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ABSTRACT

This thesis proposes and evaluates a new cooperative guidance law called General Vector Explicit -

Impact Time and Angle Control Guidance (GENEX-ITACG). The motivation for GENEX-ITACG

came from an explicit trajectory shaping guidance law called General Vector Explicit Guidance

(GENEX). GENEX simultaneously achieves design specifications on miss distance and terminal

missile approach angle while also providing a design parameter that adjusts the aggressiveness of

this approach angle. Encouraged by the applicability of this user parameter, GENEX-ITACG is an

extension that allows a salvo of missiles to cooperatively achieve the same objectives of GENEX

against a stationary target through the incorporation of a cooperative trajectory shaping guidance

law called Impact Time and Angle Control Guidance (ITACG).

ITACG allows a salvo of missile to simultaneously hit a stationary target at a prescribed impact

angle and impact time. This predetermined impact time is what allows each missile involved

in the salvo attack to simultaneously arrived at the target with unique approach angles, which

greatly increases the probability of success against well defended targets. GENEX-ITACG further

increases this probability of kill by allowing each missile to approach the target with a unique

approach angle rate through the use of a user design parameter.

The incorporation of ITACG into GENEX is accomplished through the use of linear optimal control

by casting the cost function of GENEX into the formulation of ITACG. The feasibility GENEX-

ITACG is demonstrated across three scenarios that demonstrate the ITACG portion of the guidance

law, the GENEX portion of the guidance law, and finally the entirety of the guidance law. The

results indicate that GENEX-ITACG is able to successfully guide a salvo of missiles to simulta-

neously hit a stationary target at a predefined terminal impact angle and impact time, while also

allowing the user to adjust the aggressiveness of approach.
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CHAPTER 1: INTRODUCTION

Guided missile technology is a challenging, multi-discipline subject that has provided war fight-

ers with innovative weapons since their introduction in World War II. The guidance law that is

the subject of this thesis, General Vector Explicit - Impact Time and Angle Control guidance

(GENEX-ITACG), represents only a portion of many subsystems that must be integrated together

to accurately guide a missile to a target. It may be beneficial to provide readers who are unfamil-

iar with guided missile background information before the discussion of missile guidance laws.

Therefore, the history of guided missiles, the three phases of guided flight and the traditional guid-

ance, navigation and control (GNC) architecture for guided missiles are discussed in this section.

Guided missiles were introduced by the Germans in 1939. Warheads were previously delivered

through the use of unguided rockets, which were essentially projectile weapons that flew ballistic

trajectories. These unguided rockets were notoriously inaccurate due to their inability to alter their

flight path once launched. Errors from target position uncertainty, wind gust and other disturbances

to the missile flight path cannot be reduced without the ability to alter flight path. Guided missiles

improved accuracy by altering the missiles flight path through the use of aerodynamic surfaces,

thrust vectoring or side thrusters.

The first guided missile developed by the Germans was the Fritz X (FX1400), which was an un-

powered, air-to-ground missile that glided to its target. During the same time period, the Germans

also produced the HS293 missile. Unlike the FX1400, the HS293 was powered by a liquid fuel

rocket motor and had a maximum range of about 8km. Several variants of the HS293 were pro-

duced, one being the larger HS294 which had two solid fuel rocket motors. Several ground-to-air

missiles were also being developed by the end of WWII.
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Two long range missiles produced by the Germans during WWII were the V1 and V2 missiles,

which were used extensively against the British. The V1 missile was a catapult launched missile

with a pulse jet motor that flew at 300mph before entering a preprogrammed dive. The V2 missile

was larger and had a one minute rocket motor burn time that allowed it to reach cruising altitudes

of Mach 5.

In 1946, the British began experimenting with guided weapons through the use of test vehicles.

The first test vehicle was the short range, air-to-air, CTV1 test vehicle. This test vehicle incorpo-

rated three boost stages and had a maximum range of about 20,000 feet. Guidance and control

techniques such as staging, roll stabilization, beam rider guidance and command link guidance

were experimented with on this vehicle. The next test vehicle developed was the two stage RTV1

which had an increased range of about 46,000 feet. The second version of the RTV1 test vehicle,

RTV2, also known as the GPV, had 8 solid fuel motors. An elaborate recovery system that included

three first stage parachutes, a 20 foot second stage parachute and flotation gear was experimented

with on this vehicle. Then a number of high altitude, high mach experiments were down with the

CTV5 series of test vehicles. A few of these experiments were on kinetic heating, heat transfer at

high Mach, and high altitude tracking. These experiments by Britain on test vehicles lasted until

1958 [14].

The phases of flight for a guided missile are shown in Fig. 1.1 to better understand the aforemen-

tioned boost stages. The purpose of the boost phase is to boost the missile up to flight speed while

establishing a flight path to intercept the target. The purpose of the mid-course phase of flight is to

guide the missile relatively close to the target at some desired orientation to aid in acquisition of

the target. It is typically for this phase of flight to incorporate other objectives such as minimizing

time of flight or conservation of energy. Conservation of energy is important because high ma-

neuverability is typically needed during the terminal phase of flight, whose purpose is to minimize

miss distance by eliminating all of the accumulated errors from the previous stages of flight.
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Figure 1.1: Phases of Flight:©The Johns Hopkins University Applied Physics Laboratory

The latter part of the terminal phase is known as the endgame. During the endgame the missile may

be required to maneuver at maximum capability. The target is destroyed by guiding the missile to

some lethal radius and using blast fragmentation, or by directly hitting the target. Not all missiles

incorporate every phase of flight, but those that do are known as multi-stage missiles [12].

The traditional architecture of a missile’s GNC system is shown in Fig. 1.2. There are three meth-

ods for target sensing: passive, semi-active, and active. Passive sensing is accomplished through

the use of sensors that detects stray signals emitted from the target, such as the heat signature or ra-

dio frequency signals. This method of sensing directly provides the angular direction of the target,

but does not directly provide range or range-rate information. Range and range-rate is typically

needed by advanced guidance laws.
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Figure 1.2: GNC Structure:©The Johns Hopkins University Applied Physics Laboratory

Semi-active homing is accomplished through the use of an off-board designator that illuminates the

target and a onboard sensors that detects reflected signals emitted by the designator. Not only may

range, range-rate, the angular direction of the target be provided by this method, but a significant

increase in signal power may also be introduced without a increasing the size or weight of the

missile.

Conversely, active sensing is accomplished through the use of an onboard designator. This method

adds additional cost and weight to the missile. But, active sensing is self-sufficient after launch

(fire and forget). Semi-active sensing is typically used during the mid-course phase of flight, while

active sensing is typically restricted to the terminal phase of flight [12].

The role of the guidance filter is to remove noise from the states measured by the sensors and

provide estimates on any states needed by the guidance law not directly provided by the sensors.

This is typically accomplished through the use of linear or extended Kalman filters.
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The guidance law uses the states provided by the guidance filter and generates commands that

minimize the final miss distance between missile and target. The first method of guidance was

for a person to compute commands based off observations and alter the flight path of the missile

through a command link. Although relatively cheap, this method of guidance suffered from human

errors and loss of slight in unfavorable conditions.

Eventually, the human was replaced with a radar set. The radar set eliminated many of these errors,

but was more expensive and noisy. With the use of telemetry, semi-automatic systems came into

use that used the radar to track the target and person to keep the target in the field of view. Then

the first method of homing guidance called beam riding was introduced. Beam rider guidance was

accomplished by following the target with a beam and keeping the missile within this beam until

the missile reached the target. The beam is emitted from an off-board eliminator and a onboard

sensor tracks the beam.

Contrary to homing guidance, with inertial guidance the missile is commanded to a predetermined

position. The guidance commanded are based off the error between the missile’s position and the

predetermined position. The missile’s position is calculated from measured accelerations. Obvi-

ously, this type of guidance is not suitable against highly maneuvering targets [14].

The autopilot forces the missile to follow guidance commands while maintaining stable flight by

issuing commands to actuators. This can be accomplished through three different control tech-

niques:

1. Roll stabilized - the missile is rolled so that lateral surfaces aligned with inertial axes.

2. Twist and steer - the missile is rolled so that lateral surfaces are normal to the direction of

motion.

3. Non-roll position controlled - no attempt is made to control the missile’s roll position.
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Cartesian guidance commands can be fed directly into the actuator of a roll stabilized missile since

the surfaces are aligned with the inertial axis. Whereas in twist and steer controlled missiles,

cartesian guidance commands need to be converted to polar form before being used. In non-roll

position controlled missile the roll rate must be kept lower than than the lateral command rates or

else lateral commands cannot be followed [14].

Early guided missiles were built like airplanes with the use of rudders, canards and elevators to

control motion in three planes. Then a symmetric cruciform design, which allowed maneuvering

in all directions came, into use. Actuators force physical surfaces on the missile to follow control

input from the autopilot. In early design and analysis actuators are typically modeled as a second

order transfer function. For endoatmospheric flight several different aerodynamic control surfaces

may be used such as moving wings, moving tailfins, and canards. Several non-aerodynamic means

of control are also used such as thrust vectoring, jet vanes, and side thrustors [14].

The inertial navigation system provides several missile parameters used by the guidance law and

autopilot through the use of accelerators which measure acceleration and gyroscopes which mea-

sure angular velocity. Similar to actuators, during early design and analysis the INS is typically

modeled as a second order transfer function. Care must be in the flight control design to ensure

that the dynamic range of the INS and the dynamic range of the actuator are not exceeded. The

former leads to loss of inertial reference and the later may lead to significant performance degra-

dation. Typically dynamic parameters evaluated are actuator position limit, actuator rate limit and

INS measured acceleration limit [14].
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This thesis concentrates on the guidance law component of the GNC system. The guidance law

developed in this thesis, GENEX-ITACG, allows for a salvo homing missiles to simultaneously

hit a stationary target at a prescribed impact time and impact angle, while also providing a user

design parameter to alter the aggressiveness approach. Two guidance laws, general vector explicit

guidance (GENEX) and impact time and angle control guidance (ITACG), motivated the creation

GENEX-ITACG.

GENEX is an explicit guidance law that provides the user with a design parameter to adjust the

aggressiveness of approach at a prescribed impact angle. However, GENEX does not allow for a

simultaneous attack. This is accomplished through the integration of ITACG, which allows a salvo

of missiles to simulatively hit a stationary target at a prescribed impact angle and impact time.

Chapter 2 provides the reader with an overview of several existing guidance laws. First the en-

gagement geometry is presented to develop the dynamic equations of motion. Then proportional

navigation (ProNav) is presented along with its several variations. Then concept of developing

guidance laws through linear optimal control is presented. Then trajectory shaping guidance laws

that specifies impact angles are presented. Finally, cooperative guidance laws that allow for several

missiles to simulatively hit a target are presented.

Chapter 3 present the methods used to formulate GENEX-ITACG and applies these methods to

develop the guidance law. An overview of linear optimal control, which establishes a flight objec-

tive while satisfying the constraints of the equations of motion, is presented. Then the derivation

of GENEX-ITACG using the equations of motion and linear optimal control is presented.
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Chapter 4 presents the simulation results of the cooperative guidance law. First, the effects of

adjusting the prescribed impact angle of GENEX-ITACG is presented. Then the effects of adjust-

ing the user design parameter of GENEX-ITACG on flight aggressiveness is presented. Then the

effects of adjusting the prescribed impact time of GENEX-ITACG is presented. Lastly, a three

missile salvo attack using GENEX-ITACG is presented.

Chapter 5 concludes this document with comments and areas of future development. One of these

areas include removing the need to specify a predetermined impact time. Regardless, GENEX-

ITACG is a power guidance law in itself. Let the journey begin.
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CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

In this chapter, several guidance laws are presented. The first guidance law presented is the well

proven proportional navigation (Pro-Nav) guidance law. Pro-Nav essentially guides the missile by

commanding accelerations directly proportional to the line of sight rate until impact. Many fielded

missiles today use this guidance law or some variant of it due to its ease of implementation and

proven robustness.

Two common forms presented are true proportional navigation (TPN) and pure proportional nav-

igation (PPN). These two forms of Pro-Nav differ in the direction of commanded acceleration as

shown in Fig. 2.1. TPN commands accelerations normal to the line of sight (LOS) vector while

PPN commands accelerations normal to the missile’s velocity. Simply put, the LOS vector is the

line that connects the center of gravity of the missile to the center of gravity of the target.

A closed-form solution is obtainable for TPN because the components of acceleration along the

LOS and transverse to the LOS to can be completely separated. In [5] Guelman provides a closed-

form solution for using TPN against a nonmaneuvering target, alongwith the set of initial condi-

tions that guarantees interception. These conditions that gurantee intercept are known as capture

conditions. In [2], Ghose extends these results by performing a qualitative analysis for using TPN

against a maneuvering target, alongwith analogous capture conditions.

Contrary to TPN, a general closed-form solution for PPN is unobtainable. However, in [4] Guel-

man performs a qualitative study that provides capture conditions for using PPN against a non

maneuvering. In [4], Guelman extends these results by providing the capture conditions against a

maneuvering target. These capture conditions for TPN and PPN are presented.

9



Then a commonly used variant of Pro-Nav called augmented proportional navigation (APN) is

presented. APN directly accounts for target maneuvering in its derivation, whereas the previously

mentioned Pro-Nav guidance laws do not. This additional information makes APN significantly

more effective against highly maneuvering targets. In [16] and [17], APN is derived by recasting

the polar dynamic equations into cartesian form. Several concepts such as time-to-go and zero ef-

fort miss are introduced. The derivation of APN alongwith these associated concepts are presented

next.

Next, the formulation of guidance laws through what is known as linear optimal control is pre-

sented. Linear optimal control is accomplished by making reasonable assumptions about the non-

linear dynamic equations that govern the intercept scenario. With these assumptions, linear optimal

control allows for the development of power guidance laws that take in additional information to

achieve flight objectives such as minimum time trajectories, minimum energy trajectories and ter-

minal impact angles. In [13] Palumbo, Jackson and Blauwkamp present the equations of motion

in cartesian form alongwith the representation of this nonlinear equations in state space format

through linearization. This derivation of the linear equations of motion in state space format are

presented next.

In [17], Zipfel presents the linear optimal control equivalent to Pro-Nav called advanced guidance

law (AGL). In [7], Lukacs extends AGL by taking target maneuvering into account to formulate

the linear optimal control equivalent to APN called augmented advanced guidance law (AAGL).

In [13], Palumbo, Jackson and Blaukamp extend AAGL by taking system lags into account to

formulate advanced optimal guidance law (OGL). Each of these guidance laws are presented next.
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Next, two trajectory shaping guidance laws designed to achieve a desired terminal impact angle are

presented. The ability to control impact angle is crucial in penetrating the defense of well guarded

or well armored targets. In [9], Kim and Grinder present a trajectory shaping guidance law that

controls the terminal impact angle. In [11], Ohlmeyer presents a trajectory shaping guidance law

that controls the terminal impact angle while also providing the user with a design parameter to

shape the aggressiveness of the trajectory called general vector explicit guidance (GENEX). Each

of these trajectory shaping guidance laws are presented next.

Finally, two cooperative guidance laws that allow for several missiles to simultaneously hit a target

are presented. In [6], Jeon and Lee present a cooperative guidance law called impact time control

guidance (ITCG) that allows multiple missiles to simultaneously hit a target at a prescribed impact

time. In [10], Jeon and Lee extend ITCG by adding the ability to simultaneously hit a target at

a prescribed impact time and impact angle. These two cooperative guidance laws are the last

guidance laws presented before attention is turned to GENEX-ITACG.
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2.2 Equations of Motion

The engagement geometry that is used to derive the polar equations of motion that governs the

analysis of PPN and TPN is illustrated in Fig. 2.1. The reference coordinate system is aligned

with the 𝑖-axis pointing towards the initial velocity vector of the target, V𝑇0, the 𝑗-axis normal to

the 𝑥-axis, and the 𝑘-axis completing the RHS by pointing out of the page. It is assumed that the

velocities of the missile and shooter, denoted by V𝑀 and V𝑇 , are constant.

The flight path angle, defined as the angle from the 𝑖-axis to the respective velocity vectors, is

denoted as 𝛾 for the missile and 𝛽 for the target. The LOS vector is denoted by r and its magnitude

is denoted as 𝑅. The LOS angle, defined as the angle from the 𝑖-axis to the LOS vector, is denoted

as 𝜃. The angle of attack (AOA), defined as the angle from the line of sight vector to the missile’s

velocity vector, is denoted as 𝛼.

The closing velocity between the missile and the target has two polar components, 𝑉𝑟 and 𝑉𝜃. 𝑉𝑟

is defined as the component along the LOS in the direction of the unit vector e𝑟. 𝑉𝑟 only reduces

the time until intercept, but does not contribute to miss distance. 𝑉𝜃 is the component transverse to

the LOS and directly contributes to miss distance.

The achieved acceleration of the target, 𝑎𝑇 , is assumed to be normal to its velocity vectors. The

direction of the commanded acceleration for the missile depends on which form of proportional

navigation is used as described below:

TPN Acceleration is commanded normal to LOS vector, r, in the direction of the unit vector e𝜃

PPN Acceleration is commanded normal to missile velocity vector, V𝑀 , in the direction of the

unit vector e𝛾

12



Figure 2.1: Geometries of Three Different Forms of Proportional Navigation
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The engagement geometry that is used to derive the cartesian equations of motion which governs

the analysis of APN and the advanced guidance laws is illustrated in Fig. 2.1. The LOS vector, 𝑟, is

defined as 𝑟 = 𝑟𝑇 − 𝑟𝑀 . The relative velocity vector, 𝑣, and the relative acceleration vector, 𝑎̄, are

defined in a similar manner such that 𝑣 = 𝑣𝑇 − 𝑣𝑀 and 𝑎̄ = 𝑎̄𝑇 − 𝑎̄𝑀 . The cartesian components

of each of these vectors along the 𝑥-axis and 𝑦-axis are denoted by a 𝑥 and 𝑦 subscript. The

acceleration of the missile and target is assumed to be normal to the respective velocity vector.
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Figure 2.2: Advanced Guidance Law Cartesian Geometry
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2.2.1 Polar Equations of Motion

In this section, the polar equations of motion that govern the engagement geometry depicted in

Fig. 2.1 are derived in the same manner done by Shukla and Mahapatra in [15]. Without loss of

generality, it may be assumed that both the missile and target have the same mass, 𝑚. Through the

use of Newton’s second law the relative motion between the missile and target can be expressed in

vector form as

𝐹 = 𝐹𝑇 − 𝐹𝑀 = 𝑚(
𝑑2r𝑇
𝑑𝑡2

− 𝑑2r𝑀
𝑑𝑡2

) (2.1)

The rotation of the unit triad (𝑒𝑟,𝑒𝜃,𝑒𝑘) about the 𝑒𝑘 vector can be expressed as

𝜔 = 𝜃e𝑘 (2.2)

The LOS vector from the missile to the target can be expressed as

r = r𝑇 − r𝑀 = 𝑅e𝑟 (2.3)

where 𝑅 is the range.

Taking the derivative of Eq. 2.3, the LOS rate can be expressed as

𝑑r

𝑑𝑡
= 𝑅̇e𝑟 + 𝜔 × r

= 𝑅̇e𝑟 + 𝑅𝜃e𝜃

(2.4)

where 𝜔 represents the angular velocity cause by missile maneuvering.
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Furthermore, by taking the derivative of Eq. 2.4 the LOS acceleration can be expressed as

𝑑2r

𝑑𝑡2
= 𝑅̈e𝑟 + 𝜔 × r + 𝜔 × (𝜔 × r) + 2𝜔 × r

= (𝑅̈−𝑅𝜃2)e𝑟 − (𝑅𝜃 + 2𝑅̇𝜃)e𝜃

(2.5)

Recall that the principle of Pro-Nav is to guide the missile by commanding accelerations directly

proportional to the LOS rate, 𝜃. An intelligent target would counter a missile guided by Pro-Nav

by commanding accelerations indirectly proportional 𝜃 [2]. Dividing both sides of Eq. 2.1 by 𝑚

and applying these principles of guidance to the left hand side of the equation results in

𝑎 = 𝑎𝑇 − 𝑎𝑀 =
𝐹𝑇 − 𝐹𝑀

𝑚𝑇

= (Λ𝜃𝑇
1

𝜃
− Λ𝜃𝑀𝜃)e𝜃 + (Λ𝑟𝑇 − Λ𝑟𝑀)𝜃e𝑟 (2.6)

where Λ𝜃 and Λ𝑟 are proportionality constants.

Using TPN, these constants can be expressed as

Λ𝑟𝑇 = Λ𝑟𝑀 = 0 Λ𝜃𝑇 = 𝑏 Λ𝜃𝑀 = 𝑐 = −𝜆𝑉𝑅 (2.7)

where 𝑉𝑅 is the initial closing velocity.

Through the use of Eq. 2.1, by equating the RHS of Eq. 2.5 to the RHS Eq. 2.6 and using the

constants defined in Eq. 2.7 the equations of motion for TPN can be expressed as

𝑅̈−𝑅𝜃2 = 0

𝑅𝜃 + (2𝑅̇ + 𝑐)𝜃 =
𝑏

𝜃

(2.8)

17



With PPN acceleration is commanded normal to the missile’s velocity vector such that

𝑎𝑀 =
F

𝑚
= 𝑉𝑀 𝛾̇e𝛾 (2.9)

and by using PPN the following relations can be made

𝛾̇ = 𝑁𝜃

𝑎𝑀 = 𝑁𝑉𝑀𝜃e𝛾

(2.10)

where 𝑁 is the proportionality constant.

The components of relative velocity along the LOS in the direction of 𝑒𝑟 and normal to the LOS in

the direction of 𝑒𝜃 can be expressed as

𝑉𝑟 = 𝑅̇ = 𝑉𝑇 cos(𝜃 − 𝛽) − 𝑉𝑀 cos(𝜃 − 𝛾)

𝑉𝜃 = 𝑅𝜃 = −𝑉𝑇 sin(𝜃 − 𝛽) + 𝑉𝑀 sin(𝜃 − 𝛾)

𝛽 =
𝑎𝑇
𝑉𝑇

𝑡

(2.11)

where 𝛽 is the flight path angle of the target.

These components of relative velocity may be expressed strictly in terms of time and the LOS

angle by integrating Eq. 2.10 such that

𝜃 − 𝛾 = 𝑏𝜃 − 𝑐 (2.12)

where 𝑏 = 1 − 𝑁 ,𝑐 = 𝛾𝑖 − 𝑁𝜃𝑖, 𝛾𝑖 is the initial missile flight path angle and 𝜃𝑖 is the initial LOS

angle.
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Substituting Eq. 2.12 into Eq. 2.11 results in

𝑉𝑟(𝜃, 𝑡) = 𝑉𝑇 cos(𝜃 − 𝛽) − 𝑉𝑀 cos(𝑏𝜃 − 𝑐)

𝑉𝜃(𝜃, 𝑡) = −𝑉𝑇 sin(𝜃 − 𝛽) + 𝑉𝑀 sin(𝑏𝜃 − 𝑐)

(2.13)

Furthermore, when the target velocity is assumed constant, i.e 𝛽 = 0, the components of velocity

are no longer time dependent and Eq. 2.13 reduces to

𝑉𝑟(𝜃) = 𝑉𝑇 cos(𝜃) − 𝑉𝑀 cos(𝑏𝜃 − 𝑐)

𝑉𝜃(𝜃) = −𝑉𝑇 sin(𝜃) + 𝑉𝑀 sin(𝑏𝜃 − 𝑐)

(2.14)
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2.2.2 Cartesian Equations of Motion

In this section, the cartesian equations of motion that govern the engagement geometry depicted in

Fig. 2.2 are derived in the same manner done by Palumbo Jackson and Blauwkamp in [13]. The

relative position between the missile and target can be expressed as

𝑟 = 𝑟𝑥1̄𝑥 + 𝑟𝑦1̄𝑦 = 𝑅 cos(𝜃)1̄𝑥 + 𝑅 sin(𝜃)1̄𝑦 (2.15)

The relative velocity between the missile and target can be expressed as

𝑣 = 𝑣𝑥1̄𝑥 + 𝑣𝑦1̄𝑦 = [𝑣𝑇 cos(𝛽) − 𝑣𝑀 cos(𝛾)]1̄𝑥

+ [𝑣𝑇 sin(𝛽) − 𝑣𝑀 sin(𝛾)]1̄𝑦

(2.16)

The relative acceleration between the missile and target can be expressed as

𝑎̄ = 𝑎𝑥1̄𝑥 + 𝑎𝑦1̄𝑦 = [𝑎𝑇 sin(𝛽) − 𝑎𝑀 sin(𝛾)]1̄𝑥

+ [𝑎𝑇 cos(𝛽) − 𝑎𝑀 cos(𝛾)]1̄𝑦

(2.17)

𝛾 =
𝑎𝑀
𝑣𝑀

(2.18)

𝛽 =
𝑎𝑇
𝑣𝑇

(2.19)

where 1̄𝑥 and 1̄𝑦 are unit vectors along the reference 𝑥-axis and 𝑦-axis.
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These equations are clearly nonlinear and are not suitable for linear optimal control. By assuming

small missile and target flight path angles the equations can be linearized such that

𝑟 = 𝑟𝑥1̄𝑥 + 𝑟𝑦1̄𝑦 = 𝑅 cos(𝜃)1̄𝑥 + 𝑅 sin(𝜃)1̄𝑦 (2.20)

𝑣 = 𝑣𝑥1̄𝑥 + 𝑣𝑦1̄𝑦 = [𝑣𝑇 cos(𝛽) − 𝑣𝑀 cos(𝛾)]1̄𝑥

+ [𝑣𝑇 sin(𝛽) − 𝑣𝑀 sin(𝛾)]1̄𝑦

(2.21)

𝑎̄ = 𝑎𝑥1̄𝑥 + 𝑎𝑦1̄𝑦 = [𝑎𝑇 sin(𝛽) − 𝑎𝑀 sin(𝛾)]1̄𝑥

+ [𝑎𝑇 cos(𝛽) − 𝑎𝑀 cos(𝛾)]1̄𝑦

(2.22)

When the missile is close to colliding with the target the line of sight angle is very small. If the

targets flight path angle is also very small, then the following approximation can be made:

𝑟𝑦 ≃ 𝑅𝜆

𝑎𝑦 ≃ 𝑎𝑇 − 𝑎𝑀

Furthermore, if the closing velocity between the missile and target is less than or equal to zero

throughout the entirety of the flight, then only the 𝑦-axis component of acceleration needs to be

controlled to intercept the target.
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The nonlinear equations of motion expressed in Eq. 2.22 can be linearized in expressed in state

space format as

˙̄𝑥(𝑡) =A𝑥̄(𝑡) + B𝑢̄(𝑡)

𝑦(𝑡) = C𝑥̄(𝑡)

A =

⎡⎢⎣0 1

0 0

⎤⎥⎦ B =

⎡⎢⎣ 0

−1

⎤⎥⎦ C =

[︂
1 0

]︂ (2.23)

These linearized cartesian equations form the basis for developing the advanced guidance laws.
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2.3 Classical Guidance Laws

2.3.1 True Proportional Navigation Guidance (TPN)

In [5], Guelman obtained a closed-form solution for TPN against a nonmaneuvering target through

the manipulation of Eq. 2.8 with 𝑏 = 0. Although the full results are not presented here, the capture

conditions are. This analysis was conducted through the definitions of three concentric circle, 𝐶𝑐,

𝐶𝑠, and 𝐶𝑑, defined by the initial conditions of 𝑉𝑟0 and 𝑉𝜃0.

These three concentric circles in order of decreasing radius are defined as:

𝐶𝑐 : (𝑉𝑟0 + 𝑐)2 + 𝑉 2
𝜃0 = 𝑐2 (2.24)

𝐶𝑠 : (𝑉𝑟0 + 𝑐)2 + 𝑉 2
𝜃0 = (𝑐/2)2 (2.25)

𝐶𝑑 : (𝑉𝑟0 + 𝑐)2 + 𝑉 2
𝜃0 = (2𝑐/3)2 (2.26)

In terms of the missile’s ability to capture the target, Guelman proves that a missile starting its

course outside of 𝐶𝑐 with initial closing velocity 𝑉𝑟0 > −2𝑐 will not reach the target. The capture

region is proved to be the initial conditions that are inside of 𝐶𝑐. Thus the capture region is strictly

a function of the initial conditions and their relation with the navigation constant, 𝑐. Furthermore,

if a missile begins within this capture region it reaches the target in a finite time, closing velocity

and LOS angle, all defined in [5].

However, nothing has been said about the boundness of the LOS rate yet. This boundness is critical

in the design of the missile because it directly effects the required maximum maneuver capability

of the missile. Guelman assesses the boundness of the LOS rate by acknowledging five zones

within the capture region, 𝐶𝑐, as follows:
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1. For a missile starting its course outside of 𝐶𝑑, but inside of 𝐶𝑐 with initial closing velocity

𝑉𝑟0 > −2𝑐, ˙𝜃(𝑡𝑓 ) = 0 and ¨𝜃(𝑡𝑓 ) = 0.

2. For a missile starting its course inside of 𝐶𝑑 and 𝐶𝑐 with initial closing velocity 𝑉𝑟0 > −2𝑐,

˙𝜃(𝑡𝑓 ) = 0 and ¨𝜃(𝑡𝑓 ) = −[𝑠𝑖𝑔𝑛(𝜃0]∞.

3. For a missile starting its course inside of 𝐶𝑠 and 𝐶𝑑, ˙𝜃(𝑡𝑓 ) = ∞ and ¨𝜃(𝑡𝑓 ) = [𝑠𝑖𝑔𝑛(𝜃0]∞.

4. For a missile starting its course outside of 𝐶𝑠, but inside of 𝐶𝑑 and 𝐶𝑐 with initial closing

velocity 𝑉𝑟0 < −2𝑐, ˙𝜃(𝑡𝑓 ) = 0 and ¨𝜃(𝑡𝑓 ) = −[𝑠𝑖𝑔𝑛(𝜃0]∞.

5. For a missile starting its course inside of 𝐶𝑑 and 𝐶𝑐 with initial closing velocity 𝑉𝑟0 < −2𝑐,

˙𝜃(𝑡𝑓 ) = 0 and ¨𝜃(𝑡𝑓 ) = 0.

In summary, the commanded acceleration of a missile guided by TPN starting its course within

the circle 𝐶𝑐, but outside of 𝐶𝑠 (zones 1,2,4,5) is bounded throughout flight. Otherwise, the com-

manded acceleration of a missile starting its course within 𝐶𝑠 (zone 3) becomes unbounded at

pursuit end.

In [2], Ghose extended these results to define a new capture region against a target that intelligently

maneuvers by commanding acceleration indirectly proportional to the LOS rate in a direction that

is normal to the LOS vector. Altough a closed-form solution is not available for Eq. 2.8, Ghose

performed a qualitative analysis. Through this analysis Ghose proved that for a missile pursing

a target, with maneuvers defined in Eqs. 2.8-2.7, a capture region exist if 𝑏𝑟0 < (2𝑐/3)3 and the

capture region satisfies the following two conditions:

1. 𝑘 ≤ 0, where 𝑘 is a circle defined as 𝑘 = 𝑉 2
𝑟0 + 𝑉 2

𝜃0 + 2𝑐𝑉𝑟0.

2. 𝑘2 ≥ 4𝑏𝑟0(𝑉𝑟0 + 2𝑐)
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2.3.2 Pure Proportional Navigation Guidance (PPN)

In [3], Guelman performed a qualitative analysis for PPN against a nonmaneuvering target through

the manipulation of Eq. 2.14. Once again, the full results are not presented here, but the capture

conditions are.

This analysis was conducted through the definitions of two sectors of the polar 𝑉𝑟 − 𝑉𝜃 plane: 𝜎−

with negative closing velocity and 𝜎+ with positive closing velocity. Each of these sectors contain

a single straight line trajectory, i.e 𝑉𝜃 = 0 and 𝑉𝑟 ̸= 0. In addition, the range from the missile to

target is monotonic within these sectors.

Guelman proved that if 𝑣 > 1 and 𝑏𝑣 > 1, where 𝑣 = 𝑉𝑇

𝑉𝑀
, then

• any trajectory starting in 𝜎+ will leave 𝜎+ for increasing time and

• any trajectory starting in 𝜎− will stay within 𝜎− for increasing time while approaching the

target along a straight line trajectory.

Therefore, any trajectory that starts within sector 𝜎+ will exit this sector and enter sector 𝜎−. Once

in sector 𝜎− the trajectory will approach the target along a straight line trajectory. The only time

the trajectory will not reach the target is if it begins in sector 𝜎+ and 𝑉𝜃 = 0.

Furthermore, regarding the boundness of the LOS rate, Guelman proves that if:

1. 𝑑𝑉𝜃

𝑑𝜃
< 𝑉𝑟, then the LOS rate is a decreasing function of time

2. 𝑁−2
2

𝑣𝑀 > 𝑣𝑇 , the LOS rate at the final phase of flight is a decreasing function of time.
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In [4], Guelman extended these results for the case against a maneuvering target through the ma-

nipulation of Eq. 2.14. The analysis was conducted through the definition of two sector 𝑆𝜃 and 𝑆𝑟

defined as:

𝜃𝑛0 −
1

𝑏
arcsin(

1

𝑣
) ≤ 𝜃𝜃 ≤ 𝜃𝑛0 +

1

𝑏
arcsin(

1

𝑣
)

𝜃𝑛0 +
𝜋

2𝑏
− 1

𝑏
arcsin(

1

𝑣
) ≤ 𝜃𝑟 ≤ 𝜃𝑛0 +

𝜋

2𝑏
+

1

𝑘
arcsin(

1

𝑣
)

where

𝜃𝑛0 = 𝜃0 −
𝛾0
𝑏
− 𝑛𝜋

𝑏

If 𝑉𝑀 >
√

2𝑉𝑇 , these sectors do not intercept and an additional eight sectors can be defined as

𝑆+
𝜃 = {𝜃 : given any real𝑡, 𝑉𝜃 (𝜃, 𝑡) = 0, 𝑉𝑟 (𝜃, 𝑡) > 0}

𝑆−
𝜃 = {𝜃 : given any real𝑡, 𝑉𝜃 (𝜃, 𝑡) = 0, 𝑉𝑟 (𝜃, 𝑡) < 0}

𝑆+
𝑟 = {𝜃 : given any real𝑡, 𝑉𝑟 (𝜃, 𝑡) = 0, 𝑉𝜃 (𝜃, 𝑡) > 0}

𝑆−
𝑟 = {𝜃 : given any real𝑡, 𝑉𝑟 (𝜃, 𝑡) = 0, 𝑉𝜃 (𝜃, 𝑡) < 0}

𝜎𝜃+ = {𝜃 : 𝑉𝜃 (𝜃, 𝑡) > 0,for all t}

𝜎𝜃− = {𝜃 : 𝑉𝜃 (𝜃, 𝑡) < 0,for all t}

𝜎𝜃+ = {𝜃 : 𝑉𝑟 (𝜃, 𝑡) > 0,for all t}

𝜎𝑟− = {𝜃 : 𝑉𝑟 (𝜃, 𝑡) < 0,for all t}
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Guelman proved that if 𝑉𝑀 >
√

2𝑉𝑡 and 𝑁 > 1 + 𝑉𝑇

𝑉𝑀
, then the missile reaches the target for any

initial state exterior to 𝑆+
𝜃 along a straight line trajectory of sector 𝑆−

𝜃 . Even if the missile begins

its course away from the target, 𝜎+
𝑟 ∩ 𝜎−

𝜃 or 𝜎+
𝑟 ∩ 𝜎+

𝜃 , the missile eventually enters segment 𝑆−
𝜃

after entering 𝜎−
𝑟 . The condition 𝑉𝑀 >

√
2𝑉𝑡 guarantees that the missile enters 𝜎−

𝑟 . Once in 𝑆−
𝜃 ,

the missile remains in this section until it reaches the target.

In addition, Guelman proved that the missile reaches the target when the initial conditions lay

within 𝑆+
𝜃 only if:

1. 𝑉𝑀 >
√

2𝑉𝑇

2. 𝑁 > 2 +

(︂
2𝑉𝑇√
𝑉 2
𝑀−𝑉 2

𝑇

)︂
> 1 + 𝑉𝑇

𝑉𝑀

3.
⃒⃒⃒
𝜃0

⃒⃒⃒
> |𝑎𝑇 |

(𝑁−2)
√

𝑉 2
𝑀−𝑉 2

𝑇−2𝑉𝑇

In [15], Shukla argues that PPN is the better implementation of PPN for several reasons. For one,

PPN does not require the missile to accelerate and decelerate because acceleration commands are

issued normal to the velocity vector. Whereas, TPN requires significant accelerations and deceler-

ations, especially for large collision course deviations. These large accelerations and deceleration

are impossible to achieve with aerodynamically controlled missile and leads to excessive control

efforts when compared to PPN.

In addition, the capture regions for TPN are more restrictive than PPN. Even for the cases where

interception is possible, the LOS rate does not uniformly decrease for all navigation constants.

Contrarily, the LOS rate for PPN uniformly decreases for all navigation constants.
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2.3.3 Augmented Proportional Navigation Guidance (APN)

A popular variation of Pro-Nav that tries to accommodate for the target’s acceleration is augmented

Pro-Nav (APN). The derivation of APN guidance is derived following the lead of Zarchan and

Zipfel while referring to Fig 2.2[16][17][13]. If the line of sight angle between the missile is

small, then using the small angle approximation the line of sight angle can be expressed as

𝜃 =
𝑟𝑦
𝑅

(2.27)

where 𝑟𝑦 lateral relative position and 𝑅 is the range to the target.

The approximate closing velocity between the missile and target in a head-on scenario or tail-chase

scenario may be expressed as 𝑉𝑐 = 𝑉𝑀 +𝑉𝑇 or 𝑉𝑐 = 𝑉𝑀−𝑉𝑇 . Moreover, since the closing velocity

is defined as the negative rate of range,𝑅, and the range must go to zero at the end of flight, 𝑅 can

be expressed as

𝑅 = 𝑉𝑐(𝑡𝑓 − 𝑡) (2.28)

where the quantity 𝑡𝑓 − 𝑡 is the time until intercept known as time-to-go, 𝑡𝑔𝑜.

Substituting Eq. 2.28 into Eq. 2.27 and taking the derivative of the result yields

𝜃 =
𝑟𝑦 + 𝑟̇𝑦𝑡𝑔𝑜

𝑉𝑐𝑡2𝑔𝑜
. (2.29)

Moreover, substituting Eq. 2.29 into the true PN guidance law of Eq. 2.7 yields

𝑎𝑀 = 𝑁𝑉𝑐𝜃 =
𝑁(𝑟𝑦 + 𝑟̇𝑦𝑡𝑔𝑜)

𝑡2𝑔𝑜
=

𝑁(𝑍𝐸𝑀)

𝑡2𝑔𝑜
. (2.30)
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The expression in parentheses is the miss distance that would occur if the missile made no further

corrective actions and target did not maneuver. This expression is commonly known as the zero

effort miss distance (ZEM). If the target does maneuver, then the ZEM must be augmented by an

additional term to account for this acceleration such that

𝑍𝐸𝑀 = 𝑟𝑦 + 𝑟̇𝑦𝑡𝑔𝑜 +
1

2
𝑎𝑇 𝑡

2
𝑔𝑜. (2.31)

Substituting Eq. 2.31 into Eq. 2.30 yields

𝑎𝑀 = 𝑁𝑉𝑐𝜃 =
𝑁(𝑍𝐸𝑀)

𝑡2𝑔𝑜
= 𝑁𝑉𝑐𝜃 +

𝑁𝑎𝑇
2

(2.32)

which is the augmented proportional navigation law.

It may be shown that for a constant acceleration target maneuver that augmented proportional

navigation requires half the acceleration of proportional navigation with a proportionality constant

of 3. Moreover, augmented proportional navigation requires much less total acceleration than

proportional navigation because it makes use of more detailed information to operate in a more

efficient manner [16].

29



2.4 Advanced Guidance Laws

Linear optimal control theory requires the equations to be in linear state space form such that

˙̄𝑥 = 𝐴(𝑡)𝑥̄(𝑡) + 𝐵(𝑡)𝑢̄(𝑡)

𝑦 = 𝐶(𝑡)𝑥̄(𝑡)

(2.33)

where 𝑥̄ ∈ ℜ𝑛 is the state vector, 𝑦 ∈ ℜ𝑚 is the output vector, 𝑢̄ ∈ ℜ𝑟 is the control vector,

𝐴 ∈ ℜ𝑛×𝑛 is the state matrix, 𝐵 ∈ ℜ𝑛×𝑟 is the input matrix, and 𝐶 ∈ ℜ𝑚×𝑛 is the output

matrix. Representing these equations in linear state space form may be accomplished by making

the following assumptions [13]: 𝑉𝑐 is positive such that only the kinematics in the y/z plane need

to be actively controlled to achieve an intercept; 𝜆 is very small such that 𝑟𝑦 ≈ 𝑅𝜆, and 𝛾𝑇 is very

small such that 𝑎𝑦 ≈ 𝑎𝑇 − 𝑎𝑀 .

With these assumptions the state vector may be defined as 𝑥̄ ≡ [𝑥1 𝑥2]
𝑇 = [𝑟𝑦 𝑣𝑦]

𝑇 , the input may

be defined as 𝑢̄ ≡ 𝑎𝑀 , and the matrices of Eq. 2.33 can be expressed as

𝐴 =

⎡⎢⎣0 1

0 0

⎤⎥⎦ , 𝐵 =

⎡⎢⎣ 0

−1

⎤⎥⎦ 𝐶 =

[︂
1 0

]︂
(2.34)

Now the linear optimal control problem with a quadratic PI may be formulated as

minimize
𝑢(𝑡)

𝐽 =
1

2
𝑥̄(𝑡𝑓 )𝑇𝑄𝑓 𝑥̄(𝑡𝑓 ) +

1

2

∫︁ 𝑡𝑓

𝑡0

𝑢(𝑡)𝑅𝑢(𝑡)𝑑𝑡

subject to ˙̄𝑥 = 𝐴𝑥̄(𝑡) + 𝐵𝑢(𝑡)

The meaning of this problem statement and the methodology to solve it is presented in the next

chapter. The structure is presented here for reference.
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2.4.1 Advanced Guidance Law (AGL)

According to Zipfel [17], when goal is to minimize miss distance and limit control power without

considering target maneuvering the linear optimal control problem can be formulated as

minimize
𝑢(𝑡)

𝐽 =
1

2
𝑥̄(𝑡𝑓 )𝑇𝑄𝑓 𝑥̄(𝑡𝑓 ) +

1

2

∫︁ 𝑡𝑓

𝑡0

𝑢(𝑡)𝑅𝑢(𝑡)𝑑𝑡

subject to ˙̄𝑥 =

⎡⎢⎣0 1

0 0

⎤⎥⎦ 𝑥̄(𝑡) +

⎡⎢⎣ 0

−1

⎤⎥⎦
The solution to this linear optimal control problem yields

𝑎 =
3𝑡𝑔𝑜

3‖𝑅‖ + 𝑡3𝑔𝑜
𝑍𝐸𝑀

𝑍𝐸𝑀 = 𝑥𝑇 − 𝑥𝑀 + (𝑣𝑇 − 𝑣𝑀)𝑡𝑔𝑜

(2.35)

Assuming the missile is on a near collision course with the target if the control input is not limited,

i.e ‖𝑅‖ = 0, then the result is called the advanced guidance law (AGL). AGL is simply PN

guidance in cartesian form with an proportionality constant equal to 3 expressed as

𝑎 =
3

𝑡2𝑔𝑜
𝑍𝐸𝑀 (2.36)
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2.4.2 Advanced Augmented Guidance Law

According to Lukacs [7], target acceleration may be taken back into account by redefining the state

vector such that 𝑥̄ ≡ [𝑥1 𝑥2 𝑥3]
𝑇 = [𝑟𝑦 𝑣𝑦 𝑎𝑇 ]𝑇 . The linear optimal control problem with target

acceleration included and no control effort limit, ‖𝑅‖ = 𝐼 can be formulated as

minimize
𝑢(𝑡)

𝐽 =
1

2
𝑥̄(𝑡𝑓 )𝑇𝑄𝑓 𝑥̄(𝑡𝑓 ) +

1

2

∫︁ 𝑡𝑓

𝑡0

𝑢2(𝑡)𝑑𝑡

subject to ˙̄𝑥 =

⎡⎢⎢⎢⎢⎣
0 1 0

0 0 1

0 0 0

⎤⎥⎥⎥⎥⎦ 𝑥̄(𝑡) +

⎡⎢⎢⎢⎢⎣
0

−1

0

⎤⎥⎥⎥⎥⎦𝑢(𝑡)

The solution to this linear optimal control problem yields

𝑎 =
3

𝑡2𝑔𝑜
𝑍𝐸𝑀

𝑍𝐸𝑀 = 𝑥𝑇 − 𝑥𝑀 + (𝑣𝑇 − 𝑣𝑀)𝑡𝑔𝑜 +
1

2
+ 𝑎𝑇 𝑡

2
𝑔𝑜

(2.37)

This guidance law is simply augmented PN guidance with an proportionality constant equal to 3.

It is now clear how advanced guidance laws make use of more detailed information to derive more

efficient guidance laws. Even high maneuvering targets can be taken into account by considering

jerk. In addition, inceptor dynamics such as first, second, and higher order lags in the guidance

law may be taken into account.
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2.4.3 Advanced Optimal Guidance Law (OGL)

The aforemention guidance laws all assume perfect command response. According to Palumbo,

Blaukamp and Lloyd [13], a more realistic assumption would be to have the missile acceleration,

𝑎𝑀 , respond to an acceleration command, 𝑎𝑐, via the first order transfer function

𝑎𝑀
𝑎𝑐

=
1

1 + 𝜏𝑠
(2.38)

The first order lag may be taken into account by redefining the state vector such that 𝑥̄ ≡ [𝑥1 𝑥2 𝑥3 𝑥4]
𝑇 =

[𝑟𝑦 𝑣𝑦 𝑎𝑇 𝑎𝑀 ]𝑇 and redefining the input to be the commanded acceleration, 𝑎𝑐. This linear optimal

control problem can be formulated as

minimize
𝑢(𝑡)

𝐽 =
1

2
𝑥̄(𝑡𝑓 )𝑇𝑄𝑓 𝑥̄(𝑡𝑓 ) +

1

2

∫︁ 𝑡𝑓

𝑡0

𝑢2(𝑡)𝑑𝑡

subject to ˙̄𝑥 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 0 1 −1

0 0 0 −1

0 0 0 − 1
𝜏

⎤⎥⎥⎥⎥⎥⎥⎥⎦
𝑥̄(𝑡) +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

1
𝜏

⎤⎥⎥⎥⎥⎥⎥⎥⎦
𝑢(𝑡)

The solution to this linear optimal control problem yields

𝑎𝑐 =
6𝑁̃

𝑡2𝑔𝑜
𝑍𝐸𝑀

𝑍𝐸𝑀 = 𝑥𝑇 − 𝑥𝑀 + (𝑣𝑇 − 𝑣𝑀)𝑡𝑔𝑜 +
1

2
+ 𝑎𝑇 𝑡

2
𝑔𝑜 − 𝜏 2(

𝑡𝑔𝑜
𝜏

+ 𝑒−
𝑡𝑔𝑜
𝜏 − 1)𝑎𝑀

𝑁̃ =
6( 𝑡𝑔𝑜

𝜏
)2( 𝑡𝑔𝑜

𝜏
+ 𝑒−

𝑡𝑔𝑜
𝜏 − 1)

3 + 6 𝑡𝑔𝑜
𝜏
− 6

𝑡2𝑔𝑜
𝜏2

+ 2
𝑡3𝑔𝑜
𝜏3

− 12 𝑡𝑔𝑜
𝜏
𝑒−

𝑡𝑔𝑜
𝜏 − 3𝑒−2

𝑡𝑔𝑜
𝜏

.

(2.39)

This guidance law is called "optimal" guidance law (OGL).
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2.5 Explicit Guidance Laws

A class of modern missile guidance called explicit guidance laws that allows a missile to hit the

target with specified relative velocity and/or position constraints have also become an interesting

subject of research. These terminal constraints cause the trajectory of the missiles to deviate from

the straight line trajectory during the terminal phase of flight. Therefore, these explicit guidance

laws are all trajectory shaping guidance laws. Similar to the advanced terminal guidance laws

the state vector may be defined as 𝑥̄ ≡ [𝑥1 𝑥2]
𝑇 = [𝑟𝑦 𝑣𝑦]

𝑇 and the input may be defined as

𝑢̄ ≡ 𝑢 = 𝑎𝑀 . The linear optimal control problem for explicit guidance laws can be formulated as

minimize
𝑢(𝑡)

𝐽 =
1

2
[𝑥̄(𝑡𝑓 ) − 𝑥𝑓 ]𝑇𝑄𝑓 [𝑥̄(𝑡𝑓 ) − 𝑥𝑓 ] +

1

2

∫︁ 𝑡𝑓

𝑡0

𝑢(𝑡)𝑅𝑢(𝑡)𝑑𝑡

subject to ˙̄𝑥 = 𝐴𝑥̄(𝑡) + 𝐵𝑢(𝑡)

or equivalently

minimize
𝑢(𝑡)

𝐽 =
1

2

∫︁ 𝑡𝑓

𝑡0

𝑢(𝑡)𝑅𝑢(𝑡)𝑑𝑡

subject to ˙̄𝑥 = 𝐴𝑥̄(𝑡) + 𝐵𝑢(𝑡)

𝑥̄(𝑡𝑓 ) = 𝐷𝑥̄𝑓

Both forms may be solved through linear optimal control. The former penalizes the system for

terminal state errors. The later includes the terminal states as constraints. Both are equivalent

when as the terminal weight matrix, 𝑄𝑓 , approaches infinity.
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2.5.1 Trajectory Shaping Guidance

According to Zarchan [16], target acceleration may be taken back into account by redefining the

state vector such that 𝑥̄ ≡ [𝑥1 𝑥2 𝑥3]
𝑇 = [𝑟𝑦 𝑣𝑦 𝑎𝑇 ]𝑇 . The linear optimal control problem with

target acceleration included and control effort limit, can be formulated as

minimize
𝑢(𝑡)

𝐽 =

∫︁ 𝑡𝑓

𝑡0

𝑢2(𝑡)𝑑𝑡

subject to ˙̄𝑥 =

⎡⎢⎢⎢⎢⎣
0 1 0

0 0 1

0 0 0

⎤⎥⎥⎥⎥⎦ 𝑥̄(𝑡) +

⎡⎢⎢⎢⎢⎣
0

−1

0

⎤⎥⎥⎥⎥⎦𝑢(𝑡)

𝑥̄(𝑡𝑓 ) =

⎡⎢⎣ 0

𝑣𝑓

⎤⎥⎦
The solution to this linear optimal control problem yields

𝑎 =
4(𝑟𝑦 + 𝑣𝑦𝑡𝑔𝑜)

𝑡2𝑔𝑜
+

2(𝑟𝑦 + 𝑣𝑓 𝑡𝑔𝑜)

𝑡2𝑔𝑜
+ 𝑎𝑇 (2.40)

According to Lukacs [7] this guidance law is simply augmented PN guidance with an proportion-

ality constant equal to 4, double the target acceleration, and an additional term proportional to the

difference between the true LOS and desired LOS.
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2.5.2 General Vector Explicit Guidance (GENEX)

Lukacs [7], also states that Kim, Lee and Han [8] proved the constant gains of 2.40 are not op-

timal because the commanded acceleration may be excessive at terminal phase of flight. Instead,

time-varying gains that allow aggressive maneuvering during the mid-course phase of flight while

limiting control action during the terminal phase of flight should be used. Kim, Lee and Han

suggested making these time-varying gains a function of range to target and closing velocity.

A relatively new trajectory guidance law proposed by Ohlmeyer [11] that does this is general

vector explicit guidance law (GENEX). GENEX restricts control action at the terminal phase of

flight by applying a control weighting term that is indirectly proportional to the time until impact

(time-to-go) into the cost function.

Ohlmeyer takes a different approach by neglecting target movement and defining the states as

𝑥̄ ≡ [𝑥1 𝑥2]
𝑇 = [𝑍𝐸𝑀 𝑣𝑦]

𝑇 and the input may be defined as 𝑢̄ ≡ 𝑢 = 𝑎𝑀 such that

𝑍𝐸𝑀 = 𝑥𝑇 − 𝑥𝑀 − 𝑣𝑀 𝑡𝑔𝑜 (2.41)

Then the linear optimal control problem is formulated as

minimize
𝑢(𝑡)

𝐽 =
1

2

∫︁ 𝑡𝑓

𝑡0

𝑢2

𝑡𝑛𝑔𝑜
𝑑𝑡

subject to ˙̄𝑥 =

⎡⎢⎣0 0

0 0

⎤⎥⎦ 𝑥̄(𝑡) +

⎡⎢⎣𝑡𝑔𝑜
−1

⎤⎥⎦𝑢(𝑡)

𝑥̄(𝑡𝑓 ) =

⎡⎢⎣ 0

𝑣𝑓

⎤⎥⎦
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The solution to this linear optimal control problem yields

𝑎 =
1

𝑡2𝑔𝑜
[𝐾1(𝑥𝑇 − 𝑥𝑀 − 𝑣𝑀 𝑡𝑔𝑜) + 𝐾2(𝑣𝑇 − 𝑉𝑀)𝑡𝑔𝑜]

𝑘1 = (𝑛 + 2)(𝑛 + 3)

𝑘2 = −(𝑛 + 1)(𝑛 + 2)

(2.42)

where 𝑘1 and 𝑘2 are guidance gains, 𝑣𝑓 is the desired terminal relative velocity and 𝑛 is a user

design parameter.

The user design parameter allows the user to adjust the curvature of the flight trajectory, while

enforcing a specified final position and velocity orientation. The first term of this guidance law

drives the miss distance to zero while the second term of drives the error in velocity orientation

to zero. The successful implementation of this guidance law is highly dependent of the accurate

calculation of time-to-go. Nonetheless, GENEX offers an attractive trajectory shaping guidance

law by offering a user design parameter to meet the needs of various mission objectives.
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2.6 Cooperative Guidance Laws

In this section, two cooperative laws that allow a salvo of missile to simulateously hit a stationary

target are presented. The first guidance law obtained in [6] is called impact time control guidance

(ITCG) and allows multiple missiles to hit a stationary target at a predetermined impact time. It

accomplished this by augmenting Pro-Nav with an additional command which adjust the trajectory

to achieve this desired impact time. The second guidance law impact time and angle control

guidance (ITACG) obtained in [10] is an extension of ITCG that also allows the missile’s to hit the

target at a specified impact angle.

The simplified geometry that govern the derivation of these two guidance laws is shown below

in Fig. 2.3. Similar to PPN, the missile’s acceleration command is issued normal to the missile’s

velocity vector. As mentioned earlier, this removes the requirement of having a missile that can

accelerate and decelerate. In addition, the missile is able to reach the target for every set of initial

conditions as opposed to issuing commands normal to the LOS with a uniformly decreasing LOS

angle rate.
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Figure 2.3: Stationary Target Homing Geometry
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2.6.1 Impact Time Control Guidance (ITCG)

The equations of motion that govern ITCG are

𝑋̇(𝑡) = 𝑉 cos(𝛾(𝑡))

𝑌̇ (𝑡) = 𝑉 sin(𝛾(𝑡))

𝛾̇(𝑡) =
𝐴(𝑡)

𝑉
==

𝑎𝐵(𝑡) + 𝑎𝐹 (𝑡)

𝑉

(2.43)

where 𝑋(𝑡) is the missile’s downrange position, 𝑌 (𝑡) is the missile’s crossrange position, 𝑉 (𝑡)

is the missile’s velocity, 𝐴(𝑡) is the missile’s acceleration which is applied normal to the velocity

vector, and 𝛾(𝑡) is the missile’s flight path angle.

The acceleration command has two components, 𝑎𝐵 and 𝑎𝐹 . The first component is a PPN like

component that minimizes miss distance and the second component is a trajectory correcting com-

ponent that enables the missile to hit the target at a predetermined impact time. By nondiscrimi-

nating these equations as a function of downrange, these equations can be expressed in state space

format as ⎡⎢⎣ 𝑑𝑦
𝑑𝑥

𝑑𝜃
𝑑𝑥

⎤⎥⎦ =

⎡⎢⎣0 1

0 0

⎤⎥⎦
⎡⎢⎣𝑦
𝜃

⎤⎥⎦+

⎡⎢⎣0

1

⎤⎥⎦𝑢𝐵(𝑡) + 𝑢𝐹 (𝑡) (2.44)

The linear optimal control problem may be formulated as

minimize
𝑢(𝑡)

𝐽 =
1

2

∫︁ 𝑥𝑓

𝑥0

𝑢2
𝐵𝑑𝑥

subject to ˙̄𝑥 =

⎡⎢⎣0 1

0 0

⎤⎥⎦ 𝑥̄(𝑡) +

⎡⎢⎣0

1

⎤⎥⎦ (𝑢𝐵 + 𝑢𝐹 )
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The solution to this linear optimal control problem is

𝑢𝐵 =
3 (𝑦𝑔𝑜 − 𝛾 𝑥𝑔𝑜)

𝑥2
𝑔𝑜

− 3

2
𝑢𝐹

= 𝑈𝑃𝑁 − 3

2
𝑢𝐹

(2.45)

The first term, 𝑢𝑃 is a linear approximation of PPN with a navigation constant of 3. Therefore,

Eq. 2.45 has a similar structure to APN where instead of augmenting the command with a term to

account for target maneuvering, the command is augmented with a term to correct the trajectory.

The constraint on impact time is expressed as a path constraint wrt downrange such that

∫︁ 𝑥𝑓

𝑥0

√︀
1 + 𝛾2(𝑥)𝑑𝑥 = 𝜏𝑔𝑜 (2.46)

where 𝜏𝑔𝑜 is the difference between the designated impact time and the current time. The evaluation

of this integral yields

𝜏𝑔𝑜 =
𝑥3
𝑔𝑜

240

⎛⎝𝑢2
𝐹 + 2𝑢𝑃𝑢𝐹 + 16𝑢2

𝑃 +
80𝜃𝑢𝑃

𝑥𝑔𝑜

+
240

(︁
1 + 𝜃2

2

)︁
𝑥2
𝑔𝑜

⎞⎠
The estimation of time to go without the use of the trajectory correcting command, 𝑢𝐹 , is expressed

as

𝜏𝑔𝑜 =
1

15
𝑢2
𝑃𝑥

3
𝑔𝑜 +

1

3
𝑢𝑃 𝜃𝑥

2
𝑔𝑜 +

(︂
1 +

𝜃2

2

)︂
𝑥𝑔𝑜

Solving for 𝑢𝐹 yields

𝑢𝐹 = −𝑢𝑃

(︃
1 −

√︃
1 +

240

𝑢2
𝑃𝑥

3
𝑔𝑜

𝜖𝑡

)︃
where 𝜖𝑡 is the impact time error defined as

𝜖𝑡 = 𝜏𝑔𝑜 − 𝜏𝑔𝑜
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2.6.2 Impact Time and Angle Control Guidance Control Guidance (ITACG)

The equations of motion that govern ITACG are

𝑋̇(𝑡) = 𝑉 cos(𝛾(𝑡))

𝑌̇ (𝑡) = 𝑉 sin(𝛾(𝑡))

𝛾̇(𝑡) =
𝐴(𝑡)

𝑉

𝐴̇(𝑡) = 𝑔(𝑡) = 𝑔𝐵(𝑡) + 𝑔𝐹 (𝑡)

(2.47)

To add an additional degree of freedom the control variable is jerk not acceleration. The jerk

commmand has two components, 𝑔𝐵 and 𝑔𝐹 . By nondiscriminating these equations as a function

of downrange, these equations can be expressed in state space format as

⎡⎢⎢⎢⎢⎣
𝑑𝑦
𝑑𝑥

𝑑𝜃
𝑑𝑥

𝑑𝑎
𝑑𝑥

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0 1 0

0 1 0

0 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝑦

𝜃

𝑎

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
0

0

1

⎤⎥⎥⎥⎥⎦𝑢𝐵(𝑡) + 𝑢𝐹 (𝑡) (2.48)

The linear optimal control problem may be formulated as

minimize
𝑢𝐵(𝑥)

𝐽 =
1

2

∫︁ 𝑥𝑓

𝑥0

𝑢2
𝐵(𝑥)𝑑𝑥

subject to ˙̄𝑋 = 𝐴𝑋̄(𝑥) + 𝐵(𝑢𝐵(𝑥) + 𝑢𝐹 )

𝐸 = 𝐷𝑋̄(𝑥𝑓 )
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𝐷 is the terminal weighting cost matrix defined as

𝐷 =

⎛⎜⎜⎜⎜⎝
1 0 0

0 1 0

0 0 0

⎞⎟⎟⎟⎟⎠
that places constraints on terminal crossrange and terminal flight path angle, but places no con-

straint on terminal acceleration.

The solution to this linear optimal control problem is

𝑢𝐵 = 𝐾⊤𝑧 − 2

3
𝑢𝐹

The constraint on impact time is expressed as a path constraint wrt downrange such that

∫︁ 𝑥𝑓

𝑥0

√︀
1 + 𝛾2(𝑥)𝑑𝑥 = 𝜏𝑔𝑜 (2.49)

where 𝜏𝑔𝑜 is the difference between the designated impact time and the current time. The evaluation

of this integral yields

𝜏𝑔𝑜 = 𝛼𝑢2
𝐹 + 𝛽𝑢𝐹 + 𝜏𝑔𝑜

where 𝜏𝑔𝑜 is the estimation of time to go without the use of the trajectory correcting command, 𝑢𝐹 ,

expressed as

𝜏𝑔𝑜 = 𝐶 + 𝐿⊤𝑧 + 𝑧⊤𝑄𝑧
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Solving for 𝑢𝐹 yields

𝑢𝐹 = −1

2
𝜂𝐿 ± 1

2

√︁
𝜂2𝐿 + 𝜂𝐸

− 1

2
𝜂𝐿 ± 1

2
𝜂𝐿

√︂
1 +

𝜂𝐸
𝜂2𝐿

(2.50)

where 𝜖𝑡 is the impact time error defined as

𝜖𝑡 = 𝜏𝑔𝑜 − 𝜏𝑔𝑜

The values of 𝑧,𝐾,𝐶, 𝐿,𝑄, 𝜂𝐿, 𝑎𝑛𝑑𝜂𝐿 may all be obtained by setting 𝑛 = 0 in Appendix A,

which contains the detailed derivation of GENEX-ITACG. This detailed derivation uses the same

methodology found in [10]. GENEX-ITACG reduces to ITACG when the user defined parameter

is set to zero.
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CHAPTER 3: METHODOLOGY

3.1 Introduction

In this chapter, the derivation of GENEX-ITACG is presented. GENEX-ITACG allows a salvo

of missiles to simultaneously hit a stationary target at a prescribed impact time with a specified

terminal impact angle while providing a user design parameter to shape the aggressiveness of the

trajectories. The simultaneous attack by a salvo of missiles at a specified time and impact angle

with the user design parameter are of great interest to the military for the following reasons:

1. Saturation attacks at specified impact angles allows well defended targets to be defeated by

creating one on many scenarios.

2. Saturation attacks at specified impact times creates the element of surprise which disallows

the target to warn other systems.

3. Saturation attacks allow the use of smaller and less expensive munitions

4. The user design parameter allows the user to tailor the trajectory of the munitions in a manner

that best fits their systems.

First, as done in [13], an overview of the linear optimal control for linear time-varying systems

with a quadratic performance index is presented. Then the abbreviated derivation of GENEX-

ITACG through the use of linear optimal control is presented. The full derivation is included in

Appendix A.
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3.2 Linear Optimal Control

In this section, the linear optimal control problem for linear time-varying systems with a quadratic

performance index is presented. Consider a linear time-varying systems represented in state space

form as

˙̄𝑥 = A(𝑡)𝑥̄(𝑡) + B(𝑡)𝑢̄(𝑡)

𝑦 = C(𝑡)𝑥̄(𝑡)

(3.1)

where 𝑥̄(𝑡) ∈ ℜ𝑛 is the state vector, 𝑦(𝑡) ∈ ℜ𝑚 is the output vector, 𝑢̄(𝑡) ∈ ℜ𝑟 is the control vector,

A(𝑡) ∈ ℜ𝑛×𝑛 is the state matrix, B(𝑡) ∈ ℜ𝑛×𝑟 is the input matrix, and C(𝑡) ∈ ℜ𝑚×𝑛 is the output

matrix, 0 < 𝑚 ≤ 𝑟 ≤ 𝑛 and 𝑢̄(𝑡) is unconstrained.

The objective is to control the system in 3.1 in a manner that drives the states along a desired

trajectory with terminal state constraints

E(𝑡𝑓 ) = D𝑥̄(𝑡𝑓 ) (3.2)

where E(𝑡𝑓 ) is the terminal state matrix, D is the terminal weighting cost matrix, and 𝑥̄(𝑡𝑓 ) are the

desired terminal state.

However, excessive control effort may be commanded while trying to achieve this objective be-

cause 𝑢̄(𝑡) is unconstrained. A more desirable behavior would be to keep the states of the system

close to a desired trajectory without using unnecessary large control effort [1].
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This objective can be accomplished by minimizing a quadratic performance index defined as

𝐽 =
1

2

∫︁ 𝑡𝑓

𝑡0

[𝑥̄⊤(𝑡)Q(𝑡)𝑥̄(𝑡) + 𝑢̄⊤(𝑡)R(𝑡)𝑢̄(𝑡)]𝑑𝑡 (3.3)

where Q(𝑡) ∈ ℜ𝑛×𝑛 is a positive semi-definite state weighting matrix and R(𝑡) ∈ ℜ𝑟×𝑟 is a positive

definite control weighting matrix.

The overall objective of this linear optimal control problem can be formally stated as

minimize
𝑢̄(𝑡)

𝐽 =
1

2

∫︁ 𝑡𝑓

𝑡0

[𝑥̄⊤(𝑡)Q(𝑡)𝑥̄(𝑡)𝑢̄(𝑡) + 𝑢̄⊤(𝑡)R(𝑡)𝑢̄(𝑡)𝑢̄(𝑡)]𝑑𝑡

subject to ˙̄𝑥 = A(𝑡)𝑥̄(𝑡) + B(𝑡)𝑢̄(𝑡)

𝑦 = C(𝑡)𝑥̄(𝑡)

E(𝑡𝑓 ) = D𝑥̄(𝑡𝑓 )

where control term 𝑢̄⊤(𝑡)R(𝑡)𝑢̄(𝑡) is a positive weighting term that penalizes the system for large

control values and the terminal term D𝑥̄(𝑡𝑓 ) that forces the system to reach the desired terminal

states.

The Euler-Lagrange approach can be used to solve this problem by adjoining the state equations

to the performance index with lagrangian multipliers, 𝜆̄(𝑡). This approach yields an augmented

performance index defined as

𝐽 =

∫︁ 𝑡𝑓

𝑡0

1

2
[𝑥̄⊤(𝑡)Q(𝑡)𝑥̄(𝑡) + 𝑢̄⊤(𝑡)R(𝑡)𝑢̄(𝑡)] + 𝜆̄⊤(𝑡) [A(𝑡)𝑥̄(𝑡) + B(𝑡)𝑢̄(𝑡) − ˙̄𝑥(𝑡)] 𝑑𝑡 (3.4)
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A function called the Hamiltonian function that penalizes the system for large control values is

defined as

𝐻(𝑡) =
1

2
[𝑥̄⊤(𝑡)Q(𝑡)𝑥̄(𝑡)𝑢̄(𝑡) + 𝑢̄⊤(𝑡)R(𝑡)𝑢̄(𝑡)𝑢̄(𝑡)] + 𝜆̄⊤(𝑡)[A(𝑡)𝑥̄(𝑡) + B(𝑡)𝑢̄(𝑡)] (3.5)

A function called the terminal function that penalizes the system for large terminal errors is defined

as

𝜑(𝑡𝑓 ) = 𝑣⊤[D𝑥̄(𝑡𝑓 )] (3.6)

From the principles of calculus of variation, the following four conditions must be satisfied to

minimize the augmented performance index subject to the terminal constraints:

1. State Equation: 𝜕𝐻(𝑡)/𝜕𝜆̄(𝑡) = ˙̄𝑥(𝑡), for 𝑡 ≥ 0

2. Costate Equation: 𝜕𝐻(𝑡)/𝜕𝑥̄(𝑡) = − ˙̄𝜆(𝑡), for 𝑡 ≤ 𝑡𝑓

3. Stationarity: 𝜕𝐻(𝑡)/𝜕𝑢̄(𝑡) = 0, for 𝑡 ≥ 0

4. Boundary: 𝜕𝜑(𝑡𝑓 )/𝜕𝑥̄(𝑡𝑓 ) = 𝜆̄(𝑡𝑓 ), 𝑥̄(𝑡0) given

Condition 3 is known as the minimum principle of Pontryagin. Through its use the optimal control

can be expressed as

𝑢̄*(𝑡) = −R−1(𝑡)B⊤(𝑡)𝜆̄(𝑡) (3.7)

Under the assumption that R(𝑡) is positive definite the inverse R−1(𝑡) exists. Condition 3 only

guarantees 𝑢̄*(𝑡) minimizes or maximizes the Hamiltonian function. The fact that 𝜕𝐻2(𝑡)/𝜕𝑢̄2(𝑡) =

R(𝑡) guarantees that 𝑢̄*(𝑡) minimizes the Hamiltonian function, which minimizes the augmented

performance index [1].
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Substituting (3.7) into the condition 1 yields

˙̄𝑥 = A(𝑡)𝑥̄(𝑡) −B(𝑡)R−1(𝑡)B⊤(𝑡)𝜆̄(𝑡)

˙̄𝑥 = A(𝑡)𝑥̄(𝑡) − S(𝑡)𝜆̄(𝑡)

(3.8)

Furthermore, applying condition 2 yields

¯̇𝜆(𝑡) = −A⊤(𝑡)𝜆̄(𝑡) (3.9)

The canonical equations of 3.8 and 3.9 can be combined in the state-space form

⎡⎢⎣¯̇𝑥(𝑡)

¯̇𝜆(𝑡)

⎤⎥⎦ =

⎡⎢⎣A(𝑡) −S(𝑡)

0 −A⊤(𝑡)

⎤⎥⎦
⎡⎢⎣𝑥̄(𝑡)

𝜆̄(𝑡)

⎤⎥⎦ (3.10)

This is a two point boundary problem with 2𝑛 time-varying homogenous differential equations

that must be solved. A total of 2𝑛 boundary conditions are needed to obtain a unique solution to

these equations. The first 𝑛 boundary conditions come from the initial states, 𝑥̄(𝑡0). The final 𝑛

boundary conditions come from condition 4.

Applying condition 4 yields

𝜆̄(𝑡𝑓 ) = D𝑣 (3.11)

The state equations must be solved forward in time from the initial conditions. The costate equa-

tions must be solved backwards in time from the boundary conditions. The state equation and

costate equation are both linear time-varying equations.
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3.3 GENEX-ITACG

In this section, GENEX-ITACG is formulated and solved through the use of linear optimal control.

Let 𝑁 missile participate in the salvo attack. The goal of GENEX-ITACG is to simultaneously

hit a stationary target at a prescribed impact time with a specified terminal impact angle while

providing a user design parameter to shape the aggressiveness of the trajectories. It is assumed that

each missile has a perfect command response.

The equations of motion that govern the flight of each missile are

𝑋̇(𝑡) = 𝑉 cos(𝛾(𝑡))

𝑌̇ (𝑡) = 𝑉 sin(𝛾(𝑡))

𝛾̇(𝑡) =
𝐴(𝑡)

𝑉

𝐴̇(𝑡) = 𝑔(𝑡) = 𝑔𝐵(𝑡) + 𝑔𝐹 (𝑡)

(3.12)

where 𝑋(𝑡) is the missile’s downrange position, 𝑌 (𝑡) is the missile’s crossrange position, 𝑉 is the

missile’s velocity, 𝐴(𝑡) is the missile’s acceleration which is applied normal to the velocity vector,

and 𝛾(𝑡) is the missile’s flight path angle.

The missile acceleration rate, jerk, is included to provide an additional degree of freedom for

impact time control. The first jerk term, 𝑔𝐵(𝑡), is the command to eliminate the miss distance

and the impact angle error. The second jerk term, 𝑔𝐹 , is the additional command that corrects the

trajectory to achieve impact at the desired impact time.
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These equations are nondimensionalized to simplify the derivation of GENEX-ITACG by intro-

ducing the following nondimensional variables

𝑥(𝑡) =
𝑋(𝑡)

𝑉 𝑡𝑓
, 𝑦(𝑡) =

𝑌 (𝑡)

𝑉 𝑡𝑓
, 𝑎 =

𝐴(𝑡) 𝑡𝑓
𝑉

, 𝜏 =
𝑡

𝑡𝑓
, 𝑢(𝑡) =

𝑡𝐹
2 𝑔(𝑡)

𝑉
(3.13)

These equations are represented in state space format by making downrange the independent vari-

able as

˙̄𝑋 = 𝐴𝑋̄ + 𝐵 𝑢 =

⎛⎜⎜⎜⎜⎝
0 1 0

0 0 1

0 0 0

⎞⎟⎟⎟⎟⎠ 𝑋̄ +

⎛⎜⎜⎜⎜⎝
0

0

1

⎞⎟⎟⎟⎟⎠ (𝑢𝐵 + 𝑢𝐹 ) (3.14)

where 𝑋̄(𝑥) = [𝑦(𝑥) 𝛾(𝑥) 𝑎(𝑥)]𝑇 .

Now the formal problem definition of GENEX-ITACG may be stated as

minimize
𝑢𝐵(𝑥)

𝐽 =
1

2

∫︁ 𝑥𝑓

𝑥0

𝑢2
𝐵(𝑥)𝑅(𝑥)𝑑𝑥

subject to ˙̄𝑋 = 𝐴𝑋̄(𝑥) + 𝐵(𝑢𝐵(𝑥) + 𝑢𝐹 )

𝐸 = 𝐷𝑋̄(𝑥𝑓 )

where 𝑅(𝑥) is the control weighting function defined as

𝑅(𝑥) =
1

(𝑥𝑓 − 𝑥)𝑛
(3.15)

that penalizes the control effort more severely as the missile approaches its final destination, the

target. This penalization not only limits excessive commanded maneuvering during the terminal

phases of flights, but also allows the missile to command additional acceleration at handover.

Handover is the transition between the midcourse phase of flight and the terminal phase of flight.

At handover additional acceleration may be needed to eliminate large heading errors.
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𝐷 is the terminal weighting cost matrix defined as

𝐷 =

⎛⎜⎜⎜⎜⎝
1 0 0

0 1 0

0 0 0

⎞⎟⎟⎟⎟⎠
that places constraints on terminal crossrange and terminal flight path angle, but places no con-

straint on terminal acceleration. No constraint is placed on terminal because there is no way of

knowing this value beforehand.

𝐸 is the terminal state matrix defined as

𝐸 =

⎛⎜⎜⎜⎜⎝
𝑦(𝑥𝑓 )

𝛾(𝑥𝑓 )

0

⎞⎟⎟⎟⎟⎠ (3.16)

that consists of two user defined parameters: the missile’s terminal crossrange position and ter-

minal flight path angle. Intuitively, the desired terminal crossrange position would be the targets

crossrange position or some position close to it.

The costate equations are obtained as follows

𝜕𝐻

𝜕𝑥
=

⎡⎢⎢⎢⎢⎣
𝜕𝐻
𝜕𝑦

𝜕𝐻
𝜕𝛾

𝜕𝐻
𝜕𝑎

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0

𝜆𝑦

𝜆𝛾

⎤⎥⎥⎥⎥⎦ = −𝜆̇ = −

⎡⎢⎢⎢⎢⎣
𝜆̇𝑦

𝜆̇𝛾

𝜆̇𝑎

⎤⎥⎥⎥⎥⎦ (3.17)
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Using the boundary condition, the costate equations at terminal downrange are obtained as

𝜕𝜑(𝑥𝑓 )

𝜕𝑥
=

⎡⎢⎢⎢⎢⎣
𝜕𝜑(𝑥𝑓 )

𝜕𝑦

𝜕𝜑(𝑥𝑓 )

𝜕𝛾

𝜕𝜑(𝑥𝑓 )

𝜕𝑎

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
𝑣𝑦

𝑣𝛾

0

⎤⎥⎥⎥⎥⎦ = 𝜆(𝑥𝑓 ) =

⎡⎢⎢⎢⎢⎣
𝜆𝑦(𝑥𝑓 )

𝜆𝛾(𝑥𝑓 )

𝜆𝑎(𝑥𝑓 )

⎤⎥⎥⎥⎥⎦ (3.18)

Integrating Eq. 3.17 backwards from Eq. 3.18 yields

𝜆𝑦(𝑥) = 𝑣𝑦

𝜆𝛾(𝑥) = 𝑣𝛾 + 𝑣𝑦 (𝑥𝑓 − 𝑥)

𝜆𝑎(𝑥) = 𝑣𝛾 (𝑥𝑓 − 𝑥) +
1

2
𝑣𝑦(𝑥𝑓 − 𝑥)2

(3.19)

Furthermore, applying the stationarity condition yields

𝜕𝐻

𝜕𝑢𝐵

=
𝑢𝐵

(𝑥𝑓 − 𝑥)𝑛
+ 𝜆𝑎(𝑥) = 0

𝑢𝐵 = −(𝑥𝑓 − 𝑥)𝑛 𝜆𝑎(𝑥) = −𝑣𝛾 (𝑥𝑓 − 𝑥)𝑛+1 − 1

2
𝑣𝑦 (𝑥𝑓 − 𝑥)𝑛+2

(3.20)

where⎡⎢⎣𝑣𝑦
𝑣𝛾

⎤⎥⎦ =

⎡⎢⎣−4UPN (𝑛+4)2 (𝑛+5)
𝑥go

𝑛+3 (𝑛+3)

2 𝛾go (𝑛+3) (𝑛+4) (𝑛+5)

𝑥go
𝑛+4

2 𝑎 (𝑛+4) (𝑛+5)
𝑥go

𝑛+3

2UPN (𝑛+4) (𝑛+5)
𝑥go

𝑛+2 −𝛾go (𝑛+3) (𝑛+4)2

𝑥go
𝑛+3 −𝑎 (𝑛+3) (𝑛+4)

𝑥go
𝑛+2

⎤⎥⎦ 𝑧+

⎡⎢⎣−𝑢𝐹 (𝑛+1) (𝑛+4) (𝑛+5)
3𝑥go

𝑛+2

𝑢𝐹 (𝑛+3) (𝑛2+6𝑛+8)
6𝑥go

𝑛+1

⎤⎥⎦𝑢𝐹

and

𝑧 =

⎡⎢⎢⎢⎢⎣
𝑈𝑃𝑁

𝛾𝑔𝑜

𝑎

⎤⎥⎥⎥⎥⎦ 𝑈𝑃𝑁 =
ygo (𝑛 + 3)

xgo2
− 𝛾 (𝑛 + 3)

xgo
𝛾𝑔𝑜 = 𝛾𝑓 − 𝛾
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Eq. 3.20 is written in a compact form as

𝑢𝐵 = 𝐾⊤𝑧 +
(𝑛− 1)(𝑛 + 4)

6
𝑢𝐹

where

𝐾 =

⎛⎜⎜⎜⎜⎝
2 (𝑛+4) (𝑛+5)
𝑥go (𝑛+3)

− (𝑛+3) (𝑛+4)
𝑥go

2

−2 (𝑛+4)
𝑥go

⎞⎟⎟⎟⎟⎠
Now total control term, 𝑢, is expressed as

𝑢 = 𝑢𝐵 + 𝑢𝐹 = 𝐾⊤𝑧 +
(𝑛 + 1)(𝑛 + 2)

6
𝑢𝐹

Next, the additional command, 𝑢𝐹 , is solved for. This command corrects the trajectory to ensure

the missile impacts the target at the designated impact time. The time to go until the missile impacts

the target is expressed as

𝜏𝑔𝑜 =

∫︁ 𝑥𝑓

𝑥

√︀
1 + 𝛾2(𝑠, 𝑢𝐹 )𝑑𝑠

=

∫︁ 𝑥𝑓−𝑥

0

√︀
1 + 𝛾2(𝜁, 𝑢𝐹 )𝑑𝑠

(3.21)

where 𝜁 = 𝑥𝑓 − 𝑠 and

𝛾(𝜁, 𝑢𝐹 ) = 𝛾𝑓 − 𝑎𝑥𝜁 +

(︂
1

2
𝜁2 − (𝑥𝑓 − 𝑥) 𝜁

)︂
𝑢𝐹(︂

1

(𝑛 + 2)
(𝑥𝑓 − 𝑥)𝑛+2𝜁 − 1

(𝑛 + 2) (𝑛 + 3)
𝜁𝑛+3

)︂
𝑣𝛾(︂

1

2 (𝑛 + 3)
(𝑥𝑓 − 𝑥)𝑛+3𝜁 − 1

2 (𝑛 + 3) (𝑛 + 4)
𝜁𝑛+4

)︂
𝑣𝑦

(3.22)
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If the additional control command is not applied, an estimation of time to go is expressed as

𝜏𝑔𝑜 =

∫︁ 𝑥𝑓−𝑥

0

√︀
1 + 𝛾2(𝜁, 𝑢𝐹 = 0)𝑑𝑠 (3.23)

Evaluating the integral yields

𝜏𝑔𝑜 = 𝐶 + 𝐿⊤𝑧 + 𝑧⊤𝑄𝑧 (3.24)

where

𝐶 = 𝑥go

(︂
𝛾f

2

2
+ 1

)︂

𝐿 =

⎛⎜⎜⎜⎜⎝
𝛾f 𝑥go

2

𝑛+3

−𝛾f 𝑥go

0

⎞⎟⎟⎟⎟⎠

𝑄 =

⎛⎜⎜⎜⎜⎝
2𝑥go

3 (4𝑛+19) (𝑛+4) (𝑛+5)

3 (2𝑛+7) (2𝑛+9) (𝑛+3)2 (𝑛+6)
−𝑥2

go (16𝑛3+206𝑛2+880𝑛+1245)
6(2𝑛+7) (2𝑛+9) (𝑛+3) (𝑛+6)

− 𝑥3
go (4𝑛+19)

6 (2𝑛+7) (2𝑛+9) (𝑛+3) (𝑛+6)

−𝑥2
go (16𝑛3+206𝑛2+880𝑛+1245)
6(2𝑛+7) (2𝑛+9) (𝑛+3) (𝑛+6)

−
𝑥go

(︁
17𝑛3

6
+ 71𝑛2

2
+147𝑛+201

)︁
(2𝑛+7) (2𝑛+9) (𝑛+5) (𝑛+6)

+ 2𝑥go

3
− 𝑥2

go (4𝑛+19) (𝑛+3)

12 (2𝑛+7) (2𝑛+9) (𝑛+5) (𝑛+6)

− 𝑥3
go (4𝑛+19)

6 (2𝑛+7) (2𝑛+9) (𝑛+3) (𝑛+6)
− 𝑥2

go (4𝑛+19) (𝑛+3)

12 (2𝑛+7) (2𝑛+9) (𝑛+5) (𝑛+6)

𝑥3
go (3𝑛+13)

6 (2𝑛+7) (2𝑛+9) (𝑛+5) (𝑛+6)

⎞⎟⎟⎟⎟⎠
Notice, that the time to go of Eq. 3.21 is a 2(𝑛+4) order function of 𝛾, and second order function if

𝑢𝐹 . Therefore, 𝑢𝐹 is solved for by using the quadratic formula. Evaluating the integral of Eq. 3.21

yields

𝜏𝑔𝑜 =

∫︁ 𝑥𝑓

𝑥

√︀
1 + 𝛾2(𝑠, 𝑢𝐹 )𝑑𝑠

= 𝛼𝑢2
𝐹 + 𝛽𝑢𝐹 + 𝜏𝑔𝑜

0 = 𝑢2
𝐹 +

𝛽

𝛼
𝑢𝐹 − 𝜖𝑡

𝛼

55



where the time to go estimation error is defined as

𝜖𝑡 = 𝜏𝑔𝑜 − 𝜏𝑔𝑜

By making the following definitions

𝜂𝐿 =
𝛼

𝛽
= 𝑀⊤𝑧

𝑀 =

⎛⎜⎜⎜⎜⎝
(𝑛+5) (4𝑛2+20𝑛+7) 30

𝑥go (8𝑛+35) (𝑛+1) (𝑛+2) (𝑛+3)

− (𝑛+3) (4𝑛2+38𝑛+91) 30

𝑥2
go (8𝑛+35) (𝑛+1) (𝑛+2)

30
𝑥go (𝑛+1) (𝑛+2)

⎞⎟⎟⎟⎟⎠

𝜂𝐸 =
4

𝛼
𝜖𝑡 = 𝑁𝜖𝑡

𝑁 =
4320 (2𝑛 + 7) (2𝑛 + 9) (𝑛 + 5) (𝑛 + 6) (𝑛 + 7)

𝑥5
go (8𝑛 + 35) (𝑛 + 1)2 (𝑛 + 2)2

the additional control command, 𝑢𝐹 is solved for as

𝑢𝐹 = −1

2
𝜂𝐿 ± 1

2

√︁
𝜂2𝐿 + 𝜂𝐸

− 1

2
𝜂𝐿 ± 1

2
𝜂𝐿

√︂
1 +

𝜂𝐸
𝜂2𝐿

(3.25)

When the time to go estimation error equals zero the additional control command should equal

zero. Therefore, the positive sign solution of Eq. 3.25 should be used. Furthermore, 𝜂𝐸
𝜂2𝐿

<< 1 and

approaches zero as 𝜖𝑡 → 0.

Therefore, Eq. 3.25 can be approximated as

𝑢𝐹 ≃ −1

2
𝜂𝐿 +

1

2
𝜂𝐿

(︂
1 +

𝜂𝐸
2𝜂2𝐿

)︂
≃ 𝜂𝐸

4𝜂𝐿
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CHAPTER 4: RESULTS

4.1 Introduction

In this chapter simulation, results that demonstrate the capabilities of GENEX-ITACG are pre-

sented. The simulation model was constructed in Simulink as shown in App. B. There are three

conditions that stop the simulation based on the states of the system. If the missile flies past the

target, if the missile flies into the ground, or if the time of flight is relative close to the terminal

time the simulation is halted.

The inner layer of the model contains the nonlinear dynamic equations that govern flight. The

middle layer forces the missile to hit the target at a specified terminal impact angle and has the

ability to alter the aggressiveness of this terminal impact with the user design parameter, 𝑛. The

outer layer forces the system to impact the target at a specified impact time.

The capabilities of GENEX-ITACG are demonstrated by first conducting single missile flyouts that

isolate the three different components of GENEX-ITACG. The baseline initial conditions for each

of these single missile flyouts are shown in Table 4.1.

Table 4.1: Initial Conditions: Single Missile Flyout

IC Missile Target
𝑥0(𝑚) 0 10,000
𝑦0(𝑚) 500 0
𝛾0(𝑑𝑒𝑔) 30 0
𝑎0(𝑚/𝑠2) 0 0
𝑉 (𝑚/𝑠) 250 0
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To begin, the capabilities of the impact angle control guidance portion of GENEX-ITACG are

presented by setting 𝑛 = 0, cutting off the outer loop, and adjusting the desired impact angle, 𝛾𝑓 .

Then the capabilities of the GENEX portion of GENEX-ITACG are presented by keeping the outer

loop off, setting the desired impact angle to zero, and adjusting the user design parameter. Next,

the capabilities of the impact time control portion of GENEX-ITACG are presented by cutting the

outer loop on, setting the desired impact angle and user design parameter to zero, and adjusting the

desired impact time, 𝑡𝑑.

At last, the full capabilities of GENEX-ITACG are presented for a single missile flyout by turning

the outer loop on, setting the desired impact angle to -30 degrees, setting the desired impact time

to 50, and adjusting the user design parameter. The test parameters of these cases are summarized

in Table 4.2.

Table 4.2: Test Parameters: Single Missile Flyout

Case Subcase Guidance Law 𝛾𝑓 (𝑑𝑒𝑔) n 𝑡𝑑(𝑠)

1 1 IACG 0 0 n/a
1 2 IACG -30 0 n/a
1 3 IACG -60 0 n/a
2 1 GENEX -30 0 n/a
2 2 GENEX -30 1 n/a
2 3 GENEX -30 2 n/a
3 1 ITCG -30 0 45
3 2 ITCG -30 0 50
3 3 ITCG -30 0 55
4 1 GENEX-ITACG -30 0 50
4 1 GENEX-ITACG -30 0.1 50
4 2 GENEX-ITACG -30 0.2 50
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Finally, the full capabilities of GENEX-ITACG are demonstrated once again, but this time through

a coordinated 3 missile salvo attack. The initial conditions for each missile participating the the

salvo attack is shown in Table 4.3.

Table 4.3: Initial Conditions: 3 Missile Salvo Attack Flyout

IC Missile 1 Missile 2 Missile 3 Target
𝑥0(𝑚) -10,000 -6,000 -3,000 0
𝑦0(𝑚) 500 6,000 10,000 0
𝛾0(deg) 30 50 -20 0
𝑎0(𝑚/𝑠2) 0 0 0 0
𝑉 (𝑚/𝑠) 250 250 250 0

To demonstrate the full capabilities of GENEX-ITACG three different values of 𝑛 and three dif-

ferent terminal impact angles are used. To simultaneously hit the target each missile is given the

same desired impact time. These flight parameters are shown for each missile in Table 4.2.

Table 4.4: Test Parameters: 3 Missile Salvo Attack Flyout

Missile 𝛾𝑓 (𝑑𝑒𝑔) n 𝑡𝑑(𝑠)

1 0 0 50
1 0 0.1 50
1 0 0.2 50
2 -30 0 50
2 -30 0.1 50
2 -30 0.2 50
3 -60 0 50
3 -60 0.1 50
3 -60 0.2 50
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4.2 Case 1: Impact Angle Control Guidance (IACG)

Case 1 demonstrates the ability of IACG to hit a stationary target at three different desired impact

angles. The trajectories for each subcase in shown below in Fig. 4.1. The blue, green and red traces

represent desired terminal impact angles of 0, −30, and 60 degrees, respectively.

As the desired impact angle is decreased, the shaping of the trajectory becomes more pronounces.

This illustrates the meaning of a trajectory shaping guidance law.

Figure 4.1: Results: IACG Trajectory
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As shown in Fig. 4.2 in each case the missile successfully achieved the desired impact angle. The

lower the terminal impact angle the longer the time of flight. This difference in time occurs because

the additional command to adjust the trajectory for impact time was zeroed out.

Figure 4.2: Results: IACG Flight Path Angle
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The IACG command and acceleration is shown below in Fig. 4.3 and Fig. 4.4. The term to control

impact time is zero throughout the entire, which causes discrepancies in impact time. It is apparent

that more acceleration is needed as the desired impact angle is decreased.

This observation is valid because to achieve a lower impact angle the missile must divert further

from a straight-line trajectory, thus expending more energy.

Figure 4.3: Results: IACG Guidance Command
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Figure 4.4: Results: IACG Acceleration
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4.3 Case 2: General Vector Explicit Guidance (GENEX)

Case 2 demonstrates the ability of GENEX to hit a stationary target using three different values of

𝑛. The trajectories for each subcase are shown below in Fig. 4.5. The blue, green and red traces

represent 𝑛 values of 0,1, and 2, respectively.

During the initial phase of flight, the trajectory of the missile changes more rapidly as 𝑛 is in-

creased. Whereas, during the terminal phases of flight the trajectory of the missile changes more

slowly as 𝑛 is increased.

Figure 4.5: Results: GENEX Trajectory
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As shown in Fig. 4.6 in each case the missile successfully achieved the desired impact angle.

However, the lower the value of 𝑛 the longer the time of flight. Once again, this difference in time

occurs because the impact time control portion of the guidance was not implemented.

By comparing the slopes of the lines it is apparent that as 𝑛 is increased the flight path angle is

changing more rapidly during the initial phase of flight. By observing the slopes of the flight path

angles during the terminal phase of flight it is clear that the missile approaches the desired impact

angle more aggressively with increasing 𝑛.

Figure 4.6: Results: GENEX Flight Path Angle
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The GENEX command and acceleration is shown below in Fig. 4.7 and Fig. 4.8. Once again, the

term to control impact time is zero throughout the entire, which causes discrepancies in impact

time. It is apparent that with increasing value of 𝑛 more acceleration is being commanded during

the initial phase of flight and less acceleration is being commanded during the terminal phase of

flight.

This behavior agrees with cost function of GENEX which increasing the weight on the control

input as downrange to go approaches zero. The less acceleration commanded during the terminal

phase of flight, the steeper the approach angle to the desired impact angle.

Figure 4.7: Results: GENEX Guidance Command
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Figure 4.8: Results: GENEX Acceleration
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4.4 Case 3: Impact Time Control Guidance (ITCG)

Case 3 demonstrates the ability of ITCG to hit a stationary target at three different desired impact

times. The trajectories for each subcase in shown below in Fig. 4.9. The blue, green and red traces

represent desired terminal impact times of 45,50, and 55 seconds, respectively.

As the desired impact time is increased the trajectory of the missile is altered to fly a longer flight

path which ensures the missile arrives at the target at the specified time.

Figure 4.9: Results: ITCG Trajectory
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Fig. 4.10 shows the time-to-go estimate for each case. The time-to-go estimator successfully con-

verges to zero at each desired impact time. For each case, the estimator begins at the same estimate

which is obviously shorter than the desired time-to-go for each case.

This estimation error is used by GENEX-ITACG to place the missile on a longer trajectory. Once

this error is eliminated the ITCG portion of GENEX-ITACG is not used and the missile strictly

flies on a trajectory using a combination of GENEX and IACG.

Figure 4.10: Results: ITCG Time to Go
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As shown in Fig. 4.11 in each case the missile successfully achieved the desired impact angle at the

desired impact time. The larger the desired impact time the larger the range of flight path angles

achieved by the missile to waste energy.

Figure 4.11: Results: ITCG Flight Path Angle
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The ITCG command and commanded acceleration is shown below in Fig. 4.12 and Fig. 4.13. It is

apparent that by increasing the desired impact time more acceleration is commanded throughout

flight. This behavior agrees with the need to burn more energy to meet larger desired impact time.

The first nonlinearity in the jerk command occurs because the 𝜂𝐿 term of the guidance law changes

polarity. The second nonlinearity is due to implementation. As the missile approaches the tar-

get, the guidance laws sensitivity to time-to-go estimation error increases. Once estimation error

dropped below 1 millisecond the impact time control was set to zero.

Figure 4.12: Results: ITCG Guidance Command
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Figure 4.13: Results: ITCG Acceleration
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4.5 Case 4: GENEX-ITACG Single Missile Flyout

Case 4 demonstrates the ability of GENEX-ITACG to hit a stationary target at an impact time of

50 seconds, with a impact angle of -30 degrees, using three different values of 𝑛. The trajectories

for each subcase in shown below in Fig. 4.14. The blue, green and red traces represent 𝑛 values of

0,0.1, and 0.2, respectively.

Similar to Case 2, during the initial phase of flight the trajectory of the missile changes more

rapidly as 𝑛 is increased. However, the missile’s flight path differs during the terminal phase of

flight. Contrary to GENEX, the missile’s flight path behaves more aggressively during the terminal

phase of flight. The reason for this difference is explained later.

Figure 4.14: Results: GENEX-ITACG Trajectory
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Fig. 4.15 shows the time-to-go estimate for each case. For each case the time-to-go estimator

successfully converges to zero at the desired impact time of 50 seconds.

Figure 4.15: Results: GENEX-ITACG Time to Go
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As shown in Fig. 4.16 in each case the missile successfully achieved the desired impact angle at

the desired impact time. The flight path angle behavior during the initial phase of flight becomes

less aggressive as 𝑛 is increased. Whereas, the flight path angle behavior during the terminal phase

of flight becomes more aggressive as 𝑛 is increased.

Although this seems to contradict the goal of GENEX, this occurs because of the logic to turn off

time correction when the time-to-go estimation error drops below 1 millisecond. This nonliearity

causes the guidance law to jump to a different parameterized cost function and behave as if it is the

initial phase of flight again.

Figure 4.16: Results: GENEX-ITACG Flight Path Angle
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The GENEX-ITACG command and commanded acceleration is shown below in Fig. 4.17 and

Fig. 4.18. Unlike Case 2, it is apparent that with increasing value of 𝑛 less acceleration is being

commanded during the initial phase of flight and more acceleration is being commanded during

the terminal phase of flight.

This due to the inclusion of the impact time correcting term. Once this term is zeroed out, the

behavior of the acceleration agrees with that of Case 2.

Figure 4.17: Results: GENEX-ITACG Guidance Command
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Figure 4.18: Results: GENEX-ITACG Acceleration
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4.6 Case 5: GENEX-ITACG Salvo Attack Flyout

Case 5 demonstrates the ability of GENEX-ITACG to guide three missiles to hit a stationary target

at an impact time of 50 seconds, with three different impact angle of -30 degrees, using three

different values of 𝑛.

The trajectories for each subcase in shown below in Fig. 4.19. Each missile has the ability to hit

the target with different trajectories.

Figure 4.19: Results: GENEX-ITACG Salvo Trajectory
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As shown in Fig. 4.20 the missiles successfully achieved the desired impact angle at the desired

impact time with varying levels of impact angle aggressiveness.

Figure 4.20: Results: GENEX-ITACG Salvo Flight Path Angle
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CHAPTER 5: CONCLUSION

In conclusion, it has been proven that GENEX-ITACG allows a salvo of missile to simultaneously

hit a stationary target at a prescribed impact time and impact angle, while adjusting the aggressive-

ness of the trajectory with a user design parameter. Although, the design parameter acts differently

from GENEX during the terminal stage of flight, this is not an undesirable behavior. A family of

different trajectories can still be flown through its use, with increasingly aggressive trajectories.

Future areas of research, include removing the need to specify a impact time to achieve the salvo

attack. Instead of incorporating ITACG into GENEX, a cooperative function can be designed that

penalizes terminal miss distances between each missile. Thus, the impact time would be negotiated

between the missiles involved in the salvo attack and not specified by the end user.

Another area of future research is to add the ability to hit a maneuvering target. GENEX has the

ability to do this. Adding these capabilities into GENEX-ITACG would have greatly increased

the complexity of the derivation. Hopefully, GENEX-ITACG can serve as a stepping stone to

accomplishing this feat.
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APPENDIX A: DETAILED DERIVATION OF GENEX-ITACG
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A.1 Equations of Motion

In this section, a detailed derivation of GENEX-ITACG law is presented. Lets first consider the

equations of motion for a planar target missile engagement scenario. The nonlinear planar target

missile engagement equations are

𝑋̇(𝑡) = 𝑉 cos(𝛾(𝑡)) , 𝑌̇ (𝑡) = 𝑉 sin(𝛾(𝑡)) , 𝛾̇(𝑡) =
𝐴(𝑡)

𝑉
, 𝐴̇(𝑡) = 𝑔(𝑡) = 𝑔𝐵(𝑡) + 𝑔𝐹 (𝑡) (A.1)

where 𝑋(𝑡) is the missile’s downrange position, 𝑌 (𝑡) is the missile’s crossrange position, 𝑉 is the

missile’s velocity, 𝐴(𝑡) is the missile’s acceleration which is applied normal to the velocity vector,

and 𝛾(𝑡) is the missile’s flight path angle.

The missile acceleration rate, jerk, is included to provide an additional degree of freedom for

impact time control. The first jerk term, 𝑔𝐵(𝑡), is the command to eliminate the miss distance

and the impact angle error. The second jerk term, 𝑔𝐹 , is the additional command that corrects the

trajectory to achieve impact at the desired impact time.

Without loss of generality, it is assumed that the flight path angle remains small for most of the

flight. With this small angle assumption, the following linearizations can be made: sin (𝛾(𝑡)) =

𝛾(𝑡) and cos (𝛾(𝑡)) = 1. Therefore, the state equations of A.1 are simplified to

𝑋̇(𝑡) = 𝑉, 𝑌̇ (𝑡) = 𝑉 𝛾(𝑡), 𝛾̇(𝑡) = 𝐴(𝑡)/𝑉, 𝐴̇(𝑡) = 𝑔(𝑡) (A.2)

These simplified dynamic equation are used to carry out the derivation of the proposed guidance

law.
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First, to further reduce the complexity of the derivation lets introduce nondimensional state vari-

ables. The state variables are nondimensionalized as follows

𝑥(𝑡) =
𝑋(𝑡)

𝑉 𝑡𝑓
, 𝑦(𝑡) =

𝑌 (𝑡)

𝑉 𝑡𝑓
, 𝑎 =

𝐴(𝑡) 𝑡𝑓
𝑉

, 𝜏 =
𝑡

𝑡𝑓
, 𝑢(𝑡) =

𝑡𝐹
2 𝑔(𝑡)

𝑉
(A.3)

Taking the derivative with respect to time on both sides of the dimensionless time relation yields

𝑑𝑡

𝑑𝑡
= 𝑡𝑓

𝑑𝜏

𝑑𝑡
= 1 or 𝑑𝑡 = 𝑑𝜏 𝑡𝑓 (A.4)

Furthermore, by taking the derivative with respect to time of both sides of the rest of the dimen-

sionless relations, substituting A.4 into the results and then equating to A.2 yields

𝑑𝑋

𝑑𝑡
= 𝑉 𝑡𝑓

𝑑𝑥

𝑑𝑡
= 𝑉

𝑑𝑥

𝑑𝜏
= 𝑉

𝑑𝑌

𝑑𝑡
= 𝑉 𝑡𝑓

𝑑𝑦

𝑑𝑡
= 𝑉

𝑑𝑦

𝑑𝜏
= 𝑉 𝛾

𝑑𝛾

𝑑𝑡
=

𝑑𝛾

𝑑𝑡
=

1

𝑡𝑓

𝑑𝛾

𝑑𝜏
=

𝐴

𝑉

𝑑𝐴

𝑑𝑡
=

𝑉

𝑡𝑓

𝑑𝑎

𝑑𝑡
=

𝑉

𝑡2𝑓

𝑑𝑎

𝑑𝜏
= 𝑔(𝑡) = 𝑔𝐵(𝑡) + 𝑔𝐹 (𝑡)

(A.5)

Now from A.5 the nondimensional state equations are expressed as

𝑑𝑥

𝑑𝜏
= 1

𝑑𝑦

𝑑𝜏
= 𝑉 𝛾(𝑡)

𝑑𝛾

𝑑𝜏
=

𝐴(𝑡) 𝑡𝑓
𝑉

= 𝑎(𝑡)

𝑑𝑎

𝑑𝜏
=

𝑡𝐹
2 𝑔(𝑡)

𝑉
= 𝑢(𝑡) = 𝑢𝐵(𝑡) + 𝑢𝐹 (𝑡)

(A.6)
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To aid in the derivation of the impact time control term, 𝑢𝐹 , the independent variable of A.6 is

changed from dimensionless time, 𝜏 , to dimensionless downrange 𝑥 such that

𝑑𝑥

𝑑𝑥
= 1

𝑑𝑦

𝑑𝑥
= 𝛾(𝑥)

𝑑𝛾

𝑑𝑥
= 𝑎(𝑥)

𝑑𝑎

𝑑𝑥
= 𝑢(𝑥) = 𝑢𝐵(𝑥) + 𝑢𝐹 (𝑥)

(A.7)

By specifying the state variables as 𝑋̄ = [𝑦(𝑥) 𝛾(𝑥) 𝑎(𝑥)]𝑇 , these equations can be expressed in

state space format as

˙̄𝑋 = 𝐴𝑋̄ + 𝐵 𝑢 =

⎛⎜⎜⎜⎜⎝
0 1 0

0 0 1

0 0 0

⎞⎟⎟⎟⎟⎠ 𝑋̄ +

⎛⎜⎜⎜⎜⎝
0

0

1

⎞⎟⎟⎟⎟⎠ (𝑢𝐵(𝑥) + 𝑢𝐹 (𝑥)) (A.8)
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A.2 Linear Quadratic Control Problem

Now that the state equations are defined the linear optimal control problem is formulated as a

terminal controller problem with a quadratic performance index. The formal problem definition is

stated as

minimize
𝑢𝐵(𝑡)

𝐽 =
1

2

∫︁ 𝑥𝑓

𝑥0

𝑢2
𝐵(𝑥)𝑅(𝑥)𝑑𝑥

subject to ˙̄𝑋 = 𝐴𝑋̄(𝑥) + 𝐵(𝑢𝐵(𝑥) + 𝑢𝐹 )

𝐸 = 𝐷𝑋̄(𝑥𝑓 )

𝑅(𝑥) is the control weighting function defined as

𝑅(𝑥) =
1

(𝑥𝑓 − 𝑥)𝑛
(A.9)

that penalizes the control effort more severely as the missile approaches its final destination, the

target.

This penalization not only limits excessive commanded maneuvering during the terminal phases

of flights, but also allows the missile to command additional acceleration at handover. Handover is

the transition between the midcourse phase of flight and the terminal phase of flight. At handover

additional acceleration may be needed to eliminate large heading errors between the predicted

location of the target and the actual location of the target at handover.
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𝐷 is the terminal weighting cost matrix defined as

𝐷 =

⎛⎜⎜⎜⎜⎝
1 0 0

0 1 0

0 0 0

⎞⎟⎟⎟⎟⎠ (A.10)

that places constraints on terminal crossrange and terminal flight path angle, but places no con-

straint on terminal acceleration. No constraint is placed on terminal acceleration because there is

no way of knowing this value beforehand.

𝐸 is the terminal state matrix defined as

𝐸 =

⎛⎜⎜⎜⎜⎝
𝑦(𝑥𝑓 )

𝛾(𝑥𝑓 )

0

⎞⎟⎟⎟⎟⎠ (A.11)

that consists of two user defined parameters: the missile’s terminal crossrange position and ter-

minal flight path angle. Intuitively, the desired terminal crossrange position would be the targets

crossrange position or some position close to it.

Now that the linear optimal control problem is clearly stated the Hamiltonian function may be

expressed as

𝐻(𝑥) =
𝑢𝐵

2(𝑥)

2 (𝑥𝑓 − 𝑥)𝑛
+ 𝑎(𝑥)𝜆𝛾 + 𝛾(𝑥)𝜆𝑦 + [𝑢𝐵(𝑥) + 𝑢𝐹 (𝑥)] 𝜆𝑎 (A.12)

and the terminal cost function may be expressed as

𝜑(𝑥𝑓 ) = 𝑣⊤[𝐷𝑥̄(𝑥𝑓 )] = 𝑣𝑦𝑦(𝑥𝑓 ) + 𝑣𝛾𝛾(𝑥𝑓 ) (A.13)
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From linear optimal control theory the costate equations are obtained as

𝜕𝐻

𝜕𝑥
=

⎡⎢⎢⎢⎢⎣
𝜕𝐻
𝜕𝑦

𝜕𝐻
𝜕𝛾

𝜕𝐻
𝜕𝑎

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0

𝜆𝑦

𝜆𝛾

⎤⎥⎥⎥⎥⎦ = −𝜆̇ = −

⎡⎢⎢⎢⎢⎣
𝜆̇𝑦

𝜆̇𝛾

𝜆̇𝑎

⎤⎥⎥⎥⎥⎦ (A.14)

and the costate equations at terminal downrange are obtained as

𝜕𝜑(𝑥𝑓 )

𝜕𝑥
=

⎡⎢⎢⎢⎢⎣
𝜕𝜑(𝑥𝑓 )

𝜕𝑦

𝜕𝜑(𝑥𝑓 )

𝜕𝛾

𝜕𝜑(𝑥𝑓 )

𝜕𝑎

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
𝑣𝑦

𝑣𝛾

0

⎤⎥⎥⎥⎥⎦ = 𝜆(𝑥𝑓 ) =

⎡⎢⎢⎢⎢⎣
𝜆𝑦(𝑥𝑓 )

𝜆𝛾(𝑥𝑓 )

𝜆𝑎(𝑥𝑓 )

⎤⎥⎥⎥⎥⎦ (A.15)

The costate dynamic equations are solved by first integrating 𝜆̇𝑦(𝑥) from A.14 downrange to in the

following manner

−
∫︁ 𝑥

𝑥𝑓

𝜆̇𝑦(𝑠)𝑑𝑠 = −𝜆𝑦(𝑥) + 𝜆𝑦(𝑥𝑓 ) =

∫︁ 𝑥

𝑥𝑓

0𝑑𝑠 = 0 (A.16)

Substitution of Eq. A.15 yields

𝜆𝑦(𝑥) = 𝜆𝑦(𝑥𝑓 ) = 𝑣𝑦 (A.17)

Then by integrating 𝜆̇𝛾(𝑥) from A.14 backwards in downrange in the following manner

−
∫︁ 𝑥

𝑥𝑓

𝜆̇𝛾(𝑠)𝑑𝑠 = −𝜆𝛾(𝑥) + 𝜆𝛾(𝑥𝑓 ) =∫︁ 𝑥

𝑥𝑓

𝜆𝑦(𝑠)𝑑𝑠 =

∫︁ 𝑥

𝑥𝑓

𝑣𝑦𝑑𝑠 = 𝑣𝑦 (𝑥− 𝑥𝑓 )

(A.18)

Substitution of Eq. A.15 yields

𝜆𝛾(𝑥) = −𝑣𝑦 (𝑥− 𝑥𝑓 ) + 𝜆𝛾(𝑥𝑓 ) = 𝑣𝑦 (𝑥𝑓 − 𝑥) + 𝑣𝛾 (A.19)
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Finally, by integrating 𝜆̇𝑎(𝑥) from A.14 backwards in downrange in the following manner

−
∫︁ 𝑥

𝑥𝑓

𝜆̇𝑎(𝑠)𝑑𝑠 = −𝜆𝑎(𝑥) + 𝜆𝑎(𝑥𝑓 ) =∫︁ 𝑥

𝑥𝑓

𝜆𝛾(𝑠)𝑑𝑠 =

∫︁ 𝑥

𝑥𝑓

[𝑣𝑦 (𝑥𝑓 − 𝑠) + 𝑣𝛾] 𝑑𝑠

= −1

2
𝑣𝑦 (𝑥𝑓 − 𝑥)2 + 𝑣𝛾 (𝑥− 𝑥𝑓 )

(A.20)

Substitution of Eq. A.15 yields

𝜆𝑎(𝑥) =
1

2
𝑣𝑦 (𝑥𝑓 − 𝑥)2 − 𝑣𝛾 (𝑥− 𝑥𝑓 ) + 𝜆𝑎(𝑥𝑓 ) =

1

2
𝑣𝑦 (𝑥𝑓 − 𝑥)2 + 𝑣𝛾 (𝑥𝑓 − 𝑥) (A.21)

In summary, the costate equations are

𝜆𝑦(𝑥) = 𝑣𝑦

𝜆𝛾(𝑥) = 𝑣𝛾 + 𝑣𝑦 (𝑥𝑓 − 𝑥)

𝜆𝑎(𝑥) = 𝑣𝛾 (𝑥𝑓 − 𝑥) +
1

2
𝑣𝑦(𝑥𝑓 − 𝑥)2

(A.22)

Furthermore, the optimal control to minimize the terminal miss distance and flight path angle error

is obtained by applying the optimality condition and through the use of A.22 obtained as

𝜕𝐻

𝜕𝑢𝐵

=
𝑢𝐵

(𝑥𝑓 − 𝑥)𝑛
+ 𝜆𝑎(𝑥) = 0

𝑢𝐵 = −(𝑥𝑓 − 𝑥)𝑛 𝜆𝑎(𝑥) = −𝑣𝛾 (𝑥𝑓 − 𝑥)𝑛+1 − 1

2
𝑣𝑦 (𝑥𝑓 − 𝑥)𝑛+2

(A.23)

The control term 𝑢𝐵 is not completely defined because the terminal constant multipliers 𝑣𝑦 and 𝑣𝛾

have not been defined. These terms are obtained by solving the state space equations of A.6 to

obtain explicit equations for each state and then solving for these multipliers.
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First, an explicit equation for acceleration is obtained by A.23 plugging into A.22 and integrating

from 𝑥 to some intermediate point in space 𝑠 ∈ [𝑥, 𝑥𝑓 ] such that

∫︁ 𝑠

𝑥

𝑎̇(𝑠)𝑑𝑠 = 𝑎(𝑠) − 𝑎(𝑥) = 𝑎(𝑠) − 𝑎𝑥 =∫︁ 𝑠

𝑥

[𝑢𝐵(𝑠) + 𝑢𝐹 ] 𝑑𝑠 =

∫︁ 𝑠

𝑥

[︂
−𝑣𝛾 (𝑥𝑓 − 𝑠)𝑛+1 − 1

2
𝑣𝑦 (𝑥𝑓 − 𝑠)𝑛+2 + 𝑢𝐹

]︂
𝑑𝑠

(A.24)

and solving for 𝑎(𝑠) yields

𝑎(𝑠) = 𝑎𝑥 + 𝑢𝐹 (𝑠− 𝑥) − 𝑣𝛾
(𝑛 + 2)

(𝑥𝑓 − 𝑥)𝑛+2 − 𝑣𝑦
2 (𝑛 + 3)

(𝑥𝑓 − 𝑥)𝑛+3

+
𝑣𝛾

(𝑛 + 2)
(𝑥𝑓 − 𝑠)𝑛+2 +

𝑣𝑦
2 (𝑛 + 3)

(𝑥𝑓 − 𝑠)𝑛+3
(A.25)

Second, an explicit equation for flight path angle is obtained by A.23 plugging into A.22 and

integrating backwards in time from 𝑥𝑓 such that

−
∫︁ 𝑠

𝑥𝑓

𝛾̇(𝑠)𝑑𝑠 = −𝛾(𝑠) + 𝛾(𝑥𝑓 ) = −𝛾(𝑠) + 𝛾𝑓 =

−
∫︁ 𝑠

𝑥𝑓

𝑎(𝑠)𝑑𝑠 = −
∫︁ 𝑠

𝑥𝑓

[𝑎𝑥 + 𝑢𝐹 (𝑠− 𝑥) − 𝑣𝛾
(𝑛 + 2)

(𝑥𝑓 − 𝑥)𝑛+2 − 𝑣𝑦
2 (𝑛 + 3)

(𝑥𝑓 − 𝑥)𝑛+3

+
𝑣𝛾

(𝑛 + 2)
(𝑥𝑓 − 𝑠)𝑛+2 +

𝑣𝑦
2 (𝑛 + 3)

(𝑥𝑓 − 𝑠)𝑛+3

]︂
𝑑𝑠

(A.26)

and solving for 𝛾(𝑠) yields

𝛾(𝑠) = 𝛾𝑓 − 𝑎𝑥 (𝑥𝑓 − 𝑠) +

(︂
1

2
(𝑥𝑓 − 𝑠)2 − (𝑥𝑓 − 𝑥) (𝑥𝑓 − 𝑠)

)︂
𝑢𝐹(︂

1

(𝑛 + 2)
(𝑥𝑓 − 𝑥)𝑛+2 (𝑥𝑓 − 𝑠) − 1

(𝑛 + 2) (𝑛 + 3)
(𝑥𝑓 − 𝑠)𝑛+3

)︂
𝑣𝛾(︂

1

2 (𝑛 + 3)
(𝑥𝑓 − 𝑥)𝑛+3 (𝑥𝑓 − 𝑠) − 1

2 (𝑛 + 3) (𝑛 + 4)
(𝑥𝑓 − 𝑠)𝑛+4

)︂
𝑣𝑦

(A.27)
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Last, an explicit equation for crossrange is obtained by A.23 plugging into A.22 and integrating

backwards in time from 𝑥𝑓 such that

−
∫︁ 𝑠

𝑥𝑓

𝑦̇(𝑠)𝑑𝑠 = −𝑦(𝑠) + 𝑦(𝑥𝑓 ) = −𝑦(𝑠) + 𝑦𝑓 =

−
∫︁ 𝑠

𝑥𝑓

𝛾(𝑠)𝑑𝑠 = −
∫︁ 𝑠

𝑥𝑓

[︂
𝛾𝑓 − 𝑎𝑥 (𝑥𝑓 − 𝑠) +

(︂
1

2
(𝑥𝑓 − 𝑠)2 − (𝑥𝑓 − 𝑥) (𝑥𝑓 − 𝑠)

)︂
𝑢𝐹(︂

1

(𝑛 + 2)
(𝑥𝑓 − 𝑥)𝑛+2 (𝑥𝑓 − 𝑠) − 1

(𝑛 + 2) (𝑛 + 3)
(𝑥𝑓 − 𝑠)𝑛+3

)︂
𝑣𝛾(︂

1

2 (𝑛 + 3)
(𝑥𝑓 − 𝑥)𝑛+3 (𝑥𝑓 − 𝑠) − 1

2 (𝑛 + 3) (𝑛 + 4)
(𝑥𝑓 − 𝑠)𝑛+4

)︂
𝑣𝑦

]︂
𝑑𝑠

(A.28)

and solving for 𝑦(𝑠) yields

𝑦(𝑠) = 𝑦𝑓 − 𝛾𝑓 (𝑥𝑓 − 𝑠) +
1

2
𝑎𝑥(𝑥𝑓 − 𝑠)2 +

(︂
1

2
(𝑥𝑓 − 𝑥) (𝑥𝑓 − 𝑠)2 − 1

6
(𝑥𝑓 − 𝑠)3

)︂
𝑢𝐹(︂

1

(𝑛 + 2) (𝑛 + 3) (𝑛 + 4)
(𝑥𝑓 − 𝑠)𝑛+4 − 1

2 (𝑛 + 2)
(𝑥𝑓 − 𝑥)𝑛+2(𝑥𝑓 − 𝑠)2

)︂
𝑣𝛾(︂

1

2 (𝑛 + 3) (𝑛 + 4) (𝑛 + 5)
(𝑥𝑓 − 𝑠)𝑛+5 − 1

4 (𝑛 + 3)
(𝑥𝑓 − 𝑥)𝑛+3(𝑥𝑓 − 𝑠)2

)︂
𝑣𝑦

(A.29)

Now each state variable can be expressed as a function of 𝑥 by substituting 𝑠 = 𝑥. By means of

this substitution A.25 becomes

𝑎(𝑥) = 𝑎𝑥 + 𝑢𝐹 (𝑥− 𝑥) − 𝑣𝛾
(𝑛 + 2)

(𝑥𝑓 − 𝑥)𝑛+2 − 𝑣𝑦
2 (𝑛 + 3)

(𝑥𝑓 − 𝑥)𝑛+3

+
𝑣𝛾

(𝑛 + 2)
(𝑥𝑓 − 𝑥)𝑛+2 +

𝑣𝑦
2 (𝑛 + 3)

(𝑥𝑓 − 𝑥)𝑛+3
(A.30)
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A.27 becomes

𝛾(𝑥) = 𝛾𝑓 − 𝑎𝑥 (𝑥𝑓 − 𝑥) +

(︂
1

2
(𝑥𝑓 − 𝑥)2 − (𝑥𝑓 − 𝑥)2

)︂
𝑢𝐹

+

(︂
1

(𝑛 + 2)
(𝑥𝑓 − 𝑥)𝑛+3 − 1

(𝑛 + 2) (𝑛 + 3)
(𝑥𝑓 − 𝑥)𝑛+3

)︂
𝑣𝛾

+

(︂
1

2 (𝑛 + 3)
(𝑥𝑓 − 𝑥)𝑛+4 − 1

2 (𝑛 + 3) (𝑛 + 4)
(𝑥𝑓 − 𝑥)𝑛+4

)︂
𝑣𝑦

(A.31)

and A.29 becomes

𝑦(𝑥) = 𝑦𝑓 − 𝛾𝑓 (𝑥𝑓 − 𝑥) +
1

2
𝑎𝑥(𝑥𝑓 − 𝑥)2 +

(︂
1

2
(𝑥𝑓 − 𝑥)3 − 1

6
(𝑥𝑓 − 𝑥)3

)︂
𝑢𝐹

+

(︂
1

(𝑛 + 2) (𝑛 + 3) (𝑛 + 4)
(𝑥𝑓 − 𝑥)𝑛+4 − 1

2 (𝑛 + 2)
(𝑥𝑓 − 𝑥)𝑛+4

)︂
𝑣𝛾

+

(︂
1

2 (𝑛 + 3) (𝑛 + 4) (𝑛 + 5)
(𝑥𝑓 − 𝑥)𝑛+5 − 1

4 (𝑛 + 3)
(𝑥𝑓 − 𝑥)𝑛+5

)︂
𝑣𝑦

(A.32)

Furthermore, by making algebraic simplifications and denoting 𝑥 − 𝑥𝑓 as downrange to go, 𝑥𝑔𝑜,

A.30 becomes

𝑎(𝑥) = 𝑎𝑥 (A.33)

A.31 becomes

𝛾(𝑥) = 𝛾𝑓 − 𝑎𝑥𝑥𝑔𝑜 −
1

2
𝑢𝐹 𝑥2

𝑔𝑜 +
1

(𝑛 + 3)
𝑣𝛾 𝑥

𝑛+3
𝑔𝑜 +

1

2 (𝑛 + 4)
𝑣𝑦 𝑥

𝑛+4
𝑔𝑜 (A.34)

and A.32 becomes

𝑦(𝑥) = 𝑦𝑓 − 𝛾𝑓 𝑥𝑔𝑜 +
1

2
𝑎𝑥 𝑥

2
𝑔𝑜 +

1

3
𝑢𝐹 𝑥3

𝑔𝑜

− (𝑛 + 5)

2 (𝑛 + 3) (𝑛 + 4)
𝑣𝛾 𝑥

𝑛+4
𝑔𝑜 − (𝑛 + 6)

4 (𝑛 + 4) (𝑛 + 5)
𝑣𝑦 𝑥

𝑛+5
𝑔𝑜

(A.35)
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From A.34 the terminal time costate term 𝑣𝑦 is solved for as

𝑣𝛾 =
(𝑛 + 3)

𝑥𝑛+3
𝑔𝑜

(︂
𝛾𝑥 − 𝛾𝑓 + 𝑎𝑥 𝑥𝑔𝑜 +

1

2
𝑢𝐹 𝑥2

𝑔𝑜 −
1

2 (𝑛 + 4)
𝑣𝑦 𝑥

𝑛+4
𝑔𝑜

)︂
(A.36)

and from A.35 the other terminal time costate term 𝑣𝛾 is solved for as

𝑣𝑦 = −4 (𝑛 + 4) (𝑛 + 5)

(𝑛 + 6) 𝑥𝑛+5
𝑔𝑜

(︂
𝑦𝑥 − 𝑦𝑓 + 𝛾𝑓 𝑥𝑔𝑜 −

1

2
𝑎𝑥 𝑥

2
𝑔𝑜 −

1

3
𝑢𝐹 𝑥3

𝑔𝑜

+
(𝑛 + 5)

2 (𝑛 + 3) (𝑛 + 4)
𝑣𝛾 𝑥

𝑛+4
𝑔𝑜

)︂ (A.37)

Substitution of A.36 into A.37 yields

𝑣𝑦 = −4 (𝑛 + 4) (𝑛 + 5)

(𝑛 + 6) 𝑥𝑛+5
𝑔𝑜

[︂
𝑦𝑥 − 𝑦𝑓 + 𝛾𝑓 𝑥𝑔𝑜 −

1

2
𝑎𝑥 𝑥

2
𝑔𝑜 −

1

3
𝑢𝐹 𝑥3

𝑔𝑜

+
(𝑛 + 5)

2 (𝑛 + 4)
𝑥𝑔𝑜

(︂
𝛾𝑥 − 𝛾𝑓 + 𝑎𝑥𝑥𝑔𝑜 +

1

2
𝑢𝐹 𝑥2

𝑔𝑜 −
1

2 (𝑛 + 4)
𝑣𝑦 𝑥

𝑛+4
𝑔𝑜

)︂]︂ (A.38)

or equivalently

𝑣𝑦 −
(𝑛 + 5)2

(𝑛 + 4) (𝑛 + 6)
𝑣𝑦 =

(︃
1 − (𝑛 + 5)2

(𝑛 + 4) (𝑛 + 6)

)︃
𝑣𝑦 = − 1

(𝑛 + 4) (𝑛 + 6)
𝑣𝑦 =

− 4 (𝑛 + 4) (𝑛 + 5)

(𝑛 + 6) 𝑥𝑛+5
𝑔𝑜

(︂
𝑦𝑥 − 𝑦𝑓 + 𝛾𝑓 𝑥𝑔𝑜 −

1

2
𝑎𝑥 𝑥

2
𝑔𝑜 −

1

3
𝑢𝐹 𝑥3

𝑔𝑜

)︂
− 2 (𝑛 + 5)2

(𝑛 + 6) 𝑥𝑛+4
𝑔𝑜

(︂
𝛾𝑥 − 𝛾𝑓 + 𝑎𝑥 𝑥𝑔𝑜 +

1

2
𝑢𝐹 𝑥2

𝑔𝑜

)︂ (A.39)

Therefore

𝑣𝑦 =
4 (𝑛 + 4)2 (𝑛 + 5)

𝑥𝑛+5
𝑔𝑜

(︂
𝑦𝑥 − 𝑦𝑓 + 𝛾𝑓 𝑥𝑔𝑜 −

1

2
𝑎𝑥 𝑥

2
𝑔𝑜 −

1

3
𝑢𝐹 𝑥3

𝑔𝑜

)︂
+

(𝑛 + 4) (𝑛 + 5)2

𝑥𝑛+4
𝑔𝑜

(︂
𝛾𝑥 − 𝛾𝑓 + 𝑎𝑥 𝑥𝑔𝑜 +

1

2
𝑢𝐹 𝑥2

𝑔𝑜

)︂ (A.40)
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or by collection of variables

𝑣𝑦 =
4 (𝑛 + 4)2 (𝑛 + 5)

𝑥𝑛+5
𝑔𝑜

𝑦𝑥 +
2 (𝑛 + 4) (𝑛 + 5)2

𝑥𝑛+4
𝑔𝑜

𝛾𝑥 +
2 (𝑛 + 4) (𝑛 + 5)

𝑥𝑛+3
𝑔𝑜

𝑎𝑥

− 4 (𝑛 + 4)2 (𝑛 + 5)

𝑥𝑛+5
𝑔𝑜

𝑦𝑓 +
2 (𝑛 + 3) (𝑛 + 4) (𝑛 + 5)

𝑥𝑛+4
𝑔𝑜

𝛾𝑓

− (𝑛 + 1) (𝑛 + 4) (𝑛 + 5)

3𝑥𝑛+2
𝑔𝑜

𝑢𝐹

(A.41)

Substitution of A.40 into A.36 yields

𝑣𝛾 =
(𝑛 + 3)

𝑥𝑛+3
𝑔𝑜

[︂
𝛾𝑥 − 𝛾𝑓 + 𝑎𝑥 𝑥𝑔𝑜 +

1

2
𝑢𝐹 𝑥2

𝑔𝑜

− 2 (𝑛 + 4) (𝑛 + 5)

𝑥𝑔𝑜

(︂
𝑦𝑥 − 𝑦𝑓 + 𝛾𝑓 𝑥𝑔𝑜 −

1

2
𝑎𝑥 𝑥

2
𝑔𝑜 −

1

3
𝑢𝐹 𝑥3

𝑔𝑜

)︂
− (𝑛 + 5)2

(︂
𝛾𝑥 − 𝛾𝑓 + 𝑎𝑥 𝑥𝑔𝑜 +

1

2
𝑢𝐹 𝑥2

𝑔𝑜

)︂]︂ (A.42)

or by collection of variables

𝑣𝛾 = −2 (𝑛 + 3) (𝑛 + 4) (𝑛 + 5)

𝑥𝑛+4
𝑔𝑜

𝑦𝑥 −
(𝑛 + 3) (𝑛 + 4) (𝑛 + 6)

𝑥𝑛+3
𝑔𝑜

𝛾𝑥 −
(𝑛 + 3) (𝑛 + 4)

𝑥𝑛+2
𝑔𝑜

𝑎𝑥

+
2 (𝑛 + 3) (𝑛 + 4) (𝑛 + 5)

𝑥𝑛+4
𝑔𝑜

𝑦𝑓 −
(𝑛 + 3) (𝑛 + 4)2

𝑥𝑛+3
𝑔𝑜

𝛾𝑓

+
(𝑛 + 2) (𝑛 + 3) (𝑛 + 4)

6𝑥𝑛+1
𝑔𝑜

𝑢𝐹

(A.43)

Now the control term 𝑢𝐵 of A.23 is completely defined.
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For simplicity A.40 and A.43 are combined in a compact format such that

⎡⎢⎣𝑣𝑦
𝑣𝛾

⎤⎥⎦ =

⎡⎢⎣ 4 (𝑛+4)2 (𝑛+5)

𝑥𝑛+5
𝑔𝑜

2 (𝑛+4) (𝑛+5)2

𝑥𝑛+4
𝑔𝑜

2 (𝑛+4) (𝑛+5)

𝑥𝑛+3
𝑔𝑜

−2 (𝑛+3) (𝑛+4) (𝑛+5)

𝑥𝑛+4
𝑔𝑜

− (𝑛+3) (𝑛+4) (𝑛+6)

𝑥𝑛+3
𝑔𝑜

− (𝑛+3) (𝑛+4)

𝑥𝑛+2
𝑔𝑜

⎤⎥⎦
⎡⎢⎢⎢⎢⎣
𝑦𝑥

𝛾𝑥

𝑎𝑥

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎣ −4 (𝑛+4)2 (𝑛+5)

𝑥𝑛+5
𝑔𝑜

2 (𝑛+3) (𝑛+4) (𝑛+5)

𝑥𝑛+4
𝑔𝑜

2 (𝑛+3) (𝑛+4) (𝑛+5)

𝑥𝑛+4
𝑔𝑜

− (𝑛+3) (𝑛+4)2

𝑥𝑛+3
𝑔𝑜

⎤⎥⎦
⎡⎢⎣𝑦𝑓
𝛾𝑓

⎤⎥⎦
+

⎡⎢⎣− (𝑛+1) (𝑛+4) (𝑛+5)

3𝑥𝑛+2
𝑔𝑜

(𝑛+2) (𝑛+3) (𝑛+4)

6𝑥𝑛+1
𝑔𝑜

⎤⎥⎦𝑢𝐹

(A.44)

Furthermore, by making the following definitions

𝑧 =

⎡⎢⎢⎢⎢⎣
𝑈𝑃𝑁

𝛾𝑔𝑜

𝑎

⎤⎥⎥⎥⎥⎦ 𝑈𝑃𝑁 =
ygo (𝑛 + 3)

xgo2
− 𝛾 (𝑛 + 3)

xgo
𝛾𝑔𝑜 = 𝛾𝑓 − 𝛾 (A.45)

Eq.A.44 is expressed in a simpler form as

⎡⎢⎣𝑣𝑦
𝑣𝛾

⎤⎥⎦ =

⎡⎢⎣−4UPN (𝑛+4)2 (𝑛+5)
𝑥go

𝑛+3 (𝑛+3)

2 𝛾go (𝑛+3) (𝑛+4) (𝑛+5)

𝑥go
𝑛+4

2 𝑎 (𝑛+4) (𝑛+5)
𝑥go

𝑛+3

2UPN (𝑛+4) (𝑛+5)
𝑥go

𝑛+2 −𝛾go (𝑛+3) (𝑛+4)2

𝑥go
𝑛+3 −𝑎 (𝑛+3) (𝑛+4)

𝑥go
𝑛+2

⎤⎥⎦ 𝑧+

⎡⎢⎣−𝑢𝐹 (𝑛+1) (𝑛+4) (𝑛+5)
3𝑥go

𝑛+2

𝑢𝐹 (𝑛+3) (𝑛2+6𝑛+8)
6𝑥go

𝑛+1

⎤⎥⎦𝑢𝐹
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Plugging A.44 into A.23 yields the completely defined GENEX-ITACG

𝑢𝐵 = 𝐾⊤𝑧 +
(𝑛− 1)(𝑛 + 4)

6
𝑢𝐹

where

𝐾 =

⎛⎜⎜⎜⎜⎝
2 (𝑛+4) (𝑛+5)
𝑥go (𝑛+3)

− (𝑛+3) (𝑛+4)
𝑥go

2

−2 (𝑛+4)
𝑥go

⎞⎟⎟⎟⎟⎠
and the total control term becomes

𝑢 = 𝑢𝐵 + 𝑢𝐹 = 𝐾⊤𝑧 +
(𝑛 + 1)(𝑛 + 2)

6
𝑢𝐹

95



A.3 Additional Impact Time Correction Command

Next, the additional command, 𝑢𝐹 , is solved for. This command corrects the trajectory to ensure

the missile impacts the target at the designated impact time. The remaining distance the missile

will travel can be expressed as a function of the flight path angle such that

𝐷 =

∫︁ 𝑥𝑓

𝑥

√︀
1 + 𝛾2(𝑠, 𝑢𝐹 )𝑑𝑠 (A.46)

The missile’s velocity is constant. Therefore, time to go is expressed as

𝑡𝑔𝑜 = 𝑡𝑑 − 𝑡 =

∫︀ 𝑥𝑓

𝑥

√︀
1 + 𝛾2(𝑠)𝑑𝑠

𝑉
(A.47)

where 𝑡𝑑 is the designated impact time. Introducing non-dimensional time,𝜏 = 𝑡
𝑡𝑓

, and nondimen-

sion distamce, 𝑑 = 𝐷
𝑡𝑓𝑉

, into Eq. A.47 yields

𝜏𝑔𝑜 =

∫︁ 𝑥𝑓

𝑥

√︀
1 + 𝛾2(𝑠, 𝑢𝐹 )𝑑𝑠 (A.48)

The square root term can be approximated using a Taylor series expansion such that

√︀
1 + 𝛾2(𝑠, 𝑢𝐹 )𝑑𝑠 = 1 +

1

2
𝛾2(𝑠, 𝑢𝐹 ) − 1

8
𝛾4(𝑠, 𝑢𝐹 ) +

1

16
𝛾5(𝑠, 𝑢𝐹 ) − 5

258
𝛾7(𝑠, 𝑢𝐹 ) + ℎ.𝑜.𝑡

The flight path angle is assumed to be small. Therefore, every term higher than the first two terms

are very close to zero. Thus, the time to go is approximately

𝜏𝑔𝑜 ≃
∫︁ 𝑥𝑓

𝑥

(︂
1 +

1

2
𝛾2(𝑠, 𝑢𝐹 )

)︂
𝑑𝑠 (A.49)
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Furthermore, by letting 𝜁 = 𝑥𝑓 − 𝑠 the time to go can be expressed as

𝜏𝑔𝑜 =

∫︁ 𝑥𝑓−𝑥

0

(︂
1 +

1

2
𝛾2(𝜁, 𝑢𝐹 )

)︂
𝑑𝑠 (A.50)

where by substituting 𝜁 = 𝑥𝑓 − 𝑠 into Eq. A.27 yields

𝛾(𝜁, 𝑢𝐹 ) = 𝛾𝑓 − 𝑎𝑥𝜁 +

(︂
1

2
𝜁2 − (𝑥𝑓 − 𝑥) 𝜁

)︂
𝑢𝐹(︂

1

(𝑛 + 2)
(𝑥𝑓 − 𝑥)𝑛+2𝜁 − 1

(𝑛 + 2) (𝑛 + 3)
𝜁𝑛+3

)︂
𝑣𝛾(︂

1

2 (𝑛 + 3)
(𝑥𝑓 − 𝑥)𝑛+3𝜁 − 1

2 (𝑛 + 3) (𝑛 + 4)
𝜁𝑛+4

)︂
𝑣𝑦

(A.51)

If the additional control command is not applied, an estimation of time to go can be expressed as

𝜏𝑔𝑜 =

∫︁ 𝑥𝑓−𝑥

0

√︀
1 + 𝛾2(𝜁, 𝑢𝐹 = 0)𝑑𝑠 (A.52)

Substituting Eq. A.51 into Eq. A.52 yields

𝜏𝑔𝑜 =

(︂
3𝑛 + 13

6 (2𝑛 + 7) (2𝑛 + 9) (𝑛 + 5) (𝑛 + 6)

)︂
𝑥go

3 𝑎2

−
(︂

4𝑛 + 19

3 (2𝑛 + 7) (2𝑛 + 9) (𝑛 + 3) (𝑛 + 6)

)︂
𝑥go

3 𝑎UPN

+

(︂
2 (4𝑛 + 19) (𝑛 + 4) (𝑛 + 5)

3 (2𝑛 + 7) (2𝑛 + 9) (𝑛 + 3)2 (𝑛 + 6)

)︂
𝑥go

3 UPN2

−
(︂

(4𝑛 + 19) (𝑛 + 3)

6 (2𝑛 + 7) (2𝑛 + 9) (𝑛 + 5) (𝑛 + 6)

)︂
𝑥go

2 𝛾go 𝑎

−
(︂

(16𝑛3 + 206𝑛2 + 880𝑛 + 1245)

3 (2𝑛 + 7) (2𝑛 + 9) (𝑛 + 3) (𝑛 + 6)

)︂
𝑥go

2 𝛾go UPN

−

(︃
17𝑛3

6
+ 71𝑛2

2
+ 147𝑛 + 201

(2𝑛 + 7) (2𝑛 + 9) (𝑛 + 5) (𝑛 + 6)
− 2

3

)︃
𝑥go 𝛾go

2

+
1

(𝑛 + 3)
𝑥go

2 𝛾𝑓 UPN − 𝛾𝑓 𝑥go 𝛾go +

(︂
𝛾𝑓

2

2
+ 1

)︂
𝑥go

(A.53)
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By making the following definitions

𝐶 = 𝑥go

(︂
𝛾f

2

2
+ 1

)︂

𝐿 =

⎛⎜⎜⎜⎜⎝
𝛾f 𝑥go

2

𝑛+3

−𝛾f 𝑥go

0

⎞⎟⎟⎟⎟⎠

𝑄 =

⎛⎜⎜⎜⎜⎝
2𝑥go

3 (4𝑛+19) (𝑛+4) (𝑛+5)

3 (2𝑛+7) (2𝑛+9) (𝑛+3)2 (𝑛+6)
−𝑥2

go (16𝑛3+206𝑛2+880𝑛+1245)
6(2𝑛+7) (2𝑛+9) (𝑛+3) (𝑛+6)

− 𝑥3
go (4𝑛+19)

6 (2𝑛+7) (2𝑛+9) (𝑛+3) (𝑛+6)

−𝑥2
go (16𝑛3+206𝑛2+880𝑛+1245)
6(2𝑛+7) (2𝑛+9) (𝑛+3) (𝑛+6)

−
𝑥go

(︁
17𝑛3

6
+ 71𝑛2

2
+147𝑛+201

)︁
(2𝑛+7) (2𝑛+9) (𝑛+5) (𝑛+6)

+ 2𝑥go

3
− 𝑥2

go (4𝑛+19) (𝑛+3)

12 (2𝑛+7) (2𝑛+9) (𝑛+5) (𝑛+6)

− 𝑥3
go (4𝑛+19)

6 (2𝑛+7) (2𝑛+9) (𝑛+3) (𝑛+6)
− 𝑥2

go (4𝑛+19) (𝑛+3)

12 (2𝑛+7) (2𝑛+9) (𝑛+5) (𝑛+6)

𝑥3
go (3𝑛+13)

6 (2𝑛+7) (2𝑛+9) (𝑛+5) (𝑛+6)

⎞⎟⎟⎟⎟⎠
Eq. A.53 can be expressed in compact form as

𝜏𝑔𝑜 = 𝐶 + 𝐿⊤𝑧 + 𝑧⊤𝑄𝑧 (A.54)

Now by substituting 𝜁 = 𝑥𝑓 − 𝑥 in , time to go is expressed as

𝜏𝑔𝑜 =

∫︁ 𝑥𝑓−𝑥

0

√︀
1 + 𝛾2(𝜁, 𝑢𝐹 )𝑑𝑠 (A.55)
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and evaluation of the integral yields

𝜏𝑔𝑜 =

(︃
(8𝑛 + 35) (𝑛 + 1)2 (𝑛 + 2)2

(1080 (2𝑛 + 7) (2𝑛 + 9) (𝑛 + 5) (𝑛 + 6) (𝑛 + 7))

)︃
𝑥go

5 𝑢2
𝐹

+

(︂
(8𝑛 + 35) (𝑛 + 1) (𝑛 + 2)

(36 (2𝑛 + 7) (2𝑛 + 9) (𝑛 + 5) (𝑛 + 6) (𝑛 + 7))

)︂
𝑥go

4 𝑢𝐹 𝑎

+

(︂
((𝑛 + 1) (𝑛 + 2) (4𝑛2 + 20𝑛 + 7))

((2𝑛 + 7) (2𝑛 + 9) (𝑛 + 3) (𝑛 + 6) (𝑛 + 7) 36)

)︂
𝑥go

4 𝑢𝐹 UPN

−
(︂
𝑢𝐹 (𝑛 + 1) (𝑛 + 2) (𝑛 + 3) (4𝑛2 + 38𝑛 + 91)

(2𝑛 + 7) (2𝑛 + 9) (𝑛 + 5) (𝑛 + 6) (𝑛 + 7) 36

)︂
𝑥go

3 𝑢𝐹 𝛾go

+

(︂
3𝑛 + 13

6 (2𝑛 + 7) (2𝑛 + 9) (𝑛 + 5) (𝑛 + 6)

)︂
𝑥go

3 𝑎2

−
(︂

4𝑛 + 19

3 (2𝑛 + 7) (2𝑛 + 9) (𝑛 + 3) (𝑛 + 6)

)︂
𝑥go

3 𝑎UPN

+

(︂
2 (4𝑛 + 19) (𝑛 + 4) (𝑛 + 5)

3 (2𝑛 + 7) (2𝑛 + 9) (𝑛 + 3)2 (𝑛 + 6)

)︂
𝑥go

3 UPN2

−
(︂

(4𝑛 + 19) (𝑛 + 3)

6 (2𝑛 + 7) (2𝑛 + 9) (𝑛 + 5) (𝑛 + 6)

)︂
𝑥go

2 𝛾go 𝑎

−
(︂

16𝑛3 + 206𝑛2 + 880𝑛 + 1245

3 (2𝑛 + 7) (2𝑛 + 9) (𝑛 + 3) (𝑛 + 6)

)︂
𝑥go

2 𝛾go UPN

−

(︃
17𝑛3

6
+ 71𝑛2

2
+ 147𝑛 + 201

(2𝑛 + 7) (2𝑛 + 9) (𝑛 + 5) (𝑛 + 6)
− 2

3

)︃
𝑥go 𝛾go

2

+
1

(𝑛 + 3)
𝑥go

2 𝛾𝑓 UPN − 𝛾𝑓 𝑥go 𝛾go +

(︂
𝛾𝑓

2

2
+ 1

)︂
𝑥go

(A.56)

Through the use of Eq. A.53, Eq. A.56 is simplified to

𝜏𝑔𝑜 =

∫︁ 𝑥𝑓

𝑥

√︀
1 + 𝛾2(𝑠, 𝑢𝐹 )𝑑𝑠

= 𝛼𝑢2
𝐹 + 𝛽𝑢𝐹 + 𝜏𝑔𝑜

where

𝛼 =
𝑥5
go (8𝑛 + 35) (𝑛 + 1)2 (𝑛 + 2)2

1080 (2𝑛 + 7) (2𝑛 + 9) (𝑛 + 5) (𝑛 + 6) (𝑛 + 7)
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𝛽 =

⎡⎢⎢⎢⎢⎣
𝑥4
go (𝑛+1) (𝑛+2) (4𝑛2+20𝑛+7)

36 (2𝑛+7) (2𝑛+9) (𝑛+3) (𝑛+6) (𝑛+7)

− 𝑥go
3 (𝑛+1) (𝑛+2) (𝑛+3) (4𝑛2+38𝑛+91)

36 (2𝑛+7) (2𝑛+9) (𝑛+5) (𝑛+6) (𝑛+7)

𝑥4
go (8𝑛+35) (𝑛+1) (𝑛+2)

36 (2𝑛+7) (2𝑛+9) (𝑛+5) (𝑛+6) (𝑛+7)

⎤⎥⎥⎥⎥⎦ 𝑧

Furthermore, by defining the difference between the actual time-to-go and the estimate of time to

go without the additional control command as

𝜖𝑡 = 𝜏𝑔𝑜 − 𝜏𝑔𝑜

the following relation can be made

𝑢2
𝐹 +

𝛽

𝛼
𝑢𝐹 − 𝜖𝑡

𝛼
= 0

Solving for 𝑢𝐹 yields

𝑢𝐹 = −1

2
𝜂𝐿 ± 1

2

√︁
𝜂2𝐿 + 𝜂𝐸

− 1

2
𝜂𝐿 ± 1

2
𝜂𝐿

√︂
1 +

𝜂𝐸
𝜂2𝐿

(A.57)

where

𝜂𝐿 =
𝛼

𝛽
= 𝑀⊤𝑧

𝑀 =

⎛⎜⎜⎜⎜⎝
(𝑛+5) (4𝑛2+20𝑛+7) 30

𝑥go (8𝑛+35) (𝑛+1) (𝑛+2) (𝑛+3)

− (𝑛+3) (4𝑛2+38𝑛+91) 30

𝑥2
go (8𝑛+35) (𝑛+1) (𝑛+2)

30
𝑥go (𝑛+1) (𝑛+2)

⎞⎟⎟⎟⎟⎠

𝜂𝐸 =
4

𝛼
𝜖𝑡 = 𝑁𝜖𝑡

𝑁 =
4320 (2𝑛 + 7) (2𝑛 + 9) (𝑛 + 5) (𝑛 + 6) (𝑛 + 7)

𝑥5
go (8𝑛 + 35) (𝑛 + 1)2 (𝑛 + 2)2
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When the impact error goes to zero the additional control command should equal zero. Therefore,

the positive sign solution of Eq. A.57 should be used. Furthermore, 𝜂𝐸
𝜂2𝐿

<< 1 and approaches zero

as 𝜖𝑡 → 0.

Therefore, Eq. A.57 can be approximated as

𝑢𝐹 ≃ −1

2
𝜂𝐿 +

1

2
𝜂𝐿

(︂
1 +

𝜂𝐸
2𝜂2𝐿

)︂
≃ 𝜂𝐸

4𝜂𝐿
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A.4 GENEX-ITACG With Dimensional State Variables

Finally, by reversing the relations of Eq. A.3, GENEX-ITACG with dimensional state variables

can be expressed as

𝐺 = 𝑔𝐵 +
(𝑛 + 1)(𝑛 + 2)

6
𝑔𝐹

The first jerk term ,𝑔𝐵, which eliminates the miss distance and the impact angle error can be

expressed as

𝑔𝐵 = 𝐾⊤𝑧

where

𝑧 =

⎛⎜⎜⎜⎜⎝
𝐴𝑃𝑁

𝛾go

𝐴

⎞⎟⎟⎟⎟⎠

𝐾 =

⎛⎜⎜⎜⎜⎝
2𝑉 (𝑛+4) (𝑛+5)

Xgo (𝑛+3)

−𝑉 3 (𝑛+3) (𝑛+4)

Xgo2

−2𝑉 (𝑛+4)
Xgo

⎞⎟⎟⎟⎟⎠
𝐴𝑃𝑁 =

𝑉 2 Ygo (𝑛 + 3)

Xgo2 − 𝑉 2 𝛾 (𝑛 + 3)

Xgo

The time to go estimate can be expressed as

𝑡𝑔𝑜 = 𝐶 + 𝐿⊤𝑧 + 𝑧⊤𝑄𝑧

𝐶 =
Xgo

(︁
𝛾f2

2
+ 1
)︁

𝑉
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𝐿 =

⎛⎜⎜⎜⎜⎝
Xgo2 𝛾f
𝑉 3 (𝑛+3)

−Xgo 𝛾f
𝑉

0

⎞⎟⎟⎟⎟⎠

𝑄 =

⎛⎜⎜⎜⎜⎜⎜⎝
2Xgo3 (4𝑛+19) (𝑛+4) (𝑛+5)

3𝑉 5 (2𝑛+7) (2𝑛+9) (𝑛+3)2 (𝑛+6)
−Xgo2 (16𝑛3+206𝑛2+880𝑛+1245)

𝑉 3 (2𝑛+7) (2𝑛+9) (𝑛+3) (𝑛+6) 6
− Xgo3 (4𝑛+19)

6𝑉 5 (2𝑛+7) (2𝑛+9) (𝑛+3) (𝑛+6)

−Xgo2 (16𝑛3+206𝑛2+880𝑛+1245)
𝑉 3 (2𝑛+7) (2𝑛+9) (𝑛+3) (𝑛+6) 6

−
Xgo

⎛⎝
(︂

17𝑛3

6 +71𝑛2

2 +147𝑛+201

)︂
(2𝑛+7) (2𝑛+9) (𝑛+5) (𝑛+6)

− 2
3

⎞⎠
𝑉

− Xgo2 (4𝑛+19) (𝑛+3)
12𝑉 3 (2𝑛+7) (2𝑛+9) (𝑛+5) (𝑛+6)

− Xgo3 (4𝑛+19)
6𝑉 5 (2𝑛+7) (2𝑛+9) (𝑛+3) (𝑛+6)

− Xgo2 (4𝑛+19) (𝑛+3)
12𝑉 3 (2𝑛+7) (2𝑛+9) (𝑛+5) (𝑛+6)

Xgo3 (3𝑛+13)
6𝑉 5 (2𝑛+7) (2𝑛+9) (𝑛+5) (𝑛+6)

⎞⎟⎟⎟⎟⎟⎟⎠
The time to go estimation error can be expressed as

𝜖𝑡 = 𝑡𝑔𝑜 − 𝑡𝑔𝑜 = (𝑡𝑑 − 𝑡) − 𝑡𝑔𝑜

The second jerk term, 𝑔𝐹 , which corrects the trajectory to achieve a desired impact time, can be

expressed as

𝑔𝐹 =
𝜂𝐸
4𝜂𝐿

𝜂𝐸 = 𝑀⊤𝑧

𝑀 =

⎛⎜⎜⎜⎜⎝
𝑉 (𝑛+5) (4𝑛2+20𝑛+7) 30

Xgo (8𝑛+35) (𝑛+1) (𝑛+2) (𝑛+3)

−𝑉 3 (𝑛+3) (4𝑛2+38𝑛+91) 30

Xgo2 (8𝑛+35) (𝑛+1) (𝑛+2)

30𝑉
Xgo (𝑛+1) (𝑛+2)

⎞⎟⎟⎟⎟⎠
𝜂𝐿 = 𝑁𝜖𝑡

𝑁 =
4320𝑉 7 (2𝑛 + 7) (2𝑛 + 9) (𝑛 + 5) (𝑛 + 6) (𝑛 + 7)

Xgo5 (8𝑛 + 35) (𝑛 + 1)2 (𝑛 + 2)2
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APPENDIX B: SIMULINK MODEL
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Figure B.1: Simulink Model: Time Control
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Impact Angle Control 
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Dynamic Equations
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Figure B.2: Simulink Model: Nonlinear Dynamic Equations
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Stop Conditions
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Figure B.3: Simulink Model: Stop Conditions
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APPENDIX C: FIGURE REPRODUCTION PERMISSIONS
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Dear Radhakant Padhi:  

This letter will confirm our recent email conversation. I am completing a doctoral dissertation/master’s 

degree at the University of Central Florida entitled "Cooperative General Vector Explicit Guidance." I 

would like your permission to reprint in my thesis figures from the following:  

Generalized model predictive static programming and angle-constrained guidance of air-to-ground 

missiles. AIAA Journal of Guidance, Control and Dynamics, 0(0):1–17, April 2014.  
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like to use this figure to aid in the development of dynamic equations which are used in the simulation 
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Loren Robinson 
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