ξ,µ∈Ω
ξ 6=µ

‖eh(ξ,·) − eh(µ,·)‖Cα(S1)

|ξ − µ|α
<∞. (4.37)

Let P+(eh) := 〈β0, β1, β2, · · · 〉. Then

sup
ξ∈Ω

∞∑
k=1

|βk(ξ)| ≤ sup
ξ∈Ω

‖eh(ξ,·)‖Cα(S1) <∞. (4.38)

Another application of Lemma 3.0.2 together with (4.37) imply

sup
ξ,µ∈Ω
ξ 6=µ

∞∑
k=1

|βk(ξ)− βk(µ)|
|ξ − µ|α

≤ sup
ξ,µ∈Ω
ξ 6=µ

‖eh(ξ,·) − eh(µ,·)‖Cα
|ξ − µ|α

<∞. (4.39)

By combining the estimates (4.38) and (4.39) we showed that P+(eh) ∈ Cα(Ω; l1). A similar

estimate shows P+(e−h) ∈ Cα(Ω; l1).

Next we prove part (i). Let g ∈ Cα(Ω; l∞), and v := P+(eh) ∗n g, given by

vn =
∞∑
k=0

βkgn−k, n ≤ 0,

where βk are the Fourier coefficients of eh, as in (4.35). Since g ∈ Cα(Ω; l∞) and P+(eh) ∈
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Cα(Ω; l1), we have

c1 := sup
n≤0

sup
ξ∈Ω

|gn(ξ)| <∞, κ1 := sup
n≤0

sup
ξ,η∈Ω
ξ 6=η

|gn(ξ)− gn(η)|
|ξ − η|α

<∞, (4.40)

and

c2 := sup
ξ∈Ω

∞∑
k=0

|βk(ξ)| <∞, κ2 := sup
ξ,η∈Ω
ξ 6=η

∞∑
k=0

|βk(ξ)− βk(η)|
|ξ − η|α

<∞. (4.41)

By taking the supremum in ξ ∈ Ω, for each n ≤ 0, in

|vn(ξ)| ≤
∞∑
k=0

|βk(ξ)gn−k(ξ)| ≤ c1

∞∑
k=0

|βk(ξ)| ≤ c1c2,

we obtain

sup
n≤0

sup
ξ∈Ω

|v−n(ξ)| <∞. (4.42)

From (4.42), and by taking the supremum in ξ, η ∈ Ω with ξ 6= η, for each n ≤ 0, in

|vn(ξ)− vn(η)|
|ξ − η|α

≤
∞∑
k=0

|βk(ξ)− βk(η)|
|ξ − η|α

|gn−k(ξ)|

+
∞∑
k=0

|βk(η)| |gn−k(ξ)− gn−k(η)|
|ξ − η|α

,

≤ c1

∞∑
k=0

|βk(ξ)− βk(η)|
|ξ − η|α

+ κ1 sup
η∈Ω

∞∑
k=0

|βk(η)|

≤ c1κ2 + c2κ1,

we obtain that v ∈ Cα(Ω; l∞).
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Next we prove part (ii). Let g ∈ Cα(Ω; l1), and let v = P+(eh) ∗n g be as before. Since

g,P+(eh) ∈ Cα(Ω; l1), we have

c3 := sup
ξ∈Ω

∞∑
n=0

|g−n(ξ)| <∞, κ3 := sup
ξ,η∈Ω
ξ 6=η

∞∑
n=0

|g−n(ξ)− g−n(η)|
|ξ − η|α

<∞. (4.43)

By taking the supremum in ξ ∈ Ω in

∞∑
n=0

|v−n(ξ)| ≤
∞∑
n=0

∞∑
k=0

|βk(ξ)||gn−k(ξ)| ≤
∞∑
k=0

|βk(ξ)|
∞∑
n=0

|g−n−k(ξ)|

≤ c3

∞∑
k=0

|βk(ξ)| ≤ c2c3,

we obtain

sup
ξ∈Ω

∞∑
n=0

|v−n(ξ)| <∞. (4.44)

From (4.44), and by taking the supremum in ξ, η ∈ Ω with ξ 6= η in

‖v(ξ)− v(η)‖l1
|ξ − η|α

≤
∞∑
k=0

|βk(ξ)− βk(η)|
|ξ − η|α

∞∑
n=0

|g−n−k(ξ)|

+
∞∑
k=0

|βk(η)|
∞∑
n=0

|g−n−k(ξ)− g−n−k(η)|
|ξ − η|α

≤ c3κ2 + c2κ3,

we obtain that v ∈ Cα(Ω; l1).

Last we prove part (iii).

Since a ∈ C1,α
0 (Ω), it follows from Proposition 4.2.1, that eh ∈ C1,α(Γ × S1) ⊂ Cα(Γ ;Cα(S1)),
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and from (4.38) and (4.39), we have

c4 := sup
ξ∈Γ

∞∑
k=0

|βk(ξ)| <∞, κ4 := sup
ξ,η∈Γ
ξ 6=η

∞∑
k=0

|βk(ξ)− βk(η)|
|ξ − η|α

<∞.

Let g ∈ Yα, and let v = P+(eh) ∗n g, be as before.

Since g ∈ Yα, we have

c5 := sup
ξ∈Γ

∞∑
j=1

j2|g−j(w)| <∞,

κ5 := sup
ξ,µ∈Γ
ξ 6=µ

∞∑
j=1

j
|g−j(ξ)− g−j(µ)|
|ξ − µ|α

<∞.

By taking the supremum in w ∈ Γ in

∞∑
j=1

j2|v−j(w)| ≤
∞∑
j=1

j2

∞∑
k=0

|βk(w)||g−j−k(w)|,

≤
∞∑
k=0

|βk(w)|
∞∑
j=1

j2|g−j−k(w)|,

≤
∞∑
k=0

|βk(w)|
∞∑
j=1

j2|g−j(w)|,

≤ c4c5,

we obtain that v ∈ l1,2∞ (Γ).

Finallym we show that v obeys the estimate in (4.13). By taking the supremum in ξ, µ ∈ Γ with
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ξ 6= µ in

∞∑
j=1

j|v−j(ξ)− v−j(µ)|
|ξ − µ|α

≤
∞∑
j=1

j

|ξ − µ|α
∞∑
k=0

|βk(ξ) g−j−k(ξ)− βk(µ) g−j−k(µ)|,

≤
∞∑
j=1

j

∞∑
k=0

|βk(ξ)− βk(µ)|
|ξ − µ|α

|g−j−k(ξ)|

+
∞∑
j=1

j
∞∑
k=0

|g−j−k(ξ)− g−j−k(µ)|
|ξ − µ|α

|βk(µ)|,

≤
∞∑
k=0

|βk(ξ)− βk(µ)|
|ξ − µ|α

∞∑
j=1

j|g−j(ξ)|

+
∞∑
k=0

|βk(µ)|
∞∑
j=1

j|g−j(ξ)− g−j(µ)|
|ξ − µ|α

,

≤ κ4c5 + c4 κ5,

we obtain that v ∈ Yα.

4.2.1 Range characterization of the attenuated Radon transform of zero tensor

Recall the Hilbert transformH0 in Definition 4.1.1, P± in (4.15), and e±h in (4.35).

Definition 4.2.1. The Hilbert transform associated with the attenuated Radon transform for g ∈

C1,α(Γ × S1) is given by

Ha(P−(g)) := P+(eh) ∗n H0

(
P+(e−h) ∗n P−(g)

)
, (4.45)

where ∗n is the convolution operator on sequences.
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Using the Fourier coefficients of e±h, we can also write for u := 〈u0, u−1, u−2, ...〉, the Hilbert

transform as

Hau :=
∞∑
m=0

βmLm
(
H0

(
∞∑
k=0

αkLk
))

u,

where L is the left translation operator and αk, βk are the Fourier coefficients of e−h(x,θ), respec-

tively, eh(x,θ) as in (4.35).

The following result describes the mapping properties of the Hilbert transformHa needed later.

Proposition 4.2.3. Let l1,1∞ (Γ ) and Cε(Γ; l1) be the spaces in (3.2) and (3.3) respectively. Assume

a ∈ C1,α
0 (Ω) with α > 1/2, and ε > 0 be arbitrarily small. Then

Ha : Cε(Γ ; l1) ∩ l1,1∞ (Γ ) −→ Cε (Γ; l∞) . (4.46)

Proof. Let g ∈ C1,α(Γ × S1) ⊂ Cε(Γ ;C1,α(S1)), then by Proposition 4.1.2 (i), P−g ∈ l1,1∞ (Γ ) ∩

Cε(Γ; l1). Since a ∈ C1,α
0 (Ω), it follows from Proposition 4.2.1, that e±h ∈ Cε(Γ ;C1,α(S1)).

Since e−hg ∈ Cε(Γ ;C1,α(S1)), it follows from Proposition 4.1.2 (i), that P−(e−hg) ∈ l1,1∞ (Γ ) ∩

Cε(Γ; l1). By (4.18), P−(e−hg) = (P+e−h) ∗n (P−(g)) and so by Proposition 4.1.1,

H0

(
P+(eh) ∗n P−(g)

)
∈ Cε(Γ ; l∞). Finally by Proposition 4.2.2 (ii),

P+(eh) ∗n H0

(
P+(eh) ∗n P−(g)

)
∈ Cε(Γ ; l∞).

Now we are able to state and prove our main result.

Theorem 4.2.1 (Range characterization for the attenuated Radon transform). Let Ω ⊂ R2 be a
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domain with C2 boundary Γ of strictly positive curvature, and a ∈ C1,α
0 (Ω), α > 1/2 be real

valued.

(i) Let f ∈ C1,α
0 (Ω) be real valued. Then Raf ∩ Cα(Γ ;C1,α(S1)) 6= ∅, and if g ∈ Raf ∩

Cα(Γ ;C1,α(S1)), its projection P−(g) must solve

[I + iHa]P−(g) = 0, (4.47)

with the Hilbert transformHa defined in (4.45).

(ii) Let g ∈ Cα (Γ ;C1,α(S1))∩C0(Γ ;C2,α(S1)) be real valued with the projection P−(g) satisfy-

ing (4.47). Then there exists a real valued f ∈ Cα(Ω) ∩ L1(Ω) for which g ∈ Raf .

Proof. (i) For z ∈ Ω and θ ∈ S1, let u(z, θ) be the solution of

θ · ∇u(z, θ) + a(z)u(z, θ) = f(z), (z, θ) ∈ Ω× S1, (4.48)

u(z, θ) = 0, (z, θ) ∈ Γ−,

namely u(z + tθ, θ) =

∫ t

0

f(z + sθ) e−Da(z+sθ,θ)ds, for (z, θ) ∈ Γ− and 0 ≤ t ≤ τ+(z, θ), where

Γ± = {(z, θ) ∈ Γ × S1 : ±n(z) · θ > 0} denote the incoming (−), respectively, outgoing (+)

boundary and n(z) denotes the outer normal at some boundary point z.

Let g(z, θ) := u(z, θ)|Γ×S1 . Note that Γ×S1 = Γ−∪Γ+∪Z, whereZ is the variety in (4.25). Since

g(z, θ) = 0 for (z, θ) ∈ Γ− ∪ Z and g(z, θ) =

∫ τ+(z,θ)

0

f(z + sθ) e−Da(z+sθ,θ)ds, for (z, θ) ∈ Γ+,

it follows that g satisfies (2.7) and thus g ∈ Raf .

Since a ∈ C1,α
0 (Ω), it follows from Proposition 4.2.1, that e−Da ∈ C1,α(Ω × S1) and so fe−Da ∈

C1,α
0 (Ω × S1) ⊂ Cα(Ω;C1,α(S1)). The proof of Corollary 4.1.2, applied to fe−Da shows that
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g ∈ C1,α(Γ × S1) and therefore g ∈ Raf ∩ Cα(Γ ;C1,α(S1)).

For z ∈ Ω and θ ∈ S1, if we let

v(z, θ) := e−h(z,θ)u(z, θ), (4.49)

where u(z, θ) solves (4.48) with u(z, θ)|Γ×S1= g(z, θ), and e−h(z,θ) as in (4.35) then v(z, θ) solves

θ · ∇v(z, θ) = f(z)e−h(z,θ), (z, θ) ∈ Ω× S1, (4.50)

v|Γ×S1 = g e−h|Γ×S1 ,

If v := 〈v0, v−1, v−2, ...〉 is the projection on the non-positive Fourier coeficients of
∞∑

n=−∞

vn(x)einϕ

then the equation (4.50) yields for each n = 0,−1,−2, ...

∂vn(z) + ∂vn−2(z) = 0, z ∈ Ω.

This makes v := 〈v0, v−1, v−2, ...〉 be A-analytic.

The convolution applied to (4.49) rewrites v as

v(z) = P+(e−h(z,θ)) ∗n P−(u(z, θ)), (z, θ) ∈ Ω× S1. (4.51)

Since a ∈ C1,α
0 (Ω) and g ∈ Cα(Γ ;C1,α(S1)), we have from Proposition 4.2.1,

e−hg ∈ Cα(Γ ;C1,α(S1)).

Hence, by Proposition 4.1.2 (i), P−(e−hg) ∈ l1,1∞ (Γ ) ∩ Cα(Γ, l1).
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Since P−(e−hg) is the boundary value of the A-analytic function v, we can apply necessity part in

Theorem 4.1.2, to conclude that

(I + iH0)P−(g e−h|Γ×S1) = 0. (4.52)

The convolution of (4.52) by P+(eh) yields

0 = P+(eh) ∗n (I + iH0)P−(e−hg),

= P+(eh) ∗n P−(e−hg) + iP+(eh) ∗n H0P−(e−hg),

= P−(g) + iHaP−(g),

= [I + iHa]P−(g).

In the third equality above we use (4.18) to simplify

P+(eh) ∗n P−(e−hg) = P−(ehe−hg) = P−(g),

and definition 4.2.1 ofHa to obtain

P+(eh) ∗n H0

(
P+(eh) ∗n P−(g)

)
= HaP−(g).

Conversely, let g ∈ Cα (Γ ;C1,α(S1)) ∩ C0(Γ ;C2,α(S1)) be real valued and such that P−(g) sat-

isfies (4.47). Then by Proposition 4.1.2 (ii), we have P−(g) ∈ Yα. Since a ∈ C1,α
0 (Ω), it follows

from Propositions 4.2.1, and 4.1.2(i), that P+(eh) ∈ l1,1∞ (Γ ) ∩ Cα(Γ; l1). Finally we apply Propo-

sition 4.2.2(iv), to yield P−(e−hg) ∈ Yα. From P−(g) satisfying (4.47), we have

0 = [I + iHa]P−(g) = P−(g) + iHaP−(g). (4.53)
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The convolution of (4.53) by P+(e−h) yields

0 = P+(e−h) ∗n
(
P−(g) + iHaP−(g)

)
,

= P+(e−h) ∗n P−(g) + iP+(e−h) ∗n HaP−(g),

= P−(e−hg) + iP+(e−h) ∗n P+(eh) ∗n H0P−(e−hg),

= P−(e−hg) + iP+(1) ∗n H0P−(e−hg),

= P−(e−hg) + iH0P−(e−hg),

= [I + iH0]P−(e−hg).

In the third equality above we use the Proposition 4.2.2 part(iii), to simplify P+(e−h) ∗n P−(g) =

P−(e−hg), and Definition 4.2.1 ofHa. In the fourth equality above, we use P+(e−h) ∗n P+(eh) =

P+(1) := 〈1, 0, 0, · · · 〉, and the fact thatP+(1) is the identity element for convolution in sequences

to conclude P+(1) ∗n H0P−(e−hg) = H0P−(e−hg).

For each z ∈ Ω, construct the vector valued function v = 〈v0, v−1, v−2, ...〉 by

vn(z) = (Bg)(z), n = 0,−1,−2...

where g := P−(e−hg) and B is the Bukhgeim-Cauchy operator as defined in (4.5). By the Corol-

lary 4.1.1, v ∈ C1,ε(Ω; l1) ∩ Cε(Ω; l1) is A-analytic and v|Γ = g.

Construct the vector valued function u := 〈u0, u−1, u−2, ...〉 from v by the convolution formula

u(z) = P+(eh(z,·))∗nv(z) for (z, ·) ∈ Ω×S1. By the Proposition 4.2.2(ii), we have u ∈ Cα(Ω; l1)

and by Proposition 4.1.2(iii), we have u(z, θ) := P∗(u(z)) ∈ C1,α(Ω × S1) ∩ Cα(Ω × S1). Note
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that

P−(u|Γ×S1) = P+(eh|Γ×S1) ∗n v|Γ ,

= P+(eh|Γ×S1) ∗n P−(e−h|Γ×S1 g),

= P−(g).

Taking P∗ on both sides of the above equation and using the fact that u and g are real valued yields

u|Γ×S1= g.

We define the Hölder continuous function f ∈ Cα(Ω) by

f(z) := θ · ∇u(z, θ) + a(z)u(z, θ), (z, θ) ∈ Ω× S1, (4.54)

and show that f integrates along any line and that g ∈ Raf .

Since e−Da in (2.1) is an integrating factor, the equation (4.54) can be rewritten in the advection

form as

f(z)e−Da(z,θ) = θ · ∇
(
e−Da(z,θ)u(z, θ)

)
.

and integrated along lines in direction θ to obtain

∫ τ+(x,θ)

τ−(x,θ)

f(x+ tθ)e−Da(x+tθ,θ)dt = e−Da(z+tθ,θ)u(z + tθ, θ)
∣∣τ+(z,θ)

τ−(z,θ)
,

= e−Da(z+θ ,θ)u(z+
θ , θ)− e

−Da(z−θ ,θ)u(z−θ , θ),

= g(x+
θ , θ)−

[
e−Dag

]
(x−θ , θ),

where the notation z±θ = z± τ±(z, θ)θ as in (2.5). This shows that f integrates along any arbitrary

48



line, in particular f ∈ L1(Ω), and that g ∈ Raf .
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CHAPTER 5: RANGE CHARACTERIZATION OF ONE TENSOR

We consider here the problem of the characterization of the attenuated Radon transform of vec-

tor fields in the Euclidean plane as they appear in the medical diagnostic technique of Doppler

tomography, e.g [17].

We consider both the case of attenuating and non-attenuating media. Formulas are derived on

data collected on a circular domain (as in practice), while the approach applies to strictly convex

domains. For the non-attenuated case our result can be understood as an intrinsic characterization

of the scattering relation in the Euclidean case.

To simplify the exhibition we represent the case in which Ω = D and this is infact what occurs in

practice where detectors moves on a circular path around the body. Let D ⊂ R2 denote the unit

disc in the plane and Γ = S1 be its boundary. We will consider two real functions f, a ∈ C2
0(D)

and a real vector field F = (F1, F2) ∈ C2
0(D;R2).

Definition 5.0.2. For each x ∈ D, and θ = (cosϕ, sinϕ) ∈ S1, the attenuated Doppler Transform

of F is defined as

∫ ∞
−∞

(θ · F)(x+ tθ)e−Da(x+tθ,θ)dt. (5.1)

Definition 5.0.3. For F ∈ L1(D;R2), we say that g on Γ × S1 is an attenuated Doppler transform

of F with attenuation a, if

g(x+
θ , θ)−

[
e−Dag

]
(x−θ , θ) =

∫ τ+(x,θ)

τ−(x,θ)

(θ · F)(x+ tθ)e−Da(x+tθ,θ)dt, (5.2)

for (x, θ) ∈ D× S1.
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For the Doppler case we have that g(a, 0,F) is the trace on Γ × S1 of solution to the transport

equation

θ · ∇u(x, θ) + a(x)u(x, θ) = θ · F(x), (x, θ) ∈ D× S1,

u|Γ = g(a, 0,F).

(5.3)

In the non-attenuated case (a ≡ 0), it is easy to see that superposition of the gradient of a compactly

supported function does not change the data. This non-uniqueness is made explicit in Theorem

5.1.1, where a class of vector fields of all which yield the same data is constructed. In contrast,

in the strictly attenuated case (a > 0) the attenuated Doppler transform is uniquely invertible as

observed first in [35].

Let u be solution of (5.3). Since it is real it suffices to work with non-positive Fourier modes of

the Fourier expansion

u(z, θ) =
∞∑
−∞

un(z)einϕ.

Provided appropriate convergence of the series we see that u solves (5.3) if and only if its Fourier

coefficients solve the system

∂u1(z) + ∂u−1(z) + a(z)u0(z) = 0, (5.4)

∂u0(z) + ∂u−2(z) + a(z)u−1(z) = f1(z), (5.5)

∂un(z) + ∂un−2(z) + a(z)un−1(z) = 0, n ≤ −1, (5.6)
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where f1 = (F1 + iF2) /2, and v solves (2.2) if and only if its Fourier coefficients solve the system

∂v1(z) + ∂v−1(z) + a(z)v0(z) = f(z), (5.7)

∂v0(z) + ∂v−2(z) + a(z)v−1(z) = 0, (5.8)

∂vn(z) + ∂vn−2(z) + a(z)vn−1(z) = 0, n ≤ −1. (5.9)

Note that u0 and f are real valued, while f1 is complex valued.

The operators ∂, ∂ can be rewritten in terms the angular derivative ∂η and radial derivative ∂r,

∂r = ∇ · θ = 〈∂x, ∂y〉 · 〈cos η, sin η〉 = cos η∂x + sin η∂y,

∂η = ∇ · θ⊥ = 〈∂x, ∂y〉 · 〈− sin η, cos η〉 = − sin η∂x + cos η∂y,

as

∂ =
∂x − i∂y

2
=
e−iη

2
(∂r − i∂η),

∂ =
∂x + i∂y

2
=
eiη

2
(∂r + i∂η).

When treating the attenuated case it is useful to introduce the following operator T as in the propo-

sition below

Proposition 5.0.4. Let α > 1/2, g ∈ Cα (Γ ;C1,α(S1)) ∩ C0(Γ ;C2,α(S1)), a ∈ C2
0(D) and h be

as in (2.11). Let us define

Tg := P+eh ∗n BP−(e−hg), (5.10)
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where ∗n is the convolution operator on sequences, P± as in (4.15) and B as in (4.5). Then

T : Cα
(
Γ ;C1,α(S1)

)
∩ C0(Γ ;C2,α(S1))→ C1,α(D; l1) ∩ Cα(D; l1).

Moreover, the components (Tg)n, for n ≤ −1, solve

∂(Tg)n + ∂(Tg)n−2 + a(Tg)n−1 = 0. (5.11)

Furthermore, for each n = 0,−1, ...,

(Bg)n ∈ C∞(Ω). (5.12)

Proof. Let g ∈ Cα (Γ ;C1,α(S1)) ∩ C0(Γ ;C2,α(S1)) with α > 1/2. By Proposition 4.2.2(iii), it

follows that P−(e−hg) ∈ Yα. By Corollary 4.1.1, we get LBP−(e−hg) ∈ C1,α(D; l1) ∩ Cα(D; l1)

is A-analytic. Finally, by Proposition 4.2.2(ii), Tg ∈ C1,α(D; l1) ∩ Cα(D; l1) and the components

(Tg)n, for n ≤ −1, solve (5.11). The regularity (Tg)n ∈ C∞(Ω) follows from (4.6), in Theorem

4.1.1.

5.1 Range Characterization of the non-attenuated Doppler Transform

In this section, we established necessary and sufficient conditions for a sufficiently smooth function

g on Γ × S1 to be the Doppler data of some sufficiently smooth vector field F. The first variable

describes the boundary of the domain and we refer to it as the spatial variable. The second variable

describes a direction and we refer to it as the angular variable.

To address the non-uniqueness (up to a gradient field ) in the characterization of the non-attenuated

Doppler transform we introduce the class of functions Πg with prescribed trace and gradient on the
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boundary Γ as

Πg :=
{
ψ ∈ C1(D;R) : ψ|Γ= g0, ∂rψ|Γ = −Re e−2iη(∂r − i∂η)(B P−g)−2

∣∣
Γ

}
,

where the operator B is defined in (4.5), and P− as defined in (4.15).

If a ≡ 0, then u solves (5.3) if and only if its Fourier coefficients solve the system

∂u1(z) + ∂u−1(z) = 0, (5.13)

∂u0(z) + ∂u−2(z) = f1(z), (5.14)

∂un(z) + ∂un−2(z) = 0, n ≤ −1, (5.15)

where f1 = (F1 + iF2) /2.

The basic idea in the characterization below is that the negative modes 〈g−1, g−2, · · · 〉 of the data

determines the negative modes of the solution to the transport equation (5.3) via the Hilbert trans-

form Ha, see (5.16). This accounts for all but one differential equation which is investigated

separately.

Theorem 5.1.1 (Range characterization of non-attenuated Doppler Transform). Let α > 1/2, and

a ≡ 0. (i) For F ∈ C1,α
0 (D;R2), let g = g(0, 0,F) be the Doppler data of F as in (5.3). Then

g ∈ Cα(Γ;C1,α(S1)), satisfies

[I + iH0]LP−g = 0, (5.16)

Re
{
∂
(
B P−g

)
−1

}
= 0, in D, (5.17)

∂η(P−g)0 = − Im
{
e−2iη(∂r − i∂η)(B P−g)−2|Γ

}
, (5.18)

where the operator B is defined in (4.5), andH0 is the Hilbert transform in (4.3).
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(ii) Let g ∈ Cα (Γ ;C1,α(S1)) ∩ C0(Γ ;C2,α(S1)), be real valued satisfying (5.16), (5.17), and

(5.18). Then, for each ψ ∈ Πg, there exist a unique real valued vector field Fψ ∈ C0(D;R2), such

that g = g(0, 0,F) is the Doppler data of Fψ.

Proof. (i) For simplicity we use the notation g = P−g := 〈g0, g−1, · · · 〉. Recall that g is the trace

of the solution u of (5.3) and by the equivalence with the system (5.13), (5.14), (5.15), its negative

Fourier modes un satisfy

un = (Bg)n, n ≤ −1,

where B as in (4.5).

The equation (5.15) implies that the sequence L(Bg)) = 〈u−1, u−2, · · · 〉 is A-analytic. By the

necessity part in Theorem 4.1.2, [I + iH0]Lg = 0.

The equation (5.13) implies the condition (5.17).

The restriction of (5.14) to the boundary yields

∂u0|Γ+∂u−2|Γ= f1|Γ ,

eiη

2
(∂r + i∂η)u0|Γ+

e−iη

2
(∂r − i∂η)u−2|Γ= 0, ∵ f1 ∈ C1

0(D),

(∂r + i∂η)u0|Γ= −e−2iη(∂r − i∂η)u−2|Γ ,

∂ru0|Γ+i∂ηg0 = −e−2iη(∂r − i∂η)(Bg)−2|Γ , (5.19)

From the above equation (5.19), we get condition (5.18),

∂ηg0 = − Im
{
e−2iη(∂r − i∂η)(Bg)−2|Γ

}
.
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This proves the necessity part of the theorem.

Conversely, assume that we have g ∈ Cα (Γ ;C1,α(S1)) ∩ C0(Γ ;C2,α(S1)), satisfying (5.16),

(5.17), and (5.18).

Let g = P−g := 〈g0, g−1, · · · 〉. and define un = (Bg)n for n ≤ −1, where B is as in (4.5). By

Theorem 4.1.2, (5.16) implies ∂un + ∂un−2 = 0 for n ≤ −1, and (5.17) implies ∂u1 + ∂u−1 = 0.

Let ψ ∈ Πg. Define f1 := ∂ψ + ∂ (Bg)−2 . By Theorem 4.1.1, f1 ∈ C(D), and its trace satisfies

f1|Γ = ∂ψ
∣∣
Γ

+ ∂ (Bg)−2

∣∣
Γ

f1|Γ =
eiη

2
(∂r + i∂η) ψ|Γ +

e−iη

2
(∂r − i∂η) (Bg)−2

∣∣∣∣
Γ

2e−iη f1|Γ = ∂rψ|Γ + i∂ηg0 + e−2iη(∂r − i∂η)(Bg)−2

∣∣
Γ

2e−iη f1|Γ = 0, from (5.18).

From the above equation f1|Γ= 0, implying f1 ∈ C0(D).

Define the real valued vector field Fψ = 〈2Re f1, 2 Im f1〉 and let

u(z, θ) := ψ(z) + 2Re

{
∞∑
n=1

u−n(z)e−inϕ

}
.

By the one to one correspondence between (5.13), (5.14), (5.15) and the boundary value problem

(5.3), we have that u solves

θ · ∇u = θ · Fψ,

u|Γ = g,

i.e., g is the Doppler data of Fψ.

56



5.2 Range Characterization of the attenuated Doppler Transform

We now consider the attenuated case.

Theorem 5.2.1 (Range characterization of attenuated Doppler Transform). Let a ∈ C2
0(D), α >

1/2, with a > 0 in D. (i) For F ∈ C1,α
0 (D;R2), let g = g(a, 0,F) be the Doppler data of F as in

(5.3). Then g ∈ Cα(Γ;C1,α(S1)) satisfies

[I + iHa]LP−(g) = 0, (5.20)

(P−g)0(z0) = lim
D3z→z0∈Γ

−2Re {∂(Tg)−1(z)}
a(z)

, (5.21)

∂η(P−g)0 = − Im
{
e−2iη(∂r − i∂η)(Tg)−2

}
, (5.22)

∂r

(
Re (∂(Tg)−1)

a

)∣∣∣∣
Γ

=
1

2
Re
{
e−2iη(∂r − i∂η)(Tg)−2

}
, (5.23)

where the operator T is defined in (5.10) and the Hilbert transformHa defined in (4.45).

(ii) Let g ∈ Cα (Γ ;C1,α(S1))∩C0(Γ ;C2,α(S1)), be real valued satisfying (5.20), (5.21), (5.22) and

(5.23). Then there exists a unique real valued vector field F ∈ C0(D;R2) such that g = g(a, 0,F)

is the Doppler data of F.

Proof. (i) Let g be the Doppler data of F ∈ C1,α
0 (D;R2). Recall that g is the trace of the solution

u of the Transport equation (5.3), and by the equivalence with the system (5.4), (5.5), (5.6), its

negative Fourier modes un satisfy

un = (Tg)n, n ≤ −1,
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where T as in (5.10). The Proposition 5.0.4, implies ∂un + ∂un−2 + aun−1 = 0, for n ≤ −1 and

the necessity part in Theorem 4.2.1, yields the condition (5.20).

From (5.4), for z ∈ D we have

u0(z) =
−2Re {∂(u−1)(z)}

a(z)
, (5.24)

and the restriction of (5.4) to the boundary yields

lim
z→z0∈Γ

u0(z) = lim
z→z0∈Γ

−2Re {∂u−1(z)}
a(z)

,

g0(z0) = lim
z→z0∈Γ

−2Re {∂u−1(z)}
a(z)

,

thus (5.21) holds.

The restriction of (5.5) to the boundary yields

∂u0|Γ+∂u−2|Γ+au−1|Γ= f1|Γ ,

∂u0|Γ+∂u−2|Γ= 0, ∵ a ∈ C2
0(D), f1 ∈ C1

0(D),

eiη

2
(∂r + i∂η)u0|Γ+

e−iη

2
(∂r − i∂η)u−2|Γ= 0,

(∂r + i∂η)u0|Γ= −e−2iη(∂r − i∂η)(Tg)−2|Γ ,

− 2 ∂r

(
Re(∂u−1)

a

)∣∣∣∣
Γ

+ i∂ηg0 = −e−2iη(∂r − i∂η)(Tg)−2|Γ , from (5.24) and u0|Γ= g0.

(5.25)
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From the equation (5.25) above, we get conditions (5.22), and (5.23),

∂ηg0 = − Im
{
e−2iη(∂r − i∂η)(Tg)−2|Γ

}
,

∂r

(
Re(∂u−1)

a

)∣∣∣∣
Γ

=
1

2
Re
{
e−2iη(∂r − i∂η)(Tg)−2|Γ

}
.

This proves the necessity part of the theorem.

Conversely, assume g ∈ Cα (Γ ;C1,α(S1))∩C0(Γ ;C2,α(S1)), satisfying (5.20), (5.21), (5.22) and

(5.23). Define un = (Tg)n for n ≤ −1, where T is as in (5.10). By Proposition 5.0.4, (5.20)

implies ∂un + ∂un−2 + aun−1 = 0 for n ≤ −1.

Now define u0 in D by

u0 := −2Re ∂u−1

a
, (5.26)

in particular ∂u1 + ∂u−1 + au0 = 0 holds. By Proposition 5.0.4, u0 ∈ C1(D), and (5.21) yields

u0|Γ= g0.

Next we define f1 := ∂u0 + ∂u−2 + au−1. By Proposition 5.0.4, f1 ∈ C(D) and the trace on the

boundary satisfies

f1|Γ = ∂u0|Γ+∂u−2|Γ+au−1|Γ ,

f1|Γ =
eiη

2
(∂r + i∂η)u0|Γ+

e−iη

2
(∂r − i∂η)u−2|Γ , ∵ a ∈ C2

0(D),

2e−iηf1|Γ = −2 ∂r

(
Re(∂u−1)

a

)∣∣∣∣
Γ

+ i∂ηg0 + e−2iη(∂r − i∂η)(Tg)−2|Γ , from (5.26), andu0|Γ= g0,

2e−iηf1|Γ = 0, from (5.22), and (5.23).

From the above equation f1|Γ= 0, implying f1 ∈ C0(D).
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Finally, we define the real valued vector field F = 〈2Re f1, 2 Im f1〉, and let

u(z, θ) := u0(z) + 2Re

{
∞∑
n=1

u−n(z)e−inϕ

}
.

By the one to one correspondence between (5.4), (5.5), (5.6) and the boundary value problem (5.3),

we have that

θ · ∇u+ au = θ · F,

u|Γ = g,

i.e., g is the Doppler data of F.

5.3 When can the X-ray and Doppler data be mistaken for each other ?

To distinguish between the Radon and Doppler cases we used the notation g(a, f,0) for the at-

tenuated Radon transform of f , respectively, g(a, 0,F) for the attenuated Doppler transform of F.

Recall that the function g(a, f,0) is precisely the trace on Γ × S1 of solutions v to the transport

equation

θ · ∇v(x, θ) + a(x)v(x, θ) = f(x), (x, θ) ∈ D× S1,

v|Γ = g(a, f,0),
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and g(a, 0,F) is the trace of an Γ × S1 of solutions u to the transport equation

θ · ∇u(x, θ) + a(x)u(x, θ) = θ · F(x), (x, θ) ∈ D× S1,

u|Γ = g(a, 0,F).

In the non-attenuated case (a ≡ 0), the Radon and the Doppler data cannot be mistaken for each

other unless they are both zero. This is due to the new constraints (5.17) and (5.18) in the Doppler

case. However, in the attenuated case the following can hold.

Theorem 5.3.1. Let a > 0 in D, with a ∈ C2(D) ∩ C1
0(D).

If f ∈ C2(D)∩C1
0(D) with f/a ∈ C1(D)∩C0(D), then−∇

(
f

a

)
is a vector field whose Doppler

data g
(
a, 0,−∇

(
f

a

))
is the same as the attenuated Radon data g(a, f,0) of f .

Conversely, if F ∈ C2(D)∩C1
0(D) has the attenuated Doppler data equal to the attenuated Radon

data of some f ∈ C2(D) ∩ C1
0(D) then F must be a gradient field and F = −∇

(
f

a

)
.

Proof. Assume g = g(a, f,0) is the Radon data of f . The function g(a, f,0) is the trace on Γ×S1

of solutions v to the transport equation

θ · ∇v + av = f,

v|Γ = g(a, f,0).

Let u = v − f

a
and F = −∇

(
f

a

)
. Then for the Doppler case the transport equation

θ · ∇u+ au = θ · F,
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becomes

θ · ∇
(
v − f

a

)
+ av − f = −θ · ∇

(
f

a

)
,

θ · ∇v + av = f,

and

v|Γ = u|Γ+
f

a

∣∣∣∣
Γ

,

v|Γ = u|Γ ∵ f/a ∈ C0(D),

g(a, f,0) = g(a, 0,F).

Next, we prove that this is the only case where the two measurements can be confounded. Let F

be a vector field as in the hypotheses for which the attenuated Doppler data g(a, 0,F) matches the

attenuated Radon data g(a, f,0) of some f .

Let v be the solution of the transport equation

θ · ∇v + av = f,

v|Γ = g(a, f,0),

with trace of the solution v be the Radon data g(a, f,0). The non-positive Fourier modes vn of v

solves the system (5.7), (5.8), (5.9).
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Let u be the solution of the transport equation

θ · ∇u+ au = θ · F,

u|Γ = g(a, 0,F),

with trace of the solution u be the Doppler data g(a, 0,F). The non-positive Fourier modes un of

u solves the system (5.4), (5.5), (5.6).

By Theorem 5.2.1 and Theorem 4.2.1, both Doppler data g(a, 0,F) and the Radon data g(a, f,0)

satisfy

[I + iHa]LP−(g) = 0,

where P− defined in (4.15) andHa defined in (4.45). It follows that vn = un, for all n ≤ −1. Now

(5.7) and (5.4) yield that f = a(v0 − u0).

By equation (5.5),

f1 = ∂u0 + ∂u−2 + au−1,

= ∂v0 − ∂
(
f

a

)
+ ∂v−2 + av−1, ∵ u−1 = v−1, u−2 = v−2,

= −∂
(
f

a

)
, from (5.8),

which implies F = −∇
(
f

a

)
∈ C0(D).
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CHAPTER 6: RANGE CHARACTERIZATION OF SYMMETRIC

SECOND ORDER TENSOR

Any sufficiently smooth symmetric m-tensor field f on a compact oriented two dimensional Rie-

mannian manifold M with smooth boundary can be decomposed in a potential and solenoidal part

[55]:

f = f s + dg, div(f s) = 0, g|∂M= 0,

where g is a smooth symmetric (m− 1)-tensor field on M .

The fundamental theorem of Calculus shows that the geodesic ray transform of the potential part

of the tensor is zero, which means that one can at most be able to recover the solenoidal part of the

tensor field from its ray transform.

In the case of 2-tensor, the geodesic ray transform arises in the linearization of the boundary rigidity

problem [55], which reads as can one recover the Riemannian metric of a compact manifold with

boundary from the distances function between boundary points. This problem arose in travel time

tomography in geophysics where one attempt to determine the inner structure of the Earth by

measuring the travel times of seismic waves.

Let D ⊂ R2 denote the unit disc in the plane and Γ = S1 be its boundary. We will consider real

function a ∈ C2
0(D) and a real valued symmetric second order tensor field

F(x) =

f11(x) f12(x)

f12(x) f22(x)

 .
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Definition 6.0.1. For each x ∈ D and θ = (cosϕ, sinϕ) ∈ S1, the attenuated Radon transform of

F (with attenuation a) is defined as

∫ ∞
−∞

θT F(x+ tθ) θ e−Da(x+tθ,θ)dt. (6.1)

Definition 6.0.2. For F ∈ L1(D;R2×2), we say that g on Γ ×S1 is an attenuated Radon transform

of F with attenuation a, if

g(x+
θ , θ)−

[
e−Dag

]
(x−θ , θ) =

∫ τ+(x,θ)

τ−(x,θ)

θT F(x+ tθ) θ e−Da(x+tθ,θ)dt. (6.2)

for (x, θ) ∈ D× S1.

One of the open problems in the field of tensor tomography discussed in [50] consists of finding

inversion formulas of the solenoidal part of 2-tensor in the Euclidean setting. The problem can be

cast as inverse source problem for the linear transport model

θ · ∇u(x, θ) + a(x)u(x, θ) = θTF(x)θ, (6.3)

where F is a symmetric second order 2D tensor field, u(x, θ) is the density of particles at x ∈

D ⊂ R2 moving in the direction θ = (cosϕ, sinϕ) ∈ S1, and a(x) is the medium capability of
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absorption per unit path-length at x. Calculation shows that

θTF(x)θ = (cosϕ, sinϕ)

f11(x) f12(x)

f12(x) f22(x)


cosϕ

sinϕ

 ,

= (cosϕ, sinϕ)

f11(x) cosϕ+ f12(x) sinϕ

f12(x) cosϕ+ f22(x) sinϕ

 ,

= f11(x) cos2 ϕ+ f12(x) sin 2ϕ+ f22(x) sin2 ϕ,

=
f11(x) + f22(x)

2
+
f11(x)− f22(x)

2
cos 2ϕ+ f12(x) sin 2ϕ,

=
f11(x) + f22(x)

2
+

(
f11(x)

4
− if12(x)

2

)
e2iϕ +

(
f11(x)

4
+ i

f12(x)

2

)
e−2iϕ,

= f0 + f̄2e
2iϕ + f2e

−2iϕ.

where

f0 =
f11(x) + f22(x)

2
, and (6.4)

f2 =

(
f11(x)

4
+ i

f12(x)

2

)
e−2iϕ. (6.5)

So (6.3), becomes

θ · ∇u(x, θ) + a(x)u(x, θ) = θTF(x)θ = f0 + f̄2e
2iϕ + f2e

−2iϕ, (6.6)

u|Γ = g(a, f0, f2). (6.7)

Let u(z, θ) =
∑∞
−∞ un(z)einϕ, be the (formal) Fourier expansions of u in the angular variable.

Provided appropriate convergence of the series as specified in the theorems, identifying the like
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Fourier modes we see that u solves (6.6) if and only if its Fourier coefficients solve the system

∂u1(z) + ∂u−1(z) + a(z)u0(z) = f0(z), (6.8)

∂u0(z) + ∂u−2(z) + a(z)u−1(z) = 0, (6.9)

∂u−1(z) + ∂u−3(z) + a(z)u−2(z) = f2(z), (6.10)

∂un(z) + ∂un−2(z) + a(z)un−1(z) = 0, n ≤ −2. (6.11)

Note that u0 and f0 are real valued, while f2 is complex valued.

Since u is real-valued, its Fourier coefficients appear in complex-conjugate pairs, un = u−n, so

that it suffices to work with the sequence of non-positive indexes.

Note that there are six unknown u0, f0, u−1, f2 and five equations yielding underdetermined sys-

tem. For 2-tensors there will be nonuniqueness even if a > 0.

6.1 Range Characterization of the non-attenuated Radon Transform

of real valued symmetric second order tensor

In this section, we established necessary and sufficient conditions for a sufficiently smooth function

g on Γ × S1 to be the Radon data of some sufficiently smooth real valued symmetric second order

tensor F.

To address the non-uniqueness in the characterization of the non-attenuated Radon transform of

real valued symmetric second order tensor we introduce the class of functions Ψg with prescribed
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trace and gradient on the boundary Γ as

Ψg :=

{
ψ ∈ C1(D;C) : ψ|Γ= (P−g)−1,

∂r (Reψ|Γ ) = −Re
(
e−2iη(∂r − i∂η)(BP−g)−3|Γ

)
+ ∂η Im(P−g)−1,

∂r (Imψ|Γ ) = − Im
(
e−2iη(∂r − i∂η)(BP−g)−3|Γ

)
− ∂η Re(P−g)−1

}
,

where the operator B is defined in (4.5), and P− as defined in (4.15).

If a ≡ 0, then u solves (6.6) if and only if its Fourier coefficients solve the system

∂u1(z) + ∂u−1(z) = f0(z), (6.12)

∂u0(z) + ∂u−2(z) = 0, (6.13)

∂u−1(z) + ∂u−3(z) = f2(z), (6.14)

∂un(z) + ∂un−2(z) = 0, n ≤ −2. (6.15)

Recall the Cauchy integral formula for antiholmorphic functions [62],

∂

− 1

π

∫∫
D

g(z)

z − ξ
dxdy

 = g(ξ), ξ ∈ D,

and we define one of the right inverse (∂)−1 (unique up to an analytic function), by

(∂)−1g(ξ) = − 1

π

∫∫
D

g(z)

z − ξ
dxdy, ξ ∈ D. (6.16)

Theorem 6.1.1 (Range characterization for the 2-tensor (Non-Attenuated)). Let α > 1/2, and

a ≡ 0. (i) For F ∈ C1,α
0 (D;R2×2), let g be the Radon data of F. Then g ∈ Cα(Γ ;C1,α(S1)),
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satisfies

[I + iH0]L2P−g = 0, (6.17)

(I + iHc)
[
(P−g)0 + (∂)−1∂

(
BP−g

)
−2
|Γ
]

= 0, (6.18)

Im
{
∂2 (Tg)−2

}
= 0, in D, (6.19)

cos η ∂η
{
Im(P−g)−1

}
− sin η ∂η

{
Re(P−g)−1

}
=

Re
{
e−2iη(∂r − i∂η)(BP−g)−3|Γ

} cos η

2
+ Im

{
e−2iη(∂r − i∂η)(BP−g)−3|Γ

} sin η

2
,

(6.20)

where the operator B is defined in (4.5), H0 is defined in (4.3), Hc is the Hilbert transform on the

circle, (∂)−1 is defined in (6.16) and P− as defined in (4.15).

(ii) Let g ∈ Cα (Γ ;C1,α(S1)) ∩ C0(Γ ;C2,α(S1)), be real valued satisfying (6.17), (6.18), (6.19)

and (6.20). Then, for each ψ ∈ Ψg, there exist a unique real valued symmetric second order tensor

field Fψ such that g is the Radon data of Fψ.

Proof. (i) For simplicity we use the notation g = P−g := 〈g0, g−1, · · · 〉. Recall that g is the trace

of the solution u of (6.6) and by the equivalence with the system (6.12), (6.13), (6.14), (6.15), its

negative Fourier modes un satisfy

un = (Bg)n, n ≤ −2,

where B as in (4.5).

The equation (6.15) implies that the sequence L2(Bg)) = 〈u−2, u−3, · · · 〉 is A-analytic. By the

necessity part in Theorem 4.1.2, [I + iH0]L2g = 0, satisfying (6.17).
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From (6.13), we get ∂u0(z) = −∂u−2(z), z ∈ D and using (∂)−1 as defined in (6.16), yields

u0(z) = −(∂)−1∂ (Bg)−2 (z) +A(z),

whereA(z) is an analytic function. The restriction to the boundary yields that g0+(∂)−1∂ (Bg)−2 |Γ

is the trace of an analytic function and thus lies in the kernel (I+ iHc)
[
g0 + (∂)−1∂ (Bg)−2 |Γ

]
=

0, satisfying (6.18).

Taking Laplacian of u0, and using4 ≡ 4∂∂, we get

4u0 = −4∂2u−2.

Since u0 is real valued, it follows that4u0 is also real valued, implying Im {∂2(Bg)−2} = 0 in D,

hence satisfying (6.19).

For simplicity we use the notations

α = Reu−1,

β = Imu−1,

(6.21)

U = −Re
{
e−2iη(∂r − i∂η)(Bg)−3|Γ

}
,

V = − Im
{
e−2iη(∂r − i∂η)(Bg)−3|Γ

}
,

(6.22)

along with u−1|Γ= g−1 to prove the condition (6.20).
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The restriction of (6.14) to the boundary yields

∂u−1|Γ+∂u−3|Γ= f2|Γ ,

eiη

2
(∂r + i∂η)(α + iβ)|Γ+

e−iη

2
(∂r − i∂η)u−3|Γ= 0, ∵ f2 ∈ C1

0(D),

(∂r + i∂η)(α + iβ)|Γ= −e−2iη(∂r − i∂η)(Bg)−3|Γ ,

(∂rα− ∂ηβ)|Γ+i(∂ηα + ∂rβ)|Γ= U + iV. (6.23)

From the above equation (6.23), we get

∂rα|Γ = U + ∂ηβ|Γ ,

∂rβ|Γ = V − ∂ηα|Γ ,
(6.24)

where α, β defined in (6.21) and U, V defined in (6.22).

The restriction of (6.12) to the boundary yields

2Re(∂u−1)|Γ= f0|Γ ,

2Re

{
e−iη

2
(∂r − i∂η)(α + iβ)|Γ

}
= 0, ∵ f0 ∈ C1

0(D),

Re {(cos η − i sin η)(∂r − i∂η)(α + iβ)|Γ} = 0,

Re {(cos η − i sin η) ((∂rα + ∂ηβ)|Γ+i(∂rβ − ∂ηα)) |Γ} = 0,

cos η(∂rα + ∂ηβ)|Γ+ sin η(∂rβ − ∂ηα)|Γ= 0. (6.25)

From the above equation (6.25), we get

cos η ∂rα|Γ+ sin η ∂rβ|Γ = sin η∂ηα|Γ− cos η∂ηβ|Γ . (6.26)
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Plugging ∂rα and ∂rβ from (6.24) into (6.26) yields

cos η(U + ∂ηβ|Γ ) + sin η(V − ∂ηα|Γ ) = sin η∂ηα|Γ− cos η∂ηβ|Γ ,

U cos η + cos η∂ηβ|Γ+V sin η − sin η∂ηα|Γ= sin η∂ηα|Γ− cos η∂ηβ|Γ ,

cos η∂ηβ|Γ− sin η∂ηα|Γ= −cos η

2
U − sin η

2
V,

cos η∂η Im(g−1)− sin η∂η Re(g−1) = −cos η

2
U − sin η

2
V.

Plugging the expressions (6.22) for U and V yields the condition (6.20)

cos η∂η Im(P−g)−1 − sin η∂η Re(P−g)−1 =

cos(η)

2
Re
{
e−2iη(∂r − i∂η)(Bg)−3|Γ

}
+

sin(η)

2
Im
{
e−2iη(∂r − i∂η)(Bg)−3|Γ

}
.

This proves the necessity part of the theorem.

Conversely, assume that we have g ∈ Cα (Γ ;C1,α(S1)) ∩ C0(Γ ;C2,α(S1)), satisfying (6.17),

(6.18), (6.19), and (6.20).

Let g = P−g := 〈g0, g−1, · · · 〉. and define un = (Bg)n, for n ≤ −2, where B is as in (4.5). By

Theorem 4.1.2, (6.17) implies ∂un + ∂un−2 = 0, for n ≤ −2.

The condition (6.18) implies that g0 + (∂)−1∂ (Bg)−2 |Γ is the trace of an analytic function, where

(∂)−1 is defined in (6.16).

For any analytic function A, define

u0 := −(∂)−1∂ (Bg)−2 +A,

which taking ∂ will satisfy ∂u0 + ∂u−2 = 0.
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Claim: Among these u0’s (indexed) by A there exits a unique u0 such that u0|Γ= g0.

Taking 4∂∂ ≡ 4 of u0, yields

4u0 = −4∂2(Bg)−2,

u0|Γ = g0.

This boundary value Poisson equation has a unique solution, see [27]. Furthermore the condition

(6.19), implies u0 is real valued.

Let ψ ∈ Ψg, then ψ|Γ= g−1 and

∂r (Reψ|Γ ) = −Re
(
e−2iη(∂r − i∂η)(Bg)−3|Γ

)
+ ∂η Im g−1, (6.27)

∂r (Imψ|Γ ) = − Im
(
e−2iη(∂r − i∂η)(Bg)−3|Γ

)
− ∂η Re g−1. (6.28)

For simplicity we use the notations

α = Reψ,

β = Imψ,

(6.29)

U = −Re
{
e−2iη(∂r − i∂η)(Bg)−3|Γ

}
,

V = − Im
{
e−2iη(∂r − i∂η)(Bg)−3|Γ

}
.

(6.30)

Using the above notations the equations (6.27) and (6.28) can be rewritten as

∂rα|Γ = U + ∂ηβ|Γ ,

∂rβ|Γ = V − ∂ηα|Γ ,
(6.31)
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and (6.19) as

2 cos η∂ηβ|Γ−2 sin η∂ηα|Γ+U cos η + V sin η = 0. (6.32)

where α, β defined in (6.29) and U, V defined in (6.30).

Define f0 = 2Re(∂ψ). As ψ ∈ Ψg, f0 ∈ C(D), and its trace satisfies

f0|Γ = 2Re(∂ψ)|Γ ,

= 2Re

{
e−iη

2
(∂r − i∂η)(Reψ + i Imψ)|Γ

}
,

= Re {(cos η − i sin η)(∂r − i∂η)(α + iβ)|Γ} ,

= Re {(cos η − i sin η) ((∂rα + ∂ηβ)|Γ+i(∂rβ − ∂ηα)) |Γ} ,

= cos η(∂rα + ∂ηβ)|Γ+ sin η(∂rβ − ∂ηα)|Γ ,

= cos η(U + 2∂ηβ|Γ ) + sin η(V − 2∂ηα|Γ ),

= 0, from (6.32).

From the above equation f0|Γ= 0, implying f0 ∈ C0(D).

Define f2 = ∂ψ+ ∂(Bg)−3. By the definition of the class Ψg, and the Theorem 4.1.1, f2 ∈ C(D),
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and its trace satisfies

f2|Γ = ∂ψ|Γ+∂(Bg)−3|Γ ,

f2|Γ =
eiη

2
(∂r + i∂η)(α + iβ)|Γ+

e−iη

2
(∂r − i∂η)(Bg)−3|Γ ,

2e−iηf2|Γ = (∂r + i∂η)(α + iβ)|Γ+e−2iη(∂r − i∂η)(Bg)−3|Γ ,

2e−iηf2|Γ = (∂r + i∂η)(α + iβ)|Γ−(U + iV ),

2e−iηf2|Γ = ((∂rα− ∂ηβ)|Γ+i(∂ηα + ∂rβ)|Γ )− (U + iV ),

2e−iηf2|Γ = (∂rα− ∂ηβ)|Γ−U + i((∂ηα + ∂rβ)|Γ−V ),

2e−iηf2|Γ = 0, from (6.31).

From the above equation f2|Γ= 0, implying f2 ∈ C0(D).

Define the real valued symmetric second order 2D tensor field

F =

4Re {f2} 2 Im {f2}

2 Im {f2} −4Re {f2}+ 2f0

 ,

or

F =

4Re
(
∂ψ + ∂(Bg)−3

)
2 Im

(
∂ψ + ∂(Bg)−3

)
2 Im

(
∂ψ + ∂(Bg)−3

)
4Re

(
∂ψ − ∂ψ − ∂(Bg)−3

)
 ,

and let

u(z, θ) := u0(z) + 2Re
{
ψ(z)e−iϕ

}
+ 2Re

{
∞∑
n=2

u−n(z)e−inϕ

}
.

By the one to one correspondence between (6.12), (6.13), (6.14), (6.15) and the boundary value
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problem (6.6), we have that u solves

θ · ∇u = θTFψθ,

u|Γ = g,

i.e., g is the Radon data of Fψ.

6.2 Range Characterization of the attenuated Radon Transform

of real valued symmetric second order tensor

We now consider the attenuated case.

Let a > 0, a ∈ C2
0(D) be real valued, α > 1/2.

To address the non-uniqueness in the characterization of the attenuated Radon transform of real

valued symmetric second order tensor we introduce the class of functions Ψa
g with prescribed trace

and gradient on the boundary Γ as

Ψa
g :=

{
ψ ∈ C1(D;C) : ψ|Γ= (P−g)−1, Im

(
∂(aψ) + ∂2(Tg)−2

)
= 0,

∂r (Reψ|Γ ) = −Re
(
e−2iη(∂r − i∂η)(Tg)−3|Γ

)
+ ∂η Im(P−g)−1,

∂r (Imψ|Γ ) = − Im
(
e−2iη(∂r − i∂η)(Tg)−3|Γ

)
− ∂η Re(P−g)−1

}
,

where the operator T is defined in (5.10) and P− as defined in (4.15).

Theorem 6.2.1 (Range characterization for the 2-tensor (Attenuated)). Let a > 0, a ∈ C2
0(D) be

real valued, α > 1/2. (i) For F ∈ C1,α
0 (D;R2×2), let g be the attenuated Radon data of F. Then

76



g ∈ Cα(Γ;C1,α(S1)) satisfies

[I + iHa]L2P−g = 0, (6.33)

(I + iHc)
[
(P−g)0 + (∂)−1∂ (Tg)−2 |Γ

]
= 0, (6.34)

cos η ∂η Im(P−g)−1 − sin η ∂η Re(P−g)−1 =

Re
{
e−2iη(∂r − i∂η)(Tg)−3|Γ

} cos η

2
+ Im

{
e−2iη(∂r − i∂η)(Tg)−3|Γ

} sin η

2
,

(6.35)

where the operator T is defined in (5.10), Ha is as defined in (4.2.1), Hc is the Hilbert transform

on the circle, (∂)−1 is defined in (6.16) and P− as defined in (4.15).

(ii) Let g ∈ Cα (Γ ;C1,α(S1)) ∩ C0(Γ ;C2,α(S1)), be real valued satisfying (6.33), (6.34), and

(6.35). Then, for each ψ ∈ Ψa
g , there exist a unique real valued symmetric second order tensor

field Fψ such that g is the attenuated Radon data of Fψ.

Proof. (i) Let g be the attenuated Radon data of F ∈ C1,α
0 (D;R2×2). Recall that g is the trace of

the solution u of the Transport equation (6.6) and by the equivalence with the system (6.8), (6.9),

(6.10), (6.11), its negative Fourier modes un satisfy

un = (Tg)n, n ≤ −2,

where T as in (5.10). The Proposition 5.0.4, implies ∂un + ∂un−2 + aun−1 = 0, for n ≤ −2 and

the necessity part in Theorem 4.2.1, yields the condition (6.33).

From (6.9), we get ∂u0(z) = −∂u−2(z) − au−1(z), z ∈ D and using (∂)−1 as defined in (6.16),

yields

u0(z) = −(∂)−1∂ (Tg)−2 (z)− (∂)−1 (a(z)u−1(z)) +A(z),
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whereA(z) is an analytic function. The restriction to the boundary yields that g0+(∂)−1∂ (Tg)−2 |Γ

is the trace of an analytic function and thus lies in the kernel (I + iHc)
[
g0 + (∂)−1∂ (Tg)−2 |Γ

]
=

0, satisfying (6.34).

For simplicity we use the notations

α = Reu−1,

β = Imu−1,

(6.36)

U = −Re
{
e−2iη(∂r − i∂η)(Tg)−3|Γ

}
,

V = − Im
{
e−2iη(∂r − i∂η)(Tg)−3|Γ

}
,

(6.37)

along with u−1|Γ= g−1 to prove the condition (6.35).

The restriction of (6.10) to the boundary yields

∂u−1|Γ+∂u−3|Γ+au−2|Γ= f2|Γ , ∵ a ∈ C2
0(D)

eiη

2
(∂r + i∂η)(α + iβ)|Γ+

e−iη

2
(∂r − i∂η)u−3|Γ= 0, ∵ f2 ∈ C1

0(D)

(∂r + i∂η)(α + iβ)|Γ= −e−2iη(∂r − i∂η)(Tg)−3|Γ ,

(∂rα− ∂ηβ)|Γ+i(∂ηα + ∂rβ)|Γ= U + iV. (6.38)

From the above equation (6.38), we get

∂rα|Γ = U + ∂ηβ|Γ ,

∂rβ|Γ = V − ∂ηα|Γ ,
(6.39)

where α, β defined in (6.36) and U, V defined in (6.37). The restriction of (6.8) to the boundary
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yields

2Re(∂u−1)|Γ+au0|Γ= f0|Γ , ∵ a ∈ C2
0(D),

Re(∂u−1)|Γ= 0, ∵ f0 ∈ C1
0(D),

Re

{
e−iη

2
(∂r − i∂η)(α + iβ)|Γ

}
= 0,

Re {(cos η − i sin η)(∂r − i∂η)(α + iβ)|Γ} = 0,

Re {(cos η − i sin η) ((∂rα + ∂ηβ)|Γ+i(∂rβ − ∂ηα)) |Γ} = 0,

cos η(∂rα + ∂ηβ)|Γ+ sin η(∂rβ − ∂ηα)|Γ= 0. (6.40)

From the above equation (6.40), we get

cos η ∂rα|Γ+ sin η ∂rβ|Γ = sin η∂ηα|Γ− cos η∂ηβ|Γ . (6.41)

Plugging ∂rα and ∂rβ from (6.39) into (6.41) yields

cos η(U + ∂ηβ|Γ ) + sin η(V − ∂ηα|Γ ) = sin η∂ηα|Γ− cos η∂ηβ|Γ ,

U cos η + cos η∂ηβ|Γ+V sin η − sin η∂ηα|Γ= sin η∂ηα|Γ− cos η∂ηβ|Γ ,

cos η∂ηβ|Γ− sin η∂ηα|Γ= −cos η

2
U − sin η

2
V,

cos η∂η Im(P−g)−1 − sin η∂η Re(P−g)−1 = −cos η

2
U − sin η

2
V.

Plugging the expressions (6.37) for U and V yields the condition (6.35)

cos η ∂η Im(P−g)−1 − sin η ∂η Re(P−g)−1 =

Re
{
e−2iη(∂r − i∂η)(Tg)−3|Γ

} cos η

2
+ Im

{
e−2iη(∂r − i∂η)(Tg)−3|Γ

} sin η

2
.
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This proves the necessity part of the theorem.

Conversely, assume g ∈ Cα (Γ ;C1,α(S1))∩C0(Γ ;C2,α(S1)), satisfying (6.33), (6.34), and (6.35).

Define un = (Tg)n for n ≤ −2, where T is as in (5.10). By Proposition 5.0.4, (6.33) implies

∂un + ∂un−2 + aun−1 = 0, for n ≤ −2.

Let ψ ∈ Ψa
g , then ψ|Γ= (P−g)−1, ∂(aψ) + ∂2(Tg)−2 is real valued, and

∂r (Reψ|Γ ) = −Re
(
e−2iη(∂r − i∂η)(Tg)−3|Γ

)
+ ∂η Im(P−g)−1, (6.42)

∂r (Imψ|Γ ) = − Im
(
e−2iη(∂r − i∂η)(Tg)−3|Γ

)
− ∂η Re(P−g)−1. (6.43)

The condition (6.34) implies that g0 + (∂)−1∂ (Tg)−2 |Γ is the trace of an analytic function, where

(∂)−1 is defined in (6.16).

For any analytic function A, define

u0 := −(∂)−1∂(Tg)−2 − (∂)−1(aψ) +A,

which taking ∂ will satisfy (6.9).

Claim: Among these u0’s (indexed) by A there exits a unique u0 such that u0|Γ= g0.

Taking4 ≡ 4∂∂ of u0, yields

4u0 = −4∂(aψ)− 4∂2(Tg)−2,

u0|Γ = g0.

This boundary value Poisson equation has a unique solution, see [27]. Furthermore the condition

Im (∂(aψ) + ∂2(Tg)−2) = 0, implies u0 is real valued.
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For simplicity we use the notations

α = Reψ,

β = Imψ,

(6.44)

U = −Re
{
e−2iη(∂r − i∂η)(Tg)−3|Γ

}
,

V = − Im
{
e−2iη(∂r − i∂η)(Tg)−3|Γ

}
.

(6.45)

Using the above notations the equations (6.42) and (6.43) can be rewritten as

∂rα|Γ = U + ∂ηβ|Γ ,

∂rβ|Γ = V − ∂ηα|Γ ,
(6.46)

and (6.35) as

2 cos η∂ηβ|Γ−2 sin η∂ηα|Γ+U cos η + V sin η = 0, (6.47)

where α, β defined in (6.44) and U, V defined in (6.45).

Define f0 = 2Re(∂ψ) + au0.
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By Proposition 5.0.4, and ψ ∈ C1(D;C), it follows that f0 ∈ C(D), and its trace satisfies

f0|Γ = 2Re(∂ψ)|Γ , ∵ a ∈ C2
0(D),

= 2Re

{
e−iη

2
(∂r − i∂η)(α + iβ)|Γ

}
,

= Re {(cos η − i sin η)(∂r − i∂η)(α + iβ)|Γ} ,

= Re {(cos η − i sin η) ((αr + βη)|Γ+i(βr − αη)) |Γ} ,

= cos η(∂rα + ∂ηβ)|Γ+ sin η(∂rβ − ∂ηα)|Γ , from (6.46),

= cos η(U + 2∂ηβ|Γ ) + sin η(V − 2∂ηα|Γ ),

= 0, from (6.47).

From the above equation f0|Γ= 0, implying f0 ∈ C0(D).

Define f2 = ∂ψ+a(Tg)−2 +∂(Tg)−3. By the Proposition 5.0.4, f2 ∈ C(D), and its trace satisfies

f2|Γ = ∂ψ|Γ+∂(Tg)−3|Γ , ∵ a ∈ C2
0(D),

f2|Γ =
eiη

2
(∂r + i∂η)(α + iβ)|Γ+

e−iη

2
(∂r − i∂η)(Tg)−3|Γ ,

2e−iηf2|Γ = (∂r + i∂η)(α + iβ)|Γ+e−2iη(∂r − i∂η)(Tg)−3|Γ ,

2e−iηf2|Γ = (∂r + i∂η)(α + iβ)|Γ−(U + iV ),

2e−iηf2|Γ = ((∂rα− ∂ηβ)|Γ+i(∂ηα + ∂rβ)|Γ )− (U + iV ),

2e−iηf2|Γ = (∂rα− ∂ηβ)|Γ−U + i((∂ηα + ∂rβ)|Γ−V ),

2e−iηf2|Γ = 0, from (6.46).

From the above equation f2|Γ= 0, implying f2 ∈ C0(D).
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Define the real valued symmetric second order 2D tensor field

F =

4Re {f2} 2 Im {f2}

2 Im {f2} −4Re {f2}+ 2f0

 ,

and let

u(z, θ) := u0(z) + 2Re
{
ψ(z)e−iϕ

}
+ 2Re

{
∞∑
n=2

u−n(z)e−inϕ

}
.

By the one to one correspondence between (6.8), (6.9), (6.10) and (6.11) and the boundary value

problem (6.6), we have that u solves

θ · ∇u+ au = θTFψθ,

u|Γ = g,

i.e., g is the attenuated Radon data of Fψ.
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