
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2010

Concentric Layout, A New Scientific Data Layout For Matrix Data Concentric Layout, A New Scientific Data Layout For Matrix Data

Set In Hadoop File System Set In Hadoop File System

Lu Cheng
University of Central Florida

 Part of the Electrical and Electronics Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Cheng, Lu, "Concentric Layout, A New Scientific Data Layout For Matrix Data Set In Hadoop File System"
(2010). Electronic Theses and Dissertations, 2004-2019. 1601.
https://stars.library.ucf.edu/etd/1601

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/270?utm_source=stars.library.ucf.edu%2Fetd%2F1601&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/1601?utm_source=stars.library.ucf.edu%2Fetd%2F1601&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

CONCENTRIC LAYOUT, A NEW SCIENTIFIC DATA

LAYOUT FOR MATRIX DATA SET IN HADOOP FILE

SYSTEM

By

LU CHENG

B.S. Xian Jiaotong University 2006

M.S. Xian Jiaotong University 2009

A thesis submitted in partial fulfillment of the requirements

for the degree of Master of Science

in the Department of Electric Engineering and Computer Science

in the College of Engineering

at the University of Central Florida

Orlando, Florida

Fall Term 2010

ii

© 2010 Lu Cheng

iii

ABSTRACT

The data generated by scientific simulation, sensor, monitor or optical telescope has increased

with dramatic speed. In order to analyze the raw data speed and space efficiently, data pre-

process operation is needed to achieve better performance in data analysis phase. Current

research shows an increasing tread of adopting MapReduce framework for large scale data

processing. However, the data access patterns which generally applied to scientific data set are

not supported by current MapReduce framework directly. The gap between the requirement from

analytics application and the property of MapReduce framework motivates us to provide support

for these data access patterns in MapReduce framework. In our work, we studied the data access

patterns in matrix files and proposed a new concentric data layout solution to facilitate matrix

data access and analysis in MapReduce framework. Concentric data layout is a data layout which

maintains the dimensional property in chunk level. Contrary to the continuous data layout which

adopted in current Hadoop framework by default, concentric data layout stores the data from the

same sub-matrix into one chunk. This matches well with the matrix operations like computation.

The concentric data layout preprocesses the data beforehand, and optimizes the afterward run of

MapReduce application. The experiments indicate that the concentric data layout improves the

overall performance, reduces the execution time by 38% when the file size is 16 GB, also it

relieves the data overhead phenomenon and increases the effective data retrieval rate by 32% on

average.

iv

ACKNOWLEDGMENTS

This thesis would not have been possible without the help and support of a number of people.

First and foremost, I would like to express my sincerest gratitude to my advisor, Dr. Jun Wang,

for the tremendous time, energy and wisdom he invested in my graduate education. His inspiring

and constructive supervision has always been a constant source of encouragement for my study. I

also want to thank my other thesis committee member, Dr. Shaojie Zhang, and Dr. Jooheung

Lee, for spending their time to review the manuscript and providing valuable comments.

I also would like to thank my group members for their generous help and guide. Without their

selfless sharing and the inspiring discussions, I cannot finish the project smoothly.

I also want to dedicate this thesis to my family, for all their love and encouragement through my

life.

v

TALBE OF CONTENT

LIST OF FIGURES .. vii

LIST OF TABLES ... viii

CHAPTER 1 INTRODUCTION ... 1

CHAPTER 2 BACKGROUND ... 5

2.1 Data Intensive HPC .. 5

2.2 HDFS and MapReduce Framework ... 7

2.2.1 Hadoop Distributed File System ... 10

2.2.2 MapReduce ... 11

2.3 Data Access Pattern .. 13

2.3.1 Continuous Data Access Pattern ... 13

2.3.2 Matrix Data Access Pattern .. 14

2.3.3 Group Data Access Pattern ... 15

CHAPTER 3 CONCENTRIC DATA LAYOUT .. 17

3.1 Problem Description ... 17

3.2 Concentric Algorithm for Two Dimensional Matrix Data Set 20

vi

3.3 Concentric Data Layout for Multi-Dimensional Data Set ... 27

CHAPTER 4 EXPERIMENTAL METHODOLOGY AND EVALUATION 37

4.1 Experimental Setup .. 37

4.2 Experimental Analysis ... 38

CHAPTER 5 RELATED WORK ... 52

CHAPTER 6 CONCLUSION ... 54

ACKNOWLEDGEMENTS .. 55

REFERENCES ... 56

vii

LIST OF FIGURES

Figure 2-1 Data Intensive HPC Analytics Applications ... 7

Figure 2-2 Hadoop Architecture ... 9

Figure 2-3 HDFS Architecture.. 10

Figure 2-4 MapReduce Work Flow .. 12

Figure 2-5 Matrix Data Access Pattern ... 14

Figure 2-6 Group Data Access Pattern ... 15

Figure 3-1 Row Based Access Pattern in Matrix Data Set ... 20

Figure 3-2 Two-Dimension Concentric Data Layout ... 22

Figure 3-3Three-Dimensional Data Set with Continuous Data Layout.. 28

Figure 3-4 Three-Dimension Matrix with Concentric Data Layout ... 29

Figure 4-1 Executing Time Comparison for Two Dimension Matrix File 39

Figure 4-2 Amount of Data Accessed for Two Dimension Matrix File 41

Figure 4-3 Data Efficiency Comparison for Two Dimension Matrix File 43

Figure 4-4 Number of Map Tasks for Two Dimension Matrix File ... 44

Figure 4-5 Execution Time for Three-Dimensional Matrix File .. 45

Figure 4-6 Amount of Data Accessed for Three-Dimensional Matrix File 47

Figure 4-7 Data Efficiency Comparison for Three Dimension Matrix File 49

Figure 4-8 Number of Map Tasks for Three Dimension Matrix File ... 50

viii

LIST OF TABLES

Table 3-1 Chunk Amount Comparison between Continues and Concentric Data Layout with

Two-Dimension Matrix File ... 24

Table 3-2 Two-Dimensional Concentric Data Layout Algorithm .. 26

Table 3-3 Chunk Amount Comparison between Continuous and Concentric Data Layout with

Three-Dimension Matrix File ... 31

Table 3-4 Two-Dimensional Concentric Data Layout Algorithm .. 33

Table 3-5 Chunk Amount Comparison between Continuous and Concentric Data Layout

with Three-Dimension Matrix File ... 34

Table 3-6 Concentric Data Layout Algorithm for N-Dimensional Matrix file 36

1

CHAPTER 1 INTRODUCTION

In recent days, more and more scientific applications have been benefited from the MapReduce

framework [9]. These applications share the property that they generate, collect and maintain

vast volumes of data, and also require large computing resource to process data [7]. For example,

earthquake prediction and analytic model collect up-dated and detailed data of earth activity

around the world [8] to let geologists generate a more accurate and efficient earthquake analytic

model. These data are collected in every second and delivered to computation unit for analysis.

Many other scientific research applications such as bio-information model, vision simulation,

climate prediction and realistic graphic animation share same properties generate, store and

process multi-terabyte data. MapReduce is a good candidate for these applications as

MapReduce jobs are distributed into multiple sub-jobs and processed concurrently. The

distributed property improves the processing speed and meliorates the execution efficiency.

For many analytical applications, data set are generated and stored in a matrix manner naturally.

For example, the weather monitor application senses and records the temperature and humidity

variation in real time, and scientists analyze posted data to forecast the future weather changes.

2

One impelling analytic requirement is to compare the data values among different periods in the

same day or the same time among different days. Apparently, storing the data set into a matrix

manner will bring in performance benefit for the future analysis. Instead of reading the entire

data set, the scientist just needs to read the data set in the target row to analyze the temperature

change during the same day or to review the data set in the target column to analyze the humidity

variation in a month. Therefore, the way the dataset is stored in a file system has an intimate

relationship with how it is accessed. Besides, the same data set may be utilized by different

scientists for different research works, and each scientist will process the data set in a different

way. For example, the cosmic data bank is a project which a group of scientist working on

cosmological simulations, which are employed in variety of projects, from mass power spectrum

analysis to halo mass function. The simulation data with location and velocity information can be

presented in a cube and accessed in different ways, parallel to X_Y plane or parallel to X-Z

plane.

In distributed file systems like HDFS (Hadoop Distributed File System) [6] adopts MapReduce

framework, the data is stored sequentially and read stream in default. Unfortunately, such storage

feature breaks the aforementioned intimate relationship between data layout and data access

pattern. Using the weather monitoring application as an example, when file is stored in HDFS

sequentially, the data in the same column is separated and distributed among the entire file

system. When data in one particular column is needed, instead of just reading one column, the

3

whole file will be accessed. An inappropriate data layout will affect the data processing

efficiency as improper data layout results in reading excess amount of data than actually needed.

Meanwhile, storing the data set in a file system with one access pattern cannot fit various

applications with different access patterns. After the monitor data set is generated and stored in a

file system, the analytic applications with various access patterns will access the data set to

perform different data analyses. For example, temperature data is used for analyzing data

fluctuations in different time periods, like in a day or in a year. Based on the specific analytic

requirement, the data set will be accessed in either row based or column based.

In order to deal with the aforementioned challenges, we propose a new concentric data layout

scheme. Concentric data layout maintains the matrix property in chunk level. Its unique

combination of row based access pattern and column based access pattern makes it works well

for many scientific applications which process matrix data set. In concentric data layout,

affiliated data is stored into the same chunk and hence maintain the original logical properties.

As the data is stored in two dimensional manners, accessing the data in either row or column will

lead to comparable performance, and realize the optimal overall performance when applications

access the same matrix data set in different patterns. The concentric data layout aims to mitigate

the small I/O problem, improve the data utilization rate and thus significantly improve the I/O

performance by reducing the total number of chunks being accessed.

4

The paper is organized as follows, section 2 introduces the background of MapReduce

framework and matrix related data access pattern. In section 3, we propose the concentric data

layout in detail and discuss the experimental results in section 4. Section 5 introduces the related

work while the conclusion and further works are discussed in section 6.

5

CHAPTER 2 BACKGROUND

In this section, we introduce the HDFS, MapReduce framework and data access patterns of

matrix data set in brief.

2.1 Data Intensive HPC

In recent year, scientific research became increasingly rely on computing over large data sets.

This phenomenon is usually referred as “e-Science” and the applications with “e-Science”

property [11] require a new system design which computation and storage are coupled together.

Many scientific research problems incur large columns of data produced by different

applications, different sources from numerous locations with various formats. Besides, the

analytic application requires strong storage and computation power to perform further data

computation and analysis.

For geographic, the more detailed and more accurate finite data will enable scientists to model

the effect of a geological disturbance and the probabilities of earthquakes occurring in different

regions more accurately and instantly. The analytic models are continually updated and analyzed.

The continent movement, temperature, humidity as well as many other parameters are monitored

6

all the times at numerous locations around the world and the data are collected for the forecasting

of earthquakes, volcano eruptions and hurricanes.

For biological, the computational biology involves comparing genomic data from different

species and different organisms [12]. The fast-accumulating data mainly consist of DNA, RNA

and protein sequences due to the state-of-art sequencing technology. Large data sets are collected

as new sequences are discovered and new forms of derived data are computed. The most

complicated data are the relational data about the associations among the proteins, RNAs and

DNAs. As a basic procedure for biologists and medical doctors, sequence alignment is a time-

consuming work.

For astronomic and cosmology, the modern telescope can generate terabyte data per year and it is

expects in the future, petabyte of data will be produced. The massive amounts of imagery data is

collected daily and additional results are derived from computation applied to that data.

The above mentioned examples in scientific researches clearly indicates that an increasing

number of data-intensive HPC problems are arising with the requirement of collecting and

maintaining very large data sets and applying vast amount of computational power to the data.

As these analytic applications are run on the computer cluster, data are copied from the storage

cluster to the computer cluster back and forth. This data replication is extremely time consuming

7

as significant amount of their execution time is spent on I/O transformation, so new trend is to

apply these analyses in distributed MapReduce framework like Hadoop [10]. However as Figure

2-1 indicates, these kinds of applications are in the intersection of traditional HPC applications

and traditional DISC. They require both storage capacity and computation ability.

Figure 2-1 Data Intensive HPC Analytics Applications

2.2 HDFS and MapReduce Framework

Hadoop is inspired by MapReduce, a programming model and an associated implementation for

processing and generating large data sets. MapReduce aims to let user perform the simple

computations with large data set as well as hides the messy details of parallelization, fault-

tolerance, data distribution and load balancing. The nature of huge amounts of data determines

HPC Compute

Intensive and

Classic HPC

Access Patterns

Data Intensive

HPC Analytics

Big Data and

Classic HPC

Access

Patterns

DISC Big

data and

non-HPC

Access

Patterns

8

that the distributed computation is a better choice than the sequential computation for many

problems.

The Hadoop architecture consists of two servers: namenode and jobtracker and amount of other

servers which function as tasktrackers and datanodes. Namenode and datanode are two main

components of Hadoop. The single namenode is a master server that manages the file system

namespace and regulates the access to files by clients, it not only responsible for Hadoop file

system data management, but also responsible for file access and replacement. The datanode,

usually one per node in the cluster, is used to manage storage attached to the nodes that they run

on. It stores the file system data, manages replication tasks and services all data read/write

requests from clients based on namenode’s direction. The jobtracker is responsible for handling

all jobs which submitted by client application. Besides, it maintains the task resiliency in the

cluster by making scheduling decision and parallelizing the client applications across the cluster.

The jobtracker monitors all running task on the cluster, killing and restarting tasks when they

fail, hang or disappear during the operation. The tasktrackers in Hadoop is responsible for

running the client application via instructions from the jobtracker. The jobtracker and the

tasktrackers comprise the architecture for MapReduce programs to run on.

9

Figure 2-2 Hadoop Architecture

Figure 2-2 indicates the Hadoop architecture. It shows that in Hadoop, in order to achieve better

data locality, one server is servers as namenode, one server is servers as jobtracker and other

servers are configured as datanode and tasktracker. As Hadoop lacks of bandwidth needed for

the cluster to function appropriately, it allows performance on commodity computing without a

fast, expensive interconnect. In Hadoop, namenode becomes its own server because Hadoop

keeps all file system metadata in main memory, working as an own server will not slow the file

access which caused by strain on the namenode from serving data and metadata requests.

Meanwhile, to ensure the task resiliency in the cluster, the jobtracker is running on multiple

daemons.

The Hadoop framework consists of two main components: Hadoop Distributed File System

(HDFS) and the MapReduce framework. These two important components working together to

make sure Hadoop is reliable and easier for programming.

10

2.2.1 Hadoop Distributed File System

The Hadoop Distributed File System (HDFS) is modeled very close with Google file system. It is

a distributed file system designed to run on commodity hardware [1]. The approach to this file

system assumes that failure in a large scale computing environment happens frequently. The

HDFS stores the data across multiple nodes (default number is 3), this replicate storage ensures

that in HDFS, the file stored are always intact in three separate places across a cluster. This

distributed file approach guarantees the system resiliency in Hadoop without the requirement of

RAID storage.

Figure 2-3 HDFS Architecture

11

The Figure 2-3 is a conceptual model for HDFS. It can be noticed that client first directs file

queries to the namenode, namenode then directs the file request to the appropriate datanodes and

the datanodes supply the client application with the data. In HDFS, the replication of the file is

located across servers in a rack and across server racks. When file chunks are written to datanode

across the HDFS, the namenode tries to group at least one replicated chunk on the same server

rack as the primary and then another chunk to an adjacent rack of datanodes; meanwhile it

ensures that no two replications of a chunk are stored to the same datanode. This mechanism

applies certain data locality and fault resistance. The namenode pings every datanode

periodically. Once no response is received from a datanode in a given time, the namenode marks

it as failed and reassigns the job to another datanode. Therefore when a server hardware failure

happens, the namenode will recover the health of the cluster without user’s intervention. The

ability of the HDFS to recover from system failures automatically without neither lose of service

nor needs of user’s intervention making HDFS a very power tool for data intensive applications.

2.2.2 MapReduce

MapReduce framework is introduced by Google to support distributed computing with large data

sets on cluster of computers [2]. MapReduce has map and reduce two phases in its programming.

The programmer has a map operation, one parallel operation is processed during the map

operation in which results are collected at the intermediate combine phase; then reduce is

12

performed to get together these intermediate values to form a smaller set of values before the

output data becomes persistent storage [14]. The MapReduce framework works exclusively on

[key, value] pairs. An input of [key, value] pairs are processed by the map operation which

produces a set of intermediate key based on the input pairs, the reduce phases receive these

intermediate keys and outputs a smaller possible result.

Figure 2-4 MapReduce Work Flow

The execution flow works as Figure 2-4 shows. All map and reduce operations are tasks run on

the tasktrackers in the Hadoop cluster. Jobtracker monitors these map and reduce tasks from

inception to completion. During the combine phase of the MapReduce operation, intermediate

output data from all map tasks on an individual tasktracker is written to local storage for the

reduce phases. The combine operation can result in a quick local reduce before the file is passed

13

to a global reduce function. The Hadoop system has the share-nothing property, which means

during the operation there is no intercommunication between any map task in map phase and no

intercommunication between any reduce task in reduce phase. These two operations: map and

reduce, allow a large parallel dataset to be operated very quickly with the assurance of task

resiliency.

2.3 Data Access Pattern

Data access pattern is mainly decided by the specific application acquirement. A proper data

layout will benefit the process efficiency and improve the I/O performance as the relationship

between the file and the process will be determined in terms of spatial organization and temporal

ordering [15].

2.3.1 Continuous Data Access Pattern

The continuous access pattern [13] is the most widely used data access pattern. In the continuous

access pattern, data is stored sequentially and accessed in round-robin manner without

considering data dependency. This data access pattern is widely used among applications in

which the data are independent, and the task can be divided into multiple sub tasks and processed

synchronously. This model fits best with HDFS because the features of streaming access and

14

batch process match with continuous data access pattern perfectly. In HDFS, because the chunk

is the smallest storage unit, the task node processes entire data in the assigned chunk, no matter

the data are required to be processed or not. For data independent application, each data in the

chunk is useful, and hence avoids the potential performance waste which caused by processing

unnecessary data. The application with continuous data access pattern can yields the best I/O

performance when processed by MapReduce framework.

2.3.2 Matrix Data Access Pattern

Figure 2-5 Matrix Data Access Pattern

As Figure 2-5 shows, row-based or column-based access patterns are two basic matrix access

patterns for matrix data set. It is widely used in scientific analytic applications. For many

scientific applications, data can be stored with dimensional manner in logical file, it helps to

keep data dependency between each other. However, when the data in logical file with

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

15

dimension property is stored into physical storage media, data lose their higher level property in

file system and become stream bytes. The default continuous data layout cannot adapt to matrix

data access pattern well. Once the data is stored continuously in row base, the data access

efficient will be impacted for column data access pattern.

2.3.3 Group Data Access Pattern

Figure 2-6 Group Data Access Pattern

Some analytic applications require complex data analysis like group access pattern. Group access

pattern is a combined data access pattern which generally used in matrix computation, like

matrix multiplication. For two-dimensional matrix file, group access pattern involves accessing

the row and the column in same matrix set at the same time. The Figure 2-6 demonstrates one

example of concentric access that the first row and first column are required. For group access

pattern, continuous data layout turned out to be extremely inefficient. The data utilization rate is

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

16

decreased because no matter data is stored along the row or column, only a small part of

accessed data is useful for analysis.

17

CHAPTER 3 CONCENTRIC DATA LAYOUT

In this section we propose concentric data layout, a matrix-specific data layout optimization

strategy to benefit the matrix data access pattern and group data access pattern.

3.1 Problem Description

In the file system, data is stored continuously and read as a stream by default. However, for

modern scientific applications, the data access exhibits various pattern due to the nature of

applications that generate the data set and the way the data is laid out in the file system. For the

matrix data set, it is more often to access the data with matrix data access pattern instead of

continuous data access pattern. The analytic applications may also require some complex matrix

operations, such as accessing the data in the row and column at same time. Besides, with the

development of research and analytic technology, the data which is generated by monitors or

simulations becomes more and more complex. For a lot of scientific research, it is neither

realistic nor efficient for just one specific application access the data set. After the data is

collected, different analytic applications will read the data and make various data analyses. These

analytic applications do not necessarily share the same data access pattern. They can exhibit

various data access patterns. For example, a weather forecast application collects temperature

changes over time. Logically, data is stored in a two-dimensional manner while the X-axis

18

represents the day and the Y-axis represents the different time during a day. When a scientist

tries to analyze the temperature in the same time period among different days, the row based

access pattern is applied. However, when the temperature variation in same day needs to be

analyzed, data in the same column will be processed. This will make different applications apply

different data access patterns on the same data set. When storing the matrix file into file system,

the traditional continuous storage data layout cannot adapt to the matrix access pattern well,

because most of matrix data access pattern retrieve the data non-continuously.

For a matrix data set which retrieves data non-continuously with some matrix data access

patterns, the small I/O problem will be generated because the file is treated as linear bytes in the

file system, and loses the higher level property at the lower level of the file system. This problem

is especially obvious in HDFS. In HDFS, the chunk is the smallest data storage unit which works

atomically. After the data is stored in chunks, whenever data is required, the namenode will send

the chunk ID which contains the required data to the client, and the client will access the chunk

directly and read and process the whole data in that chunk. This structure works well when the

whole data in the chunk is required, because the data will be accessed and processed

sequentially. However, when data access pattern is non-continuous, the target data will be

distributed into several chunks, and only part of the data in the chunk is useful. The default

continuous storage data layout results in excessive chunks access with a terrible data utilization

rate, and arises in extensive data overload. For example, from the user's point of view, it is

19

natural to store the matrix data in a multidimensional way, as it is easier to explore the data

dependency and other information. However, when the file is stored linearly in HDFS, the

multidimensional array is flattened into one dimensional array, and the higher level information

is lost at the lower level file system. For matrix data access like group access pattern, unrelated

data in chunks is also retrieved and processed when the user tries to read the target data from

chunks. This phenomenon will results in the small I/O problem as it reads an excess amount of

data than required, and decreases the data access efficiency and impact I/O performance.

Meanwhile, another challenging question is raised by the matrix access pattern. The target data

assigned to a task may map to a large number of chunks. A single map task with a large number

of chunks impacts scheduling schemes. Considering in the Hadoop framework, data is replicated

across three datanodes to achieve data reliability, task scheduling which selects the optimal node

to perform the task becomes extremely challenging because of the large number of involved

nodes. Copying data from distance datanode to local datanode also will cost a great number of

resources. Therefore, when storing the matrix file into HDFS sequentially, the matrix data access

pattern impacts the performance in two ways. First, it results in reading an excess amount of data

than required; second, the stripes assigned to a task may map to a large number of chunks,

making the task scheduling extremely challenging. In order to improve the reading efficiency for

the matrix access pattern, new data layout needed to be proposed.

20

3.2 Concentric Algorithm for Two Dimensional Matrix Data Set

We propose the concentric data layout algorithm for the matrix data access pattern and the group

data access pattern which are common access patterns in scientific applications. Concentric data

layout is a data restructuring strategy which maintains the dimensional property in chunk level.

Figure 3-1 is a matrix file with continuous data layout. The matrix file is an two

dimension data set with a chunk size of 4 elements. Chunk 1 contains elements 1, 2, 3 and 4, and

chunk 2 contains 5, 6, 7 and 8 and so on.

Figure 3-1 Row Based Access Pattern in Matrix Data Set

From the Figure 3-1, we can see the continuous storage method flatten the two-dimensional

matrix into a linear sequence of elements. Each element just maintains the information about its

peers in the same row, but loses the information about the other neighbors in its columns.

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

1

5

3

7

9

11

13

15

2

4

6

8

10

12

14

16

21

Therefore, this data layout just fits for the row based access pattern. Suppose the first row of

element in the array is needed to be processed, the chunk 1 and 2 which contains these elements

will be processed. Because all the data in accessed chunks are target data, the data access

efficiency is 100%. However, when the data access pattern becomes vertical, the I/O

performance becomes unsatisfactory. For example, when the first column needs to be processed,

the chunks with even chunk ID will be processed because target data is distributed among these

chunks. It greatly deteriorates the I/O overhead as the 8 chunks are retrieved, but only the first

elements in chunks are useful. In this case, the data access efficiency is only 25%. When the

matrix file becomes larger, the inefficiency will become more conspicuous. Considering a matrix

file with a size of and the elements with the size of 64KB, because the default

chunk size in the Hadoop file system is 64M, each row in the file will store in a chunk and there

are 64M chunks in total. When only one column of data is needed, the chunks which contain the

target file will be processed. Because each row is stored in one chunk, the whole file will be

retrieved in order to read one column of data. The data access efficiency will become as low as

0%. The above example sufficiently shows the inflexibility of continuous data layout and

demonstrates it cannot adapt the variable access patterns required by the matrix file.

Compared with the default continuously data layout, the concentric data layout maintains the

multi-dimensional property in chunk level. The deployment of the matrix file can be represented

as a , meanwhile the chunk can be treated as a sub-matrix. Therefore, the whole file

22

can be divided into multiple sub-matrices and make each sub-matrix have the same size of the

chunk size.

Instead of storing the data into the chunk linearly, the concentric data layout stores the data in the

same sub-matrix into one chunk. The data within the same chunk not only knows its peers in the

same row, but is also aware of its neighbors in the same column. Based on concentric data

layout, the big matrix file is divided into multiple sub-matrices; each sub matrix is stored into

one chunk. Because the two-dimensional property is maintained in chunk level, it fits better with

the matrix access pattern than continuous data layout.

Figure 3-2 Two-Dimension Concentric Data Layout

Figure 3-2 indicates the implementation of concentric data layout in a two dimensional matrix

file. It shows the concentric data layout preserves the two-dimensional property in chunks. In

Figure 3-2, the file is a two-dimensional matrix with the size of and the chunk size is 4.

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

1 2 3 4

5 8 9 10

6 11 13 14

7 12 15 16

23

Therefore, the matrix can be divided into 16 sub-matrices and each of them contains 4

elements. By applying concentric data layout, instead of storing the elements 1, 2, 3 and 4 into

chunk 1, elements 1, 2, 9 and 10 which form the sub matrix are stored into chunk 1,

elements 3, 4, 11 and 12 are stored to chunk 2, and so on. Compared with continuous data layout,

data is stored in multi-dimensional way in concentric data layout. Suppose for matrix in Figure

3-2, when the data in the first row is required, chunks 1 to 4 are accessed. Because these 4

chunks store the data in the first two rows and only the first row of data is required by the client,

the data access efficiency is 50%. Compare with the continuous data layout (Figure 3-1), the

number of chunks accessed increased from 2 chunks to 4 chunks and the data access efficiency is

decreased from 100% to 50%. However, the performance improved in the column access pattern

and the group access pattern. When a column of data is required, the same number of chunks will

be accessed with the data access efficiency of 50%. Compare with continuous data layout

(Figure 3-1), the number of chunks accessed dropped observably from 8 chunks to 4 chunks and

the data access efficiency increased from 25% to 50%. When data is retrieved in the group

access pattern, the number of accessed chunks is reduced from 9 chunks with continuous data

layout to 7 chunks with concentric data layout. The data access efficiency also improved from

41.6% to 53%. Considering the probabilities of each matrix data access pattern are independent,

the average number of chunk accessed is dropped from 7 chunks per access to 5 chunks per

access. The improvement becomes significant when the file size becomes bigger. For a

 matrix file with the chunks size of , when the data access pattern is row or

24

column based, of chunks are accessed with concentric data layout while of chunks

are accessed with continuous data layout, and the saving is astonishing.

We analyze the average performance between the concentric data layout and the continuous data

layout mathematically. In our analysis, we suppose the access patterns are independent and the

possibilities for each one are equal. Table 3-1 compares the number of chunks accessed with

different data layouts.

Table 3-1 Chunk Amount Comparison between Continues and Concentric

Data Layout with Two-Dimension Matrix File

Access Pattern Row Based Column Based Group Based

Continuous

Concentric

The size of matrix file is and the size of the chunk is , the matrix file will

be stored in

 chunks. For the continuous data layout which data is store sequentially, when a

row of data is required,

 chunks will be involved. When a column of data is required,

chunks will be involved. The group access pattern which require both row and column access

will require

 chunks in average. The average number of chunks accessed with

continuous data layout is

25

 ,

the represents the probability of row based data access pattern, the represents the

probability of column based data access pattern and the represents the probability of

group access pattern. For concentric data layout,

 chunks will be accessed when processing a

row or a column of data, the group access pattern will involve

 of chunks. So the

average number of chunks accessed with concentric data layout is

 .

As we have already said, the possibilities for each access pattern are independent. The

possibilities for row based access, column based access and group based access are equal to

.

The comparison between two data layout is

,

 indicates the size of chunk and n indicates the size of matrix file. As is smaller than n.,

fewer chunks will be retrieved with matrix data access pattern when data is stored with

concentric data layout. This reduces the data overhead and increases the data efficiency.

The Table 3-2 shows the pseudo code for two-dimensional concentric data layout.

26

Table 3-2 Two-Dimensional Concentric Data Layout Algorithm

Input: the matrix file size ;

 the chunk size ;

 the data size ;

Output:

steps:

 Classify element within same sub matrix

, the total number of chunks for matrix file

, the number of chunks for each row or column

, the number of data the matrix file has

 for () do

 , determine the row number for data ;

 , determine the column number for data ;

27

3.3 Concentric Data Layout for Multi-Dimensional Data Set

In order to make more precise analysis and accurate simulation, scientists are collecting and

analyzing more and more complex data. Scientific data formats are introduced to accelerate

complex data processing efficiency. In recent research, many simulation data can be stored into

matrix and accessed in matrix pattern, matrix data set with higher dimension property become

more and more common. For example, in the Cosmic Data ArXiv project, the scientists are

working on cosmological simulations and the simulations are employed in a variety of projects.

The data which generated by simulation contains the information about the object location

() and the velocity (, ,). The data set can be stored in three dimension matrix

according to its location, and velocity related processing will become the three-dimensional

matrix processing problem. If we extend the two-dimensional concentric data layout into

multiple-dimensional, making the data layout fits well with matrix data access pattern, it also

reduces the data overhead and improves the processing efficiency for multiple-dimension matrix

data set.

In this section we will use a three-dimensional matrix data set as an example to indicate how to

apply concentric data layout with multi-dimensional data set.

28

Figure 3-3Three-Dimensional Data Set with Continuous Data Layout

The Figure 3-3 represents a three-dimensional data set of temperature record, the X-axis

indicates the time, Y-axis indicates the height while the Z-axis indicates the pressure. Each data

in the data set represents the temperature for a given set of (pressure, height, time). Based on this

matrix data set, the user can analyze the temperature variation in different time, height and

pressure conditions. As Figure 3-3 shows, when data is stored with continuous data layout, data

will be stored along the axis sequentially. For example, first fix the pressure and height, stores

the temperature data with different time, the data will be stored along the X-axis. Then fix the

pressure, stores the temperature data with time and height variation, the data will be stored along

the Z-axis in Figure 3-3. At last, stores the data with different pressure, which suggests the data

will be stored along the Y-axis. The continuous data storage restrains the data access pattern. For

example, it is easy to analyze the temperature change with height and time variation because

based on the continuous data layout, data in the same X-Z plan is stored in the same or close

chunks. However, when scientists need to study the temperature change with pressure and time

element1
chunk1

chunk2

x

y

z

4

4

4

29

variation, the data access will become inefficient. Because the target data which along the Y-Z

plan is stored into many different chunks, the client has to read the entire data in the chunks to

get the target data. The data accessing rate becomes very inefficient. Take Figure 3-3 for

example, the matrix contains 64 elements and is stored continuously. Suppose each chunk stores

8 elements, the matrix file will be stored in 8 chunks. With continuous data layout, the elements

which parallel to X-Z plane will stored into the same chunk. When these elements are needed,

the relevant chunks will be processed, like chunk 1 and chunk 2 will be processed when elements

along the X-Z plane are required. However, when elements which paralleled to X-Y or Y-Z

plane are needed, the targets are distributed into different chunks, and the whole matrix file will

be processed. Apparently, when data layout does not match with data access pattern, the data

processing becomes very inefficient and causes data overhead.

Figure 3-4 Three-Dimension Matrix with Concentric Data Layout

element1

chunk1

chunk4

x

y

z

4

2

2 4

30

The concentric data layout managed to maintain the three matrix property in chunk level. When

applying the concentric data layout into the three dimensional data set, the matrix file can be

divided into multiple sub matrixes and each of them is stores into a chunk. In this way, data in

each chunk is a sub cube, it not only stores data along the X-Z plans, it also stores data along the

X-Y and Y-Z plans. Therefore, when data is accessed with different matrix access pattern, the

concentric data layout will generate better performance. Take Figure 3-4 for example, the three-

dimension matrix file with 64 elements can be represented as a matrix. Since each

chunk contains 8 elements, the chunk can be represent in three-dimension way as , and

the whole file can be divided into 8 sub matrixes, data in each sub matrix will stores in one

chunk. The elements 1, 2, 5, 6, 17, 18, 21 and 22 which form a small cube will be stored in

chunk 1. The elements 3, 4, 7, 8, 19, 20, 23 and 24 which in another cube will be stored in chunk

2. After elements are stored with concentric data layout, if the elements along the X-Z plane are

required, the 4 chunks which contains the require elements will be processed. The processing

efficiency is

 . Compare with continuous data layout, the number of accessed chunks

is increased from 2 to 4 and the data efficiency is decreased from 100% to 50%. However, when

data is accessed with other matrix access pattern, the concentric data layout outperforms the

continuous data layout. When elements along the Y-Z plane are required, 4 chunks will be

processed and the processing efficiency is 50%. Compare with continuous data layout, the

amount of chunk processed is reduced from 8 to 4, and the efficiency is improved from 25% to

31

50%. The similar improvement can be seen when the data is accessed with group access pattern.

Compared with continuous data layout which needs to process 8 chunks, 5 chunks are processed

with concentric data layout. The data efficiency is increased from 43% to 70%.

We compare the average performance between concentric data layout and continuous data layout

mathematically. During the comparison, we suppose the matrix access patterns are independent

and the possibilities for each matrix access pattern are equal.

Table 3-3 Chunk Amount Comparison between Continuous and Concentric Data

Layout with Three-Dimension Matrix File

Access Pattern X-Y Based X-Z and Y-Z Based Group Based

Continuous

Concentric

We suppose the size of matrix file is and the size of the chunk is , the matrix

file will be stored in

 chunks in total. For continuous data layout, we suppose the data is stored

by the order of first along the X-axis, then along the Y-axis and at last along the Z-axis. The X-Y

plane based access will require

 chunks in total as the access pattern fits the continuous data

layout, Y-Z and X-Z plane based access will both require

 chunks, and the group access

32

pattern will require

 chunks each time. The average number of chunks accessed with

the continuous data layout is

 .

For the concentric data layout, the matrix based access pattern needs to process

 chunks and

the group based access pattern needs to process

 chunks in total. The average number of

chunks accessed with concentric data layout is

 .

The comparison between two data layout is

 .

As n is larger than k in Hadoop file system and grows fastest than , the concentric data

layout accessed fewer chunks accessed and reduce the data overhead.

The Table 3-4 shows the pseudo algorithm for three-dimensional concentric data layout.

33

Table 3-4 Two-Dimensional Concentric Data Layout Algorithm

Input: the matrix file size ;

 the chunk size ;

 the data size ;

Output:

Steps: Classify element within same sub matrix

, the total number of chunks for matrix file

 , the number of chunks for each row or column

, the number of data the matrix file has

 for () do

 , determine the row number for data ;

34

The concentric data layout algorithm can be extended to N-dimensional data set. When storing

the data set with the concentric data layout, dividing the N-dimensional matrix file into multiple

sub sets, each sub set is also an N-dimension set with the size of chunk size. Store the data in

each sub set into same chunk, this makes sure the dimensional property is maintained in chunk

level. In following, we compare the performance difference between the N-dimension concentric

data layout and the continuous data layout.

Table 3-5 Chunk Amount Comparison between Continuous and Concentric Data Layout

with Three-Dimension Matrix File

Access Pattern X-Y Based X-Z and Y-Z Based Group Based

Continuous

Concentric

In the comparison, we suppose the matrix file with the size of and the size of the chunk

is , so the N-dimension matrix file will be stored in

 chunks. For the continuous data

layout, the a-1 matrix access pattern which adapt to the continuous data layout will require

chunks in total, the rest a-1 matrix access will both require

 chunks, and the group access

pattern will require

 chunks in average. The average number of chunks accessed

for continuous data layout is

 .

35

For concentric data layout, the matrix access pattern needs to process

 chunks of data and

the group based access pattern needs to process

 chunks of data in total. The

average number of chunks accessed with concentric data layout is

 .

The comparison between two data layout is

 .

As n is larger than k in Hadoop file system, the concentric data layout results less chunk access

and relieves the data overhead.

The pseudo algorithm of concentric data layout for N dimension data set is displayed in Table

3-6,

36

Table 3-6 Concentric Data Layout Algorithm for N-Dimensional Matrix file

Input: the matrix file size ;

 the data size ;

 the chunk size ;

Output:

Steps:

 , the total number of chunks for matrix file

, the number of chunks for each row or column

, the number of data the matrix file has

 for () do

 for each dimension

37

CHAPTER 4 EXPERIMENTAL METHODOLOGY AND

EVALUATION

In this section we evaluate the performance of the concentric data layout against the continuous

data layout. Because most of the HPC analytics applications with group access patterns still need

to be developed, there are no established benchmarks available to test our design. We carry out a

prototype implementation with matrix data layout on Hadoop File System based on the

previously discussed data layout algorithm. We analyze the experiment result in following

sections and demonstrate the concentric data layout reduces the amount of data accessed, relieves

the data overhead, solves the small I/O problem and improves the processing efficiency.

4.1 Experimental Setup

In our experiment, we access to a 14 node cluster with Hadoop 0.20 installed on it. In our setup,

the cluster's master node is used as the namenode and jobtracker, while the 13 slave nodes are

configured to be the datanodes and tasktrackers. In the experiment, we are mainly concerned

about the number of data retrieved and number of map task processed.

During experiment, we write a MapReduce program to process the data set with matrix data

access patterns by two different data layouts, the original continuous data layout and the

38

optimized concentric data layout. In the map phase each process reads contiguous chunks and

marks all the required data. In the reduce phase, all the data required by a single process are

combined together. We analyze the performance in aspects of executing time, amount of

accessing data, data access efficiency and number of map tasks.

4.2 Experimental Analysis

We perform a series of tests on the Hadoop cluster to compare the performance on different

layout strategies. We first compare the performance with two-dimensional matrix data set. We

write the MapReduce program to process two dimensional files with the size of 1GB, 4GB, and

16GB by using different data layout respectively. These files are originally stored in the HDFS

with continuous data layout, and then they are processed by concentric data layout and stored in

the HDFS with concentric data layout. In our experiment, the default chunk size is 64MB.

First, the experiments are conducted to indicate the improvement on the execution time of the

applications using MapReduce program to access data between concentric data layout and

continuous data layout. In the experiments, we have the application to access the data with

different matrix access patterns. Figure 4-1 shows the performance of the execution time when

39

accessing data in row based, column based and group access pattern by using the concentric data

layout and the continuous data layout.

Figure 4-1 Executing Time Comparison for Two Dimension Matrix File

From the Figure 4-1, we can see that the concentric data layout outperforms the continuous data

layout when data access pattern is column based or group based, but the continuous data layout

works better when data access pattern is row based. The experiment result matches our

theoretical analysis. According to the continuous data layout, data is stored row by row. When

the accessing pattern is column based, the target data is stored among all chunks. Therefore, the

entire matrix file with continuous data layout has to be processed when access pattern is column

based or group based. Take 16GB file for example, when data is stored by the continuous data

layout, accessing a column of data will required to process the whole data set. The processing

time is about 1772s. The group based data access also required the same amount of processing

time because in the group base access pattern, both row and column of data is required. The

40

processing time is reduced when data is stored with concentric data layout, because after data is

stored with concentric data layout, related data which in the same row or column is stored in the

same or near chunks. Therefore it reduces the number of chunks which needed to be processed

and reduces the processing time. Take 16GB file for example, the processing time for group

access pattern is 217s while the processing time for column access pattern is 134s. The

improvement can be observed in other files with size of 1GB, 4GB as well. From Figure 4-1, we

can see when data access pattern is row based, the processing time for the continuous data layout

is less than the concentric data layout because when data is stored with continuous data layout,

the data in the same row will be stored in the same chunk. When a row of data is required, just

one chunk is processed. However, when data is stored with concentric data layout, the data in the

same row will be stored into several chunks. When a row of data is required, several chunks are

required to be processed. Therefore, when data access pattern is row based, the processing time

for continuous data layout is better than that of concentric data layout. However, considering the

possibilities for each access pattern are independent and equal, we can get the conclusion that the

execution time with concentric data layout is better than that with continuous data layout. This is

consistent with our model and analysis in chapter 3. In theoretical analysis, we draw the

conclusion that the data processing ratio between concentric data layout and continuous data

layout is

, as the processing time is proportional to the amount of accessed data. Take 4GB

file for example, the average processing time when data is stored with concentric data layout is

41

83s while the average processing time when data is stored with the continuous data layout is

288s. The processing ratio between the concentric data layout and the continuous data layout is

, which match our analysis. Based on the experiment and the above analysis, we can see

that data with the concentric data layout fits better with matrix access pattern than data with the

continuous data layout. It reduces the execution time and improves I/O system performance.

Figure 4-2 Amount of Data Accessed for Two Dimension Matrix File

Second, the experiment compares the amount of data accessed when data is stored with the

concentric data layout and the continuous data layout. From Figure 4-2, it clear to see that during

the processing, less data is accessed when data is stored with concentric data layout. Take 1GB

file for example, when data is accessed with group based access pattern, 448MB of data is

retrieved when the data set is stored in the concentric data layout while 1GB of data is retrieved

when the data set is stored in the continuous data layout. When the data access pattern is column

42

based, the data set retrieved with the concentric data layout is 256MB while the data set retrieved

with the continuous data layout is still 1GB. As the file gets larger, the difference becomes more

obvious. In 16GB file, when data access pattern is group based, 1.93GB of data is accessed with

concentric data layout while 16GB of data is accessed with continuous data layout. In theoretical

analysis, we draw the conclusion that the data processing ratio between concentric data layout

and continuous data layout is

, the experiment validates our conclusion. Take 4GB file for

example, the average amount of data accessed when data is stored with concentric data layout is

0.6458GB while the average amount of data accessed when data is stored with continuous data

layout is 2.6875GB. The data processing ratio between concentric data layout and continuous

data layout is

, which match our analysis. The improvement is caused by the fact that

in order to access all the required data, the client needs to access the chunks which contains the

target data. Compare with continuous data layout, concentric data layout reconstructs the data

and keep the matrix property in chunk level. Therefore, compared with the continuous data

layout, the concentric data layout makes client accesses fewer chunks and reduces the data

overhead.

43

Figure 4-3 Data Efficiency Comparison for Two Dimension Matrix File

Meanwhile, we compare the data efficiency, which indicates how many data is the target data

among all the data we processed. We suppose the amount of data we required is 64MB. From

Figure 4-3 we can see that compares with continuous data layout, the concentric data layout

improves the data efficiency. Take 1GB file for example, the data efficiency for both column

based access pattern and group based access pattern is 6.25% when data layout is continuous,

while the data efficiency for the column based access pattern is improved to 25% and the data

efficiency for the group based access pattern is improved to about 14% with concentric data

layout, The same trend can be seen in 4GB file and 16GB file, and the data efficiency

improvement becomes more evidence as the file become larger. The experiment results are

consistent with our theoretical analysis. According to our analysis, when data is stored with

continuous data layout, data is stored in chunks sequentially. The target data is stored in different

chunks and each chunk only contains a small part of target data. When data is stored with

44

concentric data layout, the two dimension property is maintained in chunk level. Data in the

same row or column is stored in same or close chunks. Therefore, the client is able to retrieve

fewer chunks to get the target data. Since the client requires the same amount of data, the fewer

chunks retrieved the higher efficiency the data layout provides, so the data efficiency in the

concentric data layout is better than that in the continuous data layout.

Figure 4-4 Number of Map Tasks for Two Dimension Matrix File

At last, we compare the amount of map tasks during the processing when data is stored with the

concentric data layout and the continuous data layout respectively. From Figure 4-4, it is clear to

see that the concentric data layout has reduced the number of map task dramatically. For

example with group based access pattern, accessing data in concentric data layout with 16GB file

requires 31 map tasks, while accessing data in continuous data layout with 16GB file requires

256 map tasks. The same improvement can be seen when the data access pattern is column

45

based. For column based access pattern, 16 map tasks are required when processing the data with

the concentric data layout while 256 map tasks are required when processing same amount of

data with the continuous data layout. The improvement is caused by the fact that concentric data

layout keep the dimension property in chunk level. When matrix data access patterns are

required, fewer chunks are accessed to get all target data. In our experiment each map task

processes one split which has the size of 64MB. Therefore, the fewer chunks the application

retrieved, the less map tasks it generated. Compare with continuous data layout, concentric data

layout reduce the task amount during the processing, and relieves the task scheduling problem.

We also conduct the experiment for concentric data layout with three-dimensional matrix file.

We write the MapReduce program to process three-dimensional files with the size of 512 MB

and 4GB by using different data layout respectively. We analyze several performance aspects

like the processing time, amount of accessing data, data efficiency and so on.

Figure 4-5 Execution Time for Three-Dimensional Matrix File

46

From the Figure 4-5, we can see that concentric data layout outperforms the continuous data

layout when data access pattern is X-Z/Y-Z plane based or group based, but the continuous data

layout works better when data access pattern is X-Y plan based. The experiment result matches

our theoretical analysis. According to continuous data layout, the data is stored first along the X

axis, then along the Y axis and Z axis. When accessing pattern is group based, the target data is

stored among all chunks. Therefore, the entire matrix file with continuous data layout has to be

processed when access pattern is column based or group based. Take 4GB file for example,

when data is stored by continuous data layout, accessing data which parallel to Y-Z plane will

required to process the whole data set. The processing time is about 429s. The group based data

access also required the same amount of processing time because in group base access pattern,

both row and column of data is required. The processing time is reduced when data is stored with

concentric data layout. This is because after data is stored with concentric data layout, related

data which in the same row or column is stored in the same or near chunks. Therefore it reduces

the number of chunks which needed to be processed and hence reduces the processing time. In

4GB file, the processing time for group access pattern is 197s while the processing time for

matrix access pattern is 127s. This improvement can be observed in other files with 512MB,

32GB as well. From Figure 4-5 we can see when data access pattern is parallel to X-Y plane, the

processing time for continuous data layout is less than concentric data layout because when data

is stored with continuous data layout, the data on the same X-Y plane will be stored in the same

chunk. When a row of data is required, just one chunk is processed. However, when data is

47

stored with concentric data layout, the data in the same row will be stored into several chunks.

When a row of data is required, several chunks are required to be processed. Therefore, when

data access pattern is parallel to X-Y plane, the processing time for continuous data layout is

better than that of concentric data layout. However, considering the possibilities for each access

pattern are independent and equal, we can get the conclusion that the MapReduce program

execution time with concentric data layout is better than that with continuous data layout, the

concentric data layout has better performance than continuous data layout on I/O system

performance with execution time.

Figure 4-6 Amount of Data Accessed for Three-Dimensional Matrix File

Second, the experiment compares the amount of data accessed when data is stored with

concentric data layout and continuous data layout. From Figure 4-6, it clear to see that during the

processing, less data is accessed when data is stored with concentric data layout. Take 512MB

48

file for example, when the data access pattern is group based, 358MB of data is retrieved when

the data set is stored in concentric data layout while 512MB of data is retrieved when the data set

is stored in continuous data layout. When the data access pattern is X-Z/Y-Z based, the data set

retrieved with concentric data layout is 256MB while the data set retrieved with continuous data

layout is still 512MB. As the file gets larger, the improvement becomes more evidence. In 4GB

file, when data access pattern is group based, 1.75GB of data is accessed with concentric data

layout while 4GB of data is accessed with continuous data layout. In theoretical analysis, we

draw the conclusion that the data processing ratio between concentric data layout and continuous

data layout is

 . Take 4GB file for example, the average amount of data accessed when

data is stored with concentric data layout is 1.26GB while the average amount of data accessed

when data is stored with continuous data layout is 3GBs. The processing ratio between

concentric data layout and continuous data layout is

, which matches our analysis. The

improvement is caused by the fact that in order to access all required data, the client needs to

access all the chunks which contains the target data. Compare with the continuous data layout,

the concentric data layout reconstructs the data and keep the matrix property in chunk level.

Therefore, during the process, it accesses fewer chunks and reduces the data overhead.

49

Figure 4-7 Data Efficiency Comparison for Three Dimension Matrix File

The Figure 4-7 compares the data efficiency between the concentric data layout and continuous

data layout. We suppose the amount of data we required is 64MB. From Figure 4-7 we can see

that compares with continuous data layout, the concentric data layout improves the data

efficiency. Take 512MB file for example, the data efficiency for X-Z/Y-Z plan access pattern

and group based access pattern is 12.5%. when data layout is continuous, the data efficiency for

X-Z/Y-Z plan based access pattern is improved to 25% while data efficiency for group based

access pattern is improved to about 16.7% with the concentric data layout, The same trends can

be seen with 4GB file, and the data efficiency improvement becomes more evidence as the file

become larger. The experiment results are consistent with our theoretical analysis. When data is

stored with the continuous data layout, data is stored in chunks sequentially. The target data is

stored in different chunks and each chunk only contains a small part of target data. When data is

stored with concentric data layout, the three-dimensional property is maintained in chunk level.

Data in the same row or column is stored in same or close chunks. Therefore, the client is able to

50

retrieve fewer chunks to get the target data. Since the client requires the same amount of data, the

fewer chunks retrieved the higher efficiency the data layout provides, so the data efficiency in

the concentric data layout is better than that in the continuous data layout.

Figure 4-8 Number of Map Tasks for Three Dimension Matrix File

At last, we compare the amount of map tasks during the processing when data is stored with the

concentric data layout and the continuous data layout respectively. From Figure 4-8, it is clear to

see that concentric data layout has reduced the number of map task dramatically. For example

with group based access pattern, accessing data which stored with concentric data layout with

512MB file requires 6 map tasks, while accessing data which stored with continuous data layout

requires 8 map tasks. The same improvement can be seen when the data access pattern is X-Z/Y-

Z plan based. For these data access pattern, 4 map tasks are required when processing the data

with concentric data layout while 8 map tasks are required when processing same amount of data

with the continuous data layout. The improvement is caused by the fact that the concentric data

51

layout keeps the dimensional property in chunk level and fits better than continuous data layout.

When matrix data access patterns are required, fewer chunks are accessed to get all target data.

In our experiment each map task processes one split which has the size of 64MB. Therefore, the

fewer chunks the application retrieved, the less map tasks it required. Compare with continuous

data layout, concentric data layout reduce the task amount during the processing, and relieves the

task scheduling problem.

52

CHAPTER 5 RELATED WORK

Many approaches have been adopted to relieve the small I/O problem in HPC application,

especially for applications using MPI/MPI_IO. Data sieving[2] is an optimization technique to

deal with small I/O problem. According to data sieving algorithm, instead of accessing each

contiguous portion of data separately, a single contiguous chunk of data which start from the first

requested byte up to the last requested byte is read into a temporary buffer in memory. The

advantage of this algorithm is that data is always accessed in large chunks. However, the

limitation of this simple algorithm is obvious. The data sieving requires the temporary buffer into

which data is first read must be as large as the total number of chunk, and generates excessive

amount of unnecessary data. Collective I/O[2] also allows client to read a contiguous chunk of

data but it redistributes the data among multiple processes as required by them. Besides, applying

collective I/O with two-phase implementation in large scale system will result in communication

overhead among processes. PLFS[3] is another approaches to solve small I/O problem. PLFS is a

file system which mounted on the top of an existing parallel file system and re-maps an

applications' write access pattern to be optimized for the under-laying file system. DFS[4]

provides striping mechanisms that divides a file into small pieces and distributed them across

multiple storage devices for parallel data access. Our work is different from the above mentioned

approaches. In our work, we reconstruct the data layout and processes do not need to

communicate with others due to the data reorganization. Our work successfully maintains the

53

shared-noting architecture for scalability. DPFS[5] also proposed a multi-dimension data layout

to process matrix data set. But the scale of file considered is different. The sizes of files which

DPFS is focusing on are relative smaller, from megabytes to gigabytes. Concentric data layout is

focusing a large data file which the size is from terabytes to petabytes. Besides, the layout is

implemented on parallel file system and the strips which contain the target data are stored in

same sub file. This method is not flexible because it only fits well for one data access pattern.

When other applications access the data set with different access patterns, the strips which store

the target data are distributed to different sub files. In order to read related splits, client needs to

go through all the sub files to get the related splits. Our work is more flexible, when data is

required, the client only needs to access the chunks which contain the target data. Besides, in

DPFS, it just considers the row and column based data access pattern. In our work, we consider

the complex matrix access pattern and the situation which the same data set is processed by

different applications. Compare with DPFS, the concentric data layout is more flexible and fits

well with complex matrix data access patterns.

54

CHAPTER 6 CONCLUSION

In this paper we analyzed the matrix access patterns and the problems caused by matrix access

patterns. We presented the concentric data layout to support data analytics applications

processing matrix data set. Concentric data layout is an optimization strategy which works well

with various matrix access patterns. It maintains the dimensional property in chunk level. In

concentric data layout, instead of storing the data into chunks continuously, data located within

the same sub-matrix is stored into the same chunk, when data is required by different access

patterns, fewer chunk will be accessed. The concentric data layout is able to significantly boost

the I/O performance for data analytics programs by matching with their mixed row-based and

column-based access patterns. Our experiments on two-dimensional matrix file and three-

dimensional matrix file shows that when data is stored in concentric data layout, the client will

accesses fewer chunks, it reduces the amount of process data and improves the processing

efficiency, and thereby significantly improves the I/O performance.

55

ACKNOWLEDGEMENTS

We would like to thank the US NSF for sponsoring this work under grants CCF-0811413 and

CAREER CCF-0953946. Additionally, we thank the US Department of Energy for sponsoring us

under Early Career Principal Investigator Award: ED-FG02-07ER25747.

56

REFERENCES

[1]. http://hadoop.apache.org/common/docs/current/hdfs_design.html.

[2]. Rajeev Thakur, William Gropp, Ewing Lusk, Data Sieving and Collective I/O in

OMIO," frontiers, pp.182, The 7th Symposium on the Frontiers of Massively

Parallel omputation, 1999.

[3]. John Bent, Garth Gibson, Gary Grider, Ben McClelland, Paul Nowoczynski,

James Nunez, Milo Polte, and Meghan Wingate. PLFS: A checkpoint filesystem

for parallel applications. In Supercomputing, 2009 ACM/IEEE Conference, Nov.

2009.

[4]. JH Howard, ML Kazar, SG Menees. Scale and performance in a distributed file

system. ACM Transactions on Computer Systems, Volume 6, Issue 1, 1988.

[5]. Xiaohui Shen, Alok N, Choudhary. Dpfs: A distributed parallel file system. In

ICPP 02: Proceedings of the 2001 International Conference on Parallel

Processing, pages 533-544, Washington, DC, USA, 2001.

[6]. D. Borthakur. The Hadoop Distributed File System: Architecture and Design.

Apache Software Foundation, 2007.

[7]. Bryant, R. E. Data-Intensive Supercomputing: The Case for DISC. Tech. Rep.

CMU-CS-07-128, Carnegie Mellon University, May 2007.

http://hadoop.apache.org/common/docs/current/hdfs_design.html

57

[8]. V. Akcelik, J. Bielak, G. Biros, I. Epanomeritakis, A. Fernandez, O. Ghattas, E. J.

Kim, J. Lopez, D. R. O’Hallaron, T. Tu, and J. Urbanic. High resolution forward

and inverse earthquake modeling on terasacale computers. In Proceedings of

SC2003, November 2003.

[9]. G. Mackey, S. Sehrish, J. Lopez, J. Bent, S. Habib, and J. Wang, Introducing

mapreduce to high end computing, in Petascale Data Storage Workshop, 2008.

PDSW’08. 3rd, pp.1-6, Nov.2008.

[10]. J. Dean and S. Ghemawat, MapReduce: Simplified Data Processing on Large

Clusters, in Proceedings of OSDI ’04: 6th Symposium on Operating System

Design and Implemention, San Francisco, CA, Dec. 2004.

[11]. Jaliya Ekanayake, Shrideep Pallickara, and Geoffrey Fox, MapReduce for Data

Intensive Scientific Analyses, Proceedings of the IEEE International Conference

on e-Science, Indianapolis, 2008. December, 2008.

[12]. Bryant, R. E, Data-Intensive Supercomputing: The Case for DISC. Tech. Rep.

CMU-CS-07-128, Carnegie Mellon University, May 2007.

[13]. J. Worringen, J.L. Traeff, and H. Ritzdorf, Fast Parallel Non-Contiguous File

Access. In Supercomputing 2003: The International Conference for High

Performance Computing and Communication, Nov. 2003

[14]. G. Wang, A.R.Butt, P.Pandey, and K.Gupta, A Simulation Approach to

Evaluating Design Decisions in MapReduce Setup, in International Symposium

58

on Modelling, Analysis and Simulation of Computer and Telecommunication

Systems, London, UK, Sep.2009.

[15]. Han, H. Rivera, G. and Tseng, Compiler and Run-Time Support for Improving

Locality in Scientific Code. Proceedings of Languages and Compilers for Parallel

Computing, Twelfth International Workshop, Srpinger-Verlag, 1999.

	Concentric Layout, A New Scientific Data Layout For Matrix Data Set In Hadoop File System
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TALBE OF CONTENT
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1 INTRODUCTION
	CHAPTER 2 BACKGROUND
	2.1 Data Intensive HPC
	2.2 HDFS and MapReduce Framework
	2.2.1 Hadoop Distributed File System
	2.2.2 MapReduce

	2.3 Data Access Pattern
	2.3.1 Continuous Data Access Pattern
	2.3.2 Matrix Data Access Pattern
	2.3.3 Group Data Access Pattern

	CHAPTER 3 CONCENTRIC DATA LAYOUT
	3.1 Problem Description
	3.2 Concentric Algorithm for Two Dimensional Matrix Data Set
	3.3 Concentric Data Layout for Multi-Dimensional Data Set

	CHAPTER 4 EXPERIMENTAL METHODOLOGY AND EVALUATION
	4.1 Experimental Setup
	4.2 Experimental Analysis

	CHAPTER 5 RELATED WORK
	CHAPTER 6 CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

