
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2006

Analysis Of Aircraft Arrival Delay And Airport On-time Analysis Of Aircraft Arrival Delay And Airport On-time

Performance Performance

Yuqiong Bai
University of Central Florida

 Part of the Computer Sciences Commons, and the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Bai, Yuqiong, "Analysis Of Aircraft Arrival Delay And Airport On-time Performance" (2006). Electronic
Theses and Dissertations, 2004-2019. 890.
https://stars.library.ucf.edu/etd/890

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F890&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F890&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/890?utm_source=stars.library.ucf.edu%2Fetd%2F890&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

Coordination, Matchmaking, and Resource Allocation for
Large-Scale Distributed Systems

by

Xin Bai
B.S. Northern Jiaotong University, 1993
M.S. University of Central Florida, 2003

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the School of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Summer Term
2006

Major Professor:
Dan C. Marinescu

c© 2006 Xin Bai

ii

Abstract

While existing grid environments cater to specific needs of a particular user community,

we need to go beyond them and consider general-purpose large-scale distributed systems con-

sisting of large collections of heterogeneous computers and communication systems shared

by a large user population with very diverse requirements. Coordination, matchmaking,

and resource allocation are among the essential functions of large-scale distributed systems.

Although deterministic approaches for coordination, matchmaking, and resource allocation

have been well studied, they are not suitable for large-scale distributed systems due to the

large-scale, the autonomy, and the dynamics of the systems. We have to seek for nondeter-

ministic solutions for large-scale distributed systems. In this dissertation we describe our

work on a coordination service, a matchmaking service, and a macro-economic resource al-

location model for large-scale distributed systems. The coordination service coordinates the

execution of complex tasks in a dynamic environment, the matchmaking service supports

finding the appropriate resources for users, and the macro-economic resource allocation model

allows a broker to mediate resource providers who want to maximize their revenues and re-

source consumers who want to get the best resources at the lowest possible price, with some

global objectives, e.g., to maximize the resource utilization of the system.

iii

To my wife: Xia Liu

and my parents: Banghua Bai and Meixian Yang

iv

Acknowledgments

This dissertation would not have been completed without the advice, supports, and encour-

agement from my advisor, my research committee members, my research associates and my

group colleagues.

I would like to express my sincere gratitude to Dr. Dan C. Marinescu for his valuable

advice during my doctoral research endeavor in the past years. As my advisor, he has

brought me to the field of large-scale distributed systems, and has spent countless time and

efforts on sharing his research ideas with me. He has helped me to establish the ultimate

goal of my research work and has constantly encouraged me to remain focused to reach the

final achievement. His generous support is significant not only in the academic aspects, but

also in the financial situations. I am very honored and appreciative to have such a great

opportunity to work with him!

I would like to thank my committee members, Dr. Ladislau Bölöni, Dr. Mostafa

Bassiouni and Dr. Joohan Lee, for their precious and thoughtful comments to help me

improve my dissertation. I am very grateful and honored to have them in my committee. In

addition, I would like to thank Dr. Howard Jay Siegel from the Colorado State University

for his insightful suggestions on my research papers.

v

TABLE OF CONTENTS

LIST OF TABLES . ix

LIST OF FIGURES . x

LIST OF PUBLICATIONS . xvi

CHAPTER 1 INTRODUCTION . 1

1.1 Motivation . 2

1.2 Algorithms, Models, Implementation, and Performance Studies 8

1.2.1 Algorithms and Models . 8

1.2.2 The Implementation . 10

1.2.3 Performance Studies . 23

1.3 Contributions . 24

1.4 Organization . 25

CHAPTER 2 COORDINATION . 26

2.1 Introduction and Motivation . 27

vi

2.2 Background and Related Work . 29

2.2.1 Grid Computing . 29

2.2.2 Agent-Based Computing . 35

2.2.3 Workflow Management . 40

2.3 Coordination and Coordination Services . 43

2.3.1 Process Coordination . 44

2.3.2 Coordination Techniques . 47

2.3.3 Process Coordination and Workflow Management 58

2.3.4 Process Description and Case Description 64

2.3.5 Coordination Services . 64

2.4 A Case Study: the Coordination Service in BondGrid 67

2.4.1 Process Description and Case Description 67

2.4.2 Ontologies for BondGrid Coordination 70

2.4.3 The Coordination Service . 71

2.4.4 Performance Measurements . 81

CHAPTER 3 MATCHMAKING . 83

3.1 Introduction and Motivation . 84

3.2 Background and Related Work . 87

vii

3.3 Resource Ontologies . 91

3.4 The Matchmaking Problem . 92

3.5 A Case Study: the Matchmaking Service in BondGrid 101

3.5.1 The Matchmaking Service . 101

3.5.2 Performance Measurements . 104

CHAPTER 4 A MACRO-ECONOMIC RESOURCE ALLOCATION MODEL

. 112

4.1 Introduction and Motivation . 112

4.2 Background and Related Work . 117

4.3 Basic Concepts . 122

4.3.1 Price Function . 123

4.3.2 Utility Function . 126

4.3.3 Satisfaction Function . 127

4.3.4 Resource Provider-Consumer Model 129

4.4 The Role of Brokers in the Macro-Economic Model 133

4.5 A Simulation Study . 136

CHAPTER 5 CONCLUSIONS . 149

LIST OF REFERENCES . 160

viii

LIST OF TABLES

4.1 The parameters for the simulation are uniformly distributed. The parameters

and the corresponding intervals are shown. 139

ix

LIST OF FIGURES

1.1 Core and end-user services. 16

1.2 XML specification for instances. 19

1.3 XML specification for classes. 20

1.4 The blueprint for a coordination service. 21

2.1 The coordination can be centralized, or distributed; the components may be

confined to a single system, to a LAN, or to a WAN; the system may be open,

or closed. 45

2.2 A shared-data space coordination model. The producer of the coordination

information pushes an item into the shared data space, a consumer pulls it

out. Little, or no state information needs to be maintained by the shared-

data space. The model supports asynchronous communication between mobile

agents. The agents may join and leave at will, the model supports open

systems. 51

x

2.3 A broker acts as an intermediary between a client and a set of servers. The

sequence of events: (i) servers register with a broker; (ii) a client sends a re-

quest; (iii) the broker forwards the request to a server; (iv) the server provides

the response to the broker; (v) the broker forwards the request to the client. 55

2.4 A matchmaker helps a client select a server. Then the client communicates

directly with the server selected by the matchmaker. The sequence of events:

(i) servers register with the matchmaker; (ii) a client sends a request to a

broker; (iii) the broker selects a server and provides its ID; (iv) the client

sends a request to the server selected during the previous step; (v) the server

provides the response to the client. 57

2.5 A mediator acts as a front end or a wrapper to one or more servers; it translate

requests and responses into a format understood by the intended recipient. A

mediator may be used in conjunction with brokers or matchmakers. 58

2.6 BNF grammar for the process description. 65

2.7 A process description for the 3D structure determination. D1, D2, . . . D13

are the symbolic names of the input and output data files for the programs

carrying out different end-user activities. 68

2.8 Logic view of the main ontology for BondGrid coordination. 72

2.9 The components of the coordination service. 73

2.10 The task state transition diagram. 74

xi

2.11 The activity state transition diagram. 76

2.12 The coordination engine executes iteratively the procedure. 77

2.13 The message handler executes iteratively the procedure. 78

2.14 The interactions between the coordination service and the end-user. 78

2.15 The interactions between the coordination service and other core services. . . 79

2.16 The performance of encoding, transmitting, and decoding instances between

the coordination service and other components of the environment. 82

3.1 The matchmaking process in large-scale distributed systems: 1) Providers

send resource descriptions to the matchmaking service; 2) A request is sent

to the matchmaking service; 3) The matchmaking service executes a match-

making algorithm and returns a set of ranked resources to the requester; 4)

The requester chooses a resource from the set and contacts the corresponding

resource provider. 86

3.2 Classads describing a laser jet printer (left) and a print job (right). 90

3.3 The hierarchical relationship among resource classes. 92

3.4 The Workstation, Cluster, MPP, and SMP classes. 93

3.5 Program, Library, and Package classes (top). Service, Data, and Storage

classes (middle). CPU, Memory, Harddisk, NIC, and OS classes (bottom). . 94

3.6 The input and output of the matchmaking problem. 95

xii

3.7 Examples of resource instances: a workstation and three clusters. 97

3.8 Boolean, arithmetic, and fuzzy requests. 98

3.9 BNF grammar for the resource. 99

3.10 BNF grammar for the request. 100

3.11 XML specification for a request. 102

3.12 A Boolean matching function. 103

3.13 An arithmetic matching function. 104

3.14 A fuzzy matching function. 105

3.15 The original matchmaking algorithm performs an exhaustive database search. 106

3.16 The modified matchmaking algorithm performs a restricted database search;

it stops when the cardinality of a set of resources that match the request

reaches k ∗ n. 107

3.17 Response time vs. number of resources for three requests of different com-

plexities when the knowledge base is a local file. 108

3.18 Response time vs. number of resources for three requests when the knowledge

base is a local file. 108

3.19 Response time vs. number of resources for three requests when the knowledge

base is stored as a database. 109

xiii

3.20 Response time vs. number of resources for Request3 when the knowledge

base is stored as a database. The matchmaking service runs the modified

matchmaking algorithm. 110

3.21 Average matching degree vs. number of resources for Request3 when the

knowledge base is stored as a database. The matchmaking service runs the

modified matchmaking algorithm. The average matching degree is the average

of the matching degrees of the resources returned by the service. 111

4.1 (a) Sub-linear, linear, and super-linear price functions. (b) The unit price

varies with ρ, the load index of the provider. 123

4.2 (a) A sigmoid is used to model the utility function; a sigmoid includes three

phases: the starting phase, the maturing phase, and the aging phase. (b)

The satisfaction function for a sigmoid utility function and three linear price

functions with low, medium, and high unit price. 127

4.3 The relationship between satisfaction s and the unit price ξ and amount of

resources r. The satisfaction function is based on a sigmoid utility function

and different price functions: (a) discourage consumption (super-linear); (b)

linear; (c) encourage consumption (sub-linear); (d) a cut through the three

surfaces at a constant ξ. 130

xiv

4.4 The algorithm performed by the broker. The consumer request, req, is elastic.

It contains the parameters describing u and s, the utility and satisfaction

functions. τ is the target utility and σ is the satisficing size. The cardinality

specifies the number of resource providers to be returned by the broker. . . . 135

4.5 Average hourly revenue vs. time (in seconds) for different target utilities, τ

(top), satisficing sizes, σ (middle), and demand to capacity ratios, η (bottom).

The three pricing strategies are: linear (left), EDN (center), and EDL (right). 141

4.6 Request acceptance ratio vs. time (in seconds) for different target utilities, τ

(top), satisficing sizes, σ (middle), and demand to capacity ratios, η (bottom).

The three pricing strategies are: linear (left), EDN (center), and EDL (right). 143

4.7 Average consumer satisfaction vs. time (in seconds) for different target util-

ities, τ (top), satisficing sizes, σ (middle), and demand to capacity ratio, η

(bottom). The three pricing strategies are: linear (left), EDN (center), and

EDL (right). 144

4.8 Average consumer utility vs. time (in seconds) for different target utilities, τ

(top), satisficing sizes, σ (middle), and demand to capacity ratios, η (bottom).

The three pricing strategies: linear (left), EDN (center), and EDL (right). . . 146

4.9 (a) The average hourly revenue, (b) the request acceptance ratio, (c) the

average consumer satisfaction, and (d) the average consumer utility vs. time

(in seconds) for σ = 1, τ = 0.9, and η = 1.0, with different price functions. . 147

xv

LIST OF PUBLICATIONS

Journal Articles

1. Xin Bai, Dan C. Marinescu, Ladislau Bölöni, Howard Jay Siegel, Rose A. Daley, and

I-Jeng Wang, “A Macro-Economic Model for Resource Allocation in Large-

Scale Distributed Systems”, (submitted).

2. Han Yu, Xin Bai, and Dan C. Marinescu, “Workflow Management and Resource

Discovery for an Intelligent Grid”, in Parallel Computing, Volume 31, Issue 7,

Pages 797-811, July 2005.

3. Xin Bai, Han Yu, Guoqiang Wang, Yongchang Ji, Gabriela M. Marinescu, Dan C.

Marinescu, and Ladislau Bölöni, “Coordination in Intelligent Grid Environ-

ments”, in Proceedings of the IEEE, Volume 93, Issue 3, Pages 613-630, March 2005.

4. Xin Bai, Han Yu, Yongchang Ji, and Dan C. Marinescu, “Resource Matching and

a Matchmaking Service for an Intelligent Grid”, in International Journal of

Computational Intelligence (IJCI), Volume 1, Number 3, Pages 197-205, 2004.

xvi

Book Chapters

1. Xin Bai, Han Yu, Guoqiang Wang, Yongchang Ji, Gabriela M. Marinescu, Dan C.

Marinescu, and Ladislau Bölöni, “Intelligent Grids”, as a chapter of book “Grid

Computing: Software Environments and Tools”, (Jose C. Cunha and Omer F. Rana,

Eds.), Pages 45-74, Springer Verlag, ISBN: 1-85233-998-5, Heidelberg, 2006.

2. Ladislau Bölöni, Majid Ali Khan, Xin Bai, Guoqiang Wang, Yongchang Ji, and Dan

C. Marinescu, “Software Engineering Challenges for Mutable Agent Systems”,

as a chapter of book “Advances in Software Engineering for Multi-Agent Systems”, (C.

Lucena, Al. Garcia, Al. Romanovsky, J. Castro, and P. Alencar, Eds.), Pages 149-167,

Springer Verlag, Heidelberg, 2004.

Conference Papers

1. Xin Bai, Ladislau Bölöni, Dan C. Marinescu, Howard Jay Siegel, Rose A. Daley,

and I-Jeng Wang, “Pricing Strategies for Market-Oriented Grid Economics”,

(submitted).

2. Xin Bai, Ladislau Bölöni, Dan C. Marinescu, Howard Jay Siegel, Rose A. Daley,

and I-Jeng Wang, “Are Utility, Price, and Satisfaction Based Resource Al-

location Models Suitable for Large-Scale Distributed Systems?”, to appear

xvii

in Proceedings of the 3rd International Workshop on Grid Economics and Business

Models (GECON 2006), Singapore, May 2006.

3. Xin Bai, Ladislau Bölöni, Dan C. Marinescu, Howard Jay Siegel, Rose A. Daley,

and I-Jeng Wang, “A Brokering Framework for Large-Scale Heterogeneous

Systems”, to appear in Proceedings of the 20th International Parallel and Distributed

Processing Symposium (IPDPS 2006), Rhodes Island, Greece, April 2006.

4. Xin Bai, Han Yu, Yongchang Ji, and Dan C. Marinescu, “Resource Matching

and a Matchmaking Service for an Intelligent Grid”, in Proceedings of the

International Conference on Computational Intelligence (ICCI 2004), Pages 262-265,

Istanbul, Turkey, December 2004.

5. Han Yu, Xin Bai, Guoqiang Wang, Yongchang Ji, and Dan C. Marinescu, “Meta-

information and Workflow Management for Solving Complex Problems in

Grid Environments”, in Proceedings of the 18th International Parallel and Distrib-

uted Processing Symposium (IPDPS 2004), Santa Fe, New Mexico, April 2004.

6. Ladislau Bölöni, Majid Ali Khan, Xin Bai, Guoqiang Wang, Yongchang Ji, and Dan

C. Marinescu, “Software Engineering Challenges for Mutable Agent Systems”,

2nd International Workshop on Software Engineering for Large-Scale Multi-Agent Sys-

tems (SELMAS 2003), Portland, Oregon, May 2003.

xviii

7. Dan C. Marinescu, Yongchang Ji, Gabriela M. Marinescu, and Xin Bai, “Physical

Awareness and Embedded Software Agents”, Workshop on Ubiquitous Agents

on Embedded, Wearable, and Mobile Devices, Bologna, Italy, July 2002.

xix

CHAPTER 1

INTRODUCTION

In this dissertation, we present new models and algorithms for coordination, matchmaking,

and resource allocation in large-scale distributed systems, analyze their performance, and

discuss some of the services we have implemented. Coordination is necessary to automate

complex applications and to shield the end-user from the complexity of the computing envi-

ronment. A coordination service acts as a proxy on behalf of end-users to react to unforseen

events and to plan how to carry out complex tasks. Matchmaking is the process of selecting

from a pool one or more objects that best match a set of requirements. In a large-scale dis-

tributed system, abundant computing resources provided by different entities are available.

A matchmaking service allow users or agents on behalf of users to describe their needs and

get a list of candidate resources ranked according to their matching degree to users’ needs so

that further decisions can be made. Last but not least, we are concerned with resource al-

location models. In a large-scale distributed system, applications typically require resources

from different domains; resource sharing requires cooperation between the administrative

authorities in each domain. Resource providers and consumers are self-interested; providers

wish to maximize their revenues while consumers want to obtain the maximum possible re-

1

sources for the minimum possible cost. Resource allocation models allows us to control the

behavior of resource providers and consumers so that their interests are balanced.

The results presented in this dissertation are partially derived from several publications

[9], [10], [11], [12], [13], [14], [141], and [142], which I coauthored with colleagues from UCF

and elsewhere during my years as a Ph.D. student.

1.1 Motivation

In the past few years we have seen the emergence of large-scale distributed systems as a

new paradigm of high performance computing. Grids are typical examples of large-scale

distributed systems. Data, service, and computational grids, collectively known as informa-

tion grids, are collections of autonomous computers connected to the Internet and giving to

individual users the appearance of a single virtual machine [45] [82] [49].

A data grid allows a community of users to share content. An example of a specialized

data grid supporting a relatively small user community is the one used to share data from high

energy physics experiments. The World Wide Web can be viewed as a data grid populated

with HTTP servers providing the content, data, audio, and video.

A service grid will support applications such as electronic commerce, sensor monitoring,

telemedicine, distance learning, and Business-to-Business. Such applications require a wide

spectrum of end services such as monitoring and tracking, remote control, maintenance and

2

repair, online data analysis and business support, as well as services involving some form

of human intervention such as legal, accounting, and financial services. An application of a

monitoring service in health care could be monitoring outpatients to ensure that they take

the prescribed medication. Controlling the heating and cooling system in a home to minimize

energy costs, periodically checking the critical parameters of the system, ordering parts such

as air filters, and scheduling repairs is an example of control, maintenance, and repair services

respectively. Data analysis services could be used when arrays of sensors monitor traffic

patterns or document visitor’s interest at an exhibition. There are qualitative differences

between service and data grids. The requirements for a service grid are more stringent; the

end result is often the product of a cooperative effort of a number of service providers, it

involves a large number of sensors, and it is tailored to specific user needs. Individual users

may wish to compose dynamically a subset of services. Dynamic service composition has no

counterpart in the current Web where portals support static service coordination.

A computational grid is expected to provide transparent access to computing resources

for applications requiring a substantial CPU cycle rate, very large memories, and secondary

storage that cannot be provided by a single system. The seti@home project, set up to de-

tect extraterrestrial intelligence, is an example of a distributed application designed to take

advantage of unused cycles of PCs and workstations. Once a system joins the project, this

application is activated by mechanisms similar to the ones for screen savers. The participat-

ing systems form a primitive computational grid structure; once a system is willing to accept

work it contacts a load distribution service, it is assigned a specific task and starts comput-

3

ing. When interrupted by a local user, this task is checkpointed and migrated to the load

distribution service. The requirements placed on the user access layer and societal services

are even more stringent for a computational grid than for a service grid. The user access

layer must support various programming models and the societal services of a computational

grid must be able to handle low-level resource management.

There are many similarities between data, service and computational grids and it is highly

desirable for the three to share as many standards, architectural concepts, and even compo-

nents, as practical. It seems very unfortunate that for many years research in computational

grids had a very loose connection with the mainstream efforts of the World Wide Web Con-

sortium (W3C). Recently, a more rational approach is noticeable, e.g., the Globus project

has embraced standards developed years ago, such as Web Services Definition Language

(WSDL) and Simple Object Access Protocol (SOAP). WSDL is an XML format for de-

scribing network services as a set of endpoints operating on messages containing document-

or procedure-oriented information. WSDL supports an abstract description of the opera-

tions and messages exchanged among endpoints. Both operations and messages are bound

to a concrete network protocol and message format to define a concrete endpoint. One or

more concrete concrete endpoints are combined into services or abstract endpoints. WSDL

description of the endpoints and their messages is independent of the message formats or

network protocols used to communicate. SOAP is an XML-based application layer protocol

developed as a standard by W3C. It is extensible, application- and platform-independent.

4

There are also important dissimilarities. For example, the service requests in a computational

grid require a much finer granularity of resource allocation [84].

The defining characteristics of large-scale distributed systems are: (a) resource sharing

among a large user population and (b) support for collaborative activities. In the context of

a large-scale distributed system the term resource is used in a wide sense; it means hardware

and software resources, services, and content. Content generally means some form of static or

dynamic data or knowledge. Autonomy implies that the resources are in different domains

and resource sharing requires cooperation between the administrative authorities in each

domain.

Large-scale distributed systems inherit many of the traditional attributes of the Internet.

Among the characteristics of large-scale distributed systems which distinguish them from

the more traditional distributed systems of the past decades we note [49]:

(i) Scale. A large-scale distributed system may consist of tens of thousands, or more nodes.

(ii) Heterogeneity and diversity. Nodes with different processors and system architectures

are expected to populate the system. The communication channels linking these nodes differ

in term of latency and bandwidth. The operating systems (OS) of individual nodes may be

different. The application software running on the nodes are very diverse, multiple versions

of the same application software may be available.

(iii) Autonomy of individual nodes. The nodes are in different administrative domains pos-

sibly with different access, security, and resource management policies [84].

5

(iv) The dynamic and open-ended character. The system evolves in time; new resources are

constantly added to the system, existing ones are modified, and others are retired.

(v) The dominant service policy in the system is based upon a “best effort”. Enforcing

end-to-end quality of service constraints is rarely possible.

(vi) A large user population with individual and often conflicting objectives.

(vii) User’s requirements may be dynamic, subject to change, or even cannot be known a

priori.

(viii) Complex, resource-intensive tasks submitted by individual users [83]. The complexity

of a task is rather difficult to quantify. It has multiple facets: it may refer to the number and

relationship of component activities, the predictability of the amount of resources needed for

the completion of individual activities, the security constraints, the presence or absence of

soft deadlines, the duration of individual activities, the diversity of resources used, and so

on [84].

All these characteristics require us to develop new models and algorithms for coordina-

tion, matchmaking, resource discovery, resource allocation, scheduling, planning, and other

functions for large-scale distributed systems. Although deterministic approaches for coordi-

nation, matchmaking, and resource allocation have been well studied, they are not suitable

for large-scale distributed systems due to the large-scale, the autonomy, and the dynamics

of the systems. We have to seek for nondeterministic solutions for large-scale distributed

systems.

6

In this dissertation, we address of problem of coordination, matchmaking, and resource al-

location for large-scale distributed systems. We present two services in large-scale distributed

systems: the coordination service and the matchmaking service. The coordination service

coordinates the execution of complex tasks in a dynamic environment and the matchmaking

service supports finding the appropriate resources for users. We also presents a macro-

economic resource allocation model based upon utility, price, and satisfaction functions. In

this model, a broker mediates resource providers who want to maximize their revenues and

resource consumers who want to get the best resources at the lowest possible price, with

some global objectives, e.g., to maximize the resource utilization of the system.

We choose to focus on these three aspects of large-scale distributed systems because they

are critical for the future development of such systems and provide ample opportunities for

new contributions. Coordination is necessary whenever we have to carry out complex tasks

consisting of primitive activities related to each other. A process description shows the con-

ceptual dependencies among the primitive activities and is augmented by a case description

that reflects a particular instance of the execution of a process description. We are primarily

concerned with dynamic coordination where the process description as well as the environ-

ment supporting the execution changes in time. Dynamic coordination algorithms have to

respond to new user requests, to ensure fault-tolerance by providing alternative mechanisms

to obtain the resources when resources are not available. Execution of a complex task can

only be carried out successfully if the necessary resources are available. A large-scale dis-

tributed system is a resource-rich environment and matching the need of a consumer with

7

available resources ia a non-trivia task. Matchmaking algorithms attempt to provide an op-

timal or near-optimal solution to the problem of selecting an appropriate system to carry out

an atomic activity. Finally, we are concerned with high level resource management where

computing and communication resources as well as consumers belong to different adminis-

trative domains. The resource providers try to maximize their revenues. The consumers

want to obtain the maximum possible resources for the minimum possible price. A resource

allocation model allows us to balance the interests of resource providers and consumers. The

three problems we address are intimately related to each other.

1.2 Algorithms, Models, Implementation, and Performance

Studies

We developed algorithms and models, implemented some of them as services, and evaluated

their performance for the three problems addressed in this dissertation. Now we summarize

our work in each of these three facets.

1.2.1 Algorithms and Models

Coordination of complex tasks requires algorithms capable to ensure a seamless transition

from one activity to the next. Coordination algorithms need as input process and case

8

descriptions. A process description defines the data dependencies among the activities of a

complex task and consists of end-user activities that correspond to individual computational

tasks and flow control activities which ensure transition from one activity to the next. A

case description provides additional information for a particular instance of the process the

user wishes to perform. We designed an algorithm to coordinate the execution of a task and

to supervise the execution of each activity of a task.

A matchmaking algorithm evaluates a request in the context of a particular resource. We

introduced an ontology-based matchmaking solution, where resource advertisements from

providers and resource requests from consumers are described through ontologies. Large

numbers of resource advertisements are stored in knowledge bases. A resource request is to

be evaluated in the context of a resource advertisement to determine how well they match.

We designed two matchmaking algorithms: a simple algorithm that requires an exhaustive

search of all resource advertisements; and a modified algorithm that only covers a portion

of the knowledge base. We also introduced several types of matchmaking functions.

We proposed a macroeconomic model for resource allocation. We introduced a con-

sumer utility function to represent the utility provided to an individual consumer. We also

introduced price functions, and a consumer satisfaction function to quantify the level of

satisfaction that depends on the utility and the price. In our three-party model, a broker

performs a brokering algorithm. The broker is able to mediate resource providers who want

to maximize their revenues and resource consumers who want to get the best resources at the

9

lowest possible price, with some global objectives, e.g., to maximize the resource utilization

of the system.

1.2.2 The Implementation

We implemented a coordination service and a matchmaking service in BondGrid, an intel-

ligent grid environment. In BondGrid, core services, including the coordination service and

the matchmaking service, are provided by BondGrid agents.

An Intelligent Environment

Most of the research in grid computing is focused on relatively small grids (hundreds of nodes)

dedicated to a rather restricted community (e.g., high energy physics), of well trained users

(e.g., individuals working in computational sciences and engineering), with a rather narrow

range of problems (e.g., computer aided-design for the aerospace industry).

The question we address is whether a general large-scale distributed system could re-

spond to the needs of a more diverse user community than in the case of existing grids

without having some level of intelligence built into the core services. The reasons we con-

sider such systems are precisely the reasons computational grids were introduced in the first

place: economy of scale and the ability to share expensive resources among larger groups of

10

users. It is not uncommon that several groups of users (e.g., researchers, product developers,

individuals involved in marketing, educators, and students) need a seamless and controlled

access to existing data or to the programs capable of producing data of interest. For ex-

ample, the structural biology community working on the atomic structure determination of

viruses, the pharmaceutic industry, and educational institutions ranging from high schools

to universities, need to share information. One could easily imagine that a high school stu-

dent would be more motivated to study biology if s(he) is able to replay in the virtual space

successful experiments done at the top research laboratories, leading to the discovery of the

structure of a virus, e.g., the common cold virus, and understand how a vaccine to prevent

the common cold is engineered.

An intelligent environment is in a better position than a traditional one to match the

user profile (leader of a research group, member of a research group with a well defined

task, drug designer, individual involved in marketing, high school student, doctoral student)

with the actions the user is allowed to perform and with the level of resources s(he) is

allowed to consume. At the same time, an intelligent environment is in a better position

to hide the complexity of the system and allow unsophisticated users such as a high school

student without any training in computational science, to carry out a rather complex set of

transformations of an input data set.

Even in the simple example discussed above we see that the coordination service acting

as a proxy on behalf of the end-user has to deal with unexpected circumstances, or with

error conditions, e.g., the failure of a node. The response to such an abnormal condition

11

can be very diverse, ranging from terminating the task, to restarting the entire computation

from the very beginning, or from a checkpoint. Such decisions depend upon a fair number

of parameters, e.g., the priority of the task, the cost of each option, the presence of a soft

deadline, and so on. Even in this relatively simple case, it is non-trivial to hard code the

decision making process into a procedure written in a standard programming language.

Moreover, we may have in place different policies to deal with rare events, policies which

take into account factors such as legal considerations, the identity of the parties involved,

the time of the day, and so on. At the same time, hard coding the decision making will strip

us of the option to change our actions depending upon considerations we did not originally

take into account, such as the availability of a new system just connected to the grid.

Very often the computations carried out involve multiple iterations and in such a case

the duration of an activity is data dependent and very difficult to predict. Scheduling a

complex task whose activities have unpredictable execution times requires the ability to

discover suitable resources available at the time when activities are ready to proceed. It also

requires market-based scheduling algorithms which in turn require meta-information about

the computational tasks and the resources necessary to carry out such tasks.

The more complex the system, the more elaborate the decision making process becomes,

because we need to take into account more factors and circumstances. It seems obvious to us

that under such circumstances a set of inference rules based upon facts reflecting the current

status of various system components are preferable to hard coding. Oftentimes, we also need

12

to construct an elaborate plan to achieve our objective or to build learning algorithms into

our systems.

Reluctantly as we may be to introduce AI components into a complex system such as a

grid, we simply cannot ignore the benefits the AI components could bring along. Inference,

planning, and learning algorithms are notoriously slow and cannot be used when faced with

fast approaching deadlines. We should approach their use with caution.

The two main ingredients of an intelligent grid are software agents and ontologies. A

software agent is a special type of reactive program. Some of the actions taken by the

agent are in response to external events, other actions may be taken at the initiative of the

agent. The defining attributes of a software agent are: autonomy, intelligence, and mobility.

Autonomy, or agency, is determined by the nature of the interactions between the agent and

the environment and by the interactions with other agents and/or the entities they represent.

Intelligence is measured with the degree of reasoning, planning, and learning the agent is

capable of. Mobility reflects the ability of an agent to migrate from one host to another in

a network.

An agent may exhibit different degrees of autonomy, intelligence, and mobility. For

example, an agent may have inferential abilities, but little or no learning and/or planning

abilities. An agent may exhibit strong or weak mobility; in the first case, an agent may be

able to migrate to any site at any time; in the second case, the migration time and sites are

restricted.

Software agents have unique abilities to:

13

(i) Support intelligent resource management. Peer agents can negotiate access to resources

and request services based upon user intentions rather than specific implementations.

(ii) Support intelligent user interfaces. We expect agents to be capable of composing basic

actions into higher level ones, to be able to handle large search spaces, to schedule actions

for future points in time, and to support abstractions and delegations. Some of the limita-

tions of direct manipulation interfaces, namely, difficulties in handling large search spaces,

rigidity, and the lack of improvement of behavior, extend to most other facets of traditional

approaches to interoperability.

(iii) Filter large amounts of information. Agents can be instructed at the level of goals and

strategies to find solutions to unforeseen situations and they can use learning algorithms to

improve their behavior.

(iv) Adjust to the actual environment. Agents are network aware.

(v) Move to the site when they are needed and thus reduce communication costs and improve

performance.

Large-scale distributed systems seem ready to accept the need of metainformation to

facilitate the interpretability of various components, so we believe that sooner rather than

later we shall witness an effort to build intelligent environments.

The critical components of such an intelligent environment are the ontologies, collections

of structured data shared among different agents. Core services in such systems are pro-

14

vided by intelligent agents, programs with the ability to perform intelligent actions such as

inference, planning, and possibly learning.

The need for an intelligent infrastructure is amply justified by the complexity of both

the problems we wish to solve and the characteristics of the environment [142]. As we

take a closer look at the architecture of an intelligent environment we distinguish between

several classes of services. System-wide services supporting coordinated and transparent

access to resources of the system are called societal or core services. Specialized services

accessed directly by end-users are called end-user services. The core services, provided by

the computing infrastructure, are persistent and reliable, while end-user services could be

transient in nature. The providers of end-user services may temporarily, or permanently,

suspend their support. The reliability of end-user services cannot be guaranteed. The basic

architecture of an intelligent environment is illustrated in Figure 1.1.

A non-exhaustive list of core services includes: authentication, brokerage, coordination,

information, ontology, matchmaking, monitoring, planning, persistent storage, scheduling,

event, and simulation. Authentication services contribute to the security of the environment.

Brokerage services maintain information about classes of services offered by the environment,

as well as past performance databases. Though the brokerage services make a best effort

to maintain accurate information regarding the state of resources, such information may be

obsolete. Up to date information about the status of any resource can be gathered using

monitoring services. Coordination services act as proxies for the end-user. A coordination

service receives a case description and controls the enactment of the workflow. Planning ser-

15

Coordination

Service
User Interface

Matchmaking

Service

Brokerage

Service

Information Service

Planning

Service

Event Service

Simulation

Service

Ontology

Service

Core

Services

End-User

Services

Application

Container

Application

Container

Scheduling

Service

Application

Container

Application

Container

Persistent

Storage Service

Figure 1.1: Core and end-user services. The User Interface (UI) provides access to the

environment. Applications Containers (ACs) host end-user services. Shown are the following

core services: Coordination Service (CS), Information Service (IS), Planning Service (PS),

Matchmaking Service (MS), Brokerage Service (BS), Event Service (EvS), Ontology Service

(OS), Simulation Service (SimS), Scheduling Service (SchS), and Persistent Storage Service

(PSS).

16

vices are responsible for creating the workflow. Scheduling services provide optimal schedules

for sites offering to host application containers for different end-user services. Information

services play an important role; all end-user services register their offerings with the infor-

mation services. Ontology services maintain and distribute ontology shells, i.e., ontologies

with classes and slots but without instances, as well as ontologies populated with instances,

global ontologies, and user-specific ontologies. Matchmaking services allow individual users

represented by their proxies (coordination services) to locate resources in a spot market,

subject to a wide range of conditions. Individual users may only be intermittently connected

to the network. Persistent storage services provide access to the data needed for the execu-

tion of user tasks. Event services provide a method for event handling and message passing.

Simulation services are necessary to study the scalability of the system and are also useful

for end-users to simulate an experiment before actually conducting it.

Core services are replicated to ensure an adequate level of performance and reliability.

Core services may be organized hierarchically in a manner similar to the DNS (Domain Name

Services) in the Internet. End-user services could be transient in nature. The providers of

such services may temporarily or permanently suspend their support, while most core services

are guaranteed to be available at all times. Content-provider services, legal, accounting,

tracking, various application software are examples of end-user services.

17

The BondGrid

BondGrid is an intelligent environment we are currently building. In the following we de-

scribe the structure of the ontologies used in BondGrid and the BondGrid agents.

a) Ontologies

An ontology is an explicit specification of a conceptualization and a conceptualization is

an abstract and simplified view of the world that we wish to represent for some purpose.

An ontology defines a common structure that facilitates the sharing of information. It in-

cludes machine-interpretable definition of the basic concepts in a domain and their relations.

Ontologies are the cornerstone of interoperability. They represent the “glue” that allows

different applications to use various grid resources. Creating ontologies in the context of

grid computing represents a monumental task.

The structure of a category of entities is described as a class in Protégé knowledge

base [54] [101]. Protégé is an open-source, Java-based tool that provides an extensible

architecture for the creation of customized knowledge-based applications. Protégé uses

classes to define the structure of entities. A class consists of one or more slots. A slot

describes one attribute of the class and consists of a name and a value. An instantiation

of a class is called an instance of that class. A class may have one or multiple instances.

The type of a slot value may be simple types, such as integer, float, Boolean, and string.

The type of a slot value may also be an instance of a class. A class may be extended from

another class and inherit all the slots of that class.

18

Ontologies are stored in a knowledge base which can be accessed by applications. Appli-

cations also need to exchange ontologies with each other. BondGrid uses an XML format

to describe instances of classes for exchange. Figure 1.2 shows an informal description of

the XML format. Each instance has a unique ID. The slot-value can be a value, or an

instance.

Figure 1.2: XML specification for instances.

BondGrid also uses an XML format to describe various classes. The slot-type can be:

string, boolean, float, integer, or an instance. The cardinality-value can be an nonnegative

integer or a wild card ′∗′. Figure 1.3 shows an informal description of the XML format.

19

Figure 1.3: XML specification for classes.

b) BondGrid Agents

Services in BondGrid are provided by BondGrid agents based on JADE [63] and Protégé

[54] [101], two free software packages distributed by Telecom Italy and the Stanford Medical

Institute, respectively.

JADE (Java Agent DEvelopment Framework) is a FIPA compliant agent system fully

implemented in Java and using FIPA ACL as an agent communication language. The JADE

agent platform can be distributed across machines which may not run under the same OS.

Each agent has a unique identifier obtained by the concatenation (+) of several strings:

AID ←− agentname + @ + IPaddress/domainname + portnumber + /JADE

20

BondGrid uses a multi-plane state machine agent model similar to the Bond agent sys-

tem [18]. Each plane represents an individual running thread and consists of a finite state

machine. Each state of a finite state machine is associated with a strategy that defines a

behavior. The agent structure is described using a Python-based agent description language

called blueprint. A BondGrid agent is able to recognize a blueprint, to create planes and finite

state machines accordingly, and to control the execution of different planes automatically.

Figure 1.4 shows the blueprint for a coordination service.

Figure 1.4: The blueprint for a coordination service.

The knowledge bases are shared by multiple planes of an agent. The BondGrid agents

provide a standard API to support concurrent access to the knowledge bases. Messages

are constructed using the Agent Communication Language (ACL). A message has several

fields: sender, receivers, keyword, and message content. The keyword enables the receiver

of a message to understand the intention of the sender. A message may have one or more

21

user-defined parameters. Agents use XML formatted messages to exchange an instance of a

class or the structure of a class.

The Coordination Service

We implemented a coordination service based on BondGrid agent. The coordination service

consists of a message handler, a service manager, and a coordination engine. The message

handler is responsible for the communication between the coordination service and other

entities in the system. The service manager provides a GUI for monitoring the execution of

tasks and the interactions between coordination service and other services. The coordination

engine manages the execution of tasks submitted to the coordination service.

The Matchmaking Service

We implemented a matchmaking service based on BondGrid agent. The matchmaking service

has a knowledge base that holds the resource advertisements from providers. Requests from

consumers are evaluated with resource advertisements in the knowledge base. The match-

making service consists of a message handler, a service manager, and a matchmaking engine.

The message handler is responsible for the communication between the matchmaking service

and other entities in the system. The service manager provides a GUI for monitoring the

matchmaking engine and the interactions between matchmaking service and other services.

22

The matchmaking engine handles the matchmaking requests submitted to the matchmaking

service.

1.2.3 Performance Studies

We studied the performance of a coordination service implemented in BondGrid. We inves-

tigated the response time the coordination service needs to encode, transmit, and decode an

ontology (in XML format) as the size of the ontology increases. We also studied the maxi-

mum request handling rate of the coordination service. We tested the coordination service

for an important application of biology computation, the 3D atomic structure determination

of macromolecules based upon electron microscopy.

We investigated the performance of a matchmaking service implemented in BondGrid.

We studied the response time of the matchmaking service versus the number of resource

advertisements when the knowledge base is stored in a local file or a database. We also

tested two matchmaking algorithms: a simple algorithm that requires an exhaustive search

of all resource advertisements; and a modified algorithm that only covers a portion of the

knowledge base.

We carried out intensive simulation studies of the macro-economic resource allocation

model. We studied the effect of different pricing strategies upon measures of performance

23

important for the consumers (satisfaction and utility) and providers (revenue and acceptance

ratios) with different parameters over time.

1.3 Contributions

In this dissertation, we address the problems of coordination, matchmaking, and resource

allocation for large-scale distributed systems. We describe our work on a coordination ser-

vice, a matchmaking service, and a macro-economic resource allocation model for large-scale

distributed systems. Compared to traditional approaches, we have made the following con-

tributions:

1. We developed a dynamic coordination algorithm to coordinate the execution of complex

tasks in large-scale distributed systems; and we developed, implemented, and evaluated

a coordination service based on the concept of process and case description.

2. We proposed an ontology-based resource matching scheme for large-scale distributed

systems; and we developed, implemented, and evaluated an ontology-based matchmak-

ing service.

3. We introduced the concept of consumer satisfaction that is based on the utility provided

to the consumer and the price paid for the resources; we proposed a macro-economic

resource allocation model based upon utility, price, and satisfaction functions for large-

24

scale distributed systems; and we evaluated the performance of the model with different

pricing strategies through a set of simulations.

4. We developed and implemented BondGrid, an intelligent environment for large-scale

distributed systems in which we implemented and evaluated a coordination service and

a matchmaking service.

1.4 Organization

The rest of this dissertation is organized as follows. Chapter 2 discusses the existing coor-

dination techniques, demonstrates a coordination service for large-scale distributed systems,

and presents some performance evaluation results. Chapter 3 proposes an ontology-based

resource matchmaking solution for large-scale distributed systems, demonstrates a match-

making service, and shows its performance with different knowledge base storing methods

and matchmaking algorithms. Chapter 4 demonstrates a macro-economic resource alloca-

tion model based upon utility, price, and satisfaction functions for large-scale distributed

systems and shows its performance with different parameters and strategies through a set of

simulations. Finally, Chapter 5 presents the summary of our work and the conclusions.

25

CHAPTER 2

COORDINATION

In this chapter, we study the problem of coordination for large-scale distributed systems. A

large-scale distributed system is a complex system. The state space of a complex system is

very large and it is unfeasible to create a rigid infrastructure implementing optimal policies

and strategies that take into account the current state of the system. We need a coordination

service to hide the complexity of the system from the end-user. The coordination service

acts as a proxy on behalf of end-users to react to unforseen events and to plan how to carry

out complex tasks. It should be reliable and able to match user policies and constraints

(e.g., cost, security, deadlines, quality of solution) with the corresponding system policies

and constraints. We implemented a coordination service in BondGrid. The coordination

service interacts with other core and end-user services for the execution of computing tasks.

It implements an abstract machine that understands a description of the complex task, we

call it a process description, and a description of a particular instance of the task, we call it

a case description.

26

2.1 Introduction and Motivation

Whenever there is a contention for a limited set of resources among a group of entities

or individuals, we need control mechanisms to mitigate access to system resources. These

control mechanisms enable a number of desirable properties of the system, e.g., fairness,

provide guarantees that tasks are eventually completed, and ensure timeliness when timing

constraints are involved. Security is a major concern in such an environment. We want to

ensure confidentiality of information and prevent denial of service attacks, while allowing

controlled information sharing for cooperative activities. Considerably simpler versions of

some of the problems mentioned above are encountered at the level of a single system, or in

the case of small-scale distributed systems (systems with a relatively small number of nodes

in a single administrative domain). In case of a single system such questions are addressed

by the operating system which transforms the “bare hardware” into a user-machine and

controls access to system resources. The question of how to address these problems in the

context of a grid has been the main focus of research in grid environments, and, at the same

time, the main stumbling block in the actual development of computational grids.

Some research in grid computing proposes to transfer to grid computing concepts, ser-

vices, and mechanisms from traditional operating systems, or from parallel and distributed

systems without taking into account the effect on system reliability and dependability of the

attributes of computational grids. This is a clearly inadequate approach. For example, there

is a proposal to extend the Message Passing Interface (MPI) to a grid environment. In its

27

current implementation, the MPI does not have any mechanism to deal with a node failure

during a barrier synchronization operation. In such a case all the nodes involved other than

the defective one wait indefinitely, and it is the responsibility of the user to detect the failure

and take corrective actions. It may be acceptable to expect the programmer to monitor a

cluster with a few hundred nodes housed in the next room, but it is not reasonable to ex-

pect someone to monitor tens of thousands of nodes scattered over a large geographic area.

Thus, we cannot allow MPI to work across system boundaries without any fault detection

mechanism.

Coordination allows individual components of a system to work together and create

an ensemble exhibiting a new behavior without introducing a new state at the level of

individual components. Scripting languages provide a “glue” to support composition of

existing applications. The problem of coordinating concurrent tasks was generally left to the

developers of the parallel scientific and engineering applications. Coordination models such

as the coordinator-worker, or the widely used Single Program Multiple Data (SPMD) were

developed in that context.

The problem of coordination of complex tasks has new twists in the context of large-scale

distributed systems. First, it is more complex and it involves additional activities such as

resource discovery and planning. Second, it has a much broader scope due to the scale of

the system. Third, the complexity of the computational tasks and the fact that the end-user

may only be intermittently connected to the network force us to delegate this function to a

proxy capable of creating the conditions for the completion of the task with or without user

28

intervention. It is abundantly clear that such a proxy is faced with very delicate decisions

regarding resource allocation or exception handling. For example, should we use a more

expensive resource and pay more to have guarantees that a task completes in time, or should

we take our chances with a less expensive resource? In the case of the MPI example should

we kill all the processes in all the nodes and restart the entire computation, should we roll

back the computation to a previous checkpoint if one exists, or should we simply restart the

process at the failing node on a different node.

There is little doubt that the development of large-scale distributed systems poses formi-

dable problems. We concentrate on problems related to resource management, exception

handling, and coordination of complex tasks.

2.2 Background and Related Work

2.2.1 Grid Computing

Grid computing has several names along with its evolution, such as metacomputing, scalable

computing, global computing, Internet computing, and now we call it grid computing. The

earliest effort to grid computing could be traced back to the CASA project that was one of

the US gigabit test beds deployed in 1989. Since then the evolution of grid computing could

be identified as three stages [106]: the first generation, the second generation, and the third

29

generation, although there are not always clear boundaries among them. In the following we

survey some typical grid computing projects based on [106].

The projects of the first generation of grid computing focused on providing computa-

tional resources to high performance applications. Among them, FAFNER (Factoring via

Network-Enabled Recursion) [42] and I-WAY (the Information Wide Area Year) [43] are two

representative ones. The initiative of FAFNER project is based on the fact that factoring

extremely large numbers for the widely used RSA (Rivest, Shamri, and Adelman) public

encryption algorithm is computationally very expensive. FAFNER uses parallel factoring

algorithms so that the computation of factoring can be distributed among computers. A

person who would like to contribute to this project can simply invoke a CGI script anony-

mously through a set of Web pages. His Web client uses HTTP protocol to GET parameters

and POST results back to the server. His machine is not necessarily a high performance com-

puter. I-WAY links lots of high performance computer and devices located in 17 US sites

through high bandwidth networks. Key sites install I-POP (point-of-presence) servers to be

a gateway of I-WAY. An I-POP server supports authentication, resource reservation, process

creation, and communication functions. CRB (Computational Resource Broker) works as

a resource scheduler. There is a single central CRB and each I-POP server has a local

CRB. The central CRB maintains the job queues and information of local machines. Both

FAFNER and I-Way work as a metacomputing environment by integrating computational

resources although FAFNER could use a slow computer and I-WAY needs high performance

30

computers. Both of them lacks scalability. For example, FAFNER needs lots of human

intervention and I-WAY was limited by the components of I-POPs.

The second generation of grid computing tries to solve three main issues [106]: 1) Het-

erogeneity in that computing resources could be heterogenous in nature and could belong to

different domains; 2) Scalability in that the size of the grid could be millions; 3) Adaptability

in that due to the size of the grid, the probability of failure could be high. The features of

the second generation of grid includes: 1) Administrative hierarchy in that it decides how

components of the grid deal with each other; 2) Communication services in that diverse

communication modes exist and QoS should be considered; 3) Information services in that

a grid is dynamic and grid should provide mechanism for registering, unregistering, and ob-

taining grid information; 4) Naming services in that it provides a uniform name space across

the whole grid; 5) Distributed file systems and caching in that data could be stored distrib-

utedly; 6) Security and authentication in that confidentiality, integrity, authentication, and

accountability are necessary for any distributed system; 7) System status and fault tolerance

in that it is important to monitor the status of resources and application so that fault can

be detected and handled; 8) Resource management and scheduling in that these should be

designed carefully so that resource can be utilized efficiently and effectively; 9) User and ad-

ministrative GUI in that they are necessary for controlling the grid resource and user tasks.

The second generation grid computing involves a lot of projects dealing with areas such as

infrastructure, key services, coordinations, specific applications, and domain portals. Globus

[44] is US multi-institutional computational grid project that aims to provide a software in-

31

frastructure making distributed heterogeneous resource a single virtual machine. It evolved

from the I-Way [43] project. It provides a Globus Toolkit that consists of basic compo-

nents such as security, resource location, resource management, and communication. Globus

infrastructure is a layered architecture. The Globus Toolkit includes: 1) An HTTP-based

GRAM (Globus Toolkit Resource Allocation Manager) protocol to allocate, monitor, and

control resources; 2) An GridFTP file transfer protocol, which is supports security, partial

files access, and parallel transferring; 3) GSI (Grid Security Infrastructure) for authentication

and authorization; 4) LDAP (Lightweight Directory Access Protocol) used to access distrib-

uted structure and state information; 5) GASS (Global Access to Secondary Storage) used

to access data via sequential and parallel interface remotely; 6) GEM (Globus Executable

Management) to locate and cache executables; 7) GARA (Globus Advanced Reservation

and Allocation) used for resource reservation and allocation. Legion [53] is an object-based

software infrastructure which makes heterogeneous and geographically distributed high per-

formance computers interact seamlessly. It encapsulates all its components as objects and

has the advantages of object mechanism: data abstraction, encapsulation, inheritance, and

polymorphism. The core object types of Legion include classes representing managers or

policy makers, metaclasses that is classes of classes, host objects representing computational

resources, vault objects representing storages, binding agents mapping object IDs to physical

addresses, etc. Jini [67] aims to provide a software infrastructure supporting network plug

and play. Services and users use Jini protocols to constitute a Jini community that is gen-

erally a workgroup. Applications are written in Java or wrapped in Java if non-Java code is

32

necessary. Jini users can find a community to join, to look up for the service he wants, lease

the service for a period, receive and handle remote events, and use transactions to make

sure the system state is consistent. Condor [34] [47] aims to provide a software package

supporting batch jobs on UNIX computers. In Condor, resource location and allocation are

automatic. Jobs can be check-pointed and migrated to new site for execution. Idle resources

enter a pool waiting for allocation and leave the pool when they are busy. Nimrod-G [90]

[21] is a grid resource manger and scheduler. It uses Globus to deploy Nimrod-G agents

on remote resources. It is capable of allocating resources based on the capability, cost, and

availability of resources and the time deadline of users. Different algorithms can be used

to achieve cost optimization, time optimization, and cost-time optimization. UNICORE [1]

provides an open architecture and a uniform user GUI through Java and Web. Applications

in UNICORE have multiple parts so that different parts can be executed at different sites,

either parallelly or sequentially. Through web pages, users can create, submit, and control

job execution from anywhere. Users are also authenticated through Web pages. P2P com-

puting [33] aims to making computers on Internet to share resources, such as spare CPU

cycles and storage space. In P2P computing, there is no central server and computers com-

municate with each other directly. P2P computing scales much more effectively than the

traditional client-server model. The most important obstacle in P2P computing is the secu-

rity. Since P2P computing allows to use resources of other machines, computer systems are

vulnerable to viruses and malicious activities. NMI (NSF Middleware Initiative) [92] aims

to define, develop, deploy, and support an integrated and stable middleware infrastructure

33

created from a number of open source grid framework, including Globus, Condor-G, and

so on. The second generation Grid computing projects focus on developing middleware to

support large-scale data and computation. The major drawback of the second generation

grid computing is the lack of transparency among different middleware, i.e., different grid

environments use noninteroperable solutions.

The third generation of grid computing aims to reuse existing standards in a flexible man-

ner. Two key characteristics of the third generation grid computing include the adoptions

of a service-oriented model and metadata. The Web service standards from W3C (World

Wide Web Consortium) [128] have gained popularity. The established standards include: 1)

SOAP (Simple Object Access Protocol) that provides an envelope encapsulating XML data;

2) WSDL (Web Service Description Language) that describes a service in XML; and 3)

UDDI (Universal Description Discovery and Integration) that is a specification for Web ser-

vices registries. The OGSA (Open Grid Services Architecture) [95] from GGF (Global Grid

Forum) [49] combine the Web Services standards and grid computing. OGSA supports the

creation and maintenance of services maintained by a virtual organization. Services could be

computers, storages, networks, data, and executable programs. Standard interfaces defined

in OGSA include: 1)Discovery so that service can be found; 2)Dynamic service creation so

that service can be created; 3)Lifetime management so that state information of services

can be monitored and failure can be handled; 4)Notification so that events can be captured;

5)Manageability so that services can be managed; and 6)Simple hosting environment so that

local resources and native facilities can be managed. The Semantic Web [109] of W3C defines

34

a standard of defining Web matadata. The most important technologies of Semantic Web

include XML and RDF (Resource Description Framework). XML allows us to structure doc-

uments without saying anything about the meaning of documents. Meaning of documents

are expressed in RDF. The Semantic Grid [108] is a natural evolution of the Semantic Web

and grid computing and is an effort to utilize the Semantic Web technologies in grid com-

puting. In Sematic Grid, computing is knowledge-centric and metadata-driven. With the

increasing complexity of dealing with grid computing issues such as task coordination and

resource matchmaking, grids need a significant amount of autonomic functions, known as

Autonomic Computing [7]. The key autonomic functions of a grid include: 1)Self-configuring

so that grid components are able to adapt to the changes in the system; 2) Self-optimizing

so that grid components are able to achieve optimal performance; 3)Self-healing so that grid

components are able to recover from failure; and 4)Self-protecting so that grid components

are able to detect and defense intrusions.

2.2.2 Agent-Based Computing

An agent is defined as “an encapsulated computer system that is situated in some environ-

ment, and that is capable of flexible, autonomous action in that environment in order to

meet its design objectives” in [137]. An agent has the following characteristics [64]:

35

1. Its goal is to solve a clearly identifiable problem and it has well-defined interfaces and

boundaries.

2. It is situated in an environment. It can sense the change of the environment and act

on the environment accordingly.

3. It is designed to fulfill a specific role with its particular problem solving capability.

4. It has control over its internal states and own behaviors.

5. It is both reactive, i.e., able to respond in a timely fashion to the change of the envi-

ronment, and proactive, i.e., able to act on its own initiative to reach its goal.

Multiple agents are suitable for representing a decentralized system with multiple loci

of control, multiple perspectives, or competing interests [46]. A system may contain both

cooperative agents to maximize the social welfare of the system and selfish agents to max-

imize their own individual return. The interactions among agents are based on semantic

understanding and sophisticated social activities to cooperate, coordinate, and negotiate.

Intelligent agents are with those autonomic functions required by the third generation grid

computing. Agent technologies have been used for the development of distributed software

systems for several years [65]. The agent-based system allows agents to control themselves

with their own internal logic rather than a fixed function or external intervention. The afore-

mentioned autonomic functions are close to the weak agency [138] property of agents. The

weak agency is composed of the following: 1) Autonomy so that agents can work without

human intervention; 2) Social ability so that agents communicate with each other through an

36

ACL (agent communication language); 3)Reactivity so that agents can perceive and respond

to the change of their environment; and 4)Pro-activeness so that agents exhibit goal-directed

behavior. Agent-based computing [64] opened a new window to grid computing. The re-

search about agent-based grid computing involves a lot of areas including infrastructure, key

services, algorithms, simulations, etc.

In [65], the authors point out that software agents are recognized as a powerful high-level

abstraction for the modeling of complex software systems. In [81], different prospectives of

grid computing was presented and the concept of Agent Grid was proposed with the DARPA

ISO’s CoABS (Control of Agent-Based Systems) agent grid. They proposed AgentScape, a

scalable multi-agent infrastructure to support large-scale agent systems. In [103], an agent-

based grid computing project is presented. It integrates services and resources for establish-

ing multi-disciplinary problem solving environment. Autonomous agents are able to adjust

their behavior according to their interactions with other agents and the changes of the en-

vironment. In [69], a distributed resource discovery method used in a wide-area distributed

system made up of autonomous systems is presented. This method allows individual nodes to

gather information about resources in the system. When an agent needs to find the detailed

information of a component in another system, a description of a monitoring agent is sent to

the remote site and a monitoring agent is created accordingly. In [122], an agent-based archi-

tecture enabling routing and handling of FIPA ACL messages was proposed. The architec-

ture is pluggable with respect to routing algorithms. In [111], different adaptive negotiation

strategies for agent-based load balancing and grid computing are listed: Contract Net Proto-

37

col, Auction Model, Game Theory Based Model, and Discrete Optimal Control Model. The

authors propose a system in which different negotiation strategies can be selected automati-

cally to adapt to computation needs and changes of the resource environment. The authors

of [28] proposed to use a hierarchy of homogeneous agents for the resource management in

a metacoputing environment. At metacomputing level, the resource management, schedul-

ing, and allocation are abstracted to service advertisement and service discovery fulfilled by

agents. Then In [25], the authors proposed ARMS, an agent-based resource management

system in grid computing. In ARMS, a hierarchy of homogeneous agents is used to provide

a scalable and adaptable abstraction of the system architecture at meta-level. Each agent

can cooperate with others to advertise itself and discovery resources so that the tasks can

be scheduled to utilize grid resources. In [24], ARMSim, an ARMS performance modeling

and simulation environment, was proposed to investigate the performance of ARMS. The

resource discovery performance of the grid with different strategies is presented in [27]. In

[71], a monitoring and discovery service in an agent-based grid environment was presented.

The monitoring and discovery service implements GRIP (GRid Information Protocol) and

GRRP (GRid Registration Protocol). In [29], a performance-driven task scheduler used in

an agent-based grid environment for local grid load balancing was proposed. Agents uses

predictive performance data and cooperate with each other to balance the load of the grid.

In [97], an agent-based approach is proposed to manage vast amount of resources in a grid.

It also proposed an agent infrastructure to be integrated within the grid middleware layer.

This infrastructure supports scalability of number of agents and resources. In [130], a dy-

38

namic model of agent-based load balancing on grids was proposed. The quality of the load

balancing of the grid with different strategies was also defined and measured. In [75], an

architecture for computational grids based on a multi-agent system paradigm in a cellular

network was proposed. In this grid environment, agents are able to use each other’s resource

to complete computational tasks cooperatively. The authors also presented a distributed

version of IDA* search algorithm used in the aforementioned computational grids in [74].

In [66], the authors proposed an agent-based architecture to solve the problem of software

maintenance in grids. Their architecture uses a tool called Remote Maintenance Shell and

exploits mobile agents to perform software upgrading without jeopardizing the running ap-

plications. In [100], the authors presented an extension of the JADE agent framework to

support the development of agent-based grid systems. In [32], ACG, an Agent-based Com-

putational Grid environment, was presented to provide a uniform high-level management

of computing resources and services in the grid. Users use a consistent and transparent

interface to access grid resources and services. All entities in the grid, including resources,

services, and users are represented as agents. In [121], Unity, a decentralized architecture for

autonomic computing based on multiple interacting agents, was presented. Agents in Unity

have the property of goal-driven, self-assembly, self-healing, and real-time self-optimization.

An agent within each application environment computes a resource utility according to a

utility function. All utility functions are sent to a Resource Arbiter agent to compute a

globally optimal resource allocation of the grid.

39

2.2.3 Workflow Management

Workflow management plays a very important role in task coordination. A workflow man-

agement system (WFMS) is defined as a generic software tool which allows for the definition,

execution, registration, and control of workflows in [77]. Some popular commercial workflow

systems include Staffware [115], COSA [36], Inconcert [62], Eastman Software [39], Domino

Workflow [38], Websphere MQ Workflow [131], Visual Workflow [127], and I-Flow [60]. They

are proprietary softwares and it is infeasible to use them for open source research projects.

Workflow have been a research topic in different fields for many years. A method to

evaluate the capabilities of different workflow management systems through a meta model

approach is introduced in [143] so that the most appropriate system for users can be selected.

An agent-enhanced workflow [68] is introduced to improve control of a workflow management

system through a community of intelligent, distributed, and autonomous software agents.

These agents cooperate with each other to perform realtime exception handling and dynamic

distribution of tasks. An open architecture for adaptive workflow management systems is

introduced in [112]. This architecture uses a flexible workflow model including advanced

control structures and allows uses to modify workflow instances during runtime. The issue

of time constraints in workflow systems is addressed in [40]. A framework is presented to

plan the workflow process in time, estimate the workflow execution duration, avoid deadline

violations, and satisfy external time constraints such as fixed date and upper/lower bound

of activity execution time. The idea of integrating the concept of workflow transaction into

40

workflow management systems is addressed in [40] to ensure the consistent and reliable

execution of workflows. Different failure sources and failure classes that influence and de-

termine recovery concepts are listed. WebFlow, an environment that supports distributed

coordination services on the World Wide Web, is introduced in [52]. WebFlow contains a

distributed workflow component. WebFlow leverages the HTTP protocol and consists of a

number of tools for the development of applications that require the coordination of multiple

distributed servers. An event-based distributed execution of workflow is introduced in [48].

A layered event-based architecture is used for workflow systems. Its functionality includes

event registration, detection, management, and notification to distributed, autonomous, and

reactive software components. An agent-based process management system is introduced in

[94] to combine the autonomous agent technology and distributed computing platforms. It

allows software agents to represent the interests of autonomous departments or business units

to adapt to the change of environment. It extends workflow with the abilities to anticipate

the process requirements, to process resources automatically, and to adapt to exceptions. A

rule-based approach for coordination in workflow management systems is introduced in [70].

This approach uses a mechanism in terms of Event/Condition/Action (ECA) rules used in

the active object-oriented database systems to map various coordination policies required

within different areas of workflow management systems to ECA rules.

Some research has been done in the grid community to provide a platform independent,

robust, and convenient mechanism for workflow systems. Pioneering work includes WebFlow

[16] that aims to the development of high performance distributed computing applications.

41

Symphony, a Java-based composition and manipulation framework for computational grids,

was presented in [80]. It aims to combine existing codes to meta-programs without changing

codes. Grid workflow system (Grid-WFS) is introduced in [59] to support flexible failure

handling of workflows in a generic, heterogeneous, and dynamic grid environment. Available

handling techniques for a task-level failure include retrying, replication, and checkpointing.

Available handling techniques for a workflow-level failure include alternative task, workflow-

level redundancy, and user-defined exception handling. The problem of generating job work-

flows for a grid automatically is addressed in [37]. AI planning technologies are used to

develop two workflow generators: 1) Concrete Workflow Generator (CWG) that maps an

abstract workflow to the available resources of the grid; and 2)Abstract and Concrete Work-

flow Generator (ACWG) that not only maps an abstract workflow to the available resources

of the grid but also construct the abstract workflow based on available resources. GridFlow,

a workflow management system for grid computing, is presented in [26]. GridFlow is based

on the prediction capabilities provided by the PACE system [93]. It includes a user portal

and services of both global grid workflow management and local grid sub-workflow schedul-

ing through applying a fuzzy timing method. GridAnt, a client-controllable grid workflow

system, is introduced in [2]. GridAnt reuses Ant [6], a popular build tool in the Java com-

munity. GridAnt assists grid users in orchestrating a set of grid activities and expressing

complex dependencies between them in XML. The problem of dynamic change within work-

flow systems is addressed in [41]. A Petri net formalism is used to analyze the structural

42

change of workflows. As an example, this Petri net formalism is used to prove that a class

of synthetic cut-over change maintains correctness when downsizing occurs.

A lot of work has been done with defining and implementing stardards for workflow

management systems [77]. An XML based grid workflow specification is documented in [17]

and used in the Accelerated Strategic Computing Initiative (ASCI). Workflow Management

Coalition (WfMC) standard [132] and Workflow Process Definition Language (WPDL) [88]

are sophisticated and too generalized for grid computing. Condor [34] and UNICORE [1]

provide similar functionalities but require specific infrastructure. Since grid architecture

began to shift to service-oriented framework [95], new specifications are being researched:

Business Process Execution Language for Web Services (BPEL4WS) [20] and Grid Services

Flow Language (GSFL) [72]. BPEL4WS represents the merger of two rival standards, WSFL

(Web Services Flow Language) [139] and XLang, a language used to model business processes

as autonomous agents [140]. GSFL is proposed to support a number of desirable features:

peer-to-peer service interaction and complicated lifecycle management for the services.

2.3 Coordination and Coordination Services

A cursory examination of recent research in grid computing services reveals limited interest

in the mechanisms used to coordinate the execution of complex computational tasks. This

situation can be attributed to several reasons: (i) there are relatively few applications of

grid computing; (ii) the users of grid computing are highly computationally sophisticated

43

individuals with a high threshold for pain in using computer systems; (iii) powerful scripting

languages such as Perl, Python, and tuple-spaces can be used for coordination [105]; and

last but not least, (iv) the problems posed by a coordination service are non-trivial.

2.3.1 Process Coordination

Coordination is a very broad subject with applications to virtually all areas of science and

engineering, management, social systems, defense systems, education, health care, and so

on. Human life is an exercise in coordination, each individual has to coordinate his own

activities with the activities of other individuals, groups of individuals have to coordinate

their efforts to achieve a meaningful result.

Coordination is critical for the design and engineering of new man-made systems and im-

portant for understanding the behavior of existing ones [96]. Coordination is an important

dimension of computing. An algorithm describes the flow of control, the flow of data, or both;

a program implementing the algorithm coordinates the software and the hardware compo-

nents involved in a computation. The software components are library modules interspaced

with user code executed by a single thread of control in case of sequential computations; in

this case, the hardware is controlled through system calls supported by the operating system

running on the target hardware platform.

44

Coordination of distributed and/or concurrent computations is more complex; it involves

software components based on higher level abstractions such as objects, agents, and programs

as well as multiple communication and computing systems. Figure 2.1 illustrates a three-

dimensional space for coordination models. The first dimension reflects the type of the

network, i.e., an interconnection network of a parallel system, a local area network, or a

wide area network; the second dimension describes the type of coordination, i.e., centralized,

or distributed; the third dimension reflects the character of the system, i.e., closed, or open.

Open

Closed

Closeness

 Network

Centralized Distributed

WAN

LAN

Coordination type

Single

System

A B

C D

Figure 2.1: The coordination can be centralized, or distributed; the components may be

confined to a single system, to a LAN, or to a WAN; the system may be open, or closed.

A computer network provides the communication substrate and its characteristics provide

the first dimension of a coordination space. The individual entities can be co-located in space

45

within a single system. They can be distributed over a LAN, or over a WAN. Coordination

in a WAN is a more difficult problem than coordination confined to a LAN or to a single

system; we have to deal with multiple administrative domains and in theory communication

delays are unbounded. In a WAN it is more difficult to address performance, security, or

quality of service issues.

There are two approaches to coordination, a centralized and a distributed one. Central-

ized coordination is suitable in some instances such as ad hoc service composition. Suppose

that one user needs a super service involving several services; in this case an agent acting

on behalf of the user coordinates the composition. In other cases, a distributed coordination

approach has distinct benefits. Consider, for example, a complex weather service with a

very large number of sensors, of the order of millions, gathering weather-related data. The

system uses information from many databases; some contain weather data collected over

the years, others archive weather models. The system generates short-, medium-, and long-

term forecasts. Different functions of this service such as data acquisition, data analysis,

data management, and weather information dissemination will most likely be coordinated

in a distributed fashion. A hierarchy of coordination centers will be responsible for data

collected from satellites, another group will coordinate terrestrial weather stations, and yet

another set of centers will manage data collected by vessels and sensors from the oceans.

The last dimension of interest of the coordination space reflects whether the system is

closed and all entities involved are known at the time when the coordination activity is

initiated, or the system is open and allows new entities to join or leave at will. Coordination

46

in an open system is more difficult than coordination in a closed system. Error recovery

and fault tolerance become a major concern because a component may suddenly fail or leave

the system without prior notice. The dynamics of coordination changes; we cannot stick to

a pre-computed coordination plan and we may have to revise it. The state of the system

must be reevaluated frequently to decide if a better solution involving components that have

recently joined the system exists.

2.3.2 Coordination Techniques

We distinguish between low-level and high-level coordination issues. Low-level coordination

issues are centered on the delivery of coordination information to the entities involved; high-

level coordination covers the mechanisms and techniques leading to coordination decisions.

The more traditional distributed systems are based on direct communication models like

the one supported by remote procedure call protocols to implement the client-server para-

digm. A client connected to multiple servers is an example of a simple coordination configu-

ration; the client may access services successively, or a service may in turn invoke additional

services.

In this model there is a direct coupling between interacting entities in terms of name,

place, and time. To access a service, a client needs to know the name of the service and the

location of the service; the interaction spans a certain time interval.

47

Mediated coordination models ease some of the restrictions of the direct model by allowing

an intermediary, e.g., a directory service to locate a server, an event service to support

asynchronous execution, an interface repository to discover the interface supported by the

remote service, brokerage and matchmaking services to determine the best match between

a client and a set of servers, and so on.

Coordination Based on Scripting Languages. Coordination is one application of a

more general process called software composition where individual components are made to

work together and create an ensemble exhibiting a new behavior, without introducing a new

state at the level of individual components. A component is a black box exposing a number

of interfaces allowing other components to interact with it.

The components or entities can be “glued” together with scripts. Scripting languages

provide “late gluing” of existing components. Several scripting languages are very popular:

Tcl, Perl, Python, JavaScript, AppleScript, Visual Basic, languages supported by the

csh or the Bourne Unix shells,

Scripting languages share several characteristics [107]:

(i) Support composition of existing applications; thus, the term “late gluing”. For example,

we may glue together a computer-aided design system (CAD), with a database for mate-

rial properties (MPDB). The first component may be used to design different mechanical

parts; then the second may be invoked to select for each part the materials with desirable

mechanical, thermal, and electrical properties.

48

(ii) Rely on a virtual machine to execute bytecode Tcl, or interpreted languages. Perl,

Python, and Visual Basic are based on a bytecode implementation, whereas JavaScript,

AppleScript, and the Bourne Shell need an interpreter.

(iii) Favor rapid prototyping over performance. In the previous example in (i), one is likely

to get better performance in terms of response time by rewriting and integrating the two

software systems, but this endeavor may require several men-years; writing a script to glue

the two legacy applications together could be done in days.

(iv) Allow the extension of a model with new abstractions. For example, if one of the

components is a CAD tool producing detailed drawings and specifications of the parts of

an airplane engine, then the abstractions correspond to the airplane parts, e.g., wing, tail

section, landing gear. Such high-level, domain-specific abstractions can be easily understood

and manipulated by aeronautic and mechanical engineers with little or no computer science

background.

(v) Generally, scripting languages are weakly typed, offer support for introspection and

reflection, and for automatic memory management.

Perl, Python, JavaScript, AppleScript, and Visual Basic are object-based scripting

languages. All five of them are embeddable and can be included into existing applications.

For example, code written in Jython, a Java version of Python, can be embedded into a

data stream, sent over the network, and executed by an interpreter at the other site.

49

Perl, Python, and JavaScript support introspection and reflection. Introspection and

reflection allow a user to determine and modify the properties of an object at runtime.

Scripting languages are very popular and widely available. Tcl, Perl, and Python are

available on most platforms, JavaScript is supported by all popular web browsers, the

Bourne Shell is supported by Unix, and Visual Basic by Windows.

Script-based coordination has obvious limitations. It is most suitable for applications with

one coordinator acting as an enactment engine, or in a hierarchical scheme when the legacy

applications form the leaves of the tree and the intermediate nodes are scripts controlling

the applications in a subtree. A script for a dynamic system, where the current state of the

environment determines the course of action, becomes quickly very complex. Building some

form of fault tolerance and handling exceptions could be very tedious.

In summary, script-based coordination is suitable for simple, static cases and has the

advantage of rapid prototyping but could be very tedious and inefficient for more complex

situations.

Coordination Based on Shared-Data Spaces. Tuple space coordination has also

been intensely scrutinized [30], [105]. A shared-data space allows agents to coordinate their

activities. We use the terminology shared-data space because of its widespread acceptance,

though in practice the shared space may consist of data, knowledge, code, or a combination

of them. The term agent means a party to a coordination effort.

50

In this coordination model all agents know the location of a shared data space and have

access to communication primitives to deposit and to retrieve information from it. As in

virtually all other coordination models, a prior agreement regarding the syntax and the

semantics of communication must be in place before meaningful exchanges of coordination

information may take place.

Coordination item

(data, knowledge, code)

Shared-Data Space

Push Pull

Producer

Agent

Consumer

Agent

Figure 2.2: A shared-data space coordination model. The producer of the coordination

information pushes an item into the shared data space, a consumer pulls it out. Little, or

no state information needs to be maintained by the shared-data space. The model supports

asynchronous communication between mobile agents. The agents may join and leave at will,

the model supports open systems.

The shared-data space coordination model allows asynchronous communication between

mobile agents in an open system, as seen in Figure 2.2. The communicating components

need not be coupled in time or space. The producer and the consumer of a coordination

information item act according to their own timing; the producer agent may deposit a

message at its own convenience and the consumer agent may attempt to retrieve it according

to its own timing. The components need not be co-located; they may even be mobile. The

51

only constraint is for each agent to be able to access the shared-data space from its current

location. Agents may join and leave the system at will.

Another distinctive advantage of the shared-data space coordination model is its tol-

erance of heterogeneity. The implementation language of the communicating entities, the

architecture, and the operating systems of the hosts where the agents are located play no

role in this model. An agent implemented in Java, running in a Linux environment and on

a SPARC-based platform, could interact with another one implemented in C++, running

under Windows on a Pentium platform, without any special precautions.

Traditionally, a shared-data space is a passive entity, coordination information is pushed

into it by a source agent and pulled from it by a destination agent. The amount of state

information maintained by a shared-data space is minimal, it does not need to know either

the location or even the identity of the agents involved. Clearly, there are applications

where security concerns require controlled access to the shared information, thus, some state

information is necessary. These distinctive features make this model scalable and extremely

easy to use.

An alternative model is based on active shared-data spaces; here the shared-data space

plays an active role as it informs an intended destination agent when information is available.

This approach is more restrictive and requires the shared-data space to maintain information

about the agents involved in the coordination effort. In turn, this makes the system more

cumbersome, less scalable, and less able to accommodate mobility.

52

Linda [23] was the first system supporting associative access to a shared-data space.

Associative access raises the level of communication abstraction. Questions such as who

produced the information, when was it produced, and who were the intended consumers

are no longer critical and applications that do not require such knowledge benefit from the

additional flexibility of associative access.

Tuples are ordered collections of elements. In a shared-tuple space agents use templates

to retrieve tuples; this means that an agent specifies what type of tuple to retrieve, rather

than a specific tuple.

Linda supports a set of primitives to manipulate the shared tuple space; out allows an

agent to deposit or write a tuple with multiple fields in the tuple space; in and rd are used

to read or retrieve a tuple when a matching has been found; inp and rdp are nonblocking

versions of in and rd; eval is a primitive to create an active tuple, one with fields that do

not have a definite value but are evaluated using function calls.

Several types of systems extend some of the capabilities of Linda. Some, including T

Spaces from IBM [78] and JavaSpaces from Sun Microsystems, extend the set of coordina-

tion primitives, others affect the semantics of the language, yet another group modifies the

model. For example, T Spaces allows database indexing and event notification, supports

queries expressed in the structured query language (SQL), and allows direct thread access

when the parties run on the same Java Virtual Machine.

53

A survey of the state of the art tuple-based technologies for coordination and a discussion

of a fair number of systems developed in the last few years are presented in [105]. Several

papers referred in [96] provide an in-depth discussion of tuple space coordination.

Coordination Based on Middleware Agents. In our daily life middlemen facilitate

transactions between parties, help coordinate complex activities, or simply allow one party

to locate other parties. For example, a title company facilitates real estate transactions,

wedding consultants and planners help organize a wedding, an auction agency helps sellers

locate buyers and help buyers find items they desire.

So it is not very surprising that a similar organization appears in complex software

systems. The individual components of the system are called entities whenever we do not

want to be specific about the function attributed to each component; they are called clients

and servers when their function is well defined.

Coordination can be facilitated by agents that help locate the entities involved in coordi-

nation, and/or facilitate access to them. Brokers, matchmakers, and mediators are examples

of middle agents used to support reliable mediation and to guarantee some form of end-to-

end Quality of Service (QoS). In addition to coordination functions, such agents support

interoperability and facilitate the management of knowledge in an open system.

A broker is a middle agent serving as an intermediary between two entities involved in

coordination. All communications between the entities are channeled through the broker.

In Figure 2.3 we see the interactions between a client and a server through a broker. In this

54

case, the broker examines the individual QoS requirements of a client and attempts to locate

a server capable of satisfying them; moreover, if the server fails, the broker may attempt to

locate another one that can provide a similar service under similar conditions.

Server

Server

Server

Server

advertise/unadvertise

request

response

response

request

Figure 2.3: A broker acts as an intermediary between a client and a set of servers. The

sequence of events: (i) servers register with a broker; (ii) a client sends a request; (iii) the

broker forwards the request to a server; (iv) the server provides the response to the broker;

(v) the broker forwards the request to the client.

55

A broker does not actively collect information about the entities active in the environ-

ment. Each entity has to make itself known by registering itself with the broker before it

can be involved in mediated interactions.

Entities may provide additional information such as a description of services, or a descrip-

tion of the semantics of services. A broker may maintain a knowledge base with information

about individual entities involved and may even translate the communication from one party

into a format understood by the other parties involved.

A matchmaker is a middle agent whose only role is to pair together entities involved

in coordination; once the pairing is done, the matchmaker is no longer involved in any

transaction between the parties. For example, a matchmaker may help a client select a

server as shown in Figure 2.4. Once the server is selected, the client communicates directly

with the server bypassing the matchmaker.

The matchmaker has a more limited role; while the actual selection may be based on

a QoS criterion, once made, the matchmaker cannot provide additional reliability support.

If one of the parties fails, the other party must detect the failure and again contact the

matchmaker. A matchmaker, like a broker, does not actively collect information about the

entities active in the environment, each entity has to make itself known by registering itself

with the matchmaker.

A mediator can be used in conjunction with a broker, or with a matchmaker to act as a

front end to an entity. In many instances it is impractical to mix the coordination primitives

with the logic of a legacy application, e.g., a database management system. It is easier for

56

request for server id

response: server id

Server

Server

Server

Server

advertise/unadvertise

service response

service request

Figure 2.4: A matchmaker helps a client select a server. Then the client communicates

directly with the server selected by the matchmaker. The sequence of events: (i) servers

register with the matchmaker; (ii) a client sends a request to a broker; (iii) the broker selects

a server and provides its ID; (iv) the client sends a request to the server selected during the

previous step; (v) the server provides the response to the client.

an agent to use a uniform interface for an entire set of systems designed independently than

to learn the syntax and semantics of the interface exposed by each system. A solution is to

create a wrapper for each system and translate an incoming request into a format understood

by the specific system it is connected to; at the same time, responses from the system are

translated into a format understood by the sender of the request.

57

request for server id

response: mediator id

Server

Server

Server

Server

advertise/unadvertise

serviceresponse

service request

Mediator

Mediator

Mediator

Mediator

Figure 2.5: A mediator acts as a front end or a wrapper to one or more servers; it translate

requests and responses into a format understood by the intended recipient. A mediator may

be used in conjunction with brokers or matchmakers.

Agent-based coordination and coordination of agent federations have been investigated

by several groups [23] [99].

2.3.3 Process Coordination and Workflow Management

In a large-scale distributed system, users have complex tasks and want to take advantage of

the resource-rich environment to solve their problems subject to a set of constrains such as

58

deadlines, cost, and quality of the solution. A complex task consists of multiple activities.

Activities are units of work to be performed by the agents, humans, computers, sensors, and

other man-made devices. A process description is a structure describing the activities to be

executed and the order of their execution. A process description contains one start and one

end symbol and includes various patterns [123].

The term workflow has been used for some time in the business community to describe

a complex task. Originally, workflow management was considered a discipline confined to

the automation of business processes. Today most business processes depend on the Inter-

net and workflow management has evolved into a network-centric discipline. The scope of

workflow management has broadened. The basic ideas and technologies for automation of

business processes can be extended to virtually all areas of human endeavor from science

and engineering to entertainment.

Production, administrative, collaborative, and ad hoc workflows require that documents,

information, or tasks be passed from one participant to another for action, according to a set

of procedural rules. Production workflows manage a large number of similar tasks with the

explicit goal of optimizing productivity. Administrative workflows define processes, while

collaborative workflows focus on teams working toward common goals. E-commerce and

Business-to-Business are probably the most notable examples of Internet-centric applications

requiring some form of workflow management. E-commerce has flourished in recent years;

many businesses encourage their customers to order their products online and some, including

59

PC makers, only build their products on demand. Various Business-to-Business models help

companies reduce their inventories and outsource major components.

There are several distinctions between the workflows in large-scale distributed systems

and the traditional workflows encountered in business management, office automation, or

production management, see [82]:

(a) The emphasis in a traditional workflow model is placed on the contractual aspect of a

transaction. For a workflow in a large-scale distributed system, the enactment of a case is

sometimes based on a “best-effort model” where the agents involved do their best to attain

the goal state but there is no guarantee of success.

(b) An important aspect of a transactional model is to maintain a consistent state of the

system. A large-scale distributed system is an open system, thus, the state of a system is

considerably more difficult to define than the state of a traditional system.

(c) A traditional workflow consists of a set of well-defined activities that are unlikely to

be altered during the enactment of the workflow. However, the process description for a

workflow in a large-scale distributed system may change during the lifetime of a case. After

a change, the enactment of a case may continue based on the older process description, while

under some circumstances it may be based on the newer process description. In addition to

static workflows we have to support dynamic ones.

60

(d) The activities of a workflow in a large-scale distributed system could be long lasting.

Some of the activities supported by the system are collaborative in nature and the workflow

management should support some form of merging of partial process descriptions.

(e) The individual activities of a workflow in a large-scale distributed system may not exhibit

the traditional properties of transactions. Consider, for example, durability; at any instance

of time before reaching the goal state a workflow may roll back to some previously encoun-

tered state and continue from there on an entirely different path. An activity of a workflow in

a large-scale distributed system could be either reversible or irreversible. Sometimes, paying

a penalty for reversing an activity is more profitable in the long run than continuing on a

wrong path.

(f) Resource allocation is a critical and very delicate aspect of workflow enactment in a large-

scale distributed system. The system provides a resource-rich environment with multiple

classes of resources and many administrative domains; there is a large variability of resources

in each class; resource utilization is bursty in nature. Thus, we need: resource discovery

services, support for negotiations among multiple administrative domains, matchmaking

and brokerage services, reservations mechanisms, support for dynamic resource allocation,

and other sophisticated resource management mechanisms and services.

(g) Mobility of various agents involved in the enactment of a case is important for workflows

in a large-scale distributed system [82]. The agents may relocate to the proximity of the

sites where activities are carried out to reduce communication costs and latency.

61

A workflow has three dimensions:

(1) The process; the process dimension refers to the creation and the eventual modification

of the process description.

(2) The case; the case dimension refers to a particular instance of the workflow when the

attributes required by the process enactment are bound to specific values.

(3) The resources; the resource dimension refers to discovery and allocation of resources

needed for the enactment of a case.

Workflow enactment is the process of carrying out the activities prescribed by the process

description for a particular case.

The creation of a process description is similar to writing a program, the instantiation of

a case is analogous to the execution of the program with a particular set of input data, while

resource allocation has no direct correspondent in traditional computing where resources

are under the control of the operating system. Static workflows correspond to traditional

programs while dynamic workflows correspond to self-modifying ones.

The milestones in the life of a workflow are: (i) the creation of the process description

(PD); (ii) verification of the PD; (iii) the creation of a case description (CD); and (iv) the

enactment of a case.

Scripts, specialized workflow description languages, and formal methods can be used for

process description [105], [107]. Several workflow description languages exist. Petri Nets

(PNs) and their restrictions have provided for many years the formal methods of choice for

62

process description for business-oriented workflows; there is a vast literature on PNs and

numerous algorithms and tools for PNs analysis have been developed along the years.

To avoid enactment errors we need to verify the process description and check for desirable

properties such as safety and liveness. Some process description methods are more suitable

for verification than others.

In an open system it is desirable to support multiple process description methods but a

single internal representation method.

We distinguish two types of workflows, static and dynamic. The process description

of a static workflow is invariant in time. The process description of a dynamic workflow

changes during the workflow enactment phase due to circumstances unforeseen at the process

definition time. Exceptional conditions are handled by a static workflow using its exception

handling mechanisms while unforeseen circumstances trigger planning and generation of a

new process description. For example, an activity in a process description involves a service

that has been discontinued, but there are several new services whose composition is equivalent

to the missing service.

It is conceivable that multiple variations of a process description may co-exist and it is

useful to define the concept of workflow inheritance and exploit it in the implementation of

a coordination architecture.

63

2.3.4 Process Description and Case Description

A process description is a formal description of the complex problem a user wishes to solve.

For the process description, we use a formalism similar to the one provided by Augmented

Transition Networks (ATNs) [134]. The coordination service implements an abstract ATN

machine. A case description provides additional information for a particular instance of the

process the user wishes to perform, e.g., it provides the location of the actual data for the

computation, additional constraints related to security, cost, or the quality of the solution,

a soft deadline, and/or user preferences [82].

The process description used by BondGrid coordination is based upon the BNF grammar

presented in Figure 2.6. The symbol S denotes the start symbol, while e stands for an empty

string.

2.3.5 Coordination Services

Let us now examine the question: why are coordination services needed in an intelligent

environment and how can they fulfill their mission? First of all, some of the computational

activities are long lasting and it is not uncommon to have a large simulation running for 24

hours or more. An end-user may be intermittently connected to the network so there is a

need for a proxy whose main function is to wait until one step of the complex computational

procedure involving multiple programs is completed and launch the next step of the compu-

64

Figure 2.6: BNF grammar for the process description.

tation. Of course, a script will do, but during this relatively long period of time unexpected

conditions may occur and the script would have to handle such conditions. On the other

hand, porting a script designed for a cluster to a large-scale distributed system is a non-

trivial task. The script would have to work with other services, e.g., with the information

service, or directory services to locate other core services, with the brokerage service to select

65

systems which are able to carry out different computational steps, with a monitoring service

to determine the current status of each resource, with a persistent storage service to store

intermediary results, with an authentication service for security considerations, and so on.

While automation of the execution of a complex task in itself is feasible using a script,

very often such computations require human intervention. Once a certain stage is reached,

while some conditions are not met, we may have to backtrack and restart the process from

a previous checkpoint using a different set of model parameters, or a different input data.

For example, during the computation of the correlation coefficient indicating the resolution

of the sample electron density map, we may decide to eliminate some of the original virus

particle projections which introduce too much noise in the reconstruction process. It would

be very difficult to automate such a decision which requires the expertise of a highly trained

individual. In such a case the coordination service should checkpoint the entire computation,

release most resources, and attempt to contact an individual capable of making a decision.

If the domain expert is connected to the Internet with a palmtop computer with a small

display and a wireless channel with low bandwidth, the coordination service should send low

resolution images and summary data enabling the expert to make a decision.

In summary, the coordination service acts as a proxy for the end-user and interacts with

core and other services on user’s behalf. It hides the complexity of the system from the

end-user and allows user interfaces running on the network access devices to be very simple.

The coordination service should be reliable and able to match user policies and constraints

66

(e.g., cost, security, deadlines, quality of solution) with the corresponding system policies

and constraints.

A coordination service relies heavily on shared ontologies. It implements an abstract

machine which understands a description of the complex task, we call it a process description,

and a description of a particular instance of the task, we call it a case description.

2.4 A Case Study: the Coordination Service in BondGrid

In the following sections we describe the process description and the case description, the

ontologies used for BondGrid task coordination, and the coordination service.

2.4.1 Process Description and Case Description

A process description defines the data dependencies among the activities of a complex task

and consists of end-user activities and flow control activities. The execution of an end-

user activity corresponds to the execution of an end-user service thus of an application

program. The specification of an end-user activity may include the symbolic names of the

input and/or output data sets of the corresponding program. Figure 2.7 shows a sample

process description for the 3D atomic structure determination of macromolecules based upon

electron microscopy.

67

BEGIN

POD

P3DR1

MERGE

POR

FORK

P3DR2 P3DR4

JOIN

PSF

CHOICE

END

Input: D1, D8

Output: D9

Input: D2, D8, D9

Output: D10

Input: D6, D8, D9, D10

Output: D9
Input: D3, D8, D9

Output: D11
Input: D5, D8, D9

Output: D12

Input: D7, D11, D12

Output: D13

P3DR3

Input: D4, D8, D9

Output: D10

D13.Value > 8 ?
No

Yes

Figure 2.7: A process description for the 3D structure determination. D1, D2, . . . D13 are

the symbolic names of the input and output data files for the programs carrying out different

end-user activities.

Flow control activities do not have associated end-user services. They are used to control

the execution of end-user activities. We define six flow control activities: Begin, End, Choice,

68

Fork, Join, and Merge. Every process description should start with a Begin activity and

conclude with an End activity. The Begin activity and the End activity should occur exactly

once in a process description.

The direct precedence relation reflects the causality among activities. If activity B can

only be executed directly after the completion of activity A, we say that A is a direct

predecessor activity of B and that B is a direct successor activity of A. An activity may

have a direct predecessor set of activities and a direct successor set of activities. We use the

term “direct” rather than “immediate” to emphasize the fact that there may be a gap in

time from the instance an activity terminates and the instance its direct successor activity is

triggered. For the sake of brevity we drop the word “direct” and refer to predecessor activity

set, or predecessor activity and successor activity set, or successor activity.

A Choice flow control activity has one predecessor activity and multiple successor activ-

ities. It can be executed only after its predecessor activity has been executed. Following the

execution of a Choice activity, only one of its successor activities may be executed.

A Fork flow control activity has one predecessor activity and multiple successor activities.

The difference between Fork and Choice is that after the execution of a Fork activity, all

the activities in its successor set are triggered.

A Merge flow control activity is paired with a Choice activity. It has a predecessor set

consisting of two or more activities and only one successor activity. A Merge activity is

triggered after the completion of any activity in its predecessor set.

69

A Join flow control activity is paired with a Fork activity. Like a Merge activity, a Join

activity has multiple predecessor activities and only one successor activity. The difference is

that a Join activity can be triggered only after all of its predecessor activities are completed.

A case description associates symbolic data names referred to by the corresponding

process description with real data. If the data refers to a file, one or more URLs are specified.

Multiple URLs refer to multiple copies of the same file. Various constraints (e.g., deadlines,

cost, exclusion of some resources, special resource requirements) are often provided by case

descriptions.

Process and case descriptions are part of the system-wide ontologies, as seen in Figure 2.8.

Their instances can be stored in knowledge bases and exchanged in XML format.

2.4.2 Ontologies for BondGrid Coordination

Figure 2.8 shows the logic view of the main ontologies used for BondGrid coordination and

their relations. A non-exhaustive list of classes in this ontology includes: task, process

description, case description, activity, data, service, resource, hardware, and

software. A task class is related to the process description and the case description

classes. A process description contains a set of activities. A service class is asso-

ciated with a resource class. In turn a resource class is associated with hardware and

70

software classes. The data class is connected to the in activity, service, and case

description classes.

2.4.3 The Coordination Service

The coordination service consists of a message handler, a coordination engine, and a service

manager. The message handler is responsible for inter-agent communication. The coordi-

nation engine manages the execution of tasks submitted to the coordination service. The

service manager provides a GUI for monitoring the execution of tasks and the interactions

between coordination service and other services. These three components run concurrently

on different planes of the agent and share the same knowledge base as shown in Figure 2.9.

Any modifications performed on the knowledge base by one component affects the other

components.

As pointed out earlier, a task consists of a process description and a case description.

The execution of a task is associated with a common data space shared by all activities.

Each symbolic name in the process description corresponds to an entry in this data space.

Initially, the case description may provide some binding of symbolic names to existing data

files. As the execution of the task progresses, more symbolic names are bound to the data

produced as the result of end-user services. After the successful completion of a task, the

data files containing the results are disposed of as specified by the case description, e.g., sent

to a persistent storage service.

71

-Process Description

-Case Description

-Status

-Name

-ID

-Result Data Set

-Submit Location

-Owner

-Data Set

-Need Planning

Task

-Creator

-Name

-ID

-Location

-Activity Set

-Transition Set

Process Description

-Name

-ID

-Initial Data Set

-Result Set

-Constraint

-Goal Condition

Case Description

-Name

-ID

-Owner

-Type

-Direct Successor Set

-Direct Predecessor Set

-Input Data Set

-Output Data Set

-Service Name

-Task ID

-Status

-Submit Location

-Execution Location

-Input Data Order

-Output Data Order

-Constraint

-Working Directory

-Retry Count

Activity

-Name

-Input Data Set

-Output Data Set

-Authorized Users

-Command

-Working Directory

-Version

-Resource

-Location

-Type

-Version

-Cost

-TimeStamp

-Description

-History

-Creation Data

-Input Data Order

-Output Data Order

-Input Condition

-Output Condition

Service

-Name

-Type

-Value

-Location

-Timestamp

-Category

-Format

-Owner

-Creator

-Size

-Creation Date

-Description

-Last Modification Date

-Classificaiton

-Cccess Right

Data

-Name

-Type

-Location

-Hardware

-Software

-AccessSet

Resource

-Type

-Manufacturer

-Model

-Size

-Latency

-Bandwidth

-Speed

-Comment

Hardware

-Name

-Type

-Version

-Distribution

-Manufacturer

Software

1..*

1..*

1..*

1..*

1..*

1..*

-ID

-Source Activity

-Destination Activity

Transition

1..*

Figure 2.8: Logic view of the main ontology for BondGrid coordination.

72

Figure 2.9: The components of the coordination service.

Figure 2.10 shows the state transition diagram of a task. The states of a task are:

SUBMITTED, WAITING, RUNNING, PLANNING, REPLANNING, FINISHED, and ERROR. Once a task

submission message is received it is queued by the message handler of the coordination

service. Then the message handler creates a task instance in the knowledge base. The initial

state of the newly created task is SUBMITTED.

The coordination engine keeps checking the state of all task instances in the knowledge

base. When it finds a task instance in SUBMITTED state it attempts to initiate its execution.

One of the slots of the task class indicates if the task needs planning (the slot is set to

PlanningNeeded). If the task has already been sent to the planning engine and awaits the

creation of a process description the slot is set to Waiting. If the process description has

been created the slot is set to PlanningComplete.

73

If the task needs planning, the coordination engine waits until the new process descrip-

tion is ready, then it updates the task instance accordingly, and sets its state to RUNNING.

When the execution of the task cannot continue (e.g., due to resource unavailability) the

coordination engine may send the task to a planning service for replanning. In such a case

the state of the task is set to REPLANNING. After the successful completion of a task its the

state is FINISHED, while in case of an error it is set to ERROR.

SUBMITTED

Begin Not Need Planning

E
rror

F
in

is
he

d
Nee

d
Pla

nnin
g

P
la

n
n

ed

R
ep

la
n

n
in

g

R
ep

l a
n

n
ed

REPLANNING

Activate

RUNNINGWAITING

PLANNING

FINISHED ERROR

Figure 2.10: The task state transition diagram.

The coordination engine takes different actions according to the type of each activity.

The handling of flow control activities depends on their semantics. For an end-user activity,

the coordination service collects the necessary input data and performs data staging of each

74

data set, bringing it to the site of the corresponding end-user service. Upon completion of

an activity, the coordination service triggers a data staging phase, collects partial results,

and updates the data space.

The activity class has a slot describing the state of an activity, INACTIVE, ACTIVE,

DISPATCHED, NOSERVICE, FINISHED, or ERROR, as shown in Figure 2.11. Initially, an ac-

tivity is in the INACTIVE state. The coordination engine sets the state of its begin activity

as ACTIVE when the state of a task transitions from WAITING to RUNNING. When the co-

ordination engine finds an ACTIVE activity it checks the type slot of the activity class. In

case of a flow control activity, the coordination engine sets: (i) the state of one or more

successor activities to ACTIVE and (ii) the state of the current activity to FINISHED. In case

of an end-user activity, the coordination engine attempts to find an end-user service for this

activity subject to a time and/or a retry count limit. If the coordination engine finds an end-

user service, the state of this activity becomes DISPATCHED. Otherwise, the state becomes

NOSERVICE. When the end-user service signals the successful completion of an activity the

coordination engine sets (i) the state of the corresponding activity to FINISHED and (ii) the

state of the successor activity to ACTIVE; otherwise, the state is set as ERROR.

The coordination engine executes iteratively the procedure shown in Figure 2.12. The

message handler executes iteratively the procedure shown in Figure 2.13.

The interaction of the coordination service with the end-user. Figure 2.14

summarizes the interactions between the user and the coordination service. Such interactions

can be initiated by the user when submitting a task or requesting task status information, or

75

Begin Activated

E
rro

r

F
in

is
h

ed

DISPATCHED

Found Service

A
ctivated

N
o

Ser
vi

ce

ACTIVE

FINISHED ERROR

NOSERVICE

INACTIVE

Figure 2.11: The activity state transition diagram.

by the coordination service when reporting an error condition or the successful completion

of the task.

A request for coordination is triggered by the submission of a task initiated by a user.

When receiving such a message the coordination engine first checks the correctness of the

process and task description. Next, the task activation process presented earlier is triggered.

The user interface then subscribes to the relevant events produced by the coordination ser-

vice.

76

Figure 2.12: The coordination engine executes iteratively the procedure.

A user may send a query message to the coordination service requesting task state in-

formation. The message handler parses the request and fetches from its knowledge base the

relevant slots of the task instance.

77

Figure 2.13: The message handler executes iteratively the procedure.

Figure 2.14: The interactions between the coordination service and the end-user.

78

Upon completion of the task, or in case of an error condition, the coordination service

posts the corresponding events for the user interface.

The interaction of the coordination service with other core services and ap-

plication containers. A coordination service acts as a proxy for one or more users and

interacts on behalf of the user with other core services such as the brokerage service, the

matchmaking service, the planning service, and the information service, as shown in Figure

2.15.

Figure 2.15: The interactions between the coordination service and other core services.

79

If a task submitted by the user does not have a valid process description, the coordination

service forwards this task to a planning service. During the execution of a task, when the

coordination service needs to locate an end-user service for an activity, it interacts with

the brokerage and matchmaking services. A brokerage service has up-to-date information

regarding end-user services and their status. A matchmaking service is able to determine a

set of optimal or suboptimal matchings between the characteristics of an activity and each

service provider.

The event service supports asynchronous communication. For example, a user submits a

task using a PDA connected via a wireless network to the Internet and subscribes for several

events. Then the user is disconnected from the network. After the completion of the task

the coordination service posts a termination event. When the end-user is reconnected to the

network and inquires about the status of the task, the termination event is delivered to the

user interface.

Besides core services, a coordination service interacts with application containers. When

a coordination service attempts to locate the optimal end-user service for an activity, the

status and the availability of data on the node providing the end-user service ought to be

considered in order to minimize communication costs.

80

2.4.4 Performance Measurements

While we cannot attempt a realistic performance evaluation study of the coordination service

before all the components of the BondGrid environment are fully implemented, we have con-

ducted some performance studies on the communications between the coordination service

and other societal (core) services.

The coordination service uses messages to exchange ontologies with other components of

the environment. An ontology is first converted to an XML format and then packed into a

BondGrid message.

The footprint of instances varies function of the class; task instances and process descrip-

tion instances, often consist of tens to hundreds of kilobytes, data instances, are often less

than one kilobyte. We experimented with ontologies of different sizes. Figure 2.16 shows

the relationship between the size of the ontologies and the encoding, transmission, and the

decoding time. Our testing environment was provided by two systems with 1.8 GHz Pentium

IV processors and 1 GB of main memory, under Linux. The two machines are connected to

the same hub. The resolution of our clock is one millisecond. Figure 2.16 indicates that as

the size of the ontology (in XML format) increases, the time needed to encode, transmit, and

decode increases as well. Encoding time, transmission time and decoding time are gener-

ally less than 30 milliseconds. We observed considerably large transmission times (seconds),

when the network load was high.

81

Time vs. Size of XML Description

0

5

10

15

20

25

30

0
 5000
 10000
 15000
 20000
 25000
 30000
 35000

Size of XML Description (Byte)

T
im

e
 (

m
s
)

Encoding Time
 Decoding Time
 Transmission Time

Figure 2.16: The performance of encoding, transmitting, and decoding instances between

the coordination service and other components of the environment.

We also studied the message exchange rate between a coordination service and an agent.

The coordination service is running on a system with a 1.8 GHz Pentium IV processor and 1

GB of main memory under Windows. The agent runs on a system with a 900 MHz Pentium

III processor and 256 MB of memory under Windows. The agent keeps submitting tasks to

the coordination service, which is able to process about 100 submissions per second while

the incoming rate is about 6, 000 submissions per second.

82

CHAPTER 3

MATCHMAKING

In this chapter, we study the problem of matchmaking for large-scale distributed systems.

The matchmaking process in a large-scale distributed system involves three types of entities

or agents: the consumers called requesters; the producers called providers; and the match-

making service. The matchmaking services mediate among the providers and the requesters

and use a matching algorithm to evaluate a matching function that returns the matching

degree. We introduced for the first time a more comprehensive ontology-based resource

matching scheme for large-scale distributed systems. We defined the ontologies for com-

monly used resources in a large-scale distributed system. The scheme supports a variety of

matching functions including boolean function, arithmetic function, and fuzzy function. We

implemented a matchmaking service in BondGrid. The experimental results indicate that

the response time of matchmaking requests is dominated by the time to access the resource

knowledge base. The complexity of the matching function has little effect on the response

time. We also tested two matchmaking algorithms, a simple algorithm that requires an

exhaustive search of all resource advertisements, and a modified algorithm that only covers

83

a portion of the knowledge base. The modified algorithm is able to find the near optimal

matching resources with a sufficiently lower computational cost than the simple algorithm.

3.1 Introduction and Motivation

Webster dictionary defines the verb “to match” as “to be equal, similar, suitable, or cor-

responding to in some way”. In computer science, the term matching refers to a process

of evaluation of the degree of similarity of two objects. Each object is characterized by a

set of properties/attributes; each property is a tuple (name, value), with name a string of

characters and value either a constant (a number - integer or real, a Boolean constant -

“true” or “false”, or a string of characters), or an expression that returns a constant. The

“matching degree”, m, is a real number typically 0 ≤ m ≤ 1, with m = 0 meaning a total

mismatch and m = 1 a perfect match.

Matching is a common operation in many areas of computer science, e.g., in stringology

and its applications to bioinformatics. In this dissertation we discuss application of matching

in the area of resource discovery and resource allocation in large-scale distributed systems.

In this context a matching operation involves a reference object and a current object. Of-

tentimes, the current object has to be matched against a set of reference objects, to identify

the object, or the subset of objects in the set, that best match the current object. In this

case the operation is referred to as matchmaking.

84

A large-scale distributed system is an open system, a large collection of autonomous sys-

tems giving individual users the image of a single virtual machine with a rich set of hardware

and software resources. A set of core services provide access to various resources. For exam-

ple, a resource discovery service assists users, or their proxies, to locate needed resources in

the system. In more traditional computing systems, resources are managed centrally under

the control of a single administrative authority by the resource management component of

an operating system or by a distributed operating system. The central management of re-

sources in a large-scale distributed system is unthinkable because of the scale of the system

and because it would violate the autonomy of individual resource providers, a critical aspect

of the system.

The matchmaking process in large-scale distributed system involves three types of en-

tities or agents: the consumers called requesters, the producers called providers, and the

matchmaking service. The matchmaking services mediate among the providers and the re-

questers and it uses a matching algorithm to evaluate a matching function which produces

the matching degree. The first step in making resources available to the community is to

advertise them. We call the description of a resource a resource advertisement, or simply

resource. A resource request, simply called a request, consists of a function to be evaluated

in the context of a resource. For example, the request “CpuClockRate > 2Gflops” will be

evaluated by determining if a resource has an attribute called “CpuClockRate” and if so the

value of this attribute satisfies the condition “V alue(CpuClockRate) > 2GFlops”. If the

request can be successfully satisfied, the matchmaking service responds with a list of ranked

85

Figure 3.1: The matchmaking process in large-scale distributed systems: 1) Providers send

resource descriptions to the matchmaking service; 2) A request is sent to the matchmaking

service; 3) The matchmaking service executes a matchmaking algorithm and returns a set

of ranked resources to the requester; 4) The requester chooses a resource from the set and

contacts the corresponding resource provider.

resources. Figure 3.1 summarizes the matchmaking process in large-scale distributed sys-

tems. Typically, a coordination service which acts as a proxy for the end-user, is responsible

to trigger the next activity in the activity graph (or process description) and it uses a broker

to find the most suitable site for the execution of the next ready to run activity. In turn,

the broker uses the matchmaking service. A matchmaking framework should be extensible

and should support exact and inexact matchmaking. In some cases, requesters need to find

the resource that exactly matches the request. In other cases, resources that partially match

the request are also acceptable.

86

In the next sections we talk a formal definition of matchmaking in large-scale distributed

systems, the development of ontologies necessary for resource management, an implementa-

tion of algorithms to evaluate different types of matchmaking expressions, and an evaluation

of a matchmaking service.

3.2 Background and Related Work

Matchmaking has been a hot topic of MAS (Multi-Agent Systems) research, related to ques-

tion on how to find a suitable agent for a specific problem. The notable results in this

area are ACLs (Agent Communication Languages) and matchmaking algorithms based on

these languages. One of the earliest results in this area is ABSI [114] (Agent-Based Soft-

ware Interoperability) facilitator which uses KQML (Knowledge Query and Manipulation

Language) specification and KIF (Knowledge Interchange Format) as the content language.

The matchmaking of an advertisement and a request is made through the unification of

equality predicate. In the COIN system [73], the matchmaking algorithm is based on a

unification process similar to Prolog. The InfoSleuth [15] uses KIF as the content language.

The matchmaking algorithm is based on constraints, i.e., the advertisement and the request

match if the constraints are satisfied. SDL (Service Description Language) was proposed in

[117] to describe services. The matchmaking algorithm finds k-nearest services for a request

according to the distance between the service names (pairs of verb and noun terms) and

the request. CDL (Capability Description Language) was proposed in [133]. It supports

87

reasoning through the notions of subsumption and instantiation. LARKS (Language for

Advertisement and Request for Knowledge Sharing) was proposed in [120] for describing

service capability and service request. It supports ITL (Information Terminological Lan-

guage) [119] concept language. The relations among concepts are used to compute semantic

similarities. The matchmaking in MAS involves semantic service matchmaking using the

concept relationship and word distance to determine the semantic similarities of advertise-

ments and requests. The matchmaking in MAS does not involve other resource types and

the matchmaking results are exact, i.e., only ”true” and ”false” are allowed.

Research for service discovery in the Internet involves ontology-based matchmaking. The

traditional methods of service discovery include name matchmaking and keyword matchmak-

ing. Some new methods are based on ontologies. In [98] a semantic matchmaking framework

based on DAML-S, a DAML (DARPA Agent Markup Language)-based language for service

description, was proposed for semantic matchmaking of web services capabilities. The basic

idea is that an advertisement matches a request when the service provided by the advertise-

ment can be of some use to the requester. The matchmaking is performed on the outputs

and inputs of the advertisement and the request based on the ontologies available to the

matchmaker. Through the subsumption relationship of one concept of the input/output of

the advertisement and one concept of the input/output of the request, four levels of matching

can be determined: exact, plug-in, subsume, and fail. The idea of checking the concepts of

input and output is similar to the one in the MAS research.

88

The matchmaking framework of Condor [102] system uses a semi-structured data model

[89] called classified advertisements (classads) to describe resources and requests. A classad

is a mapping from attribute names to expressions, see Figure 3.2. Condor matchmaking

takes two classads and evaluates each one with the other. A classad has an attribute named

”Constraint” that is used to be evaluated in the context of this classad and the classad being

matched with this classad. Only when the values of attribute ”Constraint” of both classads

are evaluated to be true, can these two classads be thought to be matched. A classad has an

attribute named ”Rank” that measures the desirability of a match. The evaluation value of

”Rank” identifies how much the two classads match. The larger the value, the better they

match. The Condor system requires the provider and the requester to know each other’s

classad structure. The evaluation result of the attribute ”Rank” is generally not normalized

and can not tell explicitly how well two classads match.

The matchmaking framework in Condor supports the selection of only one resource.

Based on the Condor matchmaking, in [79], an extension, called set-extended classad syn-

tax, was proposed to support the multiple resource selection. The matchmaking algorithm

evaluates a set-extended classad with a set of classads and returns a classad set with the

highest rank. When the size of the classad set is large, it is not feasible to evaluate all

of the possible combinations of the resources. A greedy heuristic algorithm is used to find

the classad set with the highest rank. This set-extended resource selection framework can

perform both resource discovery and resource allocation.

89

Figure 3.2: Classads describing a laser jet printer (left) and a print job (right).

In [125], a service selection model was proposed based on the quality of service of dif-

ferent service providers. Each time after a service is used the user sends a feedback to the

matchmaker. When a request arrives, the matchmaker finds the most appropriate service

according to the inputs specified by the request based on the feedbacks it received. The

problem is that different users may have different criteria for the service evaluation and even

the same user may have different criteria for the service evaluation at different times. Fur-

90

thermore, for the same request the matchmaker always finds the same service as the best

service. This is not good for the throughput of the whole system.

3.3 Resource Ontologies

Resource ontologies are a critical component of the matchmaking framework. Entities in the

matchmaking framework, i.e. the providers, the requesters, and the matchmaking services,

which are generally not in the same domain, must share the same ontology structure.

The structure of a category of entities is described as a class in Protégé knowledge base

[101]. Figure 3.3 shows the hierarchical relationship among resource classes. Figure 3.4

shows the structures of the Workstation, Cluster, MPP, and SMP classes. A class consists

of one or more slots. A slot describes one attribute of the class and consists of a name and a

value. An instantiation of a class is called an instance of that class. The type of a slot value

may be simple types, such as integer, float, Boolean, and string. For example, in Figure 3.4,

the value type of the slot “NumberOfNodes” of the class “Cluster” is an integer. The type

of a slot value may also be an instance of a class. For example, in Figure 3.4, the value type

of the slot “CPU” of the class “Cluster” is an instance of the class “CPU”. A class may

be extended from another class and inherit all the slots of that class. Figure 3.5 shows the

Program, Library, and Package classes, the Service, Data, and Storage classes and the CPU,

Memory, Harddisk, NIC, and OS classes.

91

Computer Service

Resource

Software DataStorage

Workstation

Cluster MPP

SMP Program Library

Package

Figure 3.3: The hierarchical relationship among resource classes.

3.4 The Matchmaking Problem

Given a request and a set of resources, we aim to find a set of resources that best match

the request. A request is a (n + 1)-tuple consisting of n attributes (a1, a2,an) and a

function of these attributes to be evaluated in the context of resources, i.e., request =

[a1, a2, ...an, f(a1, a2, ..., an)]. An attribute of a request is a mapping from an attribute name

to an attribute expression. A resource is an m-tuple consisting of m attributes (a1, a2,am).

An attribute of a resource is a mapping from an attribute name to an attribute value. The

resource that returns the largest value of function f is the one that best matches the request.

Figure 3.6 shows the input and output of the matchmaking problem.

Attribute names should be constructed according to the corresponding resource ontolo-

gies. The rules for constructing the attribute name for an attribute are:

92

-ResourceType

-ResourceName

-CPU

-Memory

-Harddisk

-NIC

-OS

-IPAddress

-Manufacturer

-Model

-Description

Workstation

-ResourceType

-ResourceName

-MainNodeCPU

-MainNodeMemory

-MainNodeHarddisk

-MainNodeNIC

-NodeCPU

-NodeMemory

-NodeHarddisk

-NodeNIC

-OS

-NumberOfNodes

-TotalMemorySize

-TotalCPURates

-TotalDiskCapacity

-Manufacturer

-Model

-IPAddress

-Description

Cluster

-ResourceType

-ResourceName

-NumberOfCPUs

-CPU

-Memory

-Harddisk

-NIC

-OS

-IPAddress

-Manufacturer

-Model

-Description

SMP

CPU

Memory

Harddisk

NIC

CPU

CPU

Memory

Harddisk

NIC

Memory

OS

CPU

Memory

Harddisk

NIC
OS

OS

NIC

Harddisk

-ResourceType

-ResourceName

-MainNodeCPU

-MainNodeMemory

-MainNodeNIC

-NodeCPU

-NodeMemory

-NodeNIC

-Harddisk

-OS

-NumberOfNodes

-TotalMemorySize

-TotalCPURates

-Manufacturer

-Model

-IPAddress

-Description

MPP

CPU

Memory

NIC

CPU

Memory

NIC

OS

Harddisk

Figure 3.4: The Workstation, Cluster, MPP, and SMP classes. The arrows to the right of

some slots indicate that the values of these slots are instances of other classes.

93

-ResourceName

-ResourceType

-Platform

-Language

-Size

-Version

-Function

-RequiredLibray

-Location

-Source

-Licence

-Description

Program

-ResourceType

-ResourceName

-Platform

-Languages

-Size

-Version

-Function

-Location

-Source

-Programs

-Libraries

-Licence

-Description

Package

-ResourceType

-ResourceName

-Platform

-Language

-Size

-Version

-Function

-Location

-Source

-Licence

-Description

Library

Library

Program

Library

-ResourceName

-ResourceType

-Capacity

-Speed

-IPAddress

-Type

-Cost

-Manufacturer

-Model

-Description

Storage
-ResourceType

-ResourceName

-ServiceType

-Host

-Function

-Inputs

-Outputs

-Version

-Cost

-Description

-API

Service

-ResourceType

-ResourceName

-Location

-Owner

-Creater

-Size

-CreationDate

-LastModifiedDate

-Format

-Description

Data

-Name

-Speed

-CacheSize

-Model

-Manufacturer

CPU

-Name

-Speed

-Size

-Model

-Manufacturer

Memory

-Name

-Capacity

-Speed

-CacheSize

-Model

-Manufacturer

Harddisk

-Name

-Speed

-Model

-Manufacturer

NIC
-Name

-OSName

-OSVersion

-Licence

-Manufacturer

OS

Figure 3.5: Program, Library, and Package classes (top). Service, Data, and Storage classes

(middle). CPU, Memory, Harddisk, NIC, and OS classes (bottom).

94

[a1, a2, …, an, f (a1, a2, …, an)]

a1 = xxx

a2 = xxx

.

.

.

am1 = xxx

Resource-1

a1 = xxx

a2 = xxx

.

.

.

am2 = xxx

Resource-2

a1 = xxx

a2 = xxx

.

.

.

amn = xxx

Resource-n

Resource Set

Matchmaking

The best i

matched

resources

…...

Request

a1 = xxx

a2 = xxx

.

.

.

ap1 = xxx

Resource-k1

a1 = xxx

a2 = xxx

.

.

.

ap2 = xxx

Resource-k2

a1 = xxx

a2 = xxx

.

.

.

api = xxx

Resource-ki

…...

Figure 3.6: The input and output of the matchmaking problem.

1. If the attribute refers to a slot of the resource class, the attribute name is the slot

name. For example, for a cluster, the attribute name for the total CPU rates is

“TotalCPURates” according to the structure of the “Cluster” class in Figure 3.4.

2. If a slot of the resource class refers to an instance of other class and the attribute

refers to a slot of this instance, the attribute name is the combination of the two slot

names connected by ‘.’. For example, in Figure 3.4 the “NodeMemory” slot of the

“Cluster” class refers to an instance of the “Memory” class, and in Figure 3.5 the

95

“Memory” class has the “Size” slot, so the attribute name for the node memory size

is “NodeMemory.Size”.

The attribute names of a workstation and three clusters in Figure 3.7 are constructed

according to the above rule. For a request= [a1, a2, ...an, f(a1, a2, ..., an)], the function f is

an expression that is the combination of attribute expressions f1(a1), f2(a2), ..., and fn(an)

through mathematical and/or logical operators, where f1(a1), f2(a2), ..., and fn(an) are to

be evaluated in the context of the corresponding attributes of the resource.

We define three types of matching functions. A matching function f could consist of

Boolean expressions and return a Boolean constant (“true”, 1 or “false”, 0), see Figure

3.8(a). f could also consist of arithmetic expressions and return a positive real number, see

Figure 3.8(b). We also allow f to consist of fuzzy expressions and return a fuzzy number

in [0,1], as shown in Figure 3.8(c). The higher the matching degree, the better a request is

satisfied.

The expression for function f may involve:

1. Boolean expressions can be combined with the use of Boolean operators “&” and/or

“|”. Figure 3.8(a) is an example for this case.

2. Arithmetic expressions can be combined with the use of arithmetic operators, such as

“+”, “−”, “∗”, and “/”. Figure 3.8(b) is an example for this case.

96

Workstation-110{

 ResourceType=Workstation

 ResourceName=workstation-110

 Manufacturer=Dell

 Model=Dimension 8200

 IPAddress=xin.cs.ucf.edu

 CPU.Speed=2.4 GHz

 Memory.Size=1024 MB

 NIC.Speed=100 Mbps

 Harddisk.Capacity=80 GB

 ...

}

Bond{

 ResourceType=Cluster

 ResourceName=Bond

 IPAddress=bond.cs.ucf.edu

 NodeMemory.Size=4 GB

 NodeCPU.Speed=3.6 GHz

 NodeHarddisk.Capacity=120 GB

 NumberOfNodes=32

 TotalMemorySize=128 GB

 TotalCPURates=115.2 GHz

 TotalDiskCapacity=3840 GB

 ...

}

Hector{

 ResourceType=Cluster

 ResourceName=Hector

 IPAddress=hector.cs.ucf.edu

 NodeMemory.Size=1 GB

 NodeCPU.Speed=2.4 GHz

 NodeHarddisk.Capacity=40 GB

 NumberOfNodes=64

 TotalMemorySize=64 GB

 TotalCPURates=153.6 GHz

 TotalDiskCapacity=2560 GB

 ...

}

Boticelli{

 ResourceType=Cluster

 ResourceName=Boticelli

 IPAddress=botticelli.cs.ucf.edu

 NodeMemory.Size=3 GB

 NodeCPU.Speed=1.6 GHz

 NodeHarddisk.Capacity=80 GB

 NumberOfNodes=44

 TotalMemorySize=132 GB

 TotalCPURates=140.8 GHz

 TotalDiskCapacity=3520 GB

 ...

}

Figure 3.7: Examples of resource instances: a workstation and three clusters.

3. Fuzzy expressions can be combined with the use of fuzzy operators “&&”. The eval-

uation result of multiple fuzzy numbers connected by “&&” are the average of these

fuzzy numbers. Figure 3.8(c) is an example of this case.

97

Request3 {

 f = (ResourceType == "Cluster") &

 (NodeMemory.Size >=1 GB) &

 (NodeCPU.Speed >= 1.6 GHz) &

 (NodeHarddisk.Capacity >= 30 GB) &

 (TotalDiskCapacity > 40 GB) &

 (

 (if (NodeMemory.Size > 4 GB) then 1

 else (NodeMemory.Size / 4 GB)) &&

 (if (NumberOfNodes > 40) then 1

else (NumberOfNodes / 40))

)

}

Request1 {

 f = (ResourceType == "Cluster") &

 (NodeCPU.Speed >= 1.6 GHz) &

 (if (NodeMemory.Size < 2 GB) then (NumberOfNodes > 30)

 elseif (NodeMemory.Size < 3 GB) then (NumberOfNodes > 20)

 else (NumberOfNodes > 10))

}

Request2 {

 f = (ResourceType == "Cluster") &

 ((TotalMemorySize/40 GB) + (TotalCPURates/50 GHz) +

 (TotalDiskCapacity/30 GB))

}

(a)

(b)

(c)

Figure 3.8: Boolean, arithmetic, and fuzzy requests.

4. A Boolean expression can be combined with an arithmetic expression or a fuzzy ex-

pression through Boolean operator “&”. If the Boolean expression returns 1, they are

evaluated to the value returned by the arithmetic expression or the fuzzy expression.

If the Boolean expression returns 0, they are evaluated as 0. Figure 3.8(b) and Figure

3.8(c) are examples for this case.

98

5. Expressions are combined through“if”, “then”, and “else” constructs. Figure 3.8(b)

and Figure 3.8(c) are examples for this case.

Figure 3.9 shows the grammar of the resource in BNF form. Figure 3.10 shows the gram-

mar of the request in BNF form. To evaluate f of Figure 3.8(a) in the context of the three

clusters in Figure 3.7, cluster boticelli, bond, and hector return 1. To evaluate f of Figure

3.8(b) in the context of the cluster boticelli in Figure 3.7, “f = 1 & (132/40) + (140.8/50) +

(3520/30) = 123.45”. To evaluate f in the context of the cluster hector in Figure 3.7, “f =

1 & (64/40)+(153.6/50)+(2560/30) = 90”. To evaluate f in the context of the cluster bond

in Figure 3.7, “f = 1 & (128/40) + (115.2/50) + (3480/30) = 121.5”. The cluster that best

matches the request is boticelli. To evaluate f of Figure 3.8(c) in the context of the cluster

boticelli in Figure 3.7, “f = 1 & 1 & 1 & 1 & 1 & (3/4) && 1 = 0.875”. To evaluate f in the

context of the cluster hector in Figure 3.7, “f = 1 & 1 & 1 & 1 & 1 & (1/4) && 1 = 0.625”. To

evaluate f in the context of the cluster bond in Figure 3.7, “f = 1 & 1 & 1 & 1 & 1 & 1 && 1 =

1”. The cluster best matching the request is bond.

Figure 3.9: BNF grammar for the resource.

99

S ::= <Request>

<Request> ::= RequesterName=<RequesterName>; RequestID=<RequestID>;

 CardinalityThreshold=<CardinalityThreshold>;

 MatchingDegreeThreshold=<MatchingDegreeThreshold>; RequestFunction=<RequestFunction>

<RequesterName> ::= <String>

<RequestID> ::= <String>

<CardinalityThreshold> ::= <PositiveInteger>

<MatchingDegreeThreshold> ::= <PositiveRealNumber>

<RequestFunction> ::= <BooleanExpression> | <FuzzyExpression> | <ArithmeticExpression>

<BooleanExpression> ::= <BooleanExpression> <BooleanOperator> <BooleanExpression>

 |(<BooleanExpression>) | <AtomicBooleanExpression> | <ConditinalBooleanExpression>

<BooleanOperator> ::= <AND> | <OR>

<AND> ::= &

<OR> ::= |

<AtomicBooleanExpression> ::=

 <AttributeName> <RelationalOperator> <Value> | <PredefinedBooleanFunction>

<AttributeName> ::= <String>

<RelationalOperator> ::= > | < | >= | <= | ==

<Value> ::= <String>

<PredefinedBooleanFunction> ::= <KeywordMatchingFunction>

<KeywordMatchingFucntion> ::= KeywordMatching(<AttributeName>,<KeywordList>)

<KeywordList> ::= "<String>"

<ConditinalBooleanExpression> ::= if (<BooleanExpression>) then (<BooleanExpression>)

 <ElseifBooleanClause> else (<BooleanExpression>)

<ElseifBooleanClause> ::= <EmptyString>

 | <ElseifBooleanClause> elseif (<BooleanExpression>) then (<BooleanExpression>)

<FuzzyExpression> ::= <FuzzyExpression> <FuzzyOperator> <FuzzyExpression>

 | (<FuzzyExpression>) | <FuzzyFunction>

 | <BooleanExpression> <BooleanOperator> <FuzzyExpression>

 | <FuzzyExpression> <BooleanOperator> <BooleanExpression>

<FuzzyOperator> ::= &&

<FuzzyFunction> ::= <AtomicFuzzyFunction> | <ConditinalFuzzyExpression>

<AtomicFuzzyFunction> ::= <AttributeName> <ArithmeticOperator> <Value>

<ArithmeticOperator> ::= + | - | * | /

<ConditinalFuzzyExpression> ::=

 if (<BooleanExpression>) then (<FuzzyFunction>) <ElseifFuzzyClause> else (<FuzzyFunction>)

<ElseifFuzzyClause> ::= <EmptyString>

 | <ElseifFuzzyClause> elseif (<BooleanExpression>) then (<FuzzyFunction>)

<ArithmeticExpression> ::= <ArithmeticExpression> <ArithmeticOperator> <ArithmeticExpression>

 | (<ArithmeticExpression>) | <BooleanExpression> <BooleanOperator> <ArithmeticExpression>

 | <ArithmeticExpression> <BooleanOperator> <BooleanExpression> | <AttributeName> | <Value>

Figure 3.10: BNF grammar for the request.

100

3.5 A Case Study: the Matchmaking Service in BondGrid

In this section we describe our work on a matchmaking service in BondGrid and a set of

performance studies.

3.5.1 The Matchmaking Service

We implemented a matchmaking service in BondGrid. The matchmaking service has a

knowledge base that holds the resource advertisements from providers. Requests from con-

sumers are evaluated with resource advertisements in the knowledge base. The matchmaking

service consists of a message handler, a service manager, and a matchmaking engine. The

message handler is responsible for the communication between the matchmaking service

and other entities in the system. The service manager provides a GUI for monitoring the

matchmaking engine and the interactions between matchmaking service and other services.

The matchmaking engine handles the matchmaking requests submitted to the matchmaking

service.

Providers advertise their resources as instances of corresponding resource classes. Figure

1.2 and Figure 1.3 show the XML specification for instances and classes, respectively. A re-

quest specification includes a matchmaking function and possibly two additional constraints,

a cardinality threshold and a matching degree threshold. The element CardinalityThreshold

specifies how many resources are expected to be returned by the matchmaking service. The

101

element MatchingDegreeThreshold specifies the least matching degree of one of resources

returned by the service. Figure 3.11 shows the request specification. Figure 3.12, 3.13,

and 3.14 show the request of Figure 3.8(a), 3.8(b), and 3.8(c) respectively according to the

request specification.

Figure 3.11: XML specification for a request.

The matchmaking service executes a matchmaking algorithm for each request sent by

the requester. The input of the algorithm is the request and the resource instances stored in

the knowledge base of the matchmaking service. The output of the algorithm is a number

of resources ranked according to their matching degrees with the request. Let n denote

the CardinalityThreshold specified by the request. The matchmaking algorithm returns

the resources that have the n largest matching degrees with the request to the requester.

Figure 3.15 shows the pseudo code of the matchmaking algorithm. Generally, a matchmaking

102

<?xml version="1.0" encoding="UTF-8"?>

<Request>

 <RequesterName>xin</RequesterName>

 <RequestID>id_001</RequestID>

 <CardinalityThreshold>5</CardinalityThreshold>

 <MatchingDegreeThreshold>1</MatchingDegreeThreshold>

 <RequestFunction>

 <![CDATA[

 (ResourceType == "Cluster") &

 (NodeCPU.Speed >= 1.6 GHz) &

 (if (NodeMemory.Size < 2 GB) then (NumberOfNodes > 30)

 else if (NodeMemory.Size < 3 GB) then (NumberOfNodes > 20)

 else (NumberOfNodes > 10)

)

]]>

 </RequestFunction>

</Request>

Figure 3.12: A Boolean matching function.

service maintains a knowledge base with a large number of resource instances. Performing

an exhaustive matchmaking involving all resources in the knowledge base is very expensive

for large knowledge bases. In a modified matchmaking algorithm shown in Figure 3.16, the

algorithm finishes searching the knowledge base when k ∗n (where k is a constant) resources

are found with the required matching degrees (not less than the matching degree threshold).

The searching process starts from a random position in the knowledge base to avoid hitting

the same instances repeatedly, and continues circularly past the end of the knowledge base,

up to the initial search starting point.

103

Figure 3.13: An arithmetic matching function.

3.5.2 Performance Measurements

We evaluated the performance of the matchmaking service using two systems, each with a

1.8 GHz Pentium IV processor and 1 GB of physical memory. The matchmaking service was

running under Linux on one of the systems, while the client (requester) was running on the

other system under Windows XP. The two machines were connected to the same hub, so

the communication time was smaller than in real applications. We conducted performance

studies regarding the variation of the response time with the size of the knowledge base.

The response time includes the transmission time between the client and the server, the

time for the function evaluation, and the knowledge base access time. The resolution of time

104

<?xml version="1.0" encoding="UTF-8"?>

<Request>

 <RequesterName>xin</RequesterName>

 <RequestID>id_002</RequestID>

 <CardinalityThreshold>5</CardinalityThreshold>

 <MatchingDegreeThreshold>0.5</MatchingDegreeThreshold>

 <RequestFunction>

 <![CDATA[

 (ResourceType == "Cluster") &

 (NodeMemory.Size >=1 GB) &

 (NodeCPU.Speed >= 1.6 GHz) &

 (NodeHarddisk.Capacity >= 30 GB) &

 (TotalDiskCapacity > 40 GB) &

 (

 (if (NodeMemory.Size > 4 GB) then 1

 else (NodeMemory.Size / 4 GB)) &&

 (if (NumberOfNodes > 40) then 1 else (NumberOfNodes / 40))

)

]]>

 </RequestFunction>

</Request>

Figure 3.14: A fuzzy matching function.

is one millisecond. We randomly generated knowledge bases holding different numbers of

resource instances with uniformly distributed resource types. We run each case ten times,

each time with the same set of randomized resources. We calculated the average value and

95% confidence interval of the response time over 10 runs. We used three requests (shown

in Figure 3.12, 3.13, and 3.14) with a different number of operators for the evaluation of the

request function.

105

MATCHMAKING ALGORITHM

INPUT request req, a finite set of resource instances rs

OUTPUT a finite set of candidate resource instances cs

BEGIN

cs =

n = req.CardinalityThreshold

m = req.MatchingDegreeThreshold

 FOR each resource r in rs

md = evaluate req.RequestFunction in the context of r

 IF (md>0) AND (md>=m)

 add r into cs

 END IF

 END FOR

 sort items in cs according to their matching degrees

 keep the items in cs that have the highest n matching degrees and remove the rest

END

Figure 3.15: The original matchmaking algorithm performs an exhaustive database search.

BondGrid uses Protégé knowledge base [101] to store instances. A Protégé knowledge

base can be stored in a local file or a database. If a knowledge base stored in a local file

holds more than 50,000 frames (classes and instances), significant time (about 1 minute) is

needed to load the instances from the file to the main memory and a large physical memory

(> 1GB) is required. If a knowledge base is stored in a database, these limitations are

removed due to caching techniques; the required frames are brought into memory as needed

and the frames that are no longer needed are removed.

Figure 3.17 shows the response time versus the number of resources when the knowledge

base is stored on a local file. As the number of resources increases, the request response time

increases as well. When the number of resources is less than 3000, the request response time

106

MATCHMAKING ALGORITHM

INPUT request req, a finite set of resource instances rs

OUTPUT a finite set of candidate resource instances cs

BEGIN

cs =

n = req.CardinalityThreshold

m = req.MatchingDegreeThreshold

 FOR each resource r in rs from a random beginning position

md = evaluate req.RequestFunction in the context of r

 IF (md>0) AND (md>=m)

 add r into cs

 ENDIF

 IF (the size of the candidate set > k * n)

 break

 ENDIF

 END FOR

 sort items in cs according to their matching degrees

 keep the items in cs that have the highest n matching degrees and remove the rest

END

Figure 3.16: The modified matchmaking algorithm performs a restricted database search; it

stops when the cardinality of a set of resources that match the request reaches k ∗ n.

is less than 5 seconds, which is quite acceptable. When the number of resources exceeds

3000, the response time increases sharply. In this case the physical memory of the machine

running the service is insufficient and leads to frequent paging. Figure 3.17 also shows that

three requests with different levels of complexity of the evaluation function have similar

response time. This indicates to us that the complexity of a request has small impact on

the efficiency of the algorithm, and the knowledge base access time is the major contributor

to the response time. Figure 3.18 amplifies a part of Figure 3.17. It indicates that when

the number of resources in the knowledge base is less than 3000, the response time increases

107

linearly with the number of resources. The three requests take slightly different response

times because their request functions have different complexities.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 500 1000 1500 2000 2500 3000 3500 4000

R
eq

ue
st

 R
es

po
ns

e
T

im
e

(m
s)

Number of Grid Resources

Request1
Request2
Request3

Figure 3.17: Response time vs. number of resources for three requests of different complex-

ities when the knowledge base is a local file.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 500 1000 1500 2000 2500 3000

R
eq

ue
st

 R
es

po
ns

e
T

im
e

(m
s)

Number of Grid Resources

Request1
Request2
Request3

Figure 3.18: Response time vs. number of resources for three requests when the knowledge

base is a local file.

108

Figure 3.19 shows the response time over various number of resources when the knowledge

base is stored in a database. We used a MySQL 4.0 database deployed on the machine holding

the matchmaking service. As the number of resources increases, the response time increases

smoothly. When this number is less than 3000, the response time is larger than that of

Figure 3.17. When the number of resources is larger than 3000, the request response time is

much smaller than that of Figure 3.17. Using database to store knowledge bases turns out

to be a better choice for large knowledge bases as will be the case of realistic applications.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 2000 4000 6000 8000 10000

R
eq

ue
st

 R
es

po
ns

e
T

im
e

(m
s)

Number of Grid Resources

Request1
Request2
Request3

Figure 3.19: Response time vs. number of resources for three requests when the knowledge

base is stored as a database.

Figure 3.20 shows the response time over various number of resources for Request3 from

Figure 3.14 when the knowledge base is stored in a database and the matchmaking service

is running the modified matchmaking algorithm (see Figure 3.16). The response time is

considerably lower than that of Figure 3.19. Figure 3.21 shows the corresponding average

109

matching degree over various number of resources for the same run, where the average

matching degree is the average of the matching degrees of the returned resources. As k

increases, the average matching degree increases as well. When k = 3, the average matching

degree reaches 1 most of the time, which indicates that the modified matchmaking algorithm

is likely to produce optimal results when k = 3. The modified algorithm greatly improves

the efficiency of matchmaking without sacrificing the quality of the matchmaking results.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 2000 4000 6000 8000 10000

R
eq

ue
st

 R
es

po
ns

e
T

im
e

(m
s)

Number of Grid Resources

k=1
k=2
k=3

Figure 3.20: Response time vs. number of resources for Request3 when the knowledge base is

stored as a database. The matchmaking service runs the modified matchmaking algorithm.

110

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 0 2000 4000 6000 8000 10000

A
ve

ra
ge

 M
at

ch
in

g
D

eg
re

e

Number of Grid Resources

k=1
k=2
k=3

Figure 3.21: Average matching degree vs. number of resources for Request3 when the knowl-

edge base is stored as a database. The matchmaking service runs the modified matchmaking

algorithm. The average matching degree is the average of the matching degrees of the re-

sources returned by the service.

111

CHAPTER 4

A MACRO-ECONOMIC RESOURCE ALLOCATION

MODEL

Sharing scarce resources is an enduring problem. In this chapter, we discuss a macro-

economic model suitable for resource sharing when computing and communication resources

as well as consumers belong to different administrative domains. The formalism captures

traditional concepts such as consumer utility and provider revenues. The model allows us to

analyze the effect of different pricing strategies upon measures of performance important for

the consumers (satisfaction and utility) and providers (revenue and acceptance ratios). We

report on simulation experiments which confirm the important role played by brokers and

the mechanisms used by them to achieve societal objectives.

4.1 Introduction and Motivation

As we become increasingly more dependent upon digital information, we pay more attention

to computing and communication resources and the mechanisms to share them efficiently and

112

in an equitable manner. When all resources are controlled by a single agent we have adequate

means to tightly control resource allocation using priority scheduling and rejecting consumers

when the system is overloaded. Computational, service, and data grids, peer-to-peer systems,

and ad-hoc wireless networks are examples of open systems where individual members of the

community contribute computing cycles, storage, services, and communication bandwidth to

the pool of resources available to the entire community and resources and consumers belong

to different administrative domains. In this case it is difficult to devise resource allocation

schedules and there is no central authority to enforce any such schedules.

Market-oriented economies have proved their advantages over alternative means to con-

trol and manage resource allocation in social as well as man-made systems. It seems rea-

sonable to adapt some of the successful ideas of economical models to resource allocation in

large-scale computing systems and to study market-oriented resource allocation algorithms.

Economic models are attractive for resource providers, beneficial for the consumers of re-

sources, and have societal benefits. Providers benefit from contributing their resources and

are encouraged to re-invest some of their profits into additional resources; consumers enjoy

fair treatment as the resource allocation is governed by rules that do not depend on the

individual consumer. Moreover, providers and consumers can make their own decisions to

maximize their utility and/or profits. When system-centric scheduling policies are replaced

by consumer-centric policies the system becomes more responsive to consumer needs and im-

portant problems are solved with higher priority. Economic models allow resource allocation

and management to be more efficient, the demand and supply is regulated through economic

113

activities and fewer resources are wasted, while excess capacity and overloading are averaged

over a very large number of providers and consumers. Resources, e.g., CPU cycles, main

memory, secondary storage, and network bandwidth/latency, are treated uniformly and this

can facilitate the design of large-scale distributed systems, such as computational grids. The

system is more scalable and decision-making is distributed. In an economic model all par-

ticipants are considered self-interested. The resource providers are trying to maximize their

revenues. The consumers want to obtain the maximum possible resources for the minimum

possible price. The large number of participants makes one-to-one negotiations expensive

and unproductive.

This process of migration to market-oriented management strategies requires a major re-

thinking of our philosophy for allocation of computing and communication resources. Some

of the steps required by this transition are:

• Extended the mechanisms for resource management from a single controlling authority

to large-scale systems consisting of multiple administrative domains. This transition

requires new ideas to bridge the gap between micro- and macro-economics of computing

resources. Negotiation protocols for resource allocation and for contract renegotiations,

and agents with a global view of the computing economy, are only some of the new

elements of this macro-economic landscape.

• Formalize traditional concepts such as consumer satisfaction and utility. Informally,

utility quantifies the benefits obtained as the result of being granted a certain amount

114

of resources. Utility based resource allocation models have proved their potential in a

different context, e.g., when the only resource is the radio bandwidth, the size of the

population is limited, and each participant has a unique role (e.g., is a consumer) [8].

The heterogeneity of a large-scale distributed system, the large spectrum of resources

and demands placed upon these resources, the scale of the system, the autonomy of

individual resource providers, and the dual role of individual actors, as consumer of

some resources and provider for others, add complexity to the models.

• Transform imperative requests into elastic ones which reflect the level of utility. Rather

than requesting precisely 100 nodes of a cluster to carry out a computation, the user

should specify how useful are 30, 40, 50, or 80 processors. At the same time, we have

to be concerned with the possibility of failure and the need for consumers to seek

alternative ways to achieve their goals when resources they request at a given time are

unavailable. In the long run, we foresee an adaptive and intelligent user behavior based

upon the idea that in the general case the same goal may be achieved through different

means. While scripts provide an efficient way to coordinate execution of multiple tasks

we have to consider dynamic coordination models which require possible changes of

the process and case description to adapt to the very dynamic grid environment.

• Devise multiple pricing strategies. There is no reason to optimize one’s algorithms

if the resources are free or available based upon an arbitrary allocation, thus pricing

strategies are likely to play a major role in resource management.

115

• Include within the social computing landscape middlemen to mediate access to system

resources. The role of a broker is to reconcile the selfish objectives of individual resource

providers and consumers with some global, societal objectives, e.g., to maximize the

resource utilization of the system, or to maximize the average consumer satisfaction.

The existence of multiple brokers forces each one of them to be socially responsible

and act in a fair and equitable manner.

In this chapter we address these concerns and introduce a macro-economic model based

upon utility and price functions and discuss several pricing strategies. Different utility func-

tions can be considered and we concentrate on sigmoids. Sigmoid functions have some

desirable properties and have been used in many economic models and in some other areas,

as we discuss in Section 4.3. We define a measure of consumer’s satisfaction which takes

into account the utility resulting from resource consumption and the price paid by the con-

sumer. We introduce three pricing policies and investigate the effect of several parameters

upon critical measures of performance for producers and consumers. The pricing policies are

affected by the relationship between the amount of resources required and the total amount

we pay for them, as well as the overall state of the system. We analyze the case when the

price per unit is constant regardless of the amount of resources consumed (linear pricing);

pricing to encourage consumption, i.e., the more resources are used the lower becomes the

average unit price (sub-linear pricing); and pricing to discourage consumption, i.e., the more

resources are used the higher becomes the average unit price (super-linear pricing). We also

analyze the effect of resource abundance upon pricing strategies.

116

In our model each resource is characterized by a vector with several components. As

expected, even with a set of simplifying assumptions, the models are extremely complex and

can only be evaluated through simulation.

We show that brokers play a very important role and can influence positively the market.

We also show that consumer satisfaction does not track the consumer utility, these two

important performance measures for consumers behave differently under different pricing

strategies. Pricing strategies also affect the revenues obtained by providers, as well as, the

request acceptance ratio.

4.2 Background and Related Work

Economic models have been proposed independently in several areas of distributed systems.

In certain cases this was motivated by the desire of companies to maximize their profit

in a market of computational resources based on real currency. Examples of these types

of systems are IBM E-Business On Demand [61], HP Adaptive Enterprise [58] and Sun

Microsystems pay-as-you-go [118]. Several startup companies such as Entropia, ProcessTree,

Popular Power, Mojo Nation, United Devices, and Parabon have also proposed innovative

market based computational models.

In many other cases however, the economic models were introduced because of the per-

ceived benefits which economic models of interaction such as auctions, negotiation, bartering

117

or tendering can offer to resource allocation in distributed systems. These systems usually

rely on a virtual currency which has only a loose relation, or none to real money. It was

found that using an allocation algorithm based on self-interested participants interacting in

a competitive environment leads to more efficient resource allocation. This is true even if the

components are part of the same computational project, thus their relationship is essentially

cooperative. Virtual currencies allow us to introduce competition in these environments.

The projects in economic model based resource allocation can be categorized based on

two major criteria (a) the application domain and the nature of the traded resources and (b)

the economic models and algorithms deployed. These two criteria are independent: virtually

all the market models can be applied to almost any application domain.

Looking from the point of view of the application domain we find that the goods traded

by the economic model can be:

- Computation: usually including the processor time, together with the associated RAM

memory, hard drive space, and communication bandwidth necessary to perform the com-

putation. These systems are deployed in the context of clusters, parallel and distributed

computing, and more recently, grid systems.

- Storage: the traded goods are either unstructured hard drive space, or structured storage

in distributed databases [5, 116]. The recently emerging field of distributed storage systems

such as the Stanford Peers Initiative [35] and GnuNet [55] also falls in this category.

118

- Services: a series of efforts are using economic models for the trading of services on the

Web: Java Market [4], JaWS [76], Xenoservers [104] and others.

The other criteria of categorization is the nature of the economic models and algorithms

deployed. Most of these algorithms are direct applications of existing economic interaction

patterns. Others, such as the Contract Net, are agent based formalizations of interaction

patterns such as tendering and subcontracting. We observe, that some algorithms are more

popular in distributed systems domain than in the real economy. For instance, Vickrey

auctions [126], despite their desirable properties, are counterintuitive for humans, and there-

fore less popular than English and Dutch auctions. However, Vickrey auctions are quite

frequently used in computer based auctions, such as the Google Adwords auction system.

We survey the economic models used for trading computational resources based on [22]:

- Commodity Market : resource providers advertise their resource prices and charge users

based on the amount of resources used. The pricing policy could be based on a flat fee,

the resource usage duration, the subscription, and the demand and supply [86]. Mungi

[57], Enhanced MOSIX [3], and Nimrod/G [21] are some of the systems based upon the

commodity market model.

- Posted Price: this model, used by Nimrod/G [21], is similar to the Commodity Market

Model except that it advertises special offers to attract users.

- Bargaining : resource owners and users/brokers negotiate with each other until they reach

a mutually agreeable price. This model is mostly used in a market that does not have a clear

119

demand-and-supply relationship and price. Examples of systems include Mariposa [85] and

Nimrod/G [21].

- Tendering/Contract-Net : first users/brokers advertise their requirement, then resource

owners respond with their bids, and at last users/brokers choose a resource owner to use its

resource. Mariposa [85] applies this strategy.

- Auction: resource owners announce their resources and invite bids, then an auction process

is performed with users/brokers, and at last the winner user/broker uses the resource. Dif-

ferent auction policies can be used: 1) English auction; 2) first-price sealed-bid auction; 3)

Vickrey auction (second-price sealed-bid); and 4) Dutch auction. In English auction, all

bidders are free to increase their bids exceeding other offers; when no bidder is willing to

increase the bid, the auction ends and the highest bidder wins. In first-price sealed-bid

auction, every bidder submits a sealed-bid and the highest bidder wins. In Vickrey auction,

every bidder submits a sealed-bid and the highest bidder wins at the price of the second

highest bidder. In Dutch auction, the resource owners start by a high price and continuously

decrease the price until a bidder is willing to take the resource at the current price. Spawn

[129] and Popcorn [91] use this model.

- Bid-based Proportional Resource Sharing : the percentage of resources allocated a user is a

function of the user’s bid and other users’ bids. Rexec/Anemone [31] implements this model.

- Community/Coalition/Bartering : a community of resource owners share each other’s re-

sources. The resource owners contributing to the community get credits by sharing their

120

resources. The credit of a resource owner decides how much resources he can get from

others. Condor [34], SETI@home [110], and Mojo Nation [87] are based on this model.

- Monopoly/Oligopoly : one or a small number of resource owners decide the price and it is

not possible to negotiate the price. Nimrod/G [21] embraces this model.

Some systems use more than one strategy. For example, Nimrod/G supports four dif-

ferent models: Commodity Market, Posted Price, Bargaining, and Monopoly / Oligopoly.

Arguments that commodities markets are better choices for controlling grid resources than

auction strategies are presented in [135, 136] based upon concepts such as price stability,

market equilibrium, consumer efficiency, and provider efficiency. An approach to implement

automatic selection of multiple negotiation models to adapt to the computation needs and

change of resource environment is discussed in [111]. A task-oriented mechanism for measur-

ing the economic value of using heterogeneous resources as a common currency is analyzed

in [56]; resource consumers can compare the advantage of participating in a computational

grid with the alternative of purchasing their own resources necessary, and resource providers

can evaluate the profit of putting their resources into a grid. A comparative analysis of

market-based resource allocation by continuous double auctions and by the proportional

share protocol versus a conventional round-robin approach is presented in [51]. A game

theoretic pricing strategy for efficient job allocation in mobile grids is discussed in [50].

121

4.3 Basic Concepts

An efficient and fair utilization of the resources can be obtained only through a scheme that

gives incentives to the providers to share their resources and that encourages the consumers

to maximize the utility of the received resources. A well-tested model for such a scheme is

based on an economic model, in which the resources need to be paid for in a real or virtual

currency. This model has the advantage of being provably scalable, and we can successfully

reuse or adapt the models that govern the economy in our society.

To study possible resource management policies, we have to develop resource consump-

tion models that take into account different, possibly contradictory, views of the benefits

associated with resource consumption as well as the rewards for providing resources to the

consumer population. Such models tend to be very complex and only seldom amenable to

analytical solutions.

In this section we introduce the basic concepts and notations for our model. First, we

introduce price, utility, and satisfaction functions; then we present our resource provider-

consumer model. To capture the objectives of the entities involved in the computational

economy we use: (i) a consumer utility function, 0 ≤ u(r) ≤ 1, to represent the utility

provided to an individual consumer, where r represents the amount of allocated resource;

(ii) a provider price function, p(r), imposed by a resource provider, and (iii) a consumer

satisfaction function, s(u(r), p(r)), 0 ≤ s ≤ 1, to quantify the level of satisfaction; the

satisfaction depends on both the provided utility and the paid price.

122

4.3.1 Price Function

0 r

p(r)

super-linear

linear

sub-linear

max

min

TL TH

(a) (b)

Figure 4.1: (a) Sub-linear, linear, and super-linear price functions. (b) The unit price varies

with ρ, the load index of the provider.

We discuss the three pricing functions in Figure 4.1(a). Given the constant, ξ, the three

particular pricing functions we choose are:

(a) The price per unit is constant regardless of the amount of resources consumed (linear

pricing):

p(r) = ξ · r (4.1)

(b) Discourage consumption: the more resources are used, the higher becomes the average

unit price (super-linear pricing):

p(r) = ξ · rd (4.2)

where d > 1. For this equation, we use d = 1.5 throughout the remainder of the paper.

123

(c) Encourage consumption: the more resources are used, the lower becomes the average

unit price (sub-linear pricing):

p(r) = ξ · re (4.3)

where e < 1. For this equation, we use e = 0.5 throughout the remainder of the paper.

We also analyze the effect of resource abundance; in this case we define the load index ρ as

the ratio of total amount of allocated resources to the capacity of the provider and consider

three regions: low, medium, and high load index. We denote the low, medium, and high

regions as the interval of [0, ρTL), [ρTL, ρTH], and (ρTH , 1], respectively, as shown in Figure

4.1(b). The pricing strategy for each region is different. We consider two models, EDL -

Encourage/Discourage Linear, and EDN - Encourage/Discourage Nonlinear. The choice of

the ρTL, ρTH is basically a policy decision. However, in order to have the desired influence

on the system as a whole, the three intervals need to be of a sufficient size. Values such as

ρTL = 0.49 and ρTH = 0.51 make the target interval unreasonably small; very low ρTL and

very high ρTH values make the pricing strategy degenerate into a constant price strategy.

The values used throughout this dissertation are ρTL = 0.3 and ρTH = 0.7.

For the first model, the unit price is constant in each region, but different in different

regions, as defined in Equation 4.4, and shown in Figure 4.1(b). We introduce three prices,

each corresponding to a range of the system load: minimal, ξmin, maximal, ξmax, and ξ, the

price corresponding to medium load. For low load the providers use lower prices to encourage

resource consumption, but do not lower the price below ξmin. For high load, the providers

gradually increase the price, up to ξmax. The choice of the ξmin and ξmax is a matter of

124

policy. However, too low values for ξmin would make resources basically free for nodes with

low utilization, and very high values of ξmax would make resources too expensive. We use

the values of ξmax = 2× ξ, and ξmin = 0.5× ξ throughout the remainder of the paper.

p(r) =





(
ξmin + ρ

ρTL
(ξ − ξmin)

)
· r if ρ ∈ [0, ρTL);

ξ · r if ρ ∈ [ρTL, ρTH];

(
ξ + ρ−ρTH

1.0−ρTH
(ξmax − ξ)

)
· r if ρ ∈ (ρTH , 1.0].

(4.4)

For the second model, when ρ is low, the provider uses a sub-linear price function; when

ρ is high, the provider uses a super-linear price function; otherwise, the provider uses a linear

price function, as expressed by Equation 4.5:

p(r) =





ξ · re if ρ ∈ [0, ρTL);

ξ · r if ρ ∈ [ρTL, ρTH];

ξ · rd if ρ ∈ (ρTH , 1.0].

(4.5)

where e < 1 and d > 1. The choice of e and d follow similar considerations like the choice of

parameters for the EDL model: we need to encourage and discourage the customers, while

still maintaining the prices in a justifiable range. In this dissertation we are using the values

of e = 0.5 and d = 1.5, which provide an appropriate range of prices.

125

4.3.2 Utility Function

The utility function should be a non-decreasing function of r, i.e., we assume that the more

resources are allocated to the consumer, the higher the consumer utility is. However, when

enough resources have been allocated to the consumer, i.e., some threshold is reached, an

increase of allocated resources would bring no improvement of the utility. On the other hand,

if the amount of resources is below some threshold the utility is extremely low. Thus, we

expect the utility to be a concave function and reach saturation as the consumer gets all the

resources it can use effectively. These conditions are reflected by the following equations:

du(r)

dr
≥ 0, lim

r→∞
du(r)

dr
= 0 (4.6)

For example, if a parallel application could use at most 100 nodes of a cluster, its utility

reflected by a utility function does not increase if its allocation increases from 100 to 110

nodes. If we allocate less than 10 nodes then the system may spend most of its time paging

and experiencing cache misses and the execution time would be prohibitively high.

Different functions can be used to model this behavior and we choose one of them, a

sigmoid:

u(r) =
(r/ω)ζ

1 + (r/ω)ζ
(4.7)

where ζ and ω are constants provided by the consumer, ζ ≥ 2, and ω > 0. Clearly, 0 ≤

u(r) < 1 and u(ω) = 1/2.

126

0

1

r

u

Starting
Phase

Maturing
Phase

Aging
Phase

0.0

1.0

r

s

Low Unit Price
Medium Unit Price

High Unit Price

(a) (b)

Figure 4.2: (a) A sigmoid is used to model the utility function; a sigmoid includes three

phases: the starting phase, the maturing phase, and the aging phase. (b) The satisfaction

function for a sigmoid utility function and three linear price functions with low, medium,

and high unit price.

A sigmoid is a tilted S-shaped curve that could be used to represent the life-cycles of

living, as well as man-made, social, or economical systems. It has three distinct phases: an

incipient or starting phase, a maturing phase, and a declining or aging phase, as shown in

Figure 4.2(a).

4.3.3 Satisfaction Function

A consumer satisfaction function takes into account both the utility provided to the consumer

and the price paid for the resources. For a given utility, the satisfaction function should

127

increase when the price decreases and, for a given price, the satisfaction function should

increase when the utility u increases. These requirements are reflected by Equation (4.8).

∂s

∂p
≤ 0,

∂s

∂u
≥ 0 (4.8)

Furthermore, a normalized satisfaction function should satisfy the following conditions:

• the degree of satisfaction, s(u(r), p(r)), for a given price p(r), approaches the minimum,

0, when the utility, u(r), approaches 0;

• the degree of satisfaction, s(u(r), p(r)), for a given price p(r), approaches the maximum,

1, when the utility, u(r), approaches infinity;

• the degree of satisfaction, s(u(r), p(r)), for a given utility u(r), approaches the maxi-

mum, 1, when the price, p(r), approaches 0; and

• the degree of satisfaction, s(u(r), p(r)), for a given utility u(r), approaches the mini-

mum, 0, when the price, p(r), approaches infinity.

These requirements are reflected by Equations (4.9) and (4.10).

∀p > 0, lim
u→0

s(u, p) = 0, lim
u→∞

s(u, p) = 1 (4.9)

∀u > 0, lim
p→0

s(u, p) = 1, lim
p→∞

s(u, p) = 0 (4.10)

A candidate satisfaction function is [124]:

s(u, p) = 1− e−κ·uµ·p−ε

(4.11)

128

where κ, µ, and ε are appropriate positive constants. The satisfaction function based upon

the utility function in Equation 4.7 is normalized; given a reference price φ we consider also

a normalized price function and we end up with a satisfaction function given by:

s(u, p) = 1− e−κ·uµ·(p/φ)−ε

. (4.12)

Because u and p are functions of r, satisfaction increases as more resources are allocated,

reaches an optimum, and then declines, as shown in Figure 4.2(b). The optimum satisfaction

depends upon the pricing strategy; not unexpectedly, the higher the unit price, the lower

the satisfaction.

The 3D surfaces representing the relationship s = s(r, ξ) between satisfaction s and the

unit price ξ and amount of resources r for several pricing functions (super-linear, linear, and

sub-linear) are presented in Figure 4.3. As we can see from the cut through the surfaces

s = s(r, ξ) at a constat ξ when we discourage consumption (super-linear pricing) the opti-

mum satisfaction is lower and occurs for fewer resources; when we encourage consumption

(sub-linear pricing) the optimum satisfaction is improved and occurs for a larger amount of

resources. These plots reassure us that the satisfaction function has the desired behavior.

4.3.4 Resource Provider-Consumer Model

Consider a system with n providers offering computing resources and m consumers. To

simplifying the model, we assume that the two sets are disjoint. Call U the set of consumers

129

0
2

4
6

8
100

1

2

3

0

0.2

0.4

0.6

0.8

1

rξ

s

0
2

4
6

8
100

1

2

3

0

0.2

0.4

0.6

0.8

1

rξ

s
(a) (b)

0
2

4
6

8
100

1

2

3

0

0.2

0.4

0.6

0.8

1

rξ

s

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1 2 3 4 5

s

r

Superlinear
Linear

Sublinear

(c) (d)

Figure 4.3: The relationship between satisfaction s and the unit price ξ and amount of

resources r. The satisfaction function is based on a sigmoid utility function and different price

functions: (a) discourage consumption (super-linear); (b) linear; (c) encourage consumption

(sub-linear); (d) a cut through the three surfaces at a constant ξ.

130

and R the set of providers. The n providers are labeled 1 to n and the m consumers are

labeled 1 to m. Consider provider Rj, 1 ≤ j ≤ n, and consumer Ui, 1 ≤ i ≤ m, that could

potentially use resources of that provider.

Let rij denote the resource (defined below) of Rj allocated to consumer Ui and let uij

denote its utility for consumer Ui. Let pij denote the price paid by Ui to provider Rj. Let

tij denote the time Ui uses the resource provided by Rj. Let cj denote the resource capacity

of Rj, i.e., the amount of resources regulated by Rj.

The term “resource” here means a vector with components indicating the actual amount

of each type of resource:

rij = (r1
ij r2

ij . . . rl
ij)

where l is a positive integer and rk
ij corresponds to the amount of resource of the k-th type.

The structure of rij may reflect the rate of CPU cycles, the physical memory required by the

application, the secondary storage, the number of nodes and the interconnection bandwidth

(for a multiprocessor system or a cluster), the network bandwidth (required to transfer data

to/from the site), the graphics capabilities, and so on.

The utility of resource of the k-th type provided by Rj for consumer Ui is a sigmoid:

uk
ij = u(rk

ij) =
(rk

ij/ω
k
i)

ζk
i

1 + (rk
ij/ω

k
i)

ζk
i

where ζk
i and ωk

i are constants provided by consumer Ui, ζk
i ≥ 2, and ωk

i > 0. Clearly,

0 < u(rk
ij) < 1 and u(ωk

i) = 1/2.

The overall utility of resources provided by Rj to Ui is:

131

• the product over the set of resources provided by Rj, i.e., uij =
∏l

k=1 uk
ij, or

• the weighted average over the set of resources provided by Rj, i.e., uij = 1
l

∑l
k=1 ak

iju
k
ij,

where ak
ij values are provided by consumer Ui and

∑l
k=1 ak

ij = 1.

Let pk
ij denote the price consumer Ui pays to provider Rj for a resource of type k. The

total price for consumer Ui for resources provided by provider Rj is:

pij =
l∑

k=1

pk
ij.

The total cost for consumer Ui for resources provided by provider Rj is pij × tij.

Based on Equation 4.12, we define the degree of satisfaction of Ui for a resource of the

k-th type provided by provider Rj as:

sk
ij(u

k
ij, p

k
ij) = 1− e−κk

i uk
ij

µk
i (pk

ij/φk
i)
−εk

i
, κk

i , φ
k
i , µ

k
i , ε

k
i > 0

where κk
i , µk

i and εk
i are appropriate positive constants and φk

i is a reference price.

The overall satisfaction of consumer Ui for resources provided by Rj is:

• the product over the set of resources provided by Rj, i.e., sij =
∏l

k=1 sk
ij, or

• the weighted average over the set of resources provided by Rj, i.e., sij = 1
l

∑l
k=1 bk

ijs
k
ij,

where bk
ij values are provided by consumer Ui and

∑l
k=1 bk

ij = 1.

132

4.4 The Role of Brokers in the Macro-Economic Model

In this chapter, we concentrate on optimal resource management policies. A policy is optimal

when the satisfaction function, which reflects both the price paid to carry out a task and the

utility resulting from the completion of the task, reaches a maximum. A broker attempts to

operate at or near this optimum.

The role of a broker is to mitigate access to resources. In this chapter, we consider

provider-broker-consumer models that involve the set of resource providers R, the set of

consumers U , and broker B. These models assume that a consumer must get all of its

resources from a single provider. Brokers have “societal goals” and attempt to maximize the

average utility and revenue, as opposed to providers and consumers that have individualistic

goals; each provider wishes to maximize its revenue, while each consumer wishes to maximize

its utility and do so for as the lowest cost possible. To reconcile the requirements of a

consumer and the candidate providers, a broker chooses a subset of providers such that the

satisfaction is above a high threshold and all providers in the subset have equal chances to

be chosen by the consumer. We call the size of this subset satisficing size, and denote it by

σ; the word “satisfice” was coined by Nobel Prize winner Herbert Simon in 1957 to describe

the desire to achieve a minimal value of a variable instead of its maximum [113].

The resource negotiation protocol consists of the following steps:

1. All providers reveal their capacity and pricing parameters to the broker: ∀Rj ∈ R send

vectors cj and ξj where each element corresponds to one type of resource.

133

2. A consumer Ui sends to the broker a request with the following information :

(a) the parameters of its utility function: vectors ζi and ωi where each element cor-

responds to one type of resource,

(b) the parameters of its satisfaction function: vectors µi, εi, κi and φi where each

element corresponds to one type of resource, and

(c) the number of candidate resource providers to be returned.

3. The broker performs a brokering algorithm and returns a list of candidate resource

providers Ri to consumer Ui.

4. Consumer Ui selects the first provider from Ri and verifies if the provider can allocate

the required resources. If it can not, the consumer moves to the next provider from

the list until the resources are allocated by a provider Rj.

5. Rj notifies the broker about the resource allocation to Ui.

The algorithm performed by the broker is summarized in Figure 4.4. The amount of

resources to be allocated is determined during the algorithm according to a broker strategy.

Simple strategies would be to allocate the same amount of resources to every consumer, or

to allocate to every consumer a random amount of resources. A better strategy, used by our

system, is to allocate an amount of resources such that the utility of each type of resource

to the consumer reaches a certain target utility τ . To determine the amount of resources

allocated to the consumer, the broker uses Equation 4.13(a) derived from the definition of

134

BROKERING ALGORITHM

INPUT request req, , , a finite set of resource providers ps

OUTPUT a finite set of suggested resource providers ss

BEGIN

determine amount so that req.u(amount) =

 FOR each resource provider rp in ps

 r = min (amount, available resources of rp)

satisfaction = req.s (req.u(r), rp.p(r))

 END FOR

 sort elements in ps according to their satisfactions

 randomize the sequences of the first items in ps

 keep the elements in ps that have the highest req.cardinality satisfaction degrees and remove the rest

ss = ps

END

Figure 4.4: The algorithm performed by the broker. The consumer request, req, is elastic.

It contains the parameters describing u and s, the utility and satisfaction functions. τ is the

target utility and σ is the satisficing size. The cardinality specifies the number of resource

providers to be returned by the broker.

u(r), Equation 4.13(b):

r = e

ln(τ
1−τ

)

ζ
+ ln(ω)

(a) u(r) =
(r/ω)ζ

1 + (r/ω)ζ
(b) (4.13)

Several quantities characterize the resource management policy for broker B and its

associated providers and consumers:

(a) Average hourly revenue. The average is over the set of providers connected to broker B;

the revenue of a provider is the sum of revenues from all resources it controls.

(b) Request acceptance ratio. The ratio is the number of accepted requests over the number

of requests submitted by the consumers connected to broker B. A request is accepted

135

if a provider able to allocate resources exists, otherwise the request is rejected and the

corresponding satisfaction and utility are set to 0.

(c) Average consumer satisfaction. The average is over the set of all consumers connected

to broker B.

(d) Average consumer utility. This average is over the set of consumers connected to broker

B.

In our model, a broker receives a percentage of the revenues collected by the providers

connected to it. More sophisticated mechanisms are possible, for example, in addition to

the percentage of the revenues collected from the providers, a broker may receive a premium

from consumers based upon their level of satisfaction. This policy would encourage brokers

to balance the interests of providers and consumers. Different brokers may have different

policies and may be required to disclose the average values for critical parameters, such as

τ and σ, and their fee structure, during the initial negotiation phase; thus, consumers and

providers will have the choice to work with a broker that best matches their own objective.

4.5 A Simulation Study

Market-oriented resource allocation algorithms are very difficult to analyze analytically. To

understand the behavior of the system we conducted a simulation study using YAES [19].

A thorough investigation would require multiple brokers, but the model is already very

136

complex and would require additional protocols for broker selection and renegotiations so

we are considering the case of a single broker.

The resource allocated by provider Rj to consumer Ui are represented by a resource

vector rij = (r1
ij r2

ij . . . rl
ij). For example, if the k-th component is secondary storage, then

rk
ij = 20GB is the amount of secondary storage provided by Rj to consumer Ui. The

associated utility and satisfaction vectors are: uij = (u1
ij u2

ij . . . ul
ij) and sij = (s1

ij s2
ij . . . sl

ij).

The demand to capacity ratio for resource type k is the ratio of the amount requested by

all consumers to the total capacity of providers for resource k,
∑

j ck
j . The level of demand

is limited by the sigmoid shape of the utility curve and the finite financial resources of

the consumers. In the computation of the demand-capacity ratio, for each consumer and

each resource, it is assumed that for the requested rk
ij value the corresponding utility value

uk
ij = 0.9, i.e., the consumers request an amount of rk

ij that results in uk
ij = 0.9. The demand

to capacity ratio vector for all resource types is η = (η1 η2 . . . ηl). For the sake of simplifying

the simulation, we only consider the case when η1 = η2 = · · · = ηl = η.

We run multiple simulation experiments for each case (50 runs/case) and compute 95%

confidence intervals for the results. The parameters for our experiments are:

• τ - target utility for the consumers,

• σ - satisficing size; reflects the choices given to the consumer by the broker, and

• η - demand to capacity ratio; measures the commitment and, thus, the load placed

upon providers.

137

We study the evolution in time of

• average hourly revenue,

• request acceptance ratio (the ratio of resource requests granted to total number of

requests),

• average consumer satisfaction, and

• average consumer utility.

We investigate the performance of the model for different target utilities, τ , satisfic-

ing sizes, σ, and demand to capacity ratios, η. We study several scenarios, for the linear

(Equation 4.1), EDN (Equation 4.5), and EDL (Equation 4.4) pricing strategies.

We simulate a system of 100 clusters and one broker. The number of nodes of each cluster

is a random variable normally distributed with the mean of 50 and the standard deviation

of 30. Each node is characterized by a resource vector containing the CPU rate, the main

memory, and the disk capacity. For example, the resource vector for a node with one 2 GHz

CPU, 1 GB of memory, and a 40 GB disk is (2GHz, 1GB, 40GB).

Initially, there is no consumer in the system. Consumers arrive with an inter-arrival time

exponentially distributed with the mean of 2 seconds. The service time tij is exponentially

distributed with the mean of λ seconds. By varying the λ value we modify demand-capacity

ratio so that we can study the behavior of the system under different loads.

138

Table 4.1: The parameters for the simulation are uniformly distributed. The parameters

and the corresponding intervals are shown.

Parameter CPU Memory Disk

ξ [5, 10] [5, 10] [5, 10]

ω [0.4, 0.9] [0.5, 1.5] [10, 30]

κ [0.02, 0.04] [0.02, 0.04] [0.02, 0.04]

µ [2, 4] [2, 4] [2, 4]

ε [2, 4] [2, 4] [2, 4]

φ [10, 20] [20, 40] [400, 800]

The request is elastic, i.e., instead of requesting a precise amount, consumers only specify

their utility and satisfaction functions. The parameters of the utility and satisfaction func-

tions are uniformly distributed in the intervals shown in Table 4.1. A request provides the

parameters of the utility function, ω and ζ, for each element of the resource vector (CPU,

Memory, Disk). We generate ω and ζ such that with a utility of 0.9, the CPU rate, memory

space, and disk space of a request are exponentially distributed with means of 2GHz, 4GB,

and 80GB, and ranges of [0.1GHz, 100GHz], [0.1GB, 200GB], and [0.1GB, 1000GB], re-

spectively. More precisely, for each element: (a) we generate the amount r according to the

corresponding distribution; (b) we choose a value for ω; (c) set u = 0.9 and compute the cor-

responding value of ζ. For a resource vector, we let the overall utility be the product of the

139

utilities of its scalar resources, and the overall satisfaction be the product of the satisfaction

for its scalar resources.

When we study the effect of the target utility τ , we use σ = 1 and η = 1.0; when we study

the effect of σ, we use τ = 0.9 and η = 1.0; and when we study the effect of η, we use τ = 0.9

and σ = 1. We also compare the system performance of our scheme for several σ values with

a random strategy. In this case, we randomly choose a provider from the set of all providers,

without considering the satisfaction function. To make the model more realistic, we allow a

resource provider to reject a consumer’s request if the available resources are insufficient to

permit both satisfaction and utility to reach 0.1.

Figures 4.5, 4.6, 4.7, and 4.8 summarize our findings. In each case, we present the three

pricing strategies, linear, EDN, and EDL. The parameters for the graphs illustrating the

effect of the target utility, τ , at the top of the figure are: σ = 1, η = 1.0, and τ = 0.8, 0.85,

0.9, and 0.95. The graphs illustrating the effect of the satisficing size, σ, in the middle of the

figure use the following parameters: τ = 0.9, η = 1.0, and σ = 1, 10, and 20; for the random

strategy, σ =| R |= 50. The parameters for the graphs illustrating the effect of the demand

to capacity ratio, η, at the bottom of the figure are: τ = 0.9, σ = 1, and η = 0.5, 1.0, 1.5,

and 2.0.

The average hourly revenue is an important consideration for resource providers. We

notice that the three pricing strategies exhibit similar behavior: the average hourly revenue

increases rapidly during the transient period, reaches a maximum, and then converges to a

steady state, as shown in Figure 4.5. For the same value of the target utility, τ , the steady

140

0 0.5 1 1.5 2

x 10
5

0

1

2

3

4

5
x 10

6

TIME

A
V

E
R

A
G

E
 H

O
U

R
LY

 R
E

V
E

N
U

E

τ = 0.8
τ = 0.85
τ = 0.9
τ = 0.95

0 0.5 1 1.5 2

x 10
5

0

1

2

3

4

5
x 10

6

TIME

A
V

E
R

A
G

E
 H

O
U

R
LY

 R
E

V
E

N
U

E

τ = 0.8
τ = 0.85
τ = 0.9
τ = 0.95

0 0.5 1 1.5 2

x 10
5

0

1

2

3

4

5
x 10

6

TIME

A
V

E
R

A
G

E
 H

O
U

R
LY

 R
E

V
E

N
U

E

τ = 0.8
τ = 0.85
τ = 0.9
τ = 0.95

0 0.5 1 1.5 2

x 10
5

0

0.5

1

1.5

2
x 10

7

TIME

A
V

E
R

A
G

E
 H

O
U

R
LY

 R
E

V
E

N
U

E

σ = 1
σ = 10
σ = 20
RANDOM

0 0.5 1 1.5 2

x 10
5

0

0.5

1

1.5

2
x 10

7

TIME

A
V

E
R

A
G

E
 H

O
U

R
LY

 R
E

V
E

N
U

E

σ = 1
σ = 10
σ = 20
RANDOM

0 0.5 1 1.5 2

x 10
5

0

0.5

1

1.5

2
x 10

7

TIME

A
V

E
R

A
G

E
 H

O
U

R
LY

 R
E

V
E

N
U

E

σ = 1
σ = 10
σ = 20
RANDOM

0 0.5 1 1.5 2

x 10
5

0

2

4

6

8

10
x 10

6

TIME

A
V

E
R

A
G

E
 H

O
U

R
LY

 R
E

V
E

N
U

E

η = 0.5
η = 1.0
η = 1.5
η = 2.0

0 0.5 1 1.5 2

x 10
5

0

2

4

6

8

10
x 10

6

TIME

A
V

E
R

A
G

E
 H

O
U

R
LY

 R
E

V
E

N
U

E

η = 0.5
η = 1.0
η = 1.5
η = 2.0

0 0.5 1 1.5 2

x 10
5

0

2

4

6

8

10
x 10

6

TIME

A
V

E
R

A
G

E
 H

O
U

R
LY

 R
E

V
E

N
U

E

η = 0.5
η = 1.0
η = 1.5
η = 2.0

Figure 4.5: Average hourly revenue vs. time (in seconds) for different target utilities, τ

(top), satisficing sizes, σ (middle), and demand to capacity ratios, η (bottom). The three

pricing strategies are: linear (left), EDN (center), and EDL (right).

state value for the linear and the EDN pricing strategies are close to one another and almost

half of those for EDL, as shown in the top row of Figure 4.5. In all cases, the larger τ the

higher the revenue. In these simulations, σ = 1 (the broker provides a single choice) and the

demand to capacity ratio is η = 1.0. We believe that resource fragmentation is the reason

141

why the steady state value is lower than the maximum attained at the end of the transient

period.

Resource fragmentation is an undesirable phenomena where the amount of resources

available cannot meet the target utility value for any request and resources remain idle.

This effect is more pronounced for larger utility values, for example for τ = 0.95 the steady

state value is some 20% lower than its corresponding maximum, while for τ = 0.8 the steady

state value is close to its corresponding maximum.

The next question is if larger satisficing size affects the average revenue. A small value of

σ limits the number of choices to consumers and this restriction leads to lower average hourly

revenues. In our experiments τ = 0.9 and η = 1.0, as shown in the middle row of Figure 4.5.

EDN and EDL are superior to linear pricing. The larger σ, the higher the average hourly

revenue for the provider. The random strategy, which corresponds to the maximum value of

σ =| R | leads to the highest average hourly revenue.

Lastly, we see that the demand to capacity ratio also has an impact upon the average

hourly revenue that is larger for larger η for for all three pricing strategies, as shown in the

bottom row of Figure 4.5. The conclusion we draw from these results is that the average

hourly revenue increases when we provide a higher target utility (τ closer to 1), increase the

satisficing size (larger σ), and increase the demand to capacity ratio, η, and that differential

pricing strategies (EDN and EDL) are preferable to the linear one.

The request acceptance ratio for various pricing policies and choices of parameters is

shown in Figure 4.6. We find that the request acceptance ratio shows variations during

142

0 0.5 1 1.5 2

x 10
5

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

TIME

R
E

Q
U

E
S

T
 A

C
C

E
P

T
A

N
C

E
 R

A
T

IO

τ = 0.8
τ = 0.85
τ = 0.9
τ = 0.95

0 0.5 1 1.5 2

x 10
5

0.995

0.996

0.997

0.998

0.999

1

TIME

R
E

Q
U

E
S

T
 A

C
C

E
P

T
A

N
C

E
 R

A
T

IO

τ = 0.8
τ = 0.85
τ = 0.9
τ = 0.95

0 0.5 1 1.5 2

x 10
5

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

TIME

R
E

Q
U

E
S

T
 A

C
C

E
P

T
A

N
C

E
 R

A
T

IO

τ = 0.8
τ = 0.85
τ = 0.9
τ = 0.95

0 0.5 1 1.5 2

x 10
5

0.973

0.9735

0.974

0.9745

0.975

0.9755

0.976

TIME

R
E

Q
U

E
S

T
 A

C
C

E
P

T
A

N
C

E
 R

A
T

IO

σ = 1
σ = 10
σ = 20
RANDOM

0 0.5 1 1.5 2

x 10
5

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

TIME

R
E

Q
U

E
S

T
 A

C
C

E
P

T
A

N
C

E
 R

A
T

IO

σ = 1
σ = 10
σ = 20
RANDOM

0 0.5 1 1.5 2

x 10
5

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

TIME

R
E

Q
U

E
S

T
 A

C
C

E
P

T
A

N
C

E
 R

A
T

IO

σ = 1
σ = 10
σ = 20
RANDOM

0 0.5 1 1.5 2

x 10
5

0.972

0.973

0.974

0.975

0.976

0.977

TIME

R
E

Q
U

E
S

T
 A

C
C

E
P

T
A

N
C

E
 R

A
T

IO

η = 0.5
η = 1.0
η = 1.5
η = 2.0

0 0.5 1 1.5 2

x 10
5

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

TIME

R
E

Q
U

E
S

T
 A

C
C

E
P

T
A

N
C

E
 R

A
T

IO

η = 0.5
η = 1.0
η = 1.5
η = 2.0

0 0.5 1 1.5 2

x 10
5

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

TIME

R
E

Q
U

E
S

T
 A

C
C

E
P

T
A

N
C

E
 R

A
T

IO

η = 0.5
η = 1.0
η = 1.5
η = 2.0

Figure 4.6: Request acceptance ratio vs. time (in seconds) for different target utilities, τ

(top), satisficing sizes, σ (middle), and demand to capacity ratios, η (bottom). The three

pricing strategies are: linear (left), EDN (center), and EDL (right).

the transient period but converges to constant values in the steady state. The EDN pricing

strategy appears optimal, leading to steady state values close to 1.0 for virtually every choice

of parameters, except for the random σ. The steady state values for the linear and EDL

strategies are also high, with values larger than 0.95, but the exact amount is determined by

143

the values of τ , η and σ. We find that the higher the values of any of these parameters, the

higher the request acceptance ratio.

0 0.5 1 1.5 2

x 10
5

0.2

0.4

0.6

0.8

1

1.2

TIME

A
V

E
R

A
G

E
 C

O
N

S
U

M
E

R
 S

A
T

IS
F

A
C

T
IO

N

τ = 0.8
τ = 0.85
τ = 0.9
τ = 0.95

0 0.5 1 1.5 2

x 10
5

0.2

0.4

0.6

0.8

1

1.2

TIME

A
V

E
R

A
G

E
 C

O
N

S
U

M
E

R
 S

A
T

IS
F

A
C

T
IO

N

τ = 0.8
τ = 0.85
τ = 0.9
τ = 0.95

0 0.5 1 1.5 2

x 10
5

0.2

0.4

0.6

0.8

1

1.2

TIME

A
V

E
R

A
G

E
 C

O
N

S
U

M
E

R
 S

A
T

IS
F

A
C

T
IO

N

τ = 0.8
τ = 0.85
τ = 0.9
τ = 0.95

0 0.5 1 1.5 2

x 10
5

0.2

0.4

0.6

0.8

1

1.2

TIME

A
V

E
R

A
G

E
 C

O
N

S
U

M
E

R
 S

A
T

IS
F

A
C

T
IO

N

σ = 1
σ = 10
σ = 20
RANDOM

0 0.5 1 1.5 2

x 10
5

0.2

0.4

0.6

0.8

1

1.2

TIME

A
V

E
R

A
G

E
 C

O
N

S
U

M
E

R
 S

A
T

IS
F

A
C

T
IO

N

σ = 1
σ = 10
σ = 20
RANDOM

0 0.5 1 1.5 2

x 10
5

0.2

0.4

0.6

0.8

1

1.2

TIME
A

V
E

R
A

G
E

 C
O

N
S

U
M

E
R

 S
A

T
IS

F
A

C
T

IO
N

σ = 1
σ = 10
σ = 20
RANDOM

0 0.5 1 1.5 2

x 10
5

0.2

0.4

0.6

0.8

1

1.2

TIME

A
V

E
R

A
G

E
 C

O
N

S
U

M
E

R
 S

A
T

IS
F

A
C

T
IO

N

η = 0.5
η = 1.0
η = 1.5
η = 2.0

0 0.5 1 1.5 2

x 10
5

0.2

0.4

0.6

0.8

1

1.2

TIME

A
V

E
R

A
G

E
 C

O
N

S
U

M
E

R
 S

A
T

IS
F

A
C

T
IO

N

η = 0.5
η = 1.0
η = 1.5
η = 2.0

0 0.5 1 1.5 2

x 10
5

0.2

0.4

0.6

0.8

1

1.2

TIME

A
V

E
R

A
G

E
 C

O
N

S
U

M
E

R
 S

A
T

IS
F

A
C

T
IO

N

η = 0.5
η = 1.0
η = 1.5
η = 2.0

Figure 4.7: Average consumer satisfaction vs. time (in seconds) for different target utilities,

τ (top), satisficing sizes, σ (middle), and demand to capacity ratio, η (bottom). The three

pricing strategies are: linear (left), EDN (center), and EDL (right).

The three pricing strategies lead to very different consumer satisfaction for the same set

of parameters of the simulation, even though the qualitative behavior is somehow similar

144

in that the average consumer satisfaction decreases during the transient period and then

increases and reaches a stable value in steady state, as shown in Figure 4.7. EDN appears

to be best strategy. The larger the target utility, the lower the consumer satisfaction. The

highest steady state average satisfaction is about 80% when τ = 0.8 and when we use the

EDN strategy as compared with less than 50% for EDL and about 70% for linear pricing

strategy in terms of σ. The highest satisfaction occurs when σ = 1. Though this seems

counterintuitive it is well justified; in this case the broker directs the consumer to that

resource provider that best matches the request. When we select at random one provider

from the list of all providers supplied by the broker we observe the lowest average consumer

satisfaction because we have a high probability to select a less than optimal match for a given

request. Recall that the optimal match is the top ranked element of the list of providers

supplied by the broker. We also notice that a high demand to capacity ratio has a negative

impact upon user satisfaction. The largest impact of the demand to capacity ratio upon the

steady state average consumer satisfaction is visible for the linear pricing strategy, when the

average consumer satisfaction ranges from about 55% for η = 2.0 to about 75% for η = 0.5.

For the same set of parameters of the simulation the three pricing strategies lead to

slightly different average consumer utility values, but the qualitative behavior is similar, as

shown in Figure 4.8. The average consumer utility decreases slowly during the transient

period because of system fragmentation; some resources are allocated to consumers due to

their cheaper price, although they are not enough to allow the utility to reach the target

value, τ . In steady state, the average utility reaches a stable value. Overall, the differentiated

145

0 0.5 1 1.5 2

x 10
5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TIME

A
V

E
R

A
G

E
 C

O
N

S
U

M
E

R
 U

T
IL

IT
Y τ = 0.8

τ = 0.85
τ = 0.9
τ = 0.95

0 0.5 1 1.5 2

x 10
5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TIME

A
V

E
R

A
G

E
 C

O
N

S
U

M
E

R
 U

T
IL

IT
Y τ = 0.8

τ = 0.85
τ = 0.9
τ = 0.95

0 0.5 1 1.5 2

x 10
5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TIME

A
V

E
R

A
G

E
 C

O
N

S
U

M
E

R
 U

T
IL

IT
Y τ = 0.8

τ = 0.85
τ = 0.9
τ = 0.95

0 0.5 1 1.5 2

x 10
5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TIME

A
V

E
R

A
G

E
 C

O
N

S
U

M
E

R
 U

T
IL

IT
Y

σ = 1
σ = 10
σ = 20
RANDOM

0 0.5 1 1.5 2

x 10
5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TIME

A
V

E
R

A
G

E
 C

O
N

S
U

M
E

R
 U

T
IL

IT
Y

σ = 1
σ = 10
σ = 20
RANDOM

0 0.5 1 1.5 2

x 10
5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TIME

A
V

E
R

A
G

E
 C

O
N

S
U

M
E

R
 U

T
IL

IT
Y

σ = 1
σ = 10
σ = 20
RANDOM

0 0.5 1 1.5 2

x 10
5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TIME

A
V

E
R

A
G

E
 C

O
N

S
U

M
E

R
 U

T
IL

IT
Y η = 0.5

η = 1.0
η = 1.5
η = 2.0

0 0.5 1 1.5 2

x 10
5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TIME

A
V

E
R

A
G

E
 C

O
N

S
U

M
E

R
 U

T
IL

IT
Y η = 0.5

η = 1.0
η = 1.5
η = 2.0

0 0.5 1 1.5 2

x 10
5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TIME

A
V

E
R

A
G

E
 C

O
N

S
U

M
E

R
 U

T
IL

IT
Y η = 0.5

η = 1.0
η = 1.5
η = 2.0

Figure 4.8: Average consumer utility vs. time (in seconds) for different target utilities, τ

(top), satisficing sizes, σ (middle), and demand to capacity ratios, η (bottom). The three

pricing strategies: linear (left), EDN (center), and EDL (right).

pricing strategies, EDN and EDL, perform better and reach higher steady state values. The

higher the target utility, the larger the actual utility; the highest steady-sate utility is about

70% for τ = 0.95 for EDN and EDL, as shown in the top of Figure 4.8. The larger the

satisficing size, the higher the actual utility; the random strategy leads to 90% utility, as

146

shown in the middle of Figure 4.8. The lower the demand to capacity ratio, the higher the

satisfaction.

0 0.5 1 1.5 2

x 10
5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

TIME

A
V

E
R

A
G

E
 H

O
U

R
LY

 R
E

V
E

N
U

E

LINEAR
EDN
EDL

0 0.5 1 1.5 2

x 10
5

0.94

0.95

0.96

0.97

0.98

0.99

1

TIME
R

E
Q

U
E

S
T

 A
C

C
E

P
T

A
N

C
E

 R
A

T
IO

LINEAR
EDN
EDL

(a) (b)

0 0.5 1 1.5 2

x 10
5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TIME

A
V

E
R

A
G

E
 C

O
N

S
U

M
E

R
 S

A
T

IS
F

A
C

T
IO

N

LINEAR
EDN
EDL

0 0.5 1 1.5 2

x 10
5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

TIME

A
V

E
R

A
G

E
 C

O
N

S
U

M
E

R
 U

T
IL

IT
Y LINEAR
EDN
EDL

(c) (d)

Figure 4.9: (a) The average hourly revenue, (b) the request acceptance ratio, (c) the average

consumer satisfaction, and (d) the average consumer utility vs. time (in seconds) for σ = 1,

τ = 0.9, and η = 1.0, with different price functions.

Figure 4.9 summarizes the effect of the three pricing strategies upon the four quantities we

monitored in our experiments, for a particular set of parameters: τ = 0.9, σ = 1, and η = 1.0.

147

EDL allows the highest average hourly revenue while the linear pricing strategy leads to the

lowest one, as shown in Figure 4.9(a). EDN leads to the highest request acceptance ratio

while EDL leads to the lowest one, as shown in Figure 4.9(b). EDN leads to the highest

consumer satisfaction while EDL leads to the lowest one, as shown in Figure 4.9(c). EDL

allows the highest average hourly revenue while linear pricing strategy leads to the lowest

one, as shown in Figure 4.9(d).

148

CHAPTER 5

CONCLUSIONS

In this dissertation, we address the problems of coordination, matchmaking, and resource

allocation for large-scale distributed systems. Although deterministic approaches for coordi-

nation, matchmaking, and resource allocation have been well studied, they are not suitable

for large-scale distributed systems due to the large-scale, the autonomy, and the dynamics

of the systems. We have to seek for nondeterministic solutions for large-scale distributed

systems. We present two services in large-scale distributed systems: the coordination ser-

vice and the matchmaking service. The coordination service coordinates the execution of

complex tasks in a dynamic environment and the matchmaking service supports finding

the appropriate resources for users. We also presents a macro-economic resource allocation

model based upon utility, price, and satisfaction functions. In this model, a broker mediates

resource providers who want to maximize their revenues and resource consumers who want

to get the best resources at the lowest possible price, with some global objectives, e.g., to

maximize the resource utilization of the system. We summarize and conclude our research

for each addressed problem as follows.

149

a) Coordination

A large-scale distributed system is a complex system. The state space of a complex system

is very large and it is unfeasible to create a rigid infrastructure implementing optimal policies

and strategies that take into account the current state of the system. We need a coordination

service to hide the complexity of the system from the end-user. The coordination service

acts as a proxy on behalf of end-users to react to unforseen events and to plan how to carry

out complex tasks. It should be reliable and able to match user policies and constraints

(e.g., cost, security, deadlines, quality of solution) with the corresponding system policies

and constraints.

We use a process description and a case description to describe a complex task. A

process description is a formal description of the complex problem a user wishes to solve.

For the process description, we use a formalism similar to the one provided by Augmented

Transition Networks (ATNs). A process description defines the data dependencies among

the activities of a complex task and consists of end-user activities and flow control activities.

The execution of an end-user activity corresponds to the execution of an end-user service

thus of an application program. Flow control activities do not have associated end-user

services. They are used to control the execution of end-user activities. We define six flow

control activities: Begin; End; Choice; Fork; Join; and Merge. Every process description

should start with a Begin activity and conclude with an End activity. The Begin activity

and the End activity should occur exactly once in a process description. A case description

provides additional information for a particular instance of the process the user wishes to

150

perform, e.g., it provides the location of the actual data for the computation, additional

constraints related to security, cost, or the quality of the solution, a soft deadline, and/or

user preferences. Based on the concept of process and case description, we designed an

algorithm to coordinate the execution of a task and to supervise the execution of each

activity of a task.

We implemented a coordination service in BondGrid. The coordination service interacts

with other core and end-user services for the execution of computing tasks. The coordina-

tion service consists of a message handler, a service manager, and a coordination engine.

The message handler is responsible for the communication between the coordination service

and other entities in the system. The service manager provides a GUI for monitoring the

execution of tasks and the interactions between coordination service and other services. The

coordination engine manages the execution of tasks submitted to the coordination service.

The coordination service relies heavily on shared ontologies. An ontology is a catalog of

and reveals the relationships among a set of concepts assumed to exist in a well defined area.

Creating ontologies in the context of large-scale distributed system represents a monumental

task. We defined the main ontologies used in BondGrid including task, process description,

case description, activity, data, service, resource, hardware, and software.

We studied the time the coordination service needs to encode, transmit, and decode an

ontology (in XML format) as the size of the ontology increases. We studied the maximum

request handling rate of the coordination service. We also tested the coordination service

in BondGrid for an important application of biology computation, the 3D atomic structure

151

determination of macromolecules based upon electron microscopy. For every experiment we

use the same process description and different case descriptions with different input data sets

and different target resolutions. The coordination service is able to supervise the execution

of the computation and provides the results upon completion successfully.

From our past experience it is abundantly clear that the development of complex and

scalable systems requires some form of intelligence. We cannot design general policies and

strategies that do not take into account the current state of a system. But the state space

of a complex system is very large and it is unfeasible to create a rigid control infrastructure.

The only alternative left is to base our actions on logical inference. This process requires a

set of policy rules and facts about the state of the system, gathered by a monitoring agent.

Similar arguments show that we need to plan if we wish to optimally use the resource-rich

environment of a large-scale distributed system, subject to quality of service constraints.

Further optimization is only possible if various entities making decisions have also the ability

to learn. Yet, it is not so clear that the current AI technologies are at the point where their

application to large-scale distributed systems is unproblematic. Our limited experiments

point out that there are limitations of the current agent and knowledge base technologies. We

need to perform more comprehensive measurements. Data collected from these experiments

will allow us to create realistic models of large-scale systems and study their scalability.

b) Matchmaking

A large-scale distributed system is an open system, a large collection of autonomous sys-

tems giving individual users the image of a single virtual machine with a rich set of hardware

152

and software resources. In traditional computing systems, resources are managed centrally

under the control of a single administrative authority by the resource management compo-

nent of an operating system or by a distributed operating system. The central management

of resources on a large-scale distributed system is unthinkable because of the large-scale

of the system and because it would violate the autonomy of individual resource providers,

a critical aspect of large-scale distributed systems. A matchmaking service allow users or

agents on behalf of users to describe their needs and get a list of candidate resources ranked

according to their matching degree to users’ needs so that further decision can be made.

The matchmaking process in large-scale distributed systems involves three types of en-

tities or agents: the consumers called requesters; the producers called providers; and the

matchmaking service. The matchmaking services mediate among the providers and the re-

questers and use a matching algorithm to evaluate a matching function that returns the

matching degree. We call the description of a resource a resource advertisement, or simply

resource. A resource request, simply called a request, consists of a function to be evaluated

in the context of a resource. If the request can be successfully satisfied, the matchmaking

service responds with a list of ranked resources. A matchmaking scheme should be extensible

and should support exact and inexact matchmaking. In some cases, requesters need to find

the resource that exactly matches the request. In other cases, resources that partially match

the request are also acceptable.

We introduced for the first time a more comprehensive ontology-based resource matching

scheme for large-scale distributed systems. We defined the ontologies for commonly used

153

resources in large-scale distributed systems such as computer, service, storage, software, and

data. The matchmaking service has a knowledge base that holds the resource advertisements

from providers. Requests from consumers are evaluated with resource advertisements in

the knowledge base. We designed two matchmaking algorithms: a simple algorithm that

requires an exhaustive search of all resource advertisements; and a modified algorithm that

only covers a portion of the knowledge base. The scheme supports a variety of matching

functions including boolean function, arithmetic function, and fuzzy function. A Boolean

function returns a Boolean constant, i.e., “true” or “false’. An arithmetic function returns

a positive real number. A fuzzy expression returns a fuzzy number in [0, 1]. The higher the

returned value, the better a request can be satisfied.

We implemented a matchmaking service in BondGrid. The matchmaking service consists

of a message handler, a service manager, and a matchmaking engine. The message handler

is responsible for the communication between the matchmaking service and other entities in

the system. The service manager provides a GUI for monitoring the matchmaking engine

and the interactions between matchmaking service and other services. The matchmaking

engine handles the matchmaking requests submitted to the matchmaking service.

We studied the response time of the matchmaking service. The experimental results

indicate that the response time is dominated by the time to access the resource knowledge

base. The complexity of the matching function has little effect on the response time. We

studied the response time of the matchmaking service versus the number of resource ad-

vertisements when the knowledge base is stored in a local file or a database. For a large

154

knowledge base, the response time of the matchmaking service is greatly lower when the

knowledge base is stored in a database. We also tested the simple matchmaking algorithm

and the modified matchmaking algorithm. The modified matchmaking algorithm is able to

find the near optimal matching resources with a sufficiently lower computational cost than

the simple algorithm.

c) Resource Allocation

Resource management in a large-scale distributed system poses serious challenges due to

the scale of the system, the heterogeneity and inherent autonomy of resource providers, and

the large number of consumers and the diversity of their needs. In an economic model, all the

participants are considered self-interested. The resource providers are trying to maximize

their revenues. The consumers want to obtain the maximum possible resources for the

minimum possible cost. The large number of participants makes one-to-one negotiations

expensive and unproductive. We need a broker to mediate access to resources from different

providers. A broker is able to reconcile the selfish objectives of individual resource providers

who want to maximize their revenues, with the selfish objectives of individual consumers

who want to get the most possible utility at the lowest possible cost, and with some global,

societal objectives, e.g., to maximize the utility of the system.

To formalize the objectives of the participants, we use: (i) a consumer utility function,

0 ≤ u(r) ≤ 1, to represent the utility provided to an individual consumer, where r represents

the amount of allocated resources; (ii) a provider price function, p(r), imposed by a resource

155

provider, and (iii) a consumer satisfaction function, s(u(r), p(r)), 0 ≤ s ≤ 1, to quantify the

level of satisfaction; the satisfaction depends on both the provided utility and the paid price.

We proposed a macro-economic resource allocation model based upon utility, price, and

satisfaction functions for large-scale distributed systems. In this model, resource providers

advertise their resource capacities and pricing strategy to the broker, and resource consumers

send their description about their utility and satisfaction to the broker. The broker performs

a brokering algorithm based on some system parameters for each request from the consumer.

Economic models are notoriously difficult to study. The complexity of the utility, price,

and satisfaction-based models precludes analytical studies and in this dissertation we re-

ported on a simulation study. The goal of our simulation study is to validate our choice of

utility, price, and satisfaction function, to study the effect of the many parameters that char-

acterize our model, and to get some intuition regarding the transient and the steady-state

behavior of our models. We are primarily interested in qualitative rather than quantitative

results, i.e., we are interested in trends, rather than actual numbers.

The function of a broker is to monitor the system and set τ and σ for optimal performance.

For example, if the broker perceives that the average consumer utility is too low, it has two

choices: increase τ or increase σ. At the same time, the system experiences an increase of

the average hourly revenue and a decrease of the average consumer satisfaction. The fact

that increasing utility could result in lower satisfaction seems counterintuitive, but reflects

the consequences of allocating more resources; we increase the total cost possibly beyond

the optimum predicated by the satisfaction function. The simulation results shown in this

156

dissertation are consistent with those in [9, 10] where we use linear pricing and simpler

models based upon a synthetic quantity to represent a vector of resources.

We tested three pricing strategies in the simulation: linear, EDL, and EDN. The EDL

pricing strategy leads to the highest average consumer utility and the highest average hourly

revenue, while it gives the lowest request acceptance ratio and the lowest average consumer

satisfaction. The EDN pricing strategy allows the highest request acceptance ratio and

the highest average consumer satisfaction, while it leads to lower average consumer utility

and average hourly revenue than EDL. It is also remarkable that the average consumer

satisfaction does not track the average consumer utility. This shows the importance of the

satisfaction function.

One could argue that in practice it would be rather difficult for users to specify the para-

meters of their utility and satisfaction function. Though this is true in today’s environments,

it is entirely feasible in intelligent environments where such information could be provided

by societal services [14]. The advantages of elastic requests is likely to motivate the creation

of such services in the computational economy of the future.

Even though we limit our analysis to a single broker system, we are confident that the

most important conclusions we are able to draw from our model are:

(i) Given a particular set of model parameters the satisfaction reaches an optimum; this

value represents the perfect balance between the utility and the price paid for resources,

(ii) The satisfaction does not track the utility,

157

(iii) Differentiated pricing perform better than linear pricing,

(iv) Brokers can effectively control the computing economy

will still be valid for multiple broker systems. In such an environment, individual brokers

could enforce different policies; providers and consumers could join the one that best matches

their individual goals. The other simplifying assumptions for our analysis, e.g., the unifor-

mity of the demand to capacity ratio for all resources available at a consumer’s site, will

most likely have second order effects. The restriction we impose by requiring a consumer to

obtain all necessary resources from a single broker is also unlikely to significantly affect our

findings.

It is too early to compare our model with other economic models proposed for resource

allocation in distributed systems, but we are confident that a model that formalizes the

selfish goals of consumers and providers, as well as societal goals, has a significant potential.

Our intention is to draw the attention of the community to the potential of utility, price,

and satisfaction-based resource allocation models.

A fair number of questions require further investigations including: (a) Are there better

alternatives to the utility, price, and satisfaction functions we introduced? (b) Is the policy

aiming to achieve maximum satisfaction sound, e.g., how should we take into account the

societal importance of activities carried out by individual resource consumers? (c) How can

we apply the models to more complex networks of resource managers? (d) What composition

rules should be used to describe the utility and/or the satisfaction for a group of consumers?

158

(e) How can we define more complex utility functions that take into account additional

constraints related to quality of service, system reliability, and deadlines?

159

LIST OF REFERENCES

[1] J. Almond and D. Snelling. UNICORE: uniform access to supercomputing as an
element of electronic commerce. Future Generation Computer Systems, 15(5–6):539–
548, October 1999.

[2] K. Amin, G. von Laszewski, M. Hategan, N. J. Zaluzec, S. Hampton, and A. Rossi.
GridAnt: A client-controllable grid workflow system. In Proceedings of the 37th Hawaii
International Conference on System Sciences, 2004.

[3] Y. Amir, B. Awerbuch, A. Barak, R. S. Borgstrom, and A. Keren. An opportunity
cost approach for job assignment in a scalable computing cluster. IEEE Transactions
on Parallel and Distributed Systems, 11(7):760–768, 2000.

[4] Y. Amir, B. A. B, and R.S.Borgstrom. A cost-benefit framework for online manage-
ment of a metacomputing system. In Proceedings of the 1st International Conference
on Information and Computation Economies (ICE 98), pages 140–147. ACM Press,
October 1998.

[5] A. Anastasiadi, S. Kapidakis, C. Nikolaou, and J. Sairamesh. A computational econ-
omy for dynamic load balancing and data replication. In Proceedings of the 1st In-
ternational Confefence on Information and Computation Economics (ICE 98). ACM
Press, October 1998.

[6] Ant. URL http://ant.apache.org/.

[7] Autonomic Computing. URL http://www.research.ibm.com/autonomic/index.html.

[8] L. Badia and M. Zorzi. On utility-based radio resource management with and without
service guarantees. In Proceedings of ACM Modelling, Analysis, and Simulation of
Wireless and Mobile Systems (MSWiM 2004), pages 244–251. ACM Press, 2004.

[9] X. Bai, L. Bölöni, D. C. Marinescu, H. J. Siegel, R. A. Daley, and I.-J. Wang. Are
utility, price, and satisfaction based resource allocation models suitable for large-scale
distributed systems? In Proceedings of the 3rd International Workshop on Grid Eco-
nomics and Business Models (GECON 2006) (to appear), Singapore, May 2006.

[10] X. Bai, L. Bölöni, D. C. Marinescu, H. J. Siegel, R. A. Daley, and I.-J. Wang. A
brokering framework for large-scale heterogeneous systems. In Proceedings of the 20th

160

IEEE International Parallel and Distributed Processing Symposium (IPDPS 2006) (to
appear), Rhodes Island, Greece, April 2006.

[11] X. Bai, H. Yu, Y. Ji, and D. C. Marinescu. Resource matching and a matchmaking
service for an intelligent grid. In Proceedings of International Conference on Compu-
tational Intelligence (ICCI2004), pages 262–265, 2004.

[12] X. Bai, H. Yu, Y. Ji, and D. C. Marinescu. Resource matching and a matchmaking
service for an intelligent grid. International Journal of Computational Intelligence,
1(3):197–205, 2004.

[13] X. Bai, H. Yu, G. Wang, Y. Ji, D. C. Marinescu, G. M. Marinescu, and L. Bölöni.
Intelligent grids. In J. C. Cunha and O. F. Rana, editors, Grid Computing: Software
Environments and Tools, pages 45–74. Springer Verlag, Heidelberg, 2006.

[14] X. Bai, H. Yu, G. Wang, Y. Ji, G. M. Marinescu, D. C. Marinescu, and L. Bölöni.
Coordination in intelligent grid environments. Proceedings of the IEEE, 93(3):613–630,
March 2005.

[15] R. J. Bayardo, Jr., W. Bohrer, R. Brice, A. Cichocki, J. Fowler, A. Helal, V. Kashyap,
T. Ksiezyk, G. Martin, M. Nodine, M. Rashid, M. Rusinkiewicz, R. Shea, C. Unnikr-
ishnan, A. Unruh, and D. Woelk. InfoSleuth: Agent-based semantic integration of
information in open and dynamic environments. In Proceedings of the ACM Inter-
national Conference on Management of Data, volume 26, pages 195–206, New York,
1997. ACM Press.

[16] D. Bhatia, V. Burzevski, M. Camuseva, G. Fox, W. Furmanski, and G. Premchan-
dran. WebFlow - a visual programming paradigm for Web/Java based coarse grain
distributed computing. Concurrency - Practice and Experience, 9(6):555–577, 1997.

[17] H. P. Bivens. Grid workflow. In Grid Computing Environments Working Group Doc-
ument, Global Grid Forum, 2001.

[18] L. Bölöni, K. Jun, K. Palacz, R. Sion, and D. Marinescu. The Bond agent system
and applications. In D. Kotz and F. Mattern, editors, Agent Systems, Mobile Agents,
and Applications, Lecture Notes on Computer Science, volume 1882, pages 99–112.
Springer Verlag, 2000.

[19] L. Bölöni and D. Turgut. YAES - a modular simulator for mobile networks. In
Proceedings of the 8th ACM/IEEE International Symposium on Modeling, Analysis and
Simulation of Wireless and Mobile Systems (MSWIM 2005), pages 169–173, October
2005.

[20] BPEL4WS. URL http://www.oasis-open.org/cover/bpel4ws.html.

161

[21] R. Buyya, D. Abramson, and J. Giddy. Nimrod/G: An architecture of a resource man-
agement and scheduling system in a global computational grid. In High Performance
Computing in Asia 2000. IEEE Press, September 2000.

[22] R. Buyya, H. Stockinger, J. Giddy, and D. Abramson. Economic models for man-
agement of resources in peer-to-peer and grid computing. In Proceedings of the SPIE
International Conference on Commercial Applications for High-Performance Comput-
ing, Denver, USA, August 20-24 2001.

[23] G. Cabri, L. Leonardi, and F. Zambonelli. Reactive tuple spaces for mobile agent
coordination. In Mobile Agents, pages 237–248, 1998.

[24] J. Cao. ARMSim: A modeling and simulation environment for agent-based grid com-
puting. SIMULATION, 80(4):221–229, 2004.

[25] J. Cao, S. A. Jarvis, and S. Saini. ARMS: An agent-based resource management
system for grid computing. Scientific Programming, 10(2):135–148, 2002.

[26] J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd. GridFlow: Workflow management for
grid computing. In Proceedings of the International Symposium on Cluster Computing
and the Grid 2003, pages 198–205, 2003.

[27] J. Cao, D. J. Kerbyson, and G. R. Nudd. Performance evaluation of an agent-based
resource management infrastructure for grid computing. In Proceedings of the Inter-
national Symposium on Cluster Computing and the Grid 2001, pages 311–319, 2001.

[28] J. Cao, D. J. Kerbyson, and G. R. Nudd. Use of agent-based service discovery for
resource management in metacomputing environment. In Proceedings of Euro-Par
2001, pages 882–886, 2001.

[29] J. Cao, D. P. Spooner, S. A. Jarvis, S. Saini, and G. R. Nudd. Agent-based grid
load balancing using performance-driven task scheduling. In Proceedings of the 17th
International Parallel and Distributed Processing Symposium (IPDPS 2003), pages
49–58, 2003.

[30] N. Carriero and D. Gelernter. Linda in context. Communications of the ACM,
32(4):444–458, 1989.

[31] B. N. Chun and D. E. Culler. Market-based proportional resource sharing for clusters.
Technical report, University of California at Berkeley, Berkeley, CA, USA, 2000.

[32] L. Chunlin and L. Layuan. Agent framework to support the computational grid.
Journal of Systems and Software, 70(1):177–187, 2004.

[33] D. Clark. Face-to-face with peer-to-peer networking. Computer, 34(1):18–21, 2001.

162

[34] CONDOR. URL http://www.cs.wisc.edu/condor/.

[35] B. F. Cooper and H. Garcia-Molina. Peer-to-peer data preservation through storage
auctions. IEEE Transaction on Parallel and Distributed Systems, 16(3):246–257, 2005.

[36] COSA. URL http://www.cosa.de/.

[37] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, K. Blackburn,
A. Lazzarini, A. Arbree, R. Cavanaugh, and S. Koranda. Mapping abstract complex
workflows onto grid environments. Journal of Grid Computing, 1(1):25–39, 2003.

[38] Domino Workflow. URL http://www.lotus.com/workflow/.

[39] Eastman Software. URL http://www.eastmansoftware.com/.

[40] J. Eder, E. Panagos, and M. Rabinovich. Time constraints in workflow systems. In
Proceedings of the 11th International Conference on Advanced Information Systems
Engineering (CAiSE 99), pages 286–300, 1999.

[41] C. A. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within workflow systems.
In Proceedings of Conference on Organizational Computing Systems, pages 10–21, 1995.

[42] FAFNER. URL http://www.npac.syr.edu/factoring.html.

[43] I. Foster, J. Geisler, W. Nickless, W. Smith, and S. Tuecke. Software infrastructure
for the I-WAY high-performance distributed computing experiment. In Proceeeding of
the 5th IEEE Symposium on High Performance Distributed Computing, pages 562–571.
IEEE Computer Society Press, 1996.

[44] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. The In-
ternational Journal of Supercomputer Applications and High Performance Computing,
11(2):115–128, Summer 1997.

[45] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, San Francisco, CA, 1999.

[46] I. T. Foster, N. R. Jennings, and C. Kesselman. Brain meets brawn: Why grid and
agents need each other. In Proceedings of the 3rd international joint conference on
Autonomous Agents and Multi-Agent Systems, pages 8–15, 2004.

[47] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke. Condor-G: A computa-
tion management agent for multi-institutional grids. In Proceedings of the 10th IEEE
Symposium on High Performance Distributed Computing, pages 7–9, San Francisco,
California, August 2001.

[48] A. Geppert and D. Tombros. Event-based distributed workflow execution with EVE.
Technical Report ifi-96.05, University of Zurich, 20, 1996.

163

[49] Global Grid Forum (GGF). URL http://www.ggf.org/.

[50] P. Ghosh, N. Roy, S. K. Das, and K. Basu. A pricing strategy for job allocation in
mobile grids using a non-cooperative bargaining theory framework. Journal of Parallel
and Distributed Computing, 65(11):1366–1383, 2005.

[51] J. Gomoluch and M. Schroeder. Market-based resource allocation for grid computing:
A model and simulation. In Middleware Workshops, pages 211–218, 2003.

[52] A. Grasso, J.-L. Meunier, D. Pagani, and R. Pareschi. Distributed coordination and
workflow on the World Wide Web. Computer Supported Cooperative Work, 6(2):175–
200, 1997.

[53] A. S. Grimshaw and W. A. Wulf. The legion vision of a worldwide virtual computer.
Communication of the ACM, 40(1):39–45, January 1997.

[54] W. Grosso, H. Eriksson, R. Fergerson, J. Gennari, S. Tu, and M. Musen. Knowledge
modeling at the millennium – the design and evolution of Protégé, 2000.

[55] C. Grothoff. Resource allocation in peer-to-peer networks - an excess-based economic
model. Wirtschaftsinformatik, 45(3):285–292, 2003.

[56] L. He and T. R. Ioerger. Task-oriented computational economic-based distributed
resource allocation mechanisms for computational grids. In Proceedings of the Inter-
national Conference on Artificial Intelligence (IC-AI 04), pages 462–468, 2004.

[57] G. Heiser, F. Lam, and S. Russel. Resource management in the mungi single-address-
space operating system, 1998.

[58] HP Grid computing. URL http://www.hp.com/techservers/grid.

[59] S. Hwang and C. Kesselman. GridWorkflow: A flexible failure handling framework for
the grid. In Proceeeding of the 12th IEEE Symposium on High Performance Distributed
Computing, pages 126–137, 2003.

[60] I-Flow: Fijitsu. URL http://www.i-flow.com/.

[61] IBM Grid computing. URL http://www.ibm.com/grid.

[62] InConcert: Tibco Software. URL http://www.tibco.com/.

[63] Jade. URL http://sharon.cselt.it/projects/jade/.

[64] N. R. Jennings. An agent-based approach for building complex software systems.
Communications of the ACM, 44(4):35–41, 2001.

164

[65] N. R. Jennings and M. J. Wooldridge. Agent Technology: Foundations, Applications,
Markets. Springer-Verlag, Berlin, 1997.

[66] G. Jezic, M. Kusek, T. Marenic, I. Ljubi, I. Lovrek, S. Desic, and B. Dellas. Mobile
agent-based software management in grid. In Proceedings of the 13th IEEE Interna-
tional Workshops on Enabling Technologies (WETICE 2004), pages 345–346, 2004.

[67] JINI. URL http://www.jini.org/.

[68] D. Judge, B. Odgers, J. Shepherdson, and Z. Cui. Agent enhanced workflow, 1998.

[69] K. Jun, L. Bölöni, K. Palacz, and D. C. Marinescu. Agent-based resource discovery.
In Proceedings of the 9th Heterogeneous Computing Workshop, pages 43–52, 2000.

[70] G. Kappel, S. Rausch-Schott, and W. Retschitzegger. Coordination in workflow man-
agement systems - a rule-based approach. In Proceedings of Coordination Technology
for Collaborative Applications 96, pages 99–120, 1996.

[71] H. N. L. C. Keung, J. Cao, D. P. Spooner, S. A. Jarvis, and G. R. Nudd. Grid
information services using software agents. In Proceedings of the 18th Annual UK
Performance Engineering Workshop (UKPEW 2002), pages 187–198, July 2002.

[72] S. Krishnan, P. Wagstrom, and G. von Laszewski. GSFL: A workflow framework for
grid services. Technical report, Argonne National Laboratory, 2002.

[73] D. Kuokka and L. Harada. Matchmaking for information agents. In Proceedings of the
1st International Joint Conferences on Artificial Intelligence, pages 672–678, 1995.

[74] S. Kurkovsky and Bhagyavati. Agent-based distributed IDA* search algorithm for a
grid of mobile devices. White Paper, 2003.

[75] S. Kurkovsky and Bhagyavati. Modeling a computational grid of mobile devices as
a multi-agent system. In Proceedings of the International Conference on Artificial
Intelligence (IC-AI 03), pages 36–44, 2003.

[76] S. Lalis and A. Karipidis. JaWS: An open market-based framework for distributed
computing over the internet. In R. Buyya and M. Baker, editors, GRID, volume 1971
of Lecture Notes in Computer Science, pages 36–46. Springer, 2000.

[77] P. Lawrence, editor. Workflow handbook 1997. John Wiley & Sons, Inc., 1997.

[78] T. J. Lehman, S. W. McLaughry, and P. Wycko. T Spaces: The next wave. In
Proceedings of the 32th Hawaii International Conference on System Sciences, 1999.

[79] C. Liu, L. Yang, I. T. Foster, and D. Angulo. Design and evaluation of a resource
selection framework for grid applications. In Proceeeding of the 11th IEEE Symposium
on High Performance Distributed Computing, pages 63–72, 2002.

165

[80] M. Lorch and D. G. Kafura. Symphony - a Java-based composition and manipulation
framework for computational grids. In International Symposium on Cluster Computing
and the Grid 2002, pages 136–143, 2002.

[81] F. Manola and C. Thompson. Characterizing the agent grid. Technical report, Object
Services and Consulting, Inc., 1999.

[82] D. C. Marinescu. Internet-Based Workflow Management: Toward a Semantic Web.
Wiley, New York, 2002.

[83] D. C. Marinescu and Y. Ji. A computational framework for the 3d structure de-
termination of viruses with unknown symmetry. Journal of Parallel and Distributed
Computing, 63(7-8):738–758, 2003.

[84] D. C. Marinescu, G. M. Marinescu, and Y. Ji. The complexity of scheduling and
coordination on computational grids. In D. C. Marinescu and C. Lee, editors, Process
Coordination and Ubiquitous Computing, pages 119–132. CRC Press, 2002.

[85] Mariposa. URL http://mariposa.cs.berkeley.edu/.

[86] L. W. McKnight and J. Boroumand. Pricing internet services: Approaches and chal-
lenges. IEEE Computer, 33(2):128–129, 2000.

[87] Mojo Nation. URL http://www.mojonation.net/.

[88] M. Z. Muehlen and J. Becker. Workflow process definition language - development
and directions of a meta-language for wokflow processes. In L. a. Bading, editor,
Proceedings of the 1st KnowTech Forum, Potsdam, September 1999.

[89] S. Nestorov, S. Abiteboul, and R. Motwani. Inferring structure in semistructured data.
In Workshop on Management of Semistructured Data, 1997.

[90] Nimrod. URL http://www.csse.monash.edu.au/ davida/nimrod/.

[91] N. Nisan, S. London, O. Regev, and N. Camiel. Globally distributed computation
over the internet - the POPCORN project. In Proceedings of the 18th International
Conference on Distributed Computing Systems, pages 592–601, 1998.

[92] NSF Middleware Initiative (NMI). URL http://www.nsf-middleware.org/.

[93] G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S. C. Perry, J. S. Harper, and D. V.
Wilcox. PACE — A toolset for the performance prediction of parallel and distributed
systems. The International Journal of High Performance Computing Applications,
14(3):228–251, Fall 2000.

[94] P. O’Brien and M. Wiegand. Agent based process management: applying intelligent
agents to workflow. The Knowledge Engineering Review, 13(2), 1998.

166

[95] OGSA. URL http://www.globus.org/ogsa/.

[96] A. Omicini, F. Zambonelli, M. Klusch, and R. Tolksdorf, editors. Coordination of
Internet Agents: Models, Technologies, and Applications. Springer, 2001.

[97] B. Overeinder, N. Wijngaards, M. van Steen, and F. Brazier. Multi-agent support for
internet-scale grid management. In Proceedings of the AISB’02 Symposium on AI and
Grid Computing, pages 18–22, 2002.

[98] M. Paolucci, N. Srinivasan, K. P. Sycara, and T. Nishimura. Towards a semantic
choreography of web services: From WSDL to DAML-S. In Proceedings of the 2003
International Conference on Web Services (ICWS 2003), pages 22–26, 2003.

[99] C. J. Petrie, S. Goldmann, and A. Raquet. Agent-based project management. In
Artificial Intelligence Today, pages 339–363, 1999.

[100] A. Poggi, M. Tomaiuolo, and P. Turci. Extending JADE for agent grid applications.
In Proceedings of the 13th IEEE International Workshops on Enabling Technologies
(WETICE 2004), pages 352–357, 2004.

[101] Protégé. URL http://protege.stanford.edu/.

[102] R. Raman, M. Livny, and M. H. Solomon. Matchmaking: Distributed resource man-
agement for high throughput computing. In Proceeeding of the 7th IEEE Symposium
on High Performance Distributed Computing, pages 140–146, 1998.

[103] O. F. Rana and D. W. Walker. The agent grid: agent-based resource integration in
PSEs. In Proceedings of the 16th IMACS World Congress on Scientific Computation,
Applied Mathematics and Simulation. Lausanne, Switzerland, 2000.

[104] D. Reed, I. Pratt, P. Menage, S. Early, and N. Stratford. Xenoservers: Accountable
execution of untrusted programs. In Proceedings of the Workshop on Hot Topics in
Operating Systems, pages 136–141, 1999.

[105] D. Rossi, G. Cabri, and E. Denti. Tuple-based technologies for coordination. In
Coordination of Internet Agents: Models, Technologies, and Applications, pages 83–
109, 2001.

[106] D. D. Roure, M. A. Baker, N. R. Jennings, and N. R. Shadbolt. The evolution of the
grid. In Grid Computing: Making The Global Infrastructure a Reality, pages 65–100.
John Wiley & Sons, 2003.

[107] J.-G. Schneider, M. Lumpe, and O. Nierstrasz. Agent coordination via scripting lan-
guages. In Coordination of Internet Agents: Models, Technologies, and Applications,
pages 153–175, 2001.

167

[108] Semantic Grid. URL http://www.semanticgrid.org/.

[109] Semantic Web. URL http://www.w3.org/2001/sw/.

[110] SETI@home. URL http://setiathome.ssl.berkeley.edu/.

[111] W. Shen, Y. Li, H. H. Genniwa, and C. Wang. Adaptive negotiation for agent-based
grid computing. In Proceedings of AAMAS2002 Workshop on Agentcities: Challenges
in Open Agent Environments, pages 32–36, 2002.

[112] R. Siebert. An open architecture for adaptive workflow management systems. In Issues
and Applications of Database Technology (IADT), pages 79–85, 1998.

[113] H. A. Simon. Models of Man. Wiley, 1957.

[114] N. Singh. A common Lisp API and facilitator for ABSI: version 2.0.3. Technical
Report Logic-93-4, Logic Group, Computer Science Department, Stanford University,
1993.

[115] Staffware. URL http://www.staffware.com/.

[116] M. Stonebraker, R. Devine, M. Kornacker, W. Litwin, A. Pfeffer, A. Sah, and
C. Staelin. An economic paradigm for query processing and data migration in mari-
posa. In Proceedings of 3rd International Conference on Parallel and Distributed In-
formation Systems, September 1994.

[117] V. S. Subrahmanian, J. Dix, and F. Ozcan. Heterogeneous Agent Systems. MIT Press,
2000.

[118] Sun Microsystems utility computing. URL http://www.sun.com/service/utility.

[119] K. Sycara, J. Lu, and M. Klusch. Interoperability among heterogeneous software agents
on the internet. Technical Report CMU-RI-TR-98-22, Carnegie Mellon University, PA
(USA), 1998.

[120] K. P. Sycara, S. Widoff, M. Klusch, and J. Lu. Larks: Dynamic matchmaking among
heterogeneous software agents in cyberspace. Autonomous Agents and Multi-Agent
Systems, 5(2):173–203, 2002.

[121] G. Tesauro, D. M. Chess, W. E. Walsh, R. Das, A. Segal, I. Whalley, J. O. Kephart, and
S. R. White. A multi-agent systems approach to autonomic computing. In Proceed-
ings of the 3rd international joint conference on Autonomous Agents and Multi-Agent
Systems, pages 464–471, 2004.

[122] A. Tveit. jfipa - an architecture for agent-based grid computing. In Proceedings of the
Symposium of AI and Grid Computing, AISB Convention. AISB, April 2002.

168

[123] W. M. P. van der Aalst, A. P. Barros, A. H. M. ter Hofstede, and B. Kiepuszewski.
Advanced workflow patterns. In Proceedings of the 7th International Conference on
Cooperative Information Systems (CoopIS 2000), pages 18–29, 2000.

[124] H. R. Varian. Intermediate Microeconomics: A Modern Approach. Norton, New York,
March 1999.

[125] D. Veit, J. P. Muller, and C. Weinhardt. An empirical evaluation of multidimensional
matchmaking. In Proceedings of the 3rd International Workshop on Agent Mediated
Elecronic Commerce (AMEC), 2003.

[126] W. Vickrey. Counterspeculation and competitive sealed tenders. Journal of Finance,
16(1):8–37, 1961.

[127] Visual Workflo: FileNet. URL http://www.filenet.com/.

[128] World Wide Web Consortium (W3C). URL http://www.w3c.org/.

[129] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart, and W. S. Stornetta.
Spawn: A distributed computational economy. Software Engineering, 18(2):103–117,
1992.

[130] Y. Wang and J. Liu. Macroscopic model of agent-based load balancing on grids.
In Proceedings of the 2nd international joint conference on Autonomous Agents and
Multi-Agent Systems, pages 804–811, 2003.

[131] Websphere MQ Workflow. URL http://www-3.ibm.com/software/integration/wmqwf/.

[132] WfMC. URL http://www.wfmc.org/.

[133] G. J. Wickler. Using Expressive and Flexible Action Representations to Reason about
Capabilities for Intelligent Agent Cooperation. PhD thesis, University of Edinburgh,
1999.

[134] T. Winograd. Language as a Cognitive Process. Addison-Wesley, MA, 1983.

[135] R. Wolski, J. S. Plank, J. Brevik, and T. Bryan. Analyzing market-based resource
allocation strategies for the computational Grid. The International Journal of High
Performance Computing Applications, 15(3):258–281, Fall 2001.

[136] R. Wolski, J. S. Plank, J. Brevik, and T. Bryan. G-commerce: Market formulations
controlling resource allocation on the computational grid. In Proceedings of the 15th
International Parallel and Distributed Processing Symposium (IPDPS 2001), pages
46–63, 2001.

[137] M. Wooldridge. Agent-based software engineering. IEE Proceedings - Software Engi-
neering, 144(1):26–37, 1997.

169

[138] M. J. Wooldridge and N. R. Jennings. Intelligent Agents: Theory and Practice. Knowl-
edge Engineering Review, 10(2):115–152, June 1995.

[139] WSFL. URL http://www.ebpml.org/wsfl.htm.

[140] XLang. URL http://www.ebpml.org/xlang.htm.

[141] H. Yu, X. Bai, and D. C. Marinescu. Workflow management and resource discovery
for an intelligent grid. Parallel Computing, 31(7):797–811, July 2005.

[142] H. Yu, X. Bai, G. Wang, Y. Ji, and D. C. Marinescu. Metainformation and workflow
management for solving complex problems in grid environment. In Proceedings of
the 18th International Parallel and Distributed Processing Symposium (IPDPS 2004),
Santa Fe, New Mexico, April 2004.

[143] M. zur Muehlen. Evaluation of workflow management systems using meta models. In
Proceedings of the 32nd Hawaii International Conference on System Sciences, pages
1–11, 1999.

170

	Analysis Of Aircraft Arrival Delay And Airport On-time Performance
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF PUBLICATIONS
	CHAPTER 1 INTRODUCTION
	1.1 Motivation
	1.2 Algorithms, Models, Implementation, and Performance Studies
	1.2.1 Algorithms and Models
	1.2.2 The Implementation
	1.2.3 Performance Studies

	1.3 Contributions
	1.4 Organization

	CHAPTER 2 COORDINATION
	2.1 Introduction and Motivation
	2.2 Background and Related Work
	2.2.1 Grid Computing
	2.2.2 Agent-Based Computing
	2.2.3 Workflow Management

	2.3 Coordination and Coordination Services
	2.3.1 Process Coordination
	2.3.2 Coordination Techniques
	2.3.3 Process Coordination and Workflow Management
	2.3.4 Process Description and Case Description
	2.3.5 Coordination Services

	2.4 A Case Study: the Coordination Service in BondGrid
	2.4.1 Process Description and Case Description
	2.4.2 Ontologies for BondGrid Coordination
	2.4.3 The Coordination Service
	2.4.4 Performance Measurements

	CHAPTER 3 MATCHMAKING
	3.1 Introduction and Motivation
	3.2 Background and Related Work
	3.3 Resource Ontologies
	3.4 The Matchmaking Problem
	3.5 A Case Study: the Matchmaking Service in BondGrid
	3.5.1 The Matchmaking Service
	3.5.2 Performance Measurements

	CHAPTER 4 A MACRO-ECONOMIC RESOURCE ALLOCATION MODEL
	4.1 Introduction and Motivation
	4.2 Background and Related Work
	4.3 Basic Concepts
	4.3.1 Price Function
	4.3.2 Utility Function
	4.3.3 Satisfaction Function
	4.3.4 Resource Provider-Consumer Model

	4.4 The Role of Brokers in the Macro-Economic Model
	4.5 A Simulation Study

	CHAPTER 5 CONCLUSIONS
	LIST OF REFERENCES

