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ABSTRACT 

Aside from energy, light carries linear and angular momenta that can be transferred to matter. The 

interaction between light and matter is governed by conservation laws that can manifest themselves as 

mechanical effects acting on both matter and light waves. This interaction permits remote, precise, 

and noninvasive manipulation and sensing at microscopic levels. In this dissertation, we demonstrated 

for the first time a complete set of opto-mechanical effects that are based on nonconservative forces 

and act at the interface between dielectric media.  Without structuring the light field, forward action is 

provided by the conventional radiation pressure while a backward movement can be achieved through 

the natural enhancement of linear momentum.  If the symmetry of scattered field is broken, a side 

motion can also be induced due to the transformation between spin and orbital angular momenta. In 

experiments, these opto-mechanical effects can be significantly amplified by the long-range 

hydrodynamic interactions that provide an efficient recycling of energy. These unusual opto-

mechanical effects open new possibilities for efficient manipulation of colloidal microparticles 

without having to rely on intricate structuring or shaping of light beams. Optically-controlled 

transport of matter is sought after in diverse applications in biology, colloidal physics, chemistry, 

condensed matter and others. 

Another consequence of light-matter interaction is the modification of the optical field itself, which 

can manifest, for instance, as detectable shifts of the centroids of optical beams during reflection and 

refraction. The spin-Hall effect of light (SHEL) is one type of such beam shifts that is due to the spin-

orbit transformation governed by the conservation of angular momentum. We have shown that this 

effect can be amplified by the structural anisotropy of random nanocomposite materials. 
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CHAPTER 1: LIGHT-MATTER INTERACTIONS IN DIELECTRICS: 

MECHANICAL ACTION OF LIGHT 

The mechanical effect of light has been early realized since an observation by Johannes Kepler in 

1619. He suggested that solar radiations push away tail of a comet from the sun. After that, a series of 

key studies by Einstein, Compton, and Frisch established that light can be quantized as photon 

possessing energy and momentum and the momentum transfer from light to matter leads to a motion 

of objects that can be atom or larger scaled particle. Despite the pN magnitude of optical forces, the 

forces can locally alter the matter systems thus macroscopically modifying their mechanical and 

viscoelastic properties of the materials [1].  

  The momentum transfer must strictly obey the conservation laws in electromagnetics. In this section 

it will be shown that the formalism of Maxwell’s stress tensor derived from the classic Maxwell’s 

equations constitutes a conservation law for linear and angular momenta. 

Conservation of Linear Momentum 

Maxwell’s Stress Tensor 

Let us consider an illuminated arbitrary object immersed in vacuum. It is noted that in vacuum the 

linear momentum carried by a single photon is p = ħω/c. The formalism of Maxwell’s stress tensor 

that constitutes the conservation of linear momentum can be expressed as 

∫ 𝐓⃡  · 𝐧𝐝𝒔
 

𝑺
=

𝐝

𝐝𝒕

𝟏

𝒄𝟐 ∫ (𝐄 × 𝐇)𝐝𝑽
 

𝑽
+ ∫ (𝝆𝐄 + 𝐉 × 𝐁)𝐝𝑽

 

𝑽
=

𝐝

𝐝𝒕
(𝐆𝐟𝐢𝐞𝐥𝐝 + 𝐆𝐦𝐞𝐜𝐡) (1), 

where Maxwell’s stress tensor is 

𝑻⃡ = 𝜀0𝑬𝑬 + 𝜇0𝑯𝑯 −
1

2
(𝜀0|𝑬|2 + 𝜇0|𝑯|2)𝑰⃡ =   (2), 

[

𝜀0(𝐸𝑥
2 − 𝐸2/2) + 𝜇0(𝐻𝑥

2 − 𝐻2/2) 𝜀0𝐸𝑥𝐸𝑦 + 𝜇0𝐻𝑥𝐻𝑦 𝜀0𝐸𝑥𝐸𝑧 + 𝜇0𝐻𝑥𝐻𝑧

𝜀0𝐸𝑥𝐸𝑦 + 𝜇0𝐻𝑥𝐻𝑦 𝜀0(𝐸𝑦
2 − 𝐸2/2) + 𝜇0(𝐻𝑦

2 − 𝐻2/2) 𝜀0𝐸𝑦𝐸𝑧 + 𝜇0𝐻𝑦𝐻𝑧

𝜀0𝐸𝑥𝐸𝑧 + 𝜇0𝐻𝑥𝐻𝑧 𝜀0𝐸𝑦𝐸𝑧 + 𝜇0𝐻𝑦𝐻𝑧 𝜀0(𝐸𝑧
2 − 𝐸2/2) + 𝜇0(𝐻𝑧

2 − 𝐻2/2)

], 
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𝐧 is the normal outward direction to the closed surface 𝑆, 𝐸2 = 𝐸x
2 + 𝐸y

2 + 𝐸z
2 is the electric field 

strength, and 𝐈⃡ denotes the unit tensor. Note that each term in Eq.1 has the unit of Newton. In Eq.1 the 

term at the far left side represents the momentum flux that propagates through the closed surface S 

while at the far right side 𝐆field denotes the electromagnetic field momentum and 𝐆mech is the 

mechanical momentum exerted on the arbitrary object inside the bound volume 𝑉 in the exact form of 

Lorentz force equation. The conservation law represented by Eq.1 states that the linear momentum 

flux entering into the volume is used to exert optical force on the object inside that volume and the 

rest is carried in form of the field momentum. It is worth to remind that the object is assumed to be 

rigid in order to formulate Eq.1. To take into account the deformability of the object induced by the 

electromagnetic field, the electrostrictive and magnetostrictive forces are needed to be included in the 

derivation.  

  To calculate the net optical force exerted on the arbitrary object, one needs to evaluate the electric 

and magnetic fields on the closed surface 𝑆 (depicted in Figure 1) as a result of light-matter 

interaction and then apply Eq.1. 

 

Figure 1 The optical force exerted on an arbitrary object is calculated by evaluating both incident and scattered fields at the 

enclosed surface S and then using Eq.1. 

   

  Now let us examine more general situation where an illuminated arbitrary object is submerged in a 

linear, isotropic, lossless, dispersionless, non-magnetic, and dielectric medium with refractive index 

𝑛. In this situation, the question about the magnitude of electromagnetic momentum in dielectric 

media becomes nontrivial generating the Abraham-Minkowski controversy [2-12]. The controversy 
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centers around appropriateness of using Abraham (pA = ħω nc⁄ ) and Minkowski (pM = nħω c⁄ ) 

formulations as the description of the linear momentum in dielectric media. Both theoretical 

considerations and experiments reported so far indicate that each form describes different 

electromagnetic quantities. Abraham momentum is a kinetic momentum of electromagnetic field 

while Minkowski momentum is a recoil momentum that is transferred to the object embedded in a 

dielectric medium. The momentum transfer and hence net optical force exerted on the object can be 

calculated using either Abraham or Minkowski formulations accompanied by an appropriate material 

counterpart and this should reach the same results. It is noted that the material counterpart can be 

understood as a momentum carried by atom inside surrounding medium and being transferred to the 

object. 

  The Maxwell’s stress tensors in term of different forms of the linear momentum were discussed in 

Ref.[10]. The electromagnetic force is a consequence of the direct momentum transfer to the matter 

systems upon interacting with light. The optical force can be tuned to locally confine particle motion, 

drive its translational motion, and even form bound particle structures at microscopic scale. These 

manipulation modalities allow biophysicist to explore the microscopic world of biological systems 

and perform a variety of tasks including modifying, sorting, and transporting biological materials. 

  The theoretical and experimental aspects of optical trapping will be discussed next. 

Optical Forces 

Optical Trap 

Since the pioneered work of single beam optical trap by Ashkin and his coworkers [13], the optical 

tweezer (OT) has become an important tool for research fields ranging from biology to soft condensed 

matter physics. The optical tweezer utilizes forces exerted by a tightly focused beam of light to stably 

trap microscopic objects. The basic working principle of OT is well understood for objects with size 

much larger than the wavelength of light. With the ray optic picture in mind, reflection and refraction 

of an incident ray after hitting the object alter the direction and magnitude of transmitted rays and 
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hence their linear momentum. This generates the momentum transfer which gives rise to the recoil 

optical force drawing the object toward the trapping site near the focus [14]. 

  Conceptually, the OT can be modeled as a microscopic simple harmonic oscillator (see Figure 2). In 

this model the gradient forces, that serve as the restoring forces corresponding to a potential energy, 

are exerted to draw the object toward equilibrium trap center. The trapping site locates at a position 

where the balance between the gradient and scattering forces occurs. The gradient force is a 

conservative force, meaning that work done by the force field on the object for the movement in a 

closed path is zero. Its magnitude depends on the gradient of intensity. On the other hand the 

scattering force (also known as radiation pressure force) is a non-conservative force because light can 

do work on the object as it moves around in a closed trajectory in the vicinity of the trap. Its strength 

depends on the actual intensity, not the gradient. This force component tends to push the object out of 

the trap along the propagation direction of light.  

 

Figure 2 The simple harmonic oscillator model of single beam optical tweezer. Originally from ref.[15]. 

 

  The stability of the optical trap is an important criterion to be carefully considered when designing 

new trapping geometry. In the context of this stability issue, an optical Earnshaw theorem states that a 

stable optical trap can’t rely on only the scattering forces with the lack of the restoring forces even 

though there is a balance between different force components at one particular point [16]. 
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  The single beam optical trap can confine particle motion at one location at a time. Due to the advent 

of computer-controlled spatial light modulators (SLMs), multiple traps can be simultaneously formed 

by spatially modulating a phase pattern of laser beam and thus controlling intensity distribution at the 

objective’s focal plane [17]. This holographic optical tweezer (HOT) technique finds novel 

applications in micromechanics, microfluidic, and fabrication. 

Tunable Optical Forces 

The field symmetry in a multi-body system can suggest the way how light mechanically interacts with 

matters. This should offer another accessible means to externally tune optical forces. To demonstrate 

the role of the symmetry on light-matter interactions, let us consider a simple situation in which a 

spherical particle is illuminated by a gradientless monochromatic plane wave. Upon interacting with 

light, the dissipation (scattering and absorption) process reduces the total photon linear momentum 

along the incident wave propagation and as a consequence of conservation of linear momentum, the 

particle is pushed by radiation pressure forces. There is no net momentum transfer along the 

transverse direction with the beam propagation and thus lateral particle motion because of the mirror 

symmetry of the scattering of light. In other words, the intensity distribution of the scattered light is 

cylindrically symmetric along the incident direction. To break the symmetry results in a transverse 

component of optical forces that displaces the particle laterally. The symmetry breaking can be 

achieved through the modification of the manipulated particle, environment, or incident radiation. The 

particles can be structured to possess cylindrically asymmetric shape or optical properties. As a result 

of light scattering of particles, the cylindrically asymmetric scattering phase functions of the particles 

(defined in Ref. [18]) give rise to the lateral component of optical forces. 

  The effect of the symmetry breaking on optical forces can be seen in another situation in which 

strongly focused Gaussian beam illuminates an off-axis spherical particle. Due to the symmetry 

breaking of light scattering along the transverse direction, the lateral component of trapping forces is 
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exerted on the particle. Now it is shown that the symmetry of electromagnetic fields plays a key role 

in tailoring the optomechanical interaction. 

  The challenging question is whether breaking the field symmetry can be employed to drive unusual 

dynamics of microscopic objects. The clear answer for this question will be given in Chapter 2. Next, 

can gradientless light be used to counterintuitively attract objects towards a light source? To answer it, 

let us examine a simple situation in which a nonabsorbing scattering object (“black box”) is exposed 

by gradientless plane waves at an angle θ with respect to the z axis. This “black box” ideally converts 

all incident plane waves from different propagating directions into scattered waves along the z axis. 

As a result of the momentum conservation, the “black box” is counterintuitively pulled against the 

flow of light. The schematic diagram of the “black box” system is depicted in Figure 3. Although the 

situation seems unrealistic, but it shows that optical pulling force can be realized with the necessity of 

nonparaxial illumination and enhanced forward scattering of objects. This is again a direct 

consequence of symmetry breaking of angular distribution of scattered light.  

 

Figure 3 The “black box” which converts all incident plane waves at grazing angle θ into scattered waves along the z axis is 

pulled against the flow of light due to the increase in the photon linear momentum along the z direction. 

 

   

  To implement the concept illustrated in Figure 3, it was theoretically proposed that a propagation 

invariant Bessel beam can exert optical pulling force on spherical particles over a large interaction 

length within certain conditions of structural parameters and illumination [19]. In specific parameter 

spaces, the constructive interference of induced radiation multipoles simultaneously excited 
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(Scattering theory of small particles can be found in [18].) gives rise to dominant forward scattering 

and hence negative optical scattering force. It is worth to note that the use of a Bessel beam reduces 

input linear momentum due to the fact that a beam is a superposition of plane-wave components 

whose propagating vectors form a cone at an angle θ with the propagation axis. The optical pulling 

effect can be also realized on submicron semiconductor particles that can emit only electric and 

magnetic dipolar radiation without significant loss in near-infrared regime [20, 21]. Recently, the 

theoretical predictions have been experimentally validated and optical transport and sorting of 

submicron particles were also demonstrated using polarization dependence of optical forces [22]. 

  The concept of negative forces can be extended to manipulate a multiply scattering, nonabsorbing 

object with arbitrary shape and size through the complete control of phase and polarization of 

individual plane waves constituting an incident beam [23]. The optimization of phase and polarization 

can be performed to enhance forward scattering resulting in optical forces pulling the entire object 

against the photon stream. This wavefront shaping is known as a technique for imaging and focusing 

in strongly scattering media as well [24]. The proof of concept experiment was conducted in acoustic 

domain [25]. 

  There are other different schemes developed to reverse the direction of optical forces as concisely 

reviewed in ref.[26].                      

Conservation of Angular Momentum 

The Orbital and Spin Angular Momentum of Light 

  Light carries not only linear momentum but also angular momentum. In 1936, Beth demonstrated a 

rotation of a birefringent waveplate illuminated by circularly polarized light [27]. This is a mechanical 

consequence of direct transfer of spin angular momentum (SAM) from a light beam to matter. The 

SAM is associated with the state of polarization of light. This part of the total angular momentum is 

intrinsic meaning that it doesn’t depend on the choice of calculation axis.  
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  Later, Allen et al. found that optical beams with an azimuthal phase distribution in form of 

exp (𝑖𝑚𝜙) carry an orbital angular momentum (OAM) that is the cross product of the position vector 

(𝐫) and linear momentum density (𝐩) [28]. It is noted that the magnitude and sign of the integer m 

indicate the number of intertwined helices of wavefront and the handedness, respectively. The OAM 

relates to helical phase front but polarization. In general, there are both intrinsic and extrinsic OAM 

depending on the symmetry of apertured field distribution with respect to the beam axis [29].    

  The distinction between spin and orbital angular momenta can give rise to different nature of light-

matter interaction. 

Optical Micromanipulation Based on OAM and SAM  

  The exchange of angular momentum from light to microscopic objects drives them to rotate in orbit 

and/or around themselves [30]. The momentum transfer can be induced by different mechanisms. The 

transformation of the polarization state upon interacting with a birefringent particle leads to the SAM 

transfer and hence spinning around its own particle axis [31]. This is the microscopic analog of Beth’s 

original experiment. The OAM transfer induced by the transformation of the laser mode [32, 33] can 

give rise to the rotation of particles in orbit. One way to understand angular motion of particles is that 

the linear momentum flow in the azimuthal direction creates optical forces pushing particles along 

circular trajectory.   

  Another significant work was to demonstrate the mechanical equivalence of spin and orbital angular 

momentum of light on trapped absorbing particles [34]. The circularly polarized Laguerre-Gaussian 

beam with 𝑚 = 1, 𝜎 = 1 induces the rotational motion of the particles with the total angular 

momentum of 2ħ per photon. After switching into the opposite handedness of the polarization state, 

the particles stopped rotating completely with the zero total angular momentum. This confirms that 

the helical phased beam with the integer m possesses the discrete OAM of 𝑚ħ, the same unit as the 

spin component. 
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  Optical micromanipulation based on SAM and OAM of light can be employed to study 

hydrodynamic interaction, sense fluid properties, and control fluid flow at microscopic level. In 

Ref.[35] two birefringent particles were excited by two circularly polarized beams with opposite 

handedness, forming the microfluidic pump used for regulating fluid flow. The flow can assist in 

transporting and sorting microscopic matter on microfluidic lab-on-chip platforms.  

  Throughout this section, one may think the transfers of the OAM and SAM from light to matter are 

two independent processes. In fact, it isn’t true and the conversion between two components of AM 

can occur during fundamental processes of reflection-transmission [36] and scattering [37]. The weak 

spin-orbit coupling can result in a shift of a centroid of an electromagnetic beam [38]. All of reported 

works showed the effect on dynamics of electromagnetic beam (briefly discussed in Chapter 4) but 

matter. In Chapter 2 we will demonstrate the concept of optical force exerted on matter as a 

manifestation of the spin-orbit interaction. The unusual behavior of optical force involves the 

breaking of field symmetry at dielectric interface.    
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CHAPTER 2: BREAKING SYMMETRIES IN COMPLEX 

ELECTROMAGNETIC FIELDS 

Scattering is a fundamental process in which the redistribution of electromagnetic field occurs upon 

interacting with matter. The scattering pattern suggests the way how light mechanically exerts forces 

on objects. As been described in Chapter 1, the pushing-pulling action of light can be achieved by 

manipulating the angular intensity distribution of light waves along the incident beam direction. To 

gain a complete optical control on colloidal dynamics, the condition for generating lateral forces has 

been recently examined [39]. Besides shaping objects, the incident wave can be structured to create 

asymmetric light scattering pattern along the transverse direction. As a result of momentum transfer, 

light can laterally act on objects. 

  The framework of field symmetry and conservation laws can be employed to not only manipulate 

matter but also explore dynamic aspect of quantum phenomena. In the first part of Chapter 2, optical 

situation was implemented to demonstrate the existence of optical forces acting back on a vortex 

formed by scattering of spheres by circularly polarized light. The detection of forces in the optical 

setting should assist in interpreting the interaction and its mechanical effect in the original Aharonov-

Bohm effect. It is worth to note that the occurrence of unusual component of optical forces can be 

explained by either a shift of a centroid of a scattering pattern or an asymmetric scattering phase 

function. Both of approaches associated with conservation of momentum will be stated clearly. 

  Now the general description of the original Aharonov-Bohm effect will be introduced along with 

relevant works.           

Forces in an Optical Analog of Aharonov-Bohm Effect 

Introduction to the Aharonov-Bohm Effect 

  In the original Aharonov-Bohm (AB) setting, a magnetic vector potential forms a vortex that 

interacts with an electronic waveform to generate a typical interference. The matter wave feels the 

nonlocal presence of the magnetic field through its associated vector potential. In terms of the phase 



11 

 

difference accumulated between the two parts of a wave, the topology of the electron wave function 

corresponds to the strength of wave-front dislocation [40].   

  Phenomena related to the original AB effect have also purely classical analogs where wave 

interference leads to interaction forces between quasiparticles and vortices [41, 42].  An AB-like 

waveform can also be imparted to classical waves in moving media [43, 44] where flows play the 

effective role of vector potentials [45]. Because of the related phase gradients, an exchange of 

momentum is established between wave and fluid. This circumstance is part of a larger argument 

around the fact that only some aspects of the AB phenomenon have classical analogues [45-47]. 

  Nevertheless, optical analogs of AB effect have also been proposed and demonstrated. Experiments 

interpreted as manifestation of AB phenomena were concerned with both linear and nonlinear wave-

front splitting by velocity vortex fields [48] as well as with the creation of effective gauge potentials 

for photons by harmonically modulating the refractive index of different photonic systems [49, 50]. 

Notably, it was also shown, that even in the paraxial regime of propagation, the use of anisotropic 

[51] and optically active media [52] leads to cumulative effects that reproduce the characteristics of 

AB phase change. A mechanism for photonic AB caging in waveguide or couples-resonator lattices 

has also been suggested [53]. Recently, a photonic AB effect was also demonstrated where the 

nonreciprocal phase was created via photon–phonon interaction [50]. In a fascinating experiment, the 

scattering circularly polarized wave on a subwavelength hole [54] reproduced the typical AB phase 

change for the case of plasmonic waves. Creating such optical equivalents permitted researchers to 

illustrate in a convenient way and at macroscopic scales some of the fundamental quantum 

mechanical phenomena. 

  In spite of the vast literature on the subject, arguments regarding the associated dynamics are still 

unsettled because of the possible dual interpretation of typical interferometric observables in AB 

experiments. The quantum mechanical formulation describes how a charged matter wave accumulates 

a path-dependent phase that is determined by the effective vector potential throughout the space 
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accessible to the particle [55]. The interferometric observables however can also be described as the 

result of a Lorentz force acting classically on charged particles [56].  

  Notably, in the context of momentum exchange, the fact that the moments of spatial distribution of 

intensity in the interference pattern do not depend on the accumulated phase – the so-called “no shift 

theorem” [57] – was interpreted as the absence of momentum transfer in AB experiments [58]. 

However, this “no shift theorem” is violated for finite size wave-packets with nonzero intensity at the 

magnetic flux line [59]. This means that the issue of observable forces cannot be approached in the 

traditional AB setting involving infinitely extended plane waves. On the other hand, when a wave-

packet or a beam is considered, the notion of trajectory or shift of a center of mass can be invoked as 

in Shelankov’s original paraxial analysis [58]. A similar argument has been raised by Berry when 

suggesting that a beam’s deflection by a step mirror constitutes, in fact, an optical analog of the AB 

phenomenon [59]. Thus, in classical wave optics experiments, by following the evolution of the center 

of mass of a wave-packet or a beam, one can probe the forces arising in AB settings. Here we create 

an optical situation that permits observing experimentally such reaction forces that appear as a result 

of conservation of the canonical momentum. We will show that electromagnetic scattering by a small 

sphere can be manipulated in such a way that a change in the center of mass of the scattered intensity 

determines the appearance of specific, measurable forces. This constitutes the first experimental 

demonstration of the dynamic consequences of phase dislocations at a vortex state leading to 

nondissipative mechanical forces.  

Optical Setting  

First, we describe our Aharonov-Bohm optical setting and provide theoretical validation for 

appearance of forces.  When a circularly polarized plane wave 𝐄1 is incident on a spherical scatterer 

as shown in Figure 4a, a vortex field distribution 𝐄1
𝑠 emerges (Figure 4b) centered at the location of 

the scatterer [60]:   

 𝑬1
𝑠 ∝ 𝑬1[𝑆2𝜽̂ + 𝑖𝑆1𝝓̂]𝒆𝒊𝝓. (3) 
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Here 𝑆1(𝜃, 𝜙) and 𝑆2(𝜃, 𝜙) are the components of scattering matrix for scattering direction (𝜃, 𝜙) 

(see Figure 4a) while 𝜃 and 𝜙̂ are the local orthogonal unit vectors of spherical coordinate system. 

The physical origin of this vortex field is the partial transformation of spin to orbital angular 

momentum during the wave interaction with the scatterer [60]. We note that the phase distribution of 

scattered field 𝐄1
𝑠 is similar to the phase 𝜓𝑠 = 𝜓0𝑒𝑖𝑚𝜙  accumulated by an electronic plane wave 𝜓0 

interacting with a hypothetical magnetic monopole [61] with charge m. In the case of the electron, the 

phase dislocation can be observed interferometrically by splitting the wave and then recombining it.  

 

 

Figure 4 Optical setting: vortex generation by scattering on a spherical particle. (a) Spherical particle illuminated by a 

circularly polarized plane wave with electric field strength 𝐄𝟏 and wavevector 𝐤𝟏; (b) The power flow in the plane z=0 

clearly demonstrates the vortex structure; (c) A second, linearly polarized wave 𝐄𝟐 provides the interferometric reference. 

  The vortex field 𝐄1
𝑠 can also be “probed” interferometrically using a reference, plane wave 𝐄2 

linearly polarized along z and propagating along the y-axis as shown in Figure 4c. This is similar to 

the situation discussed previously for plasmonic waves interference [54] that manifest wavefront 

dislocations typical to AB effect.  
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Figure 5 Effective interference leading to changes in the wave’s momentum density. Due to the transformation of angular 

momentum during scattering of circularly polarized light on a spherical object (gray), when  seen from the far-field the 

sphere appears at a shifted virtual location (smaller red sphere). This shift in the apparent location 𝚫 depends on the spin of 

the incident wave: (a) 𝝈 = −𝟏; (b) 𝝈 = +𝟏.  The corresponding maximum of interference pattern (indicated by a small red 

dot) is shifted to the left or to the right with respect to the symmetry point depending on the helicity of incident wave. 

 

  Let us examine now the total scattered field in the (x’,z) plane (Figure 5). The scattered field 𝐄2
𝑠 is 

still linearly polarized while 𝐄1
𝑠  is, in general, elliptically polarized maintaining the helicity of 𝐄1. 

The result of their interference can be interpreted as shown schematically in Figure 5.  

  Seen from a distant observation point, the vortex field 𝐄1
𝑠 appears to originate from a virtual location 

shifted by with respect to the origin of coordinates [37]. Thus, the intensity distribution observed 

along a direction x’ is 

 𝐼(𝑥′) ∝ |𝑨1(𝑥′, ∆)𝑒𝑖𝜎𝜙 + 𝑨2(𝑥′)|
2

 (4), 

where the functions 𝐀1 and 𝐀2 describe the field variations as determined by the corresponding 

scattering phase functions,  is an additional geometric phase due to the vortex field while 𝜎 = ±1 is 

the topological charge of the field resulting from the scattering of a circularly polarized plane wave by 

a sphere. Note that Δ changes to – Δ when the spin 𝜎 of 𝐄1 flips and, consequently, the vorticity of 𝐄1
𝑠 

changes [37] as illustrated in Figure 5. Thus, the modulated intensity pattern should move left or right 

with changing the handedness of illumination light. 

  The interference between the two waves is analog to the formal solution of Schrödinger’s equation 

for a plane wave in the circular gauge exp{𝑖(𝒌. 𝒓 + 𝜙)} [59]. In our case, the second wave 𝐄2
𝑠 

(a) (b)
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introduces the necessary scattering directionality and also it imposes a finite range of accessible 

scattering angles. Thus, this second wave serves the role to limit the width of the wave-packet in the 

Aharonov-Bohm setting [59]. Taking also into account the fact that 𝐄2
𝑠 has nonzero intensity at the 

vortex location, we can expect the deflection of the scattered pattern |𝐄1
𝑠 + 𝐄2

𝑠|2, as this is analogous 

to the conditions assuring the shift of the beam diffracted by magnetic flux line [59].  

  Note that in our description the fields 𝐄1 and 𝐄2 are coherent. Their phase relationship is equivalent 

to an initially non constant phase across the wave-packet in the AB setting, which does not influence 

the way in which the phase accumulates around the vortex.    

  To inspect the mechanical consequences, one can invoke the actio et reactio principle. The time-

averaged radiation force, FAB, acting on the center of mass of the sphere is equal in magnitude, and 

opposite in sign, to the rate of change of momentum of the electromagnetic field. Thus, in the 

example discussed here the “center of mass” of intensity shifts from 𝑥′ = 0 position (Figure 5) 

 ∫ 𝑥′𝐼(𝑥′)𝑑𝑥′ ≠ 0 (5) 

and it also depends on ∆, meaning that a force 𝐹𝐴𝐵 ≡ 𝐹𝑥 should act  on the particle with a sign 

depending of fields’ vorticity. Indeed, the force acting on the particle can be expressed in terms of the 

scattered fields as [23, 62] 

 𝐹𝑥 = −
𝜀0𝑟2

2
∫ |𝑨1(𝒓̂, ∆)𝑒𝑖𝜎𝜙 + 𝑨2(𝒓̂)|

2
𝑟̂𝑥𝑑𝛺

 

𝛺
 (6), 

where 𝐫̂ is a unit vector corresponding to angle of integration Ω and 𝑟̂𝑥 is its projection onto 𝑥 axis, 𝑟 

is the radius of the integration sphere. The integration in Eq. (6) is performed over a solid angle of 4𝜋 

steradians. Because of the symmetry properties of the scattering phase functions in the case of 

scattering from a sphere, Eq.(6) can be rewritten as 

 𝐹𝑥 = −𝜀0𝑟2 ∫ 𝑅𝑒[𝑨1(𝒓̂, ∆)𝑒𝑖𝜎𝜙𝑨2
∗(𝒓̂)]𝑟̂𝑥𝑑𝛺

 

𝛺
 (7). 
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In this form, one can easily see that the acting force FAB depends on the spin of the incident wave: 

𝐹𝑥(𝜎 = 1) = −𝐹𝑥(𝜎 = −1). Let us stress again that force 𝐹𝐴𝐵 depends only on scattered fields and, 

thus, is nonconservative force. Also, there are no other gradient or radiation pressure forces acting in x 

direction. 

  We would like to draw the attention to the close similarity between the expressions in Eqs. (5) and 

(6). By expressing the x-component of the force directly in terms of the scattered fields provides a 

simple and clear description of the dynamics associated with this AB setting, as determined by the 

conservation of canonical momentum.  

  Another interesting observation can be derived from Eq. (6). As a result of the angular integration, 

the resultant transversal force is zero when the scattering phase functions are isotropic because the 

shifts of the interference patterns cancel in the forward and backward directions. This is exactly what 

happens in the particular case of scattering from a dipole, a situation that can also be confirmed by 

simple electromagnetic calculations. Nevertheless, the scattering from any finite size particle is 

always anisotropic with respect to forward-backward directions leading to a nonzero AB force (Figure 

6).  

 

Figure 6 Amplitude of transversal force 𝑭𝑨𝑩 as a function of particle size. The forces are calculated directly from Mie 

scattering phase functions according to Eq. (6).  Calculations were performed for a polystyrene sphere with refractive index 

1.6 in water which is illuminated with radiation of 532nm wavelength from a 50mW beam power focused into a 10m 
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radius spot. The magnitude of the transversal force (solid blue curve) is much smaller than the corresponding radiation 

pressure (red dashed curve), which makes the 𝑭𝑨𝑩 detection challenging. 

 

  The occurrence of an AB force transversally acting on a Mie sized particle can be understood within 

the symmetry consideration. In this point of view the role of two incident beams and a spherical 

particle will be clarified. The scattering of a circularly polarized wave creates a vortex field centred at 

the location of the particle because of a partial transformation from spin to orbital angular momentum. 

The spiraling of the energy flow illustrated in Figure 7 breaks the mirror symmetry of the light 

scattering. Then an illumination of a linearly polarized wave further breaks its center symmetry. At 

the far field the energy flow corresponds to the propagation direction that relates to the linear 

momentum of light. Hence the symmetry breaking in the flow pattern induced by the superposition of 

two incoming waves enables linear momentum transfer from light to matter driving transversal 

motion of the particle along x-axis. It is worth to note that the characteristics and direction of this 

force component are different from those of radiation pressure forces acting along the propagation 

directions of two incident waves (y and z-axes). 

 

Figure 7 Symmetry breaking in energy flow patterns upon illuminating a spherical particle with (a) a circularly 

or (b) linearly polarized wave along propagating directions, kc and kl, respectively. Poynting vector field lines 

shown in both patterns were calculated by using Mie theory. Red arrows were inserted into (a) only to illustrate 

symmetry breaking and necessary conditions for generating transversal force along x direction. The color 

represents the intensity distribution.     
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Experimental Demonstration 

The practical implementation of the concept is more involved.  First of all, the linearly polarized plane 

wave provides a fixed phase reference for the interference. Because the force 𝐹𝑥 in Eq. (7) depends on 

the relative phase between the complex amplitudes 𝐀1 and 𝐀2, the magnitude of the transversal force 

will oscillate accordingly. In particular, if the phase between 𝐀1 and 𝐀2 is changed by 𝜋, the force  

changes its sign that immediately follows from Eq.(7). Practically, this means that the force 𝐹𝑥   acting 

on a spherical particle will depend on its position in the plane (y,z). This is a direct consequence of the 

optical setting necessary to observe the AB force: the asymmetric phase of a scattered wave has to be 

generated by a mobile element whose displacement can be followed. Second, the magnitude of 𝐹𝐴𝐵 is 

rather small (compared, for example, to radiation pressure) and does not steadily rise with an increase 

of particle size as can be seen in Figure 6. The further growth is prevented by the spatially oscillatory 

nature of the transversal force that complicates the experimental detection of the force. The 

oscillations of the force amplitude visible in Figure 6 are determined by the way the particle covers 

the 𝐹𝐴𝐵 oscillation period.  
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Figure 8 Experimental verification of the existence of transversal force. (a) Experimental setup for observing transversal FAB 

forces. (b) Schematics of the periodic behavior of FAB forces acting on a particle in the observation plane. The particles 

trajectories are also influenced by overwhelming Brownian motion. (c) The amplitude of reconstructed periodic motion 

(with noise subtracted) as a function of spatial frequency for combinations of circular and linear polarized waves (top and 

bottom panels) and for a combination of two linearly polarized waves (center panel).  

 

  Experimentally, 2m diameter polystyrene particles were suspended in water and exposed to two 

overlapping coherent beams as shown in Figure 8a. A combination of rotating waveplates allows 

setting linear and circular polarizations for the incident field. The two beams were always 

orthogonally polarized and create a uniform intensity distribution. The particles were pushed by 

radiation pressure against upper cover slip that served as an observation plane. Besides radiation 

pressure, the particles are also subjected to transversal FAB forces acting along the x axis as discussed 

above. Because the relative phases of two beams change in the observation plane, the magnitude and 

direction of the force varies like 𝐹𝐴𝐵 ∝ cos(√2𝑘𝑦0 + 𝛿) (Figure 8b). Even though each particle 

occupies several oscillation periods of 𝐹𝐴𝐵 (approximately 282 nm each for incident field wavelength 
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532 nm), the overall transversal force is not zero as seen in Figure 6. The particles were imaged onto a 

CMOS camera and their trajectories were recoded and further processed to evaluate the effect of 

transversal forces. During the experiment, the action of random Brownian forces impeded the direct 

observation of spatially periodic force 𝐹𝐴𝐵. 

  The results for the recovered spatial frequencies of particles’ displacements ∆𝑥0 along direction 𝑦0 

are summarized in Figure 8c. The upper and lower panels correspond to circularly polarized 𝐄1 with 

spin 𝜎 = ±1 and a clear peak is visible corresponding to a spatial frequency 3.6 µm-1 (period 280nm). 

This agrees very well with the predicted oscillation period of 282 nm for the transversal FAB forces. 

Under a linear polarization on the other hand (middle panel), a purely isotropic motion is observed 

indicating the absence of any transversal forces.   

Concluding Remarks 

Aside from being the first direct measurement of dynamical manifestation of the field vortex, this 

demonstration has several important implications. First of all, the question of forces in general and 

those acting in various AB settings in particular is of fundamental interest in formulating the laws of 

physics. On one hand, within the accuracy of a semiclassical description, the momentum density of 

the wave does not change during the AB interaction and, according to the principle of actio et reactio 

one would not expect that the wave exerts any force back onto the vortex. However, this argument 

does not necessarily apply when the phase gradient represents the true momentum and the 

conservation laws must be carefully examined.  

  Newton’s second law has been quite successful in the Hamiltonian description of optics. The 

conservation of canonical momentum, the equivalent of the third law, however, still raises questions 

for systems out of equilibrium.  Optical experiments such as ours permit simultaneous measurements 

on the field and the particles and can therefore examine the role of conservation laws and symmetries 

in complex interacting systems.    
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  The non-trivial dynamics that can be controlled in our optical setting has implications for a broad 

range of phenomena where forces act on vortex fields and where experiments are almost inexistent or 

difficult to conceive. For instance, our results may impact the understanding of gravitational AB 

effect where particles are scattered by a spinning cosmic string moving in the background matter [46] 

or the so-called Iordanskii force acting on a vortex moving in superfluids [63]. 

  Our experiment also represents a direct demonstration of dynamics driven by nonconservative curl 

forces, for which there is no associated scalar potential [64]. The motion of a charge in the field of a 

magnetic monopole is a typical example of this class of dynamical phenomena, which are essentially 

untested.  

  Finally, we anticipate that the dynamical system studied here may offer insights into concepts such 

mechanical action and non-locality and it may also stimulate interest in other novel phenomena in 

photonic systems that are analogous to charges coupled to magnetic fields. 

  So far in this chapter optical setting was created to explore dynamic aspect of the Aharonov-Bohm 

effect. The existence of an experimentally detected AB force can be considered as a consequence of a 

shift of a centroid of a scattering pattern according to conservation of momentum. In addition, the 

framework of symmetry was introduced to suggest the behavior of optical forces without full 

electromagnetic calculation. In this way of thinking it appears that the AB force occurs due to 

symmetry breaking of the light scattering induced by complex illumination.   

  Throughout the dissertation, the framework of symmetry becomes a useful tool for engineering 

unusual component of optical force with unique characteristics paving new ways in optical 

manipulation of matter. In the remaining part of this chapter, it will be theoretically and 

experimentally demonstrated that unstructured light can exert lateral forces on microscopic particles 

with isotropic shape and optical properties floating on liquid surface owing to symmetry breaking of 

the light scattering, similar to the origin of AB force. Here the presence of dielectric interface plays a 

crucial role in breaking the field symmetry around the isotropic particle.  
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Mechanical Action of Optical Spin-Orbit Interaction 

Earlier an incident electromagnetic field is structured to tailor scattering phase function upon 

interacting with matter. This, in turn, leads to a control over the force field distribution determined by 

Maxwell’s stress tensor. Now it will be shown that the optomechanical effect can be alternatively 

controlled by modifying environment surrounding matter with unstructured light. It permits 

manipulating matter in a robust manner even at low dimensional level. 

  Firstly, let us briefly describe the nature of optical forces under our investigation. The new type of 

optical force appears because of the exchange between two different components of momentum. To 

be more specific it is a momentum transfer from spin angular momentum of incident light to orbital 

angular momentum of scattered one. This polarization dependent optical force is different from usual 

component of radiation pressure and torque. It acts perpendicularly to the direction of light 

propagation. It should be noted that the mechanical effect during spin-orbit transformations was 

previously predicted in light reflection and refraction (spin-Hall effect of light) [65]. 

  As being an origin, the new mode of mechanical action can be regarded as a result of symmetry 

breaking of light scattering during optical spin-orbit interaction affected by the presence of nearby 

interfaces. To understand this quantitatively, let us consider a spherical, dipole-like particle with a 

radius equal to approximately 1/10th of the wavelength. The particle is located at the interface of two 

media with different refractive indices and is illuminated by a circularly polarized wave as shown in 

Figure 9a. The distribution of intensity and the power flow (time-averaged Poynting vector) in a plane 

yz perpendicular to the plane of incidence is shown in Figure 9b. As can be seen, the spiraling of 

energy flow breaks the mirror symmetry of the light scattering. Because of the optical spin Hall effect 

that arises from partial momentum transformation in spherical geometry [37], light to the left of the 

0y   plane propagates mostly in the upper medium while the opposite happens at the right side of 

the particle. The presence of the interface further breaks the central symmetry of the light distribution. 

As the magnitude of wave’s momentum is determined by the properties of medium it propagates 
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through [66], this scattering asymmetry unbalances the transversal linear momentum. Consequently, a 

side force perpendicular to the original wave propagation should act on the particle with a magnitude 

determined by its scattering phase-function [62]. We will further elaborate this idea analytically and 

confirm it by exact numerical calculations and by experimental results. 

 

Figure 9 Scattering of circularly polarized light off a spherical particle located at the interface between two dielectric media. 

(a) Illumination geometry: a circularly polarized beam is incident along xz plane. (b) Distributions of intensity (color map) 

and power flow, Poynting vector, (lines) in the plane yz perpendicular to the plane of incidence xz. Calculations (Comsol 

Multiphysics) were performed for a 100nm TiO2 particle placed at water-air interface with dielectric permittivities of 𝜺𝟏 =1 

and 𝜺𝟐 =1.77. The particle was illuminated by a circularly polarized wave with the wavelength of =532nm incident at 55. 

Analytical Formulation for Dipole Sized Particles 

  If a dipolar particle is located entirely inside one of the media, the problem can be solved 

analytically. In the first example, we consider a point dipole located a distance 𝑧0 away from the 

interface between two semi-infinite transparent media 1 and 2. The dipole 𝐝 is placed in the lower 

medium 2 and a circularly polarized plane wave of amplitude 𝐸0𝐼 is incident from the upper medium 
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1. We are interested in the force 𝐹⊥ acting on the dipole in a direction perpendicular to the plane of 

incidence xz  (Figure 9a). This force can be found by integrating the scattering phase function over 4 

solid angle or by integrating the Maxwell’s stress tensor over a closed surface surrounding particle. 

An asymmetric field distribution would ensure that these integrals are nonzero. In the case of dipole, 

however, one can follow a much simpler approach derived directly from the Lorentz force 

formulation and find the force to be [67] 

 𝐹⊥ =
1

2
𝑅𝑒(𝒅𝜕𝑦𝑬∗) (8), 

where 𝐄 is the local field at the location of the dipole. The symbol 𝜕𝑦 denotes partial derivative with 

respect to transversal coordinate 𝑦 (Figure 9a). The field 𝐄 represents the superposition of the 

transmitted field 𝐄𝑇 and the dipolar radiation 𝐄𝑑 scattered from the interface back to the dipole.  

Obviously, 𝐹⊥ is zero for a normal incidence 𝜃𝐼 = 0° because of the azimuthal symmetry of the field. 

The force tends also to zero for grazing angles of incidence 𝜃𝐼 → 90° when no light reaches the dipole 

inside the medium 2. Because of spin-orbit transformations at intermediate angles of incidence, 𝐄𝑑 

lacks symmetry with respect to 𝑦 = 0 plane and, consequently, its y-derivative is nonzero. In these 

conditions, the transversal force becomes 

𝐹⊥ =
𝑘2

𝜀0
Im(𝑑𝑦𝑑𝑧

∗)Im(𝜕𝑦𝐺𝑦𝑧
0 ), 

 𝜕𝑦𝐺𝑦𝑧
0 =

1

8𝜋𝑘2
2 ∫ 𝑟𝑝(𝑘𝜌)𝑘𝜌

3 𝑒𝑥𝑝(2𝑖𝑘2𝑧𝑧0) 𝑑𝑘𝜌
∞

0
 (9). 

Here 𝐺𝑦𝑧
0 = 𝐺𝑦𝑧(𝐫0, 𝐫0) is the 𝑦𝑧 component of the Green’s function tensor [68], 𝑟𝑝 is the amplitude 

reflection coefficient for p-polarized wave, 𝑘2 is the wavenumber in medium 2, 𝑘2𝑧 = √𝑘2
2 − 𝑘𝜌

2, 𝑘 is 

the wavenumber in vacuum, and 𝜀0 is vacuum dielectric permittivity. We must stress that because 

there are no variations of intensity along the surface, Eq.(9) describes a purely nonconservative force. 

Furthermore, one can see that the force is determined by two factors: the first one is specified by 
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configuration of the field in the vicinity of interface, the second one is entirely determined by the 

material properties of two media. 

  When examining Eq.(9) one can see that the force is nonzero only if there is a phase difference 

between the transversal components y and z of dipole momentum. This practically means that 

transversal force exists only for elliptically polarized light and disappears in the case of linearly 

polarized wave. It also follows that this force changes sign with the change of the helicity of incident 

wave.  

  For the case of a dipole placed close to the surface (𝑧0 → 0) one can obtain an explicit expression for 

the transversal force. It is interesting to notice that even though the electrostatic approximation can be 

used to calculate dipole moments for 𝑘2𝑧0 ≪ 1, it is unsuitable for evaluating our transversal 

nonconservative force. The electrostatic approximation does not include retardation effects (field 

phases) and, thus, can account only for conservative forces. This demonstrates that the electrostatic 

approximation imposes even more severe limitations than previously believed.  

  For a dipole far from the interface (𝑘2𝑧0 ≫ 1), the integral in Eq.(9) can be evaluated asymptotically 

to obtain 

 𝐹⊥(𝑧0 → ∞)~
𝑘2

4

4𝜋𝜀2𝜀0
𝐼𝑚(𝑑𝑦𝑑𝑧

∗)
𝑠𝑖𝑛(2𝑘2𝑧0)

(2𝑘2𝑧0)2

𝑛12−1

𝑛12+1
 (10). 

The presence of reflection coefficient 𝑛12 − 1 𝑛12 + 1⁄  factor in Eq.(10) suggests another 

interpretation of the transversal force for particles located far from interface. The vortex spherical 

wave created by the dipole is reflected from the interface and causes a back-influence on the dipole 

itself. The force can be understood then as originating from the phase of this vortex. The same phase, 

for example, makes particles orbiting in vortex beams [31]. In our case the particle drags vortex with 

itself creating a self-propelling linear motion. This interpretation becomes somewhat similar to the 

one suggested for chiral particles at an interface [69]. However, our demonstration indicates that this 

phenomenon is more general and does not necessarily rely on exotic material properties.  
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  The oscillating behavior of 𝐹⊥ with distance 𝑧0 resembles the one occurring in optical binding when 

optically bound particles are illuminated with circularly polarized light [70]. However, the distance-

dependent force in that case decayed faster [70] than the force in Eq.(10).   

  In a similar way one can estimate transversal force for a particle located in the same medium as 

incident wave. This case may be more favorable in terms of the magnitude of the lateral force: it can 

be comparable to the radiation pressure. However, one should be careful in interpreting the nature of 

this transversal force: the force in Eq.(9) should be distinguished from the action of a transversal spin 

momentum that can appears during the interference of incident and reflected waves [71-73]. Because 

the spin momentum does not affect dipolar particles, its detection requires the presence of multipoles. 

This type of transversal force was detected recently in an Aharonov-Bohm optical setting [39]. As 

opposed to the force due to spin momentum, the transversal force described here would exist even if 

the reflected wave is completely eliminated by, for example, antireflection coatings at the interface. 

  Another interesting observation derived from Eq.(10) is that the transversal force is long-range and 

thus can affect dipoles located far from the surface. This suggests that such lateral force should also 

appear for objects with dimensions larger than the wavelength.  

Numerical Calculation for Larger Particles 

  To assess the magnitude of this transversal force for larger particles, we performed systematic 

numerical simulations (Comsol Multiphysics) in a geometry similar to our experiments. We evaluated 

the force acting on a 4.5m polystyrene (PS) particle located at air-water interface and illuminated 

with circularly polarized light. Because of the large scales of this simulation (~(10𝜆)3), special 

methods were developed to perform scattering calculations. The force magnitude shown in Figure 10a 

was calculated using a modified Maxwell stress tensor, which was integrated over a closed surface 

around the particle to directly take into account the asymmetry of field in the transversal direction 

illustrated in Figure 10b. For irradiances of 0.15mW/m2 , the force reaches values of tens of fN 

which, in principle, can be detected experimentally. 
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Figure 10 Lateral force on Mie-size particles. (a) Transversal force as a function of the angle of incidence for a 4.5m PS 

particle located at water-air interface. The contact angle between PS and water was set to be 90 degrees [74] which makes 

particles to be half-submerged into water. The symbol indicates the force value at 𝜽𝑰 =52° corresponding to the 

experimental conditions. (b) Scattering phase function in a plane transversal to the plane of incidence for incidence angle 

𝜽𝑰 =52°. Zero scattering angle corresponds to the direction antiparallel to the z axis in Figure 9a. The asymmetry of 

scattering with respect to plane of incidence is evident.  

Experimental Demonstration 

  To verify the existence of this new type of force, we performed experiments with surface bound 

micro-particles. Monodispersed polystyrene (PS) microspheres with 𝐷 =4.5μm diameter were 

deposited onto the water surface. The beam of a continuous-wave laser (wavelength 532 nm; optical 

power 2W) was focused into a linear trap to prevent the longitudinal movement of the particles caused 

by radiation pressure. In this geometry and for the highly scattering PS particles, we did not observe 

the interfacial tractor beam effect [66]. A rotating quarter-wave plate allowed switching between left- 
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and right- circular polarizations of the incident field. As can be seen in Figure 11, switching the 

polarizations leads to the synchronous changes in the sign of the lateral force as predicted by Eq.(9). 

 

Figure 11 Experimental data. (a) Time variation of the handedness 𝝈 = 𝟐𝑰𝒎(𝑬𝑰
𝒑
𝑬𝑰

𝒔∗
)/√|𝑬𝑰

𝒑
|
𝟐

+ |𝑬𝑰
𝒔|𝟐 of incident wave (𝑬𝑰

𝒔, 

𝑬𝑰
𝒑
 are the s- and p- components of the incident field); (b) Time dependence of lateral velocities for several particles in the 

linear trap. Symbols of different shape and color correspond to different particles; (c) Number of optically trapped particles 

as a function of time.  A larger number of trapped particles results in the increased amplitude of their optically induced 

motion due to hydrodynamic interaction between them. 

  In the experiment, the weak effect of optical forces was effectively amplified by the long-range 

hydrodynamic interaction between particles [75, 76]. Assuming pairwise additivity, the velocity of an 

arbitrary particle i is 

 𝒗𝑖 = 𝒗𝑓𝑙𝑜𝑤 + ∑ 𝝁𝑖𝑗(𝒓𝑖, 𝒓𝑗)𝑭⊥(𝒓𝑗) (11), 

where 𝐯flow is the macroscopic flow on the water surface, 𝛍𝑖𝑗 is the tensor defining hydrodynamic 

interaction [77] and the summation is performed over all particles affected by the optical force [76, 

78]. The monodispersed PS particles experience the transversal force 𝐹⊥ pointing in the same 

direction. The long-range 1/R hydrodynamic interactions [79] make their velocities to diverge 

logarithmically when increasing the number of particles. Figure 11b shows the velocities of several 

particles in a linear trap as a function of time. As the number of trapped particles increases over time 
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(Figure 11c), the particles’ velocity also grows. This hydrodynamic interaction results in a three-fold 

increase in the observed velocities. 

  As evident in Figure 11b, the particles’ velocity follows the changes in polarization handedness. The 

regression analysis performed on the base of linear model (11) yields the velocity of an isolated 

particle 〈𝐹⊥〉 (3𝜋𝜂𝐷/2)⁄ =0.62±0.06m/s with a confidence level of 95% (the drag coefficient here 

is twice smaller than that of Stokes formula as particles are half in air [80]). Knowing the dynamic 

viscosity of water 𝜂 and the size of the particles 𝐷, we evaluate the average lateral force to be  

〈𝐹⊥〉 =11±1 fN for 0.15 mW/m2 average power density.  This force magnitude is in excellent 

agreement with the predictions of numerical calculations (Figure 10a) 𝐹⊥
theor(𝜃𝐼 = 52°) =9.3 fN. 

  As a side note, we do not expect SOI to produce additional spin motion of the particles. Frictional 

liquid forces are of the order of micro-Newtons [81], which is at least 6 orders of magnitude larger 

than typical optical forces. 

  The proposed method completes the set of methods for arbitrary manipulation of colloidal particles 

on the surface of liquids. Forward action is provided by the radiation pressure while backward 

movement can be achieved through momentum enhancement effects [66]. Here we demonstrated that 

a side motion can also be induced due to the transformation of spin angular momentum of incident 

photons into orbital angular momentum of scattered ones. To detect this new transversal force, we 

applied systematically, for the first time, a method of hydrodynamic amplification of opto-mechanical 

effects. 
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CHAPTER 3: CONSERVATION LAWS AT DIELECTRIC 

INTERFACES: EFFECT ON MATTER 

An interface between two homogeneous, linear, and isotropic media introduces spatially varying 

optical properties (e.g. refractive index, permittivity, and permeability). During wave propagation 

across the interface, the change of photonic linear momentum caused by an index mismatch between 

media [10] can be transferred to the illuminated object resulting in a recoil force. The momentum 

transfer ensures the conservation of linear momentum along the interface associated with the 

translational symmetry. The magnitude and the direction of the optical force can be tuned by 

controlling the illumination conditions and the material properties and dimension of target objects and 

those of the surrounding medium. 

Negative Optical Forces at Soft Dielectric Interfaces 

  In this chapter we theoretically and experimentally demonstrate electromagnetic force 

counterintuitively pulling arbitrary floating objects against the flow of light and along soft dielectric 

interfaces. The pulling action over macroscopic distances can be achieved by an appropriate 

modification of purely passive dielectric environment and without resorting to non-paraxial 

illumination, interference of multiple beams, gain or other exotic materials. The experimental data 

obtained by a method of video microscopy [82] were analyzed to confirm the effect. 

  Unlike experiments reported in Ref. [22, 83], here stable negative forces can be created even when 

using ordinary, unstructured, gradientless paraxial beams. The use of paraxial incident beam allows us 

to extend the spatial interacting regions where strictly negative nonconservative forces may occur. 

Hence optical manipulation based on these forces over macroscopic distances is possible. 

  For a physical origin of these negative forces, the forces acting against the incident beam 

propagation arise naturally due to the appropriate amplification of the photon linear momentum when 

light is scattered from one dielectric medium into another with higher refractive index. This is based 



31 

 

on Minkowski’s formulation: the momentum of a photon increases n times upon entering the 

dielectric medium, pM = nħω c⁄ , where n is the refractive index of the medium. 

Numerical Calculation 

 

Figure 12 Forward momentum amplification and backward particle motion when a ray propagates from air into 

water through the scatterer. (a) Schematic illustration of the forward momentum amplification. Red arrows represent 

directional vectors along the incident, reflected, and transmitted rays. The lengths of the directional vectors are proportional 

to the refractive index of the medium that the rays lies in. As a result of momentum conservation, a negative scattering force 

𝑭𝒙 (blue arrow) is exerted on the scatterer along the interface. (b) The x-component of optical force as a function of a 

grazing angle 𝜽𝟏exerting on spheroids with different main axes 𝒅𝒙, 𝒅𝒚 and 𝒅𝒛, (see inset), while the  cross-section area 

along interface remains the same (𝒅𝒙 ⋅ 𝒅𝒚 = const, 𝒅𝒙 = 𝒅𝒚 = 10μm). The forces are calculated with a ray tracing technique 

for spheroids with refractive index 𝒏𝟑 = 1.42 floating at the air-water interface under the illumination of a p-polarized plane 

wave with the irradiance of 10 µW/µm2. 

 

  Let us examine the situation illustrated in Figure 12a. A scatterer with refractive index of 𝑛3 is 

placed at the interface of two media (for example, a gas and a liquid) with refractive indices 𝑛1 and 

𝑛2 > 𝑛1. The scatterer is illuminated by a beam of light (plane wave) such that some of the incident 

and scattered rays lie in different media, as shown in Figure 12a. In the conditions depicted here, both 

the direction and the magnitude of the momentum of the light (𝐩𝑀) change. According to 

Minkowski’s approach, when going from medium 1 to medium 2, the momentum increases; 

consequently, the scattering force, in particular the component of the force experienced by the object 

along the interface, 𝐹𝑥 ∝ −∆𝑝𝑀,𝑥 = (ħ𝜔 𝑐⁄ )(𝑛1 cos 𝜃1 − 𝑇𝑛2 cos 𝜃2), may become negative such that 

the total momentum is conserved. Because the relation between 𝜃1 and 𝜃2 depends on the shape and 

optical properties of the system, there can be situations when the scatterer moves in a direction 

opposite to the incident wave. In this scheme, it is the presence of the medium with high refractive 

ba
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index which provides the increase in forward momentum, even in a passive environment. Thus, 

according to the classification scheme discussed in ref. [26], the situation can be described as a 

“tractor beam” action that is assisted by the environment   surrounding the object. 

  We note that this increase in the forward momentum depends on both reflection and refraction in the 

medium with higher refractive index. This is why, according to Minkowski’s description, negative 

force would not occur, for example, for plane-parallel objects. Indeed, the angles for such an object 

are related according to Snell’s law (𝑛1 cos 𝜃1 = 𝑛2 cos 𝜃2) and the force along the surface is 𝐹𝑥 =

(𝑃 𝑐⁄ )(𝑛1 cos 𝜃1 − 𝑅𝑛1 cos 𝜃1 − 𝑇𝑛2 cos 𝜃2) ≡ 0, where 𝑃 is the optical power incident onto the 

plane-parallel object characterized by the intensity reflection and transmission coefficients 𝑅 and 𝑇. 

For objects with arbitrary shapes, a more detailed analysis is necessary to establish the detailed 

conditions for which negative force can be generated. As one can see from Figure 12b, the occurrence 

of negative force is a rather general phenomenon, but, of course, non-absorbing dielectric objects of 

different shapes could experience negative forces of different strengths. For instance, Figure 12b 

illustrates a few examples of ray-tracing calculations of scattering forces acting on objects with simple 

shapes (spheroids). One can clearly see that, in accordance to the discussion above, the flatter the 

shape of a spheroid, the smaller the negative force acting on it. Of course, at normal incidence 

(𝜃1 = 90°) there will be no component of negative force along the surface for circularly symmetric 

objects (Figure 12b).  

Experimental Demonstration 

  To verify the concept of surface-assisted negative force, we performed a systematic experiment 

using small drops of dodecane (refractive index, 1.421; diameter, ~10μm) formed at the water 

surface. The small floating droplets were illuminated at a grazing angle of 25° by a loosely focused 

Gaussian laser beam (power, 1.2W; diameter, ~300μm). Under these conditions, the irradiance in the 

vicinity of the center of the illumination spot (~35𝜇𝑊 𝜇𝑚−2) was three orders of magnitude smaller 

than typical irradiances used in optical tweezers [13] and two orders of magnitude lower than  in a 
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recent experimental realization of a tractor beam [22]. This irradiance is also small enough to leave 

the water surface unperturbed, in contrast to the experiments reported in Ref. [84]. The movement of 

microdroplets was continuously imaged with a microscope and recorded with a CCD camera. The 

particles’ trajectories were subsequently analyzed using particle-tracking techniques. 

 

Figure 13 Pulling force action on particles bounded to water-air interface. (a) Trajectories of oil drops in the field of 

view of a camera during first 45 seconds of illumination with p-polarized light. The ends of trajectories are indicated by 

small circles and the dashed ellipse denotes the 1/e contour line of illumination spot. The arrow indicates the direction of 

propagation of the incident beam. (b) Average velocities (due to optical forces acting along the interface) distribution at 

different locations relative to the illumination spot. The length of the arrows is proportional to the average speed while their 

orientations indicate the local direction of movement after the contribution from macroscopic surface flows has been 

subtracted (see text). (c) Average velocity of oil drops near the beam’s center as a function of laser input power. The error 

bars indicate the standard deviation of velocities distribution and the line is the linear fit to the data.  

 

  An example of reconstructed trajectories of floating particles is shown in Figure 13a. As can be 

clearly seen, the droplets that happen to be inside the illumination spot manifest a distinct directional 

motion against the beam propagation. On the other hand, particles outside the illumination spot follow 

different directions of motion, with trajectories influenced to a certain degree by residual macroscopic 

flows on the water surface and, to a minor extent, by Brownian forces. As can be seen from Figure 

13a, negative motion of particles is observed over distances of ~200μm. In principle, the particles’ 

movement can be affected by several mechanisms: gradient and scattering optical forces, drag forces, 
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and Brownian forces. At the working wavelength of 532nm, dodecane and water are essentially non-

absorbing and direct thermally induced forces are not expected to make a significant contribution.  

  In the overdamped regime, the sum of optical and Brownian forces acting on a particle is balanced 

by the drag force 𝐹𝑑, which is proportional to the observed particle’s velocity 𝑣. To remove the 

contribution of drag forces induced by macroscopic surface flows, we subtracted the average velocity 

of the particles moving outside the illumination spot from the velocities determined for particles 

moving inside the spot. The corrected distribution of velocities in the case of p-polarized illumination 

is shown in Figure 13b and, as can be seen, it clearly demonstrates a pronounced movement against 

the direction of beam propagation. Note also that, because the illumination spot is rather large, the 

magnitude of the optical gradient forces is insignificant. These forces do not noticeably affect the 

recorded trajectories, as demonstrated in Figure 13b, where one can see particles moving freely 

against the action of a potential gradient force that points from the center of the beam down and left. 

A distribution of velocities similar to the one in Figure 13b was also observed for the case of s-

polarized illumination (not shown).  

  To study the dependence of the speed of induced movement of droplets on intensity, we performed 

several experiments where the illumination power was varied from 0.3W to 1.2W. The results of 

velocity reconstruction are shown in Figure 13c, where the linear dependence between these two 

parameters can be clearly seen.  

  The drag coefficient 𝑏 = 𝐹𝑑 𝑣⁄  at the surface of the water can be assessed independently by 

observing the Brownian motion of the oil drops in the absence of optical excitation. In the planar 

geometry of interest, the mean square displacement is related to the drag constant as 〈𝑟2〉 = 4𝑘𝐵𝑇𝑡 𝑏⁄ , 

where 𝑘𝐵 is the Boltzmann constant and 𝑇 is the thermodynamic temperature. Using the measured 

drag coefficient 𝑏 = (2.3±0.1)×10-8 N s m−1 and the dependence between the observed velocity and 

irradiance shown in Figure 13c, one can establish quantitatively the relative strength of the observed 

component of the negative force along the interface to be 𝐹𝑝 𝐼⁄ = (2.5±0.2) pN (mW μm−2)⁄ . 
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Performing a similar analysis for the s-polarized excitation, we obtain 𝐹𝑠 𝐼⁄ = (1.9±0.2) 

pN (mW μm−2)⁄ , which demonstrates the polarization dependence of the observed force. 

Discussion 

 

Figure 14: The optical force exerted on a lens-like oil droplet at water-air interface. (a) Example of ray tracing for a 

floating lenslet-shaped particle. The cross-section of the lenselet is shown and only a very low ray density is displayed for 

clarity. (b) The optical force acting along the interface on a lens-like oil drop 10µm in diameter as a function of grazing 

angle 𝜽𝟏 for s- and p- polarized incident waves as indicated.  

 

  To compare the experimental results with the predictions of Minkowski’s theory, one requires a 

correct description of the shape of the oil drops. In our experiment the oil drops were shaped as 

spherical lenses [85] with the surface radii defined by surface tension coefficients. Although drag and 

electromagnetic forces may alter the shapes of soft dielectric interfaces [10, 84], the surface tension 

forces in our experiment are much larger and do not allow significant deformation to  the shape of the 

oil drops [86, 87]. Using a ray-tracing method (Figure 14a), we calculated the forces acting on 

droplets with the specific shape used in our experiments. Relating the momenta of the incident, 

reflected, and transmitted rays within the Minkowski formalism, we obtained the optical forces for p- 

and s-polarized incident waves as shown in Figure 14b. As can be seen from the schematic illustration 

in Figure 12a, this force is determined by the balance of three contributions to the total momentum, 

∆𝐩 = 𝐩I − 𝐩R − 𝐩T. The magnitudes of incident 𝐩I and reflected 𝐩R momenta in air are well defined. 

The apparent factor of four difference between the force measured experimentally and the value 

estimated numerically can be explained by a small variation of just 8% in the magnitude of the 

a b



36 

 

momentum in the medium 𝐩T. Such deviation may be caused by several factors that were not taken 

into account in the model. First, the non-uniform electromagnetic field at the surface of the liquid oil 

drops can excite localized hydrodynamic flows that can affect the motion of the droplets. Second, the 

forces acting on closely spaced particles, often present in our experiment, could be different from that 

on a single particle, as considered in numerical estimations. Finally, there is also the possibility that 

interfacial phenomena (such as induced surface and interfacial charges reacting to the electric field of 

the incident beam [88]) in multi-phase soft matter may require refinements of the microscopic 

theories of optical momentum exchange and the associated mechanical action. However, all these 

influences are just perturbations to the major contribution to the negative force created by the 

amplification of the momentum in water.  

  In summary, we have demonstrated that gradientless optical fields can act as “tractor beams” along a 

properly chosen interface of two materials with different refractive indices. Based on the conservation 

of linear momentum, negative force can be generated without restrictions on the beam’s shape, 

polarization, phase and so on. We note that optical forces and momentum exchange are usually 

discussed for objects entirely embedded in homogeneous media. The current experiment provides new 

insights for understanding surface effects in momentum exchange and can also assist in developing 

and evaluating microscopic theories of optical forces in multiphase systems and in soft bodies. This 

work also raises several other provocative questions. For example, could there be any specific 

coupling between electromagnetic and material energy-momentum tensors driven by the angular 

momentum conservation? This question is very interesting because light carries both angular and spin 

momenta, and Hall-type effects could, in principle, generate non-trivial stresses at soft interfaces 

showing the mechanical effect of angular momentum transfer on soft matters. 

  Interestingly, the effect described here does not rely on any specific coherence properties of the 

optical field. Indeed, it can be achieved even with incoherent light. The amplification of the forward 

scattering momentum is due solely to the presence of an interface between low and high refractive 
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index media. The phenomenology discussed here could be translated easily to other wavelength 

domains. In contrast to another recent “tractor beam” demonstration [22], the experiment presented 

here is easy scalable for arbitrarily large objects and displacements. Also, the condition for objects to 

have specific shapes or to be highly scattering [23] is not required. The simple scheme and the robust 

experimental implementation may find a plethora of applications in developing novel 

micromanipulation approaches and for studying interfacial phenomena. 

  The pushing-pulling forces as well as spin controlled lateral forces form a complete set of available 

methods for optical micromanipulation of matter without involving complex field structuring and 

control. All these electromagnetic forces are non-conservative and can act over macroscopic 

distances.  

  The role of dielectric interfaces is crucial to these peculiar optomechanical interactions. The 

interface breaks the centrosymmetry of the vortex field structure giving rise to the transversal force. In 

another situation, the amplification of photon linear momentum in the forward scattering direction 

occurs during the beam propagation into higher refractive index medium. The momentum transfer 

from light to objects generates the pulling force along the dielectric interface.  

  Throughout the dissertation, the conservation laws associated with the symmetry considerations 

prove to be a useful framework for developing unusual behavior of optical forces and thus rich light 

driven dynamics of matter systems.  
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Hydrodynamic Amplification of Optomechanical Effects 

Due to a usually small magnitude of optical forces the experimental detection within high precision 

becomes a challenging task considering being embedded into different types of noises. The sources of 

these noises can be possibly from external turbulence, thermally induced fluid flow, or even thermally 

driven random motion of colloidal particles. One way to circumvent these is to develop highly precise 

particle tracking algorithm. However, its capability may be limited by several factors such as a 

physical appearance of an image of a particle, size of a particle in pixel, etc. An alternative way is to 

amplify the optomechanical effects without affecting the nature of optical forces. Here we 

demonstrated the hydrodynamic amplification of these effects through an efficient use of the 

momentum imparted to surrounding colloidal medium. In simple words, the particles moving together 

drag surrounding liquid creating collective and directional motion of the particles. This motion mode 

is called “Advection”, that complements diffusion in the mass transport at low Reynolds numbers 

where viscous drag dominates inertia. Remarkably, we have shown both theoretically and 

experimentally that the enhancement effect assisted by optical advection can be achieved at low levels 

of optical irradiance. 

  In this part we demonstrate the amplification of mechanical motion induced by conventional 

radiation pressure exerting on colloidal particles in bulk. It should be noted that the concept was 

employed to enhance the experimentally detected effect of side forces briefly described in Chapter 2. 

  We will begin with the theoretical model that accounts for the long-range hydrodynamic interaction 

and then perform the experimental verification.   

Theoretical background 

  Let us consider an unfocused beam of light propagating through a dilute colloidal suspension. 

Disregarding gradient forces, the optical scattering force acting on colloidal particles can be described 

as 

 𝑭(𝒓) = 𝜎𝑟𝑝𝐼𝑐𝑜ℎ(𝒓)/𝑐 (12), 
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where 𝜎𝑟𝑝 is the radiation pressure cross-section and 𝐼𝑐𝑜ℎ is the coherent part of propagating beam. 

We note that only this coherent part produces an ordered movement of particles while the scattered or 

incoherent part results in randomly oriented optical forces.  These random forces can lead to other 

interesting effects[89], but they are usually much weaker and, therefore, not relevant for the case 

discussed here.  The decay of the coherent part of the beam in scattering medium is defined by the 

scattering length[90]  𝑙𝑠 = (𝑛𝜎𝑒𝑥𝑡)
−1, where 𝑛 is the number density of particles and 𝜎𝑒𝑥𝑡 is the 

associated extinction cross-section. At high intensities, a nonlinear dynamics may also develop due to 

an interplay between optical forces and the modified local particles concentration[1, 91]. These 

extreme conditions however require irradiances many orders of magnitude higher than what is 

considered here.  

  Subjected to the field of forces )(rF  in Eq. (12), the velocity of particle i can be described within the 

additive pair-interaction approximation as a sum over stokeslets[92] 

 𝒗𝑖 = ∑ 𝝁̿𝑖𝑗𝑭𝑗, (13), 

where 𝐅𝑗 ≡ 𝐅(𝐫𝑗) is the force acting on particle j. The summation in Eq.(13) is performed over all the 

particles affected by nonzero forces. The hydrodynamic interaction between the point-like particles i 

and j of a dilute colloidal system is described by the Oseen tensor[92] 𝛍̿𝑖𝑗 ≡ 𝛍̿(𝐫𝑖 − 𝐫𝑗) 

 𝝁̿𝑖𝑖 = (6𝜋𝜂𝑎)−1𝑰̿ ,   𝝁̿𝑖𝑗 = (8𝜋𝜂𝑅𝑖𝑗)
−1

(𝑰̿ + 𝑅̂𝑖𝑗𝑅̂𝑖𝑗),  (14), 

where 𝑎 is the particle radius (the particles are assumed to be monodispersed), 𝜂 is the dynamic 

viscosity of the surrounding liquid, 𝑅𝑖𝑗  is the distance between centers of the i-th and the j-th 

particles, 𝑅̂𝑖𝑗 is the unit vector in a direction from particle j to particle i, and 𝐈̿ is a unitary matrix. One 

can see from Eq.(14) that the mobility matrix 𝛍̿  is inversely proportional to the inter-particle distance 

𝑅𝑖𝑗. This slow dependence on 𝑅𝑖𝑗 makes the sum in Eq.(13) be strongly influenced by the magnitude 

and the spatial characteristics of the force field. In particular, it follows that by orchestrating the 
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particle motion with a directionally uniform field of forces, one can significantly increase particles’ 

velocities because in Eq.(13) all the terms enter the sum with the same sign.  

  In some cases, the distance between colloidal particles is much smaller than characteristic 

dimensions of the beam (the width and the scattering length   𝑙𝑠) and the summation in Eq.(13) can be 

replaced by integration. In this case, instead of forces acting on discrete colloidal particles, one can 

consider volume forces acting on the fluid itself. This continuum description has been used previously 

in a number of situations[93-95]. When this formulation is applied to absorbing liquids in finite size 

vessels,  the speed of optically-induced convective flows can be approximated as[93] 

 𝑣 ≈
𝐿𝐼0(𝛼𝐿)

𝜋4𝑐𝜂
 (15), 

where I0 is the intensity, 𝛼 can be set to be equal to 1 𝑙𝑠⁄ , 𝐿  is the depth of the container, 𝑐 is the 

speed of light.  

  Starting from the elementary description of the velocities in Eq.(13), we derived an expression for 

the velocity of “optical streaming” in the case of deep containers (𝐿 ≫ 𝑙𝑠) and wide illumination 

beams: 

 𝑣 ≈
1

16
√

2

𝜋

𝜎𝑟𝑝

𝜎𝑒𝑥𝑡

𝑃0

𝑐𝜂𝑤0
 (16), 

where 𝑃0 =
1

2
𝜋𝐼0𝑤0

2 is the total power carried by the beam with a waist size 𝑤0. As one can see, the 

expression is qualitatively similar to Eq.(15), although for deep containers the velocity of optically 

induced flow is determined mostly by the parameters of the beam rather than the properties of the 

colloidal particles. An expression for the velocity of optically induced flow in a general case can be 

derived. One can easily estimate that, for nanometer size particles and optical beam diameters ranging 

from microns to millimeters, the flow velocity can be three to six orders of magnitude higher than the 

speed of an individual colloidal particle. The colloidal particles moving together drag the surrounding 
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liquid and create a significant advective flow. Manipulated particles caught in this advective flow can 

acquire velocities much higher than ones of hydrodynamically isolated particles.  

When estimating the optical streaming velocity in Eq.(16), we replaced the discrete summation in 

Eq.(13) with an integration in a manner similar to the hydrodynamic description of Refs.[93-95]. 

However, there could be situations where the direct summation is more appropriate. This is the case, 

for instance, of finite-size, heterogeneous colloidal systems consisting of particles with different 

properties and also the case of colloids in highly focused and structured fields. These circumstances 

make the summation description in Eq.(13) ideal for describing micro-fluidic applications. It could be 

noted that the discrete-colloid approach used in Eq.(13) can be seen as an analog of the discrete dipole 

approximation (DDA) in electrodynamics [96] and, correspondingly, the area of application of 

discrete-colloid approach can be similar to the one of DDA.  

Experimental Demonstration 

  To verify the proposed concept of the hydrodynamic amplification, we performed systematic 

experiments with microscopic 4.5m-diameter polystyrene (PS) particles. First, we investigated a 

particle motion in the absence of optical advection. PS particles were dispersed onto the surface of 

water over an area of ten millimeters in diameter. The method for depositing microspheres on the 

liquid surface was described in Ref.[97]. The motion of the particles at the air-water interface was 

imaged through a 10  microscope objective (NA 0.25, Olympus) and recorded by a CCD camera 

(Andor sCMOS) with a frame rate of 25 f.p.s. The motion of PS particles was recorded and particle-

tracking techniques were applied to analyze the particles’ trajectories. In the absence of the light 

illumination, the PS particles experience a Brownian motion. The diffusion coefficient can be 

experimentally measured from the relative mean square displacements MSDrel= 〈Δ𝑟𝑟𝑒𝑙
2 (𝜏)〉 [98]. 

Figure 15 shows the relative mean square displacements of PS particles as a function of time lag  𝜏. 

The corresponding diffusion coefficient is 0.0836±0.0002μm2/s, which corresponds to an average 

displacement of 2.68m over 10s duration. Experimentally found diffusion coefficients are 
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approximately two times lower than the theoretically estimated value (~0.22μm2/s). The theoretical 

value of diffusion coefficient for surface bound particles is found by knowing the contact angle (that 

is  90  for PS and water [99]) and corresponding submergence depth for polystyrene [87]. In 

particular, PS particles are half-submerged into water that makes their diffusion coefficient twice 

larger than that for the particles in a bulk. The reduction of the diffusion coefficients of the particles 

can be due to surface contamination.  

 

Figure 15 The temporal evolution of the relative mean square displacements of diffusing targeted particles. Particles are 

placed on the surface of pure water (red color) and on the surface of a colloidal suspension of polystyrene nano-particles 

(blue color).   

  After measuring the diffusion coefficient, the system was illuminated by a linearly polarized 

monochromatic unfocused light from a CW laser (Coherent Genesis CX Series model; wavelength 

532 nm; optical power 2.5W; beam diameter 2.2mm) at the incident angle of 27°. Two 532 nm notch 

filters (OD4, from Edmund) were used to remove the scattered laser light. At the operating 

wavelength of 532nm, the absorption in polystyrene and water is minimal and causes only negligible 

thermal contributions meaning that all the mechanical effects of light can be attributed to the 

exchange of linear momentum. We found that the micro-particles placed on the surface of pure water 

are pushed along the beam propagation with a maximum velocity 𝑣 ≈ 0.72 μm/s. The distribution of 

velocities is depicted in Figure 16 with blue color. 
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Figure 16 Probability density functions of velocities for 4.5μm PS particles propelled by laser irradiation. PS particles are 

uniformly distributed on the surface of pure water (Blue color) and on the surface of a monodisperse colloidal suspension of 

polystyrene nano-spheres (Red color) under the laser illumination with optical powers of 2.5 and 0.3 W, respectively 

  Next, we estimated the effectiveness of the hydrodynamic amplification. Polystyrene microspheres 

were placed onto the surface of colloidal suspensions containing 0.3%v/v colloidal concentration of 

200-nm-diameter polystyrene particles. The measured diffusion coefficient in the absence of external 

illumination was 0.0919±0.0002μm2/s (see Figure 15), which is close to the case of PS particles 

placed on the surface of pure water. Following the measurement of diffusion coefficient, the colloidal 

system was illuminated by a CW laser beam with 0.3W optical power and with all other parameters 

being the same as in the previous case. After switching on the illumination, the particles on a surface 

started immediate motion and continued to move until light was turned off. An example of 

reconstructed trajectories of floating particles is shown in Figure 17a. The center of the illuminating 

beam lies in the middle of the image and, as can be clearly seen, the particles in that vicinity 

experience a directional motion along the beam propagation. The spatial distribution of velocities of 

interfacial particles is shown in Figure 17b while the corresponding histogram of the velocity 

magnitudes is displayed in Figure 16 (red color). The maximum velocity of the particles observed in 

experiment is 22.3 μm/s. It can be clearly seen that, in this case, the velocities are one order of 

magnitude larger than the velocities measured on the surface of pure water. It also should be reminded 

that these values were obtained for an optical power of illumination 𝑃0 = 0.3W, which is almost one 

order of magnitude lower than the power used in the case of pure water. With a diameter of incident 
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beam being 2.2mm, the irradiation intensity in our experiment was 0.16W/m2 that is 2 orders of 

magnitude less than in the experiments with evanescent waves [100-102]. With this low intensity 

level we could achieve several times higher propulsion velocities because of an efficient ‘recycling’ 

of the lost energy through the colloidal particles.  

 

Figure 17 Hydrodynamic amplification experimentally observed at the surface of the colloidal suspension. (a) Trajectories 

of interfacial particles during the 10s of laser illumination. The ends of trajectories are indicated by small circles. (b) Spatial 

distribution of time-averaged velocities. The length of the arrows is proportional to the speed while their orientations 

indicate the local direction of particles’ motion. 

  Additional results illustrating the hydrodynamic amplification in a different type of colloid are 

presented (not shown here). That experiment made with silica colloidal particles also shows the 

significant increase of velocities of their mechanical motions. 

  In principle, the achievable advective velocities can be even higher. To prove that, we performed 

extended numerical calculations of advective flows with the same parameters as in experiment while 

considering the situation of negligible contributions from the container walls. Calculations show that 

the velocity of advective flows can achieve a maximum speed of μm/s190 . The measured velocities 

in the experiment are an order of magnitude lower, which could be explained by the finite dimensions 

of the cuvette; it is known that backflow of displaced water outside the region of action of optical 

forces apparently slows down the induced advection [95]. In addition, the reduced measured velocities 
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of the particles could be a consequence of possible surface contamination that also explains lower 

measured diffusion coefficients of PS particles.  

  We should point out that the hydrodynamic interaction between large numbers of particles can be 

harnessed to not only amplify the optomechanical effects to be experimentally detectable but also 

achieve optically controlled transport. In this case the mass transport assisted by optical advection can 

be tunable by the characteristics of light and illumination condition. We note that the proposed 

concept of controlled transport can be generalized and implemented with different external driving 

forces. For instance, fluid flows can be generated by applying time-dependent biaxial magnetic fields 

to magnetic platelet suspensions [103, 104]. Complex flow patterns can be externally controlled by 

the specific properties of both the applied fields and suspended particles, enabling tunable heat and 

mass transport [104]. However, the magnetic forces are usually much stronger than the optical ones 

leading to higher velocities of turbulent flows at high Reynolds numbers that may alter the transport. 

Conclusions 

  In conclusion, we proposed and demonstrated ability of amplification of optomechanical effects 

through advection mechanism that can be controlled optically. The proposed concept can be applied 

to optical manipulation inside a volume and at the interface.  

  The experimental results presented here show the hydrodynamic amplification of conventional 

radiation pressure exerted on the colloidal suspension of 200 nm diameter PS particles. The collective 

effects were observed from the motion of 4.5 µm diameter tracer particles along the surface of the 

colloidal suspension because of much simpler detection system. In this situation the radiation pressure 

cross-section of the 200 nm-diameter PS particle is extremely small, resulting in a particle velocity of 

several nm/s for a Watt-level illumination. In addition, the diffusion of the nanometer size particle 

dominates its directional motion, making it even harder to be detected. Also, because of diffraction 

limit, the light cannot be deployed only over the targeted area of a particle and a large part of radiation 

is practically lost. The proposed concept of the hydrodynamic amplification  allows us to ‘recycle’ the 
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lost energy and to use it efficiently for manipulating the particles. As such, the velocity of 200nm 

particles caught in the advective flow would reach hundreds µm/s even when the irradiation power is 

one order of magnitude smaller (~100mW). 

  Besides, the hydrodynamic technique permits to effectively regulate the mass transport in a remote, 

noninvasive, and, most importantly, in a power efficient manner, which should be of interest for 

microfluidic lab-on-chip platforms. 

  At this stage we form for the first time a complete set of nonconservative forces for arbitrary 

manipulation of objects at liquid surface with unstructured light beam at low irradiance. We gain a 

complete control over the magnitude and direction of mechanical motion of microscopic objects 

relying on different electromagnetic interactions, governed by conservation laws as well as the long-

range hydrodynamic interaction. These are consequences of electromagnetic interactions on matter. 

  In the next chapter we will shift our focus to the effects of optical manifestations on electromagnetic 

waves.    
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CHAPTER 4: CONSERVATION LAWS AT DIELECTRIC 

INTERFACES: EFFECT ON LIGHT 

Beam Shifts 

  Fundamentally, light experiences reflection and refraction upon interacting with the refractive index 

gradient. The optical interaction of a plane wave with a plane dielectric interface between two non-

magnetic, isotropic, and homogeneous media is described by well-known Snell’s law and Fresnel 

formulae which relate propagating vectors and field amplitudes of incident and secondary waves, 

respectively [105]. This provides simple geometrical optic description of light evolution. However, 

the situation becomes more complicated for a real optical beam with finite width (i.e. angular 

spectrum). The reflected and transmitted beams are subject to subwavelength beam shifts, deviating 

from the geometrical optic prediction. 

  There are basically four types of beam shifts measured with respect to the plane of incidence, in-

plane spatial and angular shifts (called Goos-Hanchen shift [106]) and out-of-plane spatial and 

angular shifts (called Imbert-Fedorov shift [107]). The schematic picture of these beam shifts can be 

found in Ref.[36]. Their origins can be well understood within self-consistent framework centered on 

beam transformations and deformations at the interface [36]. The GH shifts are associated with the in-

plane angular dispersion of reflection and transmission coefficients while the transverse IF shifts 

relate to the geometric phase distributed across the angular spectrum. 

  It is important to note that the spatial IF beam shift is a consequence of conservation of angular 

momentum. Because of the rotational symmetry of the material system about a z-axis (normal to the 

interface), the z-component of the total angular momentum (SAM and intrinsic and extrinsic OAM) 

must be conserved upon reflection and transmission. As a result of light-matter interaction at the 

interface, the net change of the z-component of the SAM is converted into the extrinsic OAM along 

the z direction. The spin-orbit transfer gives rise to the transverse shift of the centroid of the optical 
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finite beam along the y direction. It is noted that the incident beam is assumed to not possess the 

intrinsic OAM. 

  As an optical analog of electronic spin Hall effect, upon interacting with a refractive index gradient a 

linearly polarized wave splits into left and right circularly polarized waves experiencing opposite 

signs of spin dependent transverse spatial shifts at the interface [38, 108-110]. This transversal spin 

transport is widely known as “spin Hall effect of light (SHEL)” that resembles the IF beam shift. 

  In principle, the spin-orbit coupling should assist in processing and communicating information 

encoded as spin and orbital angular momentum states of a light beam. However, due to small 

magnitude of photon momentum the weak SOI requires sophisticated detection scheme for measuring 

SHEL [38]. The ability to enhance SHEL in a controllable manner is desired. Recently, it was 

demonstrated that the rapidly varying phase gradient along a metasurface introduces strong SOI 

resulting in a large splitting of polarized light [111]. The position-dependent phase retardation can be 

tailored by adjusting the length and orientation of the arms of the V-shaped gold antennas patterned 

on the surface, allowing us to tune the SHEL. Conceptually, the spatially varying phase distribution 

imposes additional momentum on an incident wave leading to the large SHEL. Nevertheless, the use 

of lossy material and complexity of fabrication process make metallic metasurface less practical 

platform for spin-controlled photonics. Recently, we theoretically proposed to anomalously enhance 

the SHEL by obtaining large phase retardation attributed to an effective anisotropy of a metal-

dielectric composite. The effective optical anisotropy is induced due to the presence of an inevitable 

surface that breaks the translational symmetry of electromagnetic field in the direction perpendicular 

to the surface. The existence of induced effective anisotropy seems counterintuitive considering that 

the composite consists of components that are isotropic in shape, distribution, and optical properties. 

Before investigating the anomalous SHEL at a composite interface, let us qualitatively and 

quantitatively describe several proposed mechanisms contributing to “surface induced anisotropy” 

(SIA). This should provide us physical insight of an origin of the anomalous SHEL. 
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Beam Shifts at Composite Interface 

Surface Induced Anisotropy of Composite Material 

  Optical anisotropy can be either an intrinsic material property or an effective response due to 

complex structures. The effective anisotropic properties can still exist even in optical media with 

highly symmetry of distribution, shape, and optical properties. We show that inhomogeneous media 

consisting of spherical constituents randomly and uniformly distributed inside a host medium with 

isotropic optical constants can exhibit effective anisotropy due to the inherent presence of the surface 

[112]. As will be seen, such composite media possess different effective refractive indices for s- and 

p-polarized incident light. 

In the following, different mechanisms that can lead to SIA will be discussed. 

Mechanisms for surface-induced anisotropy 

  One can single out several mechanisms that can contribute to surface induced anisotropy in 

randomly inhomogeneous media having macroscopically isotropic properties.  

  The first mechanism relates to the fact that inclusions cannot penetrate the surface. As a result, the 

concentration of inclusions in the vicinity of the surface will be smaller than that in the bulk as 

illustrated in Figure 18. According to effective medium theories, a change in the concentration of 

inclusions leads to a change in the effective refractive index. Thus, a thin layer situated near the 

interfaces of an inhomogeneous slab will have slightly different refractive indices. It is known that 

such multilayer structure will manifest anisotropic effective properties [113-115]. However, because 

the thickness of the regions having different refractive indices is of the order of the size of inclusions, 

only small changes are induced in the magnitude of the refractive index of the slab and one cannot 

expect sensible effects due to this mechanism.  

  We note that the surface penetrating inclusions can be sectioned along that surface and, in this case, 

the concentration of inclusions can be constant across the entire volume. However, the truncated 
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inclusions will now lose their spherical symmetry and their anisotropic shape will again induce 

surface anisotropy. 

  Another mechanism that could lead to surface-induced anisotropy relates to the change in local fields 

near the surface [116, 117]. The local field at the position of some inclusion is determined by 

surrounding inclusions located within the so-called Lorentz sphere drawn around the observation 

point as shown in Figure 18b [116]. When the observation point is close to an interface, the Lorentz 

sphere is truncated and the distribution of local fields inside the sphere changes. The magnitude of 

local field inside the truncated sphere will depend on polarization of incident wave and this 

determines the anisotropic behavior of the surface layer. Also, this means that the effective refractive 

indices for thin slabs of inhomogeneous materials will be different for s- and p-polarized incident 

wave. We should mention that the anisotropy of dielectric permittivity caused by finite size of 

particles and retardation effects (Drude transition layer) was discussed previously in the case of 

plasmonic metamaterials with periodically arranged metallic inclusions [118-120]. The authors of 

these papers note that the presence of surface does require a more careful description of the 

metamaterial slab’s optical properties. 

 

Figure 18 Surface induced anisotropy can be attributed to (a) change in the concentration of inclusions, (b) modification of 

local field, (c) inclusion-surface interaction. 

 

  A third mechanism for the surface-induced anisotropy can be simply explained by the interaction 

between the inclusions and their own images with respect to the surface as illustrated in Figure 18c. 

This interaction changes the polarizability of inclusions located near the surface and, consequently, 
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modifies the effective properties of the medium near the surface. We expect this effect to be 

significant for metallic inclusions. 

Local field changes near the surface 

  A simple analytical theory for surface layers of inhomogeneous media that takes into account local 

field change near the surface is described in [121] where the effective permittivity of a medium 

containing small spherical inclusions arranged in a cubic lattice was considered. In the electrostatic 

approximation, it was demonstrated that dielectric permittivity at different depths z is [121] 

𝜀𝑡(𝑧) = 𝜀0 +
𝑁𝛼

1−𝑁𝛼𝐶𝑡(𝑧)/𝜀0
, 𝜀𝑛(𝑧) = 𝜀0 +

𝑁𝛼

1−𝑁𝛼𝐶𝑛(𝑧)/𝜀0
,                      (17), 

where 𝜀𝑡 and 𝜀𝑛 are the dielectric permittivities along the directions tangential and normal to the 

surface, 𝑁 is the number density of inclusions, and 𝛼 is the polarizability. The depth-dependent 

coefficients are 𝐶𝑡(𝑧) = 0.346 and 𝐶𝑛(𝑧) = 0.307 in the layer closest to the surface; in the bulk these 

coefficients become 𝐶𝑡(𝑧) = 𝐶𝑛(𝑧) = 1/3. Material parameters averaged across the layer of thickness 

h can be found according to the following rules [122-124] 

 𝜀ℎ
𝑡 =

1

ℎ
∫ 𝜀𝑡(𝑧)𝑑𝑧

ℎ

0
 , 𝜀ℎ

𝑛 = ℎ (∫
𝑑𝑧

𝜀𝑛(𝑧)

ℎ

0
)

−1
 (18).

Several conclusions can be reached in this electrostatic approximation. First, according to Eqs. (17) 

and (18), thin inhomogeneous slabs behave as uniaxial anisotropic materials with the optical axis 

directed perpendicularly to the surface. Ordinary and extraordinary refractive indices of these slabs 

can be found as 
n

he

t

ho nn   , . Second, the refractive index for s-polarized waves (the same as 

the ordinary refractive index 𝑛𝑜) does not depend on the angle of incidence. The refractive index for 

p-polarized waves 𝑛𝑝 on the other hand is a function of angle of incidence as shown in Figure 19. 

Note also that, according to Eq. (18), the degree of anisotropy increases when the thickness of the slab 

decreases. 
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Figure 19 Effective refractive indices 𝒏𝒔, 𝒏𝒑 and 𝒏𝒆 as functions of the angle of incidence as calculated with Eq. (18) 

(dashed lines) and calculated by electrodynamic simulations (solid lines) for a 135 nm thick inhomogeneous slab having 

25% volume fraction of inclusions with radius 𝒓 = 25 nm and refractive index 𝒏𝒊 = 2.97 embedded into a matrix of 

refractive index 𝒏𝒎 = 1.33. The error bars indicate the uncertainty in reconstructing the average values of refractive index 

with confidence 0.95. 

 

  The simple analytical theory leading to the depth-resolved dielectric permittivity expressed in Eq. 

(17) allows one to describe the optical properties of thin layers with inclusions much smaller than 

wavelength, which are assumed to be arranged in a regular lattice inside the host matrix. To describe 

the optical properties of layers with random structure, we should approach the problem differently. 

Also, in a situation where the distances between individual inclusions lay in the range of hundreds 

nanometers, the retardation effects will start manifesting in the interaction between different 

inclusions. To fully explore the surface effects in this case, one should go beyond the electrostatic 

approach and perform numerical electrodynamic calculations.  

  There are different methods to calculate the transmission of optical wave through inhomogeneous 

slab such as, for example, Finite-Difference Time Domain, Finite Elements Methods (FEM), Coupled 

Dipole Method based on periodic boundary conditions [125], three-dimensional layered KKR method 

[126]. In this work we used Finite Elements Method implemented in commercial software Comsol 

Multiphysics 3.5a. This approach offers a convenient way to describe the properties of systems 

containing both dielectric and metallic inclusions. Periodic boundary conditions were applied to the 

volume containing small spherical inclusions. This allows us to replicate this volume in two 

dimensions and produce a pseudo random slab structure. 
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  In our numerical experiment, randomly inhomogeneous slabs were illuminated by s- and p-polarized 

plane waves and the complex reflection and transmission coefficients were derived from the fields on 

the entrance and exit surfaces of the slab. The procedure was repeated for different spatial 

distributions of inclusions in order to determine average values for the reflection 𝑟𝑠,𝑝 and transmission 

𝑡𝑠,𝑝 coefficients. Subsequently, these complex valued amplitudes 𝑟𝑠,𝑝 and 𝑡𝑠,𝑝 corresponding to the s- 

and p-polarized incident wave were used to infer the values for refractive indices attributed to the 

inhomogeneous slabs. Standard recovery procedures are described in [127] for the case of a plane 

wave normally incident on the slab. For arbitrary angles of incidence, the relation between refractive 

index and the amplitude reflection and transmission coefficients is found to be [128] 

 𝑐𝑜𝑠 (𝑘0ℎ√𝑛𝑠,𝑝
2 − 𝑠𝑖𝑛2𝜃) =

1−𝑟𝑠,𝑝
2 +𝑡𝑠,𝑝

2

2𝑡𝑠,𝑝
   , (19). 

where 𝜃 is the angle of incidence. If we regard the simulated inhomogeneous layer as a material 

possessing uniaxial anisotropy and having the optical axis perpendicular to the surface (see also 

Figure 18), then the ordinary refractive index will coincide with 𝑛𝑠 while the extraordinary refractive 

index will be given by 

 𝑛𝑒 =
𝑛𝑜 𝑠𝑖𝑛 𝜃

√𝑛𝑜
2−𝑛𝑝

2+𝑠𝑖𝑛2𝜃
 (20). 

  First, we performed calculations on a slab of thickness 0.253𝜆 (𝜆 = 532 nm) containing inclusions 

with refractive index 𝑛𝑖 = 2.97 embedded in a matrix with refractive index 𝑛𝑚 = 1.33. The radius of 

inclusions 𝑟 = 25 nm is much smaller than the wavelength of radiation. The volume fraction of 

inclusions is 𝑓 = 0.25 corresponding to an average inclusion-inclusion separation equal to 64nm, 

which is again much smaller than the wavelength. The values of these parameters ensure that an 

electrostatic description is appropriate. The recovered values of the refractive indices are illustrated in 

Figure 19 for slabs illuminated at different angles of incidence 𝜃. Transcendental Eq.(19) allows 

multiple solutions for refractive indices 𝑛𝑠,𝑝. We chose the correct solution as the one closest to the 
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effective index predicted by Bruggeman effective medium theory. We used Bruggeman’s theory 

because it allows rather large volume fractions of inclusions in comparison with Maxwell-Garnett 

model.  For each angle of incidence we used 400 different realizations of the inhomogeneous slab. 

The error bars in Figure 19 indicate the uncertainty in reconstructing the average values of refractive 

index with confidence 0.95. We note that at small incidence angles the difference 𝑛𝑜
2 − 𝑛𝑝

2 in the 

denominator of Eq.(20) introduces large uncertainties in the reconstruction of the extraordinary 

refractive index 𝑛𝑒, thus 𝑛𝑒 is not shown for small angles of incidence.  

  As can be seen in, the overall behavior of the refractive indices is similar to the electrostatic 

predictions. Namely, within the uncertainties in reconstruction, both the ordinary and extraordinary 

indices are rather independent of the angle of incidence.  Nevertheless, numerical calculations predict 

much larger differences between ordinary and extraordinary refractive indices than electrostatic 

theory. 

  The qualitative agreement between the predictions of an electrostatic theory and the results of our 

electrodynamic calculations shown in Figure 19 demonstrates the validity of modeling and refractive 

index reconstruction procedure. Therefore, we can now examine the situation of an inhomogeneous 

medium with parameters far from the electrostatic limit. In our next example we considered a 

composite slab with the same dielectric parameters as in the previous case and having the same 

concentration of inclusions but with twice larger thickness 0.506𝜆 and twice larger size of inclusions 

𝑟 = 50 nm. The electrostatic theory for this case would produce the same results as depicted in Figure 

19. The refractive indices in electrodynamic calculations for the s- and p-polarized incident waves 

were reconstructed for different angles of incidence. Around 100 realizations of inhomogeneous 

sample were used for each angle of incidence. The results of reconstruction procedure are shown in 

Figure 20. As one can see, the behavior of the refractive indices in Figure 20 is quite different from 

that seen in the electrostatic case and in the case of small inclusions and thin slabs presented in Figure 

19. In particular, we note that the refractive indices exhibit anomalous behavior in vicinity of 30° and 



55 

 

60° angles. This anomalous, resonance-like behavior at specific angles of incidence is also observed 

for the reflection and transmission coefficients and it corresponds to the special cases when the optical 

paths inside the slab equal to 1.5𝜆 and 2𝜆 for incidences at 30° and 60°, respectively. The fact that this 

anomalous behavior occurs at different angles for 𝑛𝑠 and 𝑛𝑝 clearly shows that these refractive indices 

are different. On the other hand, this anomalous behavior of the effective refractive indices indicates 

that the inhomogeneous slab acts as an effective multilayer structure, which cannot be described 

satisfactorily by a single effective (anisotropic) index. As the anomalous behavior in Figure 20 is 

determined by surface layer, the observation of such a behavior of reflectivity in experiment can be 

used for estimating the properties of this surface layer (refractive index, thickness, and, as a 

consequence, the particle-particle separation). 

  We note that if one attempts to calculate the extraordinary refractive index 𝑛𝑒 according to Eq.(20),  

the results are quite irregular indicating that such inhomogeneous slab does not behave as a  simple 

uniaxial crystal. 

 

Figure 20 Reconstructed refractive indices based on reflection measurements at different angles of incidence. Vertical bars 

denote the uncertainty in reconstructing the average values of refractive indices for inhomogeneous slabs characterized by 

inclusions with refractive index 2.97, radius 50nm, and volume fraction 25% in the host medium with refractive index 1.33. 

Slab thickness is 269nm. 

 

  In the examples above we considered the situations of dielectric composites for which the main 
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Figure 18b.  However, in many other applications, metal-dielectric composites are of interest. For 

these types of composites other mechanisms leading to surface anisotropy can also play role. As 

schematically illustrated in Figure 18c, the surface-inclusion interactions can further increase surface 

induced anisotropy. These mechanisms will be discussed in the next section.  

Surface anisotropy induced by image dipoles 

  Modifications of effective refractive indices due to interaction with image dipoles can also be 

described based on a generalized Maxwell-Garnett theory. As shown in Figure 18c, a spherical 

inclusion placed near a planar interface induces an image dipole 

        𝒅𝑖𝑚 =
𝜀𝑚−1

𝜀𝑚+1
(𝑑𝑥 , 𝑑𝑦, −𝑑𝑧) (21). 

Because of interaction with its image, the effective polarizability of such inclusion becomes 

anisotropic and also dependent on the distance of inclusion to the surface z 

𝛂⃡ 𝑏
𝑒𝑓𝑓

= (
𝛼𝑡 0 0
0 𝛼𝑡 0
0 0 𝛼𝑛

) 

 𝛼𝑡 = 𝛼𝑏 (1 +
1

𝜀𝑚

𝜀𝑚−1

𝜀𝑚+1

𝛼𝑏

8𝑧3)
−1

,   𝛼𝑛 = 𝛼𝑏 (1 +
1

𝜀𝑚

𝜀𝑚−1

𝜀𝑚+1

𝛼𝑏

4𝑧3)
−1

 (22). 

The effective polarizability of this inclusion can be related to the effective permittivity 𝛆⃡𝑒𝑓𝑓 of the 

composite in the surroundings of this inclusion using Maxwell-Garnett approach: 

 
4𝜋

3
𝑁𝜶⃡  𝑏

𝑒𝑓𝑓
=

𝜺⃡𝑒𝑓𝑓−𝜀𝑚

𝜺⃡𝑒𝑓𝑓+2𝜀𝑚
 (23). 

where 𝑁 is number density of inclusions. Using Eq. (23) in Eq. (18), one can determine an average 

permittivity of the randomly inhomogeneous layer. 
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  For dielectric inclusions, the corrections to the refractive index become negligibly small. Indeed, 

because the inclusions cannot be situated at distances closer than their radius 𝑎 and the effective 

polarizability of inclusions is 

 𝛼𝑏 = 𝑎3 𝜀𝑏−𝜀𝑚

𝜀𝑏+2𝜀𝑚
 (24). 

The denominators in the expressions of Eq. (22) behave as 1 + 𝜉 with 𝜉 ≪ 1 for dielectric inclusions 

situated near the surface. For deeper inclusions, their contributions decrease even further as (𝑎 𝑧⁄ )3. 

  However, in the case of metallic inclusions, a much different situation develops. If Re(𝜀𝑏) = −𝜀𝑚 

and Im(𝜀𝑏) ≪ 1, which can be encountered for metals, according to Eq. (22) the magnitude of the 

polarizability will be quite large. Similarly, for certain concentrations of inclusions and certain depth 

positions, the denominators in Eq. (22) can become very small locally therefore increasing the 

effective permittivity. It is also important to emphasize that, as can be seen from Eq. (22), the resonant 

conditions are not the same for all the components of the polarizability tensor. This may lead to 

significant differences between the effective ordinary and extraordinary refractive indices.  

  To evaluate the behavior of dielectric parameters in the presence of metallic inclusions, we 

performed a full electrodynamic computation of both transmission and reflection from randomly 

inhomogeneous slabs containing subwavelength size metallic inclusions followed by an effective 

index reconstruction similar to that formulated in preceding section. In this case, the change of spatial 

distribution of metallic inclusions and other structural parameters can result in relatively large 

variations of reflection and transmission coefficients, so an average of approximately 200 realizations 

for each concentration of metallic inclusions was taken in order to represent the effective properties of 

the random structure. Retrieving the effective optical properties required solving the transcendental 

Eq. (19), which inevitably involved making a choice from several possible solutions. To appropriately 

describe the physical situation in the numerical experiments, this selection process should be 

independent of any effective medium theory. Among various methods [127, 128], generalized bounds 
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for the complex effective permittivity can be graphically formed in complex plane to choose the 

correct roots at low volume fractions but still allow the possibility of potentially multiple solutions at 

higher concentration values [129]. In our case, we selected the appropriate solutions by ensuring the 

continuity of the retrieved indices starting from the case of the host medium without any inclusions 

(zero volume fraction of metallic inclusions). 

  In the numerical calculations we investigated a slab of thickness 0.506𝜆 (𝜆 = 532 nm) containing 

50nm-radius Ag inclusions with refractive index 0.129+3.193i [130] which were randomly distributed 

into a host medium with refractive index 2 and illuminated at a fixed angle of incidence 60°. 

Estimations based on the electrostatic theory using Eqs.(17),(18), and (23) indicate that the local field 

modification near the surface and the interaction with the image dipole both result in a similar degree 

of anisotropy of inhomogeneous slab.  

  In the numerical calculations, for each of concentration of metallic inclusions, the reflection and 

transmission coefficients were numerically computed and subsequently the reconstructed refractive 

indices were obtained using Eqs.(19) and (20). The real and imaginary parts of the effective s-, p-, 

ordinary, and extraordinary refractive indices are shown in Figure 21. 

 

Figure 21 The real (a) and the imaginary (b) parts of reconstructed effective refractive indices as a function of volume 

fraction of 50 nm-radius Ag inclusions with refractive index 0.129+3.193i embedded in a host medium with index 2. The 

reflection and transmission coefficients were measured from a slab of thickness 0.506𝜆 (𝜆=532 nm) illuminated at 60° 

incidence. The error bars indicate the uncertainty of average values of refractive indices with a confidence level 0.95. The 

solid line represents the effective indices estimated based on Maxwell Garnett theory (MGT). 
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  A number of observations can be summarized based on the results in Figure 4. As can be seen, the 

degree of optical anisotropy can be relatively large even for low concentration of inclusion at the level 

of 10% volume fraction. In addition, the real part of the numerically reconstructed refractive indices 

deviates quite significantly from the estimations of the effective medium theory while the imaginary 

part is in rather good agreement with the Maxwell-Garnett results. It is clear that Maxwell-Garnett 

effective medium theory can’t describe well the complex behavior of these reconstructed refractive 

indices qualitatively. This happens because the electrodynamic approach accounts directly for near-

field interactions between different inclusions, multiple scattering, and nonuniformity of field inside 

inclusions, in contrast to the Maxwell-Garnett model based on an electrostatics description. Moreover, 

it is quite inappropriate to assign one isotropic effective refractive index to inhomogeneous medium 

with nonuniform 3D spatial distribution of inclusions. The trend of imaginary part of reconstructed 

indices can be explained by the simple fact that a higher fraction of metallic inclusions increases the 

absorption at the off-resonance conditions. Such increase of absorption should be expected even in the 

simple electrostatic model.  

  The presence of an air-composite interface breaks a translational symmetry of electromagnetic field 

along a direction normal to the surface. The loss of field symmetry and the inclusion-surface 

interaction lead to an anisotropic modification of effective permittivities of surface layer. This should 

offer another route to engineer spatial gradients of anisotropic properties in metamaterials operating in 

the optical regime. 

  In the next section we will discuss the role of surface induced anisotropy on the spin transport. 

Anomalous Phase Retardation and Spin Hall Effect of Reflected Light 

  In this section, we will discuss the manifestation of SIA in the linear regime of interaction between 

optical waves and random metal-dielectric composites: the phase retardation upon reflection of a 

plane wave and spin-dependent transverse displacement of a reflected beam with finite size. The 

specific properties of such optical anisotropic composite will be compared to those of the 
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corresponding isotropic medium characterized using the Maxwell Garnett Effective Medium Theory 

(MGEM) [131]. It is noted that the SIA of this type of the random composite mainly originates from 

the local field effect and interaction between metallic inclusions and their own images. 

  The numerical computation of light propagation through inhomogeneous multiply scattering media 

was carried out using a numerical Finite Elements Method (Comsol Multiphysics 3.5a). In the 

numerical experiment, randomly inhomogeneous slabs were illuminated by s- and p-polarized plane 

waves and the complex reflection and transmission coefficients were derived from the complex field 

values distributed over the entrance and exit surfaces of the slab. To avoid the influence of evanescent 

waves on the measured values of the reflected and transmitted waves, the electromagnetic field was 

evaluated at distances from the slab that were twice larger than the transversal dimensions of the 

block. The simulation procedure for different spatial distributions of inclusions was repeated in order 

to determine the values of the average reflection 𝑟𝑠,𝑝 and transmission 𝑡𝑠,𝑝 coefficients. In addition, an 

effective refractive index was estimated using MGEM for the corresponding optically homogeneous 

slab and the reflection and transmission coefficients were then determined based on the well-defined 

problem of electromagnetic propagation in thin films [105]. 

  We will begin with a study of phase retardation upon reflection of a plane wave that clearly shows 

the potential anisotropy of randomly inhomogeneous slabs. It will be later revealed to be an origin of 

anomalous spin Hall effect of reflected light. We examined the case of an arbitrarily linearly polarized 

incident plane wave with both s and p components of polarization vector that is reflected by the metal-

dielectric composite and by a homogeneous, optically isotropic medium with properties as determined 

by MGEM. The ellipticity of the reflected wave is defined as the phase difference between the s and p 

components (𝜙𝑟,𝑝 − 𝜙𝑟,𝑠), 

 ∆= 𝜙𝑟,𝑝 − 𝜙𝑟,𝑠 = 𝑎𝑟𝑔(𝑟𝑝 𝑟𝑠⁄ )      (25). 
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  In our study we investigated the effect of the volume concentration of inclusions dependence on the 

ellipticity. Approximately 200 realizations with different spatial distribution of inclusions were used 

to evaluate the average of reflection and transmission coefficients. The calculated phase differences 

between the s and p components of the optical waves reflected from the composite mediums show 

clear concentration dependence as seen in Figure 22. The optical anisotropy of the material, intrinsic 

absorption, and enhanced absorption due to localized surface plasmon resonance [132] are all 

potential sources of phase difference between the s and p components acquired by the reflection of the 

metal-dielectric composite. It is worth noting that the interference effect results in sinusoidal-like 

oscillations in low concentration regime (<4%). However, as can be seen in Figure 22, an increase of 

absorption as predicted by MGEM diminishes these interferences within the slab leading to only a 

gradual change of the phase difference at higher concentrations. In the full electromagnetic 

calculation, the state of polarization of reflected waves from the metal-dielectric composite notably 

changes in comparison to reflection from the corresponding effective isotropic medium, which is 

mainly due to the induced anisotropy of this composite. In fact, this trend can be proved by a 

straightforward calculation in the case of an absorbing anisotropic crystal. However, the degree of 

optical anisotropy of the random composite is significantly enhanced due to the structural complexity 

of the inhomogeneous random composite. An enhanced SIA occurs even in low concentration regime 

(~0-10%) examined here. 

 

Figure 22 The phase difference between s and p components of the reflected plane wave as a function of volume fraction of 

50 nm radius Ag inclusions with refractive index 0.129+3.193i [130] randomly  distributed within a host medium with a 
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thickness of 0.506𝜆 (𝜆=532 nm) and index of refraction n = 2. Illumination is by a linearly polarized incident plane wave at 

the angle of incidence 60°. The error bars denote the uncertainty of average values of phase differences with a confidence 

level 0.95. The red solid line represents the phase difference of the plane wave reflected by a homogeneous medium with 

effective refractive index estimated by MGEM. 

 

  We will now numerically calculate spin dependent lateral displacement (so called “spin Hall effect 

of light (SHEL)”) upon reflection of a finite size beam on the random composite. For an arbitrary 

linearly polarized beam determined by its horizontal H and vertical V components, the generalized 

expression for the spatial transverse displacement of the reflected beam in either left (+) or right (-) 

circularly polarized state is [133] 

 ∆𝑦𝑟± = 𝑐𝑜𝑠2𝜓𝑟∆𝑦𝑟±
𝐻 + 𝑠𝑖𝑛2𝜓𝑟∆𝑦𝑟±

𝑉                                            (26). 

cos𝜓𝑟 = cos𝜓𝑖𝑅𝑒(𝑟𝑝) √cos2𝜓𝑖𝑅𝑒(𝑟𝑝)2 + sin2𝜓𝑖𝑅𝑒(𝑟𝑠)
2⁄  

sin𝜓𝑟 = sin𝜓𝑖𝑅𝑒(𝑟𝑠) √cos2𝜓𝑖𝑅𝑒(𝑟𝑝)2 + sin2𝜓𝑖𝑅𝑒(𝑟𝑠)
2⁄  

∆𝑦𝑟±
𝐻 = ∓(𝜆 2𝜋⁄ )[1 + (|𝑟𝑠| |𝑟𝑝|⁄ )cos (𝜙𝑠 − 𝜙𝑝)]cot𝜃𝑖 

∆𝑦𝑟±
𝑉 = ∓(𝜆 2𝜋⁄ )[1 + (|𝑟𝑝| |𝑟𝑠|⁄ )cos (𝜙𝑝 − 𝜙𝑠)]cot𝜃𝑖 

where 𝜓𝑟 and 𝜓𝑖 are the reflected and incident polarization angles, respectively, 𝜆 is the wavelength 

in vacuum, and 𝜃𝑖 is the angle of incidence. In Eq. (26), 𝑟𝑝,𝑠 = |𝑟𝑝,𝑠|exp (𝑖𝜙𝑝,𝑠) are the reflection 

coefficients for p and s polarized plane waves, respectively. It is assumed here that the y-axis is 

normal to the plane of incidence. In the numerical calculations, the metal-dielectric composite 

effectively behaves as an uniaxial crystal with the optic axis perpendicular to the plane interface. As 

discussed in[134], the expressions above are modified by substituting 𝑟𝑠 and 𝑟𝑝 with 𝑟𝑠,𝑜 and 𝑟𝑝,𝑒, 

respectively, with this orientation of the optic axis. 
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Figure 23 Lateral displacement of the reflected beam, ∆𝒚𝒓−, as a function of the volume concentration of Ag inclusions 

uniformly embedded in the host medium. The optical properties and dimension of both inclusions and matrix medium are the 

same as in Figure 22. The metal-dielectric composites with varied concentration of inclusions were illuminated by 45° 

linearly polarized Gaussian beam at the angle of incidence 60°. The error bars denote the uncertainty of average values of 

SHEL transverse shift with a confidence level 0.95. The solid line represents the spatial transverse shift of the beam reflected 

from an effective homogeneous medium with isotropic index estimated by MGEM. 

    

  As can be seen in Figure 23, the metal-dielectric composite behaves like an isotropic and 

homogeneous medium in terms of the induced spatial transverse displacements at low concentration 

(less than 2%). However, the SHEL shift significantly increases at higher volume concentration of 

metallic inclusions due to induced optical anisotropy in the random composite. This is due to the fact 

that the displacement of horizontal polarized component, ∆𝑦𝑟±
𝐻 , experiences the change of sign caused 

by the large amount of phase difference between the s and p components of reflected waves (see the 

set of equations (26)) as discussed before. In other words, the displacements of both horizontal and 

vertical polarized components have the same sign and are constructively added to give the unusually 

large transverse shift. 

  To sum up, breaking the field symmetry can modify static optical properties of material systems 

leading to novel linear light-matter interaction. In particular, the surface-induced anisotropy of the 

metal-dielectric composite caused primarily by the inherent presence of an interface can manifest 

itself as the anomalous change of the phase difference between the s and p components and the 

polarization-dependent transverse shift of reflected waves. With the advantage of its highly flexible 

fabrication process, the random composite is considered to be a potential material used for 

controllable spin transport. Such composite with tunable anisotropy also offers matter system in 
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which unusual physical phenomena including Fano-shaped resonances [135] and the enhanced 

nanoscale heat flux transfer [136] can be explored.  
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CHAPTER 5: CONCLUSIONS 

Brief Summary of the Past and Present  

Symmetry, that is a feature of physical systems, which appears naturally or artificially in many 

different fields such as architecture, chemistry, or, importantly, in physics. In classical and quantum 

physics, the symmetry is closely associated with the conservation laws. The conservation laws under 

the symmetry considerations serve as a general framework to unify the interpretation of the 

interaction occurring in complex multi-body systems. This approach enables understanding and 

engineering the intricate interactions which, in turn, lead to different means for controlling spatio-

temporal dynamics or for modifying locally the properties of material systems.  

  Since the advent of laser, light has been widely used to manipulate both colloidal and biological 

systems in a remote, non-invasive, and precise manner at microscopic scale. The mechanical action of 

light is a direct consequence of momentum transfer from light to matter. The momentum exchange 

upon light-matter interaction ensures the conservation of momentum.     

  The unusual behavior of optical forces acting on objects can be simply understood from the 

conservation of linear momentum. According to this fundamental law, the total linear momentum of 

an entire system, comprising both the electromagnetic field and objects, must be conserved. The 

symmetry breaking of the angular distribution of scattered waves (so called “phase-function”) can 

unbalance the field momentum that can be transferred to the objects. This can have intriguing 

mechanical consequences, for instance the transversal forces discussed in Chapter 2. It is worth noting 

that the field symmetry can be broken both by creating complex structures and by modifying the 

environment. 

  In Chapter 2, the breaking of the field symmetry was implemented to purposely demonstrate the 

action of transversal forces on objects that are isotropic in shape and optical properties. In one 

situation, the scattering of a micron sized dielectric sphere illuminated by a complex field (two beam 

configuration) produces the necessary asymmetric phase function. According to the momentum 
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conservation law, a nonconservative force appears on the spherical particle acting along the direction 

perpendicular to a plane formed by the propagating vectors of two incident beams. This out-of-plane 

motion of the particles, that doesn’t come from the action of optical gradient force and radiation 

pressure, demonstrates the unusual behavior of optical force.   

  There is another way to interpret the existence of this unusual force field component in this optical 

scattering situation. Upon wave interaction with a particle, the deflection of the resulting scattered 

pattern arises. To satisfy the actio et reactio principle, the shift of the centroid of the intensity 

distribution results in the mechanical force acting on the center of the mass of the sphere. This 

consequence can also be regarded as evidence for dynamic effects in the original Aharonov-Bohm 

setting in which nondissipative mechanical force acts back on the solenoid upon deflection of electron 

interference pattern. There, the interaction of electron wavefunction with the magnetic vector 

potential associated with the solenoid’s magnetic field was of interest. This analogy should assist in 

understanding a broad range of phenomena where experiments are almost inaccessible or difficult to 

conceive. 

  Later in Chapter 2, it was demonstrated another situation where the symmetry of the electromagnetic 

field can be broken during the light scattering of a dielectric sphere positioned at the interface 

between two dielectric media. As a result, the asymmetry of the scattering phase function unbalances 

the transversal linear momentum. The momentum transfer governed by the conservation of linear 

momentum gives rise to a lateral force acting on the sphere. This nonconservative optical force can be 

used to manipulate objects on the surface of liquids without structuring light beams. It is worth 

emphasizing that the unusual force component arises from the modification of complex fields at 

dielectric interfaces. 

  After investigating the interfacial transversal force, we examined the role of the surface on the 

behavior of the longitudinal component of optical force in Chapter 3. We demonstrated a negative 

force pulling on floating objects against the flow of light and along the liquid surface. The optical 
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pulling force arises due to the appropriate amplification of the photon linear momentum when light is 

scattered from one dielectric medium into another with higher refractive index. This is an opposite to 

the radiation pressure that usually pushes objects along the direction of the incident wave propagation. 

It was also shown that the negative force can be generated without resorting to non-paraxial 

illumination, interference of multiple beams, gain or other exotic materials. Instead, our approach is 

based on the universal characteristics of optical forces acting on objects moving at the interface 

between different dielectric media. These results represent a complete set of nonconservative forces 

that permit arbitrary long-range manipulation of colloidal particles on the liquid surface with 

unstructured light.  

  Due to a small magnitude of momentum carried by light and imparted to objects, light usually exerts 

only tiny forces on microscopic objects. Hence, the experimental detection can become a challenging 

task considering being immersed in various sources of noises. To circuimvent these limitations, we 

studied the possibility to amplify the optomechanical effects by harnessing the long-range 

hydrodynamic interaction between large numbers of manipulated particles. Remarkably, the particle 

motion mediated by fluid can be significantly enhanced even at low irradiance. From this viewpoint, 

the concept can be employed to achieve efficient optically controlled transport without resorting to 

optical absorption and sophisticated photonic structures. The technique can easily be integrated in 

microfluidic lab-on-chip platforms. Besides, the appropriate treatment of the hydrodynamic 

interaction can be applied to obtain the correct magnitude of measured optical forces acting on 

isolated particles based on observed velocities of particles and particle distribution.  

  This dissertation focuses mostly on the motions of particles as a mechanical consequence of light-

matter interaction. However, there are also situations where the force is exerted on the field itself 

leading to detectable shifts of the centroids of optical beams during light reflection and refraction. 

Chapter 4 is devoted to spin Hall effect of light that is one type of beam shifts based on the spin-orbit 

transformation governed by conservation of angular momentum. Due to difficulty to detect 
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subwavelength beam shifts, it is desired to find novel material that can enhance the Hall-type effects 

for applications in information processing and communication. We showed that the structural 

anisotropy of random nanocomposite can manifest itself as the anomalously enhanced SHEL. 

Different mechanisms nearby surface layer contribute to the induced anisotropy as confirmed by full 

electrodynamic calculation. 
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