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ABSTRACT 

 

To address the various emerging standards like BluetoothTM, Home RF, Wi-fiTM (IEEE 

802.11), ZigBeeTM etc., in the field of wireless communications, different transceivers have been 

designed to operate at various frequencies such as 450 MHz, 902-920 MHz, 2.4 GHz, all part of 

designated ISM band. Though, the wireless systems have become more reliable, compact and 

easy to develop than before, a detailed performance analysis and characterization of the devices 

should be done.  

This report details the performance analysis and characterization of a popular binary FSK 

transceiver TRF6901 from Texas Instruments. The performance analysis of the device is done 

with respect to the TRF/MSP430 demonstration and development kit.  
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1 INTRODUCTION 

 

1.1 Short-range Wireless Applications 
 

Dating back to the 1970s, there were a limited number of short-range radio applications 

in use. The applications suffered significant drawbacks such as frequency drift and susceptibility 

to interference [1]. But in the recent years, there has been a wide-spread use of wireless 

applications. This is due to the technological developments such as semiconductor reduction, 

single-chip mixed signal ICs, more efficient digital modulation techniques, better solid-state 

devices and efficient and compact antennas. Various standards such as Bluetooth ™, Home RF, 

Wifi (IEEE 802.11) and ZigBee have emerged rapidly in recent years. 

Short-range wireless applications are those applications usually operated in the 

unlicensed ISM (industrial scientific medical) band with RF power output of several microwatts 

up to 100 milliwatts with a resulting communication range of several centimeters up to several 

hundred meters. The applications are usually designed for indoor operation with omni-

directional, built-in antennas with battery operated transmitters or receivers. The major 

difference between the short range devices and the Bluetooth/802.11 devices is the 

implementation of advanced and complicated protocol stacks in the hardware. Usually, for the 

short-range devices the protocol stacks are simple despite some limitations. Table 1.1 lists some 

short-range radio applications and their characteristics. [1] 
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Table 1: Short-range radio applications 

Application Frequencies Characteristics 

Security Systems 300-500 MHz, 800 MHz, 

900 MHz 

Simplicity, easy installation 

Emergency Medical Alarms 300-500 MHz, 800 MHz Convenient carrying, long 

battery life, reliable 

Computer Accessories- mouse, 

keyboard 

328.6 MHz – 2.9 GHz High data rates, very short 

range, low cost 

RFID ( Radio Frequency 

Identification) 

100 KHz - 2.4 GHz Very short range, active or 

passive transponder 

WLAN (Wireless Local Area 

Network) 

900 MHz, 2.4 GHz High continuous data rates, 

spread-spectrum modulation, 

high price 

Wireless microphones, Wireless 

Headphones 

30 MHz- 328.6 MHz, 

 328.6 MHz – 2.9 GHz 

Analog high-fidelity voice 

modulation, moderate price 

Keyless Entry- Gate openers 328.6 MHz – 2.9 GHz Miniature transmitter, special 

coding to  prevent duplication 

Wireless bar code readers 900 MHz, 2.4 GHz Industrial use, spread spectrum, 

expensive 
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To address the mentioned applications, various transmitters, receiver and transceiver 

integrated circuits (ICs) are available from different manufacturers. The ICs are designed for 

different frequency bands employing different modulation schemes and for different emerging 

standards.  The transceiver ICs such as MICRF501, MAX2420 series, TRF6900 series, CC2400 

etc. are common available ones in the market for the popular ISM band. The low price and small 

size makes them popular among consumers.   

 

1.2 Structure of Wireless Transceivers 

 

A typical wireless transceiver consists of a transmitter and receiver subsection embedded 

on a single chip. A transmitter generally is comprised of a VCO (Voltage Controlled Oscillator), 

PLL (Phase Locked Loop), power amplifier and a modulator of some specific technique while 

the receiver is comprised of the LNA (Low Noise Amplifier), mixer, filter, demodulator, a 

comparator and slicer. Within most transceiver architectures, the PLL and VCO are shared 

between transmit and receive modes thereby operating in half-duplex modes, but may be 

duplicated if full-duplex is needed.  
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Figure 1: Transmitter Block Diagram 

 

 

 

 

Figure 2: Receiver Block Diagram 
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1.3 Performance Criteria of Wireless Transceivers 

 

An important parameter for rating a wireless system is its practical range. A RF (radio 

frequency) link differs from a wired one with respect to some critical facts. Radio frequencies 

being a shared medium occupy the same propagation medium with many competing signals 

which makes it more prone to interference. Therefore, the inherent reliability of a RF link is 

lower than the wired link. Moreover, wireless connections are diverse: they differ in frequency 

spectrum, range, bandwidth, modulation scheme, interference sources and physical environment. 

There are certain regulations governing the use of RF spectrum to avoid the interference. 

Generally, a license is required to operate a radio transmitter. In the U.S (United States), the FCC 

(Federal Communications Commission) regulates the radio usage. The 27 MHz, 260 MHz to 470 

MHz, 902 MHz to 928 MHz and the 2.4 GHz bands are the most commonly used bands 

allocated for general use. The 260 MHz to 470 MHz band has restrictions on the types of data to 

transmit while 902 MHz -928 MHz and the 2.4 GHz is the most commonly used unrestricted 

band. 

The range of a device depends heavily on the conditions of the measurement. The 

characteristics of the transmitting and receiving antennas, orientation, height above ground and 

the application circuitry affect range. Usually, manufacturers do not document the characteristics 

of their devices based on the operating conditions. The user has to perform a detailed analysis on 

the performance of the device. The focus of this thesis work is a detailed performance analysis 

 5



and characterization of the new generation wireless transceivers, with special emphasis on 

TRF6901, a popular binary FSK device from TI (Texas Instruments, Inc).  

The TRF6901 is a single chip RF transceiver designed for the 868-MHz and 915-MHz 

ISM band operating at 1.8-V to 3.6-V with low power consumption, and giving 9-dBm typical 

output power. It is intended for use as a low cost FSK or OOK transceiver to establish a 

frequency-programmable, half-duplex, bidirectional RF link. 

 

1.4 Thesis Overview 

 

This thesis details the performance analysis and characterization of short-range wireless 

transceivers with special emphasis on the TI TRF6901. Since a very important factor in the 

characterization of a wireless device is its range, different experiments such as antenna 

measurements, power measurements, and losses determination were carried out. The report is 

organized in four chapters. Chapter 2 describes the architecture of the TRF6901 and one of the 

applications designed by TI. Chapter 3 discusses the range determination overview, factors 

affecting range performance and the detailed experimental results. Finally, Chapter 4 is the 

conclusion.  
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2 WIRELESS TRANSCEIVERS 

 

This chapter outlines the basic elements of a RF transceiver with special emphasis on the 

TRF6901, a low-cost transceiver produced by Texas Instruments. The better noise and distortion 

immunity, viability of regenerative repeaters, flexible hardware implementation, efficient coding 

and multiplexing schemes and of course, the relentless exponential progress in digital technology 

has made digital communication more popular, superior and reliable over analog communication 

[2]. The increase in demand for data transmission during the last four to five decades resulted in 

the development of more sophisticated ICs supporting digital communication. TRF6901 falls 

under one of these new generation ICs intended to be used for digital FSK and OOK modulated 

applications.  

 

2.1 TRF6901 Transmitter Architecture 

 

The transmitter consists of an integrated VCO (voltage controlled oscillator) and a tank 

circuit, a complete integer-N synthesizer, and a PA (power amplifier). The divider, prescaler and 

reference oscillator require only the addition of an external crystal and a loop filter to provide a 

complete PLL (phase locked loop) with a typical frequency resolution of better than 200 KHz 

[3][4]. These are shown in figure 3. 
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Figure 3: TRF6901 Transmitter block diagram [3] 

 

2.1.1 Integer N-Synthesizer  

 

The integer N-PLL is the radio frequency synthesizer for the TRF6901. It is used to 

generate the transmit signal. It also functions as the local oscillator for the receive mixer. A PLL 

circuit consists of four basic components namely, VCO, PFD (phase frequency detector), main 
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and reference divider and loop filter. The PLL circuit performs frequency multiplication via a 

negative feedback to generate output frequency FVCO in terms of phase detector comparison 

frequency FR [5]. The signal (FX) from a reference crystal oscillator is divided by an integer 

factor R down to FR which is used by the phase detector to tune the VCO.  

NFF VCOPD ÷= , where FVCO = FOUT 

RFF XR ÷= , where 1 ≤ R ≤ 256 

The minimum frequency resolution and thus the minimum channel spacing is FR. 

With FR = FPD under locked conditions,  R
X

OUT 32B)F(A
R

NF
F +==  

When the PLL is in unlocked state, the phase detector compares the divided VCO signal 

to the divided crystal frequency and implements an error signal from two charge pumps. The 

error signal corrects the VCO output to the desired frequency. The PLL and clock diagram is 

shown in figure 4. 
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Figure 4: TRF6901 PLL and Clock Circuit 

 

2.1.1.1 VCO  

 

The VCO produces an RF output signal with a frequency that is dependent upon the DC-

tuning voltage at terminal 13. VCOs are positive feedback amplifiers with a tuned resonator tank 

circuit in the feedback loop. The tank circuit is passive and has integrated varactor diodes and 

inductors. TRF6901 has an integrated VCO and tank circuit. The VCO has an open-loop 

operating band from approximately 700 MHz to 1 GHz with open loop gain approximately 110 

MHz/V [3]. 
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2.1.1.2 Main and Reference Divider 

 

The main divider is a 5-bit A counter, a 9-bit B counter and a prescaler. The total divide 

by N operation is related to the 32/33 prescaler by, 

NTOTAL=33 X A+ 32 X (B-A), 

 where 0 ≤ A ≤ 31 and 31 ≤ B ≤ 551 

 The reference divider reduces the frequency of the external crystal (FX) by an 8-bit 

programmable integer divisor to an internal reference frequency (FR) used for the phase-locked 

loop. The internal reference frequency determines the lock time, maximum data rate, noise floor 

and loop filter design.  

 

2.1.1.3 Phase detector and charge pumps  

 

The phase detector generates the error signal required in the feedback loop of the 

synthesizer. The phase detector is the phase frequency design as it resolves phase difference in 

+/- 2 π range or more. It operates in three modes namely, 

• Frequency detect in which the output of the charge pump will be a constant 

current integrated by the loop filter to produce a continuously changing voltage 

applied to the VCO. 
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• Phase detect in which the charge pump will be active only for a portion of each 

phase detector cycle and is proportional to the phase difference between the two 

signals. 

• Phase locked in which the phase difference between the two signal reaches zero. 

The gain is given by, 

2π
I

Kp   (CP)= , where I (CP) is the peak charge pump current. 

 

2.1.1.4 Loop Filter  

 

The loop filter is typically a second or third-order passive design. The bandwidth of the 

filter should be wide in-order to relock the PLL as the FSK frequency is toggled when sending 

data. The loop filter should also be wider than the data modulation rate. Figure 5 shows a typical 

third order passive filter circuit. 

 

Figure 5:  External Loop Filter 
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2.1.1.5 Loop Filter and VCO Equations  

 

The loop filter and VCO are defined by the following parameters. 

BL = bandwidth of loop filter 

fR = PLL reference frequency, Hz 

fM = modulation rate, symbol rate, or maximum rate at which FSK frequencies are toggled, Hz 

Kp = phase-frequency detector 

ICP = charge pump current, mA 

KVCO = VCO gain, design value is approximately 110 MHz/V 

Mf2.1LB ×≈   

 
5
Rf

LB ≈                                                                                                                                                                   

Mf6 Rf

2π
CPI

pK

×≈

=

 

 

 

2.1.2 Power Amplifier 

 

The power amplifier has four programmable states: full power, 10-dB attenuation, 20-dB 

attenuation and off [3]. During the receive mode, the PA is powered down with the VCO still 
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operating. During FSK or OOK operation, the TX_DATA signal turns the PA on and off 

according to the data incident on that pin. 

 

 2.1.3 DC-DC Converter  

 

The main purpose of the DC-DC converter is to provide an adequate voltage to the 

charge pumps and VCO core if the supply voltage drops down to 1.8 V. The switching frequency 

is adjustable through a clock divider that reduces the external clock frequency by a C-word 

programmable factor (L) of 2 to 254 in steps of 2. The DC-DC converter is designed to operate 

at a switching frequency of around 1 MHz [3]. 

 

2.1.4 Brownout Detector 

 

The brownout detector provides an output voltage to indicate a low supply voltage. The 

threshold is set with the B word [3]. Four different thresholds are available. During operation, the 

brownout detector is always enabled and during stand-by, it is disabled. 

 

2.2 TRF6901 Receiver Architecture  

 

The integrated receiver of TRF6901 can be used as a single-conversion FSK/OOK 

receiver. It consists of a LNA (low noise amplifier), mixer, limiter, FM/FSK demodulator with 
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an external tank LC tank circuit or ceramic discriminator, RSSI (received signal strength 

indicator), a LPF (low pass filter), post detection amplifier and a data slicer. These are shown in 

figure 6. 

 

 

Figure 6:  TRF6901 receiver block diagram [3] 
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2.2.1 LNA 

 

The LNA has differential inputs with an impedance of approximately 500 Ω in parallel 

with 0.7 pF [3]. The off-chip input matching network has the dual task of matching a 50 Ω 

connector to the differential inputs and providing a 180 degree phase shift between the inputs at 

terminals 1 and 2. The predicted noise figure of the LNA and the input matching network is 2.5 

dB [3].   

 

2.2.2 Mixer  

 

The mixer operates with the on-chip VCO and generates a signal at the IF (intermediate 

frequency) of 10.7 MHz. The mixer offers good linearity (high IP3). An external matching 

network is required to transform the output impedance of the mixer (1.4 KΩ) to the input 

impedance of the IF filter (330Ω) [3]. 

 

2.2.3 IF Amplifier and Limiter 

 

The IF amplifier amplifies the output waveform from the mixer. It has differential inputs 

to its first stage. It provides 86 dB of gain and input impedance of 330 Ω [3].   

The limiting amplifier removes the amplitude variations from the IF waveform. It 

provides 68 dB of gain [3]. 
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2.2.4 Received Signal Strength Indicator 

 

The RSSI (received signal strength indicator) voltage is proportional to the log of the 

down-converted RF signal at the IF limiting amplifier input. It is a temperature compensated 

circuit and is useful for detecting interfering signals, transceiver handshaking and RF channel 

selection. It has a slope of 20mV/dB [3]. 

 

2.2.5 Demodulator 

 

The quadrature demodulator decodes digital frequency shift keying (FSK) modulation. It 

is optimized for use with a ceramic discriminator. A quadrature-demodulator circuit is used as 

shown in Figure 7 [6]. 

 

 

Figure 7:  FM Demodulator Block Diagram 

 

The phase shift network can be either an external RLC tank circuit or ceramic 

discriminator. Figure 8 shows an external RLC tank circuit. The resonant frequency of the 
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eternal RLC discriminator can be calculated from the inductor and capacitor values used in the 

circuit.  

LC2π
1f res =  

 

Figure 8: External discrete component tank circuit 

 

2.2.6 Low-pass Filter and Post-detection Amplifier  

 

The low-pass filter and the post detection amplifier amplify the output of the demodulator 

circuit and provide filtering of unwanted products from the demodulator circuit.  The post-

detection amplifier operates as a low-pass trans-impedance amplifier. The external low-pass 

filter circuit must be optimized for the data rate. The 3-dB corner frequency of the low-pass filter 

should be greater than twice the data rate. 
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Figure 9: Post-Detection Amplifier/Low-Pass Filter 

 

2.2.7 Data Slicer  

 

The data slicer is a comparator circuit for received digital (FSK) data. The data slicer 

output voltage depends on the difference between the received signal and a reference voltage 

used as a decision threshold. The external S&H (sample and hold) capacitor is charged up to the 

average dc voltage in the learn mode to establish a reference voltage before a sequence of actual 

data is received in the hold mode.  The data slicer is shown in figure 10.    

 

Figure 10: Data Slicer 
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2.3 Serial Interface  

 

The TRF6901 is controlled through a serial interface; there are four 24-bit control words 

(A, B, C, D) which set the device state. The A and B words are almost identical and provide 

configuration settings for two modes, designated 0 and 1, commonly used to configure transmit 

and receive states. The C word sets the various clock dividers. The D word is used to trim the 

external crystal frequency and tune the demodulator [3]. 

 

2.3.1 Clock Output Buffer  

 

The clock-output buffer is provided to use the TRF6901 crystal oscillator to drive an 

external microcontroller (MCU) or other base-band device, eliminating the need for a second 

clock circuit. 

 

2.4 Designing an application with TRF6901 

 

Wireless transceiver designs can be simple or complex based upon the performance and 

design complexity. Usually, simple designs are characterized by low data rate, low cost and short 

transmission ranges (under 100m). Complex designs include higher data rates for longer 
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transmission ranges (over 100m). While designing an application, the following three factors are 

required be considered. 

 

2.4.1 Data Rate 

 

Data rate plays an important role in determining the loop filter bandwidth, lock time and 

phase noise. TRF6901 is designed to support data rate 2.4 to 94 kbps for normal operation in 2-

FSK without including the training sequences, error correction or other overhead [4]. 

 

2.4.2 Data Coding 

 

Pulse code modulation (PCM) technique is usually employed for baseband coding.  It is 

the name given to the class of baseband signals obtained from a digital word [7]. The source 

information is sampled and quantized to one of the L levels. Then each quantized sample is 

digitally encoded into an l-bit (l = log2 L) codeword. During baseband transmission the 

codeword bits are transformed to pulse waveform. The various PCM waveforms are illustrated in 

figure 11 and described in Table 2 [7]. 
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Figure 11: Common digital base band encoding schemes 
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Table 2: PCM Binary Coding Methods 

PCM Code 
Type 

RZ  
(Return 
Zero) 

NRZ (Non-
Return Zero) 

Phase 
Encod

ed 

Ref. Level Transitions 

Unipolar 
RZ 

X   0 level Change of state from 0 to 
1, and a 1/2- bit period 

Unipolar 
NRZ 

 X  0 level Change of state from 0 to 1 
or from 1 to 0 

NRZ-L 
(level) 

 X  Center of 
pulse 

Change of state from 0 to 1 
or from 1 to 0 

NRZ-M 
(Mark) 

 X  Center of 
pulse 

1 or mark is represented by 
a change in level, 0 or 

space is represented by no 
change in level 

NRZ-S 
(Spaced) 

 X  Center of 
pulse 

0 or space is represented by 
a change in level, 1 or 

mark is represented by no 
change in level 

Bi-φ-Level, 
Manchester 

  X Center of 
pulse 

A 1 is represented by a 
1/2–bit pulse at the start of 

the bit interval. A 0 is 
represented by a 1/2–bit 
pulse at the end of the bit 

interval 
Bi-φ-Mark 

(Mark) 
  X Center of 

pulse 
Transition occurs at the 
beginning of each bit 

interval 
1 is represented by a 

second transition 1/2-bit 
later. 

0 is represented by no 
second transition 1/2-bit 

later. 
Bi-φ-Space 

(Space) 
  X Center of 

pulse 
Transition occurs at the 
beginning of each bit 

interval 
0 is represented by a 

second transition 1/2-bit 
later. 

1 is represented by no 
second transition 1/2-bit 

later. 
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The choice of coding scheme has important implications for several parts of the 

transceiver design, including loop filter bandwidth, frequency deviation, and operating the 

TRF6901 in learn and hold modes. Systems with low data rates (2.4 kbps to around 30 kbps) are 

often implemented with Manchester coding. Systems with data rates higher than 30 kbps are 

often implemented with unipolar NRZ (non-return-to-zero) coding [4].  

 

2.4.3 FSK Modulation Theory 

 

Binary FSK is a modulation scheme used to send digital data by shifting the frequency of 

a continuous carrier in a binary manner to one or the other discrete frequencies [9]. One 

frequency is designated as “mark”, corresponding as a binary 1 and the other as “space”, 

corresponding as a binary 0 as shown in Figure 12. 

The FSK signal is mathematically represented by, 

))dm(ktcos(ωAs(t)
t

fcc ∫
∞−

×+×= αα  

where, kf is frequency modulation gain constant 

          Ac is the carrier amplitude 

           m(α) is the baseband signal 
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Figure 12: Binary FSK signal generation 

 

2.5 Studied Module TRF6901/MSP430 Demonstration and Development Kit 

 

The characterization and evaluation of the transceiver is done with reference to MSP-

TRF6901-DEMO kit provided by the Texas Instruments. The board is shown in figure 13. 
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Figure 13: TRF6901/MSP430 Demonstration and Development kit 

 

2.5.1 Hardware Overview 

 

The kit consisting of two identical boards programmed to communicate using US ISM 

band frequency @ 915 MHz is used to demonstrate a bi-directional wireless link. Each board has 

a MSP430F449 microcontroller to provide the base band data and TRF6901 single-IC 

transceiver to perform radio frequency communication. The communication is half-duplex on the 

US ISM band @ 38.4 Kbps data rate employing NRZ base-band coding [10]. The kit employs an 

inverted F design on-board PCB antenna. 

There are some provisions for the alternate configurations in the kit such as for an 

external antenna, a RS-232 serial link, a SAW filter, a MSP430 disable, an on-board LDO 

regulator and a high-frequency crystal. 
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2.5.1.1 MSP430F449 

 

MSP430F449 is one of the popular mixed-signal microcontrollers produced by Texas 

Instruments. MSP40F449 features a powerful 16-bit RISC( Reduced Instruction Set Computing), 

16-bit registers and constant generators with two built-in 16-bit timers, a fast 12-bit A/D 

converter, two USART (Universal serial synchronous asynchronous communication interfaces), 

48 I/O pins and a LCD (liquid crystal driver) with up to 160 segments. It includes 60 KB + 256 

B Flash Memory and 2 KB RAM and operates in five power saving modes [11]. Figure 14 shows 

a functional block diagram of the MSP430F449. 

 

 

Figure 14: MSP430x44x functional block diagram 
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2.5.1.2 Embedded Antenna 

 

The MSP-TRF6901-DEMO kit provided by the TEXAS INSTRUMENTS employs an 

inverted-F design PCB antenna where one short leg of the antenna is shorted to ground and the 

longer end is open or tuned with parallel RC termination to ground. The resistor and capacitor 

values are adjusted to optimize the performance of the antenna. The antenna has a poor return 

loss around 1.8 GHz so that will help attenuate the radiated power second harmonic.  

The short arm of the antenna is 60 mils wide and 315 mils long, measuring from the 

center of the feed point (on the antenna itself) to the end of the terminating component footprints 

where a zero ohm resistor is installed with capacitor empty. 

The long arm of the antenna is 60 mils wide and 1410 mils long, measuring from the 

center of the feed point, along the midline to the end of the most distant terminating component 

footprint.  Both arms are separated from the near-side ground plane by 67 mils.  The termination 

of the long arm is a parallel RC circuit, 1K and 0.5 pF. The lower ground plane is tied to the 

upper ground plane by vias located close to the edge of the ground plane and spaced every 100 to 

200 mils. The substrate is 0.062 FR4 with dielectric constant 4.3. 
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Figure 15: MSP-TRF6901 Demo kit 
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3 RANGE ESTIMATION 

 

The focus of this thesis is on the characterization and performance analysis of a wireless 

transceiver. Communication range is a very important parameter which characterizes a wireless 

link. It is always difficult to predict the range. The vagaries of RF propagation depend on 

numerous factors such as multi-path interference, inter-symbol interference, interference due to 

other stations especially in the unlicensed band and noise. Moreover, wireless applications 

designed for indoor propagation can be affected by obstructions and building materials, radiating 

devices, antenna orientations and mounting heights. Typically, the range measurements are 

performed in either strictly laboratory environment or the open field.  

For the open field range testing, specifications such as the height above ground of 

transmitter, receiver, type of antenna and its orientation, operating conditions (handheld), criteria 

for successful communication (number of correct messages received per number of messages 

sent) must be considered. There are in fact other factors in the open field range testing such as 

ground conductivity, near vicinity reflecting objects, noise on the communication channel and 

incidental transmissions that cannot be controlled. 

 

3.1 Factors determining range 

 

Idea free-space propagation is governed by the Friis transmission formula, given as: 

2

4
⎟
⎠
⎞

⎜
⎝
⎛∗∗∗=

d
GGPP rttr π

λ -------------------------------------------------------------------------------- (1) 
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where, 

rP  is the received power in Watts 

tP  is the transmit power in Watts 

tG  is the transmit antenna gain 

rG  is the receive antenna gain  

λ is the wavelength in meters 

d is the distance in meters 

In wireless applications design, the effective communication range calculations take into 

consideration the following parameters. 

 

3.1.1 Line-of-sight 

 

In RF communication, the transmission medium being the atmosphere, the signal is 

exposed to a complex array of propagation conditions including potential ground reflections, rain 

attenuation, interference from other radio systems, and atmospheric effects that can result in 

performance impairments. The line-of-sight (LOS) is an effective and reliable transmission 

medium. It is the straight line connecting the transmitter and the receiver with no obstructions in 

between. It provides a limit on the range of a hypothetical RF link.  The signal is strongest when 

the receiver has a LOS to the transmitter. The Fresnel zone is the area of a circle around the line 

of sight. The Fresnel zone is defined as: 

DR ×= λ    
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where, 

R is the radius of the Fresnel zone in meters 

λ  is the wavelength in meters 

D is the distance between sites in meters 

When at least 80% of the first Fresnel zone is clear of obstacles, propagation loss is equivalent to 

free space loss [12]. 

 

3.1.2 Transmitter and Receiver Line Losses 

 

The path followed by the RF energy, as it is sent to and from the antenna, is associated 

with a loss of power. This loss occurs because of the escape of energy through less than perfect 

shielding, resistance, and because of the reflection of energy as it passes through less than perfect 

shielding, resistance, and because of the reflection of energy as it passes through less than perfect 

line couplers. Line losses which occur in commonly used coaxial cables are quantified, and are 

published by the manufacturer. The best way to determine actual line loss is with an RF power 

meter inserted before and after the transmission line. 

 

3.1.3 Power Output and Receiver Sensitivity 

 

Transmitter output power is the power available at the transmitter. One of the major 

parameters used in analyzing the performance of radio frequency (RF)  
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communications links is the amount of transmitter power directed toward an RF receiver(s)  

by the antenna subsystems. This power is derived from a combination of transmitter power  

and the ability of the antenna to direct that power toward RF receiver. 

Receiver sensitivity is the minimum amount of RF signal at the receiver input for certain 

performance (BER). It depends on the thermal noise power generated in the receiver expressed 

as noise figure, the noise bandwidth of the receiver, and the required output signal-to-noise ratio 

[1]. It can be expressed as follows: 

(Pmin) dBm = (Nin) dBm + (NF) db + (10 log10B) dB + (Predetection S/N) dB 

where, 

Pmin is the minimum signal power applied to the receiver input that gives a desired signal to noise 

ratio. 

Nin is the available input noise power  

NF is the noise figure 

B is the bandwidth 

S/N is the signal to noise ratio 

 

3.1.4 Transmit and Receive Antenna Gain 

 

Antennas are passive elements in an RF circuit and do not actually produce a gain of the 

RF power. However, antennas can be designed to focus the energy in a specific plane or pattern, 

thereby producing an effective gain in a particular direction as compared to a unidirectional 

antenna.  
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Antenna gain is a very important figure of merit of an antenna. Usually, there are two 

basic methods to measure the gain of the antenna, namely, absolute-gain and gain-transfer. The 

absolute gain method is used to calibrate antennas that can be further used as standard antennas 

for gain measurements. It doesn’t require a prior knowledge of the antenna gains. The gain 

transfer method requires to be used in conjunction with standard gain antennas to determine the 

absolute gain of the AUT [12]. 

 

3.1.4.1 Absolute Gain Measurements 

 

The absolute gain measurements method is based on the Friis transmission formula given 

in equation (1). 

It can be expressed in logarithmic decibel form as: 

(Gt) dB + (Gr) dB = 20 log 10 ⎟
⎠
⎞

⎜
⎝
⎛
λ
πd4

 + 10 log 10 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

t

r

P
P  

where, 

rP  is the received power in Watts 

tP  is the transmit power in Watts 

tG  is the transmit antenna gain in dB 

rG  is the receive antenna gain in dB 

λ is the wavelength in meters 

d is the distance in meters 
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This method assumes that the measuring system employs two antennas separated by a distance 

‘d’ satisfying the far field criteria of each antenna.  

 

3.1.4.2 Gain - Transfer Measurements 

 

It is the most common method employed to measure the gain of the antenna. This method 

utilizes a standard antenna with known gain to determine the absolute gain of the AUT.  

This method requires two sets of measurements. In the first set, the AUT is made as a 

receiving antenna and the received power (PT) is recorded. In the other set, the AUT is replaced 

by a standard antenna and the received power is recorded (PS). The experimental set up is 

maintained intact with the same input power maintained on both sets. For free space calculation, 

the gain of the antenna is given by, 

(GT) dB = (GS) dB + 10 log 10  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

S

T

P
P  

 

3.1.5 Path loss 

 

Path loss is the significant amount of attenuation of the electromagnetic energy 

propagating through space. The free space attenuation of RF signals is calculated using the free 

space path loss formula. 

24
⎟
⎠
⎞

⎜
⎝
⎛=

λ
πdPloss  
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where, λ is the wavelength of the RF signal and is the distance of propagation. d

More simply, it can be expressed logarithmically in decibels as: 

lossP = 32.4 + 20 log10 d + 20 log10 f 

where,  

32.4 is the reference constant 

D is the distance in kilometers 

f is the frequency in MHz 

Shown below in figure 15 is the free space path loss as a function of distance @ 915 MHz. 
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Figure 16: Free space path loss as a function of distance @ 915 MHz 
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3.2 Experiments on Range 

3.2.1 Antenna measurements 

 

The antenna is a transducer between the controlled energy residing within the system and 

the radiating energy existing in free space. A good antenna design is required to realize good 

range performance. The principal properties of an antenna such as input impedance, polarization, 

gain, directivity, radiation efficiency, radiation pattern etc., doesn’t depend on the transmitting or 

receiving method. The popular reciprocity theorem is also applicable to electromagnetic theory.  

It states that the power transferred between two antennas is same, regardless of which is used for 

transmission or reception, if the generator and load impedances are conjugates of the transmitting 

and receiving antenna impedances in each case [12]. 

 

3.2.1.1 Determination of the antenna pattern of the on-board PCB antenna 

 

Antenna pattern measurement determines the radiation pattern of an antenna under test 

(AUT). It gives the relative magnitude and phase of an electromagnetic signal received from the 

AUT as a function of directional coordinates [4]. The properties of an antenna such as antenna 

pattern, gain etc., are always referenced to the far field region of the antenna. Though the 

measured field levels vary in the far field free space condition, the antenna pattern and the gain 

remains the same. The far field region is dominant at higher frequencies where the separation 
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distance r> 2 D2 /λ, D being the largest dimension of the radiating object, λ being the 

wavelength. 

 

3.2.1.1.1 Instruments Used 

 

Following table 3 lists the test equipments used for the gain and pattern measurement of the 

antenna. 

Table 3: Instruments Used 

Model  Description  

Wiltron Programmable 

Sweep Generator, 6647A  

• Frequency range: 10 MHz -18.6 GHz 
• Output power 

 Internally leveled maximum (dBm):>10 
• Frequency Accuracy 

 CW Mode (MHz): ± 10 
 Sweep Mode ≤ 50 MHz: ±15 

• Sweep Time: 0.01 to 99 seconds 
• Sweep Modes: 

 Full Sweep 
 F1 to F2 Sweep 

 M1 to M2 Sweep 
 Delta F F0 Sweep 
 Delta F F1 Sweep 

• Markers: Video, RF, Intensity 
• Leveling Modes: Internal, Detector, Power Meter 

Wiltron 560 A Network 

Analyzer 

• Frequency range: 1 MHz-34 GHz 
• Channels: Three (A, B, R) 

• Dynamic measurement range and sensitivity 
 A and B with detectors: +16 dBm to -50 dBm 
 A and B with SWR Autotester: +16 dBm to 50 

dBm 
 R with Detector: +16 dBm to -30 dBm 

• Resolution: independent control for A and B in steps of 
0.2, 0.5, 2.5, 10 dB per division 
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• Store trace: stores displayed traces in 1024 point 
memory 

TRF6901 Demonstration 

and Development Kit 

 

• US ISM band: 902 MHz to 920 MHz 
• NRZ coding scheme 

• FSK 
• 38.4 Kbs  

• On-board PCB antenna 
• TRF6901 and MSP430F449 components 

• JTAG connector 
• MSP430 and TRF6901 I/Os 

• SMA connector footprint for additional range 
 

SWR Autotester 560-

97NF50-1 

 

• 38 dB directivity 
• Low test port reflections 

• Broadband 10 MHz to 18 GHz frequency range 

RF Detector Wiltron 

Model 560-7N50 

 

• 10 MHz to 18.5 GHz frequency range 
• +20 dBm Max 

• 50 ohm 
 

Yagi Antenna 

 

• 750 MHz to 1.25 GHz frequency range 

 

 

3.2.1.1.2 Testing Method 

 

The single axis rotational pattern technique was employed for the pattern measurement of 

the PCB antenna. The AUT, i.e., the TRF6901 demonstration and development kit configured in 
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transmitting mode was placed on a rotational positioner and rotated about the azimuth to 

generate a two dimensional polar pattern. The measurement was accomplished by using a Yagi 

antenna as a measuring antenna (MA). Figure 17 shows a typical test set up. 

 

 

 

 

Figure 17: Experimental Setup of on board PCB antenna of TRF6901 Demonstration and 

Development kit configured in transmitting mode and a yagi antenna in receiving mode. 

 

The AUT (transmitter) is placed in a positioner above ground, and a Yagi antenna is 

placed in level with the AUT at a fixed distance. The MA is connected to the 560A Network 

Analyzer as in receiving mode. The transmitter is rotated every 10° and the reading of the power 

level is noted when the antenna is tuned to achieve maximum radiated power. The reading is 
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taken for 360° rotations and the response between the antennas is measured as the function of 

angle. These measurements were performed in an anechoic environment, Microwave and 

Antenna Measurements Laboratory, University of Central Florida. The measurements were done 

with extreme care, minimizing the reflections from the surrounding objects, pertaining to ±0.2 

discrepancies.  

 

 

 

 

 

Figure 18: Short bursts of data pulses received by the MA shown in Wiltron 560A Network 

Analyzer 
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3.2.1.1.3 Experimental Results 

3.2.1.1.3.1 Experiment 1 

 

Figure 19 shows a typical experimental setup. Both the antennas are placed in horizontal 

position 1.83 meters apart 87 cm above the ground. Figure 20 shows the measured data. Table 4 

contains the measured data. 

 

Figure 19: Experimental Setup 
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Figure 20: Horizontal Polarization of the embedded antenna 
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Table 4: Horizontal Polarization data referred to experiment 1 

Angle(deg) Normalized Data 
(dB) 

Actual 
Data(dB) 

Angle(deg) Normalized 
Data (dB) 

Actual 
Data(dB) 

0 -10.2 -46.8 180 -9.2 -45.8 
10 -7.9 -44.5 190 -12.2 -48.8 
20 -6.3 -42.9 200 -12.2 -48.8 
30 -5 -41.6 210 -9.4 -46 
40 -3.7 -40.3 220 -6.9 -43.5 
50 -2.8 -39.4 230 -4.8 -41.4 
60 -2 -38.6 240 -3.6 -40.2 
70 -1.2 -37.8 250 -2.9 -39.5 
80 -0.7 -37.3 260 -2.7 -39.3 
90 -0.2 -36.8 270 -2.6 -39.2 
100 -0.2 -36.8 280 -3.6 -40.2 
110 0 -36.6 290 -4.9 -41.5 
120 0 -36.6 300 -7 -43.6 
130 -0.8 -37.4 310 -9.5 -46.1 
140 -1.2 -37.8 320 -14 -50.6 
150 -2.5 -39.1 330 -20 -56.6 
160 -3.8 -40.4 340 -17.7 -54.3 
170 -6.3 -42.9 350 -13.1 -49.7 

   360 -9.9 -46.5 
 

 

3.2.1.1.3.2 Experiment 2 

 

Both the antennas are placed in vertical position, 84 cm apart and 87 cm above the 

ground. Figure 21 shows a typical experimental set up. Figure 22 shows the measured data. 

Table 5 contains the measured data. 
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Figure 21: Experimental Setup 

 

 

 

 

Figure 22: Vertical Polarization of the embedded antenna 
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Table 5: Vertical Polarization data referred to experiment 2 

Angle(deg) Normalized Data 
(dB) 

Actual 
Data(dB) 

Angle(deg) Normalized 
Data (dB) 

Actual 
Data(dB) 

0 -0.6 -40.2 180 -40.9 -1.3 
10 -1.2 -40.8 190 -41.6 -2 
20 -1.5 -41.1 200 -42.4 -2.8 
30 -2.2 -41.8 210 -45 -5.4 
40 -3.9 -43.5 220 -46.2 -6.6 
50 -5.9 -45.5 230 -47.8 -8.2 
60 -9.2 -48.8 240 -44.4 -4.8 
70 -10.9 -50.5 250 -42.9 -3.3 
80 -9.5 -49.1 260 -42.3 -2.7 
90 -8.7 -48.3 270 -41.5 -1.9 
100 -4.8 -44.4 280 -41.3 -1.7 
110 -3.1 -42.7 290 -41 -1.4 
120 -1.1 -40.7 300 -41 -1.4 
130 -0.3 -39.9 310 -40.9 -1.3 
140 0 -39.6 320 -40.9 -1.3 
150 0 -39.6 330 -40.7 -1.1 
160 -0.6 -40.2 340 -40.5 -0.9 
170 -1.1 -40.7 350 -40.4 -0.8 

   360 -40.2 -0.6 
 

 

3.2.1.1.3.3 Experiment 3 

 

Figure 23 shows a typical experimental set up for the cross-polarization pattern 

measurement. The TRF board is in horizontal position with the Yagi antenna in vertical position 

separated by a distance of 84 cm and 87 cm above the ground. Table 6 contains the measured 

data. 
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Figure 23:  Experimental Set up 

 

 

Figure 24: Cross-polarization pattern 
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Table 6: Cross-polarization data referred to experiment 3 

Angle(deg) 
Normalized Data 

(dB) 
Actual 

Data(dB) Angle(deg)
Normalized 
Data (dB) 

Actual 
Data(dB) 

0 -9.7 -61.3 180 -8.5 -60.1 
10 -9.6 -61.2 190 -6.1 -57.7 
20 -8.7 -60.3 200 -3.4 -55 
30 -5.5 -57.1 210 -2.4 -54 
40 -3.5 -55.1 220 -2.2 -53.8 
50 -1.9 -53.5 230 -1.8 -53.4 
60 -0.8 -52.4 240 -1.5 -53.1 
70 -0.4 -52 250 -1.3 -52.9 
80 0 -51.6 260 -0.8 -52.4 
90 0 -51.6 270 -2 -53.6 
100 -0.6 -52.2 280 -2.5 -54.1 
110 -1.2 -52.8 290 -4.2 -55.8 
120 -2.4 -54 300 -5.9 -57.5 
130 -5.4 -57 310 -7.9 -59.5 
140 -7.7 -59.3 320 -8.5 -60.1 
150 -8.9 -60.5 330 -9.4 -61 
160 -9.4 -61 340 -9.5 -61.1 
170 -9.9 -61.5 350 -9.6 -61.2 

   360 -9.7 -61.3 
 

 

3.2.1.1.3.4 Experiment 4 

 

Figure 25 shows a typical experimental set up. The TRF board is in vertical position with 

the Yagi antenna in horizontal position separated by a distance of 86cm and 87 cm above the 

ground. Figure 26 shows the measured data. Table 7 contains the measured data. 
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Figure 25:  Experimental Set up 

 

 

 

 

Figure 26: Cross-polarization pattern 
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Table 7: Cross-polarization data referred to experiment 4 

Angle(deg) 
Normalized Data 

(dB) 
Actual 

Data(dB) Angle(deg)
Normalized 
Data (dB) 

Actual 
Data(dB) 

0 -3.9 -50.1 180 0 -46.2 
10 -4 -50.2 190 -0.4 -46.6 
20 -4.9 -51.1 200 -0.9 -47.1 
30 -5.9 -52.1 210 -1.8 -48 
40 -6.6 -52.8 220 -3.3 -49.5 
50 -7.9 -54.1 230 -5.7 -51.9 
60 -9.6 -55.8 240 -8.2 -54.4 
70 -11.4 -57.6 250 -11 -57.2 
80 -10.8 -57 260 -14.3 -60.5 
90 -10.3 -56.5 270 -14.6 -60.8 
100 -8 -54.2 280 -10.9 -57.1 
110 -5.9 -52.1 290 -8.7 -54.9 
120 -4.1 -50.3 300 -6.8 -53 
130 -2.8 -49 310 -5.3 -51.5 
140 -1.5 -47.7 320 -4.4 -50.6 
150 -0.8 -47 330 -3.6 -49.8 
160 -0.4 -46.6 340 -3.6 -49.8 
170 -0.1 -46.3 350 -3.7 -49.9 

   360 -3.9 -50.1 
 

 

 

3.2.1.1.3.5 Experiment 5 

 

Figure 27 describes the experimental set up. The TRF board is in vertical position with the Yagi 

antenna in horizontal position separated by a distance of 86 cm and 87 cm above the ground. 

Figure 28 shows the measured pattern. Table 8 contains the measured data. 
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Figure 27: Experimental Set up 

 

 

 

Figure 28: Cross-polarization pattern 
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Table 8: Cross-polarization data referred to experiment 5 

Angle(deg) 
Normalized Data 

(dB) 
Actual 

Data(dB) Angle(deg)
Normalized 
Data (dB) 

Actual 
Data(dB) 

0 -2.5 -32.7 180 -0.2 -30.4 
10 -1.9 -32.1 190 -1 -31.2 
20 -1.5 -31.7 200 -2.3 -32.5 
30 -1.5 -31.7 210 -4.2 -34.4 
40 -2 -32.2 220 -6.9 -37.1 
50 -2.8 -33 230 -10.4 -40.6 
60 -4.3 -34.5 240 -15 -45.2 
70 -6.6 -36.8 250 -21.9 -52.1 
80 -10.6 -40.8 260 -30.5 -60.7 
90 -18.1 -48.3 270 -26 -56.2 
100 -22.7 -52.9 280 -18.6 -48.8 
110 -11.2 -41.4 290 -14.6 -44.8 
120 -6.8 -37 300 -11.8 -42 
130 -4.1 -34.3 310 -9.5 -39.7 
140 -2.2 -32.4 320 -7.7 -37.9 
150 -1 -31.2 330 -6.1 -36.3 
160 -0.2 -30.4 340 -4.6 -34.8 
170 0 -30.2 350 -3.4 -33.6 

   360 -2.5 -32.7 
 

 

3.2.1.2 Determination of the gain of TX and RX on-board PCB antenna 

 

To measure the gain of the TX and RX antenna, the absolute gain method was employed. 

Due to the absence of a perfect anechoic chamber, there was a need for a directional antenna. 

First the gain of the directional antenna was measured, then all the pattern measurements carried 

out throughout this analysis was done with respect to the directional antenna, a Yagi. The gain of 

the embedded antenna was measured in the following three steps. 
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Step 1:  Determination of the gain of the Yagi antenna 

The gain of the Yagi antenna was calculated by the absolute gain method. First, an 

electromagnetic field was set up with the two standard calibrated dipole antennas. The received 

power was recorded. Then, one of the dipole was replaced by a Yagi antenna in the transmitting 

mode. The test was carried out for a distance of 1.83 meters with both the antennas placed 87 cm 

above ground. One of the dipoles with 2.54 dBi gain was set up as a receiving antenna and the 

received power shown in the network analyzer was recorded. The network analyzer was 

calibrated and a zero dBm reference was set. The received power was seen to be -18.2 dB down 

the reference.  The experimental setup is shown in figure 29(a), (b). 

 

 

Figure 29(a) Experimental Set up for the gain measurement of the Yagi antenna 
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Figure 29 (b) Experimental Setup for determining the gain of the Yagi antenna 

 

From this experimental setup the gain of the Yagi antenna was calculated to be 8.2 dBi. 

 

Step 2: Record of Power Received by the standard dipole with Yagi in transmitting mode 

 To minimize the reflections in the anechoic chamber, the distance between the Yagi and 

a standard dipole antenna was reduced to 84 cm. The received power by the dipole antenna was 

recorded to be -18.4 dB down the zero dBm reference. 

 

Step 3: Replacement of standard dipole with Yagi in receiving mode and embedded 

antenna in transmitting mode 
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The dipole antenna was replaced by the TRF/MSP430 antenna in the transmitting mode. 

The received power was recorded to be -26.4dB down the zero dBm reference. Figure 30 shows 

the experimental set up. 

 

Figure 30:  Experimental Setup for determining the gain of the embedded antenna 

 

Substituting the given parameters in equation 1 the gain of the embedded antenna was found to 

be around 5.45 dB worse than a dipole.  

 

3.2.1.3 Pattern Measurement with external dipole 

 

 An external dipole antenna with 2.3 dBi gain was connected to the TRF/MSP board and 

the pattern measurements were performed. First the pattern of the dipole antenna was measured. 

Figure 31 shows the experimental set up. The Yagi antenna was kept in transmitting mode at a 
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distance of 84 cm from the dipole in receiving mode. Figure 32 shows the measured pattern data. 

Table 9 contains the measured data. 

 

 

Figure 31:  Experimental Setup 

 

 

 

Figure 32:  Measured pattern data of external dipole antenna 
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Table 9: External dipole horizontal polarization data without connecting to TRF6901 board 

Angle(deg) 
Normalized Data 

(dB) 
Actual 

Data(dB) Angle(deg)
Normalized 
Data (dB) 

Actual 
Data(dB) 

0 -0.6 -18.6 180 1 -18.6 
10 -0.1 -18.1 190 -1.9 -19.9 
20 0 -18 200 -3.4 -21.4 
30 -0.4 -18.4 210 -5.2 -23.2 
40 -1.3 -19.3 220 -6.1 -24.1 
50 -2.8 -20.8 230 -6.4 -24.4 
60 -5.1 -23.1 240 -6.6 -24.6 
70 -7.7 -25.7 250 -8.5 -26.5 
80 -12.2 -30.2 260 -13.1 -31.1 
90 -24.5 -42.5 270 -29 -47 
100 -18.2 -36.2 280 -16 -34 
110 -11.9 -29.9 290 -9.6 -27.6 
120 -8 -26 300 -6.6 -24.6 
130 -5.2 -23.2 310 -5.6 -23.6 
140 -3.1 -21.1 320 -5.6 -23.6 
150 -1.3 -19.3 330 -6 -24 
160 -0.6 -18.6 340 -4.8 -22.8 
170 -0.2 -18.2 350 -2.7 -20.7 

   360 -0.6 -18.6 
 

 

 

Secondly, the internal embedded antenna of the TRF/MSP430 board was replaced by the 

same dipole antenna with no change in the initial setup and the pattern was measured. Figure 34 

shows the measured pattern data. Table 10 contains the measured data. 
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Figure 33: Experimental Setup 

 

 

 

Figure 34: Measured pattern data of external dipole antenna connected to TRF/MSP430 board 
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Table 10: External dipole horizontal polarization data with connecting to TRF6901 board 

Angle(deg) 
Normalized Data 

(dB) 
Actual 

Data(dB) Angle(deg)
Normalized 
Data (dB) 

Actual 
Data(dB) 

0 0 -18.6 180 -1.1 -19.7 
10 -0.3 -18.9 190 -1.1 -19.7 
20 -0.5 -19.1 200 -1.9 -20.5 
30 -1.7 -20.3 210 -2.9 -21.5 
40 -2.9 -21.5 220 -4.2 -22.8 
50 -4.2 -22.8 230 -4.8 -23.4 
60 -5.8 -24.4 240 -5.6 -24.2 
70 -7.6 -26.2 250 -6.4 -25 
80 -9.5 -28.1 260 -8.9 -27.5 
90 -11.8 -30.4 270 -12.8 -31.4 
100 -16.2 -34.8 280 -23.2 -41.8 
110 -16.9 -35.5 290 -16.4 -35 
120 -13 -31.6 300 -9.4 -28 
130 -8.3 -26.9 310 -5.4 -24 
140 -5.8 -24.4 320 -3.2 -21.8 
150 -3.8 -22.4 330 -1.6 -20.2 
160 -2.1 -20.7 340 -0.6 -19.2 
170 -1.3 -19.9 350 -0.3 -18.9 

   360 0 -18.6 
 

 

The gain of the dipole antenna was also found in the method followed previously. It was 

found out to be 2.15 dBi comparable to 2.3 dBi max given in the manufacturer’s datasheet. 
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3.2.2 Power Measurements 

3.2.2.1 Transmitted Power 

 

The power transmitted by the TRF/MSP430 board was measured at the end of the SMA 

footprint. It was found out to be 4.4 dBm as opposed to 9 dBm given in the manufacturer’s 

datasheet. The 4.6 dBm power degradation can be accounted for the use of common RF port with 

no switch. The power output was verified by measuring in the power meter also. 

 

3.2.2.2 Receiver Sensitivity 

 

The receiver sensitivity of the TRF6901 was measured with respect to the given 

TRF/MSP Demonstration kit. The experimental set up is described in Figure 35. 

 

 

Figure 35: Experimental Setup for the receiver sensitivity measurement 

 

The receiver sensitivity of the board was found to be -75 dBm.   
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3.2.3 Path loss 

 

Path loss can be expressed logarithmically in decibels as: 

lossP = 32.4 + 20 log10 d + 20 log10 f  

where,  

32.4 is the reference constant 

d is the distance in kilometers 

f is the frequency in MHz 

 

3.2.4 Link Distance Calculation 

 

The following table summarizes the range calculation with all the given parameters. 
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Table 11: Link Calculation Results 

PARAMETER 
 

VALUE 

Receiver Sensitivity, Pr 
 

-75 dBm 

Transmitted Power, Pt 
 

4.4 dBm 

Gain of the RX antenna, Gr 
 

-5.45 dBi 

Path loss, Lp 
 

30.115 dB 

Cable attenuation, Ct 
 

0 dB 

Gain of the TX antenna, Gt 
 

-5.45 dBi 

Frequency, f 
 

915 MHz 

Cable attenuation, Cr 
 

0 dB 

Link Range 
 

69.75 meters 

 
 
 
 

3.3 Simulation Results 

 
 
With the provided dimensions of the antenna, the inverted F-antenna was simulated by using a 

commercial method of moment software packages IE3D from Zeland [4]. The highest meshing 

frequency was set up to 2.5 GHz with 20 cells per wavelength discretization and edge meshing.  
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Figure 36: Structure of the simulated antenna 
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Figure 37: Return loss of the onboard PCB antenna from simulation 
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Figure 38:  Simulated pattern of the on-board PCB antenna 

 
 

3.4 Suitable Candidate Antennas for Short-Range Radio Applications 

 
 

Printed Dipole 

The radiation pattern of the printed dipole is very close to the pattern of an ideal dipole. 

But it is relatively large in structure and requires differential feed that makes it unsuitable for 

small portable devices. 
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Microstrip Patch 

We can get both linear and vertical polarization for the microstrip patch antenna. The 

production cost of such antennas is also low. But, the bandwidth of such antenna is very narrow 

that makes it unsuitable for many applications. 

 

Ceramic Antenna 

As wireless equipment size shrinks and functional demands grow, miniaturized ceramic 

chip antennas are available in the market. For such types of antennas, the antenna characteristics 

highly depend on the dielectric constant of the ceramic materials and the silver layer. Various 

laminating techniques are used for the accuracy requirements and to improve antenna 

performance. The extended bandwidth is one of the advantages of this kind of antenna. But the 

antenna does not have negligible cost per unit. 

 

Monopole and its variants 

The inverted-L and the inverted-F antennas fall under this category. The inverted-F 

antenna is well known for its ability to provide flexibility in impedance matching, and to produce 

vertically and horizontally polarized electric fields[14], a feature desirable for indoor 

environments. 
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4 CONCLUSION  

 

A wireless device needs to be tested comprehensively before being put in an application. 

Communication range is an extremely important factor in characterizing a wireless device. This 

work characterized a wireless transceiver, with special emphasis on TRF6901, with respect to the 

TRF6901/MSP430 demonstration and development board.  The board with RF section as 

TRF6901 and its matching components driven by a baseband processor MSP430, employs an 

inverted-F antenna (IFA). Since the antenna characteristics were not provided by the supplier, a 

detailed design analysis of the employed antenna was done by simulating in IE3D, a commercial 

method of moment software packages from Zeland [13]. The simulation results were verified by 

taking experimental measurements in the laboratory environment, a semi-anechoic chamber. It is 

seen that the employed antenna has the ability to receive both horizontally and vertically 

polarized electromagnetic waves. For indoor environments where the depolarization 

phenomenon makes the choice of polarization difficult, this type of antenna can be the best 

possible choice. The range of the board was also measured with an external sleek dipole antenna 

with a relatively higher gain than the on-board pcb antenna. It shows that there is a slight benefit 

of the external dipoles over the IFAs.  

Although, many wireless devices use the vertically polarized antennas, it was found that 

using horizontal polarization both at the receiver and at the transmitter results in 10 dB more 

power in the median than using vertical polarization both at the receiver and the transmitter [15]. 
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