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ABSTRACT 

It has been observed that real-world random networks like the WWW, Internet, social 

networks, citation networks, etc., organize themselves into closely-knit groups that are locally 

dense and globally sparse. These closely-knit groups are termed communities. Nodes within a 

community are similar in some aspect. For example in a WWW network, communities might 

consist of web pages that share similar contents. Mining these communities facilitates better 

understanding of their evolution and topology, and is of great theoretical and commercial 

significance. Community related research has focused on two main problems: community 

discovery and community identification. Community discovery is the problem of extracting all 

the communities in a given network, whereas community identification is the problem of 

identifying the community, to which, a given set of nodes belong.  

We make a comparative study of various existing community-discovery algorithms. We 

then propose a new algorithm based on bibliographic metrics, which addresses the drawbacks in 

existing approaches. Bibliographic metrics are used to study similarities between publications in 

a citation network. Our algorithm classifies nodes in the network based on the similarity of their 

neighborhoods. One of the drawbacks of the current community-discovery algorithms is their 

computational complexity. These algorithms do not scale up to the enormous size of the real-

world networks. We propose a hash-table-based technique that helps us compute the bibliometric 

similarity between nodes in O(m Δ) time. Here m is the number of edges in the graph and Δ, the 

largest degree.  

Next, we investigate different centrality metrics. Centrality metrics are used to portray 
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the importance of a node in the network. We propose an algorithm that utilizes centrality metrics 

of the nodes to compute the importance of the edges in the network. Removal of the edges in 

ascending order of their importance breaks the network into components, each of which 

represent a community. We compare the performance of the algorithm on synthetic networks 

with a known community structure using several centrality metrics. Performance was measured 

as the percentage of nodes that were correctly classified.  

As an illustration, we model the ucf.edu domain as a web graph and analyze the changes 

in its properties like densification power law, edge density, degree distribution, diameter, etc., 

over a five-year period. Our results show super-linear growth in the number of edges with time. 

We observe (and explain) that despite the increase in average degree of the nodes, the edge 

density decreases with time. 
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1. INTRODUCTION 

Ever since Euler’s paper on the Bridges of Königsberg [5], published in 1736, graph 

theory has been used to solve a wide range of problems in computer science, math, physics and 

chemistry. The four-color problem posed in 1852 by Francis Guthrie is considered as the birth of 

graph theory. This problem asks if it is possible to color, using only four colors, any map of 

countries such that no two neighboring countries have the same color. Appel and Haken [6] 

provided a solution to this problem in 1976.  

Graph theory has proven itself to be a very powerful tool in solving a number of real-

world problems. This is accomplished by first, modeling it as a graph and then, applying graph 

theoretic techniques to solve the problem. One of its first applications was on electric circuit 

analysis, where Gustav Kirchhoff used it to compute voltage and current in electric circuits. 

Many problems of practical interest can be described as graphs. Transforming a real-world 

problem into a graph is by itself a challenging task. For example, consider testing printed circuit 

boards (PCB) for short circuits. This can be accomplished by modeling the PCB into a graph 

such that each component on the PCB represents a vertex and an edge is drawn between two 

components if there is a potential for a short. Now one could perform graph coloring on this 

model to partition it into groups, consisting of vertices of the same color. Components 

represented by one group, could be simultaneously tested for shorts against all other components, 

thereby reducing the time required for testing. Over the past decade researchers have shown a lot 

of interest in graph modeling and study of properties of the graphs thus obtained. 
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Before proceeding further I will go over certain basic definitions, that might help the 

reader better understand the content of this thesis. Other definitions will be provided as and when 

required. For more advanced concepts and definitions in graph theory refer to [31].  

A graph, G, is an ordered pair consisting of two sets (V, E), where V is a set of vertices, 

and E is a set of edges. The number of vertices, |V|, is termed the order of the graph and the 

number of edges, |E|, is termed its size. Every edge connects a pair of vertices in V, and is 

represented as (u, v) or eu,v. Here u, v ∈ V and are called the endpoints of the edge. The graph is 

termed directed if the edge (u, v) represents an ordered pair. In this case the vertex u is called the 

tail and vertex v is called the head of the directed edge.  Most of the graphs mentioned in this 

thesis are undirected unless specified otherwise. Physicists often refer to the graph as a network, 

vertices as nodes and edges as links. Two vertices u and v are said to be adjacent or neighbors if 

they are the endpoints of the same edge. The neighborhood of a vertex u, denoted Nu, is a set 

consisting of all the vertices that are adjacent to u. Two edges are incident with each other if they 

have a common endpoint. A loop is an edge whose endpoints are equal. Two edges are said to be 

parallel if they have the same set of endpoints. A vertex u is called isolated if it is not an 

endpoint of any edge. The degree of a vertex u, denoted du, is the number of edges that have u as 

its endpoint. In a directed graph one can talk about in-degree and out-degree of a vertex. The in–

degree of a vertex u refers to the number of edges that have u as its head and out-degree of a 

vertex u refers to the number of edges that have u as its tail. A complete graph on n vertices Kn = 

(V, E), is such that V = {u1, u2,…, un} and every pair of vertices are connected by an edge i.e. E = 

{{ ui, uj}: i, j ∈{1, 2,…, n}, i < j}. 
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Graphs are being widely used to describe complex real-world systems such as the World 

Wide Web, Internet, energy power grids, social friendships, neural networks, etc. Despite their 

diversity, most of these real-world graphs share a lot of their organizational structure. Research 

in this area has concentrated on local (or microscopic) properties involving individual vertices or 

vertex pairs (e.g., shortest path between vertices, transitivity, degree distribution, robustness, 

etc.). Though these properties are important, it is equally important to understand their global (or 

macroscopic) properties. The microscopic and macroscopic properties together, aid in better 

understanding these systems. 

1.1 Real-world networks 

Real-world networks are used to model complex systems, which consist of components 

that interact. These systems have most of the following features: agent based - the basic building 

blocks are characteristics and activities of individual agents in the environment under study; 

dynamic – the characteristics of each of these agents vary over time, the system rarely achieves 

an equilibrium and the changes it undergoes are non-linear and often chaotic; organization – the 

agents organize themselves into groups that are well structured and these structures influence 

their evolution.  

Network models are built to study the system and conduct scientific experiments. This 

involves identifying the mechanisms that characterize the dynamics of the system and translating 

them into sets of rules that can be implemented and investigated computationally. Care has to be 

taken to build simple models that provide coarse-grained description of the system. Once a 
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model is built researchers analytically identify new properties of the system and then validate the 

new properties against real-world data. Examples of complex systems and their models: 

World Wide Web - The Web is an actively evolving network, composed of html pages that point 

to one another by means of a hyperlink. Superficially, it looks like a giant directed graph (web 

graph) where vertices are html pages and edges are the hyperlinks [55]. 

Internet – The Internet refers to the interconnected system of networks that connect computers 

and routers around the world. Its model consists of vertices representing computers or routers 

and edges representing physical connections between them [3]. 

Neural network – A neural network is collection of brain cells (neurons) transferring impulses to 

each other across via synaptic connections (axons). In this network model each vertex represents 

a neuron, and edges, the synaptic connections [93].  

Citation network – A citation network consists of publications and their references. Vertices in 

this model represent publications and there exists an edge from one vertex to the other if the 

document being represented by the former vertex refers to the one being represented by the later 

[41]. 

Airline network – An airline network is a transportation network with vertices representing the 

various cities that have an airport and an edge is drawn between two vertices if there is an airline 

connecting the cities being represented by the vertices [48]. 
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Semantic network – A semantic network consists of words represented by vertices and an edge 

between two vertices indicates that the corresponding words are either synonyms or antonyms 

[78].  

Movie actors’ network – Nodes in this network represent actors and an edge is introduced 

between two vertices, if the corresponding actor’s appear in a movie together [92].  

 For additional examples see [3, 32, 67]. 

1.2 Properties 

Due to the randomness involved in their evolution, classical random graphs were initially 

used to represent real-world networks. Classical random graphs also known as Erdos and Renyi 

random graphs were first defined by Erdos and Renyi in the year 1959 [34]. Section 1.4.1 

provides more information on these graphs. Recent studies on real-world networks have revealed 

some interesting structural and topological properties, which suggest that these networks are 

significantly different from classical random graphs. The next few sections describe a few of 

these properties. 

1.2.1 Small world network 

A small world network is a network in which every vertex can reach every other vertex 

within a small number of hops. The idea is an extension of the small world phenomenon (small 

world effect) in social networks that hypothesizes that everyone in the world can be reached 

through a short chain of social acquaintances. Psychologist Stanley Milgram conducted an 

experiment and found that any two random US citizens were connected by an average of six 
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acquaintances [63]. Milgram sent 60 letters to various people in Omaha, Nebraska and asked 

them to forward them to a stockbroker in Sharon, Massachusetts. The participants were required 

to forward the letters to their acquaintances, whom they thought might be able to reach the 

stockbroker. Though Milgram’s initial experiment had a very poor completion rate, subsequent 

experiments by Milgram and other researchers had good completion rates. Watts and Strogatz 

showed the small-world phenomenon is common in a variety of realms ranging from C. elegans 

neurons to power grids [92]. They showed that by adding a handful of random links they could 

turn a disconnected network into a highly connected one. This has both positive and negative 

implications: a vast communication network like the internet could be made a few hops wide by 

addition of a few judicious routers; in contrast, in a social network, it places an individual a mere 

six people away from a deadly disease such as SARS. The average distance between vertices in 

such small world networks is of the order of log log n [27]. 

1.2.2 Scale-free property 

Barabàsi, Albert and Jeong working to study the topology of the World Wide Web [7] 

modeled the web as a directed graph with vertices representing HTML documents and edges 

representing hyperlinks or URLs that point from one document to another. They discovered that 

the graph thus formed had a small number of vertices with a high in/out-degree and a large 

number of vertices with small in /out-degree. This property was independent of the size of the 

graph and hence termed scale-free. This distribution of degrees was remarkably different from 

the Poisson distribution usually found in classical random graphs. Such a heavy tailed 

distribution is known as power-law and is explained further in the following section. The high 



 

degree vertices act as hubs and increase the overall connectivity of the graph thus reducing the 

average distance between vertex pairs. Scale-free networks are very resistant to random failure of 

vertices and show no sign of degradation. Due to high connectivity of hub vertices and the low 

probability of failure under random conditions make these networks robust. However a planned 

attack on the hub vertices could bring down a scale-free network in very little time. When a 

graph is said to exhibit the scale-free property it is also a small world [7]. 

1.2.3 Power-law degree distribution 

 

Figure 1: Out degree distribution of WWW. 

A power-law relationship between two scalar quantities x and y can be expressed as 

shown below 

ky ax= . 
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Here a is some proportionality constant and k is the exponent of the power-law. Degree 

distribution of a graph is a function that describes the total number of vertices in the graph with a 

given degree. Statistically it has been determined that for most of the real-world networks the 

degree distribution follows a power-law and is given by 

P{du = d} =
1
dγ , 

Here P(du = d), is the probability that a vertex u has the degree d and γ is the exponent of the 

power-law.  Chung and Lu claim that the real-world networks have a γ value between 2 and 3 

[27]. Figure 1 shows the out degree distribution of nodes in the World Wide Web, the data used 

was obtained from a crawl of the nd.edu domain [4]. 

1.2.4 Network transitivity 

Watts and Strogatz [92] first introduced the concept of clustering co-efficient in real 

world networks. It refers to the property that, two vertices, which are both neighbors of a third 

vertex, have a very high probability of being neighbors of one another. Section 4.1.6 provides 

more insight into this property. Network transitivity was introduced as an alternative to 

clustering co-efficient by Newman, Watts, and Strogatz [72]. The transitivity of a graph is 

defined as:  

3
G

NT
N

Δ

Λ

×
= , 

where NΔ is the number of triples of vertices (v1, v2, v3) in the graph (triangles), where each 

member of the triple is connected to the remaining two (subgraph K3). NΛ is the number of triples 

   8



 

   9

of vertices (v1, v2, v3) such that, at least one member of the triple is connected to the remaining 

two. The 3 in the numerator signifies the fact that every triangle contains has three sets of triples 

such that, one vertex is connected to the remaining two. The resulting value of TG lies between 

zero and one. The null graph has a transitivity of zero and a complete graph has the transitivity of 

one. Real-world networks have a transitivity value that is typically between 0.1 and 0.5 [44]. 

Comparatively classical random graphs have very low transitivity.  

1.2.5 Community structure 

One property of recent interest is the community structure, it turns out the real-world networks 

organize themselves such that they are locally dense and globally sparse [70]. Each of these 

locally dense regions constitutes a community. The nodes of a community are similar in some 

aspect. Identifying these communities is the primary goal of my research. The community 

structure of a network would reflect the natural divisions of the network into densely connected 

subgraphs. Figure 2 shows the dominant communities present in the high school friendships 

network, color-coded to represent students from different races [69]. We will investigate the 

community structure property in detail in the following section. 

1.3 Community 

The term community has several definitions.  Initially people thought of using cliques and 

near-cliques to define communities in graphs with the idea that high connectivity corresponds to 

similarity between vertices [9].  

 



 

  

Figure 2: Communities in a high school friendships network. 

 

Kleinberg while studying web graphs introduced the concept of “authorities” and “hubs”.  

Authorities are web pages, which are highly referenced (vertices with high in-degree), and hubs 

are web pages that reference many (high out-degree) authority pages. Later Gibson, Kleinberg 

and Raghavan define communities in web graph as a core of central, authoritative pages 

connected together by hub pages [42].  

Kumar et al. define communities as bipartite cores: a bipartite core in a graph G consists 

of two (not necessarily disjoint) sets of vertices L and R, such that every vertex in L links to 

every vertex in R [57]. Vertices within L or R could be adjacent to one another. 
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Authority Hub 

 

Figure 3: Hubs and authorities. 

Sony
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Apple 

Intel 

ATI 

Hitachi 

Samsung 

Microsoft 
 

Figure 4: A bipartite core. 
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Flake, Lawrence and Giles define them as a set of vertices C in a graph G that have more 

edges to members of the community than to non-members [36]. This definition of community is 

similar to the concept of defensive alliances introduced by Hedetniemi et al. [49]. A defensive 

alliance in a graph G = (V, E) is defined as a non-empty set of vertices S ⊆ V such that for every 

vertex v ∈ S, |N[v] ∩ S| ≥ |N[v] - S| where N[v] represents the closed neighborhood of vertex v.  

v

Figure 5: Communities based on graph alliances. 

 

Girvan and Newman define communities based on edge density: subsets of vertices 

   12Figure 6: Communities based on edge density. 
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within which edges are dense, but between which edges are sparse [44].   

The existence of no one clear definition for community makes the task of extracting them 

from the graph more difficult. The general approach up until now has been to come up with a 

definition for the term community and then devise algorithms that would extract such structures 

from the input graph.  

1.4 Random graph models 

Though the first random graph model [34] was developed in 1959, no significant 

developments were made till the late 90’s. Recent years have seen a high level of interest in the 

topology of complex networks. This has resulted in development of a number of random graph 

models. Most of the current work concentrates on real-world random graphs. Unlike the classical 

random graphs, real-world graphs are not uniformly random. They posses certain organizational-

traits which are predictable. The general approach in designing these models has been as follows: 

a few experimentally deduced properties of real-world networks are used to design a 

mathematical model that exhibits these properties. The Model is then analyzed to deduce 

additional properties and finally the newly derived properties are validated against real-world 

data. This process is repeated several times to obtain models that are as accurate as possible. 

Having an accurate model serves several purposes: (i) it would help us understand the evolution 

of such networks; (ii) it would provide us with a synthetic graph to test the algorithms, developed 

for the real-world networks; (iii) understanding the topology of these networks would aid us in 

designing efficient algorithms for such networks. Despite the dynamic nature and enormous size, 

one of the main hurdles in working with random graphs is their non-deterministic nature. 



 

Random graph models can be classified into two (i) static and (ii) dynamic. In a static model the 

vertices are added first and then edges are introduced one by one between pairs of vertices 

selected at random with a biased or uniform probability. In a dynamic model, at every iteration, 

one new vertex and a few edges are introduced that connect the new vertex to the exiting vertices 

(selected using a biased or uniform probability). The following sections provide some insight 

into the evolution of different network models and their characteristics. 
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1.4.1 Classical random graph model 

The theory of random graphs lies in the intersection between probability theory and graph 

theory. The Gn,m model introduced by Erdos and Renyi [34] and the Gn,p model introduced by 

Gilbert [43] are known as classic random graphs. Both these models are static models. The Gn,m 

model is defined as follows: Gn,m represents a set of all undirected, simple and labeled random 

graphs of order n and size m. The set consists of  elements, where M = 
M
n

⎛ ⎞
⎜
⎝ ⎠

( 1)n n× − 2 . Each 

member is a classical random graph and has a .1 | |n mG  chance of occurring. The Gn,p model 

represents a set of all undirected, simple and labeled random graphs of order n in which every 

potential edge of the graph occurs with a probability of p. Bollobas shows that both Gn,m and Gn,p 

refer to the same graph when m p M= ×  [11].  

Algorithm 1 can be used to generate a classical random graph. The algorithm is very 

straightforward. It starts with a graph with n isolated nodes. Every edge in the graph is 
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n k

introduced with a probability of p. The function Rand() generates a uniform random number 

between 0 and 1.  

Let us now, look into some of the properties of these graphs. The degree distribution of 

these networks follows a binomial distribution. This can be explained as follows: Let v be a 

vertex picked uniformly at random from Gn,p and let P(v) denote the probability distribution 

function of the random variable dv. There are (n – 1) vertices that could be adjacent to v with a 

probability of p, it follows that dv would follow a binomial distribution with the parameters (n – 

1) and p, i.e., . This is in contrast to the power-law degree distributions 

observed in the real-world networks. The independence of the edges from one another, affects 

the overall transitivity of these graphs. This accounts for the low transitivity values in 

comparison to the real-world networks. One property that is in agreement with the real-world 

networks is the small-world property. It has been observed that for several values of p, G

P( ) (1 )kn
k p p

k
−⎛ ⎞

= −⎜ ⎟
⎝ ⎠

n,p 

satisfies the small-world property [12, 18, 25]. 
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ClassicalRandomGraph(n, p) 

V = {v1, v2, …, vn} 

E’ = {e1, e2, …, enx(n-1)/2} 

E = φ 

for every edge ei ∈E’ do 

 r = Rand() 

if r ≤ p then  

  E = E + {er}  

 endif 

endfor 

Algorithm 1: To generate classical random graph. 



 

   17

1.4.2 Watts and Strogatz model 

Watts and Strogatz realized that the connection topology in real-world networks is neither 

completely random nor completely regular, but lies somewhere in-between [92]. They came up 

with a network model that could be tuned to this middle ground. They achieved this by taking a 

regular network (such as a ring lattice) and rewiring its edges into disarray. The end result is a 

highly clustered network with small average path lengths. A minimal lattice is a path, bending 

this linear lattice and connecting the end vertices with an edge creates a nearest-neighbor ring 

lattice or cycle. This consists of n vertices and n edges, and every vertex is of degree 2. If one 

were to include edges to the nearest-neighbors and to the next nearest-neighbors, the ring lattice 

would consist of 2n edges and each vertex would be of degree 4. One could create denser ring 

lattices by connecting the vertex to more of its nearest neighbors.  

Their rewiring procedure can be explained as follows: Start with a ring lattice, which has 

n vertices and k edges per vertex. For each edge e in the graph rewire one if its ends with a 

probability p, to another vertex, chosen uniformly at random.  

Algorithm 2 can be used to create a Watts and Strogatz model random graph. The 

function CreateRingLattice(n, k) creates a new ring lattice graph G(V, E), where in each vertex 

has k neighbors and the function GetARandomNewNeighbor(u) returns a vertex v such that v ∈ V 

and initially euv ∉ E. One could tune the value of p and construct graphs that are completely 

random (when p = 1) or completely regular (when p = 0). For values 0 < p < 1, we get graphs 

with the desired properties.  Figure 7 shows the graphs obtained by varying the value of p. The 

two properties that Watts and Strogatz were interested in particular were the average path length, 



 

Lavg, which is a global property and clustering coefficient, Ccoeff, which is a local property. They 

discovered that it is required that n >> k >> ln(n) >> 1, where k >> ln(n) guarantees that the 

resulting graph will be connected. It was also noted that the regular lattice at p = 0 is a highly 

clustered, large world where Lavg grows linearly with n, whereas the random graph at p = 1 is 

poorly clustered, small world where Lavg grows logarithmically with n. 

 

Figure 7:  Watts and Strogatz models obtained by varying p between 0 and 1. 

Though the Watts and Strogatz model was able to mimic the small world property found 

in real-world networks it failed to account for the power law degree distribution. As with the 

classical random graph model, the probability of finding nodes with large degree decreases 

exponentially.   
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WattsStrogratzGraph(n, k, p) 

G( V, E) = CreateRingLattice(n, k) 

for  neighbor from 1 to k do 

 for each c∈ V do 

  r = Rand() 

 if r ≤ p then  

  E = E – {ei,i + k} 

  j = GetARandomNewNeighbor(vi) 

  E = E + {ei,j} 

  endif 

 endfor 

endfor 

Algorithm 2: To generate Watts and Strogratz random graph. 



 

 

1.4.3 Preferential attachment model 

Barabàsi and Albert proposed the preferential attachment random graph model [7]. It 

modeled the richer get richer behavior typically observed in social networks.  Unlike the 

previous two models which were static this is an evolving dynamic model, defined as a discrete 

time process {Gt(Vt, Et)}t > 1. Let Gt(Vt, Et) refer to the state of the graph at time t. For all values 

of t > 1, Gt + 1 can be obtained by applying some stochastic rules to the graph Gt. The process 

starts with some m isolated vertices at time t = 0. At every incremental time step, t + 1, one new 

vertex, vt + 1 and m′  (m′  <  m) edges are introduced into the graph. Each of the m new edges are 

connected to the vertex vt + 1 at one end and at the other end they are connected to a vertex vi ∈ Vt, 

that is chosen at random with some bias. The probability with which a new edge would be 

connected to the vertex vi is directly proportional to its degree .  dvi

t

Pt +1(vi) =
dvi

t

dv j

t

j
∑

 for vi ∈Vt . 

The main issue with this approach is that at time t = 1, P1(vi) = 0 for all vi ∈ V0. This is rectified 

by starting with a graph, G0 that contains no isolated vertices [13]. After t time steps, the graph 

has t + m nodes and m′ × t + |E0| edges.  

Algorithm 3 can be used for generating a preferential attachment model random graph. 

The function GenereteRandomGraph(m) generates a connected classical random graph with m 

vertices and m edges and the function GetPreferentialVertex(G) returns at random the index of 
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one of the vertices from the graph G with a probability proportional to its degree. The output of 

the algorithm would be a random graph Gt with t + m′ vertices and m′ × (t + 1) edges.  

The preferential attachment model addresses several shortcomings that were present in 

classical random graphs: (i) it is dynamic similar to most of the real-world networks, (ii) it has 

the small world property, and (iii) its degree distribution follows a power law. Kumar et al. while 

studying frequently occurring substructures in the web graph [57], found that it contains a large 

number of locally dense subgraphs, and none of the models discussed so far, including the 

preferential attachment model contain locally dense subgraphs. 

1.4.4 Copy model 

Kumar et al. came up with a directed dynamic random graph model [57]. They wanted to 

reproduce the large number of bipartite cores that occur in web graphs. To generate such a 

graph, one starts with a small random graph, G0 with n0 nodes at time t = 0. At each additional 

time step t + 1 a new vertex, vt+1 is introduced with m′ outgoing edges. Now pick a node 

(uniformly at random) from the set of already existing vertices, and call it the prototype vertex, 

vpro. For every i-th outgoing edge, with a probability α, connect it to one of the existing vertices 

selected uniformly at random, and with a probability 1 – α, connect it to the vertex pointed by the 

i-th outgoing edge of vpro.  

Algorithm 4 can be used to generate a copy model random graph. The function 

GetRandomVertex(G) returns a vertex uniformly at random from the graph G and the function  

GetJthOutlink(v, j) returns the index of the vertex pointed by the j-th outlink of vertex v.



 

 

PreferentialAttachmentGraph(t, m′) 

 G0(V0, E0)= GenereteRandomGraph(m′) 

 for i from 1 to t do 

  Vi = Vi - 1 + {vi +  m′} 
  for j from 1 to m′ do 

   k = GetPreferentialVertex(Gi-1) 

   Ei = Ei – 1 +  ,{ }i m ke ′+

  endfor 

endfor 

Algorithm 3: To generate preferential attachment random graph. 
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The intuition behind the model is as follows: each time a new web page is created it 

would be on a particular topic, the author of the web page would include a few hyperlinks in his 

page that are already present in another web page that deals in the same topic and a few new 

hyperlinks are added to give his web page a new flavor. The Copy model apart from being scale 

free and having a power law degree distribution, contains many bipartite subgraphs (bipartite 

cores). 

1.4.5 Models with embedded communities 

Tawde, Oates and Glover proposed a web graph model, which has communities, 

embedded in them so as to satisfy the microscopic as well as macroscopic properties of the 

World Wide Web [88]. Unlike the previous two models, this one is not stochastic/dynamic.  

They use a three-step procedure where, in the first step stand-alone communities are 

generated by using the preferential and random link distribution technique described by Pennock 

et al. in [77]. This would result in communities that have a few dangling links which would later 

be used to connect the community to the rest of the web. In the second step the communities 

generated above are combined by using the community interaction model suggested by 

Chakrabarthi et al. in [20]. This model is based on observed data for communities on the web. 

Chakrabarthi et al. experimented with 191 topics from DMoz2 and generated a 191 x 191 matrix, 

which modeled the interaction among these communities.  

 
2 http://www.dmoz.com 
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CopyModelGraph( t, m′, α) 

 G0(V0, E0)= GenereteRandomGraph(m′) 

 for i from 1 to t do 

  Vi = Vi - 1 + {vi +  m′} 
  for j from 1 to m′ do 

   pro = GetRandomVertex(Gi - 1) 

   r = Rand() 

   if r < α do 

    k = GetRandomVertex(Gi - 1) 

    Ei = Ei – 1 + {ei, k} 

   else 

    k = GetJthOutlink(vpro, j) 

    Ei = Ei – 1 + {ei, k} 

   endif 

  endfor 

 endfor 

Algorithm 4: To generate copy model random graph. 
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Element i, j of this matrix gives the empirical probability that an outlink, selected at random from 

a page in community i will link to a page in community j.The dangling links from the 

communities are used to perform this interconnection. Finally in the third step a benchmark link 

distribution of a web graph is used as a target and additional nodes and edges are added as 

required to achieve the link distribution of the target. Though this model is one of the very few 

which try to achieve an embedded community structure, it is to be noted that the model is not a 

purely evolving model like the ones mentioned previously. 
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2. EVOLUTION OF THE WORLD WIDE WEB 

2.1 Importance of this work 

This chapter throws some light on how the different properties of the World Wide Web 

evolve over time. Since its inception the World Wide Web has grown from a few thousand to 

several billion pages. Most of the work on real-world random networks has concentrated on their 

properties like degree distribution, average distance between node pairs, network transitivity, and 

community structure. The knowledge acquired was used to create synthetic models for these 

networks. Despite their dynamic nature, the above properties were studied over static instances 

of these networks. It would be interesting to analyze the evolution of such networks and observe 

how their properties change over time.  

In this chapter we model the “ucf.edu” web domain as a graph and study its evolution and 

change in properties over a five-year period. The mapping for this model is as follows: every 

web page in the domain is a vertex and every hyperlink on a web page pointing to another 

webpage is a directed edge connecting the corresponding nodes.  

There are several implications of this study: The trends and variation in properties could 

be used to design better models for web graphs and to evaluate existing ones. The data could be 

used for anomaly detection, for example, to identify spamming. Extrapolation of the collected 

data could help us predict properties of the network in future and also estimate its properties 

during a time frame when the data is not readily available. One could study the evolution of 

communities within these graphs and identify merging/partition of existing communities.  
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2.2 Related work 

We are aware of very few publications discussing properties of real-world networks over 

time. In a recent paper Leskovec et al. [61] study edge density and diameter of citation graphs, 

affiliation graphs, and autonomous system graphs over time. The work showed some interesting 

results. First, they show that the number of edges grow super-linearly in the number of nodes and 

claim that most of these graphs densify over time, Second, they show that the diameter shrinks 

over time, in contrast to priori studies which state that this parameter would grow slowly as a 

function of the number of nodes. Redner [81] has analyzed the properties of citation networks 

using the datasets obtained from the journal Physical Review. The datasets used cover citations 

over a 110-year period. In another independent work Katz [53] discovered densification of power 

laws for citation networks. Grossman [47] has performed a more statistical observation of the 

mathematical research collaboration graphs obtained from the journal Mathematical Reviews. 

Toyoda and Kitsuregawa study the evolution of communities in the “.jp” web domain [89]. They 

show that the distribution of size of the communities follows a power law and its exponent does 

not change much over time.  

2.3 Experimental setup 

Studying graph properties at discreet time intervals has been difficult due to the lack 

suitable datasets. Another major draw back was storage requirements for such datasets. Web 

graphs are modeled based on crawls obtained by a web crawler. But these crawls can only 

provide us with the most recent version of the web pages. To study evolution in web graphs one 

needs web graph data over several years. With cost of storage decreasing, a number of 
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organizations have started archiving their old web pages for future reference. The Wayback 

Machine is an online archive that collects and stores contents of the crawls by the Alexa crawler. 

It has stored copies of web pages dating back to the year 1996. It provides users with a web 

interface to obtain archived versions of web pages when queried with an URL and date.  

To construct the web graph of the ucf.edu domain we designed a special purpose 

downloading module on top of the UcfBot crawler, designed by myself and Cami (see Section 

7), that would query the Wayback Machine archives and obtain stored versions of the web pages. 

Each query to the Wayback Machine consists of a URL and a date stamp. Our crawler starts with 

a few seed URLs that are appended with a time stamp and converted into query form. These 

queries are now submitted to the Wayback Machine. The page retrieved is then parsed to extract 

hyperlinks in the page. Each hyperlink is then converted into a query and the process is repeated 

until all the web pages from the specified time period are obtained.  

The crawl obtained is now modeled into a web graph with each web page, representing a 

vertex in the graph and each hyperlink on the page pointing to another page, representing a 

directed edge connecting the corresponding vertices. We obtain five such web graphs by 

performing separate crawls one for each year from 1997 to 2001. These web graphs represent 

samples of the ucf.edu web domain during a particular year. The validity of our datasets depends 

on how comprehensive the Alexa crawls were during the past years. Our experiments show that 

the obtained datasets cover a large portion of the indexable ucf.edu domain during the specific 

time periods.  
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2.4 Empirical observations 

In this section we study the evolution of the “ucf.edu” domain by analyzing the properties 

of its web graphs at regularly spaced points in time. The size (number of edges) and order 

(number of nodes) of our datasets are given in Table 1.  

Table 1: Size and order of the web graphs over the five-year period. t represents time. 

t n m 
1997 7260 15998 
1998 10974 16795 
1999 12444 31578 
2000 31170 80940 
2001 58957 185909

 

We analyze several properties of the web graphs like number of new nodes being 

introduced, average degree, edge density, in-degree and out-degree distributions, diameter, and 

average distance between nodes. Our observations are given below.  

2.4.1 New nodes 

Using the web graph data we compute the number of nodes that were introduced into the 

graph every year from 1998 to 2001. This number increases steadily every year. Figure 8 shows 

the increase in the number new nodes over time. The x-axis represents time in years and y-axis 

represents the number of new nodes being introduced.  

 



 

 

 

 

Figure 8: Number of new nodes introduced in the network over time. 

 

2.4.2 Densification power law and average out degree 

Most of the existing literature about evolution of real-world networks suggests that the 

number of edges grows linearly with the number of nodes and as a result the average degree 

remains a constant. Leskovec et al. [61] observe that the number of edges grow super-linearly in 

the number of nodes and this growth follows a power law pattern given by: 

mt ∝ nt
γ , (1)

where mt represent the number of edges and nt the number of nodes in the network at time t,  γ  is 

the densification exponent and its value lies strictly between 1 and 2 for connected graphs. The 
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graph is sparse when the value of γ is close to 1 and is dense when the value of γ is close to 2. 

Leskovec et al. call this densification power law and suggest that networks are becoming denser 

over time. 

 

 

 

Figure 9: Number of edges mt versus number of nodes nt in log-log scales. 

Figure 9 shows our observations from the ucf.edu datasets. The x-axis represents the 

number of nodes and y-axis the number of edges in log-log scale over the five-year period. Our 

results echo the results from [61]. The densification exponent γ in our case has a value of 1.22.  

The plot in Figure 10 shows the average node out degree over the five-year period. We see that 

the average out degree increases over time. Though our results about super-linear growth of 

edges and increase in average degree coincide with the results obtained by Leskovec et al., we 
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see that the graphs are not getting denser over time. We explain this further in the upcoming 

section. 

   

 

Figure 10: Average node out-degree over time. 

2.4.3 Edge density 

Edge density is the ratio of edges present in the graph to the maximum number of edges 

that could be present. For a directed graph the maximum number of edges is given by n ( n - 1). 

The change in edge density over time is shown in Figure 11, x-axis represents time and y-axis 

edge density.  
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Figure 11: Edge density over time. 

Our results suggest that the edge density of these web graphs decreases over time. This 

seems surprising considering the fact that the average degree is actually increasing.  Now we 

reason about this strange behavior. Edge density of a directed graph is given by 

mt

nt (nt −1)
, 

where mt represents the number of edges and nt the number of nodes at time t. From equation 1 

we get 

mt

nt (nt −1)
∝

nt
γ

nt (nt −1)
, 

where γ is the densification exponent. To prove that the edge density decreases over time we 

need to show that  
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nt
γ

nt (nt −1)
nt +1

γ

nt +1(nt +1 −1)

>1, 

We know that nt+1 = nt + 1.  

nt
γ

nt (nt −1)
>

nt +1( )γ

nt (nt +1)
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⎝ 
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⎠ 
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γ

>
nt −1
nt + 1

, 

nt

nt +1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

γ

>
nt

nt + 1
−

1
nt +1

, 

When nt is large nt + 1 ≅ nt. Substituting this in the equation proves the inequality and shows that 

nt
γ

nt (nt −1)
 is a monotonically decreasing function. This explains the decreasing edge density over 

time.  

2.4.4 Degree distributions 

Figure 12 shows the in-degree and out-degree distributions of our datasets during the 

five-year period. Each row represents a year from 1997 to 2001, the plots in the first column 

represent in-degree distributions and the ones in second column represent out-degree 

distributions. In each of the plots x-axis represents degrees and y-axis represents number of 

nodes. The plots for 1996 and 1997 seem to contain some noise but from 1998 the power law 

property is very evident. The presence of the power law, which is believed to be a basic web 

property, validates our data sets.  
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2000 

(g) 
 

(h) 

2001 

 
(i) 

 
(j) 

Figure 12: Degree distributions from 5 years of ucf.edu domain web graphs.  

It is interesting to note that the initial segment of the out-degree distributions deviates 

significantly from the power law. This has been observed by Broder et al. in [16] and they 

suggest that pages with low out-degree follow a different (possibly Poisson or a combination of 

Poisson and power law) distribution. The power-law exponents of our datasets were between 1 

and 2.5, which is a bit deviant from existing datasets. We believe this is due to the small order of 

our graphs compared to other web graphs, which consist of at least a few hundred thousand 

nodes. We did observe a slowly increasing trend in the value of the power-law exponent but we 

see the need to further validate this observation by experimenting with datasets over a larger time 

period. 
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2.4.5 Diameter and average distance between node pairs 

Another property of interest is the distance between nodes. There are two metrics which 

are often used: diameter and average distance between nodes. Diameter of a graph is defined as 

the longest of the shortest distances between all node pairs. We compute the diameter of the five 

datasets and our results are show in Figure 13, x-axis represents time and y-axis diameter. Unlike 

the results obtained by Leskovec et al. we did not observe any decrease in the diameter of the 

graphs over time. However it has to be noted that Leskovec et al. use a different definition of 

diameter termed the effective diameter. Effective diameter of a graph is defined as a distance d 

such that at least 90% of the connected node pairs are at distance of at most d. 

 

 

Figure 13: Diameter over time. 

Average distance between node pairs: As stated in Section 1.2.1 this metric defines small 

world graphs. The average distance between nodes for the five datasets has been plotted in 
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Figure 14, x-axis represents time and y-axis average distance. Except for a major surge during 

the year 1999 the data seems to suggest that the average distance between nodes is growing at a 

slow rate.  

 

 

Figure 14: Average distance between node pairs. 

 
 

2.5 Conclusion 

The work proposes a new research track in the field of real-world networks. The 

knowledge obtained aids in better understanding the evolution of web graphs. Our results support 

the empirical results about super-linear growth of edges obtained by Leskovec et al. We also 

observe that the edge density reduces over time and explain this behavior. For future work, we 

would like to study, the growth and evolution of web communities; design new random graph 
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models that posses the observed properties; and evaluate the validity of existing random graph 

models. 
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3. SURVEY OF EXISTING METHODS 

3.1 Community related problems 

 

Figure 15: Community discovery. 

Two problems that are of interest are community discovery and community 

identification. From a graph theoretic perspective community discovery is classifying vertices of 

a graph G into subsets Ci ⊆ V, 0 ≤ i < k, such that vertices belonging to a subset Ci are all closely 

related (classifying the nodes in a graph into different communities).  

Community identification is identifying the community Ci to which a set of nodes S ⊆ V 

belong (identifying the community that contains the set of vertices S).  In general community 

identification is considered an easier problem compared to community discovery, especially if 

the input graph is large.  
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Figure 16: Community identification. 

3.2 Existing algorithms 

The majority of the existing community discovery algorithms employ hierarchical 

clustering techniques to extract communities. The hierarchical clustering algorithms work in two 

phases, at first, a similarity metric is defined to portray the strength of the relationship between a 

vertex pair. After which there are two possible ways of extracting communities using the defined 

metric (i) agglomerative and (ii) divisive.  

The agglomerative algorithms begin by computing the similarity between every vertex 

pair. Initially each vertex is considered to be an individual community. During the course of the 

algorithm, closely related vertices are combined together to form bigger communities.  

Divisive algorithms on the other hand, compute the similarity between adjacent vertex 

pairs. Initially the entire input graph is considered to be one large community. During the course 

of the algorithm, edges are removed between vertices that are least similar. This decomposes the 

graph into smaller but tighter communities. 



 

Hierarchical clustering is preferred to other methods, because apart from extracting the 

communities it also provides their hierarchy. A general template for agglomerative and divisive 

algorithms is given in Algorithm 5 and Algorithm 6. S represents a matrix and its element Si,j 

represents how similar vertices i and j are, all its elements are initialized to Ø; the function 

Similarity(G, i, j) returns the similarity between vertices i and j; and the function Max(S) and 

Min(S) returns the index i, j of the largest and smallest element in the matrix S respectively. 

The final for loop could be terminated after desired number of iterations and the 

components that are present in G′  would represent the communities in the input graph G. 

3.3 Similarity metrics 

The following sections provide some insight into the existing measures used to discover 

communities. 

3.3.1 Node/Edge independent paths 

 

(a) (b) 

Figure 17: (a) edge independent paths, (b) node independent paths. 
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AgglomerativeCommunityDiscovery(G) 

for all vertex pairs (u, v) in G do 

Su,v =  Similarity(G , u, v) 

endfor 

V′ = {v1, v2, …, vn} 

E′ = {∅} 

for i from 1 to n(n −1)
2

 do 

u,v = Max(S) 

E′ = E′ + {eu,v} 

Su, v  = 0 

endfor 

Algorithm 5: Template for agglomerative procedure. 

 

DivisiveCommunityDiscovery(G) 

for all eu,v ∈E do 

Su,v =  Similarity(G, u, v) 

endfor 

V′ = V 

E′ = E 

for i from 1 to |E| do 

 u,v = Min(S) 

 E′ = E′ - {eu,v} 

Su, v  = NULL 

endfor 

Algorithm 6: Template for divisive procedure. 
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To the best of my knowledge there are no prior publications utilizing node/edge 

independent paths as a similarity metric. Girvan and Newman first suggested this concept in 

[44]. Two or more paths are vertex-independent (vertex-disjoint) if they don’t share any vertex 

except maybe the initial and final vertices. Similarly, two or more paths are edge-independent 

(edge-disjoint) if they don’t share any edges. Existence of a large number of vertex (edge) -

independent paths between a vertex pair indicates better similarity.  

The intuition behind this approach is that the number of vertex (edge)-independent paths 

between vertices in the same community is greater than the number of vertex (edge)-independent 

paths between vertices in different communities. It is know that the number of vertex (edge)-

independent paths between a vertex pair i, j is equal to the minimum number of vertices (edges) 

that need to be deleted to disconnect i and j [62].  

The number of edge independent paths can be obtained by using the max-flow 

algorithms. Each edge is assumed to posses a unit flow capacity. The cardinality of the min cut 

would give the number of edge disjoint paths.  Algorithm 7 describes the procedure to obtain 

edge independent paths between a given pair of vertices.  
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EdgeIndependentPathSimilarityMetric(G, i, j) 

s = i 

t = j 

G′(V′, E′) = G(V, E) 

for all euv ∈ E′ do 

 Cuv = 1 

endfor 

M = MinCut(G′, C, s, t) 

Algorithm 7: Edge independent paths between i and j. 
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The algorithm first assigns one of the input vertices as a source and the other as a sink. 

Then each edge is assigned a unit flow capacity. The function MinCut(G, C, s, t) computes the 

min cut of the graph G with edge capacities specified by matrix C where s is the source and t is 

the sink. M would contain the set of edges that form the min cut and |M| is the number of edge 

independent paths between i and j. If one were to use the Edmonds-Karp algorithm to compute 

the min cut then the complexity of the above approach would be O(nm2). For a sparse graph m ≈ 

n and the complexity is O(n3). Since this has to be computed for all vertex pairs, the overall 

complexity is O(n5). 

3.3.2 Edge betweenness 

Girvan and Newman [44] proposed the idea of edge betweenness as a similarity measure 

based on the concept of vertex betweenness introduced by Freeman [39]. Vertex betweenness of 

a vertex is defined as the number of shortest paths between pairs of vertices that pass through the 

given vertex. Edge betweenness of an edge is defined as the number of shortest paths between 

pairs of vertices that pass through the given edge. Betweenness in general is a centrality measure 

used to portray the importance of a vertex/edge within a graph. Centrality is discussed in detail in 

Section 4.1. This measure is only suited for divisive algorithms, as the value of edge 

betweenness for node pairs that are not adjacent is not defined.  

 



 

 

Figure 18: Edge betweenness of edges. 

The edge betweenness of inter-community edges would be high, as the shortest paths 

between nodes in the two different communities would have to pass through them. After 

computing the edge betweenness of all the edges, one can remove the edges with high edge 

betweenness and expose the community structure. Figure 18 describes a graph where the weights 

of the edges represent their betweenness. Clearly the inter-community edge ede has a higher value 

of betweenness than all the other edges.  

The divisive algorithm proceeds as follows: first the edge betweenness of all the edges is 

computed, the edges with the highest value for edge betweenness is deleted and the edge 

betweenness of the remaining edges is re-computed. The whole process is repeated for desired 

number of iterations or until all the edges are removed. Re-computing the edge betweenness, 

after every iteration is necessary, without which the results were not very impressive.  

Computing the shortest path between a vertex pair takes O(m) time. Since we need to 

compute the shortest path between n2 vertex pairs, one might assume it would take O(mn2) time 
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to compute the betweenness of all the edges. In fact computing the shortest path from one vertex 

to the remaining n – 1 takes O(m) time. In effect computing all the shortest paths can be 

accomplished in O(mn) time. The algorithm requires the betweenness to be computed after 

removal of an edge. Hence the overall complexity of the algorithm is O(m2n). For a sparse graph 

m ≈ n and the complexity is O(n3). 

Algorithm 8 can be used to compute the edge betweenness of all the edges in the graph. 

At first the shortest paths from vertex s to all other vertices is calculated. Then the number of 

shortest paths are computed by traversing the graph from a leaf node to the source. During the 

traversal we count the number of successor edges to each edge. This counts the number of 

shortest paths through an edge. Repeating these steps from every vertex s in the graph and then 

consolidating the sum of the counts provides us with required betweenness.  

One of the main drawbacks of the divisive algorithms is that they fail in scenarios where 

the edges do not portray the community structure. For example a bipartite graph consists of two 

sets of vertices, and no edges exist between vertices in the same set. Each of these sets would 

constitute a community. Removal of edges in any order using a divisive algorithm would not 

reveal the two communities. The cubic complexity of the algorithm makes it impractical for 

graphs with a few thousand nodes. 



 

EdgeBetweennessSimilarityMetric(G) 
for s from 1 to n do 

  s = 1 
Ds = 0 
Ws = 1 
for all i such that eis ∈ E do 

   Di = Ds + 1 
   Ws = 1 
   Wi = 1 

endfor  
do 

for all j such that eij ∈ E do 
    if Dj == NULL then 
     Dj = Di + 1 
     Wj = Wi

   else if Dj ≠ NULL and Dj = Di + 1 then 
     Wj = Wj + Wi
    else if Dj ≠ NULL and Dj < Di + 1 then 
    endif 

endfor 
while we have no vertex i such that eij ∈ E and Di ≠ NULL and Dj == NULL  
for every leaf node t do 

for all i such that eit ∈ E do 
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    BBit = BitB  + Wi Wt  
  endfor 

endfor 
for eij ∈ E from the farthest eij to closest eij to node s do 

   for ejk ∈ E where ejk farther than eij to node s do 
    BBij = BijB  + (BBjk + 1) * Wi W j  
   endfor 

endfor 
endfor 

Algorithm 8: Algorithm to compute edge betweenness of all edges. 



 

  

3.3.3 Edge clustering co-efficient 

 

Figure 19: Edge clustering coefficient of edges. 

Radicchi et al. came up with an algorithm that utilizes the local property of the graph 

rather than a global property like the edge betweenness or node/edge independent paths. They 

devised a new similarity measure called the edge clustering co-efficient [79]. The Edge 

clustering co-efficient of an edge is defined as: 

, 1
,

min( 1, 1)
i j

i j

T
d d

+

− −
 

where Ti,j represents the number of triangles, K3’s, to which the edge i, j belongs to and di 

represents the degree of node i. The denominator min(di - 1, dj - 1) indicates the maximum 

number of triangles to which the edge eij could belong. The “+ 1” in the numerator takes care of 

the degeneracy when Ti,j is zero.  
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Algorithm 9 can be used to compute the edge clustering co-efficient of an edge (i, j). 

Once the clustering coefficient of all the edges is computed, the edge with the lowest value of 

clustering coefficient is removed. As in the edge betweenness algorithm, Radicchi et al. suggest 

re-computing the clustering coefficient of the set of edges that might be affected by removal of 

the edge. Deleting edges with low edge clustering coefficient value removes the inter-community 

edges and exposes the underlying communities. The complexity for computing the clustering 

coefficient for all the edges takes > O(m2) time. Clearly the algorithm would fail on all triangle 

free graphs.  

The motivation behind this algorithm is as follows: the density of edges is higher inside 

the communities than along its boundaries. As a result edges connecting nodes in different 

communities are included in few or no triangles, on the other hand edges connecting nodes in the 

same community would be a part of many triangles and consequently have a high clustering co-

efficient value. One could repeat the above algorithm by counting the number cycles of length 

four (squares) or cycles of higher order, which increases the complexity of the algorithm.  

 

3.3.4 Random walks 

Girvan and Newman propose a similarity measure based on random walks [71]. To 

compute the similarity one has to compute the expected number of times random walks between 

a pair of nodes would pass down a particular edge and sum over all node pairs. A large count 

indicates better similarity. Let the random walks start at node s, pass down a particular edge (u, 

v) before ending at a target node t. Let A represent the adjacency matrix of the graph with Ai,j = 1 



 

if there exists an edge between nodes i and j and Ai,j = 0 otherwise. The random walk on each 

step would decide uniformly between the neighbors of the current node j and move to one of 

them. The probability of transition from node j to i is Ai,j / dj. The value Ai,j / dj is a element of the 

matrix M = A × D-1, where  D  is  the  diagonal  matrix  with  Di,i = di.  All the random walks are 

to terminate at node t (absorbing state) to achieve this; the column corresponding to node t is 

made all zeros. Let 1M A D−= ×  be the matrix M with the tth column removed (and similarly for 

A  and D ). The probability that a walk starts at s, takes k steps, and ends at some node i (other 

than t), is given by the i,s element of matrix kM (denoted by ,
k
i sM ). In particular, walks end up at 

nodes i and j with probabilities ,
k
i sM  and ,

k
j sM , and of those a fraction 1/du and 1/dv respectively 

pass over the edge (i, j) in one direction or the other. Summing over all k, the mean number of 

times a walk from s to t traverses the edge from i to j is  

( ) 1

,i s

v

I M

d

−⎡ ⎤−⎣ ⎦  
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EdgeClusteringCoefficientSimilarityMetric(G , i,  j) 

di = 0 

dj = 0 

Ti,j = 0 

for all k ∈ V such that eik  ∈ E do 

di = di + 1 

endfor 

for all k ∈ V such that ejk  ∈ E do 

dj = dj + 1 

endfor 

for all k ∈ V such that ejk  ∈ E and eik  ∈ E do 

Ti,j = Ti,j + 1 

endfor 

,
,

1
min( 1, 1)

i j
i j

i j

T
T

d d
+

=
− −

 

Algorithm 9: Edge clustering coefficient of edge, ei, j. 
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and similarly for all walks from v to u, which would be an element of the matrix  

E = D-1 × ( ) 1I M −− × S = ( ) 1D A S−− × . 

Here I is the identity matrix and S is a vector whose components are all 0 except for a single 1 in 

the position corresponding to the source node s. Element i, j of the matrix E represent the 

expected number of times a random walk between nodes s and t would pass the edge (i, j) 

summing this over all pairs of s and t, we can compute the random walk betweenness of any 

edge (i, j).  

Algorithm 10 can be used to compute the random walk betweenness of all the edges in a 

graph. The input to the algorithms is the adjacency matrix of the graph. Matrix R, which stores 

the random walk betweenness of all the edges, is initialized to all zeros. Element Ri,j would give 

the betweenness of edge (i, j). The Newman and Girvan claim that this method produces poor 

results and hence random walk betweenness is not a very good similarity measure [70]. 

3.3.5 Current betweenness 

 

Figure 20: Example resistor network. 
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RandomWalkBetweenessSimilarityMetric(A) 
for all i from 1 to n do 
 for all j from 1 to n do 
  Ri,j = 0 
  D’i,j = 0 
 endfor 
endfor 
for all node pairs s, t 
for all s from 1 to n do 
 for all t from 1 to n do 
  D = D’ 
  for all i from 1 to n do 
   for all j from 1 to n do 
    if i ≠ t do 
     Di,i = Di,i + Ai,j
    endif 
    if i ≠ t do 
     Dj,j = 0 
    endif 

endfor 
  endfor 

endfor 
endfor 
for all i from 1 to n do 
 At,i = 0 
 if i = s do 
  Si = 1 
 endif 
endfor 
E = (  ) 1D A S−− ×
R = R + E 

Algorithm 10: Random walk betweenness of all edges. 
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The resistor network based approach introduced by Girvan and Newman in [71] is 

motivated by ideas from elementary circuit theory. The input graph is considered as a resistor 

network with edges being substituted with a resistor of unit resistance and a unit voltage is 

applied between a source node and a sink node. Current would flow from the source to the sink 

via a number of paths and the paths with least resistance would carry the greatest fraction of the 

current. The amount of current flowing through the edge is termed as current betweenness of the 

edge. These paths can be identified by solving Kirchoff’s equations. Let A represent the 

adjacency matrix of the input graph and let the Vi represent the voltage at vertex, vi. D is a 

diagonal matrix with Di,i = . Now (D – A) • V = S. Where S is the source vector with the 

following components 

Aij
j

∑

Si =
+1       for i =  s
−1       for i =  t
  0       otherwise.

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
 

One could now compute the voltage across all the vertices by solving the equation.  

V = (D – A)-1 • S 

Since the edges contain a unit resistance, the current flowing across an edge eij would be 

equal to the difference in voltage (Vi - Vj) along vertices vi and vj. Removal of the edges with 

low current flow would disconnect the graph into components each representing a community.  

The matrix inversion would require O(n3) time and the subsequent calculations to compute the 

betweenness require O(mn2) time. Computing the betweenness of all the edges, including the 

recalculation step as with the previous algorithms would take O((n + m) mn2) time. For a sparse 
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graph this is of O(n4). Girvan and Newman prove that the current betweenness is numerically 

equal to the random walk betweenness [70].  

3.3.6 Euclidean distance 

The Euclidean distance similarity measure is based on the structural equivalence between 

vertex pairs. Two vertices are said to be structurally equivalent if they have the same set of 

neighbors (other than each other, if they are connected). The Euclidean distance similarity 

measure [17, 91] between two nodes u and v is  

2
, ,

,
( )Eucl

u v u k k v
k u v

A Aδ
≠

= −∑ ,  

where Ai,j is the element of the adjacency matrix for the vertices i and j. The Euclidian distance is 

actually a dissimilarity measure. A large value of this distance between a vertex pair represents 

low similarity and a small value represents high similarity. A value of zero is given to nodes that 

are structurally equivalent. Unlike the previous measures, one could use this measure with an 

agglomerative or divisive algorithm to extract the communities. Another interesting feature is 

that, the measure does not depend on the existence of an edge between vertices. Hence, two 

vertices that are not connected might still be structurally equivalent. Such measures are useful to 

deduce the community structure in graphs like the bipartite graphs where existence of an edge 

between a vertex pair does not necessarily convey similarity. 
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3.3.7 Pearson correlation coefficient 

Another commonly used similarity measure in social networks is the Pearson correlation 

between columns (or rows) of the adjacency matrix [91]. This measure defines the mean and 

variances of columns of the adjacency matrix as follows: 

2 2
, ,

1 1,       ( )u u v u u v
v v

A A
n n

μ σ= =∑ ∑ uμ− , 

where A is the adjacency matrix of the graph. The correlation coefficient of an edge (u, v) 

, ,
1 ( )(u k i v k v

k

u v

A A
n

μ μ

σ σ

− −

×

∑ )
. 

 Vertex pairs with high degree of structural equivalence will have high correlation 

coefficient value and those do not will have low values.  

3.3.8 Flow network based 

For the flow based approach the entire network is considered as a flow network with the 

edges representing pipes. If one were to introduce a flow into this network via a source node then 

drain the network via a sink node then edges between the communities would act as a bottle neck 

controlling the amount of the flow. Using a max flow-min cut algorithm, one can easily identify 

these edges.   Removal of these edges would result in the bisection of the graph into two 

communities. One could further bisect these communities to obtain smaller communities in the 

similar fashion.  For the flow based approach to produce good results, the sink node and the 

source node should be in two different communities, this turns out to be a draw back because it 
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requires priori information. For the sake of clarity we assume that the graph G is undirected. Let 

c(u, v) be a function that denotes the capacity of the edge (u, v), c(u, v) = 0 if (u, v) ∉ E. 

Similarly let f(u, v) be a function that denotes the flow along the edge (u, v) and f (u, v)  ≤  c(u, 

v). Given two nodes u and v, the maximum flow that can be routed from s to t is identical to the 

value of the minimum cut that separates s and t [37]. Removal of the edges corresponding to the 

minimal cut would disconnect the graph into two components with one that contains node s and 

the other that contains node t. There are several algorithms for solving the max flow min cut 

problem; refer to [1, 31] for more information on this topic.  

Flake, Lawrence and Giles came up with a modified flow based approach to identify 

communities in web graphs [36]. They define communities as subsets of nodes in a graph that 

have more links (in either direction) to members of the community than to non-members. The 

goal of their algorithm is to bisect the graph into two components using flow techniques such 

that one of the components represents the community. The algorithm is designed to work on 

directed graphs, and starts by exploring the nodes adjacent to a small set of nodes called the seed 

B. Let the nodes adjacent to the seed belong to set C. Now the nodes adjacent to each node in the 

set C are obtained (a few of these may be already present in the set B and can be omitted), let 

these new nodes belong to set D. The nodes in set D are treated as a composite sink node by 

connection to a virtual sink node and all the nodes in the seed set B are connected to a virtual 

source s, as shown in Figure 21. All edges that start and end at nodes that belong to set B or C are 

made bidirectional.  



 

 

Figure 21: Graph obtained by using the algorithm in [36]. 

Now the edge capacities of all the edges in the graph are multiplied by a constant factor k except 

for the edges that are incident on the virtual sink, these are of unit capacity. A min cut of the 

graph thus obtained would bisect the graph and the component containing the seed set B would 

represent the community. The size of the community is further increased by adding to the seed 

set a node u* from the community, that has the highest in-degree relative to the graph and all 

other nodes ui that belong to the community and have the same in-degree as u*. The seed set is 

further increased by adding a node v* from the community that has the highest out-degree 

relative to the graph and all other nodes vi from the community that have the same out-degree as 

v*. In Algorithm 11, G represents the graph obtained from a given seed set as described above.  

This algorithm differs from the remaining algorithms in several ways; first its objective is 

community identification and not community discovery; second it does not require knowledge of 

the entire graph, which suits networks like the web graph where obtaining the entire graph is a 

difficult task.  
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3.4 Spectral methods 

This section provides a brief survey of linear algebra and eigenvectors. Any non-

defective matrix M, can be represented as a summation of vector outer products.  

1

k
T

i i i
i

M rλ
=

= ⋅ ⋅∑  

where li and ri are the ith left and right eigenvectors of matrix M. λi is the ith eigenvalue of M,  

and M has the following properties with respect to its eigenvectors and eigenvalues: 
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The eigenvalues and eigenvectors form the spectrum of the matrix; and algorithms employing 

the eigenvectors and the eigenvalues are referred to as spectral algorithms. If the spectrum of the 

matrix consists of n distinct eigenvectors, then either the left or right eigenvectors can be used as 

a basis to express any n-dimensional vector. For any symmetric matrix the left and right 

eigenvectors are identical and for any asymmetric matrix the left and right eigenvectors form a 

contravariant basis with respect to each other, provided that all the eigenvectors and eigenvalues 

are real. The key intuition behind the eigen-decomposition of a matrix is that it yields a 

procedure for compressing a matrix into k ≤ n outer-products, and for expressing matrix-vector 

products as a summation of inner products. When M = AT × A for some choice of A, then the 

spectral decomposition of M is closely related to the singular value decomposition of A [87]. 



 

 

CommunityIdentificationUsingNetworkFlows(G, s, t, q) 

S = {s} 

k = 0 

while k < q do 

 C = MaxFlowAnalysis(G) 

 vv = vi such that vi ∈ C and  = max(d
vi

in v j,i
j

∑ ), relative to G 

for all vu ∈ C such that  = do dvu

in dvv

in

  S = S +{ vu} 

  E = E + { } es,vu

endfor 

vu = vi such that  = max(dvi

out vi, j
j

∑ ),relative to G 

for all vu ∈ C such that  = do dvu

out dvv

out

  S = S +{ vu} 

  E = E + { } es,vu

endfor 

G = Crawl(G, S) 

endwhile 

Algorithm 11: Community identification using flow algorithms. 
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3.4.1 HITS 

Kleinberg’s HITS algorithm (which stands for hyperlink-induced topic search) takes a 

subset of the Web graph and generates two weights for each page in the subset [56]. The weights 

are usually referred to as the hub and authority score, respectively, and they intimately relate to 

the spectral properties of the portion of the Web graph for which the algorithm is being used. 

Conceptually, a hub is a Web page that links to many authorities, and an authority is a Web page 

that is linked by many hubs. The two scores for each page characterize to what degree a page 

obeys the respective property.  

HITS algorithm works in two stages. The first is a preprocessing step used to select the 

subset of the Web graph to be used, while the second part is an iterative numerical procedure. 

The first part usually proceeds as follows: 

1. Send a query of interest to the search engine of your choice. 

2. Take the top 200 or so results from the search engine. 

3. Identify all Web pages that are one or two links away (in either direction) from the 

results gathered in the previous step.  

 



 

 

Figure 22: Hubs and Authorities. 

All told, the first part generates a base set of Web pages that either contain the original 

query of interest, or are within two links away from a page that does. Of course, other heuristic 

constraints need to be used, such as limiting the total number of pages, only considering inter-

domain hyperlinks, and changing the size of the initial result set and/or the diameter of the base 

set. With the base set of pages being generated, let G = (V, E) refer to this subset of the Web 

graph (with intra-domain hyperlinks removed) and let A be this graph’s adjacency matrix. The 

iterative numerical part of HITS updates two n × 1 dimensional vectors, h and a, as follows, with 

the initial values of both vectors being set to unity: 

2

2

|| ||
|| ||

Ta A h
h A a
a a a
h h h

= ⋅
= ⋅

=

=

 

The equation a = AT⋅ h sets a page’s authority score be equal to the sum of the hub scores of the 

pages that link to it, while the equation h = A ⋅ a sets  a page’s hub score be equal to the sum of 

the authority scores that it links to. The remaining equations enforce h and a to maintain unit 

length. After iterating the equations, we select the authority pages to be those with the largest 

   64



 

   65

corresponding value in a, and the hub pages to be the ones with the largest corresponding value 

in h. HITS is a close to the power method in [87] for calculating the eigenvector of a matrix with 

the largest eigenvalue (the maximal eigenvector). Both procedures converge to a solution in k 

iterations with error proportional to O(|λ2/λ1|k), where λ2 and λ1 are the first and second 

eigenvectors. Hence, the procedure can be slow, but it tends to be fast for power law graphs 

which often have the property that λ1 >> λ2 [27]. With minimal substitution, we can see that h 

and a converge to the maximal eigenvectors of A ⋅ AT and AT ⋅ A. Thus, HITS produces a rank one 

approximation to the raw bibliographic and co-citation coupling matrices. 

3.4.2 HITS Communities 

We saw earlier, that a matrix can be rewritten as a summation of outer products. Because 

both of the matrix products AT ⋅ A and A ⋅ AT are symmetric and positive definite, each will have 

the property that the left and right eigenvectors will be identical (because of symmetry) and that 

the first eigenvector will have all positive components (with positive eigenvalue). All other 

eigenvectors for these matrices can be heterogeneous in that their elements can have mixed 

signs. These subsequent eigenvectors can be used to separate pages into different communities in 

a manner related to more classical spectral graph partitioning [26], or in a manner that is related 

to principal component analysis [52]. Kleinberg [56] and his collaborators [42] have found that 

the non-maximal eigenvectors can be used to split pages from a base set into multiple 

communities that contain similar text but are dissimilar in meaning.  

In this manner, HITS, can be adapted for community identification. The main caveat to 

spectral approaches is that as the sizes of the communities get smaller, the less significant 
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eigenvectors can be dominated by noise and confused by paths of longer length. Nevertheless, 

the approach has considerable power and spectral methods offer a very elegant mathematical 

derivation. 

3.5 Conclusion 

This chapter provides a comparison of the various algorithms for community discovery in 

terms of speed and sensitivity. A direct comparison of all the methods might not be possible, as 

they are varied both conceptually and in their application.  

Table 2 provides us with the computational cost associated with the various algorithms in 

terms of the size and order of the input graphs. Some algorithms require certain extra parameters.  

Agglomerative algorithms are very suitable in cases where the input graphs do not exhibit 

a strong community structure, e.g. in the case of bipartite graphs. Divisive algorithms on the 

other hand are useful to quickly deduce the community structure of graphs that exhibit a strong 

community structure. The high sensitivity of the agglomerative algorithms is attributed to the 

fact that these algorithms can compute the similarity between vertex pairs that are not adjacent 

where as for the divisive algorithms one requires that the vertex pair be adjacent. This explains 

the lower time complexity of the divisive algorithms as they compute the similarities between 

just the adjacent vertices in the graph, m pairs to be precise. The agglomerative algorithms need 

to compute the similarities between all the vertex pairs in the graph, that’s n2 pairs.   

Comparing the different similarity measures one could say that the measure utilizing the 

local properties of the graph, e.g., edge clustering coefficient are better measures as they do not 

require the entire input graph to compute the similarity between a given vertex pair, whereas 
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measures that depend on global properties like edge betweenness require the entire input graph to 

compute the similarity between a given pair. Local properties are also useful if one were to 

compute the similarities online while performing a web crawl for example where the complete 

structure of the input graph is not available.  

 

Table 2: Comparing the complexity of the various algorithms. 

Complexity 
Reference Measure 

Agglomerative Divisive 

[44] Node/edge independent 
paths O(n5) O(n4m) 

[44] Edge betweenness - O(n3) 

[79] Edge clustering co-efficient - O(n4) 

[71] Random Walks - O(n4) 

[71] Current betweenness - O(n4) 



 

  

4. PROPOSED CENTRALITY BASED COMMUNITY DISCOVERY 

4.1 Centrality metrics 

Centrality as a tool has been widely used in social network analysis. It portrays how 

central a node is to a given graph. For example, in the telecommunication industry, one could 

mine the call records of telephone operators and evaluate the customer network or determine the 

influence of different people in such a network. Such data would be of great value in viral 

marketing and advertising. Similar techniques could be used to identify popular web pages in the 

World Wide Web. Though centrality metrics were initially used to investigate the role and 

identity of individual nodes in a network, now the emphasis is more shifted to the distribution of 

centrality values through all vertices. The upcoming sections discuss the different centrality 

metrics.  

4.1.1 Degree centrality 

Degree centrality CD, is the simplest form of vertex centrality. The simplicity aids in 

understanding the concepts behind centrality. It is based on the idea that important vertices have 

a large number of ties to other vertices in the graph. The degree centrality of a node i in a graph 

is defined as [40, 91]: 
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where di is the degree of node i, i.e. the number of nodes adjacent to i.  Figure 23 shows the 

degree centrality of the vertices in a star, K1,8 and a cycle, C8. It is clear that the center of the star 

which has the highest degree of all the vertices is the most influential vertex in the star. On the 

other hand in a cycle all nodes have the same degree and hence the same amount of influence.  
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Figure 23: Degree centrality of a star, K1,8, and a cycle C8. 

4.1.2 Closeness centrality 

 If one needs to broadcast a message to the entire network in the shortest amount of time, 

then we need to look for a vertex whose average of the shortest paths to all the remaining 

vertices is minimum. The closeness centrality value of a vertex defines such a measure. 

Closeness centrality CC, measures to which extent a vertex i is near to all the other nodes along 

the shortest paths, and is defined as [40, 84, 91]: 
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where δi,j is the shortest path length between i and j, defined, in a valued graph, as the smallest 

sum of the edge lengths throughout all the possible paths in the graph between i and j.  
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Figure 24: Closeness centrality of a star, K1,8, and a cycle C8. 

Figure 24 shows the closeness centrality values for the vertices in a star, K1,8, and a cycle 

C8. It’s clear that the center of the star would be the best candidate to broadcast any message to 

the star in the shortest amount of time. In the cycle however all the nodes have the same value of 

closeness and it would take the same amount of time to broadcast the message irrespective of 

which vertex is broadcasting. 

4.1.3 Betweenness centrality 

Betweenness centrality is to vertices as edge betweenness (refer to Section 3.3.2) is to 

edges. If one were to place an agent to monitor data flow in a network, then the agent has to be 

placed on a vertex that is on several shortest paths between vertex pairs. Betweenness centrality  
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can aid us in selecting one such vertex. Betweenness centrality CB, is based on the idea that a 

vertex is central if it lies between many other vertex pairs, in the sense that it is traversed by 

many of the shortest paths connecting the vertex pairs. The betweenness centrality of vertex i is 

[40]: 
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where nj,k is the number of shortest paths between j and k, and nj,k (i) is the number of shortest 

paths between j and k that contain node i. 

 

Figure 25: An example for betweenness centrality. 

Figure 25 shows an example graph where in the size of the vertices represent their betweenness 

centrality. 
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4.1.4 Straightness centrality 

Straightness centrality CS, originates from the idea that the efficiency in the 

communication between two nodes i and j is equal to the inverse of the shortest path length δi,j 

[58]. The straightness centrality of node i is defined as: 
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where  is the Euclidean distance between nodes i and j along a straight line, and it adopts a 

normalization recently proposed for geographic networks [90]. This measure captures the extent 

to which the connecting route between nodes i and j deviates from the virtual straight route. 

,
Eucl

i jδ

4.1.5 Information centrality 

 

Figure 26: An example for information centrality. 
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Flow of information in a graph depends on how efficiently its vertices transfer 

information. It is believed that information/communication in a network always flows along the 

shortest path. The efficiency of communication between two vertices, say i and j, is inversely 

proportional to the shortest distance, δi,j, between them. The communication efficiency of the 

entire graph is defined as the average of efficiency values for all vertex pairs in the graph: 

E(G) =

1
δi, ji≠ j ∈V

∑
n ⋅ (n −1)

.
 

The value of E(G) is in the range [0, 1]. The information centrality measure is based on the 

concept of communication efficiency. It was introduced in [59], and relates the importance of a 

vertex to the ability of the network to respond to the deactivation of the vertex. The network 

performance, before and after a certain vertex is deactivated, is measured by the efficiency of the 

graph G [58, 60]. The information centrality of vertex i is defined as the relative drop in the 

network efficiency caused by the removal from G of the edges incident in i: 

Ci
I =

ΔE
E

=
E(G) − E( ′ G )

E(G)
,
 

where G′ is the network with n vertices and m-di edges obtained by removing from G the edges 

incident in vertex i. Notice that E(G) is finite even for a non-connected graph. Figure 26 shows a 

graph where the vertex size represents information centrality. 

4.1.6 Clustering co-efficient 

Watts and Strogatz [92] introduced this measure of centrality, as a method to determine 

whether or not a graph is a small world network. It has gained a lot of importance in recent years. 
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Another similar measure, transitivity (refer 1.2.4) was introduced as an alternative to clustering 

co-efficient by Newman along with Watts, and Strogatz [72]. Clustering co-efficient is used to 

measure the cliquishness of the neighborhood of a vertex. The clustering coefficient of a vertex i 

is defined as the proportion of edges that exist between the vertices within its neighborhood 

divided by the number of edges that could possibly exist between them. This can be formalized 

as: 

| | ,
( 1) 2

{( , ) : ( , )  & , ( )}
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Ei represents the set of edges (j, k) such that both nodes j and k are adjacent to node i.  

(a) (b) (c) 
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Figure 27: An example for clustering coefficient. 
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Figure 30 shows the clustering coefficient of the vertex i, with varying configurations. 

The blue vertices are neighbors of node i. The solid blue edges represent the edges between the 

neighbors of i and the dotted blue edges indicate possible edges between the neighbors of i. 

4.2 Centrality of a graph 

For all the centrality metrics described in the previous section, the centrality of the entire 

graph is defined as the mean of the centrality measures of all its nodes: 

C(G) =
Ci

v ∈V
∑

n
.
 

4.3 Community discovery using centrality measures 

In this section we propose a novel approach to discover communities by using the 

centrality values of the nodes. The centrality measures portray the importance or ranking of the 

vertices, whereas the community discovery algorithms deal with the importance or rank of edges. 

There have been a few algorithms where in a centrality metric for the vertices has been translated 

into an equivalent metric for the edges. One such approach is Newman’s edge betweenness 

metric (refer 3.3.2) derived from vertex betweenness. A recent paper by Fotunato [38] defines a 

new centrality metric for edges based on information centrality. The information centrality, C  

of an edge, e

i, j
I

ij is defined as the relative drop in network efficiency caused by the removal of eij 

from the graph. Let δ i, j  represents the shortest distance between vertices i and j then 
1

δi, j

 

represents the efficiency in communication between the two vertices and 
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E(G) =

1
δ i, ji≠ j∈V

∑
n ⋅ (n −1)

,
 

represents the efficiency of the entire graph. Now the information centrality of the edge ei,j is 

given by 

Ci, j
I =

ΔE
E

=
E(G) − E( ′ G )

E(G)
,
 

where, G′ represents the graph G with the edge ei,j removed. They use a divisive approach to 

extract the communities. The algorithm has a complexity of O(n4) for sparse graphs.  

4.3.1 Proposed approach 

Instead of translating the centrality metric to reflect the measure for an edge, I propose a 

method of utilizing the existing centrality definition to compute the importance of an edge in a 

given graph. It is evident that every edge contributes to the overall centrality value of the graph. 

This role of the edge is quantified as the importance of the edge. The importance of an edge, eij 

can be defined as the drop in centrality value caused by removal of the edge from the graph. The 

centrality of an edge, eij is given by 

Ci, j = C(G) − C( ′ G ), 

where Ci,j is the centrality of the edge, ei,j, C(G) is the centrality of the graph, G′ represents the 

graph with the edge ei,j removed and C(G′) is the centrality of the graph after removal of the edge 

ei,j . One could further normalize this value by considering the relative drop in efficiency caused 

by removal of the edge from the graph: 
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Ci, j =
C(G) − C( ′ G )

C(G)
.
 

Now we compute the centrality values for all the edges in the graph. We use a divisive algorithm 

and remove the edges in ascending or descending order of their centrality values. The 

components formed by removal of edges represent the underlying communities.  Algorithm 12 

represents a general template for an algorithm used to compute the centrality of the edges in a 

graph.  A is a adjacency matrix of size n ×  n with Ai,j = 1 when ei,,j ∈ E and Ai,j = 0 when ei,j ∉ E.  

The function NodeCentrality(A) computes the centrality values of the vertices of the adjacency 

matrix A and returns a one dimensional array C, of size n where Ci represents the centrality of 

vertex i. The function Mean(C) computes the mean value of the one the one dimensional array 

C. EC  is an adjacency matrix with  representing the centrality value of edge eEi, j
C

i,j.  

The method is not suitable for all centrality metrics, e.g., degree centrality cannot be used 

to obtain edge centrality values by using our approach. This is explained below: 

(a) (b) 
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Figure 28: (a) degree centrality of the nodes in the graph, (b) corresponding edge centralities. 
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EdgeCentrality(A) 

C = NodeCentrality(A) 

c = Mean(C); 

for i from 1 to n do 

 for j from 1 to n do 

  if Ai,j == 0 do 

   78

C    E j = 0; i,

  else 

   A′ = A; 

   A′i,j = 0 

   A′j,i = 0 

   C′ = NodeCentrality(A′) 

   c′ = Mean(C′); 

   = c - c′; Ei, j
C

  endif 

endfor 

endfor 

Algorithm 12: Computing centrality of the edges in a graph. 
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Every edge brings in 2 degrees to the graph and irrespective of the edge being removed 

the graph as a whole would loose 2 degrees. So the drop in centrality caused by the removal of 

any edge would be the same and the centrality of all the edges would be the same.  

We test the approach selectively on the following centrality metrics: 

1. Closeness centrality 

2. Straightness centrality 

3. Clustering coefficient 

4. Betweenness centrality 

As a benchmark synthetic graphs were generated as described by Girvan and Newman in [44]. 

Each of the generated graphs consists of 128 vertices divided into 4 communities of equal size. 

Edges were placed uniformly at random, such that each vertex on average has zin neighbors in the 

same community and zout neighbors outside. The average degree of the graph is kept close to 16. 

For the selected centrality metrics, the fraction of vertices that were classified correctly was 

measured by varying the number of inter-community edges per vertex from 0 to 16 while 

keeping the average degree constant. Each point on the graph is an average of 10 runs of the 

algorithm with the given specifications. Figure 29 shows the results obtained. Edge centrality 

measures obtained by using clustering coefficient were very efficient in detecting the 

communities. The algorithm was able to classify more than 95% of the vertices for zin ≥ 5, after 

which the accuracy reduces and only 40% of the vertices were correctly classified when zin = zout 

= 8. The edge centrality measures obtained using straightness centrality were next best in 

performance followed by the measures obtained using closeness and betweenness centrality.  
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Figure 29: Performance of community discovery using different centrality measures. 
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5. BIBLIOMETRIC APPROACH 

5.1 Inspiration 

The motivation for the current work is from bibliographic metrics, which are used to 

determine similarity between publications. There are two measures that have been used: 

bibliographic coupling and co-citation coupling. Given two documents, bibliographic coupling is 

defined as the number of publications that are cited by both the given documents [54] and co-

citation coupling is defined as the number of publications that cite both the given documents 

[85]. Combining the above two measures we obtain a unified metric that can be used to 

determine similarity between two nodes in a graph.  

 

Figure 30: (a) bibliographic coupling (b) co-citation coupling. 

5.2 Bibliometric similarity 

The bibliometric similarity between two nodes u and v in a graph G is given by:  
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| N[u]∩ N[v] |
min(du,dv ) +1

, 

where N[u] refers to the closed neighborhood of node u and du refers to its degree. In simple 

terms we rate the similarity between two nodes in a network by the number of common 

neighbors they share. The more the number of common neighbors, the better the similarity. 

Algorithm 13 can be used to compute the bibliometric similarity between all pairs of 

nodes in the graph. The input to the algorithm is a graph G.  Nu,v represents the overlap in the 

closed neighborhood of nodes u and v and du represents the degree of the node u. The output of 

the algorithm is a matrix S, where an entry Su,v would represent the similarity between nodes u 

and v. Given a graph G of order n we compute the measure of similarity between every pair of 

nodes in the graph using the above approach. Once the similarity between pairs of nodes in the 

graph has been defined we can use an agglomerative or divisive approach to extract the 

communities in the network.  

One of the main drawbacks of the agglomerative algorithms developed so far is that they 

classify pendent nodes as separate communities [44]. This is because the similarity metric used is 

some global property like number of paths or number of node/edge independent paths between 

node pairs. As a result this value is low for edges connecting pendent nodes to the rest of the 

graph. This drawback could be overcome by using local measures of similarity like the one 

introduced above. Also, by using an agglomerative approach rather than a divisive one, we 

would be able to recognize communities in graphs like bipartite graphs where there are no edges 

between nodes of the same community. 

   82



 

 
BibliometricSimilarity(G) 

for u from 1 to n do 

 for v from 1 to n do 

    Nu,v = 0 

  endfor 

 endfor 

for i from 1 to n do 

 di = 0 

 for j such that ei,j ∈ E do 

    di = di + 1 

   Ni,j = Ni,j + 2 

  endfor 

 endfor 

for u from 1 to n do 

 for v from 1 to n do 

  for w such that eu,w ∈ E and ev,w ∈ E do 

     Nu,v = Nu,v + 1 

    Su,v =
Nu,v

min(du,dv ) +1
 

     endfor 

    endfor 

   endfor 

Algorithm 13: Bibliometric similarity between all pairs of nodes. 
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Next we test our algorithm on a number of computer generated and real-world graphs that 

are considered as benchmarks. 

5.3 Performance on computer generated models 

Computer-generated networks: Graphs with known community structure were generated as 

described by Girvan and Newman in [44]. Each of the generated graphs consists of 128 vertices 

divided into 4 communities of equal size. Edges were placed uniformly at random, such that each 

vertex on average has zin neighbors in the same community and zout neighbors outside. The 

average degree of the graph is kept close to 16. Our algorithm was tested on these graphs and the 

fraction of vertices that were classified correctly was measured by varying the number of inter-

community edges per node from 0 to 16. The algorithm correctly classified up to 90% of the 

vertices in graphs with zout ≤ 6 and close to 70% of the vertices in graphs with 6 < zout ≤ 8. For 

graphs with zout > 8, each vertex on average has more neighbors outside the community than 

inside and the graphs no longer posses a well defined community structure. Our results are 

summarized in Figure 31. 



 

 

Figure 31 : Performance on computer-generated models. 

 

5.4 Performance on real-world networks 

 

Figure 32: The Zachary Karate Club Network. 
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The Zachary Karate Club network: The karate club network is a social network consisting of 34 

vertices representing people from a karate club at an American university and edges representing 

friendships between them. Zachary [96] who was studying the social interactions between the 

members of the club compiled this network. During the course of the study a dispute between the 

administrator of the club and the instructor of the club resulted in the split of the club into two. 

The instructor opened another club with about half the members from the original club. The 

karate club network is shown in Figure 32, the square vertices indicate the instructors group and 

the round vertices indicate the administrators group. We apply our bibliometric approach to the 

karate club network to identify the factions in the club. The dendrogram in Figure 33 shows the 

communities as discovered by our algorithm. All the nodes in the two groups were classified 

correctly except for the nodes, 10 and 28 which were not classified into any community.  

 

Figure 33: Communities identified in the Zachary Karate Club Network. 
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The Football team network: Girvan and Newman in [44] first studied the community structure of 

the football team network. This network represents the regular schedule of the Division I college 

football games for the year 2000 and consists of 115 nodes. The nodes in the network represent 

teams and the edges represent matches between them. Out of the 115 teams 110 were divided 

into 11 conferences and the remaining 5 were not classified into any conference. Each team on 

average played seven intra-conference games and four inter-conference games during the season. 

Moreover the inter-conference games were not uniformly distributed with more games being 

played between teams that are geographically close to one another than with teams that are 

further apart. Applying our algorithm to this network we were able to extract the conference 

structure of the network with high precision. Our results are shown in Figure 34 by means of a 

dendrogram. Labels in the dendrogram represent the name of the team followed by the 

conference number to which they belong. The teams that did not belong to any conference 

(represented by conference number 5 in the Figure 34) ended up with the conferences with which 

they were closely associated. For certain teams the network structure did not portray the 

conference structure and these teams ended up being misclassified, which was anticipated. For 

example the Texas Christian team belonging to conference 4 played majority of their games with 

teams belonging to conference 11.   



 

 

Figure 34: Communities identified in the College Football Network. 
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The Santa Fe Institute collaboration network: Next we test out algorithm on a scientific 

collaboration network consisting of scientists from different disciplines at the Santa Fe Institute. 

Girvan and Newman in [44] studied the community structure of this network.  The vertices of the 

network represent scientists from the Santa Fe Institute and an edge is drawn between two 

vertices if the corresponding scientists have coauthored at least one publication during the 

calendar year 1999 or 2000. On average each scientist coauthored articles with approximately 

five others. The actual network consists of 271 vertices, but here we study the largest component 

of the network consisting of 117 vertices as the community structure of the former was not 

available for verification of results. Figure 35 shows the structure of the collaboration network 

with different vertex shapes indicating different disciplines of research. The entire network could 

be broken down into four major components and a few of these could be further divided. The 

vertices represented by squares represent the community of scientists working primarily on the 

structure of RNA. The vertices represented by triangles, inverted triangles, crossed and circled 

squares represent scientists working on statistical physics and can be further subdivided. The 

vertices in diamonds represent the scientists working on the mathematical models in ecology and 

the ones in dotted diamonds represents the group of scientists using agent-based models to study 

problems in economics and traffic flow. Application of our algorithm to this collaboration 

network identifies all the major communities in the network. Our results are shown by means of 

a dendrogram in Figure 37. The communities representing scientists using agent-based models 

and the ones working on mathematical ecology seem to be classified as a single community. 

Further divisions within the scientists working on statistical physics are also visible. 



 

 

Figure 35: The largest component of the Santa Fe Institute collaboration network. 

Roget’s thesaurus: To put the algorithm to further testing we test our approach on the Roget's 

thesaurus network, which consists of 1022 vertices each representing one category in the 1879 

edition of Peter Mark Roget's Thesaurus of English Words and Phrases, edited by John Lewis 

Roget [83]. A directed edge is drawn between two vertices u and v, if Roget gave a reference to 

the category represented by vertex v among the words and phrases of category represented by 

vertex u. 

Applying our algorithm to this lexical network resulted in division of the entire network 

into a number of small communities. Each community consisted of words that were closely 

related. A few of these communities have been listed in Figure 36. 

   90



 

   91

 
uniformity 
agreement 
conformity 
concurrence 
cooperation 
concord 
peace 
Assent 

velocity 
haste 
earliness 
instantaneity 
transientness 
present-time 
different-time 
time 
period… 

heat 
thermometer 
furnace 
refrigeratory 
refrigeration 
cold 
calefaction 
investment 
covering… 

untruth 
falsehood 
misteaching 
deception 
cunning 
misinterpretation
ambush… 

clergy 
churchdom 
belif 
thoelogy 
orthodoxy 
irreligion 
idolatory… 

color 
ugliness 
ornamentation 
deterioration 
blemish 
beauty 
simplicity… 

Figure 36: A few communities identified in the Roget's thesaurus network. 



 

 
Figure 37: Communities identified in the largest component of the Santa Fe Institute 

collaboration network. 
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6. COMMUNITIES IN LARGE NETWORKS 

6.1 Requirement 

Most of the real world networks of interest e.g. World Wide Web, Internet, social 

networks, etc. are enormous in size, varying from a few thousand vertices to a few billion. 

Extracting communities in such networks would help us in mining valuable data concealed by 

their topology. Algorithms seen so far are computationally expensive with cubic and quartic time 

complexities. Scaling the existing community discovery algorithms to the size of these networks 

is a very challenging task. There have been very few publications in this direction. Clauset et al. 

came up with a hierarchical agglomerative algorithm specifically for large graphs [28]. Their 

algorithm has a runtime complexity of O(n log2n) . Wu and Huberman came up with a modified 

resistor network algorithm with a complexity of O(n log n) [95].   However, the algorithm 

requires apriori knowledge about the network and the output contains only a bisection of the 

input graph into roughly equal size communities. Newman suggests a O(n2) algorithm which is 

based on modularity maximization [68]. Modularity is a value that rates the goodness of the 

extracted communities (refer Section 8.3).   

A part from scaling to the large size of these networks the algorithm has to satisfy a few 

other properties: 

• Low storage requirements: The algorithm should employ data structures that require 

roughly O(m)  storage.  
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• Adapts to the available memory: The algorithm should make effective use of the 

available memory.  

• Parallelizable: For massive graphs, one must be able to distribute work among 

several processors with low overheads. 

6.2 Proposed algorithm 

In this section we propose a new approach built on the earlier bibliometric algorithm. We 

use a slightly modified adjacency list to satisfy the low storage requirements.  The first member 

of the adjacency list of every vertex is the vertex itself. This helps us in computing the 

intersection of the closed neighborhood of the vertices as required by the bibliometric approach. 

One option programmer’s use very often while dealing with sets is to use a bit array of size n, 

where setting the ith bit marks its membership. The intersection of two sets could now be 

obtained by computing the bitwise-AND of the two bit vectors. This method is very effective 

while dealing with small values of n. Unfortunately this method requires O(n2) space. We instead 

use a hash table to compute the intersection. The set of vertices belonging to the closed 

neighborhood of the first vertex are at first inserted into the hash table. The vertices belonging to 

the closed neighborhood of the second vertex are then looked up in the hash table. If the result of 

the lookup indicates the presence of a node, we increment a counter that counts the size of the 

intersection. One could also compute the degree of the vertices in the same iterative loop while 

performing insertions and lookups. 
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Repeating this operation with the end vertices of all the edges in the graph helps us 

compute the bibliometric similarity of all adjacent vertex pairs. The algorithm requires O(m) 

storage for its adjacency list. Every iterative loop computing the intersection would require a 

maximum of O(n) storage depending on the implementation of the hash function. The algorithm 

is also easily parallelizable to deal with very large graphs. 

Algorithm 14 gives a more detailed description of the approach. After computing the 

similarities, using the divisive approach to extract the communities would require a complexity 

of O(m log m). So we use a different approach with a lower time complexity. After obtaining the 

bibliometric similarity of all the edges we use a predefined threshold value, τ where 0 ≤ τ ≤ 1, and 

eliminate all the edges from the graph with similarity value lower than the threshold, τ. Now the 

components formed by the remaining edges in the graph constitute the extracted communities. 

Determining the right threshold value would be a challenge, but it has been observed that the 

threshold values that produce good results remain more or less constant for a given type of the 

input network. This result is yet to be verified.  



 

 

FasterBibliometricSimilarity(G) 

for every eu,v ∈ E do 

 du = 0 

 dv = 0 

 Nu,v = 0 

 hashTable.initialize() 

 for every k such that eu,k ∈ E do 

  du = du + 1  

hashTable.insert(k) 

 endfor 

 for every k such that ev,k ∈ E do 

  du = du + 1 

  if hashTable.lookup(k) do 

   Nu,v = Nu,v + 1 

  endif 

 endfor 

 Su,v =
Nu,v

min(du,dv ) +1  

endfor
 

Algorithm 14: Faster algorithm to compute bibliometric similarity. 
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6.2.1 Complexity analysis 

This section analyzes the computational cost of the algorithm. The algorithm has two 

main loops. One loop iterates over all the edges in the graph and the other iterates over the 

vertices in the closed neighborhood of a vertex. The second loop computes the size of the 

intersection of the closed neighborhoods by performing operations on a hash table. The hash 

table was chosen because it allows for insertion and lookup in constant time. Computing the size 

of the intersection first involves inserting the vertices from the closed neighborhood of one of the 

end points of the edge into the graph. There can a maximum of Δ vertices in the closed 

neighborhood and with constant time insertions, this would take O(Δ) time. The next step 

involves looking up the hash table with vertices in the closed neighborhood of the other end of 

the edge.  There can be a maximum of Δ such lookups and with constant time lookups, this 

would take O(Δ) time.  The outer loop iterates over all the edges in the graph, hence has a 

complexity of O(m). The overall complexity of the algorithm is  

= O(m (Δ + Δ)), 

= O(m Δ). 

For a sparse graph (m ≈ n) computing the bibliometric similarities of all the edges can be 

done in O(n Δ) time.  

6.3 Results 

We test our algorithm on Newman’s synthetic graph with 16384 vertices divided into 32 

communities of equal size with zin = 32 and zout = 8.  Figure 38 shows the outputs obtained for various τ 
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values. For τ = 0.125 close to 92% of the nodes were correctly classified. The main drawback of this 

algorithm is that it requires priory knowledge about the good τ value for a given network. 



 

 

  
τ = 0.06 τ = 0.08 

  
τ = 0.09 τ = 0.125 

Figure 38: Output for various threshold values. 
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7. UCFBOT CRAWLER 

7.1 Introduction 

In this chapter we describe the architecture and implementation details of the robust, fault 

tolerant UcfBot crawler developed by myself and Cami. This crawler is the part of a project 

aimed at collecting a huge and suitable data set for our experiments. By definition, a web 

crawler, also known as a spider, wanderer, bot, or robot, is a program that downloads a seed 

page from the World Wide Web, extracts the hyperlinks contained in that page, and then 

downloads the pages those hyperlinks refer to, extracts the hyperlinks in those pages, and repeats 

this process recursively. Crawlers are most commonly used for web indexing, information 

retrieval, HTML validation, hyperlink validation, monitoring for changes in a website, mirroring, 

etc. The initial crawlers had to deal with a considerably smaller size of the web; however today 

the web spans a few billion pages and all the existing search engines put together index about 

50% of the web [ ]. 

The UcfBot crawler is designed to capture the link structure of the World Wide Web in 

the form of a graph although it could be easily extended to perform other operations. During its 

implementation emphasis was paid to make the crawler efficient and fault tolerant. In the case of 

a crash, one can restart the crawl without losing considerable amounts of accumulated data. The 

current version of the crawler includes a configuration file, which is primarily used to specify 

options like the seed set, pages not to crawl, domains to avoid, time interval between successive 

requests to the same web server, etc.  
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Let’s go over a few terminologies and definitions that define the characteristics of a 

crawler: a batch crawler is one which crawls for pages periodically, an incremental crawler is 

one which crawls for pages all the time and tries to keep the collection of pages fresh by 

frequently crawling pages that change more often, a scalable crawler is one whose speed and 

performance is unaffected if the size of the web increases, a polite crawler is one that does not 

overwhelm the document server with requests and avoids indexing certain links which are not 

supposed to be indexed, a fault tolerant crawler is one which can withstand / overcome a system 

crash, an extensible crawler is one which can be extended to perform other functions apart from 

what it has been designed for and a portable crawler is one which can be run on many different 

platforms.  

7.2 The Crawling Algorithm 

A very simple crawler can be written with a few lines of code. However, when one needs 

to crawl a significant portion of the Web—i.e., hundreds of millions of web pages—the task 

becomes challenging. Let’s look at a straightforward crawling procedure:   
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Crawl(S)   

urlsEncountered = S;   

urlsToVisit = S;   

while ! urlsToVisit.isEmpty() do 

url = urlsToVisit.getNext();  

ip = DNSlookup(url.getHostname());    

page = downloadPage( ip, url.getPath());  

newUrls = parseForHyperLinks(page);  

for all newUrls do  

if newUrl.isRelative() then 

newUrl = newUrl.makeAbsolute();  

end if 

if ! urlsEncountered.contains(newUrl) then 

urlsToVisit.insert(newUrl);  

urlsEncountered.insert(newUrl); 

end if 

end for  

end while 

Algorithm 15: Template for a crawling algorithm. 
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This procedure begins by initializing the set urlsEncountered (URLs that are known to 

the crawler) and the set urlsToVisit (URLs that are yet to be crawled) to the seed, S. The seed 

would preferably be the URL of a web page which contains many hyperlinks—e.g., the home 

page of an organization—or it could also be a set of URLs. Next, a URL from the set urlsToVisit 

is extracted using the getNext() function. In order to download the web page being pointed to by 

this URL, one has to obtain the IP address of the server which holds the document. This is done 

by contacting a server running the Domain Name Service (DNS) which would convert the 

domain name to an IP address. Now, the web server where the page resides can be contacted and 

the web page requested for download. After the web page is downloaded, it is parsed in order to 

extract the hyperlinks pointing to other web pages. The extracted URLs which are found to be 

relative, e.g., ../../somepage.html, are converted into absolute format, e.g., 

http://somedomain/somepath/page.html. Afterwards, the procedure checks whether the web 

pages being pointed to by the newly discovered URLs have been previously crawled. This is 

achieved by searching the set urlsEncountered. If a URL is found in urlsEncountered, it is 

discarded, if not it is added to the urlsToVisit and urlsEncountered data structures. This process 

is repeated until the set urlsToVisit becomes empty or the crawler stops based on some other 

condition.  

The just described procedure is deceptively simple. As we will see in the following sections, 

numerous issues arise when trying to scale up. 
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7.3 Related Work 

Though there has been considerable amount of work in this area the most efficient 

crawlers that are built are used by commercial organizations and the details of their 

implementation are not readily available. However the design of a few of these crawlers has been 

made public. Web crawlers are as old as the web itself, the first web crawler was written by 

Matthew Gray in 1993 [46] for measuring the growth rate of the web. Most of the recent high 

performance crawlers are used by search engines to build large search indexes. These crawlers 

use multiple machines to scale up to the size of the web; based on this aspect the crawlers could 

be classified to be homogeneous and heterogeneous. A homogeneous crawler is one in which all 

the parallel subsystems of the crawler perform the same task, such crawlers can be easily scaled 

up, on the other hand heterogeneous crawlers are the ones in which each of the parallel 

subsystems performs a different task. Let us briefly look into the designs of a few of these 

crawlers in chronological order.  

GoogleBot: Was written by Brin and Page as a part of their new search engine “Backrub”. 

Although the design and working of the most recent Google crawler is a well-kept secret, their 

initial crawler has been described in [14]. The crawler was written in C++/Phython and 

performed both crawling and indexing of web pages simultaneously. The main purpose of this 

project was to introduce a new ranking strategy for web pages which would determine the order 

in which the search results would be displayed. The GoogleBot possesses a heterogeneous 

architecture. Apart from crawling and indexing the web the GoogleBot also stored compressed 

form of web pages in its huge database.  
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Incremental Crawler: The incremental crawler was written by Cho and Garcia-Molina and its 

implementation details can be found in [22]. As the name implies the main goal of this crawler 

was to download a copy of the web and then try to keep this copy fresh by downloading only 

pages which would change over the given time. This reduces the number of pages that required 

to be downloaded. Cho and Garcia-Molina along with Page have also worked on scheduling 

algorithms that determine the best order in which the pages have to be crawled to obtain the 

important pages first [23].  

Mercator: The Mercator crawler is another high performance crawler written by Najork and 

Heydon and its implementation is described in [65]. This crawler was later used by the AltaVista 

search engine. The crawler was written entirely in JAVA and has a homogeneous architecture. 

The main features of Mercator are that it’s distributed, scalable, efficient, polite and portable.  

Webfountain: Developed by Edward, McCurley and Tomlin for IBM [33].  

All the above mentioned crawlers use multiple machines and try to scale up to the current size of 

the web. Cho and Gracia-Molina [24] describe the issues that need to be addressed in parallel 

crawling.  

7.4 UcfBot Architecture 

In order to be of any use, a crawler has to deal with numerous issues arising from the 

enormousness of the Web. First, it has to be very fast. For instance, it is believed that Google—

which indexed more than 8 billion web pages as of 2005—indexes the web once every month (a 

process known as the Google “dance” [86]), i.e., at the rate of approximately 3000 pages per 



 

second. Apart for achieving such high speed, crawlers are expected to follow a certain etiquette 

and be polite during the crawl. These and other issues make crawling a complex endeavor. 

 Next, we describe the architecture of UcfBot, focusing mainly on the performance issues 

mentioned above. UcfBot crawler consists of 6 main components: (1) the urlsToVisit data 

structure; (2) the DNS lookup module for obtaining IP addresses; (3) the  pageFetch module for 

downloading pages; (3) the Parser module for extracting hyperlinks; (4) the urlsEncountered 

data structure; and (6) Checkpointing module for restoration of the system in the event of a 

failure. Figure 39, shows these components and interactions among them. 
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Figure 39: The architecture of UcfBot. 

Now, we describe each of these components in detail.  
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7.5 urlsToVisit Data Structure 

The urlsToVisit data structure holds the set of pages that are yet to be crawled. It 

provides 2 important functions urlsToVisit.insert(URL) and urlsToVisit.getNext() for inserting 

newly found hyperlinks and obtaining the next URL to crawl. Initially it would hold the seed S, 

during each step of the crawl one URL is removed from the set using the getNext() function. The 

getNext() function determines the order in which the URLs would be crawled. If one wants to 

crawl the entire web without any bias this order would not matter but if one wants to retrieve a 

subset of the web and wants to do it fast, a number of options are available, for example:  

• Breadth first traversal  

• Depth first traversal  

• Best first traversal  

Breadth first traversal and depth first traversal would not require much explanation. If 

breadth first traversal is employed then the urlsToVisit data structure would be implemented as a 

queue and if depth first traversal is employed then the urlsToVisit data structure would be 

implemented as a stack. For topic-based crawling breadth first traversal is said to yield better 

results [64]. The best first strategy refers to the ordering of the URLs based on some priority 

scheme, for example, using Page Rank as described by Google [75], or based on the number of 

hyperlinks coming out/pointing to the page. The data structure used is a priority queue. The 

urlsToVisit.insert() function would determine the priority of the URL and insert it at the 

appropriate position in the queue where as urlsToVisit.getNext() function would remove the first 

URL from the queue.  



 

Though the above ordering schemes are straightforward, we need to make sure that the 

crawler performs the crawl in a polite manner. By polite we mean not bombarding a server with 

requests. Placing one request every 4 seconds to the same server is considered to be polite, so the 

urlsToVisit.getNext() function should return URLs from different domains during consecutive 

calls. One way of achieving this is to use multiple queues, as shown in Figure 40.  

  

Figure 40: Implementation of the urlsToVisit data structure. 

Number of queues used k > 4 × crawling rate. The urlsToVisit.insert() function would insert the 

set of URLs from the same domain into the same queue by using a hash function or a checksum 

on the domain names and the urlsToVisit.getNext() function would remove one URL from each 

queue in a round robin fashion.  
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urlsToVisit.insert(URL)  

queue = URL.hashDomain()% k 

insertin(queue, URL)    

Algorithm 16: To insert an URL to the queue. 

 
urlsToVisit.getNext()  

counter++ 

queue = counter % k   

while getTimeStampOf(queue) + 4 < currentTime &&   

   getTimeStampOf(queue) !=  ∅ do 

queue = (queue + 1) % k 

endwhile 

URL = getNextFrom(queue);  

if getNextDomain(queue) == URL.getDomainName()  then 

timeStamp(queue) = currentTime 

else 

timeStamp(queue) =  ∅ 

    endif 

return URL;    

Algorithm 17: To obtain the next URL from the queue. 
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Each queue has a time stamp associated with it which is updated when a URL is removed from 

the queue and the next URL from the queue is from the same domain as the current URL, if not 

the time stamp is made null. For each fetch from a queue the urlsToVisit.getNext() function 

checks the time stamp to see if its null or the previous fetch from this queue was done before 4 

seconds. Due to high domain locality, URLs being extracted from a page would be of the same 

domain and would end up in the same queue but, as the urlsToVisit.getNext() function would 

access different queues for each step, the above requirement is met. This method is similar to 

what was implemented on the Mercator [50]. Castillo et al. survey various scheduling algorithms 

for crawling in [19]. Any computer system has finite amount of memory and the urlsToVist data 

structure would grow at a high rate that would require storing a major portion of the queue on 

disk. Only a fixed portion of the queue would be held in memory. Inventory is performed at 

regular intervals and data is retrieved from disk or the tail portion of the queue, which was 

accumulated, is written to disk as required.  

7.6 DNS Lookup module 

The UrlsToVisit data structure contains the URLs that are to be crawled. But in order to 

request from a web server the web page that is pointed to by an URL, one has to convert the 

domain name encapsulated in the URL into an IP address. This is the job of the Domain Name 

Service (DNS) Lookup module.  

Every Internet Service Provider (ISP) provides a DNS server to its customers.  Using this 

server would require a DNS lookup to be first sent to the DNS server and resolved before a page 

may be requested. For browsing the Web this might not be a big delay but for a crawler this ends 
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up being a bottleneck. The DNS system is not very complex and can be run on a moderate PC 

with 256 MB of RAM and a disk cache of few gigabytes. Running the DNS on a machine in the 

local network would reduce considerably the amount of time needed for the DNS lookup. 

However, most of the available implementations of DNS clients, e.g. BIND3, gethostbyname() 

(the DNS client API), are synchronous, implying that only one call can be placed to the DNS 

server at a given instance; the next call could be placed only after the results of the previous call 

have been obtained. Needless to say, synchronous access to a DNS server is prohibitively time 

consuming for a crawler. Most of the existing crawlers implement their own custom client for 

DNS resolution, capable of handling parallel calls asynchronously.  

The DNS lookup module of UcfBot has asynchronous access capability achieved through 

adns—a DNS client library for the C/C++ languages [51]. This would enable the pre-fetching of 

the IP addresses corresponding to the URLs waiting to be visited, by submitting multiple DNS 

requests in parallel. 

7.7 Page Fetch 

After resolving the ip address of a server a socket connection is open with the http server 

to obtain a page. Each server would respond to this request in a different manner at various 

speeds. A few of these servers could be nonexistent or be very slow to replying. Performing this 

operation synchronously (waiting for completion of one request before placing the next) could 

seriously reduce the speed of the crawler. This is overcome by using multiple threads or 

processes. Each thread opens a socket connection to one http server and is responsible for 

 
3See http://www.isc.org 



 

obtaining one page. The requests could be blocking or non-blocking. Managing the threads 

becomes difficult if one were to allow infinite amount of threads, instead most crawlers have 

fixed number of threads, which obtain individual URLs to crawl from the urlsToVisit module. 

Some people prefer using processes instead of threads because failure of one process would not 

affect the state of other processes. The drawbacks of the above approach are: need for mutual 

exclusion and concurrent access to data structures which is a performance penalty and the 

threads/processes cause random input-output on disk resulting in slow disk seeks.  

7.8 Parser 

The Parser module takes as input an HTML file generated from the PageFetch module, It 

extracts from it, all the hyperlinks, filters them based on the specifications given in a 

configuration file. An URL object is created for each hyperlink that passes through filtering and 

returns these URL objects to the main thread of the control.  
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Figure 41: The architecture of the Parser module. 
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Figure 41 is a schematic representation of the Parser module. Two options are available 

when implementing a parser module with the functionality described above. First, one may 

develop a parser from scratch, possibly using tools such as Lex and Yacc. An example of such a 

parser is the custom-built parser of the Google bot, which is developed on top of a lexical 

analyzer [15] (it has been claimed that although the parser is very effective, its development was 

a very time-consuming effort). Second, one could build the parser based on one of several 

existing of-the-shelf HTML parsers.  

Following the latter approach, the UcfBot parser is built on top of the libwww library—a 

large C/C++ library developed by the World Wide Web Consortium (W3C). The main advantage 

of using libwww is that this library has been tested in numerous real applications and its parsing 

engine is very fast. The main shortcoming of this library is the lack of proper documentation, 

which makes the integration of the library with the rest of the crawler a challenging task.  

Next, we describe briefly the functionality of libwww that is utilized by UcfBot and give 

additional details on the various parts of the parser. 

7.8.1 libwww library 

In the web site of the libwww library [73] it is stated that: 

“…libwww is a highly modular, general-purpose client side Web API written in C for 

Unix and Windows (Win32). It's well suited for both small and large applications, like 

browser/editors, robots, batch tools, etc. Pluggable modules provided with libwww 

include complete HTTP/1.1 (with caching, pipelining, PUT, POST, Digest 

Authentication, deflate, etc.,) MySQL logging, FTP, HTML/4, XML (expat), RDF 
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(SiRPAC), WebDAV, and much more. The purpose of libwww is to serve as a testbed 

for protocol experiments…” 

As stated in this excerpt, libwww is a versatile library providing functionality than goes 

much beyond parsing. The programming model of this library is event-based: whenever a 

hyperlink is detected in the input HTML stream, a user-defined function that takes this hyperlink 

as a parameter, is called. The parser of UcfBot uses several utility functions provided by the 

libwww API to perform post-processing on the extracted hyperlinks: First, all relative links are 

converted to the absolute format. Second, each absolute hyperlink is broken into the following 

parts: (1) the access method, such as http, https, etc.; (2) the domain name, e.g., www.ucf.edu; 

(3) port number, e.g., :80; and (4) path name, e.g., somefile.html. All these different fields are 

packed into a URL object and the list of all such objects is passes to the filtering procedure 

described below. The part of the libwww API utilized by the UcfBot is represented inFigure 39 

by the GetNextLink procedure.  

7.8.2 Removing duplicates 

All URL objects returned by the GetNextLink procedure are inserted into a hash table in 

order to ensure that there are no duplicates. This operation is represented by the Insert procedure 

in Figure 39. 
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7.8.3 Robots META Element 

The META element of an HTML file provides metadata, such as a document's keywords, 

description, author information, etc. The Head of an HTML document may contain any number 

of META elements.  

The Robots META element is used to provide directives to robots crawling an HTML 

page. These directives can tell a robot whether this HTML page is to be indexed and whether its 

hyperlinks may be followed. For instance, the element: 

<META NAME=”robots” CONTENT=”noindex,follow”>

specifies that the page may not be indexed, but its hyperlinks may be followed. 

As mentioned earlier, UcfBot does not do any indexing of the visited web pages and thus 

its parser searches only for the follow/nofollow directives. This information is returned to the 

main thread of control through a flag, represented by the “META Follow Flag” in Figure 39. 

7.8.4 Filtering 

Only a fraction of the hyperlinks found in a web page would point to other web pages. 

Another fraction of these hyperlinks may point to scripts such as .cgi, .asp, and .exe files,  to 

application-specific files such as .doc, .pdf, or .ppt files, to images, etc. The rest of the hyperlinks 

might contain access schemes such as mailto and gopher, which are not of interest when 

extracting the graph structure of the Web. 
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The filtering procedure aims to detect and filter out all the hyperlinks that don’t point to 

HTML files. This function of this procedure is controlled by a configuration file, which has the 

format shown below: 

#ALLOWED EXTENSIONS: 

htm html asp aspx php php3 php4 pl 

#FORBIDDEN EXTENSIONS: 

js jsp dwt lbi css cfm jsp png cfml mspx gif avi jpeg jpg tiff tif mpeg midi pdf 

At the onset of each crawl, the parser reads the information contained in this 

configuration file into a data structure. This filtering information is subsequently used during the 

whole crawling process. The list of URLs that pass through the filter is passed to the main thread 

of control, as shown in Figure 39. 

7.9 urlsEncountered Data Structure 

The list of URLs that have been crawled is stored in the urlsEncountered data structure. It 

provides 2 main functions urlsEncountered.insert(URL) and urlsVisited.contains(URL) for 

inserting URLs and checking for duplicate URLs. One could store the entire hyperlink or just its 

checksum/hash value. As different URLs are of different sizes it would make sense if we could 

just store the checksum/hash values, but if we are required to crawl the same page twice (for 

refreshing) then we have no other choice but to save the entire URL. The main purpose of this 

data structure is to avoid crawling the same page over and over again, once a hyperlink is found 

its URL has to be compared to all the URLs that have been already encountered to avoid 

duplication. A real bad implementation would store the entire URL strings in a list and compare 
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the new URL sequentially with this list. This might be time consuming, one improvement would 

be to use a sorted list and perform binary search but a still better implementation would store just 

the checksum/hash values of the URL and when a new URL is encountered we can perform a 

binary search using the checksum/hash value of the new URL. The MD5 hash algorithm would 

again be of great use at this point. As explained before we can store a list of a billion URLs on 16 

GB of memory. As this list has to be kept in a sorted manner, each urlsEncountered.insert(URL) 

function call would take O(log n) time, which is not a lot considering that each 

urlsEncountered.contains(URL) function call would also take the same time. Using a small 

buffer to hold the most recently crawled URLs in main memory we can first try to check if a 

newly found URL is present in the buffer; if found the new URL is discarded, if not we can store 

all such URLs in another temporary sorted list until it grows to a considerable size and then try to 

check for duplicates (this is effective because of the high domain locality of the URLs). This 

kind of batch processing can be well tuned by trying different buffer sizes for different size of 

the temporary list.  

7.10 Checkpointing 

A typical crawl of the web usually lasts for days, if the system were to crash, say after 20 

days of operation then all the data collected till then would be lost and the crawler has to start its 

crawl from the seed again. Checkpointing is a way of storing the data that has been collected 

along with the current state of the system onto the disk. Checkpointing could be done 2 or 3 

times per day and in the event of a crash the system can be restored back to a state, as during it 

last checkpoint. Since we have stored the state of the crawler on disk this information can be 
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used to start the crawler from that point onwards. Though checkpointing would reduce the speed 

of the crawler momentarily it would be of great help in the event of a system failure.  

The checkpointing operation involves backing up of the two main data structures the 

urlsEncountered which stores the list of URL’s that are known to the crawler and the urlsToVisit 

which stores the list of URL’s that are to be crawled next. The checkpointing operation is 

performed after crawling some fixed number of pages. During checkpointing the regular 

crawling is paused momentarily while the data is backed up on disk. The checkpointing is done 

as an incremental operation in the case of urlsEncountered data structure. By incremental we 

mean that the current checkpointing operation would backup data that has been freshly obtained 

after the previous one. The incremental backup is not of much help in the case of urlsToVisit 

datastructure because of its dynamic nature. The data once backed up is also compressed using 

gzip.  

In the event of a crash the crawler config file can be used to restore the crawler to the last 

checkpoint, that was performed.  

7.11 A Polite Crawler 

Unsupervised crawling raises numerous ethical issues. UcfBot abides by the generally 

accepted ethics for crawlers. First, it identifies itself to each Web server it visits, so that the 

administrator of that server would know whom to contact in the event of a server crash. 

Furthermore, it takes care to avoid denial-of-service (DOS) attacks and to follow the robot 

exclusion protocol. 
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7.11.1 Avoiding DOS attacks 

Frequently, the number of simultaneous connections to a web site is limited. Requesting a 

large number of documents from the same server in a very short time span might lead to a denial-

of-service attack. A widely accepted rule aiming to prevent such behavior on the part of the 

crawler is to allow a time lapse of at least 4 seconds between successive requests to the same 

server. UcfBot implements this delay mechanism through the round-robin access to the queues 

that make up the urlsToVisit data structure, as explained in Section 7.5. 

7.11.2 Robot Exclusion Protocol and META elements 

The robots.txt4 file is used by web site owners to indicate certain parts of a web site that 

should not be crawled or indexed. This file may also indicate the names of certain crawlers to 

whom the domain is not open.  

When it accesses a new domain, say http://www.ucf.edu, UcfBot first attempts to access 

the page http://www.ucf.edu/robots.txt, which would be the location of robots.txt file for this 

domain. If such a file exists it is parsed into an array of records, which is then passed to the 

Parser module (see Figure 39). 

7.12 Mirroring 

The web contains many pages, which have the same content but different names. These 

duplicates are known as mirrors. Likewise, some organizations have several domains mapped to 

the same machine or several machines—each with a different IP address—mapped to a single 

 
4http://www.robotstxt.org/wc/robots.html

http://www.robotstxt.org/wc/robots.html
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domain.  In order to avoid indexing duplicates, it is desirable that a crawler has the capability of 

recognizing mirrors.  

A general solution to this problem of recognizing two pages that have the same content is 

to hash their respective contents and compare the hash values. The Message Digest 5 (MD5) [82] 

hash function is considered to be very effective for this purpose. Firstly, it can work on any 

arbitrary size string (in our case HTML source of a page) and return a 128 bit string. It is fast and 

claims that no two distinct strings can be mapped to the same hash value. The main advantage is 

that instead of storing the contents of the entire web page each of which could be several KB, we 

just store a 128 bit value to represent its content. That is to store the content of say a billion 

pages all we would require is 16 GB of memory space. By storing a part of this on main memory 

and the remainder on disk we can perform this operation efficiently. Bharat et al. [10] describe 

several ways of identifying mirror sites on the web. Currently, UcfBot does not implement any 

mechanism for detecting mirror web sites. 

7.13 Conclusion 

The current version of UcfBot was written in C++ and is multithreaded in operation. 

UcfBot along with a few extensions was used to collect the data used for studying the evolution 

of the www.ucf.edu web domain (see Chapter 2). The project has helped me realize the problems 

that are associated with crawling. The knowledge gained would be used in coding the next 

version of UcfBot which would be a parallel, high performance crawler coded in C++ capable of 

crawling hundreds of pages every second.  

 



 

 
Figure 42: Degree distribution of a small portion of www.ucf.edu domain. 

 

Figure 43: A snapshot of the network of the www.ucf.edu domain. 
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8. CONCLUSION AND FUTURE DIRECTIONS 

The primary objective of the current research is to devise fast algorithms for identifying 

communities in large real-world networks. There are several other problems associated with the 

community structure of networks, which need to be addressed. This section provides a summary 

of the current work and future work related to this area. 

8.1 Overlapping communities 

The existing methods for discovering/identifying communities in large networks find 

disjoint communities, while the actual networks are made of overlapping cohesive groups of 

vertices. For example a large fraction of proteins belong to several protein complexes 

simultaneously. Little effort has been made in this direction [8, 76].  

 

Figure 44: Overlap in communities. 
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8.2 New definition 

Section 1.3 provided insight into the existing definitions for community, the main reason 

for this ambiguity is due to the fact that none of the definitions capture the notion of a true 

community. For example the definition based on edge density, would fail to account for the two 

communities in bipartite graphs, both of which share no edges with members of their 

community. None of the definitions in Section 1.3 addresses the possibility of overlap among 

communities. We also believe that there exists a central core of nodes within each community 

that are true members of the community.   

To overcome these shortcomings, we propose defining a community of a node to be a 

vector of size |C| where C is the set of communities in the graph. The community of a node u, Cu 

= {c1, c2, …, c|C|}, where ci is a value between 0 and 1 that represents how much a node belongs 

to the community i and . A value of c1i
i

c =∑ i = 1 indicates total belonging of the node to 

community i, and a value of ci = 0 indicates that the node does not belong to the community i. 

Each community i would consist of at least one node with its ci = 1 and a central core of nodes 

with ci ≈ 1.  

8.3 Quality of communities 

Though we have numerous community-discovery algorithms we do not have a metric to 

measure the quality of communities produced. Without apriori knowledge of the true community 

structure of input networks, the goodness of communities obtained by a community 

discovery/identification algorithm cannot be judged. Newman and Girvan define a measure of 
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the quality of a particular division of a network called modularity [70]. This measure is based on 

a previous measure of assortative mixing proposed by Newman [66]. Consider a particular 

division of a network into k communities. Let us define a k × k symmetric matrix Č whose 

element Čij is the fraction of all edges in the network that link vertices in community i to vertices 

in community j. (Here they consider all edges in the original network—even after edges have 

been removed by the community structure algorithm their modularity measure is calculated using 

the full network.). 

 The trace of the matrix T(Č) = iii
C∑
(

gives the fraction of edges in the network that 

connect nodes in the same community, and clearly a good division into communities should have 

a high value of this trace. The trace on its own, however, is not a good indicator of the quality of 

the division since, for example, placing all vertices in a single community would give the 

maximal value of T(Č) = 1 while giving no information about community structure at all. To deal 

with this, Newman and Girvan define the row (or column) sums ai = ijj
C∑
(

, which represent the 

fraction of edges that connect to vertices in community i. In a network in which edges fall 

between vertices without regard for the communities they belong to, one would have eij = aiaj. 

Now, the modularity measure  

2 2( ) ( ) || ||ii i
i

Q C a T C C= − = −∑
( ( (

, 

where || X || indicates the sum of the elements of the matrix X. This quantity measures the 

fraction of the edges in the network that connect vertices of the same type (i.e., within-

community edges) minus the expected value of the same quantity in a network with the same 
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community divisions but random connections between the vertices. If the number of within-

community edges is no better than random, we will get Q = 0. Values approaching Q = 1, which 

is the maximum, indicate strong community structure. In practice, values for such networks 

typically fall in the range from about 0.3 to 0.7. Higher values are rare. 

 The main drawback for this approach is that one requires the entire graph and all the 

divisions of the graph to compute its modularity and this makes it not suitable for performing 

community identification. The definition also does not address overlapping of communities.  

8.4 Algorithms for community identification 

Most of the existing community structure algorithms do not perform community identification. 

Community identification is an easier problem than community discovery especially if the input graph is 

very large or if the entire graph is unavailable for input. This would be well suited for web graphs where 

obtaining the entire graph is a daunting task. We believe community identification is well suited for 

online algorithms and for web graphs can be performed while crawling. Another interesting task would be 

to adapt the existing community discovery algorithms to perform community identification. Improvising 

the existing algorithms and coming up with approximate algorithms of reduced complexity that can scale 

up to the large size of some of the real-world random networks.  

8.5 Centrality based community identification 

Section 4.1 provided some insight in the concept of centrality measures and utilizing 

them to discover communities. In an effort to perform community identification using centrality 

metrics we would like to try a new approach as described below: 
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Start with a small subgraph representing the community then at each step a new node 

from the neighborhood of the subgraph is included in the subgraph. The node selected at each 

stage is the one that increases the centrality of the subgraph on a whole. One could stop at any 

stage and the subgraph formed represents the community that has been identified. The choice of 

the subgraph to start with decides the quality of the community produced. One obvious choice is 

to start with a subgraph composed of the seed nodes.  

8.6 Parallel algorithms 

The algorithms discussed in Section 3.2 have a major drawback, their time complexity is 

either cubic or quartic. This brings in the scalability issue, considering the large size of the real-

world networks. One solution to this is to use parallel versions of the algorithms [74, 94] to scale 

up to the order of the networks. The parallel algorithms have to deal a number of issues a few of 

which are: 

a. Distribution of the dataset: The enormous size of the input data set makes it infeasible 

for every machine to store a local copy. A solution to this problem could be to either 

distribute the entire data set among the parallel machines which would lead to a 

communication overhead or to use a central server to store the entire data set in which 

case this server would become a bottleneck. 

b. Division of the problem: There are two popular approaches homogeneous and 

heterogeneous. Homogeneous division would imply that all the parallel machines would 

perform the same operation on different parts of the data set whereas heterogeneous 
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division would imply different operations being performed by different machines on a 

single dataset.  

c. Quality of the communities: While scalability and the speed of the algorithms are the 

main parameters of the study, importance is also provided to the quality of the 

communities being produced.  

d. Gathering of the results: Once the communities have been identified by the parallel 

algorithm the result has to be accumulated in a form that can be put to further use. 

Efforts will be made to parallelize a few of the existing algorithms for community identification 

and to come up with newer algorithms that are more efficient 

8.7 Applications 

Though there are numerous applications for community mining we concentrated on the 

applications related to the web graph. A few of these applications have been described below.  

8.7.1 Visualization of search results 

A user searching the Web can be overwhelmed by thousands, or even millions, of results 

returned by a search engine. Besides that, queries are often prone to ambiguity, and sometimes 

only few of the returned results are relevant. The PageRank [75] ranking algorithm took a first 

step to remedy these issues by assigning a prestige value to each website and sorting the 

responses by the prestige value before returning them. Obviously, more needs to be done. For 

instance, a user looking for information about the Amazon rain forest would type the word 

“Amazon” as his search query but any search engine employing ranking techniques would return 
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information about the online bookseller www.amazon.com due to its high rank. To overcome 

this ambiguity search engines can group their results based on content. For example, for the 

above query if the search engine were to cluster the search results into topics like “Rain forest”, 

“Bookseller”, “Female warriors” etc. then the user may selectively view the group of pages that 

he is interested in. 

8.7.2 Automated web directory generation 

Web directories like http://www.google.com and http://directory.yahoo.com have been 

created to organize and catalogue web pages. Web directories provide an alternative to search 

engines while looking for information. Though very affective, creating and maintaining such 

web directories to a large extent is still done manually. If a new page has to be added to the 

directory the user is required to submit his web URL along with some content related 

information, which is again manually verified and categorized appropriately.  This process can 

be done without human intervention by using a topical crawler. Initial work on mining web 

communities was done by employing text based [20, 21, 45] document clustering techniques, 

where in each web page was converted into a vector of strings and then compared to other pages 

for similarity. This approach though very effective is time consuming and is not scalable to the 

size of the Web. Moreover these document-clustering techniques are prone to spamming. Lately 

people have been employing graph theoretic techniques to mine Web communities. 
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8.7.3 Focused crawling 

Many experts agree [2] that exhaustive crawling is becoming increasingly unattainable 

due to the huge size and dynamic content of the Web. A potential solution to this problem is the 

design of focused (or, topical) crawlers [30] which selectively seek out pages that are relevant to 

a pre-defined topic. Of course, underlying such a focused crawler there must be an algorithm that 

directs the crawl towards the valuable pages, i.e., an algorithm for mining Web communities. 

8.7.4 Network security enhancement 

Cyber attacks have become increasingly severe, as a result of faster and more malicious 

propagation techniques. Current network-security solutions, such as antivirus software and 

firewalls offer local protection from known cyber attacks only. A more promising approach 

would be to detect these malicious worms by monitoring their propagation pattern. A new 

approach for controlling the propagation of network worms, based on the game of cops and 

robbers [29] has been suggested in [80]. Copies of a worm can be viewed as robbers traversing a 

cyber-graph (a graph that models a network of interest, such as, the Web, the Internet, an e-mail 

network, etc.). To block robbers’ propagation, software agents (cops) can be deployed at some 

nodes and moved along the edges of the graph. Understanding the nature and structure of 

computer networks would aid us in determining the spread of computer viruses and worms over 

the network. Characterization of the community structure of a cyber-graph can potentially be 

utilized to design efficient quarantining strategies, for example by placing the cops in the sparse 

regions of the cyber-graph. 
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8.7.5 Other applications 

Other interesting applications would include Web filtering (e.g., identification of hate or 

pornographic websites) [35], selective advertising, assisting search engines in handling Web 

spamming, etc. Apart from the web, community mining is of great interest in social and 

biological networks where it could be used to study the interaction between people or animals or 

the spread of diseases. It can be employed in gene clustering which aids in medical diagnostics 

and can also reveal insights into functional genomics or in image segmentation to separate the 

background of the image from its foreground.  

8.8 Conclusion 

In this dissertation we investigated the community structure of real-world random 

networks and ways of mining these structures. At first we study properties of real-world 

networks and their existing models. We perform an analysis of the evolution of the web graph 

and study changes in their properties over time. Next we perform an in-depth survey of the 

existing community discovery algorithms.  We then propose a new bibliographic metric, which 

can be utilized to extract communities from real-world networks very effectively. We have also 

proposed a new faster algorithm for extracting communities in very large graphs and finally state 

several open problems for future direction in this topic. 
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