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ABSTRACT 
 
 

The bandwidth and speed of network connections are continually increasing. The speed 

increase in network technology is set to soon outpace the speed increase in CMOS technology. 

This asymmetrical growth is beginning to causing software applications that once worked with 

then current levels of network traffic to flounder under the new high data rates. Processes that 

were once executed in software now have to be executed, partially if not wholly in hardware. 

One such application that could benefit from hardware implementation is high layer routing. By 

allowing a network device to peer into higher layers of the OSI model, the device can scan for 

viruses, provide higher quality-of-service (QoS), and efficiently route packets. This thesis 

proposes an architecture for a device that will utilize hardware-level string matching to distribute 

incoming requests for a server farm. The proposed architecture is implemented in VHDL, 

synthesized, and laid out on an Altera FPGA. 
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CHAPTER ONE: 
INTRODUCTION 

 
 

The bandwidth and speed of network connections are continually increasing. The speed 

increase in network technology is set to soon outpace the speed increase in CMOS technology. 

This asymmetrical growth is beginning to causing software applications, which once worked 

with then current levels of network traffic, to flounder under the new high data rates. Systems 

that are based on software applications not only have to process the software application but also 

have the overhead involved in unpacking/packing data through the network protocol stack. 

Processes that were once executed in software now have to be executed, partially if not wholly in 

hardware. By allowing a network to peer into higher layers of the OSI model, the network can 

scan for viruses, provide higher quality-of-service (QoS), and efficiently route packets. One such 

application that could benefit from hardware implementation is high layer routing.  

 

The OSI Model 
 
 

Currently, the International Organization for Standardization (ISO) maintains a suite of 

standards, commonly referred to as the Open Systems Interconnection (OSI) model, that define 

the layers and the partitions that separate these layers of many network architecture models. ISO 

is comprised of over 150 national standards bodies and contains over 5,200 technical bodies and 

working groups. Currently the organization has over 16,000 standards. ISO defines standards for 

policies, processes, services, systems, materials, and products. ISO standards make clear the 

requirements for products, allowing suppliers to compete worldwide. The standards disseminate 

 



expert information, allowing room for improvement. A number of these standards relate to 

networking and comprise the OSI model [17, 19]. 

The OSI model is layered, meaning that related communication functions are abstracted 

out into a layer, which will commonly be encapsulated into a single protocol. A particular 

application of the network will then specify the use of a subset of the protocols. This subset is 

commonly referred to as a protocol stack. The layered model is beneficial when changes to a 

particular aspect of network communications are needed. Because the interfaces between the 

layers are defined, when an optimization or correction to the function of a layer needs to be 

made, it can be done without affecting the other layers. Also, because multiple protocols can 

exist to perform the same function for a particular layer, for a specific network communication, 

the most efficient protocol for any given layer can be chosen [15, 16]. 

 

Figure 1 - The OSI Model 

The seven layers of the OSI model are: Application, Presentation, Session, Transport, 

Network, Data Link, and Physical. Figure 1 illustrates the order in which the layers are processed 
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when sending or receiving data. The OSI architecture model illustrates the common, agreed 

upon, protocols from the majority of manufactures. However, even though the standards have 

been agreed upon for years, they are in continual evolution. An example of this evolution is the 

widely accepted TCP/IP stack, which is commonly used to transport internet traffic. The TCP/IP 

stack does not utilize the Presentation or Session layers [15, 16, 17]. The following sections 

review the five commonly used layers of the TCP/IP stack, followed by a more detailed look at 

the TCP/IP stack. 

 

The Physical Layer 
 

The Physical Layer standards define the medium and means with which signals are sent. 

This includes the physical device interfaces, physical medium, device security, voltage levels, 

and timing requirements. There is a multitude of different Data Link Layer protocols, the 

Physical Layer standards must provide means to send data using Ethernet, BNX, or WiFi. Each 

standard can also provide for varying speeds. As technology improves, so does the standard to 

provide for the fastest network possible [16, 18].  

 

The Data Link Layer 
 

The Data Link Layer provides connection between two individual, sequential, nodes of a 

network. Some of the more common Data Link Layer protocols include: Ethernet, Token Ring, 

802.11 wireless (WiFi), and arguably, various fiber optic connections such as ATM and FDDI. 

The Data Link Layer is responsible for moving data across a single link (or node-to-node) in the 
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network path. The combination of the Data Link Layer and Physical Layer is commonly referred 

to as the Media Access Control (MAC) protocols. A MAC address of a machine is the, one of a 

kind, physical hardware address of that machine [15, 16, 20, 21]. 

Many of the Data Link Layer protocols provide a multitude of services to assure that a 

datagram has been passed (node-to-node). The Data Link Layer will encapsulate the packet 

passed down from the network layer in the data portion of its own packet, thus adding an 

additional header onto the packet. This technique of encapsulating is commonly called Framing. 

Data Link Layer protocols can also implement several features to control access to the physical 

medium. The link access, reliable delivery, and flow control features of many Data Link Layer 

protocols: assure that two senders don’t try to send data at the same time corrupting both sets of 

data; verify that the receiver received the data that was sent; and assure that the sender does not 

send too much data causing the receiver to overfill buffers and drop packets. Many of the 

protocols provide means for error detection while few protocols can perform error correction. 

Also, Data Link protocols can be either full or half-duplex [15, 16]. 

 

The Network Layer 
 

The goal of the Network Layer is very similar to the Data Link Layer: to get data from 

the sending machine to the receiving machine. However, for the Network Layer, the two 

machines might not be directly, physically connected. The Network Layer must assure that a 

packet has traveled from the sender to the receiver, across however many other machines it 

might take. In essence, the Network Layer allows machines on different networks to be able to 

communicate. The main device that makes this cross-network communication possible is the 
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router. The Network Layer protocols often provide means for guaranteed, in-order, packet 

delivery [15, 16]. 

The IP protocol has a mechanism to address a machine with an IP address. Current IPv4 

addresses contain 32 bits with which to identify a machine. However, more evidence of the 

constant evolution of networking is the gradual move towards IPv6. IPv6 addresses contain 128 

bits with which to identify machines. A host machine will only have a single Data Link Layer 

MAC address per network interface. However, each network interface may be associated with 

multiple Network Layer IP addresses. The mechanism to translate between IP addresses and 

MAC addresses is called the Address Resolution Protocol (ARP)  [15, 16, 20, 21]. 

 

The Transport Layer 

The transport layer provides an abstraction so that many of the networking details are 

removed from the programmer’s perspective. The transport layer extends the addressing scheme 

beyond destination addresses (IP addresses) and specifies a port on the destination machine. 

Typically, applications will bind to a specific port on a machine. For instance, port 80 has been 

defined for HTTP use. So, many web servers will default to using port 80. The transport layer 

can be implemented using either reliable or unreliable transmissions. The most common reliable 

communications means is TCP. TCP uses hand-shaking to make and break connections between 

the host and destination machines. Once a connection is made, the destination will acknowledge 

receiving any data that the sender has sent. This allows the sender to know if any data has been 

dropped. The most common unreliable Transport Layer protocol is UDP. UDP is a 

connectionless protocol, meaning that it does not perform any handshaking. UDP is often used to 
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stream either voice or video to multiple viewers. If a packet where to be dropped, by the time the 

receiver asked for it to be resent, the data would no longer be valid. Thus, there is no need to 

provide guaranteed delivery of the packet [15, 16]. 

 

The Application Layer 
 

The Application Layer directly provides the networking services to the user. Just like the 

other layers, the data structures of the Application Layer must be agreed upon by the sender and 

the receiver. Some of the protocols of the Application Layer are: HTTP, SMTP and FTP. The 

different protocols of the Application Layer often provide APIs that abstract away much of the 

difficulties of setting up network communications within a program. An application programmer 

simply needs to choose the services required by their application. Reliable Data Transfer, 

Bandwidth, and Delay are all factors that can be affected by what lower level protocols are used 

[15, 22]. 

 

The TCP/IP Stack 
 

The most commonly implemented protocol stack used for internet traffic is the TCP/IP 

stack. With the details of the individual layers previously discussed, an example of how the 

layers work together will now be covered. An example implementation of using an internet 

browser and viewing a webpage would use the following protocols per layer: HTTP at the 

Application Layer, TCP at the Transport Layer, IP at the Network Layer, then Ethernet/CAT5 at 

the Data Link/Physical Layer. Figure 2 illustrates the relationship that the layers have to each 
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other. Two of the most common devices that internet traffic travels through are switches and 

routers. Switches work at the Data Link Layer and allow point to point communication of 

machines on the same network. Routers work at the Network Layer and allow devices on 

different networks to communicate with each other [22]. 
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Figure 2 - The TCP/IP Stack 

 

The HTTP GET Request 
 
 

The Hyper-Text Transport Protocol (HTTP) has become the dominant vehicle to convey 

information across the World Wide Web (WWW). As mentioned earlier, HTTP is an 

Application Layer protocol that is used to communicate between clients and servers. HTTP has 

several methods that provide the ability to send, retrieve, and modify data on a server. As of 

version 1.1, there are 7 HTTP methods. These methods are: Options, Get, Head, Post, Put, 

Delete, Trace, and Connect. Table 1 lists each method with a short description of what the 

method does [24, 25]. For the purposes of this thesis, the GET request is of highest interest. 
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Table 1 - HTTP V1.1 Methods 
 

Method Description 
OPTIONS Requests available options for URL 
GET Retrieves requested URL (Headers & Body) 
HEAD Retrieve Requested URL (Headers only) 
POST Sends information to the server 
PUT Uploads the file to the indicated URL 
DELETE Deletes the URL from the server 
TRACE Used to troubleshoot communications with the server 
CONNECT Used for proxy server content tunneling 

To identify an HTTP packet, we will verify the packet from the top down. First, the Ether 

Type field in the Ethernet header is checked. A decimal value of 2048 identifies the packet as an 

IP packet. Next, the Protocol field of the IP header is referenced. A decimal value of 6 identifies 

the packet as a TCP packet. The HTTP GET Request is then denoted by the first 3 bytes of data 

in the Application Data being the ASCII value of the letters ‘GET’. Next, the GET Request 

contains the URL to be retrieved. The URL is followed by optional header lines, which contain 

metadata about the requester. The GET request is then terminated by a Carriage Return with an 

optional body section [23, 25]. 

 

Content Networking 
 
 

Content networking (also known as layer-7 routing) has many applications. By accessing 

the payload of packets, more details about that packet can be gained. Content networking can 

have impacts when implemented in load balancing, QoS support, session integrity guarantee and 

flexibility in content deployment.  Routers, firewalls, spam and virus filters could all benefit 
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from Content networking. Some of these applications, like firewalls, spam and virus filters, 

require analyzing the entire contents of a packet. However, some applications do not require 

analysis of the entire payload. For routing, a particular aspect of the payload is of interest. 

Perhaps the field of interest is the host, a cookie or a URL [7]. 

A difficulty in content networking, which causes content switches to be relatively rare, is 

that most of the high layer protocols are designed to be worked with on general purpose CPUs 

and also involve complex protocol processing [11]. For those applications that require inspecting 

the entire payload, the major bottleneck is having to process the entire payload. This can 

consume a vast amount of resources. This is especially true of software based systems that are 

limited by their base hardware which was designed for general purpose execution. By 

implementing a single purpose hardware device, the speed of the device will be greatly 

increased. The ever increasing speed of network traffic is only stressing this point. 

 

Front End Devices 
 
 

Clusters of workstations or PCs are becoming a popular platform to deliver websites and 

content on the Internet. This architecture has proven to provide high performance for a relatively 

low cost [8, 9]. Another benefit is the ability to scale the resources to meet the demands placed 

on the system. To deliver requests to the individual machines of a server farm, a device is needed 

to accept all incoming traffic and to assign a request to a particular machine to handle (see Fig. 

1) [10]. These devices are called Front End Devices (FEDs), because they sit at the front of a 

server farm accepting all requests. A major problem now arises, if a similar workstation or PC is 

9 



used for a FED, then the number of attached machines in the server farm is typical limited to ten 

or less [9]. This limits the scalability of the server farm, detracting from one of the major benefits 

of this architecture. 

 

Figure 3 - Example Of A FED In Front Of A Server Farm 
 

In this thesis, a design and implementation of a hardware FED is presented. A FED is 

used as a gateway to a group of servers. This device is used to accept incoming requests and to 

pass the request to the appropriate server [10]. One application would be a group of web servers 

specialized for specific tasks. For example, an administrator might assign a specific server to 

handle all multi-media requests, whereas another server is used to handle all XML processing. 

Or perhaps a server has been assigned to hold databases and handle all database requests. 

Because of the ever increasing size of the Internet and increasing network speeds, a software 

based FED could be stressed to handle the load of a moderate server farm. However, by 

implementing the FED in hardware only then the increase in operating speed would result in the 

ability to handle larger server farms. 
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String Matching 
 
 

The most important component of implementing a hardware FED is being able to find the 

appropriate server the packet needs to be assigned to. To do this, the hardware FED must match 

the request with one of a known set of strings. Therefore, a strong hardware level string-

matching mechanism is needed. 

With a wide variety of applicability, string matching has been continually optimized. 

String matching can be applied to all sorts of problems. String matching solutions can be 

categorized into two subcategories: exact string matching and approximate string matching. Each 

field can then be further divided into hardware and software based solutions. Approximate string 

matching is commonly used for spell checking or other related functions. Exact string matching 

is more suited for the requirements of a FED. Two of the most popular algorithms for exact 

string matching are Aho-Corasick [1] and the Boyer-Moore [12] algorithms. The Boyer-Moore 

algorithm is sub-linear for the average case. However, for length of text, n, and length of pattern, 

m, in the worst case complexity is O(n*m). For the Aho-Corasick algorithm, time complexity is 

O(n+m). Another method to search strings is with a content addressable memory (CAM). A 

CAM can search a specific length of data in a single memory access. By activating every 

memory cell with every search, the CAM has proven to be very fast. However, this method also 

consumes lots of power and can take up a fair amount of silicon area [2, 13]. 

The Aho-Corasick (AC) algorithm is capable of being implemented as a finite state 

machine. Characters are fed into the state machine serially, with each successful match leading 

further down a state path to a final state of a match. Failures will either result in a return to the 

initial state or a jump to another portion of the state graph [1]. With the AC algorithm, only one 
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state will be active at a time. Thus, the AC implementation will consume less power than a CAM 

implementation. With the AC algorithm’s logical transition to a hardware structure the control 

circuitry needed will be minimized. The Boyer-Moore algorithm would have needed a large 

amount of control circuitry to implement in hardware. This results in a larger design with a larger 

energy footprint than an AC implementation. 

 

Figure 4 - The Finite State Machine Approach Of The Aho-Corasick Algorithm. 
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CHAPTER TWO: 
PREVIOUS WORK 

 
 

In [7], a router is implemented that checks for the URL in a request packet. There was a 

large overhead found related to the retrieval and converting the string. The solution was to 

format a link on a website into a code. The special links were denoted with a preamble before to 

coded portion of the link began [7]. The disadvantages are that the router could not be used on an 

existing website without any work having to be done to the website. Also, a factor of the human 

interface of the website was degraded by encoding the URL of links.  

In [6], a firewall was implemented in hardware. By allowing the firewall to search the 

content of the packet, it was capable of performing spam and virus filtering. The firewall also 

limited the rate of per-flow traffic to prevent denial-of-service attacks. The firewall was 

implemented as a system-on-programmable-chip with an architecture that will help mitigate 

against future attacks as new exploits are developed. If an ASIC was used, then when adding 

extra functionality the entire chip would have to go through the design process again. By 

implementing their design in hardware, the authors were able to achieve multiple gigabit 

throughput speeds. 

Much of the current research has been applied towards creating high wire-speed network 

intrusion detection systems (NIDSs). Because of the large number of threats faced by networks 

and computers and increasing line speeds, software based NIDS have become unusable [3, 4, 

14]. 

A method is presented in [5] to reduce space consumption by removing the character 

matchers from the individual states and creating a single ‘character decoder.’ This helps to 
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eliminate repetition in the design. This method is also implemented in the FED proposed in this 

thesis. 

In [11], work was performed to help eliminate a difficulty in the content-based switching. 

To access any payloads, a TCP connection must first be made. Once the connection has been 

made with the switch, it is difficult to migrate the connection to the server. In [11], a form of 

TCP splicing allows the port controllers on the switch to handle any minor processing needed to 

continue the connection. This allows the processor to be freed for other actions. 
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CHAPTER THREE: 
DESIGN 

 
 

Proposed Architecture 
 
 

To help illustrate the proposed FED architecture lets first follow the flow of a packet 

through the system. As packets arrive, the IP header is checked to verify that it is a TCP packet. 

If a packet is determined to be a GET request, the application layer data is extracted from the 

packet in the stored buffer. Next that data is sent, a byte at a time, to the Character Decoder. The 

Character Decoder is used to eliminate the need for individual decoders located at each state. 

After being decoded, a single output line will be enabled. If that output line is connected to the 

first state, then that state will become active. The process will continue the same way for the next 

byte. Once one of the output states has been reached, the state encoder will encode the data and 

send it to the port look-up table as an address. The port look-up table will hold a value that is 

used to select a port. Once a port has been selected, the data will move from the Buffer, through 

the Port Selector and out the specified port. 

 

Figure 5 - FED State Diagram 
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Figure 5 is a state diagram that illustrates the described flow through the proposed FED. 

This diagram shows some of the communication lines that will need to be present to help the 

control circuit to navigate from state to state. Figure 6 is a diagram of the architecture. By 

following the description above, a logical flow through the state diagram, as well as through the 

architecture should be evident. 

P
ackets-O

ut

 

Figure 6 - The Architecture Of The Proposed FED Design 
 

Figure 7 depicts the design hierarchy for implementing the proposed architecture in 

VHDL. This diagram shows how the individual components are architected and how these 

components are then joined together to form the completed overall design. From the diagram, 

there are seven individual components that will be utilized. Most will only have one instance, 

whereas the IndividualState component will require multiple instances. 
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Figure 7 - The VHDL Architecture Of The Proposed FED 
 

An individual state is diagramed in Figure 8. There are three inputs and a single output. 

The inputs are an enable, the character line from the Character Decoder, and the clock signal. 

The enable line is the output from the pervious state. It takes both the enable line and the correct 

character line to set a state. If all of the possible characters were needed then the Character 

Decoder would be an 8-to-256 decoder. Given J number of search strings, the State Encoder will 

be a J-to-log2(J) encoder. Given N number of ports, the memory will be log2(J) long and log2(N) 

wide. The port selector will then be a 1-to-N demultiplexer. 

 

Figure 8 - Block Diagram Of An Individual State 
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Sample Case 
 
 

To implement the design and test the overall system, an imaginary server farm was 

created. The system entailed four separate servers for specific purposes. Therefore, the proposed 

FED will have a single port entering and four ports exiting to the servers. First, all video requests 

will be tasked to a single server. Second, there is a server for XML processing. Third, there is a 

server for basic file transfers. And lastly, there is a default server that all remaining traffic will be 

sent to. Figure 9 lists all of the file types that will be matched by the proposed FED. The file 

types selected were chosen because of their prevalence on the Internet. If the proposed FED 

reaches the end of a packet and no match was found, then the packet will be sent to the default 

server. 

In total there are 17 characters represented (not case-sensitive). Therefore, the Character 

Decoder will be an 8-bit to 17 output lines. Next, there will be 41 D-Flip-Flop gates. There are 

fifteen end states, with a sixteen end state of no match. So, the State Encoder will be a 16 line to 

4-bit encoder. Then the Port look-up Table will be 16 rows by 2-bits. The Port Selector will then 

be a 1-to-4 MUX with a 2 bit select line. 
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Figure 9 - State Graph Of Proposed FED 
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CHAPTER FOUR: 
RESULTS 

 
 

Component Waveforms 
 
 

Each of the individual VDHL entities were constructed and tested before they were 

integrated into the VHDL FED entity. Below, the waveforms from the test benches of the 

individual components are explained. For the VHDL code that was used to generate each 

waveform see Appendix A. 

 

Character Decoder 
 

The character decoder is going to take the individual bytes of a packet and assert a 

specific output line if the character matches. This specific character decoder is designed to assert 

an assigned letter output if the input is either the lower-case or upper-case ASCII value of that 

letter. Below an output line assigned to a specific letter is asserted when either the lower-case or 

capitalized ASCII value of a letter is applied. 

 

Figure 10 - Character Decoder Waveform 
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From Figure 10, with an input value of x43 (the ASCII value for the capital letter ‘C’) 

then the C line is asserted. When the input value changes to x4A (the ASCII value for the capital 

letter ‘J’) then the J line is asserted. Then when the input value is changed to x6C (the ASCII 

value for the lower-case letter ‘l’) then the L output is asserted. At any one time, only a single 

output line can be asserted. 

 

D-Type Flip Flop 
 

The D-type Flip-Flop is the foundation of the individual state. The output (Q) of the flip-

flop is asserted on the rising edge of the clock when the input (D) is asserted. 

 

Figure 11 - D-Type Flip Flop Waveform 
 

From the diagram, 10ns is the first rising-edge of the clock. However, the input D is not 

asserted at 10ns, therefore the output Q stays logical 0. At the next rising-edge, at 30ns, the input 

D is asserted. Because the input is asserted on the rising edge, then the output, Q, is asserted. 

 

Individual State 
 

The individual state is built off of the D-Flip-Flop. In the Architecture section of the 

paper is Figure 8 which shows that the state has two inputs (Previous State and Character). If 
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both of the individual state’s inputs are asserted on the rising clock edge, then the output (Next 

State) will be asserted. In Figure 12 below, during the first three rising-edges of the clock there is 

either none, or only one of the inputs asserted. However, on the fourth rising-edge of the clock, 

at approximately 47ns, both of the inputs Character and PreviousState are asserted. This results 

in the output NextState to be asserted until the next rising edge of the clock. 

 

Figure 12 - Individual State Waveform 

 

State Encoder 
 

The state encoder will receive one of the end states and will encode which of the final 

states is reached into a four bit binary number. The State Encoder has 16 inputs, each 

representing a different file format. These inputs are connected to the NextState outputs of the 

final state for each of the state chains for the 16 different file formats. Therefore, once the last 

letter of a match has been input to the state machine, then the output of the last state to assert an 

input to the State Encoder. 
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Figure 13 - State Encoder Waveform 
 

In the Figure 13, we can see that as one of the input lines is asserted, a different value for 

the encoded state is output. The exact encoded state value is not particularly important other then 

it matches the value known for that state in the Port Look-up Table. 

 

Port Look-Up Table 
 

The Port Look-up Table is used to store the port number that will be used for each 

specific end state. Therefore since there are 16 end states, which get encoded into a number, the 

input is 4-bits long. Also, since there are only 4 ports, the output only needs to be 2-bits long to 

support the encoded value. 

 

Figure 14 - Port Look-Up Table Waveform 
 

In the Figure 14, the Look-up Table is programmed to select port 1 when the end state 

was one of the first 8 and to select port 2 when the end state is one of the last 8 end states. 
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Port Selector 
 

The Port Selector has similar functionality to a 4-to-1 MUX. Depending on the output 

value of the look-up table, one of the ports will be selected. Then any input that is placed on the 

inLine will be output to the selected port, and only the port that is selected. 

 

Figure 15 - Port Selector Waveform 

 

System Simulation 
 
 

Once all of the components are developed and tested individually, the components are 

connected for integration and system level testing. The overall circuit has been simulated with 

the results shown in Figure 16. The packet data is read in and transferred using the ‘s’ signal. The 

data is then passed to the Character Decoder. The Character Decoder then asserts the appropriate 

output lines, which are connected to the inputs of the individual states. Next, we can see that the 

proposed FED matches a file format as states 17, 18 and 19 are traversed. These states represent 

the three letters of the file format ‘gif’. Because of the delay for the characters to get decoded 
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and for the D-flip-flops to latch onto the output in the Individual States we can see that the 

Individual States actually output an active signal a full clock cycle after the byte has been passed 

to the Character Decoder. This phenomenon can be seen as the ASCII value of a capital G (71) is 

passed to the character decoder. A full clock cycle later, the output of state 17 (The first state in 

the string of states to match to ‘gif’) goes active.  

 

Figure 16 - Completed Simultation 

Once a final state has been reached and the character for the last state has been matched, 

then the output to the final state is asserted. In Figure 16, state 19 is the final state in the string of 

states used to match the file format ‘gif’. When the output of a final state is asserted, then the 

EndStateReached variable is asserted. This signal then kicks off the second portion of the circuit. 

Once a file format has been matched, now the appropriate port must be selected. First, the state is 

encoded by the State Encoder, as seen in the EncodedState variable. In Figure 16, the ‘10’ is just 
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an enumeration used to represent that ‘gif’ has been matched. Next, the look-up table is enabled 

and the encoded state is used to find the appropriate port number in the table. The look-up table 

was pre-encoded with the appropriate file format to server matching. In Figure 16, the 

PortSelector variable is outputting a value of 2, signaling that the packet should be assigned to 

the third server. Next, the Port Selector is enabled and the packet information is sent to the Port 

Selector on a transfer line. This can be seen in Figure 16, as the PSEnable variable is asserted, 

then the packet is transferred out of OutPort3. 

 

Synthesis 
 
 

After the functional simulation was completed, the VHDL code was synthesized and laid-

out using Altera’s Quartus II software. Version 7.1 of the Web Edition of the Quartus II software 

allows for schematic or text-based HDL input. The software is capable of synthesizing a design 

and performing layout for many of Altera’s FPGA boards. Altera releases the software to 

provide a strong platform for users to create designs and easily program the companies’ FPGAs. 

After the VHDL code for the Front End Device is imported into the Quartus II program, 

VHDL compilation can occur. The Quartus program creates a register transfer file (RTL) in the 

process of compilation. The RTL design can then be analyzed to verify a design’s structure using 

the RTL Viewer. A design’s hierarchy can be navigated, particular items can be found and items 

can be traced back directly to the source schematic or HDL file.  
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Figure 17 - Annotated RTL View 

 

Figure 17 is an annotated schematic of the RTL for the proposed FED. All of the 

components from Figure 6 have been highlighted for comparison. In Figure 17, the individual 

states of the Aho-Corasick implementation can be seen. In fact, a resemblance can even be seen 

to Figure 9. 

As part of the synthesis process, the Quartus software then translates the VHDL into 

hardware. This hardware can be represented as combinational logic, registers, or Logic Cells 

(LCs). These hardware components are available resources on the FPGA chosen as the target 

board. Table 2 lists the total number of FPGA elements used per VHDL entity, and the number 

of elements that were implemented at the stated level of implementation. For instance, the 

FEDEntity block implements all of the VHDL entities, so it consumes 115 LCs. However, 

because the FEDEntity only implements other VHDL entities, it does not require any logic, only 
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registers. This is denoted by the seven in parenthesis following the number 115. However, 

referencing the Register Only LCs column shows that the seven LCs consumed by the 

FEDEntity were simply for the use of registers.  An interesting point to notice is that there are 

two different implementations for the 42 StateEntities. The first version represented by 

‘StateEntity – State 1’ in the table does not require the standard AND logic preceding the D-Flip-

Flop, as in Figure 8. This is because the state is the first state in a matching string. So, there is no 

input to denote that the previous state is active. Since the D-Flip-Flop requires an ALUT itself, 

the total FPGA resource consumption for this version of the StateEntity is a single ALUT. 

However, the typical StateEntity does contain internal logic as well as a D-Flip-Flop, resulting in 

the ‘StateEntity – State 2’ VHDL entity in 2. This entry shows that 2 ALUTs are used, one for 

the D-Flip-Flop and one for the internal logic. 

 

Table 2 - FPGA Resource Usage Per VHDL Entity 
 

VHDL Logic Block 
Logic 
Cells 

LUT only 
LCs 

Register 
only LCs 

FEDENTITY (Total) 115 (7) 108 (0) 7 (7) 
ControllerEntity 3 (3) 18 (18) 0 (0) 
CharacterDecoderEntity 18 (18) 3 (3) 0 (0) 
LookUpTableEntity 2 (2) 2 (2) 0 (0) 
PortSelectorEntity 4 (4) 4 (4) 0 (0) 
StateEncoderEntity 9 (9) 9 (9) 0 (0) 
StateEntity – State 1 1 (0) 2 (1) 0 (0) 
State 1: DFFEntity 1 (1) 1 (1) 0 (0) 
StateEntity – State 2 2 (1) 1 (0) 0 (0) 
State 2: DFFEntity 1 (1) 1 (1) 0 (0) 

 

Layout 
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Once, the Quartus software has completed synthesis, all of the hardware required to completely 

implement the circuit on the FPGA is known. So, the next step is to layout the pieces, or in the 

case that the circuit is going to be implemented on a FPGA, to assign the required resources to 

the available resources on the FPGA. For the sample circuit, the layout process was simplified 

because of the relatively small size of the circuit. For example, a model EMP240F100I5 from the 

Max II  FPGA family from Altera contains 240 Logic Elements. Referring to Table 2, the sample 

circuit implemented requires roughly 50% of the available resources of the FPGA. As a result, 

the layout in Figure 18 appears relatively sparse. In Figure 18, the shade of the cell shows the 

utilization of the FPGA. The diagram can be broken down into two regions. The border cells 

represent the I/O pins of the FPGA while the interior cells represent the utilization of the FPGA’s 

resources. On the perimeter, higher utilization is represented by darker browns. On the interior, 

higher utilization is represented by darker blues. Because of the relatively small size of the 

implemented circuit, only a small amount of the FPGA’s total resources are required. 
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Figure 18 – FPGA Utilization For The Proposed FED 

 

Once layout has been performed, a more detailed timing analysis can be performed. The 

reason why detailed timing analysis must wait until after layout is complete is because the length 

of the interconnect (wire) between nodes must be known to provide an accurate delay across the 

circuit. Table 3 contains the detailed timing analysis of the proposed FED. The analysis includes 

the worst-case set-up time (tsu), clock-to-output delay (tco), intrinsic [pin-to-pin] delay (tpd), 

and hold times (th) for the FPGA operating at 140 MHz.  

 

Table 3 - Detailed Timing Analysis For Proposed FED 
 

Worst-case tsu 0.106 ns 
Worst-case tco 17.997 ns 
Worst-case tpd 8.921 ns 
Worst-case th 1.433 ns 
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Lastly, a power analysis can be performed once layout is complete. The power analysis 

requires layout to be complete because the amount of power dissipation of a wire is dependant on 

the wires length. So, similar to the timing analysis, the power analysis must wait until the layout 

has been performed. With a toggle rate of 50% on the input I/O pins, the proposed FED design 

will consume 61.48 mW. This is the sum of the Core Dynamic Thermal Power Dissipation of 

9.97 mW, Core Static Thermal Power Dissipation of 39.61 mW and the I/O Thermal Power 

Dissipation of 11.91 mW. 
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CHAPTER FIVE: 
CONCLUSIONS AND FUTURE WORK 

 
 

Modern web services and large websites are moving towards distributing the amount of 

incoming traffic among multiple servers. However, as the speed and amount of internet traffic 

increase, a single point of failure is the distribution node. As the rate of growth of network speed 

overtakes the rate of growth of CMOS speed, software solutions which have to process the 

software application as well as packing and unpacking through the TCP/IP stack begin to fail 

under the increased network load. To increase the front-end device’s ability to handle ever 

increasing workloads, this paper proposed migrating the FED to a hardware only architecture. A 

VHDL implementation of a FED for hardware level string matching has been constructed. This 

device would make an ideal component or add-in to a router or any other front-end device with 

other features such as security. The proposed FED was synthesized for a MAX II FPGA from 

Quartus. A synthesized operational frequency of 140 MHz with a power consumption of 61 mW 

was achieved.  

Future work for this project would involve more fully integrating the FPGA with the 

design of popular routers. This would involve accessing the data path of the router, allowing the 

network processors to send data to the FGPA chip. Also, a mechanism for TCP hand-off could 

be implemented. By handing off the TCP connection, stress would be relieved from the router. 
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