
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2005

Formalization Of Input And Output In Modern Operating Systems: Formalization Of Input And Output In Modern Operating Systems:

The Hadley Model The Hadley Model

Matthew Gerber
University of Central Florida

 Part of the Computer Sciences Commons, and the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Gerber, Matthew, "Formalization Of Input And Output In Modern Operating Systems: The Hadley Model"
(2005). Electronic Theses and Dissertations, 2004-2019. 324.
https://stars.library.ucf.edu/etd/324

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F324&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F324&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/324?utm_source=stars.library.ucf.edu%2Fetd%2F324&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

FORMALIZATION OF INPUT AND OUTPUT IN
MODERN OPERATING SYSTEMS:

THE HADLEY MODEL

by

MATTHEW BURNETT GERBER
B.S. University of Central Florida, 1998
M.S. University of Central Florida, 2000

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the School of Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Spring Term
2005

Major Professor: John J. Leeson

© 2005 Matthew Burnett Gerber

ii

ABSTRACT

We present the Hadley model, a formal descriptive model of input and output for modern

computer operating systems. Our model is intentionally inspired by the Open Systems

Interconnection model of networking; I/O as a process is defined as a set of translations between

a set of computer-sensible forms, or layers, of information.

To illustrate an initial application domain, we discuss the utility of the Hadley model and

a potential associated I/O system as a tool for digital forensic investigators.

To illustrate practical uses of the Hadley model we present the Hadley Specification

Language, an essentially functional language designed to allow the translations that comprise I/O

to be written in a concise format allowing for relatively easy verifiability.

To further illustrate the utility of the language we present a read/write Microsoft DOS

FAT12 and read-only Linux ext2 file system specification written in the new format. We prove

the correctness of the read-only side of these descriptions. We present test results from operation

of our HSL-driven system both in user mode on stored disk images and as part of a Linux kernel

module allowing file systems to be read.

We conclude by discussing future directions for the research.

iii

To Dr. Homer Gerber and Nancy Burnett Gerber, for their love and support.

Soli Deo Gloria.

iv

ACKNOWLEDGMENTS

First and foremost, my thanks above all to the LORD, my God and Savior through his

Son, without whom this work and my very life would be less than meaningless.

Dr. John Leeson, my advisor and major professor, guided me through this work at every

stage, from beginning to end and as it became something quite different than it was when it

began. When I began to seek dissertation topics suitable for the area of digital investigations, the

path of research took a wholly unexpected direction, and it was Dr. Leeson�s broad knowledge of

what could be accomplished that kept the project on track.

Drs. Kien Hua, David Workman, and K. Michael Reynolds, my committee, kept the

project focused, and with their diverse expertise provided invaluable insight and direction.

Drs. Amar Mukherjee and Randall Shumaker provided significant insights in the early

stages of the project that helped guide it into a productive direction.

My family has been a source of support without which this project could never have

happened. Dr. Homer Gerber, my father, gave me invaluable encouragement, inspiration, and

someone to discuss obscure results with at all hours. My mother, Mrs. Nancy Gerber, cannot be

praised enough for her support and encouragement. My grandparents, Harley and Cora Finley

Burnett and Victor and Gertrude Gerber, did not live to see the end of this work with earthly

eyes, though Grandma Cora and Grandpa Vic knew it had begun. My memories of them have

continually helped to encourage and drive this project, and it is my prayer that they are looking

upon it now, at its completion. Dr. John Burnett, a cousin and close friend, has been an

encouragement and inspiration.

v

The Reverend Dr. Jim Henry, my pastor, has been a source of encouragement and

inspiration throughout my life, and particularly in the last, critical months of this project.

My academic career began in significant part through the help of two teachers to whom I

owe more than I can say. Mrs. Marie Hamrick and Dr. Douglas Brumbaugh guided me through

the transition to college, and through my first years of it, with advice, insight, warmth and, at

times, much-needed good humor.

The encouragement and support of my friends has been an uplift and a delight. Jeremy,

Braden, John, Keith, Jon, Russ, Chris, Jon, Eric, Amy, Jesse, Phil, Larry, Chris, James, Mason,

Eric, Carol, Kate, Chris, Travis, and many others helped to make it possible for me to come this

far.

Finally, special thanks to Dr. Archibald MacPherson, the Reverend Dr. Henry Parker,

Mrs. Rita Mann and Mrs. June Biggs for cherished memories and special contributions to my

life.

vi

TABLE OF CONTENTS

LIST OF FIGURES ...xiv

LIST OF TABLES..xv

LIST OF ACRONYMS..xvi

CHAPTER ONE: INTRODUCTION..1

CHAPTER TWO: LITERATURE REVIEW...7

The OSI Networking Model ..7

Hardware Standards ..10

Modeling Languages ...11

Functional Languages..13

Summary...14

CHAPTER THREE: RESEARCH DESIGN AND METHODOLOGY15

The Hadley Model...15

Definitions ..15

Layer Models of I/O ..16

Input and Output in Hardware ...18

The Layer Model of Hardware...19

Uses of the Hardware Model..24

Input and Output in Operating Systems ...25

The Layer Model of Stream Peripherals...27

The Layer Model of Random Access Peripherals...28

Uses of the Software Model...31

vii

The Hadley Specification Language ..32

Overview...32

Spacetypes ..33

Subspaces..33

Addressed References (�Variables�)..34

Functions...35

Built-In Functions..36

Templates..38

Lists, Hints and Writing...40

Hint Functions ...40

List Functions..41

Expressions ...42

Working With HSL ...43

Making HSL Useful ..43

Writing an HSL Module ..43

Writing an HSL File System Module...44

Using an HSL Module from C...45

Initializing HSL...46

Registering Template Functions ..46

Creating the Context..47

Calling HSL Functions From C ...48

Writing Out HSL Results...50

Garbage Collection..50

viii

Adding a new File System to the Extractor ..50

Adding a new File System to the VFS Module ..51

A Note on Concurrency...52

Design Notes: The HSL Runtime ..52

Demonstrating the Correctness of HSL Specifications...54

The hadleyfs template..54

Demonstrating the Correctness of hadleyfs implementations ...57

Fundamental Functions..57

Directory Functions ...57

File Functions..59

CHAPTER FOUR: FINDINGS...60

HSL Test Suite ..60

Filesystem Extractors ..60

Universal Filesystem Driver ..61

Writing Filesystems...62

Specification Efficiency ..62

Performance ..63

Characteristics of HSL and HSL Demonstrations ..64

Demonstrations of Correctness ..64

Major Dependencies..64

Definition of FAT12..65

Overview...65

Partition Metadata ...65

ix

Directory Metadata..69

The FAT, Clusters and the Data Area ..72

Demonstration of Correctness for FAT12 ..73

Definition (FAT12 File ID)..73

Assertion FAT12-a ..73

Assertion FAT12-b..74

Assertion FAT12-c ..76

Assertion FAT12-d..77

Assertion FAT12-e ..77

Assertion FAT12-f...78

Assertion FAT12-g..79

Assertion FAT12-h..80

Assertion FAT12-i...81

Assertion FAT12-j...82

Assertion FAT12-1..83

Assertion FAT12-2b ..83

Assertion FAT12-k..84

Assertion FAT12-m...84

Assertion FAT12-n..87

Assertion FAT12-o..88

Assertion FAT12-p..88

Assertion FAT12-3b ..89

Assertion FAT12-4b ..91

x

Assertion FAT12-5b ..92

Assertion FAT12-6..93

Assertion FAT12-7..94

Assertion FAT12-8..95

Assertion FAT12-9-1...99

Assertion FAT12-9-2...99

Assertion FAT12-9-3...100

Assertion FAT12-9..101

Conclusion ..103

Definition of ext2fs ...103

Overview...104

Partition Metadata ...104

File Metadata...107

Directories...110

Demonstration of Correctness for EXT2FS..111

Definition (EXT2FS File ID) ...112

Assertion EXT2FS-a..112

Assertion EXT2FS-b ...113

Assertion EXT2FS-c..113

Assertion EXT2FS-d ...115

Assertion EXT2FS-e..115

Assertion EXT2FS-1 ...117

Assertion EXT2FS-1-1 ..117

xi

Assertion EXT2FS-f ..118

Assertion EXT2FS-g ...118

Assertion EXT2FS-h ...119

Assertion EXT2FS-i ..120

Assertion EXT2FS-j ..122

Assertion EXT2FS-k ...125

Assertion EXT2FS-l ..127

Assertion EXT2FS-2b ...128

Assertion EXT2FS-m ..128

Assertion EXT2FS-n ...129

Assertion EXT2FS-3b ...132

Assertion EXT2FS-4b ...134

Assertion EXT2FS-5b ...136

Assertion EXT2FS-6 ...137

Assertion EXT2FS-7 ...137

Assertion EXT2FS-8 ...138

Assertion EXT2FS-9-1 ..139

Assertion EXT2FS-9-2 ..139

Assertion EXT2FS-9-3 ..140

Assertion EXT2FS-9 ...142

Conclusion ..143

CHAPTER FIVE: CONCLUSION..144

Summary...144

xii

Future Directions...145

The Model...145

The System..145

The Tool..147

APPENDIX A: HSL SPECIFICATIONS..149

APPENDIX B: HADLEY SYSTEM SOURCE CODE ...165

APPENDIX C: HSL GRAMMAR (YACC FORMAT) ...211

LIST OF REFERENCES ..216

xiii

LIST OF FIGURES

Figure 1: The Peripheral Hierarchy ...6

Figure 2: The OSI Networking Model ...10

Figure 3: The Hadley Hardware I/O Model ...25

Figure 4: Software I/O and the Hardware Layers...31

Figure 5: The HSL System Design ..53

Figure 6: Networked File Access...146

xiv

LIST OF TABLES

Table 1: ext2fs specification efficiency ...62

Table 2: FAT12 specification efficiency..63

Table 3: Performance results ...64

Table 4: The FAT12 Boot Sector...66

Table 5: The FAT12 BIOS Parameter Block ...67

Table 6: The FAT12 Extended BIOS Parameter Block..68

Table 7: FAT12 Directory Entries ...70

Table 8: FAT12 Attribute Bytes ..71

Table 9: FAT12 Reference Values ..72

Table 10: ext2fs superblock...105

Table 11: ext2fs block group ...106

Table 12: ext2fs inode ...108

Table 13: ext2fs file formats..110

Table 14: ext2fs directory entry...111

xv

LIST OF ACRONYMS

ALGOL Algorithmic Language

ANSI American National Standards Institute

ASCII American Standard Code for Information Interchange

ATA/ATAPI AT Attachment [with Packet Interface]

BIOS Basic Input/Output System

CPU Central Processing Unit

ext2/ext2fs Second Extended File System

FAT/FAT12 [12-Bit] File Allocation Table File System

hadleyfs Hadley File System Template

HDD Hard Disk Drive

HFS/HFS+ [Apple Macintosh] Hierarchical File System [Plus]

HSL Hadley Specification Language

I/O Input and Output

IDE Intelligent Drive Electronics

INCITS International Committee on Information Technology Standards

ISO International Standards Organization

MS-DOS Microsoft Disk Operating System

NTFS [Microsoft Windows] New Technology File System

OS Operating System

OSI/OSIE Open Systems Interconnection [Environment]

PC Personal Computer

xvi

PCI Peripheral Component Interconnect

RAM Random Access Memory

SCSI Small Computer Systems Interface

USB Universal Serial Bus

VFS Linux Virtual File System

xvii

CHAPTER ONE: INTRODUCTION

Computers are well understood, but input and output (I/O) are not. A number of

mathematical models exist to describe all forms of computation, but no comprehensive model

exists for I/O. In fact, networking � a small subset of I/O � has a better-developed formal model

than I/O as a whole.

Our immediate application area, digital forensic investigation, deals almost entirely with

I/O.; it was, in fact, during investigation of other possibilities for work in this area that we

discovered the lack of formalization we seek to remedy. The lack of understanding of I/O

presents problems of verifiability and clarity for the forensic investigator. These problems are

currently resolved via repeated testing of forensic tools and best-practices technical explanations,

but the lack of a standard model still makes the validity of testing constantly questionable and

explanations of I/O in court and to other laypersons difficult in an era of increasingly stringent

requirements for scientific evidence. (Daubert, Kumho)

Digital investigation is one of the most obvious but far from the only area of computer

science to suffer from the poor understanding of I/O; modern operating systems contain

numerous device drivers, each one intended to broker some aspect of input, output or both, many

of them questionably compatible. Scattershot development in an area of computer science is

nearly always a key symptom of poor formal understanding of the area. Both hardware and

software sides of I/O are affected: every translation among the various forms of data that modern

computers recognize is more art than science given the current lack of a model.

1

We seek to create that model. The presentation of Hadley�and of the initial practical

system using it�is offered in hope to eliminate a source of guesswork in computer science: how

low-level I/O tools, in the forms of system software and forensic tools, process data.

In the strictest sense, a computer is only the microprocessor and primary memory that

reside on the motherboard of a typical modern PC. Computers receive input from, and generate

output to, a variety of peripherals. Examples of peripherals are fixed disk drives, removable

magnetic disks, removable optical disks, network interface cards, printers, analog modems,

ISDN modems, video cards, sound input devices, sound output devices, keyboards, pointing

devices, et cetera. These peripherals store, transmit or receive data; but for anything to be done

computationally with this data, it must arrive either in primary memory or at the processor.

All of the above peripherals are also part of a hierarchy that extends both above and

below them. To create an example that we will use throughout this paper, a typical input request

would be to retrieve a range of bytes from a file on a fixed disk. To do this, a typical PC-

architecture computer must interface with and/or understand, in turn:

• The PCI expansion bus.

• The IDE device controller residing on the PCI expansion bus.

• The file system of the partition on the fixed disk drive that contains the file.

At this point, the computer may retrieve the necessary metadata from the file system to

find the bytes it is looking for, and retrieve those bytes into primary memory.

The elements of this hierarchy are disparate and scattered. For example, a computer

running a modern operating system, such as Microsoft Windows or Linux, will typically have

separate device drivers for the PCI expansion bus, the IDE device controller, and the file system

that contains the file. These drivers will be unrelated, interacting code: each is dependent on

2

each of the others, and an error in any of them will cause the others to fail in unexpected�and

often nearly untraceable�ways.

The elements of this hierarchy are also highly duplicated. A recent version of the Linux

operating system contained file system drivers for over twenty file systems, several of which

were over 200K in source size�yet the functionality of every file system is fundamentally

similar. Various IDE controllers must have their own drivers as well. If the fixed disk drive

resides on a SCSI bus instead of an IDE bus, then the hierarchy of drivers is different yet again,

for an essentially similar function. (Torvalds)

As more and different peripherals (such as fixed disks and their controllers) and means of

accessing those peripherals (such as file systems) become available, the difficulties faced in

accessing them all multiplies. This is a concern to anyone who wishes to create or maintain

stable, reliable software systems capable of interfacing with most available peripherals; it is of

particular concern to three types of computer professionals.

• Law enforcement officers must be able not only to read information from every

conceivable type of peripheral, but to do so in a verifiable, duplicable, and completely

non-destructive manner. Current systems are simply inadequate to this task: most serious

attempts to produce verifiable results involve rebooting a computer into MS-DOS and

running highly expensive tools that work with very few types of peripherals.

• Maintainers of current operating systems find I/O to be increasingly troublesome:

Microsoft has gone on record blaming up to 80 percent of crashes in some versions of

Windows on device drivers. Since most Windows device drivers are actually written by

third parties, it has become increasingly difficult for Microsoft to quality-control their

3

own operating system with respect to its I/O subsystems; driver certification programs

have lessened this problem, but do not solve it in a fundamental sense.

• Designers of new operating systems find I/O to be an even worse problem. Peripherals

that work on the most popular operating systems are expected to work on all, and

regardless of where the necessary effort lies, the operating system will be blamed if a

peripheral fails to work with it. As the number of available peripherals explodes, and as

peripheral vendors focus their driver design efforts more and more tightly, it becomes

more and more difficult for any operating systems that do not already have drivers to

obtain them.

We contend that all of these concerns are symptomatic of the same problem. Lack of

verifiability, scattershot design techniques, high amounts of duplication of effort, and low

reusability all point to inadequate description. A review of the literature finds, in fact, that little

effort has been put into formalization of this particular domain.

Before we can deal with the problems of I/O for modern computers and their implications

for forensic investigation, we first have to explain what we mean by computers and what we

mean by I/O. There are several useful top-level definitions of a computer: several of them,

including the Turing machine and the von Neumann machine, can be encapsulated as �one or

more arithmetic and logical execution units able to read to and write from primary memory�.

We will use this definition. (Aho 1992)

A usable top-level definition of I/O follows rapidly. Input may be defined as any

operation that receives information from a device external to the computer and places it in the

primary memory, and output may be defined as any operation that transmits information from

4

the primary memory to a device external to the computer. Finally, we refer to any device

capable of generating input, accepting output, or both, as a peripheral.

Often, input and output go through several peripherals. For example, a hard drive is not

read directly; a hard drive controller reads it, and the controller interfaces with a system bus

controller, which in turn is the peripheral that actually interfaces with the computer. The graph

of peripherals that communicate with each other can be viewed as a tree with the computer as the

root node; we refer to this tree as the peripheral hierarchy.

These definitions are far from universal; in fact, there is practically no definition in the

realm of input and output that can be called universal. A search of the literature finds a good

deal of work on the specification of file systems from the user and developer�s point of view, but

none that relate to system software. Forensic tools are, as a rule, presently tested based solely on

their predictability: a full source code level audit of any tool, let alone any operating system

component, to ensure precise and correct operation is basically impossible.

Examining the state of device driver development in operating systems whose source

code is available makes this lack of definition even more clear. Typically, each individual node

of the peripheral hierarchy receives its own device driver; the Linux operating system comes

with over 2,000 device drivers of one type or another (Torvalds). Different programmers or

different teams often write these drivers�including drivers with a high degree of similarity, and

drivers that coexist on paths within the device hierarchy. The problems this scattershot

development can create are both obvious in nature and well documented in fact: Microsoft

blames as many as 80 percent of Windows system errors on device drivers, and a recent static

compiler analysis study found that in Linux 2.4.1, device drivers had error rates up to seven

times higher than the rest of the kernel. (Mason 2002, Chou 2001)

5

Fixed Disk Drive Optical Disk Reader Optical Disk Writer

Mass Storage Controller Network Controller Graphics Controller

System Bus

Primary Memory

CPU

Figure 1: The Peripheral Hierarchy

The general problems of poorly understood peripheral I/O are less obvious but at least as

severe. With the exception of a few worthy efforts such as the USB Human Interface Device

specification, a company that wishes a device to be supported by more than one combination of

processor architecture and operating system must write a device driver for each such

combination. Further, some operating systems (notably Windows) change device driver formats

between revisions, rendering older device drivers�and, often, older devices�unusable. The

constant parade of device driver changes implies a constant parade of changes in the way devices

work

6

CHAPTER TWO: LITERATURE REVIEW

The OSI Networking Model

The sort of problem we are dealing with is not new. When computer-networking

professionals faced a similar problem of incompatibility and inconsistency, the community

devised a straightforward, unifying basic model.

ISO 7498-1 is the International Standards Organization�s reference model of networking:

the Open Systems Interconnection model. The document spends its first five sections describing

in some detail the assumptions and thought processes that led to the model, which is finally

described in the sixth and seventh sections. It is these sections that primarily interest us.

The Open Systems Interconnection Environment (OSIE) is defined in seven layers of

operation, numbered highest at the most abstract and lowest at the hardware level. They are

discussed in the reverse order of their numbering.

The designers of the OSI model created its layers based on 5 principles:

1. A layer should be created where a different level of abstraction is needed.

2. Each layer should perform a well-defined function.

3. The function of each layer should be chosen with an eye toward defining internationally

standardized protocols.

4. The layer boundaries should be chosen to minimize the information flow across the

interfaces.

7

5. The number of layers should be large enough that distinct functions need not be thrown

together in the same layer out of necessity, and small enough that the architecture does

not become unwieldy.

The first two layers, the most abstract, are the least defined by the document.

• Layer 7 is the application layer. It provides services for end-user applications to access

the OSIE, and is the only layer that does. No layer of the OSIE sits above the application

layer, and the application layer is the only entry point to the OSIE.

• Layer 6 is the presentation layer. The presentation layer defines the syntax of

information being transferred, translating it between the application layer and the rest of

the OSIE.

The middle three layers are the heart of the document�s definition of networking. These

are the layers that provide the services typically associated with a network by network software

developers and users.

• Layer 5 is the session layer. This is the layer that has the responsibility for opening,

maintaining, and closing connections (sockets in TCP/IP).

• Layer 4 is the transport layer. This is the layer that handles error detection and

correction, sequencing control and reordering, and flow control.

• Layer 3 is the network layer. This is the layer that handles network routing, relaying,

and gateways between sub-networks.

The bottom two layers, like the top two, are also less thoroughly defined.

• Layer 2 is the data link layer. This is the layer that handles data transmission between

individual points on the network. It may also handle routing within a sub-network.

8

• Layer 1 is the physical layer. This is the layer that describes the physical

communications media.

The layers are very rigidly defined; to the point that, for example, as far as connection-

based and connectionless services are defined, it is restrictively specified which layers may

convert between the two. The document defines explicitly the services provided by each layer to

the layer above it, and the services used by each layer from the layer below it.

The OSI networking model�s domain is obviously different from the one we consider

here: it concerns one computer communicating with another, while we are interested in a

computer communicating with components of itself. However, it is difficult to overstate the

effect that the OSI model has had on its domain, the networking community; it has influenced

everything from formal reasoning about networks to certification for network professionals.

(Cisco, Barjakatrovic)

9

Layer 7: Application

Layer 6: Presentation

Layer 4: Transport

Layer 5: Session

Layer 3: Network

Layer 2: Data Link

Layer 1: Physical

Figure 2: The OSI Networking Model

Hardware Standards

As we have intimated, there is a lack of formal description of interface mechanisms;

however, there is no such shortage of technical documentation. As examples, the two most

common interface systems for fixed disk drives are very well-documented. More generally, the

hardware design community is well aware of the need for increased formalization of I/O.

The AT Attachment with Packet Interface (ATA/ATAPI) standard is the technical name

of the hard drive interface system commonly known as IDE (for Intelligent Drive Electronics).

ATA/ATAPI is maintained by Technical Committee T13 of the International Committee on

Information Technology Standards (INCITS); its finalized documents are available from the

American National Standards Institute (ANSI) and its drafts may be downloaded via the Web.

(INCITS-T13)

The Small Computer Systems Interface (SCSI) standard is maintained by Technical

Committee T10 of the INCITS, which handles lower-level interfaces. As with T13, T10�s draft

10

documents are available online and its finished products may be purchased from ANSI.

(INCITS-T13)

Smotherman some time ago developed and promoted a taxonomy of hardware-level I/O

modes in use at the time (Smotherman 1989). Shimizu notes the need for formal specification in

functional validation of hardware designs (Shimizu 2002) and Hill et al. advocate Wisconsin I/O,

a framework for describing I/O architectures at the hardware level (Hill 1999).

Modeling Languages

Ciancarini, Fogli and Gaspari describe Gammalog, a declarative language for problem

solving that includes the concepts of coordination. They illustrate its expressive power by

including a simple �operating system� written in the language. Actually calling it an operating

system, however, is overstating the case; the functions that actually read and write files are not

described in the paper. (Ciancarini et al., 2000)

Heisel describes an attempt to specify the user view of the UNIX file system in the Z

modeling language. The attempt is interesting to us because of the formal level at which it

models the file system in question. It is, however, concerned with what the user sees, not what is

actually stored within the file system itself. Actual discussion of the fine points of the model

would require a specification of the Z language, which Heisel does not give and which we will

not give here. (Heisel, 1995)

Heydon and Tygar describe Miró, a formal system for specifying and checking security

constraints under UNIX. Miró is not theoretical; its designers intend it to be implemented and

used by system administrators. Its domain is limited to security. (Heydon & Tygar, 1994)

11

Miró defines two languages: an instance language to create security configurations,

which are simply matrices of subjects versus objects on a file system with each cell being �grant�

or �deny�; and a constraint language for security policies, whereby each policy is a set of

constraints which is in turn a set of configurations, and a configuration is consistent with a policy

if it is within each of that policy�s configurations.

The instance language is a (relatively) simple set of named boxes and lines. A box can

specify a set of users or a set of files, and can contain other boxes that are subsets. A �user� box

can have a directed line drawn from it to a �file� box, the line specifying either the granting or

the denying of certain accesses. More specific arrows have higher priority. Each box has a type

that gives it certain attributes; the types are specified in an object-oriented manner, children

inheriting attributes from their parents.

A constraint specifies a pattern of instance pictures, just as a language specifies a pattern

of strings. A box pattern specifies, in a predicate language, the characteristics of the boxes it

matches. Semantics arrows specify access permissions to be matched between boxes that match

the box patterns they connect. Containment arrows specify containment relationships to be

matched between boxes that match the box patterns they connect.

The remainder of the paper describes the implementation of the software system itself,

and is beyond the scope of this review. Miró is interesting to us for its formal specification of a

methodology used by file systems, but in the end its precepts and mechanisms are limited to

security.

12

Functional Languages

Considering input and output in formal models of computation is not a new idea; hence,

especially as functional languages are often used to generate formal models, neither is

considering useful input and output for functional languages. Most attempts to do so have their

roots in Landin�s demonstration of correspondence between a modified lambda calculus and

ALGOL 60 (Landin 1965), but approaches diverge quickly. We consider two of the more

popular here.

Data flow models have been part of languages since quite early (Dennis 1975), and

remain influential. Gordon some time ago dealt with the problem of data flow in lazy-evaluation

functional languages, and Broy more recently considered the creation of an algebra specifically

for stream processing functions. (Gordon 1993, Broy 2001)

Other than traditional data flow and variants on it, monads have been the major mode of

I/O in functional languages. Wadler first extended them to describe state (Wadler 1990) and

Gordon exposits further on them and on other constructs for functional language I/O (Gordon

1994).

Both ordinary data flow and monads are implemented in the programming language

Haskell (Peterson), considered one of the most influential functional languages where attempts to

deal with I/O are concerned (Gordon 1994).

13

Summary

All of the work we have found here shares a common thread: it is related but not

equivalent to what we seek to accomplish. Monads are models of I/O strictly from the

computer�s point of view. Hardware specifications for I/O and verification cover only hardware

level communications. The OSI model is nearly exactly what we seek, but its domain is limited

to networking. Multiple means of integrating I/O into functional languages exist, but no

functional language that we have discovered exists with I/O as its primary purpose. In short, the

specifications that have the practical use we seek are too specific and the specifications that are

general enough are designed to deal with theoretical I/O rather than real bit-moving.

We are free to offer, as our contribution, a general, extensible and constructive model of

I/O, and some initial demonstrations of its real practical use.

14

CHAPTER THREE: RESEARCH DESIGN AND METHODOLOGY

The Hadley Model

Definitions

We begin by clarifying a few definitions.

Definition (Computer): A computer is one or more arithmetic and logical execution units

able to read both data and instructions from, and write data to, a random-access primary memory.

Definition (Input): Input is the process of writing data not generated by a computer�s

arithmetic and logical execution units into that computer�s primary memory.

Definition (Output): Output is the reading of data from a computer�s primary memory by

anything other than that computer�s arithmetic and logical execution units.

Definition (Device): A device is any mechanism capable of storing, producing, or

accepting data.

Definition (Logical Device): A logical device is a �device� within a computer or within

another device that does not have discrete physical components; it is a theoretically unnecessary

device that exists for organizational convenience.

Definition (Peripheral): A peripheral is any device capable of producing input to a

computer or reading output from a computer.

Definition (System): A system, or a computer system is a computer together with all its

interface mechanisms, excluding peripherals.

15

The definition of a computer is intentionally somewhat vague. Hadley does not model

computers, and it should work with any computer that has memory. In more general terms, a

computer is the CPU and RAM, input and output are defined as generally understood, and hard

drives and the like are classed as peripherals.

Layer Models of I/O

Hadley is a layered I/O model; more precisely, it is a system of layered models, based on

the fundamental observation that all input and output is simply the translation and transport of

data. Hence, each layer in a Hadley model represents a physical location through which data is

transported in the I/O process or a view of data that appears during the translation component of

the I/O process.

The fundamental similarity between Hadley and the OSI model is that in both, each one

of these layers represents either a different level of abstraction or a different locus of

functionality. For example, as the OSI model treats the physical communication medium and the

addressing separately (layers 1 and 2, above) the Hadley model separates the physical storage

media and the mechanism of presenting that data digitally (layers H-1 and H-2, below).

The fundamental dissimilarities arise from the fact that each layer of a Hadley model

describes a location or representation that already exists, not one that we as the designers of

Hadley may define: if Hadley is to be of any use, then its development must be driven by what

I/O is, not what we believe it should be. Layers of the OSI model can be clearly associated with

specific segments of data in network packets, whereas, since we cannot lay any new

requirements on the way data is represented, layers in the Hadley model are better seen as stops

16

along the path of I/O. The constructive use of Hadley, as we will show, is in the transmission

and translation of data between these layers.

I/O is, as we noted, comprised of both transport and translation. I/O is also comprised of

both hardware and software components. Hardware I/O is concerned with turning data on

peripherals into bits and bytes that a computer can deal with, and the reverse. Software I/O is

concerned with what a computer does with those bits and bytes. There are significant

translations and transports that happen in hardware before a computer sees bits and bytes; there

are significant translations that happen in software before applications see those bits and bytes as

sequential files, the preferred I/O model in modern operating systems.

We did not attempt to model the whole of computer I/O with one set of layers. I/O

translations and transport take place both in terms of moving data between peripherals and

translating data that is already accessible between different usable forms. These two areas are

both concerned with providing I/O services, and both lend themselves well to layer diagrams; but

they are different enough in scope and nature that distinct layer models are desirable to maintain

clarity. In turn, there are two common and distinct modes of software I/O that, though related,

are different enough it is clearer to represent them with two distinct layer models than to try to

shoehorn them into one.

Stopping at sequential files is somewhat arbitrary, as our models could involve higher

and still more meaningful layers. The models are extensible to these, and may be so extended �

but these extensions are much less urgent, as compared to I/O itself, file formats are generally

well documented and well understood.

17

In choosing layers of representation for each individual layer model, we follow principles

similar to those that animated the choice of layers for the OSI model, and that we believe will

provide similar advantages for our purposes.

1. A layer should be created where a different level of abstraction is needed.

2. Each layer should represent a well-defined location or abstraction.

3. Each layer should be chosen with an eye toward representing well-recognized extant

components of peripheral I/O.

4. The layer boundaries should be chosen to keep the information flow across interfaces

between layers well ordered.

5. The number of layers should be large enough that distinct locations or abstractions need

not be thrown together in the same layer out of necessity, and small enough that the

model does not become unwieldy.

Input and Output in Hardware

Physical devices external to a computer generate all important input and output.

Theoretically, a computer must be able to read and present data, which traditional models

provide for only by examining initial and end state. Practically, a computer must also be able to

permanently store data, which RAM does not do under typical architectures.

The hardware layers must represent the primary categories of physical components along

the I/O chain of modern computer systems. No categorization is perfect, hence devices whose

layer is unclear will always exist, but most I/O devices other than the CPU and primary memory

can be clearly and more or less distinctly thought of as one of the following:

18

• Physical peripheral electronics that move data into and out of actual representations in the

real world;

• Peripheral interface electronics that broker interactions between peripheral electronics

and standard computer system interfaces;

• I/O busses that permit the connection of peripherals to computer systems through

standard interfaces, or

• System busses that permit data exchange among I/O busses, primary memory and the

CPU.

We choose the layers for the Hadley model of hardware accordingly.

The Layer Model of Hardware

The Hadley model of hardware, shown in Figure 3, considers six layers of physical

devices, beginning with the physical peripheral electronics and ending with the components of

the traditional Von Neumann machine. We call these layers H-1 through H-6 (for Hardware-1

through Hardware-6). Figure 3 also gives examples of how components of modern computer

systems fit into the hierarchy.

In general, we say that components within a given layer may send and receive data in

their appropriate native formats to and from other components within that layer.

Layer H-1: Peripheral Electronics

Layer H-1 is comprised of the physical medium by which peripheral data is represented,

and the electronics necessary for rendering that data into and/or from digital signals.

19

This is by far the least uniform layer of the model: magnetic platters or tape and

read/write heads may represent information, as may switches on a keyboard, the print heads of a

printer, or the frequency modulators of a modem. In modern computer systems, all physical

interaction with the user in the ordinary use of the system takes place with layer 1 components of

peripherals. The layer H-1 components are also where more extreme forms of data recovery can

begin � with enough effort and sufficient resources, it is possible to extract a remarkable amount

of data from the removed platters of seemingly dead fixed disk drives. Digital forensics at this

level may require significant resources, including a clean room. (DriveSavers)

Layer H-1 components have physical state as their primary representation of data. At the

request of layer H-2 components they translate that state into digital signals to be read by layer

H-2 components, or translate digital signals provided by layer 2 components into that state.

Layer H-2: Peripheral Interface Electronics

Layer H-2 is comprised of any devices that a peripheral uses to prepare data before

offering it to the higher layers of a system, or propagate data to its physical media after being

given it by a system. Its separation from layer 1 is dictated by the primary representation of data

as digital information rather than as a physical state.

This layer is nearly as varied as layer H-1; however, in it we start to see uniformity. At

the top of it, data must, at the very least, be in a digital format, either having been received from

the higher layers of a system or ready to be offered to that system. The easiest examples of layer

H-2 components are found on the controller card of an HDD � the card stores no actual data, but

communicates with the drive electronics and the IDE bus.

20

Layer H-2 components may request the physical state of layer H-1 components as digital

information, or request that that state be changed according to digital information the layer H-2

components provide.

Layer H-2 components may receive digital data from, and send digital data to, layer H-3

components.

Layer H-3: I/O Bus

Layer H-3 is comprised of any devices that are attached to the system bus, do not

terminally produce, receive or contain data themselves, and serve to connect to peripheral

interface electronics or other I/O bus devices. Its separation from layer H-2 is dictated by the

physical co-location of layer H-2 components with their peripherals, whereas layer H-3

components are part of a computer system.

An I/O bus device must be attached to the system bus, but may not be part of the system

bus. It must not terminally provide, receive or contain data itself, except for commands and

diagnostic information. (It is allowed, of course, to transiently provide, receive and contain data,

either through caches or simply as it transmits and translates signals, but it cannot be that data�s

authoritative source.)

Most devices that extend system busses serve primarily to allow the system to

communicate, not to provide or receive data, and are hence layer H-3 devices�for example, IDE

disk controllers and USB serial controllers are layer H-3 components. Generally, physical

connections made between systems and peripherals are made between layer H-3 and layer H-2

components.

21

It should be further noted that the description explicitly permits �chaining� of I/O bus

devices. This is also a point of potential ambiguity in the layers: an external ATA hard disk

attached via a USB connector likely has within its case a USB-to-ATA device. Such �gateway�

devices are sold both separately and as part of external drive packages, so we cannot go by how

the device is packaged or marketed. We say therefore that any such gateway device remains in

layer H-3, as long as it is not unique to a specific peripheral; therefore, controller cards on IDE

hard disk drives remain in layer H-2, but a USB-to-ATA enclosure � even one obtained as part of

an external drive kit � is in layer H-3.

Layer H-3 components may receive digital data from, and send digital data to, layer H-2

components.

Layer H-3 components may receive digital data from, and send digital data to, layer H-4

components.

Layer H-4: System Bus

Layer H-4 is comprised of any devices in a system that are under the direct control of the

CPU and which the CPU can instruct to input data to, or output data from, primary memory.

The extant practical distinction of system bus components from storage I/O, serial I/O and other

peripheral I/O controllers in modern computer system architectures dictate layer H-4�s separation

from layer H-3.

For a component to exist in layer H-4, the CPU must be able to communicate with it

directly. System busses actually serve many more functions than we consider; for our purposes,

they are conduits between I/O busses and primary memory. Layer H-4 is generally comprised of

the traditional system bus; for example, Intel PCIset® chipsets are Layer H-4 components.

22

Layer H-4 components may receive digital data from, and send digital data to, layer H-3

components.

Layer H-4 components may read from and write to primary memory.

Layer H-4 components may send feedback to, and receive commands from, the CPU.

Note that this opens two data paths from layer H-4 components to the primary memory:

access by layer H-4 components themselves, or by the CPU storing the results of communication

with layer H-4 components to, and reading data for communication with layer H-4 components

from, primary memory. The former method is typically known as direct memory access (DMA);

the latter method is typically known as programmed I/O (PIO).

Layer H-5: Primary Memory

Layer H-5 is the primary memory�the von Neumann RAM�of the computer. All

peripheral input is assumed to be written into primary memory either by layer H-5 components

or by the CPU while it communicates with layer H-5 components; all peripheral output is

assumed to be read from primary memory by layer H-5 components or by the CPU while it

communicates with layer H-5 components.

Layer H-6: CPU

The CPU is the functional arithmetic and logical unit of the von Neumann machine at the

heart of the computer. It is the source of all output and the destination of all input. We assume

that the CPU can read from and write to primary memory directly, and can send commands to,

and receive feedback from, the system bus.

23

Multiple CPUs have significant effects on implementation issues, but no effect on the

model itself, as they simply produce and receive commands and data from and to multiple points

instead of one.

Uses of the Hardware Model

The benefits of classification of hardware into layers for computer science purposes are

traditional and fairly obvious; there are benefits of clarity to the forensic investigator as well. As

one example, acceptance of the Hadley model makes it immediately clear that every component

of a fixed disk other than the platters can be switched out for an identical component without

affecting the data stored on the platters � a fact that is normally complex to explain.

We can also note that all data is �written down� or �read up�: data must go up the

hierarchy to be read by the CPU and down the hierarchy to be written by it. As long as we verify

the following three things about a technique, we can say that technique does not modify data:

• none of the commands the CPU sends modifies stored data other than component status,

• the downward write path from the CPU and main memory is never used, and

• the peripherals themselves never change data physically stored at layer 0 without

instructions from the CPU.

24

H-6: CPU

H-4: System Bus

H-5: Primary Memory

H-3: I/O Bus

H-2: Peripheral Interface Electronics

H-1: Peripheral Electronics

Command/
Status

Read Write

PCI Controller PCMCIA Controller AGP Controller

IDE Controller SCSI Controller USB Controller

HDD Control Card FDD control HW KB Controller

HDD Platters/Heads Floppy Disk/Head Key Switches

Figure 3: The Hadley Hardware I/O Model

Input and Output in Operating Systems

The software side of the Hadley model is concerned with the way operating systems

obtain input from and generate output to peripherals.

25

For I/O purposes, any operating system is essentially capable of doing three things:

• reading primary memory,

• writing primary memory,

• sending commands and data through the system bus, and

• receiving information, including interrupts, from the system bus.

Internally, modern operating systems view all peripherals as sequential files: either

streams or secondary random access memory spaces. Streams are �files� that act like keyboards

� files from which the next bit can always be read and to which the next bit can always be

written, if it is ready, but previous bits generally cannot be reread and there is no write location

to specify. Secondary random access memory spaces act like traditional files, a space of bits in

which any bit is readable or writable at any time given its addressed location.

The application view of I/O in operating systems is also that of streams or spaces:

operating systems view peripherals as sequential files, and applications see files within those

files in turn. The Hadley model for operating system I/O is concerned with providing the

operating system its sequential file view of peripherals, and with providing applications access to

the sequential files stored on those peripherals.

This is a model of abstraction layers, sharing similarities with Carrier�s work (Carrier

2002); Carrier suggests the use of abstraction layers as a guide in the development of forensic

tools, and the use of these abstraction layers as an intrinsic part of the tool. We differ from

Carrier in the scope of our layers � his primary example is layers within a specific file system or

document format � and will go further by, in our next section, depicting a universal system in

which translation between our abstraction layers can be defined in a predictable, verifiable and

immediately usable manner.

26

Figure 4 shows where software I/O translation fits in with the hardware layers of the

Hadley system. Since software I/O translation is actually purely computational, it affects how

the CPU reads and writes data from and to primary memory and the system bus, and affects no

other layers.

In real world terms, translating between layers of software I/O simply means the

translation of data into differing formats among various types of random-access and stream-

based data models. These two classes of model are different enough that it is easier to describe

them with two different layer models; we will examine the simpler model first.

The Layer Model of Stream Peripherals

Stream peripherals encapsulate simple ordered input and output of digital data. A stream

peripheral provides the ability to read digital input from it and/or write digital output to it; it

provides nothing else, other than status checking. In particular, a stream peripheral has no ability

to go back and retrieve data that has already been read once.

Stream peripherals include human input devices (keyboards, mice, game controllers, et

al.) and network interface cards.

The Hadley stream peripherals model consists of layers for direct addressing of the

peripheral including commands to be sent to it �the data sent to the peripheral over the I/O and

system busses; addressing of the peripheral data as a byte stream; and addressing of that byte

stream as a sequential file. It is shown in Figure 4. We refer to its layers as OS-S1 through OS-

S3 (for Operating System-Stream 1 through Operating System-Stream 3.)

27

Layer OS-S1: Peripheral Addressing

This layer is provided directly by the system bus, and is exposed only within an operating

system. It is comprised of the raw stream of data sent to and received from a peripheral through

the system bus and the I/O busses after it, including commands that govern that peripheral�s

operation. Generally, only operating systems deal with this view.

Layer OS-S2: Stream Addressing

This layer is exposed within an operating system and to system-level programmers. It is

access to the stream peripheral as a raw, linear stream of byte data. Generally, only operating

systems deal with this view.

Layer OS-S3: Sequential File Addressing

The API of an operating system exposes this layer to applications. It is access to the

stream peripheral filtered in such a way that it may be treated as a non-seeking ordinary

sequential file, usually with a location in the operating system�s universal file system

environment. This is the normal application view of inherently stream-based peripherals, such as

serial and parallel ports. There is no user layer for these peripherals, as they typically are not

accessed directly by the user.

The Layer Model of Random Access Peripherals

Random access peripherals encapsulate memory-mapped input and output of digital data

to arbitrary locations in a finite array of available space: the typical storage disk, or tape, or

�flash drive�. Any part of a random access peripheral may be read or written at any time, subject

28

only to performance constraints. Note that performance does not influence whether a peripheral

is a random access peripheral or a stream peripheral; a tape drive is as much a random access

peripheral as a solid-state memory-based virtual disk drive.

The Hadley random access peripherals model is shown in Figure 4. We refer to its layers

as OS-R1 through OS-R5 (for Operating System-Randm 1 through Operating System-Random

5). It consists of layers for:

• Direct addressing of the peripheral including commands to be sent to it �the data sent to

the peripheral over the I/O and system busses;

• Addressing of the peripheral data as a single flat space of bytes;

• Addressing of the peripheral data as partitions within that flat space;

• Addressing of those partitions according to their respective file system formats; and

• Addressing of the individual sequential files in those file systems.

Layer OS-R1: Peripheral Addressing

This layer is provided directly by the system bus, and is exposed only within an operating

system. It is comprised of the raw stream of data sent to and received from a peripheral through

the system bus and the I/O busses after it, including commands that govern that peripheral�s

operation. Generally, only operating systems deal with this view.

Layer OS-R2: Flat Space Addressing

This layer is exposed within an operating system and to system-level programmers. It is

access to the random-access peripheral as a single large linear array of bytes. For storage media,

this is the raw image of the entire physical disk. A software-based RAID system would combine

29

the flat spaces of more than one physical storage device into a single logical flat space at this

level.

Layer OS-R3: Partitions in Flat Space

Most modern operating systems permit large random access devices to be partitioned into

several smaller logical random access peripherals. This layer, exposed within an operating

system and to system-level programmers, represents each of those partitions as a randomly-

accessible linear array of bytes, offset within the device�s flat space. For storage media, these

are images of the disk�s partitions.

Layer OS-R4: Formatted Partitions

Partitions are typically formatted with a system for the organization of sequential files on

that partition. This layer represents the formatted partition, including partition metadata such as

file catalogs. The API of an operating system exposes this layer to applications. This is the

normal programmer view of the file system.

Layer OS-R5: Random-Access Sequential Files

A partition format typically makes provision for storing an arbitrary number of sequential

files within a partition, so long as the sum of the size of the files within the partition does not

approach the partition size itself too closely. This layer represents each file within the partition

as a randomly accessible linear array of bytes, segmented within the partition�s flat space. The

API of an operating system exposes this layer to applications. This is the normal user view of

the file system.

30

OS-S2: Stream Addressing

OS-S1: Peripheral Addressing

Address Translation

OS-R4: Formatted Partitions

OS-R3: Partitions in Flat Space

OS-R2: Flat Space Addressing

OS-R1: Peripheral Addressing

H-6: CPU

H-4: System Bus

H-5: Primary Memory

OS-S3: Sequential File Addressing

OS-R5: Random-Access Sequential Files

Figure 4: Software I/O and the Hardware Layers

Uses of the Software Model

The Hadley model of software I/O, of course, does not provide the investigator any new

abilities to pull data from a fixed disk drive � there are already programs to easily obtain the

image of an entire drive. The Hadley model can, however, give the investigator two things.

The first benefit of the Hadley software model is clarity, similar to the examples given for

the hardware model. Examining the Hadley model, it becomes intuitively clear how a �deleted�

31

file can actually still remain � it has been removed from the fourth and fifth layers of the model,

but still exists in the third on down. The past existence of data that has been completely removed

can be inferred from information from the metadata in the fourth layer. Considering the software

layers to lie atop the hardware layers, data that has been removed from the entire software-based

system might still exist within the hardware, recoverable from the magnetic platters if poorly

erased or, in exotic cases, still in the buffers of a fixed disk drive.

The Hadley Specification Language

Overview

HSL is a context-free, essentially functional language that compiles readily to C; this is

its intended mode of practical use. In its current incarnation it intentionally has only one control

construct (the conditional return value) and very few forms of address. As the development of

the language continues, we will add more features only as found to be either necessary or

convenient for representation.

We describe HSL as essentially functional because, though it follows the general form of

a functional language, it allows for persistent variable declarations to represent data at specific

locations. It does not allow assignment to these variables, so these declarations could be

rewritten as functions themselves; however, for the sake of clarity and efficiency of

specification, we have not done so.

An HSL module�s purpose is to provide translation functions that extract desired data

from memory spaces. HSL captures the storage characteristics of peripherals: the locations of

32

sensible data in their memory spaces, and how they provide access to their connected peripherals

in turn.

An HSL module is comprised of one or more declarations of spacetypes. A spacetype is

meant to represent a data area, whether literally contiguous or conceptually organized; it is

considered contiguous internally. It may contain variables defined in terms of locations within

its area and functions defined in terms of those variables. Any of these terms may be comprised

of complex expressions and be evaluated at runtime.

Spacetypes

Spacetypes are HSL�s fundamental units of spatial organization. A spacetype is

analogous to a class. All non-built-in functions and variables must be declared within

spacetypes.

spacetype <spacetype-name> {

...

}

Declaring a spacetype is as simple as giving its name; the meat of the declaration is the

subspaces, variables and functions.

Subspaces

Hadley spaces can contain other spaces.

33

 use <spacetype-name>.

subspace <subspace-name> is <spacetype-name>

 at <location>.

The use directive loads the headers necessary for one spacetype to understand another. A

spacetype must be used before subspaces of that type can be declared directly or used in with

clauses (described below, under Functions). The subspace directive declares a subspace within

the current space, giving it a name and location.

Addressed References (�Variables�)

�Variables�, or addressed references, are HSL�s fundamental units of data. They are

read-only and may not be assigned. As such the term �variable� is a misnomer, initially chosen

for the familiarity of the var mnemonic and because of HSL addressed references� syntactic

similarity to variables in languages such as C. The term will be dropped in later versions of

HSL.

var <variable-name> is [public]

 <variable-type> [[<array-length>]]

 [<endian>] [width <width>] at <location>

 [minor <bits>].

Each reference has a type; currently, this type can be the primitive integer or char.

Single bits may be handled by an integer of width 1, as described below. Integers are unsigned;

characters, theoretically untyped, have undefined signness. We will discuss the internal

representation of integers and chars when we discuss the current HSL runtime.

34

Each reference has a specific offset location at which it occurs in its enclosing space, and

may have, optionally, a minor location specifying at which bit it starts within its offset byte (i.e.,

octet).

Integer references have a width in bits and a given endianness. Technically endianness

may be left undefined, but doing so for an integer of other than 8 bits� width, or that occurs

anywhere other than on a byte boundary, leaves the value of that reference undefined as well.

A char reference or an integer reference of any width may have an array count. Array

counts work as typical in C-style languages, except they may be defined by any valid integer

expression.

Addressed references are not strictly necessary in HSL, as they simply collect several

function definitions based around intAt and charAt, described below, that make it easy to access

data at specified locations. However, they greatly simplify the syntax of typical HSL modules.

A public reference simply defines a function named after itself, eliminating the necessity

of writing an accessor function. Currently only integer references may be public; this will be

extended in later versions of HSL.

Functions

Functions are HSL�s fundamental units of execution organization. A function on a

spacetype has access to all of that spacetype�s variables and other functions when called.

Functions are analogous to methods, but are true functions�they cannot have side effects.

35

function <function-name> is <function-type>

 ([<parameter-name> is <parameter-type>

 [, <parameter-name> is <parameter-type>

 [...]]])

[with <subspace-name> is <subspace-type>

 at <location>

 [, <subspace-name> is <subspace-type>

 at <location>

][, ...]

]

 {<function-body>}

function-type can be integer or char as can each parameter-type. Function and parameter

types, unlike variables, may also be list; lists are described in more detail below. Explicitly

passing arrays to and from functions is not permitted, but the char values passed may be of any

length.

With clauses declare subspaces accessible to a function at specific location offsets. These

locations may be in terms of the function�s parameters; the typical application is to pass the

location offset of a subspace to a function as an integer.

Built-In Functions

HSL 0.1 provides built-in arithmetic, comparison, logical and direct data examination

functions.

The built-in arithmetic functions are:

36

 @sys.add is integer(a is integer, b is integer)

 @sys.sub is integer(a is integer, b is integer)

 @sys.mul is integer(a is integer, b is integer)

 @sys.div is integer(a is integer, b is integer)

 @sys.mod is integer(a is integer, b is integer)

Respectively, they perform addition, subtraction, multiplication, quotient (integer

division), and modulus.

The built-in logical arithmetic functions are:

 @sys.equ is integer(a is integer, b is integer)

 @sys.grt is integer(a is integer, b is integer)

 @sys.lst is integer(a is integer, b is integer)

 @sys.gre is integer(a is integer, b is integer)

 @sys.lse is integer(a is integer, b is integer)

Respectively, they return nonzero for a equal to, greater than, less than, greater than or

equal to, and less than or equal to b.

The built-in logical functions are:

 @sys.and is integer(a is integer, b is integer)

 @sys.or is integer(a is integer, b is integer)

 @sys.not is integer(a is integer, b is integer)

They perform logical and, or and not, respectively. As in C, a value in HSL is logically

true if and only if it evaluates to zero.

The built in string functions are:

37

 @sys.clipcat is char(a is char, b is char)

 @sys.subclip is char(a is char, start is integer,

 length is integer)

 @sys.clipclip is integer(a is char, b is char)

 @sys.cliplen is integer(a is char)

 @sys.clipequ is integer(a is char, b is char)

These perform concatenation, substring, substring indexing (returning the offset of b

within a), string length, and string equality, respectively. Several of these generate garbage, and

the application programmer must occasionally perform garbage collection as described below (in

Working with HSL).

Finally, the built-in direct data examination functions are:

 @sys.intAt is integer(l is integer,

 m is integer,

 w is integer,

 e is integer)

 @sys.charAt is char(l is integer, n is integer)

intAt returns the integer value at offset location l, minor location m, with width w and

endianness e, where 0 is little-endian and 1 is big-endian. charAt returns the string at location l

of length n.

Templates

Templates are HSL�s method of abstracting similar functionality between individual

specifications. There are two halves to templates on the HSL side: the template itself, which is

38

an entity unto itself like a spacetype, and the implementations of the template within HSL

specifications. On the user program side, templates provide powerful registration capabilities

that we will discuss in the interfacing section.

template <name> {

 <function-header>

[function_header

 [...]]

}

The syntax of templates is quite straightforward; simply name the template then give its

associated functions. Function headers are identical to function declarations, except with no

with clauses, body or enclosing braces.

Implementing templates is equally straightforward.

spacetype foo {

 implement <template-name> {

 <function-name> [function-name [...]]

 }

}

Name the template to be implemented, then call out the functions the spacetype

implements it with. The functions must be of the same declared type, including parameters, and

the same order as the functions in the template declaration.

39

Lists, Hints and Writing

As a functional language, HSL cannot support writing directly. However, it may return

information that tells the user � or the system software � where to write. The constructs it uses to

do this are called lists and hints.

Lists allow HSL functions to return arbitrary collections of hints, special char structures

that have location information embedded for writing.

Hint Functions

The following functions are available to create hints.

 @sys.makecharhint is char(c is char, loc is integer)

 @sys.makeinthint is char(value is integer,

 location is integer,

 minorloc is integer,

 width is integer,

 endian is integer)

 @sys.makecharhintfill is char(c is char,

 size is integer,

 location is integer)

The first two functions generate hints to write character data at a given location, and to

write an integer with a given value and a given location, minor bitwise location, width and

endianness (nonzero for big, zero for little). The third function is like makecharhint except it

40

generates as many iterations of c in a row as necessary to fill up size. All of these functions

create garbage.

All hints � even integer hints � are of type char, and may be passed as such.

List Functions

The list functions are as follows.

 @sys.newlist is list(c is char)

 @sys.listadd is list(l is list, c is char)

 @sys.listaddend is list(l is list, c is char)

 @sys.listcon is list(l1 is list, l2 is list)

 @sys.listfrom is list(l is list, f is integer)

 @sys.listrepeat is list(l is list, times is integer,

 space is integer)

The first function creates a new list with the given hint. It is worth noting that in this

version of HSL, empty lists are not legal. The second function adds a hint to a list in undefined

order. The third function adds a hint to the end of a list � if this function is used, the Hadley

runtime is required to commit the contents of the added hint after the contents of the prior ones.

The fourth function concatenates two lists. The fifth function modifies all hints in a list to

increment their writing locations by f; the intended use of this is to �bump� location hints given

by a subspace to their proper locations in the outer space, and several examples of this use may

be seen in the fat12.hsl specification. The last function repeats the same list of hints a given

41

number of times, with a specified space between the repetitions; this can be used to generate

complex array structures.

Expressions

Expressions are HSL�s fundamental units for evaluating results, quantitatively and

logically. An expression evaluates to logical true if and only if it evaluates to a nonzero integer.

An expression may be a conditional construct, a function call, a variable reference, a variable�s

byte location, a variable�s bit location within its byte, or a literal.

 <literal value>

 <function-parameter-name>

$<variable-name>

&!<variable-name>

&.<variable-name>

 @<subspace>.<function-name>([<parameter>[, …]])

if (<test-expression>) {<body-expression>}

 else {<else-expression>}

All parameters to functions and test expressions in conditional expressions are

themselves expressions. A function�s body is a single expression. Functions a space is calling

on itself rather than on a subspace are called using @this; system functions are called using

@sys. Literal strings must be quoted. If necessary, they can be immediately followed by a

literal integer, which will lock their width at that number � this is the only way to include a null

(ASCII 0) character in a literal string.

42

Working With HSL

Making HSL Useful

HSL 0.1 reads memory spaces and random-access files from user space, and its VFS

kernel module can read block devices. Future versions will allow generalized access to block

and character devices. Before functions from an HSL module are called, the HSL runtime

library must be pointed to its memory space or file if in user space, on pain of undefined results;

the VFS kernel module handles this upon mount. Since function results are always completely

re-evaluated, more than one memory space may be worked with at a time in the user space

runtime by keeping track of which memory space should be examined when.

Two major examples of programs that use HSL specifications are included along with the

HSL 0.1 runtime: an extractor program which iterates through and extracts every file in a file

system disk image, and a Linux Virtual File System interface in the form of a kernel module.

The best way to learn interfacing with HSL is to use and extend these programs.

We will discuss four cases of practical HSL development, then the necessary steps in

detail.

Writing an HSL Module

Writing an HSL module is quite straightforward:

• Declare the spacetype. A typical module will have only one; however, closely related

subtypes should be kept within the same module file.

43

• Declare use statements for any subspace types the spacetype needs.

• Declare any references (�variables�) that represent statically located information in the

spacetype.

• Declare functions that return dynamic information about the spacetype. To directly

return the values of integer variables, declare them as public instead of defining trivial

�getter� functions.

• Compile the module with hslc.

At this point, the module is done, and can be called from a C program as described

below.

Writing an HSL File System Module

Writing an HSL file system module is partly backward from writing a module from

scratch: instead of defining the spacetype, references, and variables from scratch, the process is

to examine the file system templates and figure out how to implement them.

• Decide which of the hadleyfs (file system reading), hadleyfsw (file system writing) and

hadleyugo (UNIX file permission model) templates should be implemented. (Initially,

implement only the hadleyfs template, test the module to make sure it works, then move

on to hadleyugo (if appropriate) and hadleyfsw.)

• Declare the spacetypes. Consider separate spacetypes for the file system�s superblock,

directory entries, and (if appropriate) inodes.

• Declare references to static structures, especially the superblock.

44

• Declare each of the file system template functions in terms of the data gained from the

superblock and other static structures.

• Compile the module with hslc.

The process requires significant effort, but should not be any more complex than the

definition of the file system itself infers. The fat12.hsl and ext2.hsl source files, in Appendix A,

provide examples for file systems quite different in character.

At this point, the module is done, and can be added to the extractor or used in the VFS

Linux kernel module.

Using an HSL Module from C

Preparing to directly call an HSL module from C is fairly complex. It has the following

steps:

• Initialize HSL.

• Register any template functions.

• Define a context.

• Call HSL functions on that context.

• Write out results as necessary.

• Garbage collect whenever the program is finished with the results of an HSL function.

Each of these steps is described in detail below.

45

Initializing HSL

The header library for the HSL core runtime, hadley.h, must be included, and the core

initialization function, hsl_CORE_init(), must be called before any use of other HSL functions.

This function performs HSL runtime library initialization work, notably including detecting the

endianness of the host machine. The results of calling HSL functions before calling the core

initialization function are undefined � in HSL 0.1, the library will operate, but lacking

information about the endianness of the host machine, may return radically wrong values for

integers, leading to undefined results and, most likely, a quick segmentation fault.

Registering Template Functions

Functions implemented by template may be called more easily than the standard HSL C

interface, but the template functions must be registered and requested by the user program first.

There are four steps to this process:

• Include the .h file named after the template.

• Include the .h files for the implementing spacetypes.

• Declare a template data type.

• Register the implementing spacetypes.

• Request a template implementation to fill the template data type.

Template data types are named based on their templates. Declarations, to use an actual

example, appear as follows:

46

hsl_hadleyfs_template *fs = NULL;

fs, after registration and request, will store an implementation of the hadleyfs template.

To register the implementing spacetypes, their specific registration functions must be called.

 hsl_fat12_register_hadleyfs();

 hsl_ext2_register_hadleyfs();

Once the implementing spacetypes are registered, no further spacetype-specific functions

need be called; the implementation may be requested and further function calls may be handled

through the template, without the usual noise in HSL C interface function names. The dummy

context parameter must still be passed.

 fs = get_hsl_hadleyfs_implementation("ext2");

 rootid = fs->RootDirectoryID(0);

See below for general information about calling HSL functions from C.

Creating the Context

The context is the space on which the HSL runtime operates: the raw data which HSL

specifications interpret. User space programs can use either a memory space or a file as a

context. There are four HSL core library functions used to set up a context.

void hsl_CORE_set_context_memory_mode();

void hsl_CORE_set_context_memory_location(void *p);

void hsl_CORE_set_context_file_mode();

void hsl_CORE_set_context_file(FILE *f);

If the core runtime is passed a memory space, that space must already be allocated and

filled with whatever information is targeted for reading. If it is passed a file, that file must

47

already be open for reading if only reading is desired, and for read-write if writing is desired. In

HSL 0.1, the context mode, location or file may be changed at any time.

The VFS kernel module creates its own context at mount time.

Calling HSL Functions From C

When an HSL spacetype is compiled, it produces a .c file and a .h file. The .h file

contains prototypes that allow any of the HSL spacetype�s functions to be called from C. An

integer function returns a long long int; a char function returns a filled-out instance of the

following structure�

struct clip {

 char *location;

 long long int value;

 long long int length;

 long long int outputloc;

 long long int outputminorloc;

 long long int endian;

 int isAllocated;

};

�and a list function returns a poiner to a linked list structured as follows:

48

struct cliplist {

void *c;

 struct cliplist *next;

};

 In non-pathological cases, c will be a struct clip.

Clips returned from HSL functions are currently safe to access until the calling program

initates garbage collection (described below); this may change in future revisions of HSL. Two

translator functions exist for the clip structure:

struct clip hsl_CORE_stringtoclip(char *s);

char *hsl_CORE_cliptostring(struct clip c);

hsl_CORE_cliptostring returns an allocated string that the calling program should free

when it is done with it. The result of hsl_CORE_stringtoclip is safe to use until garbage

collection, and the calling program must not free it.

Functions are given the C names hsl_<sname>_function_<fname> where sname is the

name of the spacetype and fname is the name of the function. Hence the nthBlock function in the

fat12 module would be hsl_fat12_function_nthBlock. Function parameters occur in the same

order as they do in their HSL files, and are translated according to the same rules as function

types.

Non-public HSL variables cannot be directly referenced from C; they must always be

wrapped in functions.

49

Writing Out HSL Results

List-type HSL functions may return lists meant to be committed to the underlying space.

To commit the results, the following function is provided:

 void hsl_CORE_write_clips(struct cliplist *l);

 This function will write the committed changes to disk if the HSL runtime is operating in

file context mode; it should not be called unless this behavior is desired!

Garbage Collection

HSL shares with most functional languages the need to perform garbage collection; it

allocates temporary storage on the heap when running in user space, and in kernel space when

running as a VFS module. The calling program determines when the HSL runtime library

garbage collects.

void hsl_CORE_garbagecollect(void);

hsl_CORE_garbagecollect is inexpensive, so should be called whenever the calling

program has copied everything it needs from an HSL result.

Adding a new File System to the Extractor

Compiling an extractor for a new file system is straightforward:

• Create an HSL file system module for the new file system.

• Edit test-temp.c to include the header file for, and to register, the new file system.

50

• Create a copy of test-ext2temp.c renamed for the new file system; e.g., test-

newfstemp.c. Edit this copy appropriately to replace ext2 and ext2disk.in with

appropriate values.

• Edit the Makefile. Copy and edit the section for ext2.o to create a new section

appropriate to the new file system. Also add its object files to the section for fs.a.

• Run make to rebuild all the extractors.

Adding a new File System to the VFS Module

Compiling a new VFS module is less straightforward than compiling a new extractor and

more dangerous in terms of system stability. A basic understanding of Linux device driver

development and compilation is required. Given that, the steps are as follows:

• Create an HSL file system module for the new file system.

• Verify that the HSL file system module works correctly by testing it several times in the

extractor. An invalid file system module will panic the kernel, leading to a probable

system crash and possible loss of data if the filesystem has not recently been

synchronized.

• Create copies of linux-ext2.c, makekernelmodule-ext2.sh and trykernelmodule-

ext2.sh for the new file system. Edit them appropriately. In linux-<newfs>.c, add the

header for the new file system, register it and change the

get_hsl_hadleyfs_implementation call to reference it instead of ext2. Editing the

makekernelmodule and trykernelmodule scripts requires familiarity with device driver

compilation under the host Linux distribution.

51

• Use the new makekernelmodule script to create the kernel module.

A Note on Concurrency

HSL currently contains no support for concurrency or locking of any kind. Attempting to

access a file system with HSL and any other method, including HSL, at the same time leads to

completely undefined behavior.

We will discuss additional implications of concurrency for HSL below, as we discuss

future work.

Design Notes: The HSL Runtime

Having explored the use of the HSL runtime, it is worth commenting on its structure.

52

HSL Runtime

Library

User Space

C Code

Initialization

Type Trans.

Compiled HSL
Specifications

Data Requests

Built-In Functions

HSL

Templates

C-to-HSL Template Calls HSL Template Resolutions

C Library/

Kernel

Library and Data
Functions

VFS Kernel

Interface

Kernel VFS Requests

Pure C to HSL Function Calls

Figure 5: The HSL System Design

Figure 5 shows the design of the initial HSL system, both in VFS kernel module mode

and in user space mode. In all modes, compiled HSL specifications interface with the HSL

runtime library to request data and call built-in functions. The runtime in turn interfaces with the

system�s C library or directly with the kernel, depending on whether it is in user space or kernel

space.

Dashed paths show unique user space functionality and interfaces. User space C code

can call HSL specifications directly, which the VFS kernel module does not do.

Dotted paths show unique kernel mode functionality and interfaces. The kernel can call

the VFS kernel interface to answer VFS device driver requests from applications.

53

In either user space or kernel space, the C code or VFS interface calls the HSL runtime

library to initialize it and perform any type translations, and other than that uses the HSL

template libraries as interfaces to reach the compiled HSL template specifications.

Demonstrating the Correctness of HSL Specifications

The hadleyfs template

The hadleyfs template defines the essential functions for reading data from ordinary

hierarchical file systems; that is, plain sequential files stored within one or more directories,

inclusive of a root directory. More precisely:

Definition (ordinary hierarchical file system): An ordinary hierarchical file system is a tree in

which:

1. Each node other than the root has an associated name.

2. Each node may be a Directory node, a File node, or of unspecified type unique to the file

system.

3. Each File node has an associated regular sequential file.

4. Only Directory nodes may be nonleaves.

5. The root is a Directory node.

The third type of node in the second bullet of the definition exists to encapsulate types of

file entries, such as symbolic links, that exist in modern file systems but that we do not cover

formally here.

54

The hadleyfs template is built around the concept of unique identifiers for nodes called

File IDs. A File ID must be a value that contains enough information for the specification to

uniquely identify and locate that file. For FAT12 and ext2fs, a single integer suffices.

We refer to File IDs as Directory IDs when they are already known to refer to directory nodes.

Every Directory ID is also a File ID.

The hadleyfs template consists of nine functions:

o RootDirectoryID() returns the File ID of the root node.

o FilesIn(), given a Directory ID, returns the count of its node's children.

o nthFileIn(), given a Directory ID d and an integer n, returns the File ID of the nth child of

d's node.

o FileIsDirectory(), given a File ID, returns true iff its node is a Directory node.

o FileIsRegular(), given a File ID, returns true iff its node is a File node.

o FileName(), given a valid File ID other than the root, returns its node's associated name.

o FileSize(), given the File ID of a File node, returns its size in bytes.

o BlockSize() returns the fundamental block size of the file system in bytes.

o FileBlock(), given the File ID f of a valid sequential file and an integer n, returns the nth

block of f's node's associated sequential file; of size BlockSize() if the nth block is not the

last block, and of size in the interval [1..BlockSize()] if it is.

We want to demonstrate that these functions are sufficient to read the name of every

directory, the name of every regular sequential file, and the data of every regular sequential file

in an ordinary hierarchical file system.

To show that we can visit any node and find its associated name, we observe that:

55

• An ordinary hierarchical file system is a tree; hence, any successful traversal of the tree

will find each of its nodes.

• The hadleyfs template provides for successful traversal, as follows:

o FileIsDirectory() and FilesIn() together determine leaves versus nonleaves. A

node with File ID f is a nonleaf iff FileIsDirectory(f) and FilesIn(f) > 0.

o RootDirectoryID() provides the File ID for the root node.

o FilesIn() and nthFileIn() inductively provide the File IDs for the child nodes of

any directory; and hence any nonleaf, since all nonleaves are directories.

o FileName() provides the associated name of any nonroot node.

To show that we can retrieve the associated sequential files of all File nodes, we observe that:

• From above, we can visit any node.

• FileIsRegular() determines nodes with associated sequential files.

• FileSize() provides the size of a node's associated sequential file.

• A node's sequential file has FileSize() mod BlockSize() blocks.

• FileBlock() provides each of these blocks, randomly or in turn.

56

Conclusion (1): The functions provided by the hadleyfs template are sufficient to read the name

of every directory, the name of every regular sequential file, and the data of every regular

sequential file in an ordinary hierarchical file system.

Conclusion (2): Given correct operation of the functions provided by the hadleyfs template, the

name of every regular sequential file, and the data of every regular sequential file in an ordinary

hierarchical file system can be correctly read.

It follows that a file system specification which implements the hadleyfs template is

shown to allow correct reading of its file system if it is shown that its implementation of each

hadleyfs function is correct. A template for such demonstrations follows in turn.

Demonstrating the Correctness of hadleyfs implementations

All indexes begin at zero, and in all cases we assume that a properly-operating system is

operating upon a valid file system of the defined type.

Fundamental Functions

Assertion FS-1: BlockSize() correctly returns the file system's fundamental block size. (This is

not the same thing as the sector size of the underlying media.)

Directory Functions

Two paths can be taken for the directory-related functions, depending on how the root

directory is dealt with in a particular file system.

57

Path 1

Assertion FS-2a: RootDirectoryID() correctly returns the Directory ID of the root directory.

Assertion FS-3a: FilesIn() correctly returns the number of files in the directory with the

DirectoryID passed to it.

Assertion FS-4a: nthFileIn() correctly returns the File ID of the nth file in the directory with the

DirectoryID passed to it.

Assertion FS-5a: FileIsDirectory() correctly returns a nonzero value iff the File ID passed to it

in FileID is the File ID of a directory.

Path 2

Assertion FS-2b: RootDirectoryID() returns a unique "magic number" for the root directory that

cannot otherwise refer to a valid directory or file.

Assertion FS-3b: FilesIn() correctly returns the number of files in the root directory if passed the

"magic number" for the root directory in DirectoryID, and otherwise correctly returns the

number of files in the directory with the DirectoryID passed to it.

Assertion FS-4b: nthFileIn() correctly returns the File ID of the nth file in the root directory if

passed the "magic number" for the root directory in DirectoryID, and otherwise correctly returns

the File ID of the nth file in the directory with the DirectoryID passed to it.

Assertion FS-5b: FileIsDirectory() correctly returns a nonzero value iff the File ID passed to it

in FileID is the "magic number" for the root directory or otherwise is the File ID of a directory.

58

File Functions

Assertion FS-6: FileIsRegular() correctly returns a nonzero value iff the File ID passed to it in

FileID is the File ID of a regular sequential file.

Assertion FS-7: FileSize() correctly returns the size of the regular file whose File ID is passed to

it in FileID.

Assertion FS-8: FileName() correctly returns the name of the regular file or non-root directory

whose File ID is passed to it in FileID.

Assertion FS-9: FileBlock() correctly returns the BlockNumth block of data of the regular file

whose File ID is passed to it in FileID.

59

CHAPTER FOUR: FINDINGS

HSL Test Suite

There are two essential platforms for testing HSL: the extractor and the universal file

system driver.

The extractor is a utility that exhaustively traverses a file system stored in an image file,

and reproduces each directory and regular file in an output directory.

The universal file system driver is a shell that, compiled and linked with the object files

produced by the HSL system, provides a Linux kernel Virtual File System (VFS) interface to

HSL. Creating versions for variant file systems requires only changing one constant in the driver

source file and recompiling; future versions will permit accessing multiple file systems with no

recompilation necessary at all.

The Second Extended File System module written in HSL 0.1 also contains facilities for

reading file slack space. HSL is not yet able to distinguish among RAM slack (the slack between

the end of a file and the end of its last sector) and file system slack (the slack between the end of

a file�s last sector and the end of its last block); it treats all slack equally.

Filesystem Extractors

The compiled FAT12 extractor was used to examine the FreeDOS Installation Boot Disk

image as downloaded directly from the Internet. (Hall) It successfully read all relevant metadata

from the disk image and properly extracted all files. We tested text files against their versions

60

extracted using ordinary operating system methods through inspection and binary files (including

one large fragmented file) through the UNIX diff command.

The compiled Second Extended File System extractor was used to examine two images: a

root image from User Mode Linux and a much smaller root image from Romanian Mini Linux

with the /dev directory removed. (User Mode Linux, Anton) It successfully read all relevant

metadata from both images and properly extracted all files. We tested text files against their

versions extracted using ordinary operating system methods through inspection and binary files

through the UNIX diff command.

It should be noted that the extractor is a currently usable, albeit slow, tool. It extracts all

legal regular files from a filesystem and benefits from the demonstrations given later in this

document; the core means by which it interprets filesystems have been shown to be correct. The

extractor will eventually be offered as an experimental forensic investigation tool.

Universal Filesystem Driver

HSL universal file system drivers in FAT12 and ext2fs variants for Linux were used to

examine all three of the images that the extractors were run on. They correctly read files and

essential metadata where kernel limitations were not encountered. We tested files against their

versions extracted using ordinary operating system methods through inspection and through the

UNIX diff command.

The Linux kernel has an enforced small stack size with no provided way to change it �

4K in most 32-bit configurations, 8K in most 64-bit configurations. Large O(n) recursive

61

operations quickly become untenable given this operating system limitation. This is the

controlling finding for the eventual need to include iteration in HSL.

Writing Filesystems

 The compiled FAT12 module written in HSL 0.1 was used to add directories and files to

the FreeDOS Installation Boot Disk image. It successfully created and re-read directories and

files with essential associated metadata � the file name, extension, size, attribute block and

cluster chains. Dates are not handled by the initial version of HSL, but are set to a valid zero

with respect to MS-DOS�s epoch (January 1, 1980).

Specification Efficiency

The HSL module for ext2fs is approximately 16K: around 12% the size of the .C files in

the ext2fs subsystem in Linux as of kernel version 2.4.26 (Torvalds). This is not an apples-to-

apples comparison: HSL does not currently support file system writing or some ext2 advanced

features. We are confident that these additions will increase the size of the code far less than the

over 800% necessary to catch up with Linux, and that the code will remain more readable.

Table 1: ext2fs specification efficiency

 Lines Words Characters

ext2.hsl 423 1756 15971

Linux ext2 total 4521 15957 128186

62

The results for FAT are both more and less accurate: Hadley does not yet support FAT

formats other than FAT12, and FAT lacks support for most modern file system features such as

permissions. However, the Hadley module for FAT12 supports limited writeback, so the

complexity of the Hadley module is close to what would be necessary to support the rest of

Linux�s FAT12 features.

Table 2: FAT12 specification efficiency

 Lines Words Characters

fat12.hsl 505 1773 17861

Linux FAT total 3263 10412 85799

Performance

The comparative performance of the Hadley extractor and universal filesystem driver

versus its Linux kernel counterparts are shown below. As expected, the Linux kernel�s

filesystem interface retain s a dominant performance advantage. Much optimization will be

necessary before HSL may see practical use directly in system software.

63

Table 3: Performance results

 HSL extraction utility HSL Linux driver Linux

FAT12 list N/A 3.789s .006s

FAT12 copy 6.7s Stack Overflow .019s

small ext2 list N/A .441s .004s

small ext2 copy .143s .140s .016s

large ext2 copy 16.7s Stack Overflow .039s

Characteristics of HSL and HSL Demonstrations

The YACC grammar for HSL is presented in Appendix C. Simple inspection shows that

it is a context-free language.

Since HSL is a purely functional language, direct demonstrations may be used.

Demonstrations of Correctness

Major Dependencies

In our demonstrations of correctness, we assume the correct operation of the HSL

runtime library and the underlying C runtime libraries. The empirical steps we took to verify

correct operation of the HSL runtime library were described above. The most critical

dependencies on the C runtime library are the basic memory functions malloc, free, memcpy

and memcmp; the string library functions, particularly strlen; and the file functions fread,

64

fwrite and fseek. The Linux VFS kernel module is additionally dependent on kmalloc, kfree,

bread and brelse for management of kernel space memory and direct reading of block devices.

Definition of FAT12

Primary sources for this section include (Kjoernes 2000) and (Microsoft).

Overview

FAT12 is an ordinary hierarchical file system with the characteristics described here. All

integers are little-endian.

Partition Metadata

The FAT12 filesystem has three partition-level metadata structures, one of which

encloses another.

65

The Boot Sector

Table 4: The FAT12 Boot Sector

Object Length Offset

Jump Instruction 3 0

OEM Name 8 3

BIOS Parameter Block 25 11

Extended BPB 26 36

Bootstrap Code 448 62

End of Sector Marker 2 510

The Jump Instruction is an artifact that points to the Bootstrap Code; the OEM Name is

intended to store the operating system that created the partition; and the End of Sector Marker is

a constant. The BIOS Parameter Block is what we are interested in; it is are structured as

follows.

66

BIOS Parameter Block

Table 5: The FAT12 BIOS Parameter Block

Object Length Offset

Bytes per Sector 2 0

Sectors per Cluster 1 2

Reserved Sectors 2 3

Number of FATs 1 5

Root Entries 2 6

Sectors in Volume 2 8

Media Type 1 10

Sectors per FAT 2 11

Sectors per Track 2 13

Heads per Cylinder 2 15

Hidden Sectors 4 17

Sectors in Volume 4 21

Bytes per Sector indicates the number of sectors on the underlying media. For most non-

exotic hardware, this is 512.

Sectors per Cluster indicates the number of sectors per fundamental block. The

fundamental block size is the bytes per sector multiplied by the sectors per cluster.

Reserved Sectors indicates the number of sectors from the Partition Boot Sector to the

start of the first FAT. It is guaranteed to be at least 1.

67

The file system stores some number of copies of the FAT for redundancy. Typically, two

are stored.

The root directory in FAT12 is at a fixed location and permits a constant number of

entries.

There are two different locations for the number of sectors in a volume: a 2-byte and 4-

byte unsigned integer. If the number of sectors is less than or equal to 65,535, it will be stored in

the 2-byte integer; otherwise, 0 will be stored in the 2-byte integer and the real value will be

stored in the 4-byte integer.

The media type, sectors per track and heads per cylinder refer to hardware information

about the underlying media. Hidden Sectors refers to the partition's physical location on the

underyling media.

For completeness, we briefly describe the Extended BIOS Parameter Block as well.

Extended BIOS Parameter Block

Table 6: The FAT12 Extended BIOS Parameter Block

Object Length Offset

Physical Disk Number 1 0

Current Head 1 1

Signature 1 2

Volume S/N 4 3

Volume Label 11 (String) 7

System ID 8 (String) 18

68

The physical disk number refers to underlying hardware. The current head is unused in

the FAT filesystem. The signature byte is required to be either 28h or 29h hexadecimal. The

volume serial number is a unique number created when the partition is formatted.

The volume label is usually stored in a file rather than here, but it is legal to store it here.

If it is stored here, it should be padded with spaces.

The system ID is required to be "FAT12", padded out to eight characters with spaces.

Directory Metadata

Directories in the FAT12 file system are juxtaposed lists of directory entries. The root

directory of the FAT12 filesystem is always located immediately following the last FAT and has

a fixed number of entries; this means it is limited in size. Subdirectories are located by directory

entries, and are treated as ordinary files, so may consist of more than one block.

Directory entries have the following structure.

69

Directory Entry

Table 7: FAT12 Directory Entries

Object Length Offset

Name 8 0

Extension 3 8

Attribute 1 11

Reserved 1 12

VFAT Creation msec/10 1 13

VFAT Creation Time 2 14

VFAT Creation Date 2 16

VFAT Access Date 2 18

FAT32 High Cluster # 2 20

Update Time 2 22

Update Date 2 24

First Cluster # 2 26

File Size 4 28

The required file name and optional extension are padded to their maximum length with

spaces. The attribute byte is described below. The high cluster number is relevant only for

FAT32 file systems, listed here only to clarify that that space is now filled. The time and date

fields are self-explanatory; several of them are only present in VFAT revisions of the file system.

The file size is a 32 bit unsigned integer.

70

The first character of the name may have one of three special values, as well as legal

characters: 00h to indicate that this neither this entry nor any following entry are in use, 05h to

indicate that the first character of the name is actually E5h, or E5h to indicate that the entry has

been erased and is available for use.

The first cluster points both to the file's first cluster of data and to the beginning of the

file's chain in the FAT.

Attribute Byte

The attribute byte is packed as follows:

Table 8: FAT12 Attribute Bytes

Read-Only 1bit 0bits

Hidden 1bit 1bits

System 1bit 2bits

Volume 1bit 3bits

Directory 1bit 4bits

Archive 1bit 5bits

Read-Only and Hidden attributes are self-explanatory. System files are special files that

should not be tampered with by user-mode programs. The Volume file is the volume name for

the partition. Directories always have a file size of zero, but have cluster chains containing their

directory entries.

71

The FAT, Clusters and the Data Area

There are several identical FAT structures, located one after the other beginning after the

Reserved Sectors as specified in the BIOS Parameter Block. Each FAT is an array of twelve-bit

integers arranged in little-endian fashion.

The 0th and 1st FAT entries are reserved. The remaining entries have values as follows:

Table 9: FAT12 Reference Values

Value Description

000 Available (empty)

001 Reserved

002-FF6 Next Cluster

FF7 Bad Cluster

FF8-FFF Last Cluster

Hence, cluster chains can be traversed inductively as follows:

• The first cluster of a file has the cluster number given by the First Cluster number in its

directory entry.

• For the nth cluster of a file with cluster number k, if FAT[k] is:

o 002 through FF6, then the n+1th cluster has cluster number FAT[k].

o FF8 through FFF, then the nth cluster is the final one.

72

The Data Area

The actual file data area begins immediately following the end of the root directory.

Cluster number 2 begins at this offset, and the clusters proceed from there in linear order.

Demonstration of Correctness for FAT12

All variables and functions are with respect to the HSL fat12 spacetype, unless noted

otherwise. Correct operation of the Hadley system and its built-in functions is assumed at all

times. All division is assumed to be integer.

Definition (FAT12 File ID)

The File ID for the HSL fat12 spacetype is either the offset of the directory entry of the

associated file from the start of the partition or the number zero, indicating the root directory.

Assertion FAT12-a

BytesPerSector, SectorsPerBlock, ReservedSectors, NumberOfFats, MaxRootDirEntries,

SectorsInPartition, and SectorsPerFAT specify, respectively, the bytes per sector, sectors per

cluster, reserved sectors, number of FATs, maximum root directory entries, number of sectors in

the partition, and sectors per FAT in a FAT12 file system.

73

 var BytesPerSector is integer littleend width 16 at 11.

 var SectorsPerBlock is integer littleend width 8 at 13.

 var ReservedSectors is integer littleend width 16 at 14.

 var NumberOfFats is integer littleend width 8 at 16.

 var MaxRootDirEntries is integer littleend width 16 at 17.

 var SectorsInPartition is integer littleend width 16 at 19.

 var SectorsPerFAT is integer littleend width 16 at 22.

Demonstration

By the definition of FAT12, the BIOS parameter block occurs at offset 11 in the partition.

The bytes per sector, sectors per cluster, reserved sectors, number of FATs, maximum root

directory entries, number of sectors in the partition, and sectors per FAT occur at offsets 0, 2, 3,

5, 6, 8 and 11 in the BIOS parameter block respectively, and are 2, 1, 2, 1, 2, 2 and 2 bytes wide

respectively. Arithmetic places them at offsets 11, 13, 14, 16, 17, 19 and 22 respectively.

Simple inspection then demonstrates the equivalence of the variable specifications with their

corresponding locations in the FAT12 structure. !

Assertion FAT12-b

With regard to the fat12dirent spacetype, FileNameFirstChar, FileName, FileExt,

FileIsReadOnly, FileIsHidden, FileIsSystem, FileIsVolumeLabel, FileIsDirectory, FileIsArchive,

FirstBlock and FileSize specify, respectively, the first character of the file name, the space-

padded file name, the space-padded file extension, the read-only attribute flag, the hidden

attribute flag, the system attribute flag, the volume label attribute flag, the directory attribute

flag, the archive attribute flag, the first cluster number, and the file size field of a directory entry.

74

 var FileNameFirstChar is integer littleend width 8 at 0.

 var FileName is char[8] at 0.

 var FileExt is char[3] at 8.

 var FileIsReadOnly is public integer littleend width 1 at 11 minor

0.

 var FileIsHidden is public integer littleend width 1 at 11 minor

1.

 var FileIsSystem is public integer littleend width 1 at 11 minor

2.

 var FileIsVolumeLabel is public integer littleend width 1 at 11 minor

3.

 var FileIsDirectory is public integer littleend width 1 at 11 minor

4.

 var FileIsArchive is public integer littleend width 1 at 11 minor

5.

 var FirstBlock is public integer littleend width 16 at 26.

 var FileSize is public integer littleend width 32 at 28.

Demonstration

For FileName, FileExt, FirstBlock and FileSize, by the definition of FAT12, the space-

padded file name and extension, the first cluster number, and the file size occur at offsets 0, 8, 26

and 28 in a directory entry respectively, and are 8, 3, 2 and 4 bytes wide respectively. Simple

inspection demonstrates their equivalence with the variable specifications.

For FileNameFirstChar, by the definition of a string, the first character of a string is a

single character collocated with the string itself. Hence the first character of the file name is a

single character collocated with the file name. By the definition of FAT12, the space-padded file

75

name occurs at offset 0 in a directory entry, and hence its first character also occurs at offset 0.

Simple inspection demonstrates equivalence with the FileNameFirstChar specification.

For the attribute flags, by the definition of FAT12, the attribute byte occurs at offset 11 in

a directory entry, and the read-only, hidden, system, volume label, directory and archive bits are

the 0th, 1st, 2nd, 3rd, 4th and 5th bits of that byte respectively. Simple inspection demonstrates

equivalence with the FileIsReadOnly, FileIsHidden, FileIsSystem, FileIsVolumeLabel,

FileIsDirectory and FileIsArchive bits. !

Assertion FAT12-c

RootDirectorySize() returns the size in bytes of the root directory.

 function RootDirectorySize is integer() {

 @sys.mul($MaxRootDirEntries, 32)

 }

Demonstration

By the definition of FAT12, the root directory is as large as its maximum number of entries times

the size of a directory entry. By inspection of the definition of FAT12, a directory entry is 32

bytes long. By assumed proper operation of @sys.mul, RootDirectorySize() returns

MaxRootDirEntries times 32; from the above and Assertion FAT12-a, this is the size of the

root directory. !

76

Assertion FAT12-d

RootDirectoryStart() returns the offset of the root directory from the beginning of the

partition.

 function RootDirectoryStart is integer() {

 @sys.mul(@sys.add($ReservedSectors,

 @sys.mul($NumberOfFats, $SectorsPerFAT)),

 $BytesPerSector)

 }

Demonstration

By the definition of FAT12, the root directory begins immediately after the final FAT.

Also by the definition of FAT12, the FATs begin immediately after the reserved sectors. Hence

by arithmetic the root directory begins at sector n where n is the number of reserved sectors plus

the total number of sectors taken by the FATs. By arithmetic the number of sectors taken by the

FATs is the number of FATs times the number of sectors per FAT.

By Assertion FAT12-a and assumed proper operation of @sys.mul and @sys.add,

RootDirectoryStart() returns k + lm * n, where k is the number of reserved sectors, l is the

number of FATs, m is the sectors per FAT and n is the bytes per sector, as desired. !

Assertion FAT12-e

data() returns the offset k characters from the beginning of the partition�s data area.

77

 function data is integer(k is integer) {

 @sys.add(k, @sys.add(@this.RootDirectoryStart(),

 @this.RootDirectorySize()))

 }

Demonstration

By Assertions FAT12-c and FAT12-d and assumed proper operation of @sys.add, data

returns k + l + m where l is the offset of the root directory from the beginning of the partition

and m is the size of the root directory. By the definition of FAT12 the data area begins

immediately after the root directory; hence, at l + m. Hence data(k) returns the offset k

characters from the beginning of the partition�s data area. !

Assertion FAT12-f

DataBlocks() returns the number of blocks in the data area.

78

 function NonDataSectors is integer() {

 @sys.div(@this.data(0), $BytesPerSector)

 }

 function DataSectors is integer() {

 @sys.sub($SectorsInPartition, @this.NonDataSectors())

 }

 function DataBlocks is integer() {

 @sys.div(@this.DataSectors(), $SectorsPerBlock)

 }

Demonstration

By Assertions FAT12-e and FAT12-a, and assumed proper operation of @sys.div,

NonDataSectors() returns the offset of the data area divided by the size of each sector. Since by

definition of FAT12 the data area is required to begin at a sector boundary, this value is the

number of sectors before the data area.

By the above, Assertion FAT12-a, and assumed proper operation of @sys.sub,

DataSectors() returns the number of sectors in the partition minus the number of sectors before

the data area. By arithmetic, this is the number of sectors in the data area.

By the above, Assertion FAT12-a, and assumed proper operation of @sys.div,

DataBlocks() returns the number of sectors in the data area divided by the number of sectors per

block. By arithmetic, this is the number of blocks in the data area. !

Assertion FAT12-g

FAT[k] is the kth entry in the first FAT of the partition.

79

 var FAT is integer[@sys.add(@this.DataBlocks(), 2)]

 littleend width 12 at

 @sys.mul($ReservedSectors, $BytesPerSector).

Demonstration

By the definition of FAT12, the first FAT is an array of 12-bit integers in little-endian

format, one for each block in the data area plus two reserved entries at the beginning, occurring

immediately after the reserved sectors.

By inspection, and by assumed proper operation of variable declarations, @sys.add and

@sys.mul, FAT is an array of DataBlocks() + 2 12-bit integers in little-endian format, occurring

at ReservedSectors × BytesPerSector. By arithmetic and Assertion FAT12-a, FAT occurs

immediately after the reserved sectors; by arithmetic and Assertion FAT12-f, FAT is an array of

one integer for each block in the data area plus two more. !

Assertion FAT12-h

FirstBlock(), passed a File ID of a regular file or a directory other than the root, correctly

returns the first block number of the file associated with the File ID.

 function FirstBlock is integer(FileID is integer)

 with entry is fat12dirent at FileID

 {

 @entry.FirstBlock()

 }

By the definition of a FAT12 File ID, unless it is the root directory�s �magic number�,

FileID is the offset of the directory entry of its associated file from the beginning of the partition.

On a valid call of FirstBlock(), FileID cannot refer to the root. Hence by assumed proper

80

operation of with, entry is the directory entry associated with FileID. By assumed proper

operation of function indirection it now suffices to show that fat12dirent�s FirstBlock()

function returns the first block of the file as stored in the directory entry.

 var FirstBlock is public integer littleend width 16 at 26.

By assumed proper operation of a public integer, fat12dirent�s FirstBlock() function

returns the value of the FirstBlock variable. Hence by Assertion FAT12-b, it returns the first

cluster number, i.e., the first block number. !

Assertion FAT12-i

NextBlock(), passed a block number, correctly returns the next block number in the

cluster chain from the FAT or 0 if there is no next block number.

 function NextBlock is integer(k is integer) {

 if(@sys.and(@sys.lst($FAT[k], 4087),

 @sys.grt($FAT[k], 1))) { $FAT[k] } else { 0 }

 }

Demonstration

By the definition of FAT12, the next block number in a cluster chain from a given block

number k, if that cluster chain exists, is the kth entry of the FAT. A number between FF8 and

FFF indicates that the current block number is the end of the cluster chain, and numbers 0, 1 and

FF7 are used for system purposes; all other values are valid next block numbers. Hence it

suffices to show that NextBlock() returns the kth entry of the FAT if that kth entry is less than

FF7 (4087) and greater than 1; otherwise return 0.

81

By assumed proper operation of if/else, @sys.and, @sys.lst and @sys.grt, NextBlock()

returns FAT[k] if 1 < FAT[k] < 4087, 0 otherwise.

By Assertion FAT12-g, FAT[k] is the kth entry of the FAT.

Hence NextBlock() returns the kth entry of the FAT if that kth entry is less than FF7

(4087) and greater than 1; otherwise it returns 0. !

Assertion FAT12-j

nthBlock(), passed a non-root File ID and a number n, correctly returns the block number

of the nth block in the associated File ID�s cluster chain.

 function nthBlock is integer(FileID is integer, n is integer) {

 if(@sys.equ(n, 0)) { @this.FirstBlock(FileID) }

 else { @this.NextBlock(@this.nthBlock(FileID,

 @sys.sub(n, 1))) }

 }

Demonstration

Consider n = 0. Then by assumption of proper operation of if and @sys.equ, nthBlock()

returns FirstBlock(FileID), which by Assertion FAT12-h is equal to the first (i.e., zeroeth) block

number in FileID�s associated file�s cluster chain.

Choose n ≥ 1 and assume that nthBlock(FileID, n-1) returns the n-1th block number in

FileID�s associated file�s cluster chain. Then by assumption of proper operation of else,

@sys.equ and @sys.sub, nthBlock() returns NextBlock(nthBlock(FileID, n-1)). By the

induction hypothesis this is NextBlock() called on the n-1th block number in FileID�s associated

82

file�s cluster chain; by Assertion FAT12-i, this is the nth block number in FileID�s associated

file�s cluster chain. !

Assertion FAT12-1

BlockSize() correctly returns the file system's fundamental block size.

 function BlockSize is integer() { @sys.mul($BytesPerSector,

 $SectorsPerBlock) }

Demonstration

By the definition of FAT12, the sectors per cluster value indicates the number of sectors

per fundamental block. Hence by assertion FAT12-a, BytesPerSector specifies the number of

bytes per sector and SectorsPerBlock specifies the number of sectors per fundamental block.

Hence by multiplication, (BytesPerSector × SectorsPerBlock) is equal to the fundamental block

size. Hence by assumed correct operation of @sys.mul, BlockSize() returns the fundamental

block size. !

Assertion FAT12-2b

RootDirectoryID() returns a unique "magic number" for the root directory that cannot

otherwise refer to a valid directory or file.

 function RootDirectoryID is integer() { 0 }

83

Demonstration

By the definition of FAT12, the boot sector occurs at offset 0. Hence a valid directory

entry cannot occur at 0. Hence by the definition of the FAT12 File ID, 0 cannot be a valid File

ID. By trivial syntax, RootDirectoryID() always returns 0. Hence RootDirectoryID() returns a

unique �magic number� for the root directory that cannot otherwise refer to a valid directory or

file. !

Assertion FAT12-k

DirEntsPerBlock() returns the number of directory entries per block.

 function DirEntsPerBlock is integer() {

 @sys.div(@this.BlockSize(), 32)

 }

Demonstration

By inspection of the definition of FAT12, a directory entry is 32 bytes long. By

Assertion FAT12-1, BlockSize() is the block size. Hence by assumed proper operation of

@sys.div, DirEntsPerBlock() returns the block size divided by the length of a directory entry,

as desired. !

Assertion FAT12-m

DirectoryEntryLoc() returns the offset of the nth entry in the directory whose ID is passed

to it in DirectoryID.

84

 function DirectoryEntryLoc is integer(DirectoryID is integer,

 n is integer) {

 if(@sys.equ(DirectoryID, 0)) {

 @sys.add(@this.RootDirectoryStart(), @sys.mul(n, 32))

 }

 else { @this.data(@sys.add(

 @sys.mul(

 @sys.sub(

 @this.nthBlock(

 DirectoryID,

 @sys.div(n, @this.DirEntsPerBlock())),

 2),

 @this.BlockSize()),

 @sys.mul(@sys.mod(n, @this.DirEntsPerBlock()), 32)

)) }

 }

Demonstration

By the definition of a FAT12 Directory ID, there are two cases.

Case 1: DirectoryID is 0.

By the definition of a FAT12 Directory ID, it suffices to show that DirectoryEntryLoc()

returns the offset of the nth entry in the root directory.

DirectoryID is 0. Hence by assumed proper operation of if and @sys.equ,

DirectoryEntryLoc() returns @sys.add(@this.RootDirectoryStart(),@sys.mul(n, 32)).

By Assertion FAT12-d, RootDirectoryStart() returns the offset of the root directory in

the partition.

85

Hence by assumed proper operation of @sys.add and @sys.mul, DirectoryEntryLoc()

returns the offset 32n bytes into the root directory.

By the definition of FAT12, a directory is an array of juxtaposed directory entries 32

bytes long.

Hence DirectoryEntryLoc() returns the offset of the nth entry of the root directory in the

partition.

Case 2: DirectoryID is the offset of a directory�s directory entry in the partition.

By the definition of FAT12, a nonroot directory is an array of juxtaposed directory

entries 32 bytes long, stored otherwise as a sequential file.

By arithmetic and by the above, the nth directory entry occurs 32n bytes into a

directory�s data.

By definition of a sequential file as stored in FAT12, a directory may contain more than

one data block of entries, and each block contains a finite number m of directory entries. Hence

by arithmetic the nth directory entry occurs in the (n/m)th data block of the directory, and

further, it occurs at offset 32(n mod m) in that block.

It now suffices to show that DirectoryEntryLoc returns the offset 32(n mod m) in the

(n/m)th data block of DirectoryID�s associated directory.

By Assertion FAT12-2b, DirectoryID cannot be the root directory ID. Hence by

assumed proper operation of else, DirectoryEntryLoc() returns the else-enclosed block. By

assumed proper operation of @sys.add, @sys.mul, @sys.sub and @sys.mod, and by Assertion

FAT12-k, we rewrite this as:

data((nthBlock(DirectoryID, n/m) � 2) × BlockSize() + (n mod m) × 32).

By Assertions FAT12-j and FAT12-1, this is

86

data((k � 2) × b + (n mod m) × 32)

where b is the block size and k is the cluster number of the (n/m)th block of

DirectoryID�s directory.

By the definition of FAT12, the cluster number k actually refers to the k-2th cluster,

numbered from zero, in the data area. Hence by arithmetic, cluster number k begins at offset (k-

2) times the block size in the data area.

Hence by the above ad Assertion FAT12-e, DirectoryEntryLoc() returns the offset (n

mod m) × 32 bytes from the beginning of the (n/m)th block of DirectoryID�s directory. !

Assertion FAT12-n

With regard to the fat12dirent spacetype, IsFinalEnt() correctly returns nonzero iff the

directory entry is a final-entry placeholder in its directory, i.e., if no in-use directory entries

follow it.

 function IsFinalEnt is integer() { @sys.equ($FileNameFirstChar,

 0) }

By the definition of FAT32, a final-entry placeholder in a directory has the null character

(0) as the first character of its filename, and no other file may. By Assertion FAT12-b,

FileNameFirstChar is the first character of the directory entry�s filename. By proper operation

of @sys.equ, IsFinalEnt() returns nonzero iff the first character of the directory entry�s filename

is 0, which from above happens iff it is a final-entry placeholder. !

87

Assertion FAT12-o

With regard to the fat12dirent spacetype, IsErased() correctly returns nonzero iff the

directory entry is marked as erased.

 function IsErased is integer() { @sys.equ($FileNameFirstChar,

 229) }

By the definition of FAT32, an erased file has character 229 as the first character of its

filename, and no other file may. By Assertion FAT12-b, FileNameFirstChar is the first

character of the directory entry�s filename. By proper operation of @sys.equ, IsErased() returns

nonzero iff the first character of the directory entry�s filename is character 229, which from

above happens iff it is an erased file. !

Assertion FAT12-p

DirectoryEntryUsed() correctly returns nonzero iff the nth entry of the directory with the

DirectoryID passed to it is a used entry, i.e., it is the File ID of either a file or a directory.

88

 function DirectoryEntryUsed is integer(DirectoryID is integer,

 n is integer)

 with entry is fat12dirent at

 @this.DirectoryEntryLoc(DirectoryID, n)

 {

 if(@sys.or(@sys.equ(@entry.FileAttr(), 15),

 @sys.or(@entry.IsFinalEnt(),

 @entry.IsErased()))) { 0 }

 else { 1 }

 }

By the definition of FAT12, an entry is used if it is neither erased nor a final-entry

placeholder. We also consider an entry to be unused if it is a VFAT Long Filename component

with a characteristic attribute value of 15.

By assumed proper operation of with and Assertion FAT12-m, entry is the nth directory

entry in the directory indicated by DirectoryID.

By assumed proper operation of if/else, @sys.or and @sys.equ, and Assertions FAT12-

b, FAT12-n and FAT12-o, DirectoryEntryUsed() returns nonzero iff the directory entry has an

attribute value of 15, is a final-entry placeholder or is marked erased, which occurs iff it is

unused. !

Assertion FAT12-3b

FilesIn() correctly returns the number of files in the root directory if passed the "magic

number" for the root directory in DirectoryID, and otherwise correctly returns the number of files

in the directory with the DirectoryID passed to it.

89

 function FilesInStep is integer (DirectoryID is integer, n is

 integer, count is integer)

 with entry is fat12dirent at

 @this.DirectoryEntryLoc(DirectoryID, n)

 {

 if(@entry.IsFinalEnt()) { count }

 else { @this.FilesInStep(DirectoryID, @sys.add(n, 1),

 if(@this.DirectoryEntryUsed(DirectoryID, n))

 { @sys.add(count, 1) }

 else {count})

 }

 }

 function FilesIn is integer(DirectoryID is integer) {

 @this.FilesInStep(DirectoryID, 0, 0)

 }

First consider FilesInStep(). By assumed proper operation of with and Assertion

FAT12-m, entry is the nth directory entry in the directory indicated by DirectoryID. By

assumed proper operation of if and Assertion FAT12-n, FilesInStep() returns count if entry is a

final-entry placeholder. Otherwise, by assumed proper operation of if/else, @sys.add and

Assertion FAT12-p, FilesInStep() returns FilesInStep(DirectoryID, n+1, count+1) if entry is a

used entry, and FilesInStep(DirectoryID, n+1, count) if not. FilesIn() returns

FilesInStep(DirectoryID, 0, 0) which by trivial recursion returns the number of used entries,

and hence the number of files, in the directory indicated by DirectoryID. !

90

Assertion FAT12-4b

nthFileIn() correctly returns the File ID of the Nth file in the root directory if passed the

"magic number" for the root directory in DirectoryID, and otherwise correctly returns the File ID

of the Nth file in the directory with the DirectoryID passed to it.

 function FileStep is integer(DirectoryID is integer, n is

 integer, count is integer) {

 if(@this.DirectoryEntryUsed(DirectoryID, n)) {

 if (@sys.grt(count, 0)) {

 @this.FileStep(DirectoryID, @sys.add(n, 1),

 @sys.sub(count, 1))

 } else {

 @this.DirectoryEntryLoc(DirectoryID, n)

 }

 } else {

 @this.FileStep(DirectoryID, @sys.add(n, 1), count)

 }

 }

 function nthFileIn is integer(DirectoryID is integer,

 N is integer) {

 if(@sys.gre(n, @this.FilesIn(DirectoryID))) { -1 }

 else { @this.FileStep(DirectoryID, 0, N) }

 }

First consider FileStep(). By assumed proper operation of if/else and @sys.grt,

Assertion FAT12-p and Assertion FAT12-m, FileStep() returns FileStep(DirectoryID, n+1,

count) if the nth entry in DirectoryID�s indicated directory is unused, FileStep(DirectoryID,

91

n+1, count-1) if it is used but count > 0, and the location of the nth entry in DirectoryID�s

indicated directory if it is used and count is 0.

Hence by simple recursion, FileStep() steps through the entries in DirectoryID�s

indicated directory, decrementing count each time it encounters a used entry and returning the

next used entry it encounters once count is 0.

nthFileIn returns FileStep(DirectoryID, 0, N), which by simple recursion returns the Nth used

entry in DirectoryID�s indicated directory, hence the Nth file. !

Assertion FAT12-5b

FileIsDirectory() correctly returns a nonzero value iff the File ID passed to it in FileID is

the "magic number" for the root directory or otherwise is the File ID of a directory.

 function FileIsDirectory is integer(FileID is integer)

 with entry is fat12dirent at FileID

 { if(@sys.equ(FileID, @this.RootDirectoryID())) { 1 }

 else { @entry.FileIsDirectory() } }

Demonstration

By assumed proper operation of if/else and @sys.equ, and by Assertion FAT12-2b,

FileIsDirectory() returns 1 if it is passed the �magic number� for the root directory and

@entry.FileIsDirectory() otherwise.

By the definition of a FAT12 File ID, unless it is the root directory�s �magic number�,

FileID is the offset of the directory entry of its associated file from the beginning of the partition.

Hence by assumed proper operation of with, entry is the directory entry associated with FileID.

92

By assumed proper operation of function indirection it now suffices to show that fat12dirent�s

FileIsDirectory() function returns true iff the entry is a directory.

 var FileIsDirectory is public integer littleend width 1

 at 11 minor 4.

By assumed proper operation of a public integer, fat12dirent�s FileIsDirectory()

function returns the value of the FileIsDirectory variable. Hence by Assertion FAT12-b, it

returns true iff the entry is a directory. !

Assertion FAT12-6

FileIsRegular() correctly returns a nonzero value iff the File ID passed to it in FileID is

the File ID of a regular sequential file.

 function FileIsRegular is integer(FileID is integer)

 with entry is fat12dirent at FileID

 { @sys.and(@sys.not(@this.FileIsDirectory(FileID)),

 @sys.not(@entry.FileIsVolumeLabel())) }

Demonstration

The definition of FAT12 has no explicit specification for a regular file. We must note by

process of elimination that a regular file is a file that is neither a directory nor a volume label;

hence, it suffices to show that FileIsRegular() returns nonzero iff FileID is not the File ID of a

directory or a volume label.

By Assertion FAT12-5b and assumed proper operation of @sys.not,

@sys.not(@this.FileIsDirectory(FileID)) returns nonzero iff FileID is not the File ID of a

directory.

93

Hence by assumed proper operation of @sys.and, FileIsRegular() returns nonzero iff

FileID is not the File ID of a directory and @sys.not(@entry.FileIsVolumeLabel()) returns

nonzero. By assumed proper operation of @sys.not it now suffices to show that

@entry.FileIsVolumeLabel() returns nonzero iff FileID is not the File ID of a volume label.

By the definition of a FAT12 File ID, unless it is the root directory�s �magic number�,

FileID is the offset of the directory entry of its associated file from the beginning of the partition.

From above, and by short-circuit evaluation, FileID cannot refer to a directory at all. Hence by

assumed proper operation of with, entry is the directory entry associated with FileID. By

assumed proper operation of function indirection it now suffices to show that fat12dirent�s

FileIsVolumeLabel() function returns true iff the entry is a volume label.

 var FileIsVolumeLabel is public integer littleend width 1

 at 11 minor 3.

By assumed proper operation of a public integer, fat12dirent�s FileIsVolumeLabel()

function returns the value of the FileIsVolumeLabel variable. Hence by Assertion FAT12-b, it

returns true iff the entry is a volume label. !

Assertion FAT12-7

FileSize() correctly returns the size of the regular file whose File ID is passed to it in

FileID.

94

 function FileSize is integer(FileID is integer)

 with entry is fat12dirent at FileID

 { @entry.FileSize() }

Demonstration

By the definition of a FAT12 File ID, unless it is the root directory�s �magic number�,

FileID is the offset of the directory entry of its associated file from the beginning of the partition.

On a valid call of FileSize(), FileID must refer to a regular file, hence cannot refer to a directory

at all. Hence by assumed proper operation of with, entry is the directory entry associated with

FileID. By assumed proper operation of function indirection it now suffices to show that

fat12dirent�s FileSize() function returns the size of the file as stored in the directory entry.

 var FileSize is public integer littleend width 32 at 28.

By assumed proper operation of a public integer, fat12dirent�s FileSize() function

returns the value of the FileSize variable. Hence by Assertion FAT12-b, it returns the file�s size.

!

Assertion FAT12-8

FileName() correctly returns the name of the regular file or non-root directory whose File

ID is passed to it in FileID.

95

 function FileName is char(FileID is integer)

 with entry is fat12dirent at FileID

 { @entry.FileName() }

Demonstration

By the definition of a FAT12 File ID, unless it is the root directory�s �magic number�,

FileID is the offset of the directory entry of its associated file from the beginning of the partition.

On a valid call of FileName(), FileID cannot refer to the root directory. Hence by assumed

proper operation of with, entry is the directory entry associated with FileID. By assumed

proper operation of function indirection it now suffices to show that fat12dirent�s FileName()

function returns the file name.

 function FileName is char() {

 @sys.clipcat(@this.FileNamePart(), @this.FileExtPart())

 }

By assumed proper operation of @sys.clipcat, FileName returns FileNamePart()

concatenated with FileExtPart().

Multiple valid interpretations of FAT�s unique 8.3 filename format to general strings

exist. We choose to translate to the non-optional filename, concatenated with a period and the

extension iff there is an extension; dropping all space padding in all cases.

It is hence sufficient to show that FileNamePart() returns the filename without padding, and

FileExtPart() returns a period concatenated with the extension without padding should the

extension exist, and the null string otherwise.

function FileNamePart is char() {$FileName<0, @this.FNLength()> }

96

By assumed proper operation of the substring operator, FileNamePart() returns the first

FNLength() characters of the filename. It now suffices to show for FileNamePart()�s purposes

that FNLength() returns the length of the the file name.

function FNLengthStep is integer(k is integer) {

 if(@sys.equ(k, 8)) { 8 }

 else {

 if(@sys.clipequ($FileName[k], " ")) { k }

 else { @this.FNLengthStep(@sys.add(k, 1)) }

 }

}

function FNLength is integer() { @this.FNLengthStep(0) }

By assumed proper operation of if and @sys.equ, FNLengthStep(k) = 8 if k = 8.

Otherwise, by assumed proper operation of @sys.equ and array functionality, FNLengthStep(k)

= k if FileName[k] is a space. Otherwise, by assumed proper operation of @sys.add,

FNLengthStep(k) = FNLengthStep(k+1). Hence we have Assertion FAT12-8-1:

FNLengthStep(k) = k if k = 8 or FileName[k] is a space, FNLengthStep(k+1) otherwise.

Now assume without loss of generality that FileName has length n. By definition of

FAT12, either n = 8 or FileName[n] is a space, and for all k < n, FileName[n] must be a non-

space. Hence by Assertion FAT12-8-1, FNLengthStep(k) = k if n = k, FNLengthStep(k+1)

otherwise. It follows by trivial recursion that FNLengthStep(0) = n and by assumed proper

operation of function calls, FNLength() = n = the length of the file name.

It remains to prove that FileExtPart() returns a period concatenated with the extension

without padding should the extension exist, and the null string otherwise.

97

function FELengthStep is integer(k is integer) {

 if(@sys.equ(k, 3)) { 3 }

 else {

 if(@sys.clipequ($FileExt[k], " ")) { k }

 else { @this.FELengthStep(@sys.add(k, 1)) }

 }

}

function FELength is integer() { @this.FELengthStep(0) }

We first note that FELength() returns the length of the extension; the demonstration is

essentially identical to that for FNLength(). Now consider FileExtPart().

function HasExt is integer()

 { @sys.not(@sys.equ(@this.FELength(), 0)) }

function FileExtPart is char() {

 if(@this.HasExt()) {

 @sys.clipcat(".", $FileExt<0, @this.FELength()>)

 } else { "" }

 }

By the definition of FAT12, if the length of the extension is 0, there is no extension

present. By assumed proper operation of @sys.not and @sys.equ and demonstrated proper

operation of FELength(), HasExt() returns nonzero iff FELength() = 0 iff there is no extension

present.

Hence by assumed proper operation of if/else, FileExtPart() returns the null string if

there is no extension present. Otherwise, by assumed proper operation of @sys.clipcat and the

substring operator, it returns a period concatenated with the first FELength() characters of the

extension � that is, the extension, as desired. !

98

Assertion FAT12-9-1

FileHasEvenBlocks() returns a nonzero value iff the regular file associated with the

passed FileID has a file size integrally divisible by the block size.

 function FileHasEvenBlocks is integer(FileID is integer) {

 if(@sys.grt(@sys.mod(@this.FileSize(FileID),

 @this.BlockSize()), 0)) { 0 }

 else { 1 }

 }

Demonstration

By Assertion FAT12-7, FileSize(FileID) returns the size of the regular file associated

with File ID. By Assertion FAT12-1, BlockSize() returns the block size. By assumption of

proper implementation of @sys.mod, @sys.mod(@this.FileSize(FileID), @this.BlockSize())

returns greater than zero if and only if the file size is not integrally divisible by the block size.

Hence by assumption of proper implementation of if and @sys.grt, FileHasEvenBlocks()

returns nonzero iff the file size is integrally divisible by the block size. !

Assertion FAT12-9-2

DataForBlock() returns character data from the data block assocated with the passed

cluster number, with the given size.

99

 function DataForBlock is char(k is integer, size is integer) {

 @sys.charAt(@this.data(@sys.mul(@sys.sub(k, 2),

 @this.BlockSize())), size)

 }

Demonstration

By the definition of FAT12, the cluster number k actually refers to the k-2th cluster,

numbered from zero, in the data area. Hence by arithmetic, cluster number k begins at offset (k-

2) times the block size in the data area.

By Assertion FAT12-e, data() returns the offset within the partition for an offset relative

to the data area. Hence by the above, assumption of the proper operation of @sys.mul and

@sys.sub, and Assertion FAT12-1, @this.data(@sys.mul(@sys.sub(k, 2), @this.BlockSize()))

returns the offset within the partition of the data block with cluster number k.

Hence by assumption of the proper operation of @sys.charAt, DataForBlock() returns

the data of the passed size beginning at the offset of the data block with cluster number k. !

Assertion FAT12-9-3

BlocksInFile() returns the number of blocks in the cluster chain of the regular file

associated with the passed FileID.

100

 function BlocksInFile is integer(FileID is integer) {

 @sys.add(@sys.div(@this.FileSize(FileID),

 @this.BlockSize()),

 if(@this.FileHasEvenBlocks(FileID)) { 0 } else { 1 }

)

 }

Demonstration

By arithmetic, a given file has n blocks where n equals the ceiling of the file size f

divided by the block size b.

By assumption of proper operation of @sys.div, Assertion FAT12-7 and Assertion

FAT12-1, @sys.div(@this.FileSize(FileID), @this.BlockSize()) = f / b. We can obtain the

ceiling by adding 1 iff f mod b > 0; hence by assumption of proper operation of if and @sys.add,

and Assertion FAT12-9-1, BlocksInFile returns f / b as desired. !

Assertion FAT12-9

FileBlock() correctly returns the BlockNumth block of data of the regular file whose File

ID is passed to it in FileID.

101

 function FileBlock is char(FileID is integer, n is integer) {

 if(@sys.and(@sys.equ(@sys.add(n, 1),

 @this.BlocksInFile(FileID)),

 @sys.not(@this.FileHasEvenBlocks(FileID))))

 { @this.DataForBlock(@this.nthBlock(FileID, n),

 @sys.mod(@this.FileSize(FileID)

 @this.BlockSize())) }

 else { @this.DataForBlock(@this.nthBlock(FileID, n),

 @this.BlockSize()) }

 }

Demonstration:

By arithmetic, a given file has n blocks where n equals the ceiling of the file size f

divided by the block size b. The file�s last block has the partition�s full block size iff f mod b =

0; otherwise, it has size f mod b. Hence, we need to show two cases:

Case 1: n is the last block of the file associated with FileID, and the file�s size is not

integrally divisible by the block size.

Given that n is the last block of FileID�s file, by Assertion FAT12-9-3, n =

(BlocksInFile(FileID) - 1).

Given that FileID�s file�s size is not integrally divisible by the block size, by Assertion

FAT12-9-1, FileHasEvenBlocks(FileID) returns zero.

Hence by assumed proper operation of if, @sys.and, @sys.equ, @sys.add and

@sys.not, FileBlock() returns @this.DataForBlock(@this.nthBlock(FileID, n),

@sys.mod(@this.FileSize(FileID), @this.BlockSize())).

By Assertion FAT12-j, nthBlock(FileID, n) is the block number of the nth block of the

file associated with FileID.

102

By Assertion FAT12-7, FileSize(FileID) is the file size.

By Assertion FAT12-1, BlockSize() is the block size.

Hence by Assertion FAT12-9-2 and assumed proper operation of @sys.mod, FileBlock()

returns data of size f mod b where f is the file size and b is the fundamental block size from

FileID�s file�s last cluster, as desired.

Case 2: Otherwise.

By assumption of proper operation of else, FileBlock() returns

@this.DataForBlock(@this.nthBlock(FileID, n), @this.BlockSize()).

By Assertion FAT12-j, nthBlock(FileID, n) is the block number of the nth block of the

file associated with FileID.

By Assertion FAT12-1, BlockSize() is the block size.

Hence by Assertion FAT12-9-2, FileBlock() returns data of the fundamental block size

from FileID�s file�s nth cluster, as desired. !

Conclusion

Result HSL-FAT12: By Assertions FAT12-1, FAT12-2b, FAT12-3b, FAT12-4b, FAT12-5b,

FAT12-6, FAT12-7, FAT12-8, FAT12-9 and Conclusion 2, the fat12 HSL specification properly

reads the FAT12 file system as defined above. !

Definition of ext2fs

Primary sources for this section include (Card) and (Poirer).

103

Overview

The Second Extended File System, or ext2fs, is an ordinary hierarchical file system with

the following characteristics.

All integers are little-endian.

Partition Metadata

The ext2 filesystem has two relevant pieces of partition-level metadata. One is the

Superblock; the second is the set of group descriptors.

The Superblock occurs several places in the partition, but always at offset 1024, and

contains the following data:

104

Table 10: ext2fs superblock

Offset Length Object
0 4 Inodes in the file system
4 4 Blocks in the file system
8 4 Blocks reserved for

superuser
12 4 Free blocks
16 4 Free inodes
20 4 First data block
24 4 Block size shift
28 4 Fragment size shift
32 4 Blocks per group
36 4 Fragments per group
40 4 Inodes per group
44 4 Last mount time
48 4 Last write time
52 2 Times mounted since check
54 2 Maximum times to mount

before check
56 2 Magic number (0xEF53)
58 2 File system state
60 2 Error behavior
62 2 Minor revision level
64 4 Time of last filesystem

check
68 4 Maximum interval between

filesystem checks
72 4 Creator OS
76 4 Revision level
80 940 Reserved

The first data block is the ID of the block that contains the superblock structure. No other

partition data occurs before the superblock. ext2 does not use block numbers relative to a data

area - all block numbers are relative to the partition.

The block size shift indicates the file system's block size; the size is 1024 << block size

shift.

105

The fragment size shift likewise indicates the file system's fragment size; a negative value

can cause a right shift. In practice, except in highly exotic implementations, ext2fs's block size

and fragment size are identical. For simplicity's sake, we will assume this is the case.

The group descriptors occur one after the other immediately after the superblock, and

there are as many of them as necessary given the block count and blocks per group.

Table 11: ext2fs block group

Offset Length Object

0 4 Block bitmap location

(block number)

4 4 Inode bitmap location

(block number)

8 4 Inode table location (block

number)

12 2 Free blocks

14 2 Free inodes

16 2 Used directories

18 2 Pad

20 12 Reserved

bg_block_bitmap, bg_inode_bitmap, and bg_inode_table are the block numbers of the

block bitmap, inode bitmap and inode table for the group. Note that ext2 does not use block

numbers relative to a data area - all block numbers are relative to the partition.

106

The inode table contains the inodes for the group described by a given descriptor. If k is

the number of inodes per group, then the first group descriptor has a pointer to a table containing

inodes 1 to k, the second has a pointer to a table containing inodes k+1 to 2k, and so on.

File Metadata

Inode tables are arrays of inodes, which take the following form.

107

Table 12: ext2fs inode

Offset Length Object

0 2 File mode

2 2 User ID

4 4 File size

8 4 Access time

12 4 Creation time

16 4 Modification time

20 4 Deletion time

24 2 Group ID

26 2 Link count

28 4 Number of blocks

32 4 Behavior flags

36 4 Reserved

40 4x15 Block numbers

100 4 File version

104 4 File ACL

108 4 Directory ACL

112 4 Location of last fragment

116 12 Reserved

The first twelve block numbers directly point at file data.

108

The thirteenth block number is for single indirect addressing; for a file larger than 12

blocks, it points to a block of (block size / 4) additional block numbers.

The fourteenth block number is for double indirect addressing; for a file larger than (12 +

block size / 4) blocks, it points to (block size / 4) blocks *each* containing (block size / 4)

additional block numbers.

The fifteenth block number is for triple indirect addressing; for a file larger than (12 +

(block size / 4) * (block size / 4 + 1)) blocks, it points to (block size / 4) blocks each containing

pointers to (block size / 4) blocks each containing (block size / 4) additional block numbers.

Indirect addressing is additive - the inode's twelve internal blocks are still used when

single indirect addressing is in play, which is still used when double indirect addressing is in

play, which is still used when triple indirect addressing is in play.

Each inode has an inode number; each inode table stores s_inodes_per_group inodes.

inode indexes begin at 1, not at 0; hence, to find an inode's group and offset, subtract 1 before

dividing by s_inodes_per_group to get the group and performing modulo arithmetic to get the

offset.

The root directory has the reserved inode number 2. Inode number 0 is never used.

The twelve least-significant bits of the mode block concern file permissions. The upper

four are the file format, one of the following:

109

Table 13: ext2fs file formats

Value Format

1 FIFO

2 Character Device

4 Directory

6 Block Device

8 Regular File

10 Symbolic Link

12 Socket

Directories

Directories are stored as files that contain directory entries as their data. Directory entries

contain a file's name and its inode. In newer versions of ext2fs they also contain an easier way to

get the file mode, but as it isn't well documented which versions this is true for, we don't

consider it reliable.

They are structured as follows:

110

Table 14: ext2fs directory entry

Offset Length Object

0 4 Inode Number

4 2 Record Length

6 1 Name Length

8 Name Length Name

Directory entries are, as the above implies, not of constant length. The record length

gives the total length of a given directory entry (and is *not* guaranteed to be seven plus the

name length). A directory entry with inode number 0 is unused and should be ignored. The last

directory entry in a block is extended to fill the block, so determining when to move on to the

next block is straightforward.

Demonstration of Correctness for EXT2FS

All variables and functions are with respect to the HSL ext2 spacetype, unless noted

otherwise. Correct operation of the Hadley system and its built-in functions is assumed at all

times. All division is assumed to be integer. We note that through the assumed proper operation

of use clauses, the ext2 spacetype is able to declare ext2dirent, ext2inode, ext2superblock and

ext2groupdescriptor subspaces, and that ext2inode is able to declare ext2filemode subspaces.

111

Definition (EXT2FS File ID)

The File ID for the HSL ext2 spacetype is either the offset of the directory entry of the

associated file from the start of the partition or the number one, indicating the root directory.

Assertion EXT2FS-a

@superblock.BlocksCount(), @superblock.LogBlockSize(),

@superblock.BlocksPerGroup(), and @superblock.InodesPerGroup() return the number of

blocks, the block size shift, the number of blocks per group, and the number of inodes per group

for the partition, respectively.

 subspace superblock is ext2superblock at 1024.

Demonstration

By assumed proper operation of subspace, superblock is a space of type ext2superblock

at offset 1024 in the partition. By the definition of ext2fs the superblock occurs at offset 1024 in

the partition. Hence it suffices to show that ext2superblock indicates the desired values

properly with respect to the ext2fs superblock structure.

 var BlocksCount is public integer littleend width 32 at 4.

 var LogBlockSize is public integer littleend width 32 at 24.

 var BlocksPerGroup is public integer littleend width 32 at 32.

 var InodesPerGroup is public integer littleend width 32 at 40.

By the definition of ext2fs the number of blocks, block size shift, number of blocks per

group and number of inodes per group occur at offsets 4, 24, 32, and 40 in the superblock

respectively and are each 4 bytes wide. Simple inspection then demonstrates the equivalence of

112

the variable specifications with their corresponding locations in the superblock structure, and by

assumed proper operation of public functions the corresponding functions return the variables�

values. !

Assertion EXT2FS-b

Given an ext2groupdescriptor structure describing an ext2fs group descriptor, the

function InodeTable() returns the first block number of the inode table for the group.

 var InodeTable is public integer littleend width 32 at 8.

Demonstration

By the definition of ext2fs the inode table block number occurs at offset 8 in the group

descriptor and is 4 bytes wide. Simple inspection demonstrates the equivalence of the variable

specification. By assumed proper operation of a public function the corresponding function

returns the variable�s value. !

Assertion EXT2FS-c

Given an ext2inode structure describing an ext2fs inode, the functions Size(), Blocks(),

IsRegularFile(), and IsDirectory() return the size of the inode�s associated file, the block count

of the inode�s associated file or directory, nonzero iff the inode refers to a sequential file and

nonzero iff the inode refers to a directory, respectively.

113

 var Size is public integer littleend width 32 at 4.

 var Blocks is public integer littleend width 32 at 28.

Demonstration

By the definition of ext2fs the file size and block count occur at offsets 4 and 28 in the

inode, and both are 4 bytes wide. Simple inspection demonstrates the equivalence of the variable

specifications. By assumed proper operation of public functions the corresponding functions

return the variables� values.

 subspace Mode is ext2filemode at 0.

 function IsRegularFile is integer() { @Mode.IsRegularFile() }

 function IsDirectory is integer() { @Mode.IsDirectory() }

By the definition of ext2fs the file mode occurs at offset 0 in the inode. It now suffices to

show that with given an ext2filemode structure describing an ext2fs file mode block, the

functions IsRegularFile() and IsDirectory() return nonzero iff the inode refers to a sequential

file and iff the inode refers to a directory, respectively.

 var FileMode is public integer littleend width 4 at 1 minor 4.

 function IsRegularFile is integer() { @sys.equ($FileMode, 8) }

 function IsDirectory is integer() { @sys.equ($FileMode, 4) }

By the definition of ext2fs the file format occurs in the four most significant bits of the

mode block. Simple inspection demonstrates the equivalence of the FileMode specification. By

the definition of ext2fs an inode refers to a regular file iff the file format value is 8, and a

directory iff the file format value is 4. Hence by assumed proper operation of @sys.equ

IsRegularFile() returns nonzero iff the file mode value is 8 iff the inode refers to a sequential

file, and IsDirectory() returns nonzero iff the file mode value is 4 iff the inode refers to a

directory. !

114

Assertion EXT2FS-d

Given an ext2inode structure describing an ext2fs inode, the function Block() passed a

number n with a value 0 through 11 returns the nth block number for the file, passed the number

12 it returns the single-indirect block number for the file, passed the number 13 it returns the

double-indirect block number for the file and passed the number 14 it returns the triple-indirect

block number for the file.

 var Block is public integer[15] littleend width 32 at 40.

Demonstration

By the definition of ext2fs the block numbers occur at offset 40 in the inode, in an array

of 15, each 4 bytes wide. The first twelve entries are the first twelve block numbers for the file,

and the next three are the single-, double-, and triple-indirect block numbers respectively.

Simple inspection shows that the variables Block[0..11] correspond to the first twelve block

numbers and Block[12..14] correspond to the respective indirect block numbers. By assumed

proper operation of a public function Block() returns these values as desired. !

Assertion EXT2FS-e

Given an ext2dirent structure describing an ext2fs directory entry, the functions Inode(),

RecordLength(), NameLength(), Name() and IsUsed() return the associated inode number, the

length of the entry, the length of the name, the name, and nonzero iff the directory entry is used,

respectively.

115

 var Inode is public integer littleend width 32 at 0.

 var RecordLength is public integer littleend width 16 at 4.

 var NameLength is public integer littleend width 8 at 6.

By the definition of ext2fs the inode number, record length and name length occur at

offsets 0, 4 and 6 in the directory entry, and have widths of 4, 2 and 1 byte(s), respectively.

Simple inspection demonstrates the equivalence of the variable specifications and by assumed

proper operation of public functions the corresponding functions return the variables� values.

 var Name is char[$NameLength] at 8.

function Name is char() {

 $Name<0, $NameLength>

 }

By the definition of ext2fs the file name occurs at offset 8 in the directory entry, and from

the above it has string length corresponding to the value of NameLength. Simple inspection

demonstrates the equivalence of the variable specification, hence by assumed proper operation of

the multiple array operator Name() returns the file name.

 function IsUsed is integer() {

 @sys.not(@sys.equ($Inode, 0))

 }

By the definition of ext2fs a directory entry is used iff its inode number is other than zero.

From above, Inode is the inode number. Hence by assumed proper operation of @sys.not and

@sys.equ, IsUsed() returns true iff the inode number is other than zero iff the directory entry is

used. !

116

Assertion EXT2FS-1

BlockSize() correctly returns the file system's fundamental block size. (This is not the

same thing as the sector size of the underlying media.)

 function BlockSize is integer() {

 @sys.mul(1024, @sys.2to(@superblock.LogBlockSize()))

 }

Demonstration

By Assertion EXT2FS-a, @superblock.LogBlockSize is equal to the block size shift.

From the definition of ext2fs, the block size is equal to 1024 × 2^(block size shift). By Assertion

EXT2FS-a and assumed proper operation of @sys.2to, BlockSize() returns 1024 × 2^(block size

shift). !

Assertion EXT2FS-1-1

BlockSize4() returns the block size divided by 4.

 function BlockSize4 is integer() {

 @sys.div(@this.BlockSize(), 4)

 }

Demonstration

From Assertion EXT2FS-1 and assumed proper operation of @sys.div, the desired result

immediately follows. !

117

Assertion EXT2FS-f

IntExtract(), passed a block number n for a block of 4-byte integers and an integer

number k, extracts the kth 4-byte integer from that block.

 function IntExtract is integer(n is integer, k is integer) {

 @sys.intAt(@sys.add(@sys.mul(n, @this.BlockSize()),

 @sys.mul(k, 4)), 0, 32, 0)

 }

Demonstration

By assumed proper operation of @sys.intAt(), IntExtract() returns a little-endian 4-byte

integer from @sys.add(@sys.mul(n, @this.BlockSize()), @sys.mul(k, 4)). By assmed proper

operation of @sys.add and @sys.mul this is (n × BlockSize()) + 4k. By Assertion EXT2FS-1

this is the offset 4k bytes into block n, hence the location of the desired integer. !

Assertion EXT2FS-g

SIndMax() and DIndMax() return the maximum number of file blocks for single and

double indirect addressing, hence the lowest file block numbers requiring double and triple

indirect addressing, respectively.

118

 function SIndMax is integer() {

 @sys.add(@this.BlockSize4(), 12)

 }

 function DIndMax is integer() {

 @sys.add(@sys.mul(@this.BlockSize4(), @this.BlockSize4()),

 @this.SIndMax())

 }

Demonstration

By the definition of ext2fs, double indirect addressing is needed for files larger than (12 +

block size / 4) blocks. By proper operation of @sys.add and Assertion EXT2FS-1-1,

SIndMax() returns this value.

By the definition of ext2fs, triple indirect addressing is needed for files larger than

(12 + (block size / 4) * (block size / 4 + 1)) blocks

 = (12 + (block size / 4) + (block size / 4)^2) blocks arithmetic

 = (SIndMax() + (block size / 4)^2) blocks above

and by assumed proper operation of @sys.add and @sys.mul, DIndMax() returns this

value. !

Assertion EXT2FS-h

DoubleIndirect(), passed a source block number n and an offset block number k, where k

is less than s^2 where s is the partition block size divided by 4, returns the kth block pointed to

by n�s double-indirect addressing.

119

 function DoubleIndirect is integer(n is integer, k is integer) {

 @this.IntExtract(

 @this.IntExtract(n, @sys.div(k, @this.BlockSize4())),

 @sys.mod(k, @this.BlockSize4())

)

 }

Demonstration

By the definition of ext2fs double indirect addressing, n is a block number pointing to a

block containing an array of s integers, where s is the partition�s block size divided by 4. These

integers each in turn are block numbers pointing to blocks containing arrays of s integers as well.

Hence n�s double-indirect addressing points to s^2 blocks, of which we want the kth. By

arithmetic k = ls + m where l = k/s and m = k mod s, since k < s^2 l < s and m < s, and our result

must be the mth integer in the lth block pointed to by block n.

By assumed proper operation of @sys.div and @sys.mod, and Assertion EXT2FS-1-1,

DoubleIndirect() returns IntExtract(IntExtract(n, l), m). By Assertion EXT2FS-f, this is the

mth integer in the block with the number that is the lth integer in n � that is, the mth integer in the

lth block pointed to by block n. !

Assertion EXT2FS-i

TripleIndirect(), passed a source block number n and an offset block number k, where k is

less than s^3 where s is the partition block size divided by 4, returns the kth block pointed to by

n�s triple-indirect addressing.

120

 function TripleIndirect is integer(n is integer, k is integer) {

 @this.IntExtract(

 @this.IntExtract(

 @this.IntExtract(

 n,

 @sys.div(@sys.div(k, @this.BlockSize4()),

 @this.BlockSize4())

),

 @sys.mod(@sys.div(k, @this.BlockSize4()),

 @this.BlockSize4())

),

 @sys.mod(k, @this.BlockSize4())

)

 }

Demonstration

By the definition of ext2fs triple indirect addressing, n is a block number pointing to a

block containing an array of s integers, where s is the partition�s block size divided by 4. These

integers each in turn are block numbers pointing to blocks containing arrays of s integers as well,

and these integers finally are block numbers pointing to blocks containing arrays of s integers

themselves. Hence n�s triple-indirect addressing points to s^3 blocks, of which we want the kth.

By arithmetic decompose k into base s. k = ls + q where l = k/s and q = k mod s, and

further, l = os + p where o = l/s and p = l mod s. Since k < s^3 o, p and q are all less than s. Our

result must be the qth integer in the block pointed to by the pth integer in the oth block pointed to

by block n.

121

By assumed proper operation of @sys.div and @sys.mod, and Assertion EXT2FS-1-1,

TripleIndirect() returns IntExtract(IntExtract(IntExtract(n, o), p), q). By repeated

application of Assertion EXT2FS-f, this is the qth integer in the block pointed to by the pth

integer in the oth block pointed to by n. !

Assertion EXT2FS-j

TranslateBlock(), given the location of an inode and a number n, returns the partition

block number for that inode�s nth block.

122

 function TranslateBlock is integer(inodeloc is integer,

 n is integer)

 with inode is ext2inode at inodeloc

 {

 if(@sys.lst(n, 12)) { @inode.Block(n) } else {

 if(@sys.lst(n, @this.SIndMax())) {

 @this.IntExtract(@inode.Block(12),

 @sys.sub(n, 12))

 } else {

 if(@sys.lst(n, @this.DIndMax())) {

 @this.DoubleIndirect(@inode.Block(13),

 @sys.sub(n, @this.SIndMax()))

 } else {

 @this.TripleIndirect(@inode.Block(14),

 @sys.sub(n, @this.DIndMax()))

 }

 }

 }

 }

Demonstration

By the assumed proper operation of with, inode is an ext2inode structure describing the

inode at the passed location. By the definition of ext2fs block addressing, there are four possible

cases.

Case 1: Direct addressing.

By the definition of ext2fs block addressing, if the block number is lower than 12,

indirect addressing is used based on one of the first twelve entries in the inode�s block list. By

123

assumed proper operation of if and @sys.lst, if the block number is lower than 12, then

TranslateBlock() returns @inode.Block(n). By Assertion EXT2FS-d this is the partition block

number for the inode�s nth block as desired.

Case 2: Single-indirect addressing.

By the definition of ext2fs block addressing, if the block number is at least twelve but

low enough to be handled by single indirect addressing, single indirect addressing is used. By

assumed proper operation of if/else, @sys.lst and @sys.sub, and Assertion EXT2FS-g, if the

block number is at least twelve but low enough to be handled by single indirect addressing, then

TranslateBlock() returns IntExtract(@inode.Block(12), n-12). By Assertions EXT2FS-d and

EXT2FS-f, this is the n-12th entry in the single-indirect block for the inode, as desired.

Case 3: Double-indirect addressing.

By the definition of ext2fs block addressing, if the block number is too high to be

handled by single indirect addressing but low enough to be handled by double indirect

addressing, double indirect addressing is used. By assumed proper operation of if/else, @sys.lst

and @sys.sub, and Assertion EXT2FS-g, if the block number is too high to be handled by single

indirect addressing but low enough to be handled by double indirect addressing, then

TranslateBlock() returns DoubleIndirect(@inode.Block(13), n-SIndMax()). By Assertions

EXT2FS-d and EXT2FS-f, this is the n-sth entry in the double-indirect block structure for the

inode, where s is the number of blocks handled by single-indirect addressing, as desired.

Case 4: Triple-indirect addressing.

By the definition of ext2fs block addressing, if the block number is too high to be

handled by double indirect addressing, triple indirect addressing is used. By assumed proper

operation of if/else, @sys.lst and @sys.sub, and Assertion EXT2FS-g, if the block number is too

124

high to be handled by double indirect addressing, then TranslateBlock() returns

TripleIndirect(@inode.Block(14), n-DIndMax()). By Assertions EXT2FS-d and EXT2FS-f,

this is the n-dth entry in the triple-indirect block structure for the inode, where d is the number of

blocks handled by double-indirect addressing, as desired. !

Assertion EXT2FS-k

FindInodeNumber(), given an inode number, returns the offset of that inode in the

partition.

125

 function FindInodeNumber is integer (InodeID is integer)

 with groupdescriptor is ext2groupdescriptor at

 @sys.add(2048,

 @sys.mul(32,

 @sys.div(@sys.sub(InodeID, 1),

 @superblock.InodesPerGroup())))

 {

 @sys.add(

 @sys.mul(@groupdescriptor.InodeTable(),

 @this.BlockSize()),

 @sys.mul(@sys.mod(@sys.sub(InodeID, 1),

 @superblock.InodesPerGroup()), 128)

)

 }

Demonstration

By the definition of ext2fs, s inodes are in the table pointed to by each group descriptor,

and the very first inode is numbered one rather than zero. Hence, by zero-indexing, we actually

want the ith inode, where i = InodeID � 1. By arithmetic, i = k + l where k = i / s and l = i mod s

and we want the lth inode in group k.

By the definition of ext2fs, the group descriptors occur immediately after the superblock,

which occurs at offset 1024 and has length 1024. Hence the group descriptors begin at offset

2048. Also by the definition of ext2fs, the group descriptor structure is 32 bytes long. Hence the

group descriptor whose inode table we want is at 32k bytes from offset 2048 in the partition.

By assumed proper operation of @sys.add, @sys.mul, @sys.div and @sys.sub, and

Assertion EXT2FS-a, groupdescriptor�s location, assuming proper operation of with, places it

126

at 2048 + 32((InodeID � 1) / s) = 2048 + 32k. Hence by assumed proper operation of with,

groupdescriptor indicates group k and it remains to show that we return the lth node from its

table.

By the definition of an ext2fs group descriptor, the inode table entry is a partition block

number; hence the offset for the inode table of a group is the inode table entry for that group

times the block size. Hence by Assertions EXT2FS-b and EXT2FS-1, and the assumption of

proper operation of @sys.add and @sys.mul, FindInodeNumber() returns the offset of

groupdescriptor�s inode table plus @sys.mul(@sys.mod(@sys.sub(InodeID, 1),

@superblock.InodesPerGroup()), 128). By assumption of proper operation of @sys.mul,

@sys.mod and @sys.sub, and Assertion EXT2FS-a, this is 128l. By definition of an ext2 inode,

inodes are 128 bytes long. Hence FindInodeNumber() returns the offset of groupdescriptor�s

inode table plus 128l, or the lth inode in group k, as desired. !

Assertion EXT2FS-l

GetRootDirectoryInodeLoc() returns the offset in the partition of the root directory�s

inode.

 function GetRootDirectoryInodeLoc is integer() {

 @this.FindInodeNumber(2)

 }

Demonstration

By the definition of ext2fs, the root directory has inode number 2. Hence by Assertion

EXT2FS-k GetRootDirectoryInodeLoc() returns the location of the root directory�s inode. !

127

Assertion EXT2FS-2b

RootDirectoryID() returns a unique "magic number" for the root directory that cannot

otherwise refer to a valid directory or file.

function RootDirectoryID is integer() {

 1

}

Demonstration

By the definition of ext2fs, the superblock occurs at offset 1024, and no other data can

appear before the superblock. Hence no directory entry can appear at offset 1. Hence, by

definition of an EXT2FS File ID, 1 cannot be a valid File ID other than the Root Directory ID. !

Assertion EXT2FS-m

FindInodeForFileID(), given a File ID, returns the offset in the partition of the inode for

the associated file.

128

 function FindInodeForFileID is integer (FileID is integer)

 with dirent is ext2dirent at FileID

 {

 if(@sys.equ(FileID, @this.RootDirectoryID())) {

 @this.GetRootDirectoryInodeLoc()

 } else {

 @this.FindInodeNumber(@dirent.Inode())

 }

 }

Demonstration

By the definition of an EXT2FS File ID, there are two cases. In the first case, the File ID

is the ID of the root directory. In this case, by assumed proper operation of if and Assertion

EXT2FS-2b, FindInodeForFileID() returns GetRootDirectoryInodeLoc(), and by Assertion

EXT2FS-l, that is as desired. In the second case, the File ID is the location of a directory entry.

Hence by assumed proper operation of with, dirent is the ext2dirent structure for FileID�s

associated file, and by assumed proper operation of else, Assertion EXT2FS-k and Assertion

EXT2FS-e, we return the location of its inode. !

Assertion EXT2FS-n

DirectoryEntryLoc() returns the location of the nth directory entry in the directory with

the DirectoryID passed to it, or 0 if n ≥ the number of entries in that directory.

129

 function DirectoryEntryLocStep is integer(inodeloc is integer,
 count is integer,
 block is integer,
 loc is integer)
 with inode is ext2inode at inodeloc,
 dirent is ext2dirent
 at @sys.add(
 @sys.mul(
 @this.TranslateBlock(inodeloc, block),
 @this.BlockSize()),
 loc)

{
 if(@sys.equ(block, @inode.Blocks())) { 0 }
 else {
 if(@sys.equ(count, 0)) {
 @sys.add(@sys.mul(@this.TranslateBlock(inodeloc, block),
 @this.BlockSize()),
 loc)
 } else {
 if(@sys.equ(@sys.add(loc, @dirent.RecordLength()),
 @this.BlockSize())) {
 @this.DirectoryEntryLocStep(inodeloc, @sys.sub(count, 1),
 @sys.add(block, 1), 0)
 } else {
 @this.DirectoryEntryLocStep(inodeloc, @sys.sub(count, 1),
 block,
 @sys.add(loc,
 @dirent.RecordLength()))
 }
 }
 }
 }
 function DirectoryEntryLoc is integer(DirectoryID is integer,
 n is integer)
 with dirent is ext2dirent at DirectoryID
 {
 @this.DirectoryEntryLocStep(
 @this.FindInodeForFileID(DirectoryID), n, 0, 0)
 }

Demonstration

We first show that DirectoryEntryLocStep(), passed the offset of the inode of a

directory in inodeloc, a count of desired entries forward, the block of the directory in which to

begin, and the location in that block of a valid directory entry, returns:

 0 if the block is higher than the last block in the directory,

 The partition offset of the directory entry that loc points to if count is 0,

130

 DirectoryEntryLocStep(inodeloc, count � 1, block + 1, 0) if loc points to the last directory

entry in the block, and

 DirectoryEntryLocStep(inodeloc, count - 1, block, loc�) where loc� is the location in the

block of the next directory entry after loc, otherwise.

By assumed proper operation of @sys.add and @sys.mul, Assertion EXT2FS-j,

Assertion EXT2FS-1, arithmetic, and the definition of ext2fs partition blocks,

@sys.add(@sys.mul(@this.TranslateBlock(inodeloc, block), @this.BlockSize()), loc) is the

partition offset of the location with offset loc in block block of the inode associated with

inodeloc.

By assumed proper operation of with, inode is an ext2inode structure describing the

inode associated with inodeloc.

By assumed proper operation of with and from above, dirent is an ext2dirent structure

describing the directory entry at loc in block block of the inode associated with inodeloc.

By assumed proper operation of if/else, there are four cases.

Case 1: By assumed proper operation of @sys.equ and Assertion EXT2FS-c, block is

greater than or equal to the number of blocks in the inode referred to by inodeloc. Then block is

a higher number than the last block in the directory, and DirectoryEntryLocStep() returns 0 as

desired.

Case 2: By assumed proper operation of @sys.equ, count is 0. Then from above,

DirectoryEntryLocStep returns the partition offset of the location with offset loc in block block

of the inode associated with inodeloc, as desired.

Case 3: By assumed proper operation of @sys.equ and @sys.add, and Assertions

EXT2FS-e and EXT2FS-1, loc plus the record length of the directory entry it points to equals the

131

block size. Hence loc clearly points to the last directory entry in the block. By assumed proper

operation of @sys.add and @sys.sub we return DirectoryEntryLocStep(inodeloc, count � 1,

block + 1, 0) as desired.

Case 4: By presumed proper operation of else, none of the above. By assumed proper

operation of @sys.sub, @sys.add and Assertion EXT2FS-e, we return

DirectoryEntryLocStep(inodeloc, count - 1, block, loc�) as desired.

Hence by simple recursion, DirectoryEntryLocStep() steps through the entries in the

directory data pointed to by inodeloc, decrementing count for each entry, and returning the entry

it reaches when count reaches 0 or returning 0 if it runs out of entries before that.

By Assertion EXT2FS-m, DirectoryEntryLoc() returns

DirectoryEntryLocStep(inodeloc, n, 0, 0) where inodeloc is the location of the inode

associated with DirectoryID. By simple recursion this is either the nth directory entry in the

directory associated with DirectoryID or 0 if that entry does not exist. !

Assertion EXT2FS-3b

FilesIn() correctly returns the number of files in the root directory if passed the "magic

number" for the root directory in DirectoryID, and otherwise correctly returns the number of files

in the directory with the DirectoryID passed to it.

132

 function FilesInStep is integer(DirectoryID is integer,

 n is integer,

 count is integer)

 with dirent is ext2dirent

 at @this.DirectoryEntryLoc(DirectoryID, n)

 {

 if(@sys.equ(@this.DirectoryEntryLoc(DirectoryID, n), 0)) {

 count

 } else {

 @this.FilesInStep(DirectoryID, @sys.add(n, 1),

 if(@dirent.IsUsed()) { @sys.add(count, 1) }

 else { count })

 }

 }

 function FilesIn is integer(DirectoryID is integer) {

 @this.FilesInStep(DirectoryID, 0, 0)

 }

First consider FilesInStep(). By assumed proper operation of with and Assertion

EXT2FS-n, dirent is the nth directory entry in the directory indicated by DirectoryID. By

assumed proper operation of if and Assertion EXT2FS-n, FilesInStep() returns count if this

entry does not exist. Otherwise, by assumed proper operation of if/else, @sys.add and Assertion

EXT2FS-e, FilesInStep() returns FilesInStep(DirectoryID, n+1, count+1) if direntis a used

entry, and FilesInStep(DirectoryID, n+1, count) if not. FilesIn() returns

FilesInStep(DirectoryID, 0, 0) which by trivial recursion returns the number of used entries,

and hence the number of files, in the directory indicated by DirectoryID. !

133

Assertion EXT2FS-4b

nthFileIn() correctly returns the File ID of the Nth file in the root directory if passed the

"magic number" for the root directory in DirectoryID, and otherwise correctly returns the File ID

of the Nth file in the directory with the DirectoryID passed to it.

134

 function nthFileInStep is integer(DirectoryID is integer,

 n is integer, count is integer)

 with dirent is ext2dirent

 at @this.DirectoryEntryLoc(DirectoryID, n)

 {

 if(@dirent.IsUsed()) {

 if(@sys.equ(count, 0)) {

 @this.DirectoryEntryLoc(DirectoryID, n)

 } else {

 @this.nthFileInStep(DirectoryID,

 @sys.add(n, 1), @sys.sub(count, 1))

 }

 } else {

 @this.nthFileInStep(DirectoryID,

 @sys.add(n, 1), count)

 }

 }

 function nthFileIn is integer(DirectoryID is integer, n is integer)

 {

 @this.nthFileInStep(DirectoryID, 0, n)

 }

First consider nthFileInStep().By assumed proper operation of with and Assertion

EXT2FS-n, dirent is the nth directory entry in the directory indicated by DirectoryID. By

assumed proper operation of if/else, @sys.add and @sys.sub, Assertion EXT2FS-e and

Assertion EXT2FS-n, nthFileInStep () returns the location of the nth entry in DirectoryID�s

135

indicated directory if it is used and count is 0, nthFileInStep(DirectoryID, n+1, count-1) if it is

used but count > 0, and nthFileInStep(DirectoryID, n+1, count) if it is unused.

Hence by simple recursion, nthFileInStep() steps through the entries in DirectoryID�s

indicated directory, decrementing count each time it encounters a used entry and returning the

next used entry it encounters once count is 0.

nthFileIn() returns nthFileInStep(DirectoryID, 0, N), which by simple recursion

returns the Nth used entry in DirectoryID�s indicated directory, hence the Nth file. !

Assertion EXT2FS-5b

FileIsDirectory() correctly returns a nonzero value iff the File ID passed to it in FileID is

the "magic number" for the root directory or otherwise is the File ID of a directory.

function FileIsDirectory is integer(FileID is integer)

 with inode is ext2inode at @this.FindInodeForFileID(FileID)

 {

 @inode.IsDirectory()

 }

Demonstration

By Assertion EXT2FS-m and assumed proper operation of with, inode is an ext2inode

structure describing the inode associated with FileID�s file.

By Assertion EXT2FS-c, FileIsDirectory() returns true iff inode refers to a directory. !

136

Assertion EXT2FS-6

FileIsRegular() correctly returns a nonzero value iff the File ID passed to it in FileID is

the File ID of a regular sequential file.

 function FileIsRegular is integer(FileID is integer)

 with inode is ext2inode at @this.FindInodeForFileID(FileID)

 {

 @inode.IsRegularFile()

 }

Demonstration

By Assertion EXT2FS-m and assumed proper operation of with, inode is an ext2inode

structure describing the inode associated with FileID�s file.

By Assertion EXT2FS-c, FileIsRegular() returns true iff inode refers to a regular

sequential file. !

Assertion EXT2FS-7

FileSize() correctly returns the size of the regular file whose File ID is passed to it in

FileID.

137

 function FileSize is integer(FileID is integer)

 with inode is ext2inode at @this.FindInodeForFileID(FileID)

 {

 @inode.Size()

 }

Demonstration

By Assertion EXT2FS-m and assumed proper operation of with, inode is an ext2inode

structure describing the inode associated with FileID�s file.

By Assertion EXT2FS-c, FileSize() returns the size of the file to which inode refers. !

Assertion EXT2FS-8

FileName() correctly returns the name of the regular file or non-root directory whose File

ID is passed to it in FileID.

 function FileName is char(FileID is integer)

 with dirent is ext2dirent at FileID

 {

 @dirent.Name()

 }

Demonstration

By definition of an EXT2FS File ID and assumed proper operation of with, dirent is an

ext2dirent structure describing the directory entry associated with FileID�s file.

By Assertion EXT2FS-e, FileName() returns the name of the file to which dirent refers.

!

138

Assertion EXT2FS-9-1

FileHasEvenBlocks() returns a nonzero value iff the regular file associated with the

passed FileID has a file size integrally divisible by the block size.

 function FileHasEvenBlocks is integer(FileID is integer) {

 if(@sys.grt(@sys.mod(@this.FileSize(FileID),

 @this.BlockSize()), 0)) { 0 }

 else { 1 }

 }

Demonstration

By Assertion EXT2FS-7, FileSize(FileID) returns the size of the regular file associated

with FileID. By Assertion EXT2FS-1, BlockSize() returns the block size. By assumption of

proper implementation of @sys.mod, @sys.mod(@this.FileSize(FileID), @this.BlockSize())

returns greater than zero if and only if the file size is not integrally divisible by the block size.

Hence by assumption of proper implementation of if and @sys.grt, FileHasEvenBlocks()

returns nonzero iff the file size is integrally divisible by the block size. !

Assertion EXT2FS-9-2

BlocksInFile() returns the number of blocks in the regular file associated with the passed

FileID.

139

 function BlocksInFile is integer(FileID is integer) {

 @sys.add(@sys.div(@this.FileSize(FileID),

 @this.BlockSize()),

 if(@this.FileHasEvenBlocks(FileID)) { 0 } else { 1 }

)

 }

Demonstration

By arithmetic, a given file has n blocks where n equals the ceiling of the file size f

divided by the block size b.

By assumption of proper operation of @sys.div, Assertion EXT2FS-7 and Assertion

EXT2FS-1, @sys.div(@this.FileSize(FileID), @this.BlockSize()) = f / b. We can obtain the

ceiling by adding 1 iff f mod b > 0; hence by assumption of proper operation of if and @sys.add,

and Assertion EXT2FS-9-1, BlocksInFile returns f / b as desired. !

Assertion EXT2FS-9-3

SizeOfBlock() returns the size of the nth block of the file indicated by the FileID passed

to it.

140

 function SizeOfBlock is integer(FileID is integer, n is integer) {

 if(@sys.and(@sys.equ(@sys.add(n, 1), @this.BlocksInFile(FileID)),

 @sys.not(@this.FileHasEvenBlocks(FileID)))) {

 @sys.mod(@this.FileSize(FileID), @this.BlockSize())

 } else { @this.BlockSize() }

 }

By arithmetic, a given file has n blocks where n equals the ceiling of the file size f

divided by the block size b. The file�s last block has the partition�s full block size iff f mod b =

0; otherwise, it has size f mod b. Hence, we need to show two cases:

Case 1: n is the last block of the file associated with FileID, and the file�s size is not

integrally divisible by the block size.

Given that n is the last block of FileID�s file, by Assertion EXT2FS-9-2, n =

(BlocksInFile(FileID) - 1).

Given that FileID�s file�s size is not integrally divisible by the block size, by Assertion

EXT2FS-9-1, FileHasEvenBlocks(FileID) returns zero.

Hence by assumed proper operation of if, @sys.and, @sys.equ, @sys.add and

@sys.not, SizeOfBlock() returns @sys.mod(@this.FileSize(FileID), @this.BlockSize())).

Hence by Assertion EXT2FS-9-2 and assumed proper operation of @sys.mod,

SizeOfBlock() returns f mod b where f is the file size and b is the fundamental block size, as

desired.

Case 2: Otherwise.

By assumption of proper operation of else, SizeOfBlock() returns @this.BlockSize().

Hence by Assertion EXT2FS-1, FileBlock() returns the fundamental block size, as

desired. !

141

Assertion EXT2FS-9

FileBlock() correctly returns the BlockNumth block of data of the regular file whose File

ID is passed to it in FileID.

 function FileBlock is char(FileID is integer, BlockNum is integer)

 with dirent is ext2dirent at FileID

 {

 @sys.charAt(

 @sys.mul(

 @this.TranslateBlock(

 @this.FindInodeNumber(@dirent.Inode()), BlockNum),

 @this.BlockSize()),

 @this.SizeOfBlock(FileID, BlockNum))

 }

Demonstration

By definition of an EXT2FS File ID and assumed proper operation of with, dirent is an

ext2dirent structure describing the directory entry associated with FileID�s file.

By Assertions EXT2FS-j, EXT2FS-k and EXT2FS-e,

@TranslateBlock(@InodeNumber(@dirent.Inode()), BlockNum) is the partition block

number of the BlockNumth block of FileID�s file.

Hence by assumed proper operation of @sys.mul and @sys.charAt, and Assertion

EXT2FS-1, FileBlock() returns the data beginning at the partition block number of the

BlockNumth block of data in FileID�s file, times the block size. By definition of ext2fs partition

blocks this is the offset of the BlockNumth block of data in FileID�s file.

142

By assertion EXT2FS-9-3, @this.SizeOfBlock(FileID, n) is the size of the nth block of

FileID�s file. Hence by assumed proper operation of @sys.charAt, FileBlock() returns data of a

size equivalent to the size of the nth block of FileID�s file. !

Conclusion

Result HSL-EXT2FS: By Assertions EXT2FS-1, EXT2FS-2b, EXT2FS-3b, EXT2FS-4b,

EXT2FS-5b, EXT2FS-6, EXT2FS-7, EXT2FS-8, EXT2FS-9 and Conclusion 2, the ext2fs HSL

specification properly reads the Second Extended File System as defined above.

143

CHAPTER FIVE: CONCLUSION

Summary

We have discussed and researched the lack of formalization of I/O subsystems in modern

operating systems, and concluded that it is problematic for operating systems designers, digital

investigators, and computer scientists as a whole.

We have proposed, based on the OSI model of networking, a generalized, layered

translation model of input and output, based on control of the data flow between layers of a

computer and layers within the computer�s operating system. We have suggested that I/O can be

defined in terms of translation steps between those layers.

We have presented the Hadley Specification Language as an initial tool to enable such

definitions to be constructive. Within this tool, we have written functions to define translations

of the FAT12 and Second Extended file systems from raw partition data to directory hierarchies

containing sequential files, and demonstrated their effectiveness in operation.

We have demonstrated the above translations to be correct, demonstrating the

verifiability of specifications written in HSL and the verifiability of I/O as constructed using the

Hadley approach.

144

Future Directions

The Model

One major area of future work is extension of the Hadley model, to include further

exploration of I/O subtypes amenable to the translation layer model and their incorporation,

either by explanation or by extension, into the Hadley model itself.

The System

The second major area for future work is extension of HSL. In its current state, it is

significant, but not nearly sufficient to be used as an operating system�s sole method of input and

output. At present, every place in the code where a choice between efficiency and clarity

presented itself, clarity was chosen, so there are major opportunities for optimization of the code.

Extension of the language to include time primitives will allow a far greater number of devices,

virtual and otherwise, to be represented, as well as allow HSL to begin to communicate directly

with hardware.

145

Linux PC

Windows PC

SAMBA
VFS Layer

TCP/IP
Networking

Network
Device

SMB File
Service

TCP/IP
Networking

Network
Device

NTFS File
System

Disk
Partition

Fixed Disk
Drive

Application/Server Request

Network Application (OSI)

Network Layers (OSI)

File System Access

NTFS Driver

Partitioning

Figure 6: Networked File Access

Figure 6 shows an example of a request that is common enough to be taken for granted,

but actually quite complex: a Linux PC accessing a Windows PC�s file system over a network.

The requests pass through file system to network translators, the networking subsystem, and the

Windows PC�s file system access methods. Every one of these transactions can be modeled with

a combination of the Hadley model as it exists and the OSI model � the Hadley software I/O

layers for the VFS and SMB file services, the Hadley software and hardware I/O layers for the

Windows PC�s file access, and the OSI model for the networking requests. (It is worth noting

that when it comes time to model networking for Hadley, we are very likely to simply use OSI.

Where a perfectly good layer model already exists, we should use it.) Handling the necessary

146

translations and compositions for complex requests like this should be the Hadley system�s

eventual goal.

Concurrency will be a major issue for HSL in the future. It does not come naturally to a

functional language designed from the ground up to see all operations as atomic. Initially we

will handle the overall reliability issues with aggressive locking, but this is a workaround, not a

solution. Aggressive atomicity requirements for writing � such as requiring all written lists to

leave a file system in a valid state when they are complete � may be a more workable approach.

These are initial ideas; concurrency is widely known as a major, live field of study in and of

itself, and determining how to best apply its principles to a new form of I/O subsystem will in

turn be a major project in and of itself.

The Tool

The third major area of future work is Hadley as a forensic investigative tool. In this

area, it is closest to its goal.

Fundamentally and simply, digital forensic investigators need three things:

• To get hold of any conceivable form of computer-sensible data,

• To not modify it while they get hold of it, and

• To be able to convince a judge and jury they got hold of it right and didn�t modify it.

The Hadley extractors, and even the Hadley VFS module once it is stabilized, are well

designed for all three of these goals. The Hadley system supports any file systems that

specifications have been written for, pulls all the standard data out of those file systems, has been

147

shown to do this right in a formal sense, and can easily be completely forbidden to do any

writing whatsoever.

The most obvious extension needed is more supported file systems; the tool will not be

taken seriously until it supports NTFS and, probably, HFS+ as well.

The tool must also be extended to handle at least some cases of �slack space data� or data

between the end of a file and the end of its last block, lost block chains and inodes, and hidden

information.

148

APPENDIX A: HSL SPECIFICATIONS

149

Source file: ext2.hsl

spacetype ext2filemode {
 # Regular File, Directory, Character Device, FIFO

 var FileMode is public integer littleend width 4 at 1 minor 4.

 # SetUID, SetGID, Sticky
 # These bits might well be wrong.

 var ISUID is public integer littleend width 1 at 1 minor 3.
 var ISGID is public integer littleend width 1 at 1 minor 2.
 var ISVTX is public integer littleend width 1 at 1 minor 1.

 # UNIX permission bits. These are right.

 var IRUSR is public integer littleend width 1 at 1 minor 0.
 var IWUSR is public integer littleend width 1 at 0 minor 7.
 var IXUSR is public integer littleend width 1 at 0 minor 6.
 var IRGRP is public integer littleend width 1 at 0 minor 5.
 var IWGRP is public integer littleend width 1 at 0 minor 4.
 var IXGRP is public integer littleend width 1 at 0 minor 3.
 var IROTH is public integer littleend width 1 at 0 minor 2.
 var IWOTH is public integer littleend width 1 at 0 minor 1.
 var IXOTH is public integer littleend width 1 at 0 minor 0.

 function IsSocket is integer() { @sys.equ($FileMode, 12) }
 function IsSymLink is integer() { @sys.equ($FileMode, 10) }
 function IsRegularFile is integer() { @sys.equ($FileMode, 8) }
 function IsBlockDevice is integer() { @sys.equ($FileMode, 6) }
 function IsDirectory is integer() { @sys.equ($FileMode, 4) }
 function IsCharDevice is integer() { @sys.equ($FileMode, 2) }
 function IsFIFO is integer() { @sys.equ($FileMode, 1) }
}

spacetype ext2superblock {
 var InodesCount is public integer littleend width 32 at 0.
 var BlocksCount is public integer littleend width 32 at 4.
 var RBlocksCount is public integer littleend width 32 at 8.
 var FreeBlocksCount is public integer littleend width 32 at 12.
 var FreeInodesCount is public integer littleend width 32 at 16.
 var FirstDataBlock is public integer littleend width 32 at 20.
 var LogBlockSize is public integer littleend width 32 at 24.
 var LogFragSize is public integer littleend width 32 at 28.
 var BlocksPerGroup is public integer littleend width 32 at 32.
 var FragsPerGroup is public integer littleend width 32 at 36.
 var InodesPerGroup is public integer littleend width 32 at 40.
 var Mtime is public integer littleend width 32 at 44.
 var Wtime is public integer littleend width 32 at 48.
 var MntCount is public integer littleend width 16 at 52.
 var MaxMntCount is public integer littleend width 16 at 54.
 var Magic is public integer littleend width 16 at 56.
 var State is public integer littleend width 16 at 58.
 var Errors is public integer littleend width 16 at 60.
 var Pad is public integer littleend width 16 at 62.
 var LastCheck is public integer littleend width 32 at 64.
 var CheckInterval is public integer littleend width 32 at 68.
 var CreatorOS is public integer littleend width 32 at 72.
 var RevLevel is public integer littleend width 32 at 76.
}

spacetype ext2groupdescriptor {
 var BlockBitmap is public integer littleend width 32 at 0.

150

 var InodeBitmap is public integer littleend width 32 at 4.
 var InodeTable is public integer littleend width 32 at 8.
 var FreeBlocksCount is public integer littleend width 16 at 12.
 var FreeInodesCount is public integer littleend width 16 at 14.
 var UsedDirsCount is public integer littleend width 16 at 16.
}

spacetype ext2inode {
 use ext2filemode.

 subspace Mode is ext2filemode at 0.

 var UID is public integer littleend width 16 at 2.
 var Size is public integer littleend width 32 at 4.
 var ATime is public integer littleend width 32 at 8.
 var CTime is public integer littleend width 32 at 12.
 var MTime is public integer littleend width 32 at 16.
 var DTime is public integer littleend width 32 at 20.
 var GID is public integer littleend width 16 at 24.
 var LinksCount is public integer littleend width 16 at 26.
 var Blocks is public integer littleend width 32 at 28.
 var Flags is public integer littleend width 32 at 32.
 var Version is public integer littleend width 32 at 100.
 var FileACL is public integer littleend width 32 at 104.
 var DirACL is public integer littleend width 32 at 108.
 var FAddr is public integer littleend width 32 at 112.
 var Frag is public integer littleend width 8 at 116.
 var FSize is public integer littleend width 8 at 117.

 var Block is public integer[15] littleend width 32 at 40.

 function IsSocket is integer() { @Mode.IsSocket() }
 function IsSymLink is integer() { @Mode.IsSymLink() }
 function IsBlockDevice is integer() { @Mode.IsBlockDevice() }

 function IsRegularFile is integer() { @Mode.IsRegularFile() }
 function IsDirectory is integer() { @Mode.IsDirectory() }
 function IsCharDevice is integer() { @Mode.IsCharDevice() }
 function IsFIFO is integer() { @Mode.IsFIFO() }

 function IsSticky is integer() { @Mode.ISVTX() }
 function IsSetUID is integer() { @Mode.ISUID() }
 function IsSetGID is integer() { @Mode.ISGID() }

 function OtherCanRead is integer() { @Mode.IROTH() }
 function OtherCanWrite is integer() { @Mode.IWOTH() }
 function OtherCanExec is integer() { @Mode.IXOTH() }
 function GroupCanRead is integer() { @Mode.IRGRP() }
 function GroupCanWrite is integer() { @Mode.IWGRP() }
 function GroupCanExec is integer() { @Mode.IXGRP() }
 function UserCanRead is integer() { @Mode.IRUSR() }
 function UserCanWrite is integer() { @Mode.IWUSR() }
 function UserCanExec is integer() { @Mode.IXUSR() }
}

spacetype ext2dirent {
 var Inode is public integer littleend width 32 at 0.
 var RecordLength is public integer littleend width 16 at 4.
 var NameLength is public integer littleend width 8 at 6.
 var Name is char[$NameLength] at 8.

 function Name is char() {
 $Name<0, $NameLength>
 }

 function IsUsed is integer() {
 @sys.not(@sys.equ($Inode, 0))
 }
}

151

spacetype ext2 {
 use ext2dirent.
 use ext2inode.
 use ext2superblock.
 use ext2groupdescriptor.

 subspace superblock is ext2superblock at 1024.

 # Fundamental block size.

 function BlockSize is integer() {
 @sys.mul(1024, @sys.2to(@superblock.LogBlockSize()))
 }

 function BlockSize4 is integer() {
 @sys.div(@this.BlockSize(), 4)
 }

 # Inode indirect addressing translation.

 function IntExtract is integer(n is integer, k is integer) {
 @sys.intAt(@sys.add(@sys.mul(n, @this.BlockSize()),
 @sys.mul(k, 4)), 0, 32, 0)
 }

 function SIndMax is integer() {
 @sys.add(@this.BlockSize4(), 12)
 }

 function DIndMax is integer() {
 @sys.add(@sys.mul(@this.BlockSize4(), @this.BlockSize4()), @this.SIndMax())
 }

 function DoubleIndirect is integer(n is integer, k is integer) {
 @this.IntExtract(
 @this.IntExtract(n, @sys.div(k, @this.BlockSize4())),
 @sys.mod(k, @this.BlockSize4())
)
 }

 function TripleIndirect is integer(n is integer, k is integer) {
 @this.IntExtract(
 @this.IntExtract(
 @this.IntExtract(
 n,
 @sys.div(@sys.div(k, @this.BlockSize4()), @this.BlockSize4())
),
 @sys.mod(@sys.div(k, @this.BlockSize4()), @this.BlockSize4())
),
 @sys.mod(k, @this.BlockSize4())
)
 }

 function TranslateBlock is integer(inodeloc is integer, n is integer)
 with inode is ext2inode at inodeloc
 {
 if(@sys.lst(n, 12)) { @inode.Block(n) } else {
 if(@sys.lst(n, @this.SIndMax())) {
 @this.IntExtract(@inode.Block(12), @sys.sub(n, 12))
 } else {
 if(@sys.lst(n, @this.DIndMax())) {
 @this.DoubleIndirect(@inode.Block(13),
 @sys.sub(n, @this.SIndMax()))
 } else {
 @this.TripleIndirect(@inode.Block(14),
 @sys.sub(n, @this.DIndMax()))
 }
 }

152

 }
 }

 function FindInodeNumber is integer (InodeID is integer)
 with groupdescriptor is ext2groupdescriptor at
 @sys.add(2048, @sys.mul(32, @sys.div(@sys.sub(InodeID, 1),
@superblock.InodesPerGroup())))
 {
 @sys.add(
 @sys.mul(@groupdescriptor.InodeTable(), @this.BlockSize()),
 @sys.mul(@sys.mod(@sys.sub(InodeID, 1), @superblock.InodesPerGroup()), 128)
)
 }

 function RootDirectoryID is integer() {
 1
 }

 function GetRootDirectoryInodeLoc is integer() {
 @this.FindInodeNumber(2)
 }

 function FindInodeForFileID is integer (FileID is integer)
 with dirent is ext2dirent at FileID
 {
 if(@sys.equ(FileID, @this.RootDirectoryID())) {
 @this.GetRootDirectoryInodeLoc()
 } else {
 @this.FindInodeNumber(@dirent.Inode())
 }
 }

 function DirectoryEntryLocStep is integer(inodeloc is integer, count is integer,
 block is integer, loc is integer)
 with inode is ext2inode at inodeloc,
 dirent is ext2dirent at
 @sys.add(@sys.mul(@this.TranslateBlock(inodeloc, block), @this.BlockSize()),
loc)
 {
 if(@sys.equ(block, @sys.div(@inode.Blocks(), 1))) {
 0
 } else {
 if(@sys.equ(count, 0)) {
 @sys.add(@sys.mul(@this.TranslateBlock(inodeloc, block), @this.BlockSize()), loc)
 } else {
 if(@sys.equ(@sys.add(loc, @dirent.RecordLength()), @this.BlockSize())) {
 @this.DirectoryEntryLocStep(inodeloc, @sys.sub(count, 1), @sys.add(block, 1),
0)
 } else {
 @this.DirectoryEntryLocStep(inodeloc, @sys.sub(count, 1), block,
 @sys.add(loc, @dirent.RecordLength()))
 }
 }
 }
 }

 function DirectoryEntryLoc is integer(DirectoryID is integer, n is integer)
 with dirent is ext2dirent at DirectoryID
 {
 @this.DirectoryEntryLocStep(@this.FindInodeForFileID(DirectoryID), n, 0, 0)
 }

 function FilesInStep is integer(DirectoryID is integer, n is integer,
 count is integer)
 with dirent is ext2dirent at @this.DirectoryEntryLoc(DirectoryID, n)
 {
 if(@sys.equ(@this.DirectoryEntryLoc(DirectoryID, n), 0)) {
 count
 } else {

153

 @this.FilesInStep(DirectoryID, @sys.add(n, 1),
 if(@dirent.IsUsed()) { @sys.add(count, 1) } else { count })
 }
 }

 function FilesIn is integer(DirectoryID is integer)
 {
 @this.FilesInStep(DirectoryID, 0, 0)
 }

 function nthFileInStep is integer(DirectoryID is integer, n is integer,
 count is integer)
 with dirent is ext2dirent at @this.DirectoryEntryLoc(DirectoryID, n)
 {
 if(@dirent.IsUsed()) {
 if(@sys.equ(count, 0)) {
 @this.DirectoryEntryLoc(DirectoryID, n)
 } else {
 @this.nthFileInStep(DirectoryID, @sys.add(n, 1), @sys.sub(count, 1))
 }
 } else {
 @this.nthFileInStep(DirectoryID, @sys.add(n, 1), count)
 }
 }

 function nthFileIn is integer(DirectoryID is integer, n is integer)
 {
 @this.nthFileInStep(DirectoryID, 0, n)
 }

 function FileName is char(FileID is integer)
 with dirent is ext2dirent at FileID
 {
 @dirent.Name()
 }

 function FileSize is integer(FileID is integer)
 with dirent is ext2dirent at FileID,
 inode is ext2inode at @this.FindInodeNumber(@dirent.Inode())
 {
 @inode.Size()
 }

 function FileIsDirectory is integer(FileID is integer)
 with inode is ext2inode at @this.FindInodeForFileID(FileID)
 {
 @inode.IsDirectory()
 }

 function FileIsRegular is integer(FileID is integer)
 with inode is ext2inode at @this.FindInodeForFileID(FileID)
 {
 @inode.IsRegularFile()
 }

 function FileHasEvenBlocks is integer(FileID is integer) {
 if(@sys.grt(@sys.mod(@this.FileSize(FileID), @this.BlockSize()), 0)) { 0 } else { 1 }
 }

 function BlocksInFile is integer(FileID is integer) {
 @sys.add(@sys.div(@this.FileSize(FileID), @this.BlockSize()),
 if(@this.FileHasEvenBlocks(FileID)) { 0 } else { 1 }
)
 }

 function SizeOfBlock is integer(FileID is integer, n is integer) {
 if(@sys.and(@sys.equ(@sys.add(n, 1), @this.BlocksInFile(FileID)),
 @sys.not(@this.FileHasEvenBlocks(FileID)))) {
 @sys.mod(@this.FileSize(FileID), @this.BlockSize())

154

 } else { @this.BlockSize() }
 }

 function FileBlock is char(FileID is integer, n is integer)
 with dirent is ext2dirent at FileID
 {
 @sys.charAt(
 @sys.mul(@this.TranslateBlock(@this.FindInodeNumber(@dirent.Inode()), n),
 @this.BlockSize()), @this.SizeOfBlock(FileID, n))
 }

 function FileSlack is char(FileID is integer)
 with dirent is ext2dirent at FileID,
 inode is ext2inode at @this.FindInodeNumber(@dirent.Inode())
 {
 @sys.charAt(
 @sys.add(
 @sys.mul(@this.TranslateBlock(@this.FindInodeNumber(@dirent.Inode()),
 @sys.sub(@this.BlocksInFile(FileID), 1)),
 @this.BlockSize()),
 @this.SizeOfBlock(FileID,
 @sys.sub(@this.BlocksInFile(FileID), 1))
),
 @sys.sub(@this.BlockSize(),
 @this.SizeOfBlock(FileID,
 @sys.sub(@this.BlocksInFile(FileID), 1)))
)
 }

 function SupportsUGO is integer() { 1 }
 function SupportsFSW is integer() { 0 }

 function UsrRead is integer(FileID is integer)
 with inode is ext2inode at @this.FindInodeForFileID(FileID)
 { @inode.UserCanRead() }

 function UsrWrit is integer(FileID is integer)
 with inode is ext2inode at @this.FindInodeForFileID(FileID)
 { @inode.UserCanWrite() }

 function UsrExec is integer(FileID is integer)
 with inode is ext2inode at @this.FindInodeForFileID(FileID)
 { @inode.UserCanExec() }

 function GrpRead is integer(FileID is integer)
 with inode is ext2inode at @this.FindInodeForFileID(FileID)
 { @inode.GroupCanRead() }

 function GrpWrit is integer(FileID is integer)
 with inode is ext2inode at @this.FindInodeForFileID(FileID)
 { @inode.GroupCanWrite() }

 function GrpExec is integer(FileID is integer)
 with inode is ext2inode at @this.FindInodeForFileID(FileID)
 { @inode.GroupCanExec() }

 function OthRead is integer(FileID is integer)
 with inode is ext2inode at @this.FindInodeForFileID(FileID)
 { @inode.OtherCanRead() }

 function OthWrit is integer(FileID is integer)
 with inode is ext2inode at @this.FindInodeForFileID(FileID)
 { @inode.OtherCanWrite() }

 function OthExec is integer(FileID is integer)
 with inode is ext2inode at @this.FindInodeForFileID(FileID)
 { @inode.OtherCanExec() }

 function Sticky is integer(FileID is integer)

155

 with inode is ext2inode at @this.FindInodeForFileID(FileID)
 { @inode.IsSticky() }

 function SetUID is integer(FileID is integer)
 with inode is ext2inode at @this.FindInodeForFileID(FileID)
 { @inode.IsSetUID() }

 function SetGID is integer(FileID is integer)
 with inode is ext2inode at @this.FindInodeForFileID(FileID)
 { @inode.IsSetGID() }

 implement hadleyfs {
 BlockSize, RootDirectoryID, FilesIn, nthFileIn, FileIsDirectory,
 FileIsRegular, FileSize, FileName, FileBlock, SupportsUGO, SupportsFSW
 }

 implement hadleyugo {
 UsrRead, GrpRead, OthRead, UsrWrit, GrpWrit, OthWrit,
 UsrExec, GrpExec, OthExec, Sticky, SetUID, SetGID
 }
}

Source file: fat12.hsl

spacetype fat12dirent {
 var FileNameFirstChar is integer littleend width 8 at 0.
 var FileName is char[8] at 0.
 var FileExt is char[3] at 8.
 var FileAttr is public integer littleend width 8 at 11.
 var FileIsReadOnly is public integer littleend width 1 at 11 minor 0.
 var FileIsHidden is public integer littleend width 1 at 11 minor 1.
 var FileIsSystem is public integer littleend width 1 at 11 minor 2.
 var FileIsVolumeLabel is public integer littleend width 1 at 11 minor 3.
 var FileIsDirectory is public integer littleend width 1 at 11 minor 4.
 var FileIsArchive is public integer littleend width 1 at 11 minor 5.
 var FirstBlock is public integer littleend width 16 at 26.
 var FileSize is public integer littleend width 32 at 28.

 # FAT12 filenames aren't null-terminated strings, which makes this a royal
 # pain. We have to figure out the length of the filename, figure out the
 # length of the extension, and concatenate them.

 # Here are the functions for the name.

 function FNLengthStep is integer(k is integer) {
 if(@sys.equ(k, 8)) { 8 }
 else {
 if(@sys.clipequ($FileName[k], " ")) { k }
 else { @this.FNLengthStep(@sys.add(k, 1)) }
 }
 }

 function FNLength is integer() { @this.FNLengthStep(0) }
 function FileNamePart is char() { $FileName<0, @this.FNLength()> }

 # And here are the functions for the extension.

 function FELengthStep is integer(k is integer) {
 if(@sys.equ(k, 3)) { 3 }
 else {
 if(@sys.clipequ($FileExt[k], " ")) { k }
 else { @this.FELengthStep(@sys.add(k, 1)) }
 }
 }

 function FELength is integer() { @this.FELengthStep(0) }
 function HasExt is integer() { @sys.not(@sys.equ(@this.FELength(), 0)) }

156

 function FileExtPart is char() {
 if(@this.HasExt()) {
 @sys.clipcat(".", $FileExt<0, @this.FELength()>)
 } else { "" }
 }

 function FileName is char() {
 @sys.clipcat(@this.FileNamePart(), @this.FileExtPart())
 }

 function IsFinalEnt is integer() { @sys.equ($FileNameFirstChar, 0) }
 function IsDotEnt is integer() { @sys.equ($FileNameFirstChar, 46) }
 function IsErased is integer() { @sys.equ($FileNameFirstChar, 229) }

 # WRITING FUNCTIONS

 function NullName is list() {
 @sys.listadd(
 @sys.newlist(@sys.makecharhint(" ", &!FileName)),
 @sys.makecharhint(" ", &!FileExt))
 }

 function SetNameParts is list(Name is char, Ext is char) {
 @sys.listaddend(@sys.listaddend(
 @this.NullName(),
 @sys.makecharhint(Name, &!FileName)),
 @sys.makecharhint(Ext, &!FileExt))
 }

 function SetName is list(Name is char) {
 if(@sys.clipclip(Name, ".")) {
 @this.SetNameParts(@sys.subclip(Name, 0, @sys.clipclip(Name, ".")),
 @sys.subclip(Name, @sys.clipclip(Name, "."),
 @sys.sub(@sys.cliplen(Name), @sys.clipclip(Name, "."))))
 } else {
 @this.SetNameParts(Name, "")
 }
 }

 function SetSize is list(Size is integer) {
 @sys.newlist(@sys.makeinthint(Size, &!FileSize, 0, 32, LITTLEEND))
 }

 function SetFirstBlock is list(BlockNum is integer) {
 @sys.newlist(@sys.makeinthint(BlockNum, &!FirstBlock, 0, 16, LITTLEEND))
 }
}

spacetype fat12 {
 use fat12dirent.

 var BytesPerSector is integer littleend width 16 at 11.
 var SectorsPerBlock is integer littleend width 8 at 13.
 var ReservedSectors is integer littleend width 16 at 14.
 var NumberOfFats is integer littleend width 8 at 16.
 var MaxRootDirEntries is integer littleend width 16 at 17.
 var SectorsInPartition is integer littleend width 16 at 19.
 var MediaDescriptor is integer littleend width 8 at 21.
 var SectorsPerFAT is integer littleend width 16 at 22.
 var SectorsPerTrack is integer littleend width 16 at 24.
 var Heads is integer littleend width 16 at 26.
 var HiddenSectors is integer littleend width 32 at 28.
 var SectorsInPartBig is integer littleend width 32 at 32.
 var LogicalDriveNumber is integer littleend width 16 at 36.
 var ExtendedSignature is integer littleend width 8 at 38.
 var SerialNumber is integer littleend width 32 at 39.
 var VolumeName is char[11] at 43.

157

 var BootCode is char[448] at 51.
 var BootCodeMarker is integer littleend width 16 at 499.

 function RootDirectorySize is integer() {
 @sys.mul($MaxRootDirEntries, 32)
 }

 function RootDirectoryStart is integer() {
 @sys.mul(@sys.add($ReservedSectors,
 @sys.mul($NumberOfFats, $SectorsPerFAT)),
 $BytesPerSector)
 }

 function data is integer(k is integer) {
 @sys.add(k, @sys.add(@this.RootDirectoryStart(), @this.RootDirectorySize()))
 }

 function NonDataSectors is integer() {
 @sys.div(@this.data(0), $BytesPerSector)
 }

 function DataSectors is integer() {
 @sys.sub($SectorsInPartition, @this.NonDataSectors())
 }

 function DataBlocks is integer() {
 @sys.div(@this.DataSectors(), $SectorsPerBlock)
 }

 var FAT is integer[@sys.add(@this.DataBlocks(), 2)]
 littleend width 12 at
 @sys.mul($ReservedSectors, $BytesPerSector).

 function BlockSize is integer() { @sys.mul($BytesPerSector,
 $SectorsPerBlock) }

 function RootDirectoryID is integer() { 0 }

 function FileAttr is integer(FileID is integer)
 with entry is fat12dirent at FileID
 { @entry.FileAttr() }

 function FileName is char(FileID is integer)
 with entry is fat12dirent at FileID
 { @entry.FileName() }

 function FileSize is integer(FileID is integer)
 with entry is fat12dirent at FileID
 { @entry.FileSize() }

 function FileIsDirectory is integer(FileID is integer)
 with entry is fat12dirent at FileID
 { if(@sys.equ(FileID, @this.RootDirectoryID())) { 1 }
 else { @entry.FileIsDirectory() } }

 function FileIsRegular is integer(FileID is integer)
 with entry is fat12dirent at FileID
 { @sys.and(@sys.not(@this.FileIsDirectory(FileID)),
 @sys.not(@entry.FileIsVolumeLabel())) }

 function FileHasEvenBlocks is integer(FileID is integer) {
 if(@sys.grt(@sys.mod(@this.FileSize(FileID), @this.BlockSize()), 0)) { 0 } else { 1 }
 }

 function DataForBlock is char(k is integer, size is integer) {
 @sys.charAt(@this.data(@sys.mul(@sys.sub(k, 2), @this.BlockSize())), size)
 }

 function FirstBlock is integer(FileID is integer)

158

 with entry is fat12dirent at FileID
 {
 @entry.FirstBlock()
 }

 function NextBlock is integer(k is integer) {
 if(@sys.and(@sys.lst($FAT[k], 4087), @sys.grt($FAT[k], 1))) { $FAT[k] } else { 0 }
 }

 function nthBlock is integer(FileID is integer, n is integer) {
 if(@sys.equ(n, 0)) { @this.FirstBlock(FileID) }
 else { @this.NextBlock(@this.nthBlock(FileID, @sys.sub(n, 1))) }
 }

 function BlocksInDir is integer(DirectoryID is integer, n is integer) {
 if(@sys.equ(@this.nthBlock(DirectoryID, n), 0)) { n }
 else { @this.BlocksInDir(DirectoryID, @sys.add(n, 1)) }
 }

 function BlocksInFile is integer(FileID is integer)
 with entry is fat12dirent at FileID
 {
 if(@entry.FileIsDirectory()) {
 @this.BlocksInDir(FileID, 0)
 } else {
 @sys.add(@sys.div(@this.FileSize(FileID), @this.BlockSize()),
 if(@this.FileHasEvenBlocks(FileID)) { 0 } else { 1 }
)
 }
 }

 function DirEntsPerBlock is integer() {
 @sys.div(@this.BlockSize(), 32)
 }

 function DirectoryEntryLoc is integer(DirectoryID is integer, n is integer) {
 if(@sys.equ(DirectoryID, 0)) {
 @sys.add(@this.RootDirectoryStart(), @sys.mul(n, 32))
 }
 else { @this.data(@sys.add(
 @sys.mul(@sys.sub(@this.nthBlock(DirectoryID, @sys.div(n, @this.DirEntsPerBlock())),
2),
 @this.BlockSize()),
 @sys.mul(@sys.mod(n, @this.DirEntsPerBlock()), 32)
)) }
 }

 function DirectoryEntryUsed is integer(DirectoryID is integer, n is integer)
 with entry is fat12dirent at @this.DirectoryEntryLoc(DirectoryID, n)
 {
 if(@sys.or(@sys.equ(@entry.FileAttr(), 15),
 @sys.or(@entry.IsFinalEnt(),
 @entry.IsErased()))) { 0 }
 else { 1 }
 }

 function DirectoryEntryFree is integer(DirectoryID is integer, n is integer)
 with entry is fat12dirent at @this.DirectoryEntryLoc(DirectoryID, n)
 {
 if(@sys.or(@sys.equ(@entry.FileAttr(), 15),
 @sys.or(@entry.IsFinalEnt(),
 @sys.or(@entry.IsDotEnt(),
 @entry.IsErased())))) { 0 }
 else { 1 }
 }

 function FilesInStep is integer (DirectoryID is integer, n is integer,
 count is integer)
 with entry is fat12dirent at @this.DirectoryEntryLoc(DirectoryID, n)

159

 {
 if(@entry.IsFinalEnt()) { count }
 else { @this.FilesInStep(DirectoryID, @sys.add(n, 1),
 if(@this.DirectoryEntryUsed(DirectoryID, n)) { @sys.add(count, 1) }
 else {count})
 }
 }

 function FileStep is integer(DirectoryID is integer, n is integer, count is integer) {
 if(@this.DirectoryEntryUsed(DirectoryID, n)) {
 if (@sys.grt(count, 0)) {
 @this.FileStep(DirectoryID, @sys.add(n, 1), @sys.sub(count, 1))
 } else {
 @this.DirectoryEntryLoc(DirectoryID, n)
 }
 } else {
 @this.FileStep(DirectoryID, @sys.add(n, 1), count)
 }
 }

 function FileBlock is char(FileID is integer, n is integer) {
 if(@sys.and(@sys.equ(@sys.add(n, 1), @this.BlocksInFile(FileID)),
 @sys.not(@this.FileHasEvenBlocks(FileID))))
 { @this.DataForBlock(@this.nthBlock(FileID, n),
 @sys.mod(@this.FileSize(FileID), @this.BlockSize())) }
 else { @this.DataForBlock(@this.nthBlock(FileID, n), @this.BlockSize()) }
 }

 function FilesIn is integer(DirectoryID is integer) {
 @this.FilesInStep(DirectoryID, 0, 0)
 }

 function nthFileIn is integer(DirectoryID is integer, n is integer) {
 if(@sys.gre(n, @this.FilesIn(DirectoryID))) { -1 } else { @this.FileStep(DirectoryID, 0,
n) }
 }

 function SupportsUGO is integer() { 0 }
 function SupportsFSW is integer() { 1 }

 ##
 # WRITING FUNCTIONS

 function FirstFreeFAT is integer(step is integer) {
 # XXX: This will currently produce undefined behavior if the disk is full.
 if(@sys.equ($FAT[step], 0)) {
 step
 } else {
 @this.FirstFreeFAT(@sys.add(step, 1))
 }
 }

 function FirstFreeDirEnt is integer(DirectoryID is integer, step is integer)
 with entry is fat12dirent at @this.DirectoryEntryLoc(DirectoryID, step)
 {
 if(@entry.IsFinalEnt()) {
 @this.DirectoryEntryLoc(DirectoryID, step)
 } else {
 @this.FirstFreeDirEnt(DirectoryID, @sys.add(step, 1))
 }
 }

 function LastBlockOf is integer(FileID is integer)
 with entry is fat12dirent at FileID
 {
 if(@sys.equ(@entry.FirstBlock(), 0)) {
 -1
 } else {

160

 @this.nthBlock(FileID, @sys.sub(@this.BlocksInFile(FileID), 1))
 }
 }

 function UpdateFATs is list(ClusterNum is integer,
 Value is integer,
 Count is integer)
 {
 if(@sys.equ(@sys.add(Count, 1), $NumberOfFats)) {
 @sys.listfrom(
 @sys.newlist(@sys.makeinthint(Value,
 &!FAT[ClusterNum],
 &.FAT[ClusterNum],
 12,
 LITTLEEND)),
 @sys.mul(@sys.mul(Count, $SectorsPerFAT), $BytesPerSector))
 } else {
 @sys.listcon(
 @sys.listfrom(
 @sys.newlist(@sys.makeinthint(Value,
 &!FAT[ClusterNum],
 &.FAT[ClusterNum],
 12,
 LITTLEEND)),
 @sys.mul(@sys.mul(Count, $SectorsPerFAT), $BytesPerSector)),
 @this.UpdateFATs(ClusterNum, Value, @sys.add(Count, 1)))
 }
 }

 # There are two places we might want this. If the file doesn't have
 # a last block, that means we want to write right into the directory
 # entry. On the other hand, if it has one, we need to traverse the FAT.

 function IntForAppend is list(FileID is integer,
 Block is char,
 LastBlock is integer,
 FirstFree is integer)
 with entry is fat12dirent at FileID
 {
 @sys.listcon(
 if(@sys.equ(LastBlock, -1)) {
 @sys.listfrom(@entry.SetFirstBlock(FirstFree), FileID)
 } else {
 @this.UpdateFATs(LastBlock, FirstFree, 0)
 },
 @this.UpdateFATs(FirstFree, 4095, 0))
 }

 function AppendBlockPrime is list(FileID is integer,
 Block is char,
 LastBlock is integer,
 FirstFree is integer) {
 @sys.listadd(
 @this.IntForAppend(FileID, Block, LastBlock, FirstFree),
 @sys.makecharhint(Block,
 @this.data(@sys.mul(@sys.sub(FirstFree, 2), @this.BlockSize()))))
 }

 function AppendBlock is list(FileID is integer, Block is char) {
 @this.AppendBlockPrime(FileID,
 Block,
 @this.LastBlockOf(FileID),
 @this.FirstFreeFAT(0))
 }

 function ReplaceBlock is list(FileID is integer, n is integer, Block is char) {
 @sys.newlist(@sys.makecharhint(Block,
 @this.data(@sys.mul(@sys.sub(@this.nthBlock(FileID, n), 2), @this.BlockSize()))))
 }

161

 # 0: Entry
 # 1: Directory
 # 2: . entry
 # 3: .. entry

 function NewDirEnt is list(Location is integer, EntryType is integer) {
 @sys.newlist(@sys.makecharhint(
 if(@sys.equ(EntryType, 0)) {
 "\0 \x00\0" 32
0 12345678901 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 } else { if(@sys.equ(EntryType, 1)) {
 "\0 \x10\0" 32
0 12345678901 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 } else { if(@sys.equ(EntryType, 2)) {
 ". \x10\0" 32
012345678901 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 } else {
 ".. \x10\0" 32
012345678901 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 }}},
 Location
))
 }

 function NewDirectoryBlock is list(Location is integer, n is integer) {
 @sys.listrepeat(@this.NewDirEnt(Location, 0),
 @this.DirEntsPerBlock(),
 32)
 }

 function ExpandDir is list(DirectoryID is integer, InBlock is integer) {
 @sys.listcon(
 @this.AppendBlockPrime(DirectoryID,
 "",
 @this.LastBlockOf(DirectoryID),
 InBlock),
 @this.NewDirectoryBlock(@this.data(@sys.mul(@sys.sub(InBlock, 2),
@this.BlockSize())), 0)
)
 }

 function MustExpand is integer(DirectoryID is integer) {
 @sys.equ(@sys.mod(@this.FirstFreeDirEnt(DirectoryID, 0), @this.BlockSize()),
 @sys.sub(@this.BlockSize(), 32))
 }

 function SetName is list(FileID is integer, Name is char)
 with entry is fat12dirent at FileID
 {
 @sys.listfrom(@entry.SetName(Name), FileID)
 }

 function SetSize is list(FileID is integer, Size is integer)
 with entry is fat12dirent at FileID
 {
 @sys.listfrom(@entry.SetSize(Size), FileID)
 }

 function NewFile is list(DirectoryID is integer, Name is char) {
 @sys.listcon(@sys.listcon(
 @this.NewDirEnt(@this.FirstFreeDirEnt(DirectoryID, 0), 0),
 if(@this.MustExpand(DirectoryID)) {
 @this.ExpandDir(DirectoryID, @this.FirstFreeFAT(0))
 } else {
 @this.NewDirEnt(@sys.add(@this.FirstFreeDirEnt(DirectoryID, 0), 32), 0)
 }),
 @this.SetName(@this.FirstFreeDirEnt(DirectoryID, 0), Name))
 }

162

 function NewDirectory is list(DirectoryID is integer, Name is char)
 with parent is fat12dirent at DirectoryID,
 singledot is fat12dirent
 at @this.data(@sys.mul(@sys.sub(@this.FirstFreeFAT(0), 2),
 @this.BlockSize())),
 doubledot is fat12dirent
 at @sys.add(@this.data(@sys.mul(@sys.sub(@this.FirstFreeFAT(0), 2),
 @this.BlockSize())), 32)
 {

 @sys.listcon(@sys.listcon(@sys.listcon(@sys.listcon(@sys.listcon(@sys.listcon(@sys.listcon(@s
ys.listcon(
 @this.NewDirEnt(@this.FirstFreeDirEnt(DirectoryID, 0), 1),
 if(@this.MustExpand(DirectoryID)) {
 @this.ExpandDir(DirectoryID, @this.FirstFreeFAT(0))
 } else {
 @this.NewDirEnt(@sys.add(@this.FirstFreeDirEnt(DirectoryID, 0), 32), 0)
 }),
 @this.SetName(@this.FirstFreeDirEnt(DirectoryID, 0), Name)),
 @this.AppendBlockPrime(@this.FirstFreeDirEnt(DirectoryID, 0),
 "",
 -1,
 @this.FirstFreeFAT(0))),
 @this.NewDirectoryBlock(@this.data(@sys.mul(@sys.sub(@this.FirstFreeFAT(0), 2),
 @this.BlockSize())), 0)),
 @this.NewDirEnt(@this.data(@sys.mul(@sys.sub(@this.FirstFreeFAT(0), 2),
 @this.BlockSize())), 2)),
 @this.NewDirEnt(@sys.add(@this.data(@sys.mul(@sys.sub(@this.FirstFreeFAT(0), 2),
 @this.BlockSize())), 32), 3)),
 @sys.listfrom(@singledot.SetFirstBlock(@this.data(@sys.mul(
 @sys.sub(@this.FirstFreeFAT(0), 2),
 @this.BlockSize()))),
 @this.data(@sys.mul(
 @sys.sub(@this.FirstFreeFAT(0), 2),
 @this.BlockSize())))),
 @sys.listfrom(@doubledot.SetFirstBlock(@parent.FirstBlock()),
 @sys.add(@this.data(@sys.mul(
 @sys.sub(@this.FirstFreeFAT(0), 2),
 @this.BlockSize())), 32)))
 }

 # IMPLEMENTATIONS

 implement hadleyfs {
 BlockSize, RootDirectoryID, FilesIn, nthFileIn, FileIsDirectory,
 FileIsRegular, FileSize, FileName, FileBlock, SupportsUGO, SupportsFSW
 }

 implement hadleyfsw {
 NewFile, NewDirectory, SetName, SetSize, AppendBlock, ReplaceBlock
 }
}

Source file: hadleyfs.hsl

template hadleyfs {
 function BlockSize is integer()
 function RootDirectoryID is integer()
 function FilesIn is integer(DirectoryID is integer)
 function nthFileIn is integer(DirectoryID is integer, FileNum is integer)

 function FileIsDirectory is integer(FileID is integer)
 function FileIsRegular is integer(FileID is integer)

 function FileSize is integer(FileID is integer)
 function FileName is char(FileID is integer)

163

 function FileBlock is char(FileID is integer, BlockNum is integer)

 function FSSupportsUGO is integer()
 function FSSupportsFSW is integer()
}

Source file: hadleyfsw.hsl

template hadleyfsw {
 function NewFile is list(DirectoryID is integer, Name is char)
 function NewDirectory is list(DirectoryID is integer, Name is char)

 function SetName is list(FileID is integer, Name is char)
 function SetSize is list(FileID is integer, Size is integer)

 function AppendBlock is list(FileID is integer, Block is char)
 function ReplaceBlock is list(FileID is integer, n is integer, Block is char)
}

Source file: hadleyugo.hsl

The UNIX permission model.

template hadleyugo {
 function UsrRead is integer(FileID is integer)
 function GrpRead is integer(FileID is integer)
 function OthRead is integer(FileID is integer)
 function UsrWrit is integer(FileID is integer)
 function GrpWrit is integer(FileID is integer)
 function OthWrit is integer(FileID is integer)
 function UsrExec is integer(FileID is integer)
 function GrpExec is integer(FileID is integer)
 function OthExec is integer(FileID is integer)

 function Sticky is integer(FileID is integer)
 function SetUID is integer(FileID is integer)
 function SetGID is integer(FileID is integer)
}

164

APPENDIX B: HADLEY SYSTEM SOURCE CODE

165

Source file: Makefile

default: all

all: core.a hslc fs.a tests
tests: test-fat12temp test-ext2temp

clean:
 -rm ext2*.c fat12*.c hadleyfs.c hadleyfsw.c hadleyugo.c
 -rm ext2*.h fat12*.h hadleyfs.h hadleyfsw.h hadleyugo.h
 -rm *.o *.a hslc test-fat12temp test-ext2temp
 -rm hadley.output hadley.tab.c hadley.tab.h lex.yy.c

hslc: core.a hadley.tab.c hadley.tab.h lex.yy.c
 gcc -g -o hslc yacc-dummy.c hadley.tab.c lex.yy.c core.a -ll

lex.yy.c: hadley.l hadley.h
 flex hadley.l
hadley.tab.c hadley.tab.h: hadley.y hadley.h hadley-semantics.i
 bison -d -v hadley.y

core.a: hash.c core.c
 gcc -g -c core.c hash.c
 ar -r core.a core.o hash.o
 ranlib core.a

fs.a: ext2.o fat12.o hadleyfs.o hadleyugo.o hadleyfsw.o
 ar -r fs.a ext2*.o fat12*.o hadleyfs.o hadleyugo.o hadleyfsw.o
 ranlib fs.a

hadleyfsw.o: hadleyfsw.hsl hslc
 ./hslc < hadleyfsw.hsl
 gcc -g -c hadleyfsw.c

hadleyfs.o: hadleyfs.hsl hslc
 ./hslc < hadleyfs.hsl
 gcc -g -c hadleyfs.c

hadleyugo.o: hadleyugo.hsl hslc
 ./hslc < hadleyugo.hsl
 gcc -g -c hadleyugo.c

ext2.o: ext2.hsl hadleyfs.o hadleyugo.o hadleyfsw.o hslc
 ./hslc < ext2.hsl
 gcc -g -c ext2*.c

fat12.o: fat12.hsl hadleyfs.o hadleyugo.o hadleyfsw.o hslc
 ./hslc < fat12.hsl
 gcc -g -c fat12*.c

test-fat12temp: core.a hslc fs.a test-fat12temp.c test-temp.c
 gcc -g -o test-fat12temp core.c hash.c test-fat12temp.c test-temp.c fs.a

test-ext2temp: core.a hslc fs.a test-ext2temp.c test-temp.c
 gcc -g -o test-ext2temp core.c hash.c test-ext2temp.c test-temp.c fs.a

Source file: hadley.l

%{
#include "hadley.tab.h"
#include <strings.h>
%}

166

ws [\t\n]+
commentstring \#[^\n]*\n
qstring \"[^"\n]*[\"\n]
string [^$&!@[><}{)(,.:\]\"\t\n]+
integer [0-9]+

%%

{commentstring} ;

{qstring} { yylval.string = strdup(yytext+1);
 yylval.string[yyleng-2] = '\0';
 return QSTRING; }

spacetype { return SPACETYPE; }
template { return TEMPLATE; }
subspace { return SUBSPACE; }
var { return VAR; }
function { return FUNCTION; }
if { return IF; }
is { return IS; }
width { return WIDTH; }
else { return ELSE; }
first { return FIRST; }
max { return MAX; }
so { return SO; }
at { return AT; }
bigend { return BIGEND; }
littleend { return LITTLEEND; }
minor { return MINOR; }
this { return THIS; }
with { return WITH; }
use { return USE; }
public { return PUBLIC; }
sc { return STARTCOMMENT; }
ec { return ENDCOMMENT; }
implement { return IMPLEMENT; }

[&$@\][><}{)(,.!:] { return yytext[0]; }

{integer} { yylval.integer = atoi(yytext); return INTEGER; }
{string} { yylval.string = strdup(yytext); return STRING; }

{ws} ;

Source file: hadley.y

%{

#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include "hash.h"

#include "hadley-semantics.i"

%}

%union {
 char *string;
 int integer;
}

/* Punctuation */

%token '{' '}' '(' ')' '[' ']' '<' '>' ',' ':' '.' '$' '!' '@' '&'

167

/* Literals */

%token <string> STRING QSTRING
%token <integer> INTEGER

/* types */

%type <string> spacetypename functionparametername variabletypename
%type <string> variablename literalstring functionname functiondeclname
%type <string> functionspacename functionremotename functionwithname usename
%type <string> functionlocalname subspacename subspacetypename functionwithtype
%type <string> templatename tfunctiondeclname tfunctionparametername implementname

%type <integer> literalinteger

/* Reserved words */

%token SPACETYPE SUBSPACE VAR FUNCTION IF IS ELSE FIRST MAX SO AT WIDTH
%token BIGEND LITTLEEND MINOR THIS WITH USE PUBLIC
%token STARTCOMMENT ENDCOMMENT

%token TEMPLATE IMPLEMENT

%%

start: module;
module: rootdeclarations;

rootdeclarations: rootdeclaration rootdeclarations
 | rootdeclaration;

rootdeclaration: spacetypedeclaration
 | templatedeclaration;

spacetypedeclaration: SPACETYPE spacetypename
 { sdecl_start($2); }
 '{' spacetypebody '}'
 { sdecl_finish(); };
spacetypename: STRING;
spacetypebody: usesp componentdeclarations;

usesp: /* empty */
 | uses;

uses: use
 | use uses;
use: USE usename '.'
 { usedecl($2) };
usename: STRING;

componentdeclarations: componentdeclaration componentdeclarations
 | componentdeclaration;

componentdeclaration: functiondeclaration
 | variabledeclaration
 | subspacedeclaration
 | implementdeclaration;

/* Here we deal with functions. */

functiondeclaration: FUNCTION functiondeclname functiontypepart
 { fdecl_header_start($2); }
 '(' functionparametersp ')'
 { fdecl_header_finish(); }
 functionwithpartp
 '{' functionbody '}'
 { fdecl_finish() };
functiondeclname: STRING;

168

functiontypepart: IS STRING
 { fdecl_get_function_type($2); };
functionparametersp: /* empty */
 | { emit_crlf_both();
 fdecl_between_parameters(); }
 functionparameters;
functionparameters: functionparameter ','
 { fdecl_between_parameters(); }
 functionparameters;
 | functionparameter
functionparameter: functionparametername
 functionparametertype
 { fdecl_output_parameter(); };
functionparametername: STRING
 { fdecl_get_parameter_name($1); };
functionparametertype: IS variabletypename
 { fdecl_get_parameter_type($2); };
functionwithpartp: /* empty */
 | { fdecl_with_init(); }
 WITH functionwiths;
functionwiths: functionwith ',' functionwiths
 | functionwith;
functionwith: functionwithname IS functionwithtype
 { fdecl_with_start($1, $3); }
 AT expression
 { fdecl_with_finish(); };
functionwithname: STRING;
functionwithtype: STRING;
functionbody: { fdecl_body_start(); }
 expression
 { fdecl_body_finish(); };

/* Here we deal with variables. */

variabledeclaration: VAR variablename
 { vdecl_start($2); }
 variabletypepart
 variableendianpart
 variablewidthpart
 variablelocationpart '.'
 { vdecl_finish(); };
variablename: STRING;
variablepublicpart: /* empty */
 | PUBLIC
 { vdecl_makepublic(); };
variabletypepart: IS variablepublicpart variabletypename
 { vdecl_basetype($3); }
 variablearraypart { };
variabletypename: STRING;
variablearraypart: /* empty */
 { vdecl_nullarray(); }
 | '['
 { vdecl_array_start(); }
 expression ']'
 { vdecl_array_finish(); };
variablewidthpart: /* empty */
 { vdecl_nullwidth(); }
 | WIDTH
 { vdecl_width_start(); }
 expression
 { vdecl_width_finish(); };
variablelocationpart: AT
 { vdecl_loc_start(); }
 expression
 { vdecl_loc_finish(); }
 variableminorpart;
variableminorpart: /* empty */
 { vdecl_nullminor(); }
 | MINOR

169

 { vdecl_minor_start(); }
 expression
 { vdecl_minor_finish(); };
variableendianpart: /* Empty */
 { vdecl_noend(); }
 | BIGEND
 { vdecl_bigend(); }
 | LITTLEEND
 { vdecl_littleend(); };

subspacedeclaration: SUBSPACE subspacename IS subspacetypename
 { ssdecl_start($2, $4); }
 AT expression '.'
 { ssdecl_finish() };
subspacename: STRING;
subspacetypename: STRING;

implementdeclaration: IMPLEMENT implementname
 { implem_start($2); }
 '{' implementfunctions '}'
 { implem_finish($2); };
implementname: STRING;
implementfunctions: implementfunction
 | implementfunction ',' implementfunctions;
implementfunction: STRING
 { implem_add($1); };

/* Here we deal with expressions. */

expression: literal
 | qualifiedreference
 | conditional
 | fparameter;

qualifiedreference: '$' variablereference
 | '@' functioncall
 | '&' '!' variablemajorlocation
 | '&' '.' variableminorlocation;

literal: literalstring literalinteger
 { expr_literal_memory($1, $2); }
 | literalstring
 { expr_literal_string($1); };
 | literalinteger
 { expr_literal_integer($1); };
literalstring: QSTRING;
literalinteger: INTEGER;

variablereference: variablename
 { expr_vref_start($1); }
 variablerefarraypart
 { expr_vref_finish(); };

variablemajorlocation: variablename
 { expr_vmaj_start($1); }
 variablelocarraypart
 { expr_vmaj_finish(); };

variableminorlocation: variablename
 { expr_vmin_start($1); }
 variablelocarraypart
 { expr_vmin_finish(); };

variablelocarraypart: /* empty */
 { expr_vref_noarray(); }
 | '['
 { expr_vref_onearray(); }
 expression ']';

170

variablerefarraypart: /* empty */
 { expr_vref_noarray(); }
 | '['
 { expr_vref_onearray(); }
 expression ']'
 | '<'
 { expr_vref_multarray_start(); }
 expression ','
 { expr_vref_multarray_middle(); }
 expression '>';

functioncall: functionname '(' functionargumentspart ')'
 { expr_fcall_finish(); };
functionname: THIS '.' functionlocalname
 { expr_fname_mine($3); }
 | functionspacename '.' functionremotename
 { expr_fname_qualified($1, $3); };
functionspacename: STRING;
functionremotename: STRING;
functionlocalname: STRING;
functionargumentspart: /* empty */
 | { expr_farg_between(); }
 functionarguments;
functionarguments: functionargument ','
 { expr_farg_between(); }
 functionarguments
 | functionargument;
functionargument: expression;

fparameter: STRING
 { expr_fparm($1); };

/* Left open for more conditionals */
conditional: ifconditional;

ifconditional: ifheader '{'
 { expr_cond_if_start(); }
 expression '}'
 { expr_cond_if_middle(); }
 elsepart
 { expr_cond_if_finish(); };
ifheader: IF '('
 { expr_cond_if_header_start(); }
 expression ')'
 { expr_cond_if_header_finish(); };
elsepart: /* empty */
 { expr_cond_if_noelse(); }
 | ELSE '{' expression '}';

/* Okay, done with spacetypes. Now for templates. */

templatedeclaration: TEMPLATE templatename
 { tdecl_start($2); }
 '{' templatebody '}'
 { tdecl_finish(); };
templatename: STRING;
templatebody: tfunctiondeclarations;

tfunctiondeclarations: tfunctiondeclaration tfunctiondeclarations
 | tfunctiondeclaration;

tfunctiondeclaration: FUNCTION tfunctiondeclname tfunctiontypepart
 { tfdecl_start($2); }
 '(' tfunctionparametersp ')'
 { tfdecl_finish(); };
tfunctiondeclname: STRING;
tfunctiontypepart: IS STRING
 { tfdecl_get_function_type($2); };

171

tfunctionparametersp: /* empty */
 | { tfdecl_between_parameters(); }
 tfunctionparameters;
tfunctionparameters: tfunctionparameter ','
 { tfdecl_between_parameters(); }
 tfunctionparameters;
 | tfunctionparameter
tfunctionparameter: tfunctionparametername
 tfunctionparametertype
 { tfdecl_output_parameter(); };
tfunctionparametername: STRING
 { tfdecl_get_parameter_name($1); };
tfunctionparametertype: IS variabletypename
 { tfdecl_get_parameter_type($2); };

%%

Source file: hadley-semantics.i

char *stype = NULL;

char *vname = NULL;
char *vtype = NULL;
char *vwidth = NULL;
char *vloc = NULL;
char *vend = NULL;

char *fname = NULL;
char *ftype = NULL;
char *fptype = NULL;
char *fpname = NULL;

char *ssname = NULL;

FILE *coutfile = NULL;
FILE *houtfile = NULL;

hash withtypes;
hash subtypes;

int vpublic = 0;
int varray = 0;

void emit_crlf(void) {
 fprintf(coutfile, "\n");
}

void emit_crlf_both(void) {
 fprintf(coutfile, "\n");
 fprintf(houtfile, "\n");
}

/* This function creates a data grabber function. vname, vtype, varray, vwidth
 and vloc are already full. */

void usedecl(char *s) {
 fprintf(coutfile, "#include \"%s.h\"\n", s);
}

void sdecl_start(char *s) {
 char coutfilename[256];
 char houtfilename[256];

 strcpy(coutfilename, s);
 strcat(coutfilename, ".c");
 strcpy(houtfilename, s);
 strcat(houtfilename, ".h");

172

 coutfile = fopen(coutfilename, "w");
 houtfile = fopen(houtfilename, "w");
 fprintf(coutfile, "#include \"hadley.h\"\n\n");
 fprintf(coutfile, "/* Hadley space %s */\n\n", s);
 fprintf(houtfile, "/* Hadley space %s prototypes */\n\n", s);
 stype = strdup(s);

 /* THIS CAN POTENTIALLY CREATE A MEMORY LEAK */
 hash_init(&subtypes);
 hash_init(&withtypes);
}

void sdecl_finish(void) {
 fprintf(coutfile, "/* End of Hadley space %s */\n\n", stype);
 fclose(coutfile);
 fclose(houtfile);
 free(stype);
}

void fdecl_header_start(char *s) {
 fprintf(coutfile, "%shsl_%s_function_%s(long long int coreContext",
 ftype, stype, s);
 fprintf(houtfile, "%shsl_%s_function_%s(long long int coreContext",
 ftype, stype, s);
 fname = strdup(s);
}

void fdecl_get_function_type(char *s) {
 ftype = strdup(!strcmp(s, "integer") ? "long long int " :
 !strcmp(s, "char") ? "struct clip " :
 !strcmp(s, "list") ? "struct cliplist * " : "");
 if(!(*ftype)) {
 fprintf(stderr, "ERROR: Invalid data type %s\n", s);
 }
}

void fdecl_between_parameters(void) {
 fprintf(coutfile, ", \n");
 fprintf(houtfile, ", \n");
}

void fdecl_output_parameter(void) {
 fprintf(coutfile, " %s%s", fptype, fpname);
 fprintf(houtfile, " %s%s", fptype, fpname);
 free(fpname);
 free(fptype);
}

void fdecl_get_parameter_type(char *s) {
 fptype = strdup(strcmp(s, "integer")
 ? "struct clip "
 : "long long int ");
}

void fdecl_get_parameter_name(char *s) {
 fpname = strdup(s);
}

void fdecl_with_init(void) {
 hash_init(&withtypes);
}

/* THIS CURRENTLY CREATES A SMALL MEMORY LEAK */

void fdecl_with_start(char *name, char *type) {
 hash_insert(&withtypes, name, strdup(type));

 fprintf(coutfile, " long long int %s_loc = (", name);

173

}

void fdecl_with_finish(void) {
 fprintf(coutfile, ");\n");
}

void fdecl_header_finish(void) {
 fprintf(coutfile, ")\n{\n");
 fprintf(houtfile, ");\n");
}

void fdecl_body_start(void) {
 fprintf(coutfile, " %s coreResult;\n", ftype);
 fprintf(coutfile, " \n");
 fprintf(coutfile, " if(coreContext) hsl_CORE_pushContext(coreContext);\n");
 fprintf(coutfile, " coreResult = (");
}

void fdecl_body_finish(void) {
 fprintf(coutfile, ");\n");
 fprintf(coutfile, " if(coreContext) hsl_CORE_popContext(coreContext);\n");
 fprintf(coutfile, " return coreResult;\n");
 fprintf(coutfile, "}\n\n");
}

void fdecl_finish(void) {
 free(fname);
 free(ftype);
}

void vdecl_start(char *s) {
 fprintf(coutfile, "/* Variable %s */\n\n", s);
 vname = strdup(s);
}

void vdecl_makepublic(void) {
 vpublic = 1;
}

void vdecl_basetype(char *s) {
 vtype = strdup(s);
 fprintf(coutfile, "#define hsl_%s_var_%s_type \"%s\"\n\n",
 stype, vname, vtype);
}

void vdecl_nullarray(void) {
 fprintf(coutfile,
 "long long int hsl_%s_get_%s_array()\n{\n return (1);\n}\n\n",
 stype, vname);
 varray = 0;
}

void vdecl_array_start(void) {
 fprintf(coutfile, "long long int hsl_%s_get_%s_array()\n{\n return (",
 stype, vname);
 varray = 1;
}

void vdecl_array_finish(void) {
 fprintf(coutfile, ");\n}\n\n");
}

void vdecl_nullwidth(void) {
 fprintf(coutfile,
 "long long int hsl_%s_get_%s_width()\n{\n return (8);\n}\n\n",
 stype, vname);
}

void vdecl_width_start(void) {

174

 fprintf(coutfile, "long long int hsl_%s_get_%s_width()\n{\n return (",
 stype, vname);
}

void vdecl_width_finish(void) {
 fprintf(coutfile, ");\n}\n\n");
}

void vdecl_loc_start(void) {
 fprintf(coutfile, "long long int hsl_%s_get_%s_location()\n{\n return (",
 stype, vname);
}

void vdecl_loc_finish(void) {
 fprintf(coutfile, ");\n}\n\n");
}

void vdecl_nullminor(void) {
 fprintf(coutfile,
 "long long int hsl_%s_get_%s_minorloc()\n{\n return (0);\n}\n\n",
 stype, vname);
}

void vdecl_minor_start(void) {
 fprintf(coutfile, "long long int hsl_%s_get_%s_minorloc()\n{\n return (",
 stype, vname);
}

void vdecl_minor_finish(void) {
 fprintf(coutfile, ");\n}\n\n");
}

void vdecl_noend(void) {
 vend = strdup("none");
}

void vdecl_bigend(void) {
 vend = strdup("big");
}

void vdecl_littleend(void) {
 vend = strdup("little");
}

void vdecl_finish(void) {
 fprintf(coutfile, "#define hsl_%s_var_%s_end %d\n\n",
 stype, vname, !strcmp(vend, "big") ? 1 : 0);

 if(!strcmp(vtype, "integer")) {
 fprintf(coutfile, "long long int hsl_%s_get_%s_modified_loc_single(long long int
start)\n", stype, vname);
 fprintf(coutfile, "{\n");
 fprintf(coutfile, " long long int l = hsl_%s_get_%s_location();\n", stype, vname);
 fprintf(coutfile, " long long int m = hsl_%s_get_%s_minorloc();\n", stype, vname);
 fprintf(coutfile, " long long int w = hsl_%s_get_%s_width();\n", stype, vname);
 fprintf(coutfile, " \n");
 fprintf(coutfile, " m += w * start;\n");
 fprintf(coutfile, " l += m / 8;\n");
 fprintf(coutfile, " return l;\n");
 fprintf(coutfile, "}\n");
 fprintf(coutfile, "\n");
 fprintf(coutfile, "long long int hsl_%s_get_%s_modified_minorloc_single(long long int
start)\n", stype, vname);
 fprintf(coutfile, "{\n");
 fprintf(coutfile, " long long int l = hsl_%s_get_%s_location();\n", stype, vname);
 fprintf(coutfile, " long long int m = hsl_%s_get_%s_minorloc();\n", stype, vname);
 fprintf(coutfile, " long long int w = hsl_%s_get_%s_width();\n", stype, vname);
 fprintf(coutfile, " \n");
 fprintf(coutfile, " m += w * start;\n");

175

 fprintf(coutfile, " m %%= 8;\n");
 fprintf(coutfile, " return m;\n");
 fprintf(coutfile, "}\n");
 fprintf(coutfile, "\n");
 fprintf(coutfile, "long long int hsl_%s_get_%s_data_single(long long int start)\n",
stype, vname);
 fprintf(coutfile, "{\n");
 fprintf(coutfile, " long long int l = hsl_%s_get_%s_location();\n", stype, vname);
 fprintf(coutfile, " long long int m = hsl_%s_get_%s_minorloc();\n", stype, vname);
 fprintf(coutfile, " long long int w = hsl_%s_get_%s_width();\n", stype, vname);
 fprintf(coutfile, " int e = hsl_%s_var_%s_end;\n", stype, vname);
 fprintf(coutfile, " long long int result;\n");
 fprintf(coutfile, " \n");
 fprintf(coutfile, " m += w * start;\n");
 fprintf(coutfile, " l += m / 8;\n");
 fprintf(coutfile, " m %%= 8;\n");
 fprintf(coutfile, " result = hsl_CORE_get_single_integer(l, m, w, e);\n");
 fprintf(coutfile, " return result;\n");
 fprintf(coutfile, "}\n");
 fprintf(coutfile, "\n");
 fprintf(coutfile, "struct clip hsl_%s_get_%s_data_multiple(long long int start, long long
int n)\n", stype, vname);
 fprintf(coutfile, "{\n");
 fprintf(coutfile, " long long int l = hsl_%s_get_%s_location();\n", stype, vname);
 fprintf(coutfile, " long long int m = hsl_%s_get_%s_minorloc();\n", stype, vname);
 fprintf(coutfile, " long long int w = hsl_%s_get_%s_width();\n", stype, vname);
 fprintf(coutfile, " long long int major_n;\n");
 fprintf(coutfile, " struct clip result;\n");
 fprintf(coutfile, " \n");
 fprintf(coutfile, " m += w * start;\n");
 fprintf(coutfile, " l += m / 8;\n");
 fprintf(coutfile, " m %%= 8;\n");
 fprintf(coutfile, " n *= w;\n");
 fprintf(coutfile, " major_n = n / 8;\n");
 fprintf(coutfile, " n %%= 8;\n");
 fprintf(coutfile, " result = hsl_CORE_get_complex_data(l, m, w, major_n, n);\n");
 fprintf(coutfile, " return result;\n");
 fprintf(coutfile, "}\n");
 fprintf(coutfile, "\n");
 } else {
 fprintf(coutfile, "long long int hsl_%s_get_%s_modified_loc_single(long long int
start)\n", stype, vname);
 fprintf(coutfile, "{\n");
 fprintf(coutfile, " long long int l = hsl_%s_get_%s_location();\n", stype, vname);
 fprintf(coutfile, "\n");
 fprintf(coutfile, " return l + start;\n");
 fprintf(coutfile, "}\n");
 fprintf(coutfile, "\n");
 fprintf(coutfile, "long long int hsl_%s_get_%s_modified_minorloc_single(long long int
start)\n", stype, vname);
 fprintf(coutfile, "{\n");
 fprintf(coutfile, " return 0;\n");
 fprintf(coutfile, "}\n");
 fprintf(coutfile, "\n");
 fprintf(coutfile, "struct clip hsl_%s_get_%s_data_single(long long int start)\n", stype,
vname);
 fprintf(coutfile, "{\n");
 fprintf(coutfile, " long long int l = hsl_%s_get_%s_location();\n", stype, vname);
 fprintf(coutfile, " struct clip result;\n");
 fprintf(coutfile, " \n");
 fprintf(coutfile, " result = hsl_CORE_get_char_data(l + start, 1);\n");
 fprintf(coutfile, " return result;\n");
 fprintf(coutfile, "}\n");
 fprintf(coutfile, "\n");
 fprintf(coutfile, "struct clip hsl_%s_get_%s_data_multiple(long long int start, long long
int n)\n", stype, vname);
 fprintf(coutfile, "{\n");
 fprintf(coutfile, " long long int l = hsl_%s_get_%s_location();\n", stype, vname);
 fprintf(coutfile, " struct clip result;\n");

176

 fprintf(coutfile, " \n");
 fprintf(coutfile, " result = hsl_CORE_get_char_data(l + start, n);\n");
 fprintf(coutfile, " return result;\n");
 fprintf(coutfile, "}\n");
 fprintf(coutfile, "\n");
 }

 if(vpublic) {
 if(!strcmp(vtype, "integer")) {
 if(varray) {
 fprintf(houtfile, "long long int hsl_%s_function_%s(long long int coreContext,
long long int start);\n", stype, vname);
 fprintf(coutfile, "long long int hsl_%s_function_%s(long long int coreContext,
long long int start) {\n", stype, vname);
 fprintf(coutfile, " long long int coreResult;\n\n");
 fprintf(coutfile, " if(coreContext) hsl_CORE_pushContext(coreContext);\n");
 fprintf(coutfile, " coreResult = hsl_%s_get_%s_data_single(start);\n", stype,
vname);
 fprintf(coutfile, " if(coreContext) hsl_CORE_popContext(coreContext);\n");
 fprintf(coutfile, " return coreResult;\n");
 fprintf(coutfile, "}\n\n");
 } else {
 fprintf(houtfile, "long long int hsl_%s_function_%s(long long int
coreContext);\n", stype, vname);
 fprintf(coutfile, "long long int hsl_%s_function_%s(long long int coreContext)
{\n", stype, vname);
 fprintf(coutfile, " long long int coreResult;\n\n");
 fprintf(coutfile, " if(coreContext) hsl_CORE_pushContext(coreContext);\n");
 fprintf(coutfile, " coreResult = hsl_%s_get_%s_data_single(0);\n", stype, vname);
 fprintf(coutfile, " if(coreContext) hsl_CORE_popContext(coreContext);\n");
 fprintf(coutfile, " return coreResult;\n");
 fprintf(coutfile, "}\n\n");
 }
 } else {
 fprintf(stderr, "ERROR: string variable %s cannot be public\n", vname);
 }
 }

 varray = 0;
 vpublic = 0;
 free(vname);
 free(vtype);
 free(vwidth);
 free(vloc);
 free(vend);
}

void ssdecl_start(char *name, char *type) {
 hash_insert(&subtypes, name, strdup(type));

 fprintf(coutfile, "long long int hsl_%s_get_%s_location()\n{\n return(",
 stype, name);
}

void ssdecl_finish(void) {
 fprintf(coutfile, ");\n}\n");
}

void implem_start(char *s) {
 fprintf(coutfile, "#include \"%s.h\"\n\n", s);
 fprintf(houtfile, "void hsl_%s_register_%s(void);\n", stype, s);
 fprintf(coutfile, "void hsl_%s_register_%s() {\n", stype, s);
 fprintf(coutfile, " hsl_%s_template t = {\n", s);
}

void implem_add(char *s) {
 fprintf(coutfile, " hsl_%s_function_%s,\n", stype, s);
}

177

void implem_finish(char *s) {
 fprintf(coutfile, " };\n");
 fprintf(coutfile, " hsl_%s_template *p;\n\n", s);
 fprintf(coutfile, " p = malloc(sizeof(hsl_%s_template));\n", s);
 fprintf(coutfile, " memcpy(p, &t, sizeof(hsl_%s_template));\n", s);
 fprintf(coutfile, " register_hsl_%s_implementation(\"%s\", p);\n", s, stype);
 fprintf(coutfile, "}\n\n");
}

void expr_literal_string(char *s) {
 fprintf(coutfile, "(hsl_CORE_stringtoclip(\"%s\"))", s);
}

void expr_literal_memory(char *s, int i) {
 fprintf(coutfile, "(hsl_CORE_memtoclip(\"%s\", %d))", s, i);
}

void expr_literal_integer(int i) {
 fprintf(coutfile, "(%d)", i);
}

void expr_vref_start(char *s) {
 fprintf(coutfile, "hsl_%s_get_%s_data_", stype, s);
}

void expr_vref_finish(void) {
 fprintf(coutfile, ")");
}

void expr_vref_noarray(void) {
 fprintf(coutfile, "single(0");
}

void expr_vref_onearray(void) {
 fprintf(coutfile, "single(");
}

void expr_vref_multarray_start(void) {
 fprintf(coutfile, "multiple(");
}

void expr_vref_multarray_middle(void) {
 fprintf(coutfile, ", ");
}

void expr_vmaj_start(char *s) {
 fprintf(coutfile, "hsl_%s_get_%s_modified_loc_", stype, s);
}

void expr_vmaj_finish(void) {
 fprintf(coutfile, ")");
}

void expr_vmin_start(char *s) {
 fprintf(coutfile, "hsl_%s_get_%s_modified_minorloc_", stype, s);
}

void expr_vmin_finish(void) {
 fprintf(coutfile, ")");
}

void expr_fcall_finish(void) {
 fprintf(coutfile, ")");
}

void expr_fname_builtin(char *s) {
 fprintf(coutfile, "hsl_builtin_%s(", s);
}

178

void expr_fname_mine(char *s) {
 fprintf(coutfile, "hsl_%s_function_%s(0", stype, s);
}

void expr_fname_qualified(char *t, char *s) {
 char *u;

 /* "sys" has magic foo. */

 if(strcmp(t, "sys")) {
 u = (char *) hash_lookup(&withtypes, t);
 if(u) {
 fprintf(coutfile, "hsl_%s_function_%s(%s_loc", u, s, t);
 return;
 }
 u = (char *) hash_lookup(&subtypes, t);
 if(u) {
 fprintf(coutfile, "hsl_%s_function_%s(hsl_%s_get_%s_location()",
 u, s, stype, t);
 return;
 }
 fprintf(stderr, "ERROR: %s is not a known location\n", t);
 } else {
 fprintf(coutfile, "hsl_%s_function_%s(0", t, s);
 }
}

void expr_farg_between(void) {
 fprintf(coutfile, ", ");
}

void expr_fparm(char *s) {
 fprintf(coutfile, "%s", s);
}

void expr_cond_if_start(void) {
 fprintf(coutfile, "\n(");
}

void expr_cond_if_middle(void) {
 fprintf(coutfile, "\n) : (\n");
}

void expr_cond_if_finish(void) {
 fprintf(coutfile, "\n))");
}

void expr_cond_if_header_start(void) {
 fprintf(coutfile, "((\n ");
}

void expr_cond_if_header_finish(void) {
 fprintf(coutfile, " \n) ?");
}

void expr_cond_if_noelse(void) {
 fprintf(coutfile, "0");
}

void expr_cond_or(void) {
 fprintf(coutfile, " || ");
}

void expr_cond_and(void) {
 fprintf(coutfile, " && ");
}

void tdecl_start(char *s) {
 char coutfilename[256];

179

 char houtfilename[256];

 strcpy(coutfilename, s);
 strcat(coutfilename, ".c");
 strcpy(houtfilename, s);
 strcat(houtfilename, ".h");

 coutfile = fopen(coutfilename, "w");
 houtfile = fopen(houtfilename, "w");
 fprintf(coutfile, "/* Hadley template %s code */\n\n", s);
 fprintf(houtfile, "/* Hadley template %s typedefs */\n\n", s);
 fprintf(houtfile, "typedef struct {\n ");

 stype = strdup(s);

 /* THIS CAN POTENTIALLY CREATE A MEMORY LEAK */
 hash_init(&subtypes);
 hash_init(&withtypes);
}

void tdecl_finish(void) {
 fprintf(houtfile, "} hsl_%s_template;\n\n", stype);
 fprintf(coutfile, "#include \"hadley.h\"\n");
 fprintf(coutfile, "#include \"%s.h\"\n", stype);
 fprintf(coutfile, "#include \"hash.h\"\n\n");
 fprintf(coutfile, "hash hsl_%s_template_instances;\n", stype);
 fprintf(coutfile, "int hsl_%s_template_initialized = 0;\n", stype);
 fprintf(coutfile, "void register_hsl_%s_implementation(char *name, hsl_%s_template
*implementation) {\n", stype, stype);
 fprintf(coutfile, " if(!hsl_%s_template_initialized) {\n", stype);
 fprintf(coutfile, " hash_init(&hsl_%s_template_instances);\n", stype);
 fprintf(coutfile, " hsl_%s_template_initialized = 1;\n", stype);
 fprintf(coutfile, " }\n\n");
 fprintf(coutfile, " hash_insert(&hsl_%s_template_instances, name, implementation);\n",
stype);
 fprintf(coutfile, "}\n\n");
 fprintf(coutfile, "hsl_%s_template *get_hsl_%s_implementation(char *name) {\n", stype,
stype);
 fprintf(coutfile, " return (hsl_%s_template *) (hash_lookup(&hsl_%s_template_instances,
name));\n", stype, stype);
 fprintf(coutfile, "}\n\n");

 fprintf(houtfile, "void register_hsl_%s_implementation(char *name, hsl_%s_template
*implementation);\n", stype, stype);
 fprintf(houtfile, "hsl_%s_template *get_hsl_%s_implementation(char *name);\n", stype, stype);

 fprintf(coutfile, "/* End of Hadley template %s code */\n\n", stype);
 fclose(coutfile);
 fclose(houtfile);
 free(stype);
}

void tfdecl_start(char *s) {
 fprintf(houtfile, " %s(*%s) (long long int coreContext", ftype, s);
 fname = strdup(s);
}

void tfdecl_get_function_type(char *s) {
 ftype = strdup(!strcmp(s, "integer") ? "long long int " :
 !strcmp(s, "char") ? "struct clip " :
 !strcmp(s, "list") ? "struct cliplist * " : "");
 if(!(*ftype)) {
 fprintf(stderr, "ERROR: Invalid data type %s\n", s);
 }
}

void tfdecl_between_parameters(void) {
 fprintf(houtfile, ", \n");
}

180

void tfdecl_output_parameter(void) {
 fprintf(houtfile, " %s%s", fptype, fpname);
 free(fpname);
 free(fptype);
}

void tfdecl_get_parameter_type(char *s) {
 fptype = strdup(strcmp(s, "integer")
 ? "struct clip "
 : "long long int ");
}

void tfdecl_get_parameter_name(char *s) {
 fpname = strdup(s);
}

void tfdecl_finish(void) {
 fprintf(houtfile, ");\n");
}

Source file: hadley.h

#ifdef __KERNEL__
#include <linux/slab.h>
#include <linux/mm.h>
#define malloc(a) kmalloc(a, SLAB_KERNEL)
#define free(a) kfree(a)
#else
#include <stdlib.h>
#endif

/* Built-in functions. */

#define LITTLEEND 0
#define BIGEND 0

#define hsl_sys_function_add(x, a, b) (a + b)
#define hsl_sys_function_sub(x, a, b) (a - b)
#define hsl_sys_function_mul(x, a, b) (a * b)
#define hsl_sys_function_div(x, a, b) (a / b)
#define hsl_sys_function_mod(x, a, b) (a % b)
#define hsl_sys_function_equ(x, a, b) (a == b)
#define hsl_sys_function_grt(x, a, b) (a > b)
#define hsl_sys_function_lst(x, a, b) (a < b)
#define hsl_sys_function_gre(x, a, b) (a >= b)
#define hsl_sys_function_lse(x, a, b) (a <= b)
#define hsl_sys_function_and(x, a, b) (a && b)
#define hsl_sys_function_or(x, a, b) (a || b)
#define hsl_sys_function_not(x, a) (!(a))
#define hsl_sys_function_intAt(x, l, m, w, e) \
 hsl_CORE_get_single_integer(l, m, w, e)
#define hsl_sys_function_charAt(x, l, n) \
 hsl_CORE_get_char_data(l, n)
#define hsl_sys_function_len(x, a) (a.length)

long long int hsl_sys_function_2to(long long int x, long long int a);

/* Clip structure. */

struct clip {
 char *location;
 long long int value;
 long long int length;
 long long int outputloc;
 long long int outputminorloc;
 long long int endian;

181

 int isAllocated;
};

struct cliplist {
 void *c;
 struct cliplist *next;
};

struct clip hsl_CORE_stringtoclip(char *s);
struct clip hsl_CORE_memtoclip(void *s, long long int l);
void hsl_CORE_add_garbage(void *);
void hsl_CORE_garbagecollect(void);

/* Core function prototypes. */

char *hcl_get_context_current();

struct cliplist *hsl_sys_function_listrepeat(long long int context,
 struct cliplist *k,
 long long int times,
 long long int space);

struct cliplist *hsl_sys_function_listfrom(long long int context,
 struct cliplist *k,
 long long int l);

struct cliplist *hsl_sys_function_newlist(long long int context,
 struct clip s);

struct cliplist *hsl_sys_function_listadd(long long int context,
 struct cliplist *k,
 struct clip s);

// This version of listadd requires that s appear at the end of k. See
// the documentation for write_clips for why this is important.

struct cliplist *hsl_sys_function_listaddend(long long int context,
 struct cliplist *k,
 struct clip s);

struct cliplist *hsl_sys_function_listcon(long long int context,
 struct cliplist *k,
 struct cliplist *l);

struct clip hsl_sys_function_makecharhint(long long int context,
 struct clip c,
 long long int l);

struct clip hsl_sys_function_makecharhintfill(long long int context,
 struct clip c,
 long long int size,
 long long int l);

struct clip hsl_sys_function_makeinthint(long long int context,
 long long int value,
 long long int l,
 long long int m,
 long long int w,
 long long int e);

struct clip hsl_sys_function_clipcat(long long int context,
 struct clip s,
 struct clip t);

struct clip hsl_sys_function_subclip(long long int context,
 struct clip s,
 long long int start,
 long long int len);

182

long long int hsl_sys_function_clipclip(long long int context,
 struct clip s,
 struct clip t);

long long int hsl_sys_function_cliplen(long long int context,
 struct clip s);

long long int hsl_sys_function_clipequ(long long int context,
 struct clip s,
 struct clip t);

long long int hsl_CORE_get_single_integer(long long int location,
 long long int minor_loc,
 long long int width,
 int endian);

struct clip hsl_CORE_get_complex_data(long long int location,
 long long int minor_loc,
 long long int width,
 long long int bytes,
 long long int bits);

struct clip hsl_CORE_get_char_data(long long int location,
 long long int n);

// The Hadley implementation is *required* to write the clips in l such that
// clips appearing later in the list are written over earlier ones. This
// allows HSL developers to require ordering by using listaddend.

void hsl_CORE_write_clips(struct cliplist *l);
void hsl_CORE_write_single_integer(struct clip c);
void hsl_CORE_write_char(struct clip c);

void hsl_CORE_write_char_data(long long int l,
 long long int n,
 void *data);

void hsl_CORE_init(void);

char *hsl_CORE_cliptostring(struct clip c);

Source file: hash.h

#ifdef __KERNEL__
#include <linux/slab.h>
#include <linux/mm.h>
#define malloc(a) kmalloc(a, SLAB_KERNEL)
#define free(a) kfree(a)
#else
#include <stdlib.h>
#include <strings.h>
#endif

struct hash {
 char *key;
 void *data;
 struct hash *next;
};

typedef struct hash hash;

void hash_init(hash *);
void *hash_lookup(hash *, char *);
void hash_insert(hash *, char *, void *);
void hash_delete(hash *, char *);

183

Source file: core.c

#include "hadley.h"

#ifdef __KERNEL__
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/string.h>
#define malloc(a) kmalloc(a, SLAB_KERNEL)
#define free(a) kfree(a)
#else
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <string.h>
#endif

long long int contextMode = 0;
long long int thisContext = 0;

#ifndef __KERNEL__
void *contextLoc;
FILE *contextFile;
#endif

static int our_endian;
static struct cliplist *garbage = NULL;

static void swap_endian(unsigned long long int *u) {
 unsigned char *c, *d;

 c = (unsigned char *) u;
 d = c + sizeof(unsigned long long int) - 1;
 while(d > c) {
 char q;

 q = *d;
 *d = *c;
 *c = q;

 c++; d--;
 }
}

long long int hsl_sys_function_2to(long long int context,
 long long int to) {
 long long int k = 1;

 while(to) {
 to--;
 k *= 2;
 }

 return k;
}

long long int hsl_sys_function_clipequ(long long int context,
 struct clip s,
 struct clip t) {
 return ((s.length == t.length) &&
 !memcmp(s.location, t.location, (int) s.length));
}

struct cliplist *hsl_sys_function_listfrom(long long int context,
 struct cliplist *k,
 long long int l) {
 struct cliplist *ok = k;

184

 while(k) {
 // k is a list of output clips. For each entry in it,
 // increment that entry's outputloc by l.
 ((struct clip *) k->c)->outputloc += l;
 k = k->next;
 }
 return ok;

}

struct cliplist *hsl_sys_function_newlist(long long int context,
 struct clip s) {
 struct clip *t = malloc(sizeof(struct clip));
 struct cliplist *l = malloc(sizeof(struct cliplist));

 memcpy(t, &s, sizeof(struct clip));
 l->next = NULL;
 l->c = t;
 hsl_CORE_add_garbage(l);
 hsl_CORE_add_garbage(t);
 return l;
}

struct cliplist *hsl_sys_function_listadd(long long int context,
 struct cliplist *k,
 struct clip s) {
 struct clip *t = malloc(sizeof(struct clip));
 struct cliplist *l = malloc(sizeof(struct cliplist));

 memcpy(t, &s, sizeof(struct clip));
 l->next = k;
 l->c = t;
 hsl_CORE_add_garbage(l);
 hsl_CORE_add_garbage(t);
 return l;
}

struct cliplist *hsl_sys_function_listaddend(long long int context,
 struct cliplist *k,
 struct clip s) {
 struct clip *t = malloc(sizeof(struct clip));
 struct cliplist *l = malloc(sizeof(struct cliplist));
 struct cliplist *ok = k;

 memcpy(t, &s, sizeof(struct clip));
 l->next = NULL;
 l->c = t;
 while(k->next) k = k->next;
 k->next = l;
 hsl_CORE_add_garbage(l);
 hsl_CORE_add_garbage(t);
 return ok;
}

struct cliplist *hsl_sys_function_listcon(long long int context,
 struct cliplist *k,
 struct cliplist *l) {
 struct cliplist *ok = k;
 while(k->next) k = k->next;
 k->next = l;
 return ok;
}

struct cliplist *hsl_sys_function_listcopy(long long int context,
 struct cliplist *k) {
 struct cliplist *l = NULL;
 struct clip *c;

185

 while(k) {
 c = malloc(sizeof(struct clip));
 memcpy(c, k->c, sizeof(struct clip));
 hsl_CORE_add_garbage(c);
 if(!l) {
 l = hsl_sys_function_newlist(context, *c);
 } else hsl_sys_function_listaddend(context, l, *c);
 k = k->next;
 }
 return l;
}

struct cliplist *hsl_sys_function_listrepeat(long long int context,
 struct cliplist *k,
 long long int times,
 long long int space) {
 int i, j;
 struct cliplist *l;

 j = 0;

 l = hsl_sys_function_listcopy(context, k);
 for(i = 1; i < times; i++) {
 j += space;
 l = hsl_sys_function_listcon(context, l,
 hsl_sys_function_listfrom(context,
 hsl_sys_function_listcopy(context, k),
 j)
);
 }

 return l;
}

struct clip hsl_sys_function_makecharhint(long long int context,
 struct clip c,
 long long int l) {
 struct clip r = {c.location, 0, c.length, l, 0, 0, 0};
 return r;
}

struct clip hsl_sys_function_makecharhintfill(long long int context,
 struct clip c,
 long long int size,
 long long int l) {
 struct clip r;
 int i;

 r.location = malloc(size);
 r.length = size;
 r.outputloc = l;
 r.outputminorloc = 0;
 r.endian = 0;
 r.isAllocated = 1;

 for(i = 0; i < size / c.length; i++) {
 memcpy(r.location + c.length * i, c.location, c.length);
 }

 return r;
}

struct clip hsl_sys_function_makeinthint(long long int context,
 long long int value,
 long long int l,
 long long int m,
 long long int w,
 long long int e) {
 struct clip r = {NULL, value, w, l, m, e, 0};

186

 return r;
}

struct clip hsl_CORE_stringtoclip(char *s) {
 struct clip r;
 int l = strlen(s);

 r.location = malloc(l+1);
 strcpy(r.location, s);
 r.length = strlen(r.location);
 r.isAllocated = 1;
 r.value = r.outputloc = r.outputminorloc = r.endian = 0;
 hsl_CORE_add_garbage(r.location);

 return r;
}

struct clip hsl_CORE_memtoclip(void *s, long long int l) {
 struct clip r;

 r.location = malloc(l);
 memcpy(r.location, s, l);
 r.length = l;
 r.isAllocated = 1;
 r.value = r.outputloc = r.outputminorloc = r.endian = 0;
 hsl_CORE_add_garbage(r.location);

 return r;
}

struct clip hsl_sys_function_clipcat(long long int context,
 struct clip s,
 struct clip t) {
 struct clip r;

 r.length = s.length + t.length;
 r.location = malloc(r.length);
 r.value = r.outputloc = r.outputminorloc = r.endian = 0;

 memcpy(r.location, s.location, s.length);
 memcpy(r.location + s.length, t.location, t.length);

 hsl_CORE_add_garbage(r.location);
 r.isAllocated = 1;
 return r;
}

struct clip hsl_sys_function_subclip(long long int context,
 struct clip s,
 long long int start,
 long long int len) {
 struct clip r;

 r.length = len;
 r.location = malloc(r.length);
 r.value = r.outputloc = r.outputminorloc = r.endian = 0;

 memcpy(r.location, s.location + start, len);
 hsl_CORE_add_garbage(r.location);
 r.isAllocated = 1;
 return r;
}

void hsl_CORE_add_garbage(void *c) {
 struct cliplist *oldgarbage = garbage;

 garbage = malloc(sizeof(struct cliplist));
 garbage->c = c;
 garbage->next = oldgarbage;

187

}

void hsl_CORE_garbagecollect() {
 while(garbage) {
 struct cliplist *nextgarbage = garbage->next;
 free(garbage->c);
 free(garbage);
 garbage = nextgarbage;
 }
}

static unsigned char andmask[] =
/* LIT BIG */
 { 0xFF, 0xFF,
 0x01, 0x80,
 0x03, 0xC0,
 0x07, 0xE0,
 0x0F, 0xF0,
 0x1F, 0xF8,
 0x3F, 0xFC,
 0x7F, 0xFE};

/* These are the fundamental linking functions. */

#ifndef __KERNEL__

void hsl_CORE_set_context_memory_mode() {
 contextMode = 0;
}

void hsl_CORE_set_context_file_mode() {
 contextMode = 1;
}

void hsl_CORE_set_context_memory_location(void *p) {
 contextLoc = p;
}

void hsl_CORE_set_context_file(FILE *f) {
 contextFile = f;
}

#endif

#ifdef __KERNEL__
extern struct super_block *HSL_super;
#endif

struct clip hsl_CORE_get_char_data(long long int l, long long int n) {
 char *c;
 struct clip q;

#ifdef __KERNEL__
 long long int blocks, bs, bufpos, i, firstblock;
 struct buffer_head *bh;

 l += thisContext;
 bs = HSL_super->s_blocksize;
 if(bs == 0) bs = 512; // XXX: *HACK*
 // printk(KERN_ALERT "Attempting to read %d bytes from %d at blocksize %d.\n",
 // (int) n, (int) l, (int) bs);
 blocks = n / bs;
 if(n % bs) blocks++;
 if(((l) % bs) + (n % bs) > bs) blocks++;

 firstblock = l / bs;
 bufpos = 0;
 c = (char *) malloc(blocks * bs);

188

 // printk(KERN_ALERT "Attempting to read %d blocks, starting at the %dth.\n",
 // (int) blocks, (int) firstblock);
 for(i = 0; i < blocks; i++) {
 // printk(KERN_ALERT " .");
 bh = bread(HSL_super->s_dev, firstblock + i, bs);
 memcpy(c + bufpos, bh->b_data, bs);
 brelse(bh);
 bufpos += bs;
 }
 hsl_CORE_add_garbage(c);
 c += (l % bs);
 // printk(KERN_ALERT "\nDone.\n");

#else
 if(contextMode == 0) {
 c = contextLoc + thisContext + l;
 }

 if(contextMode == 1) {
 c = malloc(n);
 hsl_CORE_add_garbage(c);
 fseek(contextFile, thisContext + l, SEEK_SET);
 fread(c, n, 1, contextFile);
 }
#endif

 if(n == 512) {
 printf(" Read sector #%d.\n", (int) (l / 512));
 }

 q.location = c;
 q.length = n;
 q.value = q.outputloc = q.outputminorloc = q.endian = 0;
 q.isAllocated = 0;
 return q;
}

void hsl_CORE_write_char_data(long long int l, long long int n, void *data) {
#ifndef __KERNEL__
 if(contextMode == 0) {
 char *c = contextLoc;
 c += l;
 memcpy(c, data, n);
 }

 if(contextMode == 1) {
 fseek(contextFile, l, SEEK_SET);
 fwrite(data, n, 1, contextFile);
 fflush(contextFile);
 }
#endif
}

struct clip hsl_CORE_get_complex_data(long long int location,
 long long int minor_loc,
 long long int width,
 long long int bytes,
 long long int bits) {
 struct clip dummy = {NULL, 0, 0, 0, 0, 0, 0};

 return dummy;
}

char *hsl_CORE_cliptostring(struct clip c) {
 char *c2;

 c2 = malloc(c.length + 1);
 memcpy(c2, c.location, c.length);
 c2[c.length] = '\0';

189

 return c2;
}

long long int hsl_sys_function_clipclip(long long int context,
 struct clip s,
 struct clip t) {
 char *ss;
 char *st;
 char *res;
 long long int i;

 ss = hsl_CORE_cliptostring(s);
 st = hsl_CORE_cliptostring(t);
 res = strstr(ss, st);

 i = res ? (long long int) (res - ss) + 1 : 0;

 free(ss);
 free(st);

 return i;
}

long long int hsl_sys_function_cliplen(long long int context, struct clip s) {
 return s.length;
}

#ifndef __KERNEL__

static void outbuf(unsigned char *c, int n) {
 int i;

 for(i = 0; i < n; i++) {
 printf("%02x ", c[i]);
 }
 printf("\n");
}

#endif

long long int hsl_CORE_get_single_integer(long long int l,
 long long int m,
 long long int w,
 int e) {
 struct clip source;
 unsigned char *scratchbuf;
 unsigned long long int result;

 int max_bytewidth, bytewidth, uneven, mrev, unevenrev;

 {
 unsigned char mbuf[32];
 mbuf[0] = '\0';
 scratchbuf = mbuf + 1;

 uneven = w % 8;
 unevenrev = 8 - uneven;
 mrev = 8 - m;
 max_bytewidth = (w + m) / 8 + (((w + m) % 8) ? 1 : 0);
 bytewidth = w / 8 + ((w % 8) ? 1 : 0);

 source = hsl_CORE_get_char_data(l, max_bytewidth);
 memcpy(scratchbuf, source.location, max_bytewidth);
 scratchbuf[max_bytewidth] = '\0';

 /* Minor point exists */

 if(m) {

190

 unsigned char *c, *d;
 int i;

 c = scratchbuf;
 d = c + 1;

 if(e) { /* Big Endian */
 for(i = 0; i < max_bytewidth; i++) {
 *c = (*c << m) | (*d >> mrev);
 c++; d++;
 }
 } else { /* Little Endian */
 for(i = 0; i < max_bytewidth; i++) {
 *c = (*c >> m) | (*d << mrev);
 c++; d++;
 }
 }
 }

 scratchbuf[bytewidth-1] &= andmask[uneven * 2 + e];

 if(uneven && e) {
 unsigned char *c, *d;
 int i;

 c = scratchbuf + bytewidth - 1;
 d = c - 1;

 for(i = bytewidth - 1; i >= 0; i--) {
 *c = (*c >> unevenrev) | (*d << uneven);
 c--; d--;
 }
 }

 /* Okay. We now have a valid bytewidth-byte integer in the first
 bytewidth bytes of scratchbuf. */

 result = 0;
 if(e) {
 unsigned char *c = (unsigned char *) &result;

 c = c + sizeof(unsigned long long int) - bytewidth;
 memcpy(c, scratchbuf, bytewidth);
 } else memcpy(&result, scratchbuf, bytewidth);
 }

 /* result now holds a valid integer of the native endian for what we read!
 Of course, that may not be our endian. */

 if(e != our_endian) swap_endian(&result);

#ifdef __KERNEL__
 // printk("Returning %d.\n", (int) result);
#endif
 return result;
}

void hsl_CORE_write_clips(struct cliplist *l) {
 while(l) {
 struct clip *c = (struct clip *) l->c;
 if(c->location) hsl_CORE_write_char(*c);
 else hsl_CORE_write_single_integer(*c);
 l = l->next;
 }
}

void hsl_CORE_write_single_integer(struct clip c) {
 unsigned long long int value, l, m, w, e;
 int max_bytewidth, bytewidth, uneven, mrev, unevenrev;

191

 unsigned char mbuf[32];
 unsigned char *scratchbuf;
 int i;

 for(mrev = 0; mrev < 32; mrev++) mbuf[mrev] = '\0';
 scratchbuf = mbuf + 1;

 l = c.outputloc;
 w = c.length;
 m = c.outputminorloc;
 e = c.endian;
 value = c.value;

 uneven = w % 8;
 unevenrev = 8 - uneven;
 mrev = 8 - m;
 max_bytewidth = (w + m) / 8 + (((w + m) % 8) ? 1 : 0);
 bytewidth = w / 8 + ((w % 8) ? 1 : 0);

 /* Uneven, unevenrev, mrev, max_bytewidth and bytewidth are now all
 correct. */

 /* We begin with a valid integer. First, we'll make sure it's the right
 endian for what we're writing. */

 if(e != our_endian) swap_endian(&value);

 /* Let's get a bytewidth-byte integer into the first bytewidth
 bytes of scratchbuf. */

 if(e) {
 unsigned char *c = (unsigned char *) &value;

 c = c + sizeof(unsigned long long int) - bytewidth;
 memcpy(scratchbuf, c, bytewidth);
 } else memcpy(scratchbuf, &value, bytewidth);

 /* Got that. Now, if we don't have an even bytewidth integer and we're
 in big-endian mode, we need to pack everything to the left. */

 if(uneven && e) {
 unsigned char *c, *d;
 int i;

 d = scratchbuf;
 c = d + 1;

 for(i = bytewidth; i > 0; i--) {
 *d = (*d << unevenrev) | (*c >> uneven);
 c++; d++;
 }
 }

 /* Now if the minor point exists, we get to go back to the right, according
 to endian rules. */

 if(m) {
 unsigned char *c, *d;
 int i;

 d = scratchbuf + max_bytewidth - 1;
 c = d - 1;

 if(e) { /* Big Endian */
 for(i = 0; i < max_bytewidth; i++) {
 *d = (*d >> m) | (*c << mrev);
 c--; d--;
 }
 } else { /* Little Endian */

192

 for(i = 0; i < max_bytewidth; i++) {
 *d = (*d << m) | (*c >> mrev);
 c--; d--;
 }
 }
 }

 /* Our integer is ready, but we may need to mask it with source data. */

 if(m || uneven) {
 struct clip source;
 unsigned char newbuf[32];
 int i;
 int k = (m + uneven) % 8;

 source = hsl_CORE_get_char_data(l, max_bytewidth);
 memcpy(newbuf, source.location, max_bytewidth);

 if(max_bytewidth == 1) {
 newbuf[0] &= (andmask[m*2+(1-e)] | andmask[(mrev-w)*2+(1-e)]);
 } else {
 if(!m) {
 newbuf[0] = '\0';
 } else {
 newbuf[0] &= andmask[m*2+e];
 }

 for(i = 1; i < max_bytewidth - 1; i++) {
 newbuf[i] = '\0';
 }

 if(!k) {
 newbuf[max_bytewidth - 1] = '\0';
 } else {
 newbuf[max_bytewidth - 1] &= andmask[(mrev-w)*2+(1-e)];
 }
 }

 for(i = 0; i < max_bytewidth; i++) {
 newbuf[i] |= scratchbuf[i];
 scratchbuf[i] = newbuf[i];
 }
 }

 hsl_CORE_write_char_data(l, max_bytewidth, scratchbuf);
}

void hsl_CORE_write_char(struct clip c) {
 hsl_CORE_write_char_data(c.outputloc, c.length, c.location);
}

void hsl_CORE_init(void) {
 /* Check our endianness. */

 unsigned short int endian_check = 0x00FF;
 unsigned char *c = (unsigned char *) &endian_check;

 our_endian = (*c == 0xFF) ? 0 : 1;
}

void hsl_CORE_pushContext(long long int context) {
 thisContext += context;
}

void hsl_CORE_popContext(long long int context) {
 thisContext -= context;
}

193

Source file: hash.c

#include "hash.h"

/* A quick, dumb string-key hashing data structure. */

void hash_init(hash *h) {
 h->key = malloc(1);
 h->key[0] = '\0';
 h->data = NULL;
 h->next = NULL;
}

void *hash_lookup(hash *h, char *s) {
 while(h) {
 if(!strcmp(h->key, s)) return h->data;
 h = h->next;
 }
 return NULL;
}

void hash_insert(hash *h, char *s, void *d) {
 int l = strlen(s);
 while(h->next) h = h->next;

 h->next = malloc(sizeof(hash));
 h = h->next;
 h->key = malloc(l + 1);
 strcpy(h->key, s);
 h->data = d;
 h->next = NULL;
}

void hash_delete(hash *h, char *s) {
 hash *oh;

 while(h && strcmp(s, h->key)) {
 oh = h;
 h = h->next;
 }

 if(h) {
 oh->next = h->next;
 free(h->key);
 free(h);
 }
}

Source file: linux-ext2.c

#include <linux/fs.h>
#include <linux/module.h>
#include <linux/init.h>

#include "hadley.h"
#include "hadleyfs.h"
#include "hadleyugo.h"

hsl_hadleyfs_template *fs;

struct super_block *hadley_read_super(struct super_block *super,
 void *opt, int silent);
void hadley_read_inode(struct inode *in);
struct dentry *hadley_lookup_inode(struct inode *in, struct dentry *de);
ssize_t hadley_read(struct file *f, char *c, size_t s, loff_t *l);
int hadley_readdir(struct file *f, void *v, filldir_t filldir);

194

struct super_operations hadley_sops = {
 hadley_read_inode,
 NULL,
 NULL,
 NULL, // hadley_write_inode,
 NULL,
 NULL, // hadley_delete_inode,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL, // hadley_stat,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL
};

struct inode_operations hadley_null_iops = {
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL
};

struct inode_operations hadley_dir_iops = {
 NULL, // hadley_create_inode,
 hadley_lookup_inode,
 NULL,
 NULL,
 NULL,
 NULL, // hadley_mkdir,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL
};

struct file_operations hadley_dir_fops = {
 NULL,
 NULL,
 generic_read_dir,
 NULL,
 hadley_readdir,
 NULL,
 NULL,
 NULL,
 NULL,

195

 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL
};

struct file_operations hadley_file_fops = {
 NULL,
 NULL,
 hadley_read,
 NULL, // hadley_write,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL
};

struct file_operations hadley_null_fops = {
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL
};

struct super_block *HSL_super;

struct super_block *hadley_read_super(struct super_block *super,
 void *opt, int silent) {
 long long int blocksize, rootid;
 struct inode *root_inode;

 // printk(KERN_ALERT "Attempting to read the superblock.\n");

 // MOD_INC_USE_COUNT;

 // lock_super(super);
 HSL_super = super;
 set_blocksize(super->s_dev, 512);
 super->s_blocksize = 512;
 // printk(KERN_ALERT "Getting block size.\n");

196

 blocksize = fs->BlockSize(0);
 // printk(KERN_ALERT "Getting root directory ID.\n");
 rootid = fs->RootDirectoryID(0);
 // printk(KERN_ALERT "Block size %d, rootdir %d.\n", (int) blocksize,
 // (int) rootid);

 // printk(KERN_ALERT "Setting superblock block size.\n");
 super->s_blocksize = blocksize;
 set_blocksize(super->s_dev, blocksize);
 super->s_op = &hadley_sops;
 /* Get the root directory inode */

 // printk(KERN_ALERT "Filling the root inode.\n");
 root_inode = iget(super, rootid);

 // printk(KERN_ALERT "Inserting the root inode.\n");
 // insert_inode_hash(root_inode);
 super->s_root = d_alloc_root(root_inode);

 // unlock_super(super);
 // printk(KERN_ALERT "Garbage collecting.\n");
 hsl_CORE_garbagecollect();
 // printk(KERN_ALERT "Superblock done.\n");
 return super;
}

void hadley_read_inode(struct inode *in) {
 long long int fileid = in->i_ino;

 // printk(KERN_ALERT "Attempting to fill inode %d.\n", (int) fileid);

 in->i_uid = in->i_gid = 0;
 in->i_nlink = 128;
 in->i_atime = in->i_ctime = in->i_mtime = 0;
 in->i_mode = S_IRWXU;
 if(fs->FileIsDirectory(0, fileid)) {
 in->i_mode |= S_IFDIR;
 in->i_op = &hadley_dir_iops;
 in->i_fop = &hadley_dir_fops;
 // printk(KERN_ALERT "Calling FilesIn...\n");
 in->i_size = fs->FilesIn(0, fileid);
 } else if(fs->FileIsRegular(0, fileid)) {
 in->i_op = &hadley_null_iops;
 in->i_fop = &hadley_file_fops;
 in->i_size = fs->FileSize(0, fileid);
 } else {
 // special file.
 in->i_op = &hadley_null_iops;
 in->i_fop = &hadley_null_fops;
 in->i_size = 0;
 }

 // printk(KERN_ALERT "Done filling.\n");
}

void hadley_write_inode(struct inode *in, int i) {
 return;
}

void hadley_delete_inode(struct inode *in) {
 return;
}

int hadley_stat(struct super_block *super, struct statfs *stats) {
 return -1;
}

int hadley_create_inode(struct inode *in, struct dentry *de, int i) {
 return -1;

197

}

struct dentry *hadley_lookup_inode(struct inode *in, struct dentry *de) {
 struct inode *result = NULL;
 int i;
 long long int fileid;

 for(i = 0; i < fs->FilesIn(0, in->i_ino); i++) {
 fileid = fs->nthFileIn(0, in->i_ino, i);
 if(!strcmp(de->d_name.name,hsl_CORE_cliptostring(fs->FileName(0, fileid))))
 {
 result = iget(in->i_sb, fileid);
 }
 }

 d_add(de, result);
 hsl_CORE_garbagecollect();
 return NULL;
}

int hadley_mkdir(struct inode *in, struct dentry *de, int i) {
 return -1;
}

ssize_t hadley_read(struct file *f, char *c, size_t s, loff_t *l) {
 long long int fileid = f->f_dentry->d_inode->i_ino;
 long long int bs = fs->BlockSize(0);
 long long int filesize = fs->FileSize(0, fileid);
 char *buf;
 int blocks;
 long long int bufpos = 0;
 int i;
 long long int firstblock;

 if(s + *l >= filesize) s -= (s + *l - filesize);
 if(s <= 0) return 0;

 blocks = s / bs;
 if(s % bs) blocks++;
 if(((*l) % bs) + (s % bs) > bs) blocks++;
 bufpos = 0;
 buf = (char *) malloc(blocks * bs);
 firstblock = (*l) / bs;

 for(i = 0; i < blocks; i++) {
 memcpy(buf + bufpos, (fs->FileBlock(0, fileid, firstblock + i)).location, bs);
 hsl_CORE_garbagecollect();
 bufpos += bs;
 }

 memcpy(c, buf + (*l % bs), s);

 free(buf);
 hsl_CORE_garbagecollect();
 *l += s;
 return s;
}

ssize_t hadley_write(struct file *f, const char *c, size_t s, loff_t *l) {
 return -1;
}

int hadley_readdir(struct file *f, void *v, filldir_t filldir) {
 /* We flatly cheat here with f_pos. */
 long long int rootid = fs->RootDirectoryID(0);
 long long int directoryid = f->f_dentry->d_inode->i_ino;
 long long int pos = f->f_pos;
 long long int filecount;
 long long int fileid;

198

 char *filename;

 // printk("Attempting to read directory.\n");
 filecount = fs->FilesIn(0, directoryid);

 /* Try without this.
 if(directoryid == rootid) {
 switch(pos) {
 case 0:
 (filp->fpos)++;
 filldir(de, ".", 1, pos, rootid);
 return 0;
 case 1:
 (filp->fpos)++;
 filldir(de, "..", 2, pos, 0);
 return 0;
 default:
 pos -= 2;
 filecount += 2;
 }
 } */

 if(pos < filecount) {
 fileid = fs->nthFileIn(0, directoryid, pos);
 filename = hsl_CORE_cliptostring(fs->FileName(0, fileid));
 filldir(v, filename, strlen(filename), pos, fileid, DT_UNKNOWN);
 // break;
 // filldir(v, filename, strlen(filename), pos, fileid,
 // fs->FileIsDirectory(0, fileid) ? DT_DIR : DT_REG);
 pos++;
 f->f_pos++;
 }

 hsl_CORE_garbagecollect();
 return 0;
}

DECLARE_FSTYPE_DEV(hadley_fs_type, "HadleyFS", hadley_read_super);

static int __init init_hadleyfs_fs(void) {
 // printk(KERN_ALERT "Hadley is initializing.\n");
 hsl_ext2_register_hadleyfs();
 hsl_fat12_register_hadleyfs();
 // printk(KERN_ALERT "Hadley filesystem types registered.\n");
 fs = get_hsl_hadleyfs_implementation("ext2");
 // printk(KERN_ALERT "Got implementation.\n");
 return register_filesystem(&hadley_fs_type);
 // printk(KERN_ALERT "Registered with the Linux kernel.\n");
}

static void __exit exit_hadleyfs_fs(void) {
 unregister_filesystem(&hadley_fs_type);
}

module_init(init_hadleyfs_fs)
module_exit(exit_hadleyfs_fs)

Source file: linux-fat12.c

#include <linux/fs.h>
#include <linux/module.h>
#include <linux/init.h>

#include "hadley.h"
#include "hadleyfs.h"
#include "hadleyugo.h"

199

hsl_hadleyfs_template *fs;

struct super_block *hadley_read_super(struct super_block *super,
 void *opt, int silent);
void hadley_read_inode(struct inode *in);
struct dentry *hadley_lookup_inode(struct inode *in, struct dentry *de);
ssize_t hadley_read(struct file *f, char *c, size_t s, loff_t *l);
int hadley_readdir(struct file *f, void *v, filldir_t filldir);

struct super_operations hadley_sops = {
 hadley_read_inode,
 NULL,
 NULL,
 NULL, // hadley_write_inode,
 NULL,
 NULL, // hadley_delete_inode,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL, // hadley_stat,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL
};

struct inode_operations hadley_null_iops = {
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL
};

struct inode_operations hadley_dir_iops = {
 NULL, // hadley_create_inode,
 hadley_lookup_inode,
 NULL,
 NULL,
 NULL,
 NULL, // hadley_mkdir,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL
};

struct file_operations hadley_dir_fops = {
 NULL,

200

 NULL,
 generic_read_dir,
 NULL,
 hadley_readdir,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL
};

struct file_operations hadley_file_fops = {
 NULL,
 NULL,
 hadley_read,
 NULL, // hadley_write,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL
};

struct file_operations hadley_null_fops = {
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL
};

struct super_block *HSL_super;

struct super_block *hadley_read_super(struct super_block *super,
 void *opt, int silent) {
 long long int blocksize, rootid;
 struct inode *root_inode;

 // printk(KERN_ALERT "Attempting to read the superblock.\n");

201

 // MOD_INC_USE_COUNT;

 // lock_super(super);
 HSL_super = super;
 set_blocksize(super->s_dev, 512);
 super->s_blocksize = 512;
 // printk(KERN_ALERT "Getting block size.\n");
 blocksize = fs->BlockSize(0);
 // printk(KERN_ALERT "Getting root directory ID.\n");
 rootid = fs->RootDirectoryID(0);
 // printk(KERN_ALERT "Block size %d, rootdir %d.\n", (int) blocksize,
 // (int) rootid);

 // printk(KERN_ALERT "Setting superblock block size.\n");
 super->s_blocksize = blocksize;
 set_blocksize(super->s_dev, blocksize);
 super->s_op = &hadley_sops;
 /* Get the root directory inode */

 // printk(KERN_ALERT "Filling the root inode.\n");
 root_inode = iget(super, rootid);

 // printk(KERN_ALERT "Inserting the root inode.\n");
 // insert_inode_hash(root_inode);
 super->s_root = d_alloc_root(root_inode);

 // unlock_super(super);
 // printk(KERN_ALERT "Garbage collecting.\n");
 hsl_CORE_garbagecollect();
 // printk(KERN_ALERT "Superblock done.\n");
 return super;
}

void hadley_read_inode(struct inode *in) {
 long long int fileid = in->i_ino;

 // printk(KERN_ALERT "Attempting to fill inode %d.\n", (int) fileid);

 in->i_uid = in->i_gid = 0;
 in->i_nlink = 128;
 in->i_atime = in->i_ctime = in->i_mtime = 0;
 in->i_mode = S_IRWXU;
 if(fs->FileIsDirectory(0, fileid)) {
 in->i_mode |= S_IFDIR;
 in->i_op = &hadley_dir_iops;
 in->i_fop = &hadley_dir_fops;
 // printk(KERN_ALERT "Calling FilesIn...\n");
 in->i_size = fs->FilesIn(0, fileid);
 } else if(fs->FileIsRegular(0, fileid)) {
 in->i_op = &hadley_null_iops;
 in->i_fop = &hadley_file_fops;
 in->i_size = fs->FileSize(0, fileid);
 } else {
 // special file.
 in->i_op = &hadley_null_iops;
 in->i_fop = &hadley_null_fops;
 in->i_size = 0;
 }

 // printk(KERN_ALERT "Done filling.\n");
}

void hadley_write_inode(struct inode *in, int i) {
 return;
}

void hadley_delete_inode(struct inode *in) {
 return;

202

}

int hadley_stat(struct super_block *super, struct statfs *stats) {
 return -1;
}

int hadley_create_inode(struct inode *in, struct dentry *de, int i) {
 return -1;
}

struct dentry *hadley_lookup_inode(struct inode *in, struct dentry *de) {
 struct inode *result = NULL;
 int i;
 long long int fileid;

 for(i = 0; i < fs->FilesIn(0, in->i_ino); i++) {
 fileid = fs->nthFileIn(0, in->i_ino, i);
 if(!strcmp(de->d_name.name,hsl_CORE_cliptostring(fs->FileName(0, fileid))))
 {
 result = iget(in->i_sb, fileid);
 }
 }

 d_add(de, result);
 hsl_CORE_garbagecollect();
 return NULL;
}

int hadley_mkdir(struct inode *in, struct dentry *de, int i) {
 return -1;
}

ssize_t hadley_read(struct file *f, char *c, size_t s, loff_t *l) {
 long long int fileid = f->f_dentry->d_inode->i_ino;
 long long int bs = fs->BlockSize(0);
 long long int filesize = fs->FileSize(0, fileid);
 char *buf;
 int blocks;
 long long int bufpos = 0;
 int i;
 long long int firstblock;

 if(s + *l >= filesize) s -= (s + *l - filesize);
 if(s <= 0) return 0;

 blocks = s / bs;
 if(s % bs) blocks++;
 if(((*l) % bs) + (s % bs) > bs) blocks++;
 bufpos = 0;
 buf = (char *) malloc(blocks * bs);
 firstblock = (*l) / bs;

 for(i = 0; i < blocks; i++) {
 memcpy(buf + bufpos, (fs->FileBlock(0, fileid, firstblock + i)).location, bs);
 hsl_CORE_garbagecollect();
 bufpos += bs;
 }

 memcpy(c, buf + (*l % bs), s);

 free(buf);
 hsl_CORE_garbagecollect();
 *l += s;
 return s;
}

ssize_t hadley_write(struct file *f, const char *c, size_t s, loff_t *l) {
 return -1;
}

203

int hadley_readdir(struct file *f, void *v, filldir_t filldir) {
 /* We flatly cheat here with f_pos. */
 long long int rootid = fs->RootDirectoryID(0);
 long long int directoryid = f->f_dentry->d_inode->i_ino;
 long long int pos = f->f_pos;
 long long int filecount;
 long long int fileid;
 char *filename;

 // printk("Attempting to read directory.\n");
 filecount = fs->FilesIn(0, directoryid);

 /* Try without this.
 if(directoryid == rootid) {
 switch(pos) {
 case 0:
 (filp->fpos)++;
 filldir(de, ".", 1, pos, rootid);
 return 0;
 case 1:
 (filp->fpos)++;
 filldir(de, "..", 2, pos, 0);
 return 0;
 default:
 pos -= 2;
 filecount += 2;
 }
 } */

 if(pos < filecount) {
 fileid = fs->nthFileIn(0, directoryid, pos);
 filename = hsl_CORE_cliptostring(fs->FileName(0, fileid));
 filldir(v, filename, strlen(filename), pos, fileid, DT_UNKNOWN);
 // break;
 // filldir(v, filename, strlen(filename), pos, fileid,
 // fs->FileIsDirectory(0, fileid) ? DT_DIR : DT_REG);
 pos++;
 f->f_pos++;
 }

 hsl_CORE_garbagecollect();
 return 0;
}

DECLARE_FSTYPE_DEV(hadley_fs_type, "HadleyFS", hadley_read_super);

static int __init init_hadleyfs_fs(void) {
 // printk(KERN_ALERT "Hadley is initializing.\n");
 hsl_ext2_register_hadleyfs();
 hsl_fat12_register_hadleyfs();
 // printk(KERN_ALERT "Hadley filesystem types registered.\n");
 fs = get_hsl_hadleyfs_implementation("fat12");
 // printk(KERN_ALERT "Got implementation.\n");
 return register_filesystem(&hadley_fs_type);
 // printk(KERN_ALERT "Registered with the Linux kernel.\n");
}

static void __exit exit_hadleyfs_fs(void) {
 unregister_filesystem(&hadley_fs_type);
}

module_init(init_hadleyfs_fs)
module_exit(exit_hadleyfs_fs)

Source file: maintest.c

204

#include "hadley.h"
#include "test.h"
/* Hadley System 0.1 */

/* This is a test version of the HCL. All it does is loads a single file,
 sets the context to be the buffer for that file and runs some test
 functions. */

char mainbuffer[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
char intbuffer[] = {0xAB, 0x0C, 0x00, 0xDE, 0xF0, 0x00};

char *context;

char *hcl_get_context_current() { return context; }

int main(void) {
 int i;

 hsl_CORE_init();
 context = mainbuffer;

 printf("Character test. Should be EFG.\n");
 printf("HSL -> %s\n", hsl_CORE_cliptostring(hsl_test_function_barfun(0)));
 printf("\n");

 context = intbuffer;
 printf("Integer tests.\n");
 printf("Should be AB0C.\n");
 printf("HSL -> %x\n", (int) hsl_test_function_foo1fun(0));
 printf("Should be CAB.\n");
 printf("HSL -> %x\n", (int) hsl_test_function_foo2fun(0));
 printf("Should be B0C0.\n");
 printf("HSL -> %x\n", (int) hsl_test_function_foo3fun(0));
 printf("What the heck should this be, anyway?\n");
 printf("HSL -> %x\n", (int) hsl_test_function_foo4fun(0));
 printf("Little endian tests. Should be CAB, 000, 0DE, 00F.\n");
 for(i = 0; i < 4; i++) {
 printf("HSL -> %x\n", (int) hsl_test_function_fooarray1fun(0, i));
 }
 printf("Big endian tests. Should be AB0, C00, DEF, 000.\n");
 for(i = 0; i < 4; i++) {
 printf("HSL -> %x\n", (int) hsl_test_function_fooarray2fun(0, i));
 }
 printf("Static subspace test. Should be 00DE.\n");
 printf("HSL -> %x\n", (int) hsl_test_function_sstest(0));
 printf("Dynamic subspace test. Should be DEF0.\n");
 printf("HSL -> %x\n", (int) hsl_test_function_withtest(0));
 return 0;
}

Source file: test-ext2temp.c

/* Hadley System 0.1 */

/* This is a test version of the HCL. All it does is loads a single file,
 sets the context to be the buffer for that file and runs some test
 functions. */

#define CONTEXT_SIZE 7065600
#define CONTEXT_FNAME "ext2disk.in"
#define FSTYPE "ext2"

int main(void) {
 testbytemplate("ext2", "ext2disk.in", 7065600);
 return 0;
}

205

Source file: test-fat12temp.c

/* Hadley System 0.1 */

/* This is a test version of the HCL. All it does is loads a single file,
 sets the context to be the buffer for that file and runs some test
 functions. */

int main(void) {
 testbytemplate("fat12", "fat12disk.in", 1500000);
 return 0;
}

Source file: test-temp.c

/* Hadley System 0.1 */

/* This is a test version of the HCL. All it does is loads a single file,
 sets the context to be the buffer for that file and runs some test
 functions. */

#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/types.h>

#include "hadley.h"
#include "hadleyfs.h"
#include "hadleyugo.h"
#include "hadleyfsw.h"
#include "fat12.h"
#include "ext2.h"

char *context;

hsl_hadleyfs_template *fs = NULL;
hsl_hadleyugo_template *ugo = NULL;
hsl_hadleyfsw_template *fsw = NULL;

#define EXTRACT_MAX_SIZE 1024000

void indent(int level) {
 int i;

 for(i = 0; i < level; i++) {
 printf(" ");
 }
}

long long int getFileIDfor(long long int directoryid, char *name) {
 long long int nfiles = fs->FilesIn(0, directoryid);
 long long int k = 0;
 int i;
 long long int fileid;

 for(i = 0; i < nfiles; i++) {
 fileid = fs->nthFileIn(0, directoryid, i);
 if(!strcmp(hsl_CORE_cliptostring(fs->FileName(0, fileid)), name)) k = fileid;
 }

 return k;
}

int doDirectory(long long int rootid, int level, int chop) {
 int i;

206

 long long int nfiles;
 static char dirstack[4096];

 if(!level) strcpy(dirstack, "extract-temp/");

 nfiles = fs->FilesIn(0, rootid);
 indent(level);
 printf(" There are %d files in this directory.\n", (int) nfiles);

 for(i = 0; i < nfiles; i++) {
 char name[4096];
 char extractname[4096];
 long long int ID, size, isDirectory, isRegular;

 ID = fs->nthFileIn(0, rootid, i);
 size = fs->FileSize(0, ID);
 isDirectory = fs->FileIsDirectory(0, ID);
 isRegular = fs->FileIsRegular(0, ID);
 strcpy(name, hsl_CORE_cliptostring(fs->FileName(0, ID)));

 indent(level);
 printf(" File %d ID %d name %s size %d %s ",
 i, (int) ID, name, (int) size,
 (isDirectory) ? "dir" :
 (isRegular) ? "file" :
 "special");
 if(ugo) {
 printf("%c%c%c%c%c%c%c%c%c %c%c%c",
 ugo->UsrRead(0, ID) ? 'r' : '-',
 ugo->UsrWrit(0, ID) ? 'w' : '-',
 ugo->UsrExec(0, ID) ? 'x' : '-',
 ugo->GrpRead(0, ID) ? 'r' : '-',
 ugo->GrpWrit(0, ID) ? 'w' : '-',
 ugo->GrpExec(0, ID) ? 'x' : '-',
 ugo->OthRead(0, ID) ? 'r' : '-',
 ugo->OthWrit(0, ID) ? 'w' : '-',
 ugo->OthExec(0, ID) ? 'x' : '-',
 ugo->Sticky(0, ID) ? 's' : '-',
 ugo->SetUID(0, ID) ? 'u' : '-',
 ugo->SetGID(0, ID) ? 'g' : '-');
 }
 printf("\n");
 if(isDirectory && strcmp(name, ".") && strcmp(name, "..")) {
 strcat(dirstack, name);
 strcat(dirstack, "/");
 mkdir(dirstack, S_IRWXU|S_IRWXG|S_IRWXO);
 doDirectory(ID, level + 1, strlen(name) + 1);
 } else if(isRegular && size < EXTRACT_MAX_SIZE) {
 long long int block = 0;
 long long int j = size;
 FILE *ofp;

 strcpy(extractname, dirstack);
 strcat(extractname, name);
 ofp = fopen(extractname, "w");
 while(j > 0) {
 struct clip c;

 c = fs->FileBlock(0, ID, block);
 fwrite(c.location, c.length, 1, ofp);
 j -= c.length;
 block++;
 }
 fclose(ofp);
 }
 hsl_CORE_garbagecollect();
 }
 dirstack[strlen(dirstack) - chop] = '\0';
}

207

void testbytemplate(char *FSTYPE, char *CONTEXT_FNAME, int CONTEXT_SIZE) {
 FILE *ifp;
 long long int rootid;
 size_t fsize;

 hsl_CORE_init();

#if 0
 ifp = fopen(CONTEXT_FNAME, "rb");
 fseek(ifp, 0, SEEK_END);
 fsize = ftell(ifp);
 rewind(ifp);
 printf("Reading from image file %s, size is %d.\n", CONTEXT_FNAME, fsize);
 context = malloc(fsize);
 fread(context, fsize, (size_t) 1, ifp);
 fclose(ifp);

 hsl_CORE_set_context_memory_mode();
 hsl_CORE_set_context_memory_location(context);
#endif

 ifp = fopen(CONTEXT_FNAME, "r+b");
 if(!ifp) { printf("WARNING: Could not open file %s\n", CONTEXT_FNAME); }
 fseek(ifp, 0, SEEK_END);
 fsize = ftell(ifp);
 rewind(ifp);
 printf("Reading from image file %s, size is %d.\n", CONTEXT_FNAME, fsize);

 hsl_CORE_set_context_file_mode();
 hsl_CORE_set_context_file(ifp);

 printf("File context set.\n");

 hsl_fat12_register_hadleyfs();
 hsl_fat12_register_hadleyfsw();
 hsl_ext2_register_hadleyfs();
 hsl_ext2_register_hadleyugo();

 printf("Templates registered.\n");

 printf("Getting FS implementation...\n");
 fs = get_hsl_hadleyfs_implementation(FSTYPE);
 if(fs->FSSupportsUGO(0)) {
 printf("Getting UGO implementation...\n");
 ugo = get_hsl_hadleyugo_implementation(FSTYPE);
 }
 if(fs->FSSupportsFSW(0)) {
 printf("Getting FSW implementation...\n");
 fsw = get_hsl_hadleyfsw_implementation(FSTYPE);
 }
 printf("Got implementations.\n");

 rootid = fs->RootDirectoryID(0);
 printf("Root directory ID is %d.\n", (int) rootid);

 if(0) {
// if(fsw) {
 struct cliplist *l;
 long long int fileid;
 char block[16384];
 int i;

 for(i = 0; i < 16384; i++) block[i] = '.';
 strcpy(block, "Feh.");

 printf("Writing test.\n");
 printf(" Creating file NEWFTEST.HSL.\n");

208

 l = fsw->NewFile(0, rootid, hsl_CORE_stringtoclip("NEWFTEST.HSL"));
 hsl_CORE_write_clips(l);
 hsl_CORE_garbagecollect();

 fileid = getFileIDfor(rootid, "NEWFTEST.HSL");
 printf(" File ID is %d.\n", (int) fileid);
 printf(" Writing into file.\n");

 l = fsw->AppendBlock(0, fileid, hsl_CORE_memtoclip(block, fs->BlockSize(0)));
 hsl_CORE_write_clips(l);
 hsl_CORE_garbagecollect();
 l = fsw->SetSize(0, fileid, fs->BlockSize(0));
 hsl_CORE_write_clips(l);
 hsl_CORE_garbagecollect();
 l = fsw->AppendBlock(0, fileid, hsl_CORE_memtoclip(block, 5));
 hsl_CORE_write_clips(l);
 hsl_CORE_garbagecollect();
 l = fsw->SetSize(0, fileid, fs->BlockSize(0) + 5);
 hsl_CORE_write_clips(l);
 hsl_CORE_garbagecollect();

 printf(" Creating directory NEWDTEST.\n");

 l = fsw->NewDirectory(0, rootid, hsl_CORE_stringtoclip("NEWDTEST"));
 hsl_CORE_write_clips(l);
 hsl_CORE_garbagecollect();

 printf("Done.\n");

 fileid = getFileIDfor(rootid, "NEWDTEST");
 printf(" File id is %d.\n", (int) fileid);

 printf(" Creating file SUBFILE.\n");

 l = fsw->NewFile(0, fileid, hsl_CORE_stringtoclip("SUBFILE"));
 hsl_CORE_write_clips(l);
 hsl_CORE_garbagecollect();

 fileid = getFileIDfor(fileid, "SUBFILE");
 printf(" File ID is %d.\n", (int) fileid);
 printf(" Writing into file.\n");

 l = fsw->AppendBlock(0, fileid, hsl_CORE_memtoclip(block, fs->BlockSize(0)));
 hsl_CORE_write_clips(l);
 hsl_CORE_garbagecollect();
 l = fsw->SetSize(0, fileid, fs->BlockSize(0));
 hsl_CORE_write_clips(l);
 hsl_CORE_garbagecollect();
 l = fsw->AppendBlock(0, fileid, hsl_CORE_memtoclip(block, 5));
 hsl_CORE_write_clips(l);
 hsl_CORE_garbagecollect();
 l = fsw->SetSize(0, fileid, fs->BlockSize(0) + 5);
 hsl_CORE_write_clips(l);
 hsl_CORE_garbagecollect();
 }

 printf("Reading test.\n");
 mkdir("extract-temp", S_IRWXU|S_IRWXG|S_IRWXO);
 doDirectory(rootid, 0, 0);
 fclose(ifp);
}

Source file: yacc-dummy.c

#include <stdio.h>

209

extern FILE *yyin;

void yyerror (const char *error) { perror(error); }

int main(void) {
 yyin = stdin;
 return yyparse();
}

210

APPENDIX C: HSL GRAMMAR (YACC FORMAT)

211

start: module;
module: rootdeclarations;

rootdeclarations: rootdeclaration rootdeclarations
 | rootdeclaration;

rootdeclaration: spacetypedeclaration
 | templatedeclaration;

spacetypedeclaration: SPACETYPE spacetypename
 '{' spacetypebody '}'
spacetypename: STRING;
spacetypebody: usesp componentdeclarations;

usesp: /* empty */
 | uses;

uses: use
 | use uses;
use: USE usename '.';
usename: STRING;

componentdeclarations: componentdeclaration componentdeclarations
 | componentdeclaration;

componentdeclaration: functiondeclaration
 | variabledeclaration
 | subspacedeclaration
 | implementdeclaration;

functiondeclaration: FUNCTION functiondeclname functiontypepart
 '(' functionparametersp ')'
 functionwithpartp
 '{' functionbody '}';
functiondeclname: STRING;
functiontypepart: IS STRING;
functionparametersp: /* empty */
 | functionparameters;
functionparameters: functionparameter ','
 functionparameters;
 | functionparameter
functionparameter: functionparametername
 functionparametertype;
functionparametername: STRING;
functionparametertype: IS variabletypename;

 | functionwith;

functionwithtype: STRING;

functionwithpartp: /* empty */
 | WITH functionwiths;
functionwiths: functionwith ',' functionwiths

functionwith: functionwithname IS functionwithtype
 AT expression;
functionwithname: STRING;

functionbody: expression;

212

/* Here we deal with variables. */

variabledeclaration: VAR variablename
 variabletypepart
 variableendianpart
 variablewidthpart
 variablelocationpart '.';
variablename: STRING;
variablepublicpart: /* empty */
 | PUBLIC;
variabletypepart: IS variablepublicpart variabletypename
 variablearraypart;
variabletypename: STRING;
variablearraypart: /* empty */
 | '[' expression ']';
variablewidthpart: /* empty */
 | WIDTH expression;
variablelocationpart: AT expression variableminorpart;
variableminorpart: /* empty */
 | MINOR expression;
variableendianpart: /* Empty */
 | BIGEND
 | LITTLEEND;

subspacedeclaration: SUBSPACE subspacename IS subspacetypename
 AT expression '.';
subspacename: STRING;
subspacetypename: STRING;

implementdeclaration: IMPLEMENT implementname
 '{' implementfunctions '}';
implementname: STRING;
implementfunctions: implementfunction
 | implementfunction ',' implementfunctions;
implementfunction: STRING;

/* Here we deal with expressions. */

expression: literal
 | qualifiedreference
 | conditional
 | fparameter;

qualifiedreference: '$' variablereference
 | '@' functioncall
 | '&' '!' variablemajorlocation
 | '&' '.' variableminorlocation;

literal: literalstring literalinteger
 | literalstring
 | literalinteger;
literalstring: QSTRING;
literalinteger: INTEGER;

variablereference: variablename

213

 variablerefarraypart;

variablemajorlocation: variablename
 variablelocarraypart;

variableminorlocation: variablename
 variablelocarraypart;

variablelocarraypart: /* empty */

variablerefarraypart: /* empty */

functioncall: functionname '(' functionargumentspart ')';

 | '[' expression ']';

 | '[' expression ']'
 | '<' expression ',' expression '>';

functionname: THIS '.' functionlocalname;
 | functionspacename '.' functionremotename;
functionspacename: STRING;
functionremotename: STRING;
functionlocalname: STRING;
functionargumentspart: /* empty */
 | functionarguments;
functionarguments: functionargument ','
 functionarguments
 | functionargument;
functionargument: expression;

fparameter: STRING;

conditional: ifconditional;

ifconditional: ifheader '{' expression '}' elsepart;
ifheader: IF '(' expression ')';
elsepart: /* empty */
 | ELSE '{' expression '}';

templatedeclaration: TEMPLATE templatename
 '{' templatebody '}';
templatename: STRING;
templatebody: tfunctiondeclarations;

tfunctiondeclarations: tfunctiondeclaration tfunctiondeclarations
 | tfunctiondeclaration;

tfunctiondeclaration: FUNCTION tfunctiondeclname tfunctiontypepart
 '(' tfunctionparametersp ')';
tfunctiondeclname: STRING;
tfunctiontypepart: IS STRING;
tfunctionparametersp: /* empty */
 | tfunctionparameters;
tfunctionparameters: tfunctionparameter ','
 tfunctionparameters;
 | tfunctionparameter

214

tfunctionparameter: tfunctionparametername
 tfunctionparametertype;
tfunctionparametername: STRING;
tfunctionparametertype: IS variabletypename;

215

LIST OF REFERENCES

Aho, Alfred and Ullman, Jeffrey. Foundations of Computer Science. (1992) W.H. Freeman,

New York. ISBN 0-7167-8233-2.

Anton, Marius. Romanian Mini Linux. (2003) Available at URL:

http://www.geocities.com/rominlinux/

Barjaktarovic, Milica; Chin, Shiu-Kai and Jabbour, Kamal. �Formal specification and

verification of the kernel functional unit of the OSI session layer protocol and service

using CCS�. Proceedings of the 1996 ACM SIGSOFT International Symposium on

Software Testing and Analysis. ACM, New York.

Broy, Manfred and Stefãnescu, Gheorghe. �The algebra of stream processing functions�.

Theoretical Computer Science 258 (1-2) pp. 99-129 (2001). Elsevier, London.

Card, Rémy; Ts�o, Theodore; and Tweedie, Stephen. �Design and Implementation of the Second

Extended Filesystem.� First Dutch International Symposium on Linux, Amsterdam.

Available at URL: http://web.mit.edu/tytso/www/linux/ext2intro.html.

Carrier, Brian. �Defining Digital Forensic Examination and Analysis Tools Using Abstraction

Layers�. International Journal of Digital Evidence 1 (4) (2002). Available at URL:

http://www.ijde.org/. Syracuse University, Utica.

Chou, Andy; Yang, Junfeng; Chelf, Benjnamin; Hallem, Seth and Engler, Dawson. �An

Empirical Study of Operating Systems Errors.� Proceedings of the 18th Symposium on

Operating Systems Principles (SOSP) (2001). ACM, New York.

Ciancarini, Paolo; Fogli, Daniela and Gaspari, Mauro. �A declarative coordination language�.

Computer Languages 26 (2-4), pp. 125-163 (2000). Elsevier, London.

216

http://www.geocities.com/rominlinux/
http://web.mit.edu/tytso/www/linux/ext2intro.html
http://www.ijde.org/

Cisco Systems. Cisco Certified Network Associate Examination. Document #640-607 (Retired).

Cisco Systems, San Jose.

Daubert v. Merrill Dow Pharmaceuticals (509 U.S. 579, 1993)

Defense Advanced Research Projects Agency Internet Program. RFC 793: Transmission

Control Protocol (1981). Available at URL: http://www.rfc-editor.org/rfc/rfc793.txt.

DriveSavers Data Recovery. http://www.drivesavers.com/index.html

Gerber, Matthew and Leeson, John. �Shrinking the Ocean: Formalizing I/O Methods in Modern

Operating Systems.� International Journal of Digital Evidence 1 (2) (2002). Available

at URL: http://www.ijde.org/. Syracuse University, Utica.

Gerber, Matthew and Leeson, John. �Formalization of Computer Input and Output: The Hadley

Model.� Digital Investigation 1 (3) (2004), pp214-224. Elsevier, London.

Gordon, Andrew. �An Operational Semantics for I/O in a Lazy Functional Language.�

Conference on Functional Programming Languages and Computer Architecture, pp.

136-145 (1993). ACM, New York.

Gordon, Andrew. Functional Programming and Input/Output. Doctoral dissertation. Cambrige

University Press, 1994.

Guidance Software. Encase (software package). Information available at URL:

http://www.guidancesoftware.com/.

Hall, Jim. FreeDOS Beta 9 (operating system). Available at URL: http://www.freedos.org/.

Heisel, Maritta. �Specification of the Unix file system: A comparative case study�. Algebraic

Methodology and Technology Lecture Notes in Computer Science 936, pp. 475-488

(1995). Springer, New York.

217

http://www.drivesavers.com/index.html
http://www.ijde.org/
http://www.guidancesoftware.com/
http://www.freedos.org/

Heydon, Allen and Tygar, J.D.. �Specifying and Checking Unix Security Constraints�.

Computing Systems 7 (1), pp. 91-112 (1994). MIT Press, Cambridge.

Hill, Mark; Condon, Anne; Plakal, Manoj and Sorin, Daniel. �A System-Level Specification

Framework for I/O Architectures�. Annual ACM Symposium on Parallel Algorithms and

Architecture pp. 138-147 (1999). ACM, New York.

International Committee on Information Technology Standards Technical Committee T13: AT

Attachment. Information available at URL: http://www.t13.org.

International Committee on Information Technology Standards Technical Committee T10:

Lower-Level Interfaces. Information available at URL: http://www.t10.org.

International Organization for Standardization. �Information Technology�Open Systems

Interconnection�Basic Reference Model: The Basic Model�. Publication ISO/IEC

7498-1:1994.

International Organization for Standardization. �Information Technology�Open Systems

Interconnection�Basic Reference Model: The Basic Model�. Publication ISO/IEC

7498-1:1994.

Kjoernes, Thomas. �File Allocation Table: How It Seems To Work�. 2000. Available at URL:

http://home.no.net/tkos/info/fat.html.

Kumho Tire Company v. Patrick Carmichael (526 U.S., 1999)

Landin, P.J. �A Corresponence Between ALGOL-60 and Church�s Lambda-Notation: Part I�.

Communications of the ACM 8 (2) (1965). ACM, New York.

Mason, Luke. �Access Corruption: Top Ten Prevention Strategies�. TechRepublic (April 2002).

CNet Networks, San Francisco.

218

http://www.t13.org
http://www.t10.org

Microsoft. Windows XP Resource Kit: FAT File System. Available at URL:

http://www.microsoft.com/.

New Technologies Inc. Safeback (software package). Information available at URL:

http://www.forensics-intl.com/safeback.html.

Peterson, John and Chitil, Olaf. Haskell: A Purely Functional Language. Available at URL:

http://www.haskell.org/.

Poirer, Dave. The Second Extended File System: Internal Layout. Available at URL:

http://ftp.gnu.org/savannah/files/ext2-doc/ext2.rtf.

Shimizu, Kanna and Dill, David. �Using Formal Specifications for Functional Validation of

Hardware Designs�. IEEE Design and Test of Computers 19(4), pp. 96-106 (2002).

IEEE, Piscataway.

Smotherman, Mark. �A Sequencing-Based Taxonomy of I/O Systems and Review of Historical

Machines�. Computer Architecture News 17 (5), pp. 10-15 (1989). ACM, New York.

Software in the Public Interest, Inc. Debian GNU/Linux (operating system). Available at URL:

http://www.debian.org/.

Torvalds, Linus et al. Linux (operating system kernel). Available at URL:

http://www.kernel.org/.

Tweedie, Stephen. �Journaling the Linux ext2fs Filesystem�. LinuxExpo 1998. Available at

URL: ftp://ftp.uk.linux.org:/pub/linux/sct/fs/jfs/journal-design.ps.gz.

United States Department of the Treasury. iLook (software package). Information available at

URL: http://ilook-forensics.org/.

User-Mode Linux. Available at URL: http://user-mode-linux.sourceforge.net/

219

http://www.microsoft.com/
http://ftp.gnu.org/savannah/files/ext2-doc/ext2.rtf
ftp://ftp.uk.linux.org:/pub/linux/sct/fs/jfs/journal-design.ps.gz
http://ilook-forensics.org/
http://user-mode-linux.sourceforge.net/

220

Wadler, Philip. �Comprehending Monads.� Proceedings of the ACM Conference on Lisp and

Functional Programming. Nice, France (June 1990). Available at URL:

http://citeseer.nj.nec.com/wadler92comprehending.html. ACM, New York.

http://citeseer.nj.nec.com/wadler92comprehending.html

	Formalization Of Input And Output In Modern Operating Systems: The Hadley Model
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTSLIST OF FIGURESxivLIST OF TABLESxvLIST OF ACRONYMSxviCHAPTER ONE: INTRODUCTION1CHAPTER TWO: LITERATURE REVIEW7The OSI Networking Model7Hardware Standards10Modeling Languages11Functional Languages13Summary14CHAPTER THREE: RESEARCH DESIGN
	LIST OF TABLES
	LIST OF ACRONYMS
	CHAPTER ONE: INTRODUCTION
	CHAPTER TWO: LITERATURE REVIEW
	The OSI Networking Model
	Hardware Standards
	Modeling Languages
	Functional Languages
	Summary

	CHAPTER THREE: RESEARCH DESIGN AND METHODOLOGY
	The Hadley Model
	Definitions
	Layer Models of I/O
	Input and Output in Hardware
	The Layer Model of Hardware
	Layer H-1: Peripheral Electronics
	Layer H-2: Peripheral Interface Electronics
	Layer H-3: I/O Bus
	Layer H-4: System Bus
	Layer H-5: Primary Memory
	Layer H-6: CPU

	Uses of the Hardware Model

	Input and Output in Operating Systems
	The Layer Model of Stream Peripherals
	Layer OS-S1: Peripheral Addressing
	Layer OS-S2: Stream Addressing
	Layer OS-S3: Sequential File Addressing

	The Layer Model of Random Access Peripherals
	Layer OS-R1: Peripheral Addressing
	Layer OS-R2: Flat Space Addressing
	Layer OS-R3: Partitions in Flat Space
	Layer OS-R4: Formatted Partitions
	Layer OS-R5: Random-Access Sequential Files

	Uses of the Software Model

	The Hadley Specification Language
	Overview
	Spacetypes
	Subspaces
	Addressed References \(“Variables”\)
	Functions
	Built-In Functions

	Templates
	Lists, Hints and Writing
	Hint Functions
	List Functions

	Expressions

	Working With HSL
	Making HSL Useful
	Writing an HSL Module
	Writing an HSL File System Module
	Using an HSL Module from C
	Initializing HSL
	Registering Template Functions
	Creating the Context
	Calling HSL Functions From C
	Writing Out HSL Results
	Garbage Collection
	Adding a new File System to the Extractor
	Adding a new File System to the VFS Module
	A Note on Concurrency

	Design Notes: The HSL Runtime
	Demonstrating the Correctness of HSL Specifications
	The hadleyfs template
	Demonstrating the Correctness of hadleyfs implementations
	Fundamental Functions
	Directory Functions
	Path 1
	Path 2

	File Functions

	CHAPTER FOUR: FINDINGS
	HSL Test Suite
	Filesystem Extractors
	Universal Filesystem Driver
	Writing Filesystems
	Specification Efficiency
	Performance
	Characteristics of HSL and HSL Demonstrations
	Demonstrations of Correctness
	Major Dependencies
	Definition of FAT12
	Overview
	Partition Metadata
	The Boot Sector
	BIOS Parameter Block
	Extended BIOS Parameter Block

	Directory Metadata
	Directory Entry
	Attribute Byte

	The FAT, Clusters and the Data Area
	The Data Area

	Demonstration of Correctness for FAT12
	Definition (FAT12 File ID)
	Assertion FAT12-a
	Assertion FAT12-b
	Assertion FAT12-c
	Assertion FAT12-d
	Assertion FAT12-e
	Assertion FAT12-f
	Assertion FAT12-g
	Assertion FAT12-h
	Assertion FAT12-i
	Assertion FAT12-j
	Assertion FAT12-1
	Assertion FAT12-2b
	Assertion FAT12-k
	Assertion FAT12-m
	Assertion FAT12-n
	Assertion FAT12-o
	Assertion FAT12-p
	Assertion FAT12-3b
	Assertion FAT12-4b
	Assertion FAT12-5b
	Assertion FAT12-6
	Assertion FAT12-7
	Assertion FAT12-8
	Assertion FAT12-9-1
	Assertion FAT12-9-2
	Assertion FAT12-9-3
	Assertion FAT12-9
	Conclusion

	Definition of ext2fs
	Overview
	Partition Metadata
	File Metadata
	Directories

	Demonstration of Correctness for EXT2FS
	Definition (EXT2FS File ID)
	Assertion EXT2FS-a
	Assertion EXT2FS-b
	Assertion EXT2FS-c
	Assertion EXT2FS-d
	Assertion EXT2FS-e
	Assertion EXT2FS-1
	Assertion EXT2FS-1-1
	Assertion EXT2FS-f
	Assertion EXT2FS-g
	Assertion EXT2FS-h
	Assertion EXT2FS-i
	Assertion EXT2FS-j
	Assertion EXT2FS-k
	Assertion EXT2FS-l
	Assertion EXT2FS-2b
	Assertion EXT2FS-m
	Assertion EXT2FS-n
	Assertion EXT2FS-3b
	Assertion EXT2FS-4b
	Assertion EXT2FS-5b
	Assertion EXT2FS-6
	Assertion EXT2FS-7
	Assertion EXT2FS-8
	Assertion EXT2FS-9-1
	Assertion EXT2FS-9-2
	Assertion EXT2FS-9-3
	Assertion EXT2FS-9
	Conclusion

	CHAPTER FIVE: CONCLUSION
	Summary
	Future Directions
	The Model
	The System
	The Tool

	APPENDIX A: HSL SPECIFICATIONS
	APPENDIX B: HADLEY SYSTEM SOURCE CODE
	APPENDIX C: HSL GRAMMAR (YACC FORMAT)
	LIST OF REFERENCES

