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ABSTRACT  

 

PV Inverters have the task of tracking the maximum power point (MPP), and 

regulating the solar energy generation to this optimal operation point. The second task 

is the conversion of direct current produced by the solar modules into alternating current 

compatible with the grid.  

A new inverter approach such as a single phase micro inverter is emerging 

aimed to overcome some of the challenges of centralized inverters. As a counterpart to 

the central inverter, a micro inverter is a small compact module attached directly to each 

solar panel.   

 To provide for the constantly increasing demand for a small size, light 

weight and high efficiency micro inverter, soft switching power conversion technologies 

have been employed. The switching stress can be minimized by turning on/off each 

switch when the voltage across it or the current through it is zero at the switching 

transition. With the addition of auxiliary circuits such as auxiliary switches and LC 

resonant components the so called soft switching condition can be achieved for 

semiconductor devices.    

Four main purposes to investigate the soft switching technologies for single-

phase micro-inverter are: 

 (1) to improve overall efficiency by creating the favorable operating conditions 

for power devices using soft-switching techniques;  
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 (2) to shrink the reactive components by pushing the switching frequency to a 

higher range with decent efficiency.  

 (3) to ensure soft switching does not exacerbate inverter performance, meaning 

all conventional PWM algorithms can be applied in order to meet IEEE standards.  

(4) to investigate which soft switching techniques offer the cheapest topology and 

control strategy as cost and simple control are crucial for low power inverter 

applications.   

An overview on the existing soft-switching inverter topologies for single phase 

inverter technology is summarized. 

A new quasi resonant DC link that allows for pulse- width- modulation (PWM) is 

presented in this thesis. The proposed quasi resonant DC link provides zero-voltage 

switching (ZVS) condition for the main devices by resonating the DC-link voltage to zero 

via three auxiliary switches and LC components. The operating principle and mode 

analysis are given. The simulation was carried out to verify the proposed soft switching 

technique. A 150W 120VAC single-phase prototype was built. The experimental results 

show that the soft switching for four main switches can be realized under different load 

conditions and the peak efficiency can reach 95.6%. The proposed quasi DC link can be 

applied to both single-phase and three-phase DC/AC micro inverter.  

In order to boost efficiency and increase power density it is important to evaluate 

the power loss mechanism in each stage of operation of the micro inverter. Using the 

datasheet parameters of the commercially available semiconductor switches, 

conduction and switching losses were estimated. This thesis presents a method to 

analyze power losses of the new resonant DC link inverter which alleviates topology 
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optimization and MOSFET selection. An analytical, yet simple model for calculating the 

conduction and switching losses was developed. With this model a rough calculation of 

efficiency can be done, which helps to speed up the design process and to increase 

efficiency. 
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CHAPTER ONE: INTRODUCTION 

 

1.1 Thesis Background: Renewable Energy. Research Motivation  

 

The global energy demand is constantly increasing due to industrial 

advancement, emergence of new technologies, steady increase in population and 

global infrastructure. Since there is a limit on the non-renewable natural resources 

available new types of energy need to be found [1]. The constant improvement of power 

electronics, advancement of power semiconductor devices and government incentives 

for renewable energy encourage the development of photovoltaic (PV) solar power 

systems. The core technology in those systems are PV cells that convert sun light 

(photons) to electrical energy though photovoltaic effect.  

Photovoltaic systems have been rapidly growing both in public and private 

sectors in the past decade.  According to EPIA (European Photovoltaic Industry 

Association) in 2011, the world PV installation increased by 7.2GW (Figure 1) [2][1]. 

These installations include two types of photovoltaic systems: stand-alone and grid – 

connected. If stand-alone systems are preferred only for remote/mobile area 

applications, grid tied systems account for 85% of the PV market and spreading 

relatively fast [3].  
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Power electronics converter is the major player in photovoltaic power systems. 

As known photovoltaic modules output DC and thus, grid tied systems require an 

intelligent interface between the PV panel and the grid to convert the DC into 60Hz AC 

which is compatible with the grid. DC/AC converter (inverter) is the key technology that 

enables the PV generation systems to be connected to the grid.   

 

Figure 1 Solar PV installations in 2009 

1.2 Current Architectures for PV Power Systems 

PV Inverters have the task of tracking the maximum power point (MPP), and 

regulating the solar energy generation to this optimal operation point. The second task 
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is the conversion of direct current produced by the solar modules into alternating current 

compatible with the grid.  

Depending on the PV panel arrangement; there are three types of the inverters’ 

architecture [4]: 

- central inverters,  

- string inverters  

- micro inverters.  

In central inverter architecture as shown in Figure 2, a series of strings are 

connected to a central inverter. This architecture has become conventional for 100 

kilowatt peak solar plants. Currently the largest central inverter units have an output of 

above ten megawatts [5], [6]. 

 

Figure 2 Central inverter architecture 

In a string inverter concept (Figure 3), a few strings are connected to many small 

inverters. Tracking systems in particular generally have one inverter per module table. 

This concept has become established for solar parks in an output range of one 

megawatt or more [5], [6]. There are therefore many applications where it is unclear 
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which technology should be preferable. Taking into consideration the actual investment 

costs will, in most cases help to establish which solution is best in a particular case. 

 

Figure 3 String inverter structure 

A new inverter approach such as single phase micro inverter is introduced aimed 

to overcome some of the challenges of a large, centralized inverter. As a counterpart to 

central inverter, a micro inverter is a small compact module attached directly to each 

solar panel [6] (Figure 4).   

 

Figure 4 Micro inverter architecture 

1.3  Central Inverters vs. Micro Inverters 

Advantages of micro inverter 

Enhanced Productivity 
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In conventional inverter architecture the MPPT algorithm views the entire string 

(string inverter architecture) or the entire plant (centralized inverter architecture) as a 

single module. This allows the performance of the entire solar power system to be 

determined by the weakest module. For this reason shading of a single panel decreases 

the performance of the entire system, resulting in the loss of energy generated by the 

plant. 

The micro inverter performs MPPT at each solar module, and therefore has an 

capability to handle the shading of the panels [7].  Therefore, if one panel is shaded, the 

rest of the panels still have an ability to operate to their maximum potential.    

 Overall Reliability 

Micro inverters create no single point of failure, meaning each panel can still 

generate power even if one of the inverters goes out of service [8], [9].  

Safety  

Micro inverter has an advantage of a lower DC voltage, compared to central 

inverters, which is less inclined to arcing and therefore safer[8], [9]. 

Simplicity and flexibility 

With micro-inverters being attached to each panel, it has no limitation on the 

design and wiring of the entire plant. Additional panels can be mounted at any time in 

the future without the need for redesigning the current architecture or purchase of the 

new large central inverter. Moreover it eliminates the space requirement for a large 

inverter and the need for installation of the DC bus. Each inverter can be easily replaced 

if it is damaged of goes out of service [9].  

Disadvantages of micro inverter 
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Reliability issue for a micro-inverter 

Each component in a micro inverter, just as in a central or string inverter, is 

susceptible to failure. It is also important to note that micro inverters are difficult to repair 

as swapping of the single parts is impossible.   [8] 

High- temperature operation conditions 

Micro inverters are subject to work on the backside of the inverter where the 

temperature can reach up to 60 degrees Celsius. It is well known that harsh 

temperature conditions degrade the life time of the components of micro inverter.  

High Cost 

Even though the price of the micro inverter is gradually decreasing with the 

introduction of the new technologies and the decrease of cost of semiconductor devices 

it is still double the price of the large-size inverter pricing  and is approximately $1 per 

watt [3], [10], [11], [12].  

1.4 PV Modules 

In order to make a selection on the topology of the micro inverter, it is essential to 

identify the type of panel it will be interfacing to as the panels have distinct featured 

characteristics such as power ratings, output voltage and efficiency.  

Currently there are two types of most widely adopted semiconductor 

technologies available for photovoltaic solar panels: crystalline silicon (mono and multi) 

and thin film (Cadmium Telluride; amorphous silicon; and Copper Indium Gallium 

Selenide).  

It is interesting to note that Mono Crystalline panels are the most efficient and 

most expensive on the market [14]. Thin Film offer the lowest manufacturing costs yet 
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are the least efficient. Therefore multi crystalline panel is an interesting compromising 

solution being less expensive than mono crystalline silicon and more efficient than Thin 

Film [5].  

Besides the efficiency, temperature coefficient is a notable quality of PV cells. In 

general, all the cells have a negative temperature coefficient, resulting in a decrease in 

power production with an increase in temperature. Silicon modules are inferior to 

Cadmium telluride (CdTe) technology, significantly refined over the past few years, in 

performance at the high temperatures and in light absorption properties under cloudy 

and diffuse light conditions [14].  

Table 1 shows the comparison of different type of crystalline and thin film 

modules [13]. Analysis of the table shows a trade- off between efficiency and 

performance in high temperatures or shady conditions.  

Table 1 PV modules performance comparison 

Technology   Efficiency 
Temperature 
coefficient 

Crystalline 
Silicon 

Monocrystalline Silicon 13-19 highest 

Multicrystalline Silicon  11-15 highest 

Thin Film 

Cadmium Telluride (CdTe) 4-8 low 

Amorphous Silicon (aSi) 10-11 lowest 

Copper, Indium, Gallium, Selenide 
(CIGS)  7-11 high 

 

As the solar panel represents the largest part of the cost of the photovoltaic 

power plant, the pricing of the entire system largely depends on the price of the single 
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module. As of September 2010, a multi crystalline silicon solar module is $1.99/W; a 

mono crystalline silicon module is $2.17/W; and the thin film module is $1.07/W [15].  

For the past decade thin-film CdTe showed fast growing production and 

manufacturing rates, however the crystalline silicon remains the most common 

technology representing about 80% of the market today. 

 The electrical features from PV panel datasheets of the top 10 photovoltaic cells 

and module manufactures which represent about 45% share of the total global 

production were investigated and presented in a table 2 [13].   

Table 2 PV Modules 

Company Type 

Maximum Power PMPP 

[W] MPP Voltage VMPP [V] 

First Solar Thin-film 70 – 80 48.1 - 71.2 

Suntech Power 

Monocrystalline  175 - 190  35.2 - 36.5 

Multicrystalline  205 - 280 26.4 - 35.2 

q-cells Multicrystalline  205 - 245 28.05 - 30.55 

yinglisolar Multicrystalline  165 - 280 23 - 35.5 

JA Solar 

Monocrystalline  165 - 240 28.09 - 37.88 

Multicrystalline  200 - 240 28.13 - 29.72 

Kyocera Multicrystalline  135 - 235 17.7 - 29.8 

Trina Solar 

Monocrystalline  175 - 245 29.4 - 36.8 

Multicrystalline  220 - 240 29 - 30.4 

Sunpower Monocrystalline  200 - 410 40 - 72.9 

Sharp 

Multicrystalline  170 - 235 23.42 - 36.6 

Thin-film 115 - 142 174 - 192 
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Thin film PV panels with low cost are preferable for the large PV plants, where 

conversion efficiency does not matter as much due to the fact that PV plants are usually 

constructed in deserted regions and expansion of the PV fields are not a big deal for 

investment, while the crystalline panels may be a reasonable choice for the commercial 

or residential applications where the higher efficiency outweighs the initial cost due to 

limitation on the available spaces  [13], [14], [15].  

Although the PV cell module represents 45 % cost of the PV system technology, 

the cost of grid tie inverter allocates the significant portion of the whole PV system and 

is around 15% of the total cost [16] (Figure 5 PV System Cost Breakdown [17]). Thus, to 

reduce the cost and increase the performance of the photovoltaic power system grid tie 

inverter with high efficiency and high power density is desired.  

 

Figure 5 PV System Cost Breakdown 

1.5 Basic Topologies For Single Phase Inverter 

Inverter topologies can be basically classified into three basic types:  

- voltage source inverters (VSI);  

55% 

10% 
35% 

PV system cost break-down 

PV modules Grid-tie inverter Installation and BOS
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- current source inverters(CSI); 

- Z-source inverter, which can be viewed as a hybrid of the first two 

types. 

1.5.1 Voltage source inverter 

Most practical inverter applications use voltage-source circuits (Figure 6) that 

have a step down characteristic and require a boost converter to meet the voltage 

requirements. To interface the crystalline PV panel’s output voltage and to fulfill the 

voltage requirement of the inverter a high step-up high efficiency DC/DC stage is 

required. VSI are preferred because dc filter energy can be stored in capacitors rather 

than in inductors which are more expensive and less efficient.  

 

Figure 6 Voltage Source Inverter (VSI) 

Voltage source inverter has its numerous advantages and disadvantages as 

follows [17]:  

Advantages 

 Standard semiconductor devices and drivers can be used 

Disadvantages 
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 High step up front stage converter is required 

 Shoot through issue 

 

1.5.2 Current source inverter 

 

The main advantage of current-source inverters (Figure 7) is in the reduction of 

the transient fault current by the dc link inductor [18]. The current-source inverters are 

less investigated and applied than the voltage source inverters; nevertheless, the recent 

technological improvements achieved for the switching devices as well as for digital 

signal processors have made the CSIs more attractive in several applications. [20].  

 

Figure 7 Current Source Inverter (CSI) 

Since CSI has a voltage step-up characteristic, implementation of current-source 

inverter to photovoltaic power conversion eliminates the necessity in the DC/DC 

conversion stage or reduces the conversion ratio of a high step up DC/DC converter 

which is supposed to be more efficient in the conversion stage.   
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Current source inverter has its numerous advantages and disadvantages as 

follows [17]:  

Advantages 

 Elimination of the front stage boost converter 

 Does not require anti-parallel diode for the switches  

 Better current shape 

 Inherent short circuit protection 

Disadvantages 

 Restricted range of the input voltage  

 Additional loss due to series diodes 

 Requires special devices/drivers  

 Potential open-circuit problem 

 

1.5.3 Z- Source inverter 

 

To overcome the above problems of the traditional inverters, an impedance-

source (abbreviated as Z-source converter) was proposed by Fangzheng Peng as 

shown in Figure 8 [21]. 
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Figure 8 Z-source Inverter (ZSI) 

The unique feature of the Z-source inverter is its buck-boost characteristic, 

meaning wide range of operating voltage. Another advantage of the z-source inverter is 

reduced input current and voltage ripples due to second-order filtering at the front stage. 

It is important to note that the addition of extra capacitor/inductor does not mean the 

increase in cost and/or size since smaller components can be selected due to second-

order filtering. 
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CHAPTER TWO: REVIEW OF SOFT SWITCHING TECHNIQUES FOR 

SINGLE PHASE INVERTERS 

 

In all PWM inverters the semiconductor switches turn on and turn off the current 

at each switching transition and are subject to high switching stress and high switching 

power loss that increases with the switching frequency.  

From the power loss perspective it would be reasonable to decrease the 

switching frequency; however, the switching frequency is crucial to the design of the 

magnetic components. In micro inverter applications the highest possible switching 

frequencies are preferred in order to reduce the size of passive components and 

improve the system ripple and control bandwidth. 

Another significant problem of the switch-mode operation is the electro magnetic 

interference (EMI) caused by high di/dt and dv/dt. It is favorable to slow down the turn 

on/turn off of the power semiconductor devices to comply with the EMI standards. 

Switching the power devices on full voltage/full load causes high spikes and high di/dt 

and dv/dt which is not a favorable condition in accordance to EMI standards.  

To provide for the constantly - increasing  demand for small size, light weight and 

high efficiency micro inverter, soft switching power conversion technologies have been 

employed. The switching stress can be minimized by decreasing the voltage across it or 

current through it to zero at the switching transition. With the addition of auxiliary circuits 
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such as auxiliary switches and LC resonant components the so called soft switching 

condition can be achieved for semiconductor devices.    

Four main purposes to investigate the soft switching technologies for single-

phase micro-inverter are: 

 (1) to improve overall efficiency by creating the favorable operating conditions 

for power devices using soft-switching techniques;  

 (2) to shrink the reactive components by pushing the switching frequency to a 

higher range with decent efficiency.  

 (3) to ensure soft switching does not exacerbate inverter performance, meaning 

all conventional PWM algorithms can be applied in order to meet IEEE standards.  

(4) to investigate which soft switching techniques offer the cheapest topology and 

control strategy as cost and simple control are crucial for low power inverter 

applications.   

The switching strategies for the voltage source inverter, which result in zero-

voltage and/or zero-current switching, are classified into four families of techniques such 

as: 

1. RCD snubber, 

2. Auxiliary resonant commuted pole (ARCP), 

3. Resonant DC link. 

4. Quasi-resonant DC link inverters 

 

Soft switching techniques are key techniques to achieve both high power density 

and high efficiency. Many efforts have been made to explore various soft switching 
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techniques for DC-AC inverters. In most soft switching techniques resonant components 

and auxiliary devices are employed to create either zero voltage or zero current across 

the device prior to the switching instance. An overview on the existing soft-switching 

inverter topologies for single phase grid tied inverter technology is provided in the 

following section. 

2.1 The RCD Charge-Discharge Snubber 

The evolution of soft switching resonant converters has started with the RCD 

charge- discharge snubber. In order to give a quick idea of the snubber it is applied to a 

basic semiconductor bridge - step down buck converter (Figure 9). The objective of the 

snubber is to control dv/dt or di/dt in a way to reduce the time duration of the switching 

interval as well as to reduce current/voltage overshoots [22], [23], [24]. One of such 

snubbers is the capacitive snubber which aims to decrease overvoltage resulted from 

the stray inductances at turn off [22].  

Without a snubber at switch turn off the current of the device S1 is diverted to the 

diode D1 only when the diode is in forward bias state which means that the voltage 

across the switch needs to rise to the source voltage before the current starts falling. By 

adding the capacitor in parallel with the switch, a part of switch current will be diverted 

to it at turn off, which means current fall and voltage rise can start simultaneously. Due 

to the soft characteristic of the switching waveforms it is referred to as soft switching. 

Even though introduction of the capacitive snubber results in favorable turn off, it 

exacerbates turn on waveform as addition of the capacitor brings additional current 

stress to the device [22], [23], [24]. The problem of the turn on is in current overshoot 

due to the phenomena of reverse recovery of the diode. The reverse recovery refers to 
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the negative current flowing through the diode for a short period of time caused by 

minority carriers being swept out of the pn junction after it becomes reversed biased. 

The capacitor is fully charged prior to the turn on instance of the device meaning that 

the voltage across the device cannot decrease before the diode becomes reverse 

biased. The moment of the diode becomes reverse biased falls on the peak of the 

reverse recovery current which increases the current stress on the device turn on. 

Therefore, the switch has to carry excessive amount of current as it is the only path for 

the capacitor discharge. 

 

Figure 9 RCD snubber             

 

Figure 10 Switching waveform with RCD snubber 
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 To limit the capacitor current at discharge the resistor in parallel with the diode is 

added to the capacitor path. The purpose of the diode is to preserve the favorable turn 

off behavior and avoid the possible loss increase on the added resistor. The 

combination of resistor – diode – capacitor is meant to soften the switching 

characteristic of the semiconductor device and is called the RCD snubber [22].  

Besides RCD snubbers there are other types that assist turn on and turn off 

commutation [23],[24]. Most of them alleviate the switching and somewhat improve the 

switching characteristic but do not completely eliminate the power loss.  

2.2 Resonant DC Link Inverters 

 

2.2.1 Resonant DC link by Divan [24] 

For the inverter application the RCD snubber is very bulky as one per each 

switch is required. Divan has made a giant leap to overcome this problem by introducing 

the Resonant DC link inverter topology where he shifts the snubbing circuit to DC link. It 

requires one LC component to make the DC link voltage oscillate providing for a “soft” 

DC bus at switching transitions. This topology seems very attractive since there is only 

one resonant circuit to provide soft switching condition for all the semiconductor devices 

of the inverter.  

Resonant DC link applied to a single phase inverter is shown in         Figure 11. 

The key waveform for the link voltage and line to line output voltage are shown in fig. 

The DC link resonant circuit is composed of an inductor Lr and capacitor Cr that 

resonate at certain frequency. 
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The main idea is to switch the mail devices at zero voltage instants of the DC 

bus. However, that brings undesirable harmonic distortion as Discrete Pulse Modulation 

has to be applied. In order to bring the THD close to the one obtained by conventional 

carrier based PWM the link has to resonate at the higher frequencies. Moreover, in 

order to resonate DC link voltage to zero it has to resonate up to 2- 2.5 times the source 

voltage that imposes additional voltage stress on the main devices. Thus higher voltage 

rated devices have to be chosen which adds additional cost to the inverter.  

 

        Figure 11 Resonant DC link [25]         

 

Figure 12 DC link and line to line Vab voltage waveform 
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2.2.2 Active Clamped Resonant DC link [25], [26] 

Several ways to deal with DC link voltage overshoot and high harmonic distortion 

can be found in the literature. High voltage stress can be reduced to 1.4 Vd by applying 

a clamped circuit which involves one additional switch. The circuit diagram is presented 

in Figure 13. The overvoltage is predetermined by the clamp capacitor Cc as the diode 

of the switch Sa starts conducting whenever the link voltage Vr reaches the voltage 

K*Vd.  

 

 

Figure 13 Active Clamped Resonant DC link [25] 

Even though, the voltage stress has been reduced, it is still higher than the 

source voltage, so the problem of the high THD remains and the addition of the clamp 

switch increases the cost and reduces reliability.  
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2.2.3 Passive Clamped Resonant DC link [27] 

 

Another way to implement a clamp circuit is to use a passive clamp such as 

coupled inductor shown in Figure 14 to accomplish the reduced DC link voltage. The 

main idea of this circuit is to clamp the voltage at the lower level by using the clamping 

diode Da and setting up the coupled inductor ratio. However, there are two problems 

associated with this circuit: 1. The voltage can only be clamped to 2 Vdc since the 

coupled inductor ratio has a limitation to provide the zero voltage across the capacitor 

Cr. 2. The clamping diode must withstand a high voltage of 3*Vdc.  

 

 

Figure 14 Passively Clamped Resonant DC link [27] 

2.2.4 Two switch Passive Clamped Resonant DC link [28] 

 

In an attempt to eliminate a sub harmonic problem in a passive clamp converter, 

a two switch resonant inverter realizing PWM was presented in [28] (Figure 15). The 
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clamping voltage is reduced to 1.1-1.3 Vdc and any type of PWM can be applied to the 

inverter.  

   

Figure 15 Passively- clamped two switch QRDCL [28] 

The main circuit waveforms are shown in the figure 15. Preceding the switching 

transition of the inverter the passively –clamped two switch link is activated, first by the 

turning on of Sa1 and Sa2. The current of the inductor Lr starts building up and initiates 

the resonance of L1, Lr and C. The capacitor C releases its energy to Lr and forces the 

link voltage to zero. During the zero voltage period the inverter switches can perform the 

transition at the soft condition.  

After the inverter finishes the change of state the DC link voltage must be 

returned to the source voltage to resume the operation of the inverter. The switches Sa1 

and Sa2 turn off and the current of the inductor Lr returns back to the source, and the 

resonance between L1 and C will make the link voltage increase until it gets clamped by 

the passive clamp circuit L, D3 to K*Vdc. After the energy is returned to the source, 

inductor L1 continues to supply the output current and the normal operation of the 

inverter begins.   
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2.2.5 One Switch Passive Clamped Resonant DC link [30] 

A passively clamped switch is further developed by Chen (Figure 16) to obtain 

just one auxiliary switch. Moreover, instead of the separate inductor, one additional coil 

is used. As long as the auxiliary circuit is off, the voltage of the link remains at Vdc. It 

initially ramps up to K*Vdc, however it gradually reduces to Vdc due to resonance 

losses.  

 

   

Figure 16 The passively clamped one switch QRDCL [30] 

Auxiliary switch Sa1 turns on to bring the link voltage to zero through the 

resonance between L1, Lr and C. The voltage will be clamped to zero by the anti-

parallel diodes of the main bridge. After the inverter performs the switching the link 

voltage is brought up to K*Vdc by turning off Sa1 and by resonating the link capacitor 

with L1 and L2.     

2.3 Auxiliary Resonant Commutated Pole Inverter [31], [32] 
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The Auxiliary Resonant Commutated Pole (ARCP) technique, proposed by 

McMurray, can fully achieve soft switching by adding two auxiliary switches and one 

inductor for each phase. The circuit topology is presented in fig. with the key waveforms 

shown in Figure 17.  

       

Figure 17 Auxiliary Resonant Commutated Pole Inverter and its waveforms [31] 

The main switches are zero voltage turn on and the auxiliary switches operate at 

zero current turn on. The turn off loss is reduced due with the assistance of the snubber 

capacitors.  

ARCP requires the addition of an extra inductor and two switches per each 

phase that makes the topology and control complicated and costly, especially for low 

power micro inverter applications, where low cost and simple control are preferred.   

 The complexity increases with the overvoltage protection that is essential to 

ARCP since its auxiliary switches are connected back to back and there is no path for 

the inductor current to return to the source. Furthermore, ARCP suffers from charge 

imbalance in the bulky input capacitors.  
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2.4 Quasi Resonant DC link Converters 

 In this section an alternative way to realize soft switching, a so-called quasi 

resonant DC link converter is introduced. Quasi resonant DC link circuit topologies offer 

lower component stress that is limited to DC voltage supply and enable implementation 

of conventional carrier based PWM. The way to realize QRDCL is to place a switch in 

the main power flow and use it to control when to provide short zero voltage instances 

in the dc link. QRDCL also consists of some resonant network and auxiliary devices that 

make the dc link resonate to zero and keep it at zero for the duration of time required for 

the switching transition in the PWM inverter. In this manner the occurrence of zero 

voltage condition is synchronized with the main semiconductor device switching of the 

PWM inverter. 

2.4.1 Parallel Quasi- Resonant DC Link [33] 

The first circuit investigated is the parallel resonant DC link proposed by He and 

is shown in Figure 18. It consists of the DC rail switch Sa1, LC resonant network Lr, Cr, 

C1, and three auxiliary switches Sa2, Sa3, and Sa4.  
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Figure 18 Parallel Resonant DC link [33] 

Prior to the switching instance in the main circuit switches Sa1 and Sa2 are on 

and the converter operates as a conventional voltage source inverter. Whenever the 

switching transition is required the PRDCL is activated first by turning on the switch Sa3 

to pre charge the inductor Lr. The current in inductor Lr starts ramping up linearly until it 

reaches the value required for the Vcr to resonate all the way to zero and then return to 

Vdc. Sa1 is then turned off and the resonance between Lr, Cr and C1 is initiated to 

discharge Cr and C1. Once the voltage across Vcr discharges to zero, the main 

switches can be turned on and off at the soft condition. The operation of PRDCL 

proceeds with turning off Sa2 and turning on of Sa4. The purpose of Sa4 is to keep the 

voltage across the DC link for a prolonged period of time and to separate the PRDCL 

from the main circuit in order to let Vc1 oscillate from its negative value to zero.  

In order to resume the operation of the inverter Cr and C1 need to be charged to 

Vdc. It is accomplished by turning on Sa2 and turning off Sa4 which is proceeded by 

turning on of Sa1 whenever Vc2=Vdc. The operation of PRDCL is finished with the 
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resonant inductor being linearly discharged to zero and with the turning off of the switch 

S3.  

Notice that switch Sa3 is turned on and off at zero current since the current iL is 

decreased to zero, Sa1 turns on and off at zero voltage as Vc1 is charged to Vdc, and 

Sa2 turns on and off at zero voltage whenever Vcr is discharged to zero.  

This PRDCL topology utilizes four auxiliary switches, some of them have a high 

current stress, and the switch S2 must withstand a high voltage stress of 1.5-2 times of 

Vdc.   

2.4.2 Parallel Quasi- Resonant DC link by Cho [34] 

 Another version of parallel resonant DC link that was proposed by Cho is shown 

in Figure 19. It has an LC link resonant circuit – Lr, Cr, reduced number of auxiliary 

switches – Sa1, Sa2 and Sa3, however needs two additional diodes D1 and D2. 

 The initial state of the PRDCL is similar to the previous converter – Sa1 is turned 

on and the main power flows from the source to the main bridge, capacitor Cr is 

charged to Vcr and the current in the resonant inductor is zero.   

The operation of PRDCL starts prior to switching in the main bridge by gating on 

Sa2 and Sa3 and linearly pre charging the resonant inductor to the reference value. It is 

important to ensure that value is enough to bring the voltage of the link to zero.  In order 

to activate the PRDCL the main power flow needs to be interrupted by turning off Sa1. 

The resonant inductor starts resonating with the link capacitor until the voltage Vcr is 

decreased to zero and the inductor current starts freewheeling through auxiliary 

switches and diodes. During this time the commutations in the main circuit take place at 

the zero voltage condition.  
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Figure 19 Parallel Quasi Resonant DC link [34] 

In order to return the DC link voltage back to source voltage Vdc the switches 

Sa2 and Sa3 are gated off. Another resonance is initiated between Lr and Cr as the 

current path is diverted to the auxiliary diodes D1 and D2. Once the voltage of Vcr is 

increased to Vdc it gets clamped by the body diode of Sa1. The remaining current of the 

resonant inductor linearly decreases to zero and is returned to the source. 

  Note that the voltage stress of all the devices is limited to the source voltage 

Vdc. The switches Sa2 and Sa3 turn on with zero current and are turned off at zero 

voltage, Sa1 is turned on and off at zero voltage as the voltage across the dc link is Vcr, 

and the diodes D1 and D2 are turned off at zero current condition.   

 This slight modification of PRDCL is better than the previous as far as the 

component stress is concerned, however, the large component count – five auxiliary 

semiconductor devices – 3 switches and 2 diodes - is not desirable for the micro 

inverter.  
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2.4.3 Auxiliary Quasi Resonant DC link [35] 

A slightly modified version of the ARCP inverter, the auxiliary QRDCL inverter 

proposed by DeDoncker is illustrated in Figure 20. The switch Sa3 serves the purpose 

of the dc rail switch that is disconnected to actuate the auxiliary circuit. For the low load 

current auxiliary switches Sa1 (for positive IL) and Sa2 (for negative IL) can be gated on 

prior to turn off of Sa3 to give the inductor Lr some boost current that is required to 

ensure Cr can resonate to zero volts.  

     

Figure 20 Auxiliary Resonant Commutated Pole QRDCL [35] 

 After the switch Sa3 is turned off the resonance process starts and the voltage of 

Cr is decreased to zero. Once it reaches zero, the diodes of the inverter bridge become 

forward biased and clamp the link voltage to zero. The operation proceeds with turn on 

of all the inverter switches and Sa2. Since inverter switches are shorting the bus and 

there is a potential of Vdc across the resonant inductor Lr, the current Ir starts ramping 

up linearly. The current increases until it reaches the value of the next stage load 

current plus some required boost current. After that the converter may change its state 
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which removes the short of capacitor Cr and another resonance starts immediately. The 

voltage across Cr resonates until the diode of Sa3 clamps it to Vdc. Switch Sa3 is 

turned on whenever the current of Lr falls below the current of the link. As Ir decreases 

linearly forced by a potential of Vc, the link current diverts to the dc rail switch Sa3. As 

the current decreases to zero the switch Sa2 is turned off.  

In addition to the disadvantages quasi-resonant dc link converters, the auxiliary 

QRDCL inverter proposed by DeDoncker has a charge balance problem in the 

capacitors Cc and Cdc. The charge is extracted from Cdc by the auxiliary circuit (Sa2 

turns on to increase the current to the link plus boost current) to assist the resonance of 

Cr to the source voltage Vdc. To solve this problem the switch Sa3 is kept on longer 

when the switch Sa1 turns on (Sa1 turns on to give some boost current) prior to Vcr 

resonating to zero. That results in the increased current stress of the switch Sa3. 

Another solution to better DC bus utilization is to increase the resonant frequency, 

however that increases the peak current and results in higher conduction loss.  

 

2.4.4 Parallel Quasi- Resonant DC link by Malesani [36] 

A few attempts have been made to reduce the number of DC link auxiliary 

switches to minimum. One of the circuit topologies that utilizes only one dc rail switch 

Sa1 and one auxiliary switch Sa2 and LC resonant components was proposed by 

Malesani and is presented in Figure 21. Instead of using one large link capacitor, it is 

distributed to the switches S1-S4 in snubber way fashion. 
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Figure 21 Parallel QRDCL by Malesani [36] 

 As in previous converters Sa1 is a dc rail switch that carries the input current and 

disconnects the inverter from the source before the change of state in the converter. 

The capacitor Cc is a large storage capacitor which is pre charged to Vdc/2. The 

auxiliary circuit initiates by pre charging the inductor Lr to some required boost value 

(switches Sa1 and Sa2 are on). Once the current ramps up the switch Sa1 turns off to 

start the resonance between Lr, Cc and snubber capacitors and brings the voltage of Vi 

to zero. At this point the converter changes the state and the resonance continues 

between Cc and Lr. The current in Lr starts decreasing. Once the current reverses and 

passes through the body diode of Sa2, the switch Sa2 can be turned off. Ir continues to 

decrease and once it reaches the proper value, a new resonance occurs which brings 

the link voltage Vi back to dc link voltage. The operation of the link finishes with Sa1 

being gated on to remain the power flow to the main bridge.  

 Even though the switches Sa1 and Sa2 operate at zero voltage and the 

maximum stress on the semiconductor devices is limited to Vdc, the control timing is 
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complicated and quite challenging to adjust the location and duration of zero voltage for 

a wide operation range.  

    

2.4.5 Quasi- Resonant DC link by Chen [37] 

 

 Another DC link circuit that minimizes the number of auxiliary switches to two is a 

QRDCL proposed by Chen. Figure 22 shows the link circuit diagram that consists of a 

dc rail switch Sa1, one auxiliary switch Sa2 two diodes D1, D2, LC resonant circuit, 

auxiliary capacitor Cc and a magnetically coupled inductor Lr1. 

 

Figure 22 QRDCL by Chen [37] 

The initial state of the QRDCL: dc rail switch is on, auxiliary switch is off, link 

capacitor is charged to the source voltage, Cc is pre charged to a preset value Vo, 

inductor currents are zero.  

 As Sa2 turns on, the resonance starts between Cc, Lr1, and Lr. The currents of 

inductors increase until ILr reaches the preset value. At this moment the dc rail switch 

turns off the voltage across Cr which decreases to zero due to resonance between Cr, 
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Lr1 and Lr. As the voltage clamps to zero by the freewheeling diodes, the capacitor Cc, 

Lr1 and Lr continue to resonate. The voltage of the capacitor Cc decreases to zero. The 

converter may change the state at any time during this period as the link voltage is kept 

at zero. The current of inductor Lr freewheels through the diode D2, the inductor current 

of Lr1 freewheels through the diode D1.  

 To start bringing the link voltage back to the source voltage Sa2 turns off,  and 

the resonance process starts between Lr1’, Lr and Cc. It continues until the inductor 

currents reduce to zero. As soon as the current of Lr reverses direction, the resonance 

between Lr, Cc and Cr brings the link voltage back to the source value. At this moment 

Sa1 can be turned on, however the resonance between Cc, Lr continues until the 

inductor current is completely discharged.  

 

Figure 23 Operation waveforms of the QPRDCL [37] 
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In this QRDCL switch Sa2 is zero current turn on, and zero voltage turn on, Sa1 

is zero voltage turn on/off, however, the circuit requires the addition of three diodes, 

capacitor Cc and inductor Lr1.  The magnetically coupled inductor is bulky which 

reduces the power density, and moreover brings additional magnetic loss.  
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CHAPTER THREE: A NEW RESONANT DC LINK FOR SINGLE PHASE 

MICRO INVERTER WITH THREE AUXILIARY SWITCHES 

 

The survey of the existing inverter topologies has revealed that the ones that 

have a potential to achieve high efficiency usually employ complicated control strategies 

and a large number of components; and the ones that have simpler topologies do not 

meet the expectations on the performance and components stress. 

 Resonant DC link and Active Clamped Resonant DC Link (ACRDCL), proposed 

by D.M. Divan [25], [26] use auxiliary switch and resonant components to periodically 

resonate the DC bus voltage to zero, achieving ZVS for the main switches. However 

this technique has two major disadvantages: (1) high DC voltage stress on the devices; 

and (2) high total harmonic distortion caused by difficulties in PWM implementation due 

to switching at a fixed interval.  

 The Auxiliary Resonant Commutated Pole (ARCP) technique, proposed by 

McMurray, can fully achieve soft switching by adding two auxiliary switches and one 

inductor for each phase [31], [32]. However, the addition of extra components makes 

the topology and control complicated and costly, especially for low power micro inverter 

applications, where low cost and simple control are preferred. 

 The auxiliary quasi-resonant DC link inverter proposed by DeDoncker utilizes 

three switches; however it has a charge balance problem in DC bus capacitors [35]. The 

parallel resonant DC link (PRDCL) topology uses four auxiliary switches, but these 
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switches are turned off with high current and one of them still has a high voltage stress 

[33].  

In order to have a soft switching inverter topology with a simple control and low 

cost a new quasi resonant DC link with only three auxiliary switches and one LC 

component is proposed. Since the zero voltage condition can be created anytime by the 

assistance of the auxiliary switches, there are no requirements on the switching time for 

main switches, and thus the conventional PWM technique can be easily employed. 

Furthermore, all these switches including auxiliary switches operate under soft switching 

conditions. 

The operational principle and analysis of the current topology is described along 

with design considerations and optimization of device selection. The simulation and 

experimental results for a 150W inverter are presented to verify the circuit operation. 

 

3.1 Derivation of the New Quasi Resonant DC Link Inverter 

 

As illustrated in Figure 24 the philosophy behind quasi- resonant DC link 

topologies is to employ a dc-rail switch and a controlled LC network as a front stage to 

the main commutation network. The central part is the dc rail switch that is closed 

during the normal operation and passed the power to the main circuit. The main idea of 

quasi-resonant dc link is developed based on disconnecting the main bridge from the 

source using the dc rail switch during the switching transitions and providing zero 

voltage switching condition by controlling the resonant branch.  
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Figure 24  The concept of Quasi-resonant DC link family 

3.2 Operational Principle of the New Quasi-resonant DC Link 

 
 To illustrate the operational principle, a new resonant DC link is applied to a 

single phase inverter as shown in  

Figure 25. Figure 26 shows the key waveforms during main switch commutation. As 

seen from that figure, there are seven stages in each commutation period. The detailed 

explanation of each stage for commutation from S2/S3 to S1/S4 is as follows. 

Lr Cr
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S22

S33
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S2

S3
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Cr1

Cr2

Lf
Cf

 

Figure 25 Single-phase inverter with a new resonant DC link 
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Figure 26 Commutation waveforms 

Stage 1(t1-t2): 

As shown in Figure 27, in this stage the inductor current is linearly charged by turning 

on S33. Once the current through Lr reaches the boost current Ib, the switch S33 and 
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S11 are turned off simultaneously. The current Ib should be sufficient to fully discharge 

the resonant capacitor Cr. The time duration of this stage can be found from (1): 

   
     

  
 (1) 

 

 

Figure 27 Stage 1 (t1-t2) 

Stage 2(t2-t3): 

As shown in Figure 28, in this stage, the capacitors Cr1 and Cr2, which are the parasitic 

capacitors of MOSFETS S22 and S33, are charged and discharged respectively by 

inductor current Ib. Since the voltage across the Cr1 reaches zero and the body diode 

of S22 starts conducting (Figure 29), S22 can be turned on with zero-voltage condition.  

This stage ends once the switch S22 turns on. The time duration of this stage can be 

expressed by: 

   
           

  
 (2)  
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Figure 28 Stage 2 (t2-t3)  

 

 

Figure 29 Stage 2 (t2-t3) 

Stage3(t3-t4):  

During this stage, shown in Figure 30, Lr and Cr begin to resonate.  The voltage across 

Cr decreases as the current in the resonant inductor Lr is negative. In this stage, the 

load current affects the time duration to resonate the Cr voltage to zero. A positive load 
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current shortens the time duration, while a negative load current prolongs the time 

duration. This stage finishes when the voltage across Cr reaches zero.  Considering the 

load current effect, the time duration can be calculated using equations (3), and (4): 

 

   
      

     
                    (3) 

 

   
 

√  
 (4) 

 

 

Figure 30 Stage 3 (t3-t4) 

Stage4 (t4-t5): 

 During this stage (Figure 31), the voltage across Cr is clamped to zero as the resonant 

current flows through the body diodes of the main switches. Because the voltage across 

the resonant inductor is the constant DC bus voltage, the resonant current linearly 

decreases to zero. Since the voltage across Cr is maintained at zero, it creates the zero 
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voltage soft switching condition for the main switches. The main switches can 

commutate at any time during this stage. The time duration of this stage can be 

calculated as: 

           (5)   

         
      

  
     (6) 

 

 

Figure 31 Stage 4 (t4-t5) 

Stage5 (t5-t6): 

  Once the inductor current reaches zero, Lr and Cr will begin to resonate again 

(Figure 32).  They will continue to resonate until the voltage across the Cr is clamped to 

DC bus voltage by the body diode of S11. The inductor current is circulated through S22 

and S11 and remains nearly constant. During this stage, switch S11 turns on with a 

zero voltage switching condition. This stage ends when switch S22 turns off. The time 

this stage lasts can be calculated with the following equation: 



43 
 

                       

       
  

     

  
                      (7) 

 

Figure 32 Stage 5 (t5-t6) 

Stage 6(t6-t7):  

When switch S22 turns off, the remaining current in inductor Lr will be discharged from 

Cr1 and charged to Cr2 respectively. (Figure 33) After the voltage across Cr1 reaches 

zero, the remaining energy in the inductor will be dumped to the source through body 

diode of S22 (Figure 34).  This stage ends when the inductor current goes to zero. 

       
     

  
   (8) 
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Figure 33 Stage 6 (t6-t7) 

Stage 7(t7-t8): 

 Since the voltage across the S22 is zero at the beginning of this stage, the inductor will 

be charged and the energy in the inductor will be discharged through the resistance of 

S11 and S22 (Figure 34).  When the energy in the inductor is completely damped, this 

stage ends and gets ready for next new switch commutation (Figure 35).  

 

 

Figure 34 Stage 6 (t6-t7) 
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Figure 35 End of commutation 
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CHAPTER  FOUR: POWER LOSS ANALYSIS AND DESIGN 

CONSIDERATIONS 

 

4.1 Analysis of the Resonant Stages 

 

To investigate the performance of a micro inverter, an accurate loss model is 

desired. With the use of the model, different design parameters can be compared, and 

optimized circuit parameters and devices can be selected. Three different loss models 

have been previously proposed, each one targeting for better precision and shorter 

calculation time.  

The best accuracy can be achieved with the physics-based model. Simulation 

software, e.g. ISE and Medici perform the analysis using the physical parameters of the 

device, such as geometry and doping concentration. The results obtained with these 

type of software match the experimental results quite well. However, it is very inefficient 

since it takes days to calculate several switching cycles. Clearly, this method is not 

suitable for the optimization of the micro inverter since several design criteria needs to 

be evaluated.  

The second method is to use the behavior model of the devices that is provided 

with simulation software such as PSpice/LTSpice and SABER. The parameters such as 

device parasitic capacitance and on-state resistance are input to the model. This 
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method presents relatively good results sufficient for comparison of the devices 

provided by different manufactures. However, it is still time-consuming and therefore not 

suitable for the evaluation of the micro inverter.  

The third method is the mathematical model. Based on some equivalent circuits, 

and device datasheet parameters provided by manufactures, the power loss equations 

are derived. Compared to the aforementioned physics-based and behavioral methods, 

this one is the fastest and has a minimum calculation time. The major obstacle in 

applying such model is its accuracy. The most simple mathematical loss model uses a 

simplified turn-on and turn-off switching waveforms [38]. In this model voltage and 

current are changing in a linear fashion, which is not the case in resonant topologies. 

Therefore, the results obtained by such model normally do not match the experimental 

results very well.  

In order to boost efficiency and increase power density it is important to evaluate 

the power loss mechanism in each stage of operation of the micro inverter. Using the 

datasheet parameters of the commercially available semiconductor switches, 

conduction and switching losses can be estimated. This chapter presents a method to 

analyze power losses of the new resonant DC link inverter which alleviates topology 

optimization and MOSFET selection. An analytical, yet simple model for calculating the 

conduction and switching losses was developed. With this model a rough calculation of 

efficiency can be done, which helps to speed up the design process and to increase 

efficiency. 

The analysis of the topology was carried out using the simplified circuit diagram 

shown in Figure 36. The plots of inductor current (ILr) and capacitor voltage (Vcr) of first 
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resonance (stage3-t3-t4) and second resonance (stage 5 – t5-t6) are given in Figure 37. 

Since the operational principle of the new quasi resonant DC link is governed by two 

resonance processes it is essential to derive the equations of the current and voltage of 

those stages. Neglecting the output capacitances of the MOSFETs as they are relatively 

small comparing to dc link capacitor the equations can be generated by analyzing the 

step response of the series underdamped RLC circuit. 

 

Figure 36 Resonant DC link simplified diagram 

First resonance stage (stage 3-t3-t4) 

Assuming initial current of the inductor to be equal to Ib (ILr=Ib) and the capacitor 

is pre charged to the source voltage (Vcr=Vdc) the solution of the first resonance [stage 3 

(t3-t4)] can be written in the form of equations (1), (2), where  

  
 

  
  is a damping factor 

  - resistance of the resonant circuit (parasitic resistance of inductor and capacitor) 

    
 

√  
 - resonant frequency 
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   √  
     - damped radian frequency  

           
      

     
                    (1) 

                          
    

  
                  (2) 

 

 

Figure 37 Inductor Current Lr and Capacitor Voltage Vcr (I – first resonance stage (stage 
3-t3-t4); II – zero voltage stage (stage 4-t4-t5; III – second resonance stage (stage 5 – t5-

t6)) 
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Second resonance stage (stage 3-t3-t4) 

 

For the second resonance [stage 5 (t5-t6)] the initial inductor current is the final 

value of the inductor current of the zero voltage stage (ILr=Ib2) and capacitor is 

discharged to zero (Vcr = 0). Thus, the solution for the second resonance takes the form 

of equations (3), (4). 

                             

       
  

     

  
                 (3) 

                           
          

  
      

  
                 (4)       

Since the simplified circuit is used for the analysis it can be assumed that for 

commutation from S2/S3 to S1/S4 the load current, denoted here as Iom, is positive and 

for commutation from S1/S4 to S2/S3 Iom is negative. The plots of inductor current (ILr) 

and capacitor voltage (Vcr) of first resonance (stage 3-t3-t4) and second resonance 

(stage 5 – t5-t6) based on equations (1), (2), (3), and (4) are shown in Figure 38 and 

Figure 39. It can be seen that commutation from S1/S4 to S2/S3 is much shorter 

because the load current assists the charging and discharging of the resonant 

capacitor. 



51 
 

 

Figure 38 First Resonance (stage 3- t3-t4) 

Power loss of a new resonant dc-link inverter consists of four major parts of 

losses:  

conduction losses of main switches (Ponm),  

conduction losses of auxiliary switches (Pona),  

switching losses of main switches (Pswm), 

switching losses of auxiliary switches (Pswa) 

core loss of the inductor (Lr).  

Conduction loss is resulting from the loss on the Mosfet switch inherent 

resistance (Rdson) whenever the current passes through it in the on- state. Switching 

loss is the outcome of the non-ideality of the Mosfet switching waveforms and thus, 

current and voltage overlap during the switching.  
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Figure 39 Second Resonance (stage 5- t5-t6) 

4.2 Calculation of the Inductor Charging/Discharging, Resonant and Linear 
Stage Time 

 

Power loss calculation of the new quasi- resonant dc-link inverter requires the 

knowledge of the time it takes to resonate the dc-link capacitor voltage to zero (t3-t4) 

and then resonate it back to source voltage (t5-t6), as well as the time of pre charging 

the inductor (t1-t2) and discharging it back to zero (t6-t7) [Figure 40]. 
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Figure 40 Timing diagram of the operation 

Recalling that the first stage time T1 (t1-t2) is the time once the inductor current 

reaches Ib, the boost time T1 can be calculated by (5) 

     

  
             (5) 

As in stage 2, the capacitors Cr1 and Cr2, which are the parasitic capacitors of 

MOSFETS S22 and S33, are charged and discharged respectively by inductor current 

Ib the time duration of this stage can be expressed by: 
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The first resonance stage time T3 (t3-t4) is the time once the voltage across the 

resonant capacitor Cr reaches zero, therefore the resonant stage period T3 can be 

obtained by (6) 

                        
      

     
                       (6)                           

The third stage (which is denoted here as the linear process, stage 4) time T4 

(t4-t5) is the time of the zero voltage stage. The dc link capacitor won’t start charging to 

dc link voltage until the inductor current reaches the output current. The voltage Vd is 

applied across the inductor in this stage and the current increases linearly, therefore the 

time of this stage can be found considering (7) and (8) 

            (7) 

  

         
      

  
      (8) 

  

The fourth stage time T5 (t5-t6) is the time the voltage across the resonant 

capacitor Cr reaches Vdc and calculated by (9) 

                       

       
  

     

  
                      (9) 

The fifth stage time T6 (t6-t7)  is the time once the inductor current goes down to 

zero thus time period T6 could be found solving the equation (10).  
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    (10) 

 

4.3 Conduction Loss Calculation 

 

Main switches 

 

Conduction loss of the main switches is resultant from the loss on the Mosfet switch 

inherent resistance (Rds on) whenever the output current passes through it in the on- 

state and is obtained by (11), where io(t)-ouput current, d(t)-duty cycle, md – modulation 

index  and can be obtained by (12) and (13), and (14) respectively. 

                                                               

                ∫        
      

 

 
 

    (11) 

                    (12) 

     
 

 
                      (13) 

   √ 
  

  
          (14) 

Auxiliary switches: 

 

Conduction loss of auxiliary switch S11 consists of pre-charging and discharging of 

inductor current and output current losses (15). 
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       (15)  

Conduction loss of auxiliary switch S22 is from carrying second resonance current and 

is obtained by (16). 

                 [∫          
   

  

 
]  (16)  

Conduction loss of auxiliary switch S33 is of pre-charging stage and is easily calculated 

from (17). 

       
 

 
          

  

  
    (17) 

 

4.4  Switching Loss Calculation 

 

Main switches 

 

Since the main switches turn on and turn off at zero voltage, main switch loss is 

eliminated.  

Auxiliary switches 

 

Switches S11 and S22 are ZVS turn on and turn off.  

The total switching loss (Psws33) of s33 consists of Turn on loss (Pswon), 

Output capacitor loss (Pswc),  Turn off loss (Pswoff) (18). 

                                  (18) 
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      (

  

 
)
 

  (19) 

      ∫      
   

 
            (20) 

       ∫             
   

 
  (21) 

 

Turn on, turn off and output capacitance losses can be found from (18), (19), (20) 

and (21), where 

Coss – output capacitance of the Mosfets and can be obtained from the 

datasheet  

     ,      - expression of the current and voltage during turn on (22), (23) 

     
     

        
          (22) 

           
 

   
         (23) 

 

    ,     - expression of the current and voltage during turn off (24), (25) 

 

           
 

   
         (24) 

       
      

     
                      (25) 
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4.5 Inductor Core Loss 

The core loss is caused by the hysteresis loss. For the calculation of the core 

loss, the empirical formula described by (26) is frequently used in industry [39].  

             ,  (26) 

where Vc – volume of the core, 

f – switching frequency, 

B- maximum flux density, 

k, n, m – inherent material constants, 

 

4.6 Power Loss Calculation Result and Design Considerations 

The power loss estimation was done for 210W inverter by using simulation and 

mathematical calculation method. The parameters for the calculation were obtained 

from the datasheets of the commercially available semiconductor switches. The 

characteristics of the power mosfet used for calculations are given next. 

N-channel MDmesh Power MOSFET STB42n65m5 

ID Drain current (continuous) at TC = 100 °C -   20.8A 

V(BR)DSS Drain-source breakdown voltage - 650 V 

RDS(on Static drain-source on resistance - 0.070 Ω 

Coss Output capacitance at VDS = 100 V - 110pF 

Tr Rise time - 24ns 

Tf Fall time - 13ns 



59 
 

The core loss was calculated for TDK PC40 material. The empirical formula for 

core loss Pc (W/m3) was found from the manufacture’s application notes and is 

presented in (27) with B – maximum flux density (200 Tesla). 

                   (f=50KHz, t=80 )  (27) 

The calculation result shows that inverter still has a very good efficiency of above 

98%:   

Switching main – 0W 

Switching auxiliary - .261W  

Conduction main – 0.938W 

Conduction auxiliary – 0.287W 

Core loss – 0.105 W 

Total loss – 1.591W  

Figure 41 shows loss chart for the given inverter switching frequency f =20 kHz 

(boost current Ib=7A, resonant frequency fr=700kHz). 

Considering only the switching and the conduction loss of main and auxiliary 

components the overall new resonant Dc-link inverter loss results in 1.5W; and that 

corresponds to 99% efficiency. 
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Figure 41 Losses of resonant dc - link inverter 
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CHAPTER FIVE: SIMULATION AND EXPERIMENTAL RESULTS 

 

5.1 Simulation Results 

To verify the proposed quasi resonant DC link, the simulation was carried out 

using LTspice circuit simulation software.  

The key circuit parameters in this simulation are:  

DC Voltage - 210V,  

power rating - 150W,  

switching frequency - 20kHz, 

resonant frequency – 700kHz,  

resonant inductor Lr - 15uH,  

resonant capacitor - 3.3nF.  

Figure 42 shows the key waveforms for dc link capacitor voltage Vcr, inductor 

current ILr  as well as gate signals of auxiliary devices (S11, S22 and S33) during the 

main switch commutation. The figure shows that by triggering the auxiliary switches in 

the way discussed in the operational principle, zero voltage is created across the DC 

link capacitor Vcr.   

As seen from Figure 43, where S1 and S2 are main switch signals and Vs1 and 

Vs2 is the voltage across them, during the interval when the voltage across Cr goes to 

zero which means the voltage across the main switches (Vs1 and Vs2) becomes zero, 
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main switches S1 and S2 turn on and off respectively, resulting in zero-voltage 

switching.  

 

Figure 42 Auxiliary switch signals (S11,S22 and S33), DC link capacitor voltage Vcr and 
inductor current ILr

 

Figure 43 Inductor current ILr, main switch signals S1, S2 and voltage across them Vs1 
and Vs2 
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Since for the new quasi – resonant DC link the resonant cycles can be triggered 

any time the switching is required in the main bridge circuit, the conventional sinusoidal 

PWM was applied. As a result, the output is pure sinusoidal with low THD as illustrated 

in Figure 44. 

 

Figure 44 Output voltage, inductor current(Ilr), dc link capacitor voltage (Vcr) 

Constant vs. Variable Time Control Strategies 

Control timing for auxiliary devices S11, S22 and S33 is presented in Figure 45. 

The time duration of the switch S33 should be enough to pre-charge the inductor Lr to 

the value sufficient for the capacitor voltage Cr resonates to zero. From the simulation 

the minimum gate time for S33 is 500ns and the minimum initial current is 7A. The time 

durations of the first resonance stages at the peak of the output current is 300ns, and 

that matches the result obtained from the analysis. The dead time set to 300ns.     
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As analyzed in Chapter 4, the load current will change the time duration of the 

second resonance stage. Figure 45 shows that switching from S1 to S2 (on the left) is 

much shorter than from S2 to S1. It can be seen that in the second case the voltage of 

the capacitor Cr does not start resonating as soon as the switch S22 is gated on. The 

resonant process begins as soon as the inductor current rises above the value of the 

output current. 

 

Figure 45 Control timing for main (S1, S2) and auxiliary switches (S11, S22 and S33)  
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The simulation shows the time of the second resonance is 500ns for the case of 

commutation from S1 to S2 and 700ns for the commutation from S2 to S1. Therefore, 

the time duration for the switch S22 is set to 700ns to ensure the voltage of the 

capacitor Cr has enough time to reach DC bus value (210V) in both case scenarios.    

Since the time duration of the second resonance significantly varies depending 

on the commutation, a variable time control strategy can be implemented. As shown in 

Figure 46 the switch S22 is gated on for only 500ns for the case of switching from S1 to 

S2. 

Figure 46 Control timing for main (S1, S2) and auxiliary switches (S11,S22 and S33) with 

variable time control strategy 
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As the switch S22 is carrying the resonant current, the reduction of the gating 

time by 200ns can tremendously reduce the conduction loss.  As analyzed in chapter 4 

the significant portion of the losses comes from the conduction of the auxiliary switches, 

thus by adopting the variable time control strategy the overall efficiency can be 

considerably increased.   

The control strategy can be further improved by incorporating the output current 

sensing and implementing the adaptive control strategy in which the time duration of the 

auxiliary switches will vary depending on the value of the output current. 

The time duration of the auxiliary switch signals can be also optimized by 

changing the resonant frequency and optimizing the values of L and C. Table 3 shows 

optimization example. For low resonant frequency the time duration of the resonant 

stages is prolonged which results in decrease of efficiency. By intuition the designer 

would want to increase the resonant frequency to shorten the conduction time of the 

auxiliary circuit. However, there is a limitation caused by the insertion of the dead time 

between the main switch commutation. Inverter has to maintain zero voltage stage for a 

time set by dead time in order to ensure both turn on and turn off of the switches are at 

the zero voltage condition. Thus, with high resonant frequency it is only possible with 

high initial boost current which increases the current stress on the auxiliary switches 

and decreases efficiency. 
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Table 3 Optimization of the resonant frequency 

 

 

Since LTSpice software includes the models of commercially available devices, it 

is possible to estimate conduction and switching losses and evaluate the efficiency. The 

simulation was performed with SPA11N60C3 from Infineon (Vds=650V, Id=11A, 

Rdson=340mOhm) and STP8NM60 from STMicroelectronics (Vds=650V, Id=8A, 

Rdson=900mOhm).  Analysis of the simulation shows that the proposed soft switching 

technique can achieve up to 97% efficiency, excluding inductor losses and driver 

losses. Implementation of the variable time control strategy showed the reduction of the 

power loss and boost of efficiency by almost 1%.   

 

5.2  Experimental Results 

 

A 150W 120VAC single-phase inverter prototype as shown in Figure 47 is built to 

verify the feasibility of the proposed topology.  
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Figure 47 150W 120VAC prototype 

The key hardware prototype parameters for the experiment are:  

DC Voltage - 210V,  

power rating - 150W,  

switching frequency - 20kHz, 

resonant frequency – 700kHz,  

resonant inductor Lr - 15uH,  

resonant capacitor - 3.3nF.  

All of the main and auxiliary switches used in this prototype are 21N65M5. The 

parameters of the LC filter are 2.3mH and 2.2uF respectively.  

The control is implemented in a DSP (TMS320F28335 from Texas Instrument). 

TI DSP has a feature of pulse placement that allows for setting of the rising and falling 

edges of the pulse anywhere within PWM cycle. This is achieved by configuring the 
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compare values (CMPA and CMPB) of each of the PWM modules. Once the PWM 

counter reaches compare value CMPA the pulse initiates; and the pulse ends at the 

compare value of CMPB.  

 

 

Figure 48 Implementation of the pulse positioning and the control timing diagram of 
auxiliary switches S11, S22 and S33 

Figure 48 shows the implementation of the pulse placement for the new quasi 

resonant dc link. The driver signals for the auxiliary switches S11, S22 and S33 are 
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calculated according to the main switch commutation point and time durations are given 

in Figure 48.  

Figure 49 shows the commutation waveforms for the driver signals of auxiliary 

switches S11 (channel 1), S33 (channel 3), S22 (channel 4) and the voltage across the 

DC link capacitor Cr (channel 2). The experimental results show that ZVS is achieved 

for the switches S11 and S22.  

Figure 50 shows the current of inductor Lr and the driver signals of the switches 

S11 (channel2), S22 (channel1) and S33 (channel4). One can see that ZCS is achieved 

for the auxiliary switch S33 as the inductor current completely discharges prior to the 

next switching instance of the switch S33.  

 

Figure 49 Auxiliary switches driver signals and Voltage across Cr 
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Figure 50 Inductor current, driver signals of S11, S22 and S33 

Fig.7 shows the main switch driver signals S1 (channel 3) and S2 (channel 4), 

the current of the inductor Lr (channel 1) and the voltage across the link capacitor Cr 

(channel 2). The experimental results show that the voltage across Cr resonates and 

maintains at zero, which indicates that the zero voltage switching condition is created 

for the main switches. Therefore, the switching loss for the new quasi resonant DC link 

inverter is considerably reduced. The efficiency obtained with the soft-switching inverter 

is 2.5% higher than its hard switched counterpart. 
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Figure 51 Main switches driver signals and Voltage across Cr 

The experimental waveforms during the commutation period closely match the 

ones obtained by simulation. Since the PWM is easily employed, the output voltage is 

almost pure sinusoidal and has low THD as shown in Fig.8.  

The measured peak efficiency is 95.8%, which does not include the auxiliary 

power. Fig.9 shows the efficiency curve comparison for the proposed quasi resonant 

DC link and hard switched inverter using Mosfets 21N65M5 and for the proposed quasi 

resonant DC link with IGBT IRGI4061DPbF (The efficiency data is measured by power 

analyzer PZ4000). As a result, the proposed quasi resonant DC link inverter has a 

significantly better performance than its hard-switching counterpart as the turn- on and 
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turn- off switching loss are eliminated. There is still some gap between the experimental 

efficiency and the simulated efficiency. More work will be done to improve the efficiency.   

 

 

Figure 52 Output voltage waveform 

 

Figure 53 Efficiency curves 
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 CHAPTER SIX: CONCLUSION 

 
Since the introduction of the new inverter approach such as the micro inverter, 

there have been many major advances in technology in terms of semiconductor 

devices, power ICs, digital signal processors (DPS) and circuit topologies. A number of 

soft switching power conversion topologies have been discovered and implemented in 

today’s inverter technologies. In most soft switching techniques resonant components 

and auxiliary devices are employed to create either zero voltage or zero current across 

the device prior to the switching instance. An overview on the existing soft-switching 

inverter topologies for single phase grid tied inverter technology was provided and 

evaluated in this work. 

In this thesis, a new quasi resonant DC link is presented to realize zero-voltage 

switching and is applied to a single phase inverter, where the conventional PWM 

technique can be easily employed. Detailed operation is given to illustrate the operation 

principle of the proposed technique.   

In order to boost efficiency and increase power density an analytical model for 

calculating the conduction and switching losses was developed using the datasheet 

parameters of the commercially available semiconductor switches. A rough calculation 

of efficiency was completed and comparison between soft and hard switching inverter 

was presented.  
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Simulated and experimental results are presented to prove the feasibility of the 

proposed quasi resonant DC link. The new quasi resonant DC-link inverter shows a 

significant decrease of main switch losses as a result of soft switching capabilities.  
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