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ABSTRACT 

The data generated by scientific simulation, sensor, monitor or optical telescope has increased 

with dramatic speed. In order to analyze the raw data speed and space efficiently, data pre-

process operation is needed to achieve better performance in data analysis phase. Current 

research shows an increasing tread of adopting MapReduce framework for large scale data 

processing. However, the data access patterns which generally applied to scientific data set are 

not supported by current MapReduce framework directly. The gap between the requirement from 

analytics application and the property of MapReduce framework motivates us to provide support 

for these data access patterns in MapReduce framework. In our work, we studied the data access 

patterns in matrix files and proposed a new concentric data layout solution to facilitate matrix 

data access and analysis in MapReduce framework. Concentric data layout is a data layout which 

maintains the dimensional property in chunk level. Contrary to the continuous data layout which 

adopted in current Hadoop framework by default, concentric data layout stores the data from the 

same sub-matrix into one chunk. This matches well with the matrix operations like computation. 

The concentric data layout preprocesses the data beforehand, and optimizes the afterward run of 

MapReduce application. The experiments indicate that the concentric data layout improves the 

overall performance, reduces the execution time by 38% when the file size is 16 GB, also it 

relieves the data overhead phenomenon and increases the effective data retrieval rate by 32% on 

average.  
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CHAPTER 1 INTRODUCTION 

In recent days, more and more scientific applications have been benefited from the MapReduce 

framework [9]. These applications share the property that they generate, collect and maintain 

vast volumes of data, and also require large computing resource to process data [7]. For example, 

earthquake prediction and analytic model collect up-dated and detailed data of earth activity 

around the world [8] to let geologists generate a more accurate and efficient earthquake analytic 

model. These data are collected in every second and delivered to computation unit for analysis. 

Many other scientific research applications such as bio-information model, vision simulation, 

climate prediction and realistic graphic animation share same properties generate, store and 

process multi-terabyte data. MapReduce is a good candidate for these applications as 

MapReduce jobs are distributed into multiple sub-jobs and processed concurrently. The 

distributed property improves the processing speed and meliorates the execution efficiency. 

 

For many analytical applications, data set are generated and stored in a matrix manner naturally. 

For example, the weather monitor application senses and records the temperature and humidity 

variation in real time, and scientists analyze posted data to forecast the future weather changes. 
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One impelling analytic requirement is to compare the data values among different periods in the 

same day or the same time among different days. Apparently, storing the data set into a matrix 

manner will bring in performance benefit for the future analysis. Instead of reading the entire 

data set, the scientist just needs to read the data set in the target row to analyze the temperature 

change during the same day or to review the data set in the target column to analyze the humidity 

variation in a month. Therefore, the way the dataset is stored in a file system has an intimate 

relationship with how it is accessed. Besides, the same data set may be utilized by different 

scientists for different research works, and each scientist will process the data set in a different 

way. For example, the cosmic data bank is a project which a group of scientist working on 

cosmological simulations, which are employed in variety of projects, from mass power spectrum 

analysis to halo mass function. The simulation data with location and velocity information can be 

presented in a cube and accessed in different ways, parallel to X_Y plane or parallel to X-Z 

plane. 

 

In distributed file systems like HDFS (Hadoop Distributed File System) [6] adopts MapReduce 

framework, the data is stored sequentially and read stream in default. Unfortunately, such storage 

feature breaks the aforementioned intimate relationship between data layout and data access 

pattern. Using the weather monitoring application as an example, when file is stored in HDFS 

sequentially, the data in the same column is separated and distributed among the entire file 

system. When data in one particular column is needed, instead of just reading one column, the 
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whole file will be accessed. An inappropriate data layout will affect the data processing 

efficiency as improper data layout results in reading excess amount of data than actually needed. 

Meanwhile, storing the data set in a file system with one access pattern cannot fit various 

applications with different access patterns. After the monitor data set is generated and stored in a 

file system, the analytic applications with various access patterns will access the data set to 

perform different data analyses. For example, temperature data is used for analyzing data 

fluctuations in different time periods, like in a day or in a year. Based on the specific analytic 

requirement, the data set will be accessed in either row based or column based.  

 

In order to deal with the aforementioned challenges, we propose a new concentric data layout 

scheme. Concentric data layout maintains the matrix property in chunk level. Its unique 

combination of row based access pattern and column based access pattern makes it works well 

for many scientific applications which process matrix data set. In concentric data layout, 

affiliated data is stored into the same chunk and hence maintain the original logical properties. 

As the data is stored in two dimensional manners, accessing the data in either row or column will 

lead to comparable performance, and realize the optimal overall performance when applications 

access the same matrix data set in different patterns. The concentric data layout aims to mitigate 

the small I/O problem, improve the data utilization rate and thus significantly improve the I/O 

performance by reducing the total number of chunks being accessed.  
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The paper is organized as follows, section 2 introduces the background of MapReduce 

framework and matrix related data access pattern. In section 3, we propose the concentric data 

layout in detail and discuss the experimental results in section 4. Section 5 introduces the related 

work while the conclusion and further works are discussed in section 6. 
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CHAPTER 2 BACKGROUND 

In this section, we introduce the HDFS, MapReduce framework and data access patterns of 

matrix data set in brief. 

2.1 Data Intensive HPC 

In recent year, scientific research became increasingly rely on computing over large data sets. 

This phenomenon is usually referred as “e-Science” and the applications with “e-Science” 

property [11] require a new system design which computation and storage are coupled together.  

 

Many scientific research problems incur large columns of data produced by different 

applications, different sources from numerous locations with various formats. Besides, the 

analytic application requires strong storage and computation power to perform further data 

computation and analysis. 

 

For geographic, the more detailed and more accurate finite data will enable scientists to model 

the effect of a geological disturbance and the probabilities of earthquakes occurring in different 

regions more accurately and instantly. The analytic models are continually updated and analyzed. 

The continent movement, temperature, humidity as well as many other parameters are monitored 
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all the times at numerous locations around the world and the data are collected for the forecasting 

of earthquakes, volcano eruptions and hurricanes. 

 

For biological, the computational biology involves comparing genomic data from different 

species and different organisms [12]. The fast-accumulating data mainly consist of DNA, RNA 

and protein sequences due to the state-of-art sequencing technology. Large data sets are collected 

as new sequences are discovered and new forms of derived data are computed. The most 

complicated data are the relational data about the associations among the proteins, RNAs and 

DNAs. As a basic procedure for biologists and medical doctors, sequence alignment is a time-

consuming work.  

 

For astronomic and cosmology, the modern telescope can generate terabyte data per year and it is 

expects in the future, petabyte of data will be produced. The massive amounts of imagery data is 

collected daily and additional results are derived from computation applied to that data.  

 

The above mentioned examples in scientific researches clearly indicates that an increasing 

number of data-intensive HPC problems are arising with the requirement of collecting and 

maintaining very large data sets and applying vast amount of computational power to the data. 

As these analytic applications are run on the computer cluster, data are copied from the storage 

cluster to the computer cluster back and forth. This data replication is extremely time consuming 
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as significant amount of their execution time is spent on I/O transformation, so new trend is to 

apply these analyses in distributed MapReduce framework like Hadoop [10]. However as Figure 

2-1 indicates, these kinds of applications are in the intersection of traditional HPC applications 

and traditional DISC. They require both storage capacity and computation ability. 

 

 

Figure 2-1 Data Intensive HPC Analytics Applications 

2.2 HDFS and MapReduce Framework 

Hadoop is inspired by MapReduce, a programming model and an associated implementation for 

processing and generating large data sets. MapReduce aims to let user perform the simple 

computations with large data set as well as hides the messy details of parallelization, fault-

tolerance, data distribution and load balancing. The nature of huge amounts of data determines 

HPC Compute 
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Access Patterns
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that the distributed computation is a better choice than the sequential computation for many 

problems. 

 

The Hadoop architecture consists of two servers: namenode and jobtracker and amount of other 

servers which function as tasktrackers and datanodes. Namenode and datanode are two main 

components of Hadoop. The single namenode is a master server that manages the file system 

namespace and regulates the access to files by clients, it not only responsible for Hadoop file 

system data management, but also responsible for file access and replacement. The datanode, 

usually one per node in the cluster, is used to manage storage attached to the nodes that they run 

on. It stores the file system data, manages replication tasks and services all data read/write 

requests from clients based on namenode’s direction. The jobtracker is responsible for handling 

all jobs which submitted by client application. Besides, it maintains the task resiliency in the 

cluster by making scheduling decision and parallelizing the client applications across the cluster. 

The jobtracker monitors all running task on the cluster, killing and restarting tasks when they 

fail, hang or disappear during the operation. The tasktrackers in Hadoop is responsible for 

running the client application via instructions from the jobtracker. The jobtracker and the 

tasktrackers comprise the architecture for MapReduce programs to run on. 
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Figure 2-2 Hadoop Architecture 

Figure 2-2 indicates the Hadoop architecture. It shows that in Hadoop, in order to achieve better 

data locality, one server is servers as namenode, one server is servers as jobtracker and other 

servers are configured as datanode and tasktracker. As Hadoop lacks of bandwidth needed for 

the cluster to function appropriately, it allows performance on commodity computing without a 

fast, expensive interconnect. In Hadoop, namenode becomes its own server because Hadoop 

keeps all file system metadata in main memory, working as an own server will not slow the file 

access which caused by strain on the namenode from serving data and metadata requests. 

Meanwhile, to ensure the task resiliency in the cluster, the jobtracker is running on multiple 

daemons. 

 

The Hadoop framework consists of two main components: Hadoop Distributed File System 

(HDFS) and the MapReduce framework. These two important components working together to 

make sure Hadoop is reliable and easier for programming. 
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2.2.1 Hadoop Distributed File System 

The Hadoop Distributed File System (HDFS) is modeled very close with Google file system. It is 

a distributed file system designed to run on commodity hardware [1]. The approach to this file 

system assumes that failure in a large scale computing environment happens frequently. The 

HDFS stores the data across multiple nodes (default number is 3), this replicate storage ensures 

that in HDFS, the file stored are always intact in three separate places across a cluster. This 

distributed file approach guarantees the system resiliency in Hadoop without the requirement of 

RAID storage.  

 

Figure 2-3 HDFS Architecture 
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The Figure 2-3 is a conceptual model for HDFS. It can be noticed that client first directs file 

queries to the namenode, namenode then directs the file request to the appropriate datanodes and 

the datanodes supply the client application with the data. In HDFS, the replication of the file is 

located across servers in a rack and across server racks. When file chunks are written to datanode 

across the HDFS, the namenode tries to group at least one replicated chunk on the same server 

rack as the primary and then another chunk to an adjacent rack of datanodes; meanwhile it 

ensures that no two replications of a chunk are stored to the same datanode. This mechanism 

applies certain data locality and fault resistance. The namenode pings every datanode 

periodically. Once no response is received from a datanode in a given time, the namenode marks 

it as failed and reassigns the job to another datanode. Therefore when a server hardware failure 

happens, the namenode will recover the health of the cluster without user’s intervention. The 

ability of the HDFS to recover from system failures automatically without neither lose of service 

nor needs of user’s intervention making HDFS a very power tool for data intensive applications.  

2.2.2 MapReduce 

MapReduce framework is introduced by Google to support distributed computing with large data 

sets on cluster of computers [2]. MapReduce has map and reduce two phases in its programming. 

The programmer has a map operation, one parallel operation is processed during the map 

operation in which results are collected at the intermediate combine phase; then reduce is 
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performed to get together these intermediate values to form a smaller set of values before the 

output data becomes persistent storage [14]. The MapReduce framework works exclusively on 

[key, value] pairs. An input of [key, value] pairs are processed by the map operation which 

produces a set of intermediate key based on the input pairs, the reduce phases receive these 

intermediate keys and outputs a smaller possible result.  

 

Figure 2-4 MapReduce Work Flow 

The execution flow works as Figure 2-4 shows. All map and reduce operations are tasks run on 

the tasktrackers in the Hadoop cluster. Jobtracker monitors these map and reduce tasks from 

inception to completion. During the combine phase of the MapReduce operation, intermediate 

output data from all map tasks on an individual tasktracker is written to local storage for the 

reduce phases. The combine operation can result in a quick local reduce before the file is passed 
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to a global reduce function. The Hadoop system has the share-nothing property, which means 

during the operation there is no intercommunication between any map task in map phase and no 

intercommunication between any reduce task in reduce phase. These two operations: map and 

reduce, allow a large parallel dataset to be operated very quickly with the assurance of task 

resiliency.  

2.3 Data Access Pattern 

Data access pattern is mainly decided by the specific application acquirement. A proper data 

layout will benefit the process efficiency and improve the I/O performance as the relationship 

between the file and the process will be determined in terms of spatial organization and temporal 

ordering [15]. 

2.3.1  Continuous Data Access Pattern 

The continuous access pattern [13] is the most widely used data access pattern. In the continuous 

access pattern, data is stored sequentially and accessed in round-robin manner without 

considering data dependency. This data access pattern is widely used among applications in 

which the data are independent, and the task can be divided into multiple sub tasks and processed 

synchronously. This model fits best with HDFS because the features of streaming access and 
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batch process match with continuous data access pattern perfectly. In HDFS, because the chunk 

is the smallest storage unit, the task node processes entire data in the assigned chunk, no matter 

the data are required to be processed or not. For data independent application, each data in the 

chunk is useful, and hence avoids the potential performance waste which caused by processing 

unnecessary data. The application with continuous data access pattern can yields the best I/O 

performance when processed by MapReduce framework. 

2.3.2 Matrix Data Access Pattern 

     

Figure 2-5 Matrix Data Access Pattern 

As Figure 2-5 shows, row-based or column-based access patterns are two basic matrix access 

patterns for matrix data set. It is widely used in scientific analytic applications. For many 

scientific applications, data can be stored with dimensional manner in logical file, it helps to 

keep data dependency between each other. However, when the data in logical file with 
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dimension property is stored into physical storage media, data lose their higher level property in 

file system and become stream bytes. The default continuous data layout cannot adapt to matrix 

data access pattern well. Once the data is stored continuously in row base, the data access 

efficient will be impacted for column data access pattern. 

2.3.3 Group Data Access Pattern 

 

Figure 2-6 Group Data Access Pattern 

Some analytic applications require complex data analysis like group access pattern. Group access 

pattern is a combined data access pattern which generally used in matrix computation, like 

matrix multiplication. For two-dimensional matrix file, group access pattern involves accessing 

the row and the column in same matrix set at the same time. The Figure 2-6 demonstrates one 

example of concentric access that the first row and first column are required. For group access 

pattern, continuous data layout turned out to be extremely inefficient. The data utilization rate is 
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decreased because no matter data is stored along the row or column, only a small part of 

accessed data is useful for analysis.  
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CHAPTER 3 CONCENTRIC DATA LAYOUT 

In this section we propose concentric data layout, a matrix-specific data layout optimization 

strategy to benefit the matrix data access pattern and group data access pattern. 

3.1 Problem Description 

In the file system, data is stored continuously and read as a stream by default. However, for 

modern scientific applications, the data access exhibits various pattern due to the nature of 

applications that generate the data set and the way the data is laid out in the file system. For the 

matrix data set, it is more often to access the data with matrix data access pattern instead of 

continuous data access pattern. The analytic applications may also require some complex matrix 

operations, such as accessing the data in the row and column at same time. Besides, with the 

development of research and analytic technology, the data which is generated by monitors or 

simulations becomes more and more complex. For a lot of scientific research, it is neither 

realistic nor efficient for just one specific application access the data set. After the data is 

collected, different analytic applications will read the data and make various data analyses. These 

analytic applications do not necessarily share the same data access pattern. They can exhibit 

various data access patterns. For example, a weather forecast application collects temperature 

changes over time. Logically, data is stored in a two-dimensional manner while the X-axis 
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represents the day and the Y-axis represents the different time during a day. When a scientist 

tries to analyze the temperature in the same time period among different days, the row based 

access pattern is applied. However, when the temperature variation in same day needs to be 

analyzed, data in the same column will be processed. This will make different applications apply 

different data access patterns on the same data set. When storing the matrix file into file system, 

the traditional continuous storage data layout cannot adapt to the matrix access pattern well, 

because most of matrix data access pattern retrieve the data non-continuously. 

 

For a matrix data set which retrieves data non-continuously with some matrix data access 

patterns, the small I/O problem will be generated because the file is treated as linear bytes in the 

file system, and loses the higher level property at the lower level of the file system. This problem 

is especially obvious in HDFS. In HDFS, the chunk is the smallest data storage unit which works 

atomically. After the data is stored in chunks, whenever data is required, the namenode will send 

the chunk ID which contains the required data to the client, and the client will access the chunk 

directly and read and process the whole data in that chunk. This structure works well when the 

whole data in the chunk is required, because the data will be accessed and processed 

sequentially. However, when data access pattern is non-continuous, the target data will be 

distributed into several chunks, and only part of the data in the chunk is useful. The default 

continuous storage data layout results in excessive chunks access with a terrible data utilization 

rate, and arises in extensive data overload. For example, from the user's point of view, it is 
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natural to store the matrix data in a multidimensional way, as it is easier to explore the data 

dependency and other information. However, when the file is stored linearly in HDFS, the 

multidimensional array is flattened into one dimensional array, and the higher level information 

is lost at the lower level file system. For matrix data access like group access pattern, unrelated 

data in chunks is also retrieved and processed when the user tries to read the target data from 

chunks. This phenomenon will results in the small I/O problem as it reads an excess amount of 

data than required, and decreases the data access efficiency and impact I/O performance. 

  

Meanwhile, another challenging question is raised by the matrix access pattern. The target data 

assigned to a task may map to a large number of chunks. A single map task with a large number 

of chunks impacts scheduling schemes. Considering in the Hadoop framework, data is replicated 

across three datanodes to achieve data reliability, task scheduling which selects the optimal node 

to perform the task becomes extremely challenging because of the large number of involved 

nodes. Copying data from distance datanode to local datanode also will cost a great number of 

resources. Therefore, when storing the matrix file into HDFS sequentially, the matrix data access 

pattern impacts the performance in two ways. First, it results in reading an excess amount of data 

than required; second, the stripes assigned to a task may map to a large number of chunks, 

making the task scheduling extremely challenging. In order to improve the reading efficiency for 

the matrix access pattern, new data layout needed to be proposed. 
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3.2 Concentric Algorithm for Two Dimensional Matrix Data Set 

We propose the concentric data layout algorithm for the matrix data access pattern and the group 

data access pattern which are common access patterns in scientific applications. Concentric data 

layout is a data restructuring strategy which maintains the dimensional property in chunk level. 

 

Figure 3-1 is a matrix file with continuous data layout. The matrix file is an     two 

dimension data set with a chunk size of 4 elements. Chunk 1 contains elements 1, 2, 3 and 4, and 

chunk 2 contains 5, 6, 7 and 8 and so on. 

 

Figure 3-1 Row Based Access Pattern in Matrix Data Set 

From the Figure 3-1, we can see the continuous storage method flatten the two-dimensional 

matrix into a linear sequence of elements. Each element just maintains the information about its 

peers in the same row, but loses the information about the other neighbors in its columns. 
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Therefore, this data layout just fits for the row based access pattern. Suppose the first row of 

element in the array is needed to be processed, the chunk 1 and 2 which contains these elements 

will be processed. Because all the data in accessed chunks are target data, the data access 

efficiency is 100%. However, when the data access pattern becomes vertical, the I/O 

performance becomes unsatisfactory. For example, when the first column needs to be processed, 

the chunks with even chunk ID will be processed because target data is distributed among these 

chunks. It greatly deteriorates the I/O overhead as the 8 chunks are retrieved, but only the first 

elements in chunks are useful. In this case, the data access efficiency is only 25%. When the 

matrix file becomes larger, the inefficiency will become more conspicuous. Considering a matrix 

file with a size of         and the elements with the size of 64KB, because the default 

chunk size in the Hadoop file system is 64M, each row in the file will store in a chunk and there 

are 64M chunks in total. When only one column of data is needed, the chunks which contain the 

target file will be processed. Because each row is stored in one chunk, the whole file will be 

retrieved in order to read one column of data. The data access efficiency will become as low as 

0%. The above example sufficiently shows the inflexibility of continuous data layout and 

demonstrates it cannot adapt the variable access patterns required by the matrix file. 

 

Compared with the default continuously data layout, the concentric data layout maintains the 

multi-dimensional property in chunk level. The deployment of the matrix file can be represented 

as a    , meanwhile the chunk can be treated as a     sub-matrix. Therefore, the whole file 
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can be divided into multiple sub-matrices and make each sub-matrix have the same size of the 

chunk size.  

  

Instead of storing the data into the chunk linearly, the concentric data layout stores the data in the 

same sub-matrix into one chunk. The data within the same chunk not only knows its peers in the 

same row, but is also aware of its neighbors in the same column. Based on concentric data 

layout, the big matrix file is divided into multiple sub-matrices; each sub matrix is stored into 

one chunk. Because the two-dimensional property is maintained in chunk level, it fits better with 

the matrix access pattern than continuous data layout. 

 

Figure 3-2 Two-Dimension Concentric Data Layout 

Figure 3-2 indicates the implementation of concentric data layout in a two dimensional matrix 

file. It shows the concentric data layout preserves the two-dimensional property in chunks. In 

Figure 3-2, the file is a two-dimensional matrix with the size of     and the chunk size is 4. 

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

1 2 3 4

5 8 9 10

6 11 13 14

7 12 15 16
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Therefore, the matrix can be divided into 16     sub-matrices and each of them contains 4 

elements. By applying concentric data layout, instead of storing the elements 1, 2, 3 and 4 into 

chunk 1, elements 1, 2, 9 and 10 which form the     sub matrix are stored into chunk 1, 

elements 3, 4, 11 and 12 are stored to chunk 2, and so on. Compared with continuous data layout, 

data is stored in multi-dimensional way in concentric data layout. Suppose for matrix in Figure 

3-2, when the data in the first row is required, chunks 1 to 4 are accessed. Because these 4 

chunks store the data in the first two rows and only the first row of data is required by the client, 

the data access efficiency is 50%. Compare with the continuous data layout (Figure 3-1), the 

number of chunks accessed increased from 2 chunks to 4 chunks and the data access efficiency is 

decreased from 100% to 50%. However, the performance improved in the column access pattern 

and the group access pattern. When a column of data is required, the same number of chunks will 

be accessed with the data access efficiency of 50%. Compare with continuous data layout 

(Figure 3-1), the number of chunks accessed dropped observably from 8 chunks to 4 chunks and 

the data access efficiency increased from 25% to 50%. When data is retrieved in the group 

access pattern, the number of accessed chunks is reduced from 9 chunks with continuous data 

layout to 7 chunks with concentric data layout. The data access efficiency also improved from 

41.6% to 53%. Considering the probabilities of each matrix data access pattern are independent, 

the average number of chunk accessed is dropped from 7 chunks per access to 5 chunks per 

access. The improvement becomes significant when the file size becomes bigger. For a     

   matrix file with the chunks size of             , when the data access pattern is row or 
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column based,     of chunks are accessed with concentric data layout while     of chunks 

are accessed with continuous data layout, and the saving is astonishing.  

 

We analyze the average performance between the concentric data layout and the continuous data 

layout mathematically. In our analysis, we suppose the access patterns are independent and the 

possibilities for each one are equal. Table 3-1 compares the number of chunks accessed with 

different data layouts. 

Table 3-1 Chunk Amount Comparison between Continues and Concentric 

Data Layout with Two-Dimension Matrix File 

Access Pattern Row Based Column Based Group Based 

Continuous  

  
   

  
 

 

  
 

  

  
   

Concentric  

 
 

 

 
 

  

 
   

 

The size of matrix file is       and the size of the chunk is      , the matrix file will 

be stored in 
  

   chunks. For the continuous data layout which data is store sequentially, when a 

row of data is required, 
 

   chunks will be involved. When a column of data is required, 
  

   

chunks will be involved. The group access pattern which require both row and column access 

will require 
 

   
  

     chunks in average. The average number of chunks accessed with 

continuous data layout is  
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          ,  

the      represents the probability of row based data access pattern, the      represents the 

probability of column based data access pattern and the        represents the probability of 

group access pattern. For concentric data layout,  
 

 
 chunks will be accessed when processing a 

row or a column of data, the group access pattern will involve  
  

 
    of chunks. So the 

average number of chunks accessed with concentric data layout is 

            
 

 
      

 

 
          

  

 
          .  

As we have already said, the possibilities for each access pattern are independent. The 

possibilities for row based access, column based access and group based access are equal to 
 

 
.  

 

The comparison between two data layout is  

           
           

  
        

  
 

    
  

     
  

  

   
,  

  indicates the size of chunk and n indicates the size of matrix file. As   is smaller than n., 

fewer chunks will be retrieved with matrix data access pattern when data is stored with 

concentric data layout. This reduces the data overhead and increases the data efficiency.  

 

The Table 3-2 shows the pseudo code for two-dimensional concentric data layout. 
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Table 3-2 Two-Dimensional Concentric Data Layout Algorithm 

Input: the matrix file size  ; 

       the chunk size  ; 

       the data size  ;        

Output:                    

steps:  

    Classify element within same sub matrix 

    
 

 
, the total number of chunks for matrix file 

    
  

  
, the number of chunks for each row or column 

       
 

        
, the number of data the matrix file has 

    for (          ) do 

                             

             
      

  
 , determine the row number for data  ; 

                            , determine the column number for data  ; 
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3.3 Concentric Data Layout for Multi-Dimensional Data Set 

In order to make more precise analysis and accurate simulation, scientists are collecting and 

analyzing more and more complex data. Scientific data formats are introduced to accelerate 

complex data processing efficiency. In recent research, many simulation data can be stored into 

matrix and accessed in matrix pattern, matrix data set with higher dimension property become 

more and more common. For example, in the Cosmic Data ArXiv project, the scientists are 

working on cosmological simulations and the simulations are employed in a variety of projects. 

The data which generated by simulation contains the information about the object location 

(     ) and the velocity (  ,   ,   ). The data set can be stored in three dimension matrix 

according to its location, and velocity related processing will become the three-dimensional 

matrix processing problem. If we extend the two-dimensional concentric data layout into 

multiple-dimensional, making the data layout fits well with matrix data access pattern, it also 

reduces the data overhead and improves the processing efficiency for multiple-dimension matrix 

data set. 

 

In this section we will use a three-dimensional matrix data set as an example to indicate how to 

apply concentric data layout with multi-dimensional data set. 
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Figure 3-3Three-Dimensional Data Set with Continuous Data Layout 

The Figure 3-3 represents a three-dimensional data set of temperature record, the X-axis 

indicates the time, Y-axis indicates the height while the Z-axis indicates the pressure. Each data 

in the data set represents the temperature for a given set of (pressure, height, time). Based on this 

matrix data set, the user can analyze the temperature variation in different time, height and 

pressure conditions. As Figure 3-3 shows, when data is stored with continuous data layout, data 

will be stored along the axis sequentially. For example, first fix the pressure and height, stores 

the temperature data with different time, the data will be stored along the X-axis. Then fix the 

pressure, stores the temperature data with time and height variation, the data will be stored along 

the Z-axis in Figure 3-3. At last, stores the data with different pressure, which suggests the data 

will be stored along the Y-axis. The continuous data storage restrains the data access pattern. For 

example, it is easy to analyze the temperature change with height and time variation because 

based on the continuous data layout, data in the same X-Z plan is stored in the same or close 

chunks. However, when scientists need to study the temperature change with pressure and time 

element1
chunk1

chunk2

x

y

z

4

4
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variation, the data access will become inefficient. Because the target data which along the Y-Z 

plan is stored into many different chunks, the client has to read the entire data in the chunks to 

get the target data. The data accessing rate becomes very inefficient. Take Figure 3-3 for 

example, the matrix contains 64 elements and is stored continuously. Suppose each chunk stores 

8 elements, the matrix file will be stored in 8 chunks. With continuous data layout, the elements 

which parallel to X-Z plane will stored into the same chunk. When these elements are needed, 

the relevant chunks will be processed, like chunk 1 and chunk 2 will be processed when elements 

along the X-Z plane are required. However, when elements which paralleled to X-Y or Y-Z 

plane are needed, the targets are distributed into different chunks, and the whole matrix file will 

be processed. Apparently, when data layout does not match with data access pattern, the data 

processing becomes very inefficient and causes data overhead.  

 

Figure 3-4 Three-Dimension Matrix with Concentric Data Layout 
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The concentric data layout managed to maintain the three matrix property in chunk level. When 

applying the concentric data layout into the three dimensional data set, the matrix file can be 

divided into multiple sub matrixes and each of them is stores into a chunk. In this way, data in 

each chunk is a sub cube, it not only stores data along the X-Z plans, it also stores data along the 

X-Y and Y-Z plans. Therefore, when data is accessed with different matrix access pattern, the 

concentric data layout will generate better performance. Take Figure 3-4 for example, the three-

dimension matrix file with 64 elements can be represented as a       matrix. Since each 

chunk contains 8 elements, the chunk can be represent in three-dimension way as      , and 

the whole file can be divided into 8 sub matrixes, data in each sub matrix will stores in one 

chunk. The elements 1, 2, 5, 6, 17, 18, 21 and 22 which form a small cube will be stored in 

chunk 1. The elements 3, 4, 7, 8, 19, 20, 23 and 24 which in another cube will be stored in chunk 

2. After elements are stored with concentric data layout, if the elements along the X-Z plane are 

required, the 4 chunks which contains the require elements will be processed. The processing 

efficiency is 
  

   
    . Compare with continuous data layout, the number of accessed chunks 

is increased from 2 to 4 and the data efficiency is decreased from 100% to 50%. However, when 

data is accessed with other matrix access pattern, the concentric data layout outperforms the 

continuous data layout. When elements along the Y-Z plane are required, 4 chunks will be 

processed and the processing efficiency is 50%. Compare with continuous data layout, the 

amount of chunk processed is reduced from 8 to 4, and the efficiency is improved from 25% to 
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50%. The similar improvement can be seen when the data is accessed with group access pattern. 

Compared with continuous data layout which needs to process 8 chunks, 5 chunks are processed 

with concentric data layout. The data efficiency is increased from 43% to 70%. 

 

We compare the average performance between concentric data layout and continuous data layout 

mathematically. During the comparison, we suppose the matrix access patterns are independent 

and the possibilities for each matrix access pattern are equal. 

Table 3-3 Chunk Amount Comparison between Continuous and Concentric Data 

Layout with Three-Dimension Matrix File 

Access Pattern X-Y Based X-Z and Y-Z Based Group Based 

Continuous   

  
 

  

  
 

  

  
 

  

  
 

 

  
 

Concentric   

  
 

  

  
 

   

  
 

 

 
 

 

We suppose the size of matrix file is      and the size of the chunk is     , the matrix 

file will be stored in 
  

   chunks in total. For continuous data layout, we suppose the data is stored 

by the order of first along the X-axis, then along the Y-axis and at last along the Z-axis. The X-Y 

plane based access will require 
  

  
 chunks in total as the access pattern fits the continuous data 

layout, Y-Z and X-Z plane based access will both require 
  

  
 chunks, and the group access 
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pattern will require 
  

  
 

  

  
 

 

  
 chunks each time. The average number of chunks accessed with 

the continuous data layout is  

             
  

        
  

        
  

         
  

   
  

   
 

          . 

For the concentric data layout, the matrix based access pattern needs to process 
  

  
  chunks and 

the group based access pattern needs to process 
   

  
 

 

 
 chunks in total. The average number of 

chunks accessed with concentric data layout is 

            
  

        
  

        
  

         
   

   
 

 
        .  

  

The comparison between two data layout is 

           
           

  

   

   
 

 
   

    
  

   
 

  

  
      

      . 

As n is larger than k in Hadoop file system and    grows fastest than   , the concentric data 

layout accessed fewer chunks accessed and reduce the data overhead. 

 

The Table 3-4 shows the pseudo algorithm for three-dimensional concentric data layout.  
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Table 3-4 Two-Dimensional Concentric Data Layout Algorithm 

Input: the matrix file size  ; 

          the chunk size  ; 

          the data size  ;        

Output:                    

Steps: Classify element within same sub matrix 

      
 

 
, the total number of chunks for matrix file 

       
  
 

  
 , the number of chunks for each row or column 

          
 

        
, the number of data the matrix file has 

       for (          ) do 

                               

              
      

   
 

 
  , determine the row number for data  ; 
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The concentric data layout algorithm can be extended to N-dimensional data set. When storing 

the data set with the concentric data layout, dividing the N-dimensional matrix file into multiple 

sub sets, each sub set is also an N-dimension set with the size of chunk size. Store the data in 

each sub set into same chunk, this makes sure the dimensional property is maintained in chunk 

level. In following, we compare the performance difference between the N-dimension concentric 

data layout and the continuous data layout.  

Table 3-5 Chunk Amount Comparison between Continuous and Concentric Data Layout                              

with Three-Dimension Matrix File 

Access Pattern X-Y Based X-Z and Y-Z Based Group Based 

Continuous     

  
 

  

  
 

    

  
 

  

  
 

    

  
 

Concentric     

    
 

    

    
 

     

    
 

    

    
 

 

In the comparison, we suppose the matrix file with the size of      and the size of the chunk 

is     , so the N-dimension matrix file will be stored in 
  

   chunks. For the continuous data 

layout, the a-1 matrix access pattern which adapt to the continuous data layout will require 
    

   

chunks in total, the rest a-1 matrix access will both require 
  

   chunks, and the group access 

pattern will require 
    

   
  

   
    

   chunks in average. The average number of chunks accessed 

for continuous data layout is  

             
    

        
  

    
    

   
  

   
    

   . 
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For concentric data layout, the matrix access pattern needs to process 
    

    
 chunks of data and 

the group based access pattern needs to process 
     

     
    

     chunks of data in total. The 

average number of chunks accessed with concentric data layout is 

             
    

    
  

     

    
 

    

    
 .  

  

The comparison between two data layout is 

           
           

  

         

   
    

    

     

   
   

   
    

  

  
          

      . 

As n is larger than k in Hadoop file system, the concentric data layout results less chunk access 

and relieves the data overhead.  

The pseudo algorithm of concentric data layout for N dimension data set is displayed in Table 

3-6,  
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Table 3-6 Concentric Data Layout Algorithm for N-Dimensional Matrix file 

Input: the matrix file size     ; 

       the data size  ; 

       the chunk size      ; 

Output:                    

Steps:    
  

  , the total number of chunks for matrix file 

         
 

 
, the number of chunks for each row or column 

          
 

 
, the number of data the matrix file has 

       for (        ) do 

                              

          for each dimension   
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CHAPTER 4 EXPERIMENTAL METHODOLOGY AND 

EVALUATION 

In this section we evaluate the performance of the concentric data layout against the continuous 

data layout. Because most of the HPC analytics applications with group access patterns still need 

to be developed, there are no established benchmarks available to test our design. We carry out a 

prototype implementation with matrix data layout on Hadoop File System based on the 

previously discussed data layout algorithm. We analyze the experiment result in following 

sections and demonstrate the concentric data layout reduces the amount of data accessed, relieves 

the data overhead, solves the small I/O problem and improves the processing efficiency. 

4.1 Experimental Setup 

In our experiment, we access to a 14 node cluster with Hadoop 0.20 installed on it. In our setup, 

the cluster's master node is used as the namenode and jobtracker, while the 13 slave nodes are 

configured to be the datanodes and tasktrackers. In the experiment, we are mainly concerned 

about the number of data retrieved and number of map task processed.  

 

During experiment, we write a MapReduce program to process the data set with matrix data 

access patterns by two different data layouts, the original continuous data layout and the 
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optimized concentric data layout. In the map phase each process reads contiguous chunks and 

marks all the required data. In the reduce phase, all the data required by a single process are 

combined together. We analyze the performance in aspects of executing time, amount of 

accessing data, data access efficiency and number of map tasks. 

4.2 Experimental Analysis 

We perform a series of tests on the Hadoop cluster to compare the performance on different 

layout strategies. We first compare the performance with two-dimensional matrix data set. We 

write the MapReduce program to process two dimensional files with the size of 1GB, 4GB, and 

16GB by using different data layout respectively. These files are originally stored in the HDFS 

with continuous data layout, and then they are processed by concentric data layout and stored in 

the HDFS with concentric data layout. In our experiment, the default chunk size is 64MB.  

 

First, the experiments are conducted to indicate the improvement on the execution time of the 

applications using MapReduce program to access data between concentric data layout and 

continuous data layout. In the experiments, we have the application to access the data with 

different matrix access patterns. Figure 4-1 shows the performance of the execution time when 
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accessing data in row based, column based and group access pattern by using the concentric data 

layout and the continuous data layout. 

 

Figure 4-1 Executing Time Comparison for Two Dimension Matrix File 

From the Figure 4-1, we can see that the concentric data layout outperforms the continuous data 

layout when data access pattern is column based or group based, but the continuous data layout 

works better when data access pattern is row based. The experiment result matches our 

theoretical analysis. According to the continuous data layout, data is stored row by row. When 

the accessing pattern is column based, the target data is stored among all chunks. Therefore, the 

entire matrix file with continuous data layout has to be processed when access pattern is column 

based or group based. Take 16GB file for example, when data is stored by the continuous data 

layout, accessing a column of data will required to process the whole data set. The processing 

time is about 1772s. The group based data access also required the same amount of processing 

time because in the group base access pattern, both row and column of data is required. The 



40 

 

processing time is reduced when data is stored with concentric data layout, because after data is 

stored with concentric data layout, related data which in the same row or column is stored in the 

same or near chunks. Therefore it reduces the number of chunks which needed to be processed 

and reduces the processing time. Take 16GB file for example, the processing time for group 

access pattern is 217s while the processing time for column access pattern is 134s. The 

improvement can be observed in other files with size of 1GB, 4GB as well. From Figure 4-1, we 

can see when data access pattern is row based, the processing time for the continuous data layout 

is less than the concentric data layout because when data is stored with continuous data layout, 

the data in the same row will be stored in the same chunk. When a row of data is required, just 

one chunk is processed. However, when data is stored with concentric data layout, the data in the 

same row will be stored into several chunks. When a row of data is required, several chunks are 

required to be processed. Therefore, when data access pattern is row based, the processing time 

for continuous data layout is better than that of concentric data layout. However, considering the 

possibilities for each access pattern are independent and equal, we can get the conclusion that the 

execution time with concentric data layout is better than that with continuous data layout. This is 

consistent with our model and analysis in chapter 3. In theoretical analysis, we draw the 

conclusion that the data processing ratio between concentric data layout and continuous data 

layout is 
  

   
, as the processing time is proportional to the amount of accessed data. Take 4GB 

file for example, the average processing time when data is stored with concentric data layout is 
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83s while the average processing time when data is stored with the continuous data layout is 

288s. The processing ratio between the concentric data layout and the continuous data layout is 

  

   
 

 

 
, which match our analysis. Based on the experiment and the above analysis, we can see 

that data with the concentric data layout fits better with matrix access pattern than data with the 

continuous data layout. It reduces the execution time and improves I/O system performance.  

 

Figure 4-2 Amount of Data Accessed for Two Dimension Matrix File 

Second, the experiment compares the amount of data accessed when data is stored with the 

concentric data layout and the continuous data layout. From Figure 4-2, it clear to see that during 

the processing, less data is accessed when data is stored with concentric data layout. Take 1GB 

file for example, when data is accessed with group based access pattern, 448MB of data is 

retrieved when the data set is stored in the concentric data layout while 1GB of data is retrieved 

when the data set is stored in the continuous data layout. When the data access pattern is column 
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based, the data set retrieved with the concentric data layout is 256MB while the data set retrieved 

with the continuous data layout is still 1GB. As the file gets larger, the difference becomes more 

obvious. In 16GB file, when data access pattern is group based, 1.93GB of data is accessed with 

concentric data layout while 16GB of data is accessed with continuous data layout. In theoretical 

analysis, we draw the conclusion that the data processing ratio between concentric data layout 

and continuous data layout is 
  

   
, the experiment validates our conclusion. Take 4GB file for 

example, the average amount of data accessed when data is stored with concentric data layout is 

0.6458GB while the average amount of data accessed when data is stored with continuous data 

layout is 2.6875GB. The data processing ratio between concentric data layout and continuous 

data layout is 
      

      
 

 

 
, which match our analysis. The improvement is caused by the fact that 

in order to access all the required data, the client needs to access the chunks which contains the 

target data. Compare with continuous data layout, concentric data layout reconstructs the data 

and keep the matrix property in chunk level. Therefore, compared with the continuous data 

layout, the concentric data layout makes client accesses fewer chunks and reduces the data 

overhead. 
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Figure 4-3 Data Efficiency Comparison for Two Dimension Matrix File 

Meanwhile, we compare the data efficiency, which indicates how many data is the target data 

among all the data we processed. We suppose the amount of data we required is 64MB. From 

Figure 4-3 we can see that compares with continuous data layout, the concentric data layout 

improves the data efficiency. Take 1GB file for example, the data efficiency for both column 

based access pattern and group based access pattern is 6.25% when data layout is continuous, 

while the data efficiency for the column based access pattern is improved to 25% and the data 

efficiency for the group based access pattern is improved to about 14% with concentric data 

layout, The same trend can be seen in 4GB file and 16GB file, and the data efficiency 

improvement becomes more evidence as the file become larger. The experiment results are 

consistent with our theoretical analysis. According to our analysis, when data is stored with 

continuous data layout, data is stored in chunks sequentially. The target data is stored in different 

chunks and each chunk only contains a small part of target data. When data is stored with 
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concentric data layout, the two dimension property is maintained in chunk level. Data in the 

same row or column is stored in same or close chunks. Therefore, the client is able to retrieve 

fewer chunks to get the target data. Since the client requires the same amount of data, the fewer 

chunks retrieved the higher efficiency the data layout provides, so the data efficiency in the 

concentric data layout is better than that in the continuous data layout.  

 

Figure 4-4 Number of Map Tasks for Two Dimension Matrix File 

At last, we compare the amount of map tasks during the processing when data is stored with the 

concentric data layout and the continuous data layout respectively. From Figure 4-4, it is clear to 

see that the concentric data layout has reduced the number of map task dramatically. For 

example with group based access pattern, accessing data in concentric data layout with 16GB file 

requires 31 map tasks, while accessing data in continuous data layout with 16GB file requires 

256 map tasks. The same improvement can be seen when the data access pattern is column 
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based. For column based access pattern, 16 map tasks are required when processing the data with 

the concentric data layout while 256 map tasks are required when processing same amount of 

data with the continuous data layout. The improvement is caused by the fact that concentric data 

layout keep the dimension property in chunk level. When matrix data access patterns are 

required, fewer chunks are accessed to get all target data. In our experiment each map task 

processes one split which has the size of 64MB. Therefore, the fewer chunks the application 

retrieved, the less map tasks it generated. Compare with continuous data layout, concentric data 

layout reduce the task amount during the processing, and relieves the task scheduling problem. 

 

We also conduct the experiment for concentric data layout with three-dimensional matrix file. 

We write the MapReduce program to process three-dimensional files with the size of 512 MB 

and 4GB by using different data layout respectively. We analyze several performance aspects 

like the processing time, amount of accessing data, data efficiency and so on. 

 

Figure 4-5 Execution Time for Three-Dimensional Matrix File 
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From the Figure 4-5, we can see that concentric data layout outperforms the continuous data 

layout when data access pattern is X-Z/Y-Z plane based or group based, but the continuous data 

layout works better when data access pattern is X-Y plan based. The experiment result matches 

our theoretical analysis. According to continuous data layout, the data is stored first along the X 

axis, then along the Y axis and Z axis. When accessing pattern is group based, the target data is 

stored among all chunks. Therefore, the entire matrix file with continuous data layout has to be 

processed when access pattern is column based or group based. Take 4GB file for example, 

when data is stored by continuous data layout, accessing data which parallel to Y-Z plane will 

required to process the whole data set. The processing time is about 429s. The group based data 

access also required the same amount of processing time because in group base access pattern, 

both row and column of data is required. The processing time is reduced when data is stored with 

concentric data layout. This is because after data is stored with concentric data layout, related 

data which in the same row or column is stored in the same or near chunks. Therefore it reduces 

the number of chunks which needed to be processed and hence reduces the processing time. In 

4GB file, the processing time for group access pattern is 197s while the processing time for 

matrix access pattern is 127s. This improvement can be observed in other files with 512MB, 

32GB as well. From Figure 4-5 we can see when data access pattern is parallel to X-Y plane, the 

processing time for continuous data layout is less than concentric data layout because when data 

is stored with continuous data layout, the data on the same X-Y plane will be stored in the same 

chunk. When a row of data is required, just one chunk is processed. However, when data is 
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stored with concentric data layout, the data in the same row will be stored into several chunks. 

When a row of data is required, several chunks are required to be processed. Therefore, when 

data access pattern is parallel to X-Y plane, the processing time for continuous data layout is 

better than that of concentric data layout. However, considering the possibilities for each access 

pattern are independent and equal, we can get the conclusion that the MapReduce program 

execution time with concentric data layout is better than that with continuous data layout, the 

concentric data layout has better performance than continuous data layout on I/O system 

performance with execution time.  

 

 

Figure 4-6 Amount of Data Accessed for Three-Dimensional Matrix File 

Second, the experiment compares the amount of data accessed when data is stored with 

concentric data layout and continuous data layout. From Figure 4-6, it clear to see that during the 

processing, less data is accessed when data is stored with concentric data layout. Take 512MB 
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file for example, when the data access pattern is group based, 358MB of data is retrieved when 

the data set is stored in concentric data layout while 512MB of data is retrieved when the data set 

is stored in continuous data layout. When the data access pattern is X-Z/Y-Z based, the data set 

retrieved with concentric data layout is 256MB while the data set retrieved with continuous data 

layout is still 512MB. As the file gets larger, the improvement becomes more evidence. In 4GB 

file, when data access pattern is group based, 1.75GB of data is accessed with concentric data 

layout while 4GB of data is accessed with continuous data layout. In theoretical analysis, we 

draw the conclusion that the data processing ratio between concentric data layout and continuous 

data layout is 
      

      . Take 4GB file for example, the average amount of data accessed when 

data is stored with concentric data layout is 1.26GB while the average amount of data accessed 

when data is stored with continuous data layout is 3GBs. The processing ratio between 

concentric data layout and continuous data layout is 
    

 
 

 

 
, which matches our analysis. The 

improvement is caused by the fact that in order to access all required data, the client needs to 

access all the chunks which contains the target data. Compare with the continuous data layout, 

the concentric data layout reconstructs the data and keep the matrix property in chunk level. 

Therefore, during the process, it accesses fewer chunks and reduces the data overhead. 
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Figure 4-7 Data Efficiency Comparison for Three Dimension Matrix File 

The Figure 4-7 compares the data efficiency between the concentric data layout and continuous 

data layout. We suppose the amount of data we required is 64MB. From Figure 4-7 we can see 

that compares with continuous data layout, the concentric data layout improves the data 

efficiency. Take 512MB file for example, the data efficiency for X-Z/Y-Z plan access pattern 

and group based access pattern is 12.5%. when data layout is continuous, the data efficiency for 

X-Z/Y-Z plan based access pattern is improved to 25% while data efficiency for group based 

access pattern is improved to about 16.7% with the concentric data layout, The same trends can 

be seen with 4GB file, and the data efficiency improvement becomes more evidence as the file 

become larger. The experiment results are consistent with our theoretical analysis. When data is 

stored with the continuous data layout, data is stored in chunks sequentially. The target data is 

stored in different chunks and each chunk only contains a small part of target data. When data is 

stored with concentric data layout, the three-dimensional property is maintained in chunk level. 

Data in the same row or column is stored in same or close chunks. Therefore, the client is able to 
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retrieve fewer chunks to get the target data. Since the client requires the same amount of data, the 

fewer chunks retrieved the higher efficiency the data layout provides, so the data efficiency in 

the concentric data layout is better than that in the continuous data layout.  

 

Figure 4-8  Number of Map Tasks for Three Dimension Matrix File 

At last, we compare the amount of map tasks during the processing when data is stored with the 

concentric data layout and the continuous data layout respectively. From Figure 4-8, it is clear to 

see that concentric data layout has reduced the number of map task dramatically. For example 

with group based access pattern, accessing data which stored with concentric data layout with 

512MB file requires 6 map tasks, while accessing data which stored with continuous data layout 

requires 8 map tasks. The same improvement can be seen when the data access pattern is X-Z/Y-

Z plan based. For these data access pattern, 4 map tasks are required when processing the data 

with concentric data layout while 8 map tasks are required when processing same amount of data 

with the continuous data layout. The improvement is caused by the fact that the concentric data 
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layout keeps the dimensional property in chunk level and fits better than continuous data layout. 

When matrix data access patterns are required, fewer chunks are accessed to get all target data. 

In our experiment each map task processes one split which has the size of 64MB. Therefore, the 

fewer chunks the application retrieved, the less map tasks it required. Compare with continuous 

data layout, concentric data layout reduce the task amount during the processing, and relieves the 

task scheduling problem. 
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CHAPTER 5 RELATED WORK 

Many approaches have been adopted to relieve the small I/O problem in HPC application, 

especially for applications using MPI/MPI_IO. Data sieving[2] is an optimization technique to 

deal with small I/O problem. According to data sieving algorithm, instead of accessing each 

contiguous portion of data separately, a single contiguous chunk of data which start from the first 

requested byte up to the last requested byte is read into a temporary buffer in memory. The 

advantage of this algorithm is that data is always accessed in large chunks. However, the 

limitation of this simple algorithm is obvious. The data sieving requires the temporary buffer into 

which data is first read must be as large as the total number of chunk, and generates excessive 

amount of unnecessary data. Collective I/O[2] also allows client to read a contiguous chunk of 

data but it redistributes the data among multiple processes as required by them. Besides, applying 

collective I/O with two-phase implementation in large scale system will result in communication 

overhead among processes. PLFS[3] is another approaches to solve small I/O problem. PLFS is a 

file system which mounted on the top of an existing parallel file system and re-maps an 

applications' write access pattern to be optimized for the under-laying file system. DFS[4] 

provides striping mechanisms that divides a file into small pieces and distributed them across 

multiple storage devices for parallel data access. Our work is different from the above mentioned 

approaches. In our work, we reconstruct the data layout and processes do not need to 

communicate with others due to the data reorganization. Our work successfully maintains the 
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shared-noting architecture for scalability. DPFS[5] also proposed a multi-dimension data layout 

to process matrix data set. But the scale of file considered is different. The sizes of files which 

DPFS is focusing on are relative smaller, from megabytes to gigabytes. Concentric data layout is 

focusing a large data file which the size is from terabytes to petabytes. Besides, the layout is 

implemented on parallel file system and the strips which contain the target data are stored in 

same sub file. This method is not flexible because it only fits well for one data access pattern. 

When other applications access the data set with different access patterns, the strips which store 

the target data are distributed to different sub files. In order to read related splits, client needs to 

go through all the sub files to get the related splits. Our work is more flexible, when data is 

required, the client only needs to access the chunks which contain the target data. Besides, in 

DPFS, it just considers the row and column based data access pattern. In our work, we consider 

the complex matrix access pattern and the situation which the same data set is processed by 

different applications. Compare with DPFS, the concentric data layout is more flexible and fits 

well with complex matrix data access patterns. 
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CHAPTER 6 CONCLUSION 

In this paper we analyzed the matrix access patterns and the problems caused by matrix access 

patterns. We presented the concentric data layout to support data analytics applications 

processing matrix data set. Concentric data layout is an optimization strategy which works well 

with various matrix access patterns. It maintains the dimensional property in chunk level. In 

concentric data layout, instead of storing the data into chunks continuously, data located within 

the same sub-matrix is stored into the same chunk, when data is required by different access 

patterns, fewer chunk will be accessed. The concentric data layout is able to significantly boost 

the I/O performance for data analytics programs by matching with their mixed row-based and 

column-based access patterns. Our experiments on two-dimensional matrix file and three-

dimensional matrix file shows that when data is stored in concentric data layout, the client will 

accesses fewer chunks, it reduces the amount of process data and improves the processing 

efficiency, and thereby significantly improves the I/O performance.   
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