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ABSTRACT 

Recent research at the University of Central Florida addressing crashes on Interstate-4 in 

Orlando, Florida has led to the creation of new statistical models capable of calculating the crash 

risk on the freeway (Abdel-Aty et al., 2004; 2005, Pande and Abdel-Aty, 2006).  These models 

yield the rear-end and lane-change crash risk along the freeway in real-time by using static 

information at various locations along the freeway as well as real-time traffic data that is 

obtained from the roadway.  Because these models use the real-time traffic data, they are capable 

of calculating the respective crash risk values as the traffic flow changes along the freeway.  The 

purpose of this study is to examine the potential of two Intelligent Transportation System 

strategies for reducing the crash risk along the freeway by changing the traffic flow parameters. 

The two ITS measures that are examined in this research are route diversion and ramp 

metering.  Route diversion serves to change the traffic flow by keeping some vehicles from 

entering the freeway at one location and diverting them to another location where they may be 

more efficiently inserted into the freeway traffic stream.  Ramp metering alters the traffic flow 

by delaying vehicles at the freeway on-ramps and only allowing a certain number of vehicles to 

enter at a time.  The two strategies were tested by simulating a 36.25 mile section of the 

Interstate-4 network in the PARAMICS micro-simulation software.  Various implementations of 

route diversion and ramp metering were then tested to determine not only the effects of each 

strategy but also how to best apply them to an urban freeway. 

Route diversion was found to decrease the overall rear-end and lane-change crash risk 

along the network at free-flow conditions to low levels of congestion.  On average, the two crash 

risk measures were found to be reduced between the location where vehicles were diverted and 
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the location where they were reinserted back into the network.  However, a crash migration 

phenomenon was observed at higher levels of congestion as the crash risk would be greatly 

increased at the location where vehicles were reinserted back onto the network.  Ramp metering 

in the downtown area was found to be beneficial during heavy congestion.  Both coordinated and 

uncoordinated metering algorithms showed the potential to significantly decrease the crash risk 

at a network wide level.  When the network is loaded with 100 percent of the vehicles the 

uncoordinated strategy performed the best at reducing the rear-end and lane-change crash risk 

values.  The coordinated strategy was found to perform the best from a safety and operational 

perspective at moderate levels of congestion.  Ramp metering also showed the potential for crash 

migration so care must be taken when implementing this strategy to ensure that drivers at certain 

locations are not put at unnecessary risk.  When ramp metering is applied to the entire freeway 

network both the rear-end and lane-change crash risk is decreased further.  ALINEA is found to 

be the best network-wide strategy at the 100 percent loading case while a combination of Zone 

and ALINEA provides the best safety results at the 90 percent loading case. 

It should also be noted that both route diversion and ramp metering were found to 

increase the overall network travel time.  However, the best route diversion and ramp metering 

strategies were selected to ensure that the operational capabilities of the network were not 

sacrificed in order to increase the safety along the freeway.  This was done by setting the 

maximum allowable travel time increase at 5% for any of the ITS strategies considered. 
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CHAPTER 1.   INTRODUCTION 

Arguably one of the most influential factors in the growth of the United States is the 

success of its transportation facilities.  Without proper means to move goods and people across 

this vast land the productivity of this nation would be greatly reduced.  The formation of the 

National System of Interstate Highways (or the Interstate system as it is commonly known) in 

the 1950’s created an easy avenue of private transportation that can also be used to move goods 

and services across the nation.  This sophisticated network of highways is composed of more 

than 46,000 miles of freeways and contains well over 15,000 interchanges (FHWA, 2006).  

However, one of the risks of such a sophisticated transportation system is the loss of life that 

occurs as people use the freeways for everyday travel.  According to the Bureau of 

Transportation Statistics (2005) more than 42,000 died on roadways in the United States during 

2003.  While this number has been relatively constant for the past few years this enormous loss 

of life annually is an issue that is constantly being addressed by transportation engineers.   

Recently, at the University of Central Florida, research was conducted to examine crashes 

that occur on typical urban freeways such as the Interstate system.  This research developed 

statistical models that determined the risk of a crash occurring along Interstate-4 in Orlando, FL.  

These models used logistic regression to identify the crash potential for collisions (Abdel-Aty et 

al, 2004) along the freeway based real-time traffic conditions.  Using micro-simulation, several 

Intelligent Transportation Systems (ITS) strategies were tested on a simulated version of the 

freeway to determine the effect of those strategies on the real-time crash risk.  Abdel-Aty et al 

(2006) showed that implementing variable speed limits along the freeway is able to successfully 

reduce the real-time crash risk in situations at which the freeway is operating at high speeds.  
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Dhindsa (2005) explored the benefits of ramp metering and found it to beneficial when the 

freeway was operating in congested conditions.  Abdel-Aty and Dhindsa (2007) also examined 

the coordinated use of variable speed limits and ramp metering and found that combining the two 

methods reduces the number of ramps required to be metered to reduce the real-time crash risk 

along the freeway. 

The research conducted in this study expands on the previous research in many ways.  

First, this research uses newer crash prediction models developed by Pande and Abdel-Aty 

(2006).  These models use neural networks to calculate the risk of both rear-end and lane-change 

crashes individually.  They are more sophisticated than the logistic regression models used 

previously as they consider both real-time traffic data as well as off-line information regarding 

the time of day and location of ramps and curves.  The crash prevention strategies that are 

employed in this study are tested to see which of the crash risk types are reduced, if not both.  

Second, this research expands on the ITS measures that were implemented previously.  In this 

study, both ramp metering and route diversion (a type of ITS strategy that involves using 

Advanced Traveler Information Systems – ATIS – to give drivers real-time information about 

the roadway conditions so they can make better route choices) are considered.  This research 

expounds on the ramp metering strategies that were tested by Dhindsa (2005) by comparing 

uncoordinated and coordinated ramp metering strategies.  This research also compares the two 

different implementation methods of ramp metering – traffic-cycle realization and one-car-per-

cycle realization.  Additionally, this study uses the results from ramp metering in a localized area 

to make recommendations about metering ramps throughout the entire network to reduce the 

respective crash risk values for the entire network corridor. 
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Therefore, the objectives of this research are as follows: 

• Examine Route Diversion and Ramp Metering to determine their affect on both the 

rear-end crash and lane-change crash risk 

• Compare the uncoordinated ALINEA ramp metering strategy with the coordinated Zone 

ramp metering strategy to determine which reduces the crash risk measures with the 

greatest efficiency 

• Compare the two implementation methods for ramp metering (traffic-cycle and one-car-

per-cycle) for both the ALINEA and Zone metering algorithms to determine which 

combination most effectively reduces the two crash risk values across the network 

• Examine the negative impacts of both crash prevention plans on the operational 

capabilities of the Interstate-4 system 

• Make recommendations for both route diversion and ramp metering to be implemented 

along Interstate-4 
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CHAPTER 2.   LITERATURE REVIEW 

2.1  Traffic Simulation 

Traffic simulation is defined as the process of using a computer and various numerical 

techniques to model the behavior of vehicles on a transportation network.  The simulation model 

uses numerous mathematical models that are created by transportation engineers who have 

studied vehicular behavior and verified that the models give an accurate representation of how 

drivers and vehicles behave.  Individual models are created to govern specific behavioral 

properties of either a traffic stream or individual vehicles.  For example, a simple model that is 

used to govern the behavior of a traffic stream is the fundamental flow-density equation which 

states that the flow rate is equal to the average speed multiplied by the traffic density (Roess et 

all, 2003).  A typical model that governs the behavior of individual vehicles is a car following 

model.  This type of model relates the distance between two successive vehicles (gap) to 

parameters such as the average speed of each vehicle and the current distance between them.  

These mathematical models use no more information than is necessary (information proven 

significant in the field) to output information about the transportation system.  This allows the 

user to input the minimum amount of data in order to extract realistic results about the traffic 

network. 

The advantages of traffic simulation are numerous.  One of the main advantages to using 

a traffic simulation package is the ability to test multiple scenarios and alternatives and 

determine which one performs the best.  Although no simulation will be able to determine the 

exact effects of any traffic management strategy, the simulation will give researchers and 
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engineers a better idea of what to expect with the implementation of a certain alternative in the 

field.  By using simulation software, researchers will be able to determine the alternative that has 

the highest chance of providing the best results when multiple alternatives are considered.  This 

should allow them to implement the “best” alternative with confidence.  Without the simulation, 

engineers would be forced to use field tests to determine the outcome of a potential strategy.  

Field tests are extremely expensive compared to traffic simulations and require much more time 

and effort to implement.  Although traffic simulation packages are not cheap (they usually cost in 

the range of a couple thousand dollars) and require many hours to build and calibrate, this pales 

in comparison to the cost and time required to outfit an existing roadway.  Additionally, 

continuous field testing can instill a lack of confidence in the driving public and create confusion 

caused by a constantly changing environment.  This can lead to the drivers shying away from the 

area in question or, worse, a decrease in the safety at the particular area.   

Another advantage of traffic simulation is the ability to implement scenarios that simply 

cannot be field tested.  Such an example would be the effect of widening a lane of a freeway on 

the traffic flow or installing a traffic signal at an intersection that is currently stop-controlled.  

Another example would be to test the effect of a technology that is still in the developmental 

stages.  By using a traffic simulations researchers can gain some insight into the potential 

benefits and drawbacks of the new technology.  Additionally, traffic simulations can be used to 

predict the effects of future demand scenarios on the existing transportation network and can 

help engineers to determine the best course of action to improve the transportation infrastructure. 
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2.1.1  Types of Traffic Simulation Models 

There are many ways with which to classify traffic simulation models.  One method is to 

classify the models with respect to the level of detail that the simulation software represents the 

traffic network.  Using this criteria, there are three basic simulation types – macroscopic, 

mesoscopic, and microscopic.  Macroscopic models are also known as low fidelity models since 

they describe the traffic behavior with a low level of detail.  These models do not consider the 

movements of individual vehicles but rather focus on specific sections of the network and 

aggregate the traffic flow over each section.  The model would not consider events such as 

individual lane changes but would rather assume that the vehicles are spread out across all the 

lanes of a roadway in a predefined distribution.  Microscopic models, on the other hand, are high 

fidelity models in that they provide the highest level of detail.  These models describe the 

behavior of each vehicle as it moves through the network as well as the interactions between any 

vehicle and the other vehicles that it encounters.  Vehicles will adjust their speed, change lanes, 

and sometimes even change routes based on the speed and distance of nearby vehicles.  

Mesoscopic models are mixed fidelity models that describe the vehicles in the network at a 

higher level of detail than the macroscopic model but a lower level of detail than the microscopic 

model.  For example, while microscopic models would base lane changing maneuvers on the 

interaction of vehicles in the traffic stream, mesoscopic models would include lane changes but 

instead base them on lane densities or lane speeds (Lieberman and Rathi, 1997). 

In general, low fidelity models are easier to develop, execute, and maintain.  However, 

the primary drawback to using these models for real world situations is that they are often less 

accurate than other model types.  Higher fidelity models are by far the most accurate but they are 
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extremely difficult to develop since they involve many complex mathematical models that 

require a tremendous amount of information to accurately describe vehicular behavior.  

Additionally, they require a longer time investment to simulation a real life network and require 

a tremendous amount of computational power to run.  Lastly, these models require much more 

time to run than macroscopic models.  Whereas a macroscopic model can be run and the results 

reported inside of a few minutes, microscopic models could take hours or even days to get 

similar results.   

Selecting which level of complexity is needed in a traffic simulation model then becomes 

very important to the situation that is being described.  If a model is being built to determine 

flow rates on a freeway that does not have many weaving sections then a macroscopic model 

would probably be the best choice.  However, if this same freeway has multiple weaving sections 

and merging areas then it is possible that the vehicular interactions at these areas would be of 

high importance.  Additionally, if the number of lane changes that is performed in these sections 

is required as an output then a microscopic or mesoscopic model would be better suited to the 

task since the macroscopic model cannot give these results. 

Another classification of traffic simulation models addresses the processes that represent 

variation within the models.  The types of these models are either deterministic or stochastic.  In 

deterministic models all interactions are represented by exact relationships.  Stochastic models, 

on the other hand, include probability functions rather than exact functions to describe the 

vehicular relationships.  For example, in deterministic models if a mean headway is specified 

then each vehicle would maintain that specific headway as it moves through the network.  

However, in stochastic models the mean headway would be defined by the user but the 

individual vehicular headways would follow a predefined distribution with the specified 
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headway as the mean.  In this type of model, each vehicle would have a unique headway but the 

average of all vehicular headways throughout the network would be close to the specified mean 

headway value.    

In almost all traffic simulation models time is the basic independent variable.  How the 

simulation models time, however, is another method with which traffic simulation models can be 

categorized.  Continuous models describe how elements in the network change continuously 

over time.  Discrete models describe how elements change abruptly at specific instances in time.  

There are two different types of discrete models, discrete time and discrete event.  Discrete time 

models split the simulation period into a number of segments or time intervals.  The model 

updates the position, speed, and other information about each vehicle at the end of each time 

interval.  Between these updates the speed and position are interpolated by the model.  Discrete 

event models operate similarly but instead of segmenting the simulation period into equal time 

intervals, the model is segmented based on known events.  An example of such an event could be 

when a pre-timed traffic signal changes from the green phase to the amber phase, the amber 

phase to the red phase, etc.  While these models are more economical with respect to time they 

should only be used when a continuous change in the traffic flow is not expected.  For 

continuous changes, the discrete time model gives far more accurate results. 

2.1.2  Various Applications of Traffic Simulation Models 

Micro-simulation, which is used in this study, has been used by numerous other 

researchers to predict the behavior of traffic flow.  Using traffic simulation, Mahmassani and 

Jayakrishnan (1991) modeled route choice dynamics in the case of lane closures.  Their studied 

proved that providing in-vehicle information to drivers increased the ability of the network to 
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reach a steady state condition (as opposed to a congested condition).  It was also found that 

providing in-vehicle information to users reduced the time required for the network to achieve 

these steady state conditions.   

An example of traffic simulation used in the industry of transportation engineering and 

the design process is a study performed by Korve Engineers (1996).  As a part of this study the 

WATSIM program was used to model part of a 20 mile freeway corridor in California including 

SR 242, SR 4, and I-680.  Future traffic demands were predicted for the years 2000, 2010, and 

2020 and various alternatives were tested to determine their effect on the network.  These 

alternatives included geometric changes, widening of roadways, HOV lanes, and ramp metering.  

This example showed the superiority of micro-simulation in analyzing candidate designs of large 

scale systems over simpler methods such as a straight-forward Highway Capacity Manual 

analysis. 

Gardes et al (2002) used the PARAMICS micro-simulator to create a 19 mile network 

which simulated the I-680 freeway in San Francisco, California.  The purpose of this study was 

to model several corridor improvement strategies that were being considered by CALTRANS 

(the governing body over the California freeway system).  These improvements included ramp 

metering, auxiliary lanes, and HOV lanes.  The results of this study provided CALTRANS with 

valuable input as to which strategies provided the best results compared to the cost of 

implementation. 

Bertini et al (2002) used PARAMICS to model a diamond interchange at the intersection 

of I-5 and Wilsonville Road in Wilsonville, Oregon.  Once calibrated, the model was run at 

different loading conditions (50%, 75%, 100%, and 125%) to examine the traffic flow through 

the interchange.  Traffic flows, queue lengths, delays and travel times were collected and 
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compared with data observed in the field.  The study also compared the average vehicle delay 

obtained by PARAMICS with the average vehicular delays that were predicted using the HCM 

2000 methodology and found that they were relatively consistent.    

Chu et al (2004) used PARAMICS to evaluate the potential benefit of several Intelligent 

Transportation Systems strategies such as local and coordinated ramp metering.  A portion of the 

freeway network through Irvine, California was modeled and ITS techniques such as ramp 

metering, traveler information systems and their combinations were programmed into the 

simulation.  This study used various measures of effectiveness such as vehicle hours traveled 

(VHT), the standard deviation of travel time for a particular origin-destination pair, average 

mainline travel speed, total on-ramp delay, and average travel time through the length of an 

arterial.  The study found that while providing traffic information to motorists helps to relieve 

traffic congestion due to an incident the quickest, ramp metering fails to provide significant 

benefits unless paired with a traveler information strategy. 

2.1.3  Applications of Traffic Simulation for Safety 

Traffic simulation models have also been used to some extent in the field of traffic safety. 

While the safety of a freeway is not directly measurable by the simulator, researchers use 

surrogate measures of safety and examine how they change under different scenarios in order to 

indirectly measure how different traffic management strategies affect the safety of a roadway. 

 One such instance is the work of Drummond et al (2002) who performed a study to 

assess the feasibility of comparing the output of traffic simulation software to actual crash 

profiles to show whether there was a link between the number of crashes in a corridor and 

another parameter which is measurable in the simulation.  Using historical traffic data from two 
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sites in Virginia, the study found that there was an increasing relationship between delay per 

mainline vehicle and stops per mainline vehicle with traffic crashes along the corridors.  The 

researchers then used the Synchro Plus SimTraffic Software to model and make various changes 

to the traffic flow along the two traffic corridors.  By adding signals to the modeled corridors, the 

researchers were able to determine the effect of the increasing signal density on the two 

surrogate measures of safety and, indirectly, the crash rates.  This is one example of using 

historical data for a specific location to determine a relationship between traffic crashes and a 

measurable traffic parameter and then simulating the same location to test alternatives to 

alleviate the crashes. 

Park and Yadlapati (2003) used the VISSIM program to examine the potential of variable 

speed limits to increase the safety of work zone areas.  To capture the safety of the freeway, the 

researchers created an equation called the Minimum Safe Distance Equation which yields a value 

that shows whether or not vehicles are following at safe speeds through the work zone.  The idea 

behind this equation is that if vehicles are following at safe speeds there will be a large enough 

headway between consecutive vehicles to reduce the risk of a crash (particularly read-end 

crashes) within the work zone area.  The research found that implementing variable speed limit 

control strategies served to reduce the average speed variation through the work zone area which 

increased the safety considerably. 

Another study performed by Lee et al (2004, 2005) used PARAMICS to determine the 

safety benefits of variable speed limits and ramp metering.  Using historical loop data collected 

from a 10 km stretch of the Gardiner Expressway in Toronto, Canada, Lee et al (2003) developed 

a log-linear model that identified several real-time crash precursors.  This model allowed the 

crash risk along the freeway to be determined in real-time.  By simulating a portion of this 
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freeway and applying the model, they discovered that the individual application of variable speed 

limits and ramp metering successfully reduced the crash risk along the simulated freeway.  

However, this simulation was rather simplistic as it included only a small portion of the freeway 

(2.5 km) and did not use real traffic data to calibrate the simulation.   

Abdel-Aty (2005) expanded on this study by simulating a much longer stretch of 

roadway using real traffic flow data; approximately 9 miles of Interstate-4 in Orlando, Florida 

was coded into the PARAMICS program.  This study used a substantially more sophisticated 

crash prediction algorithm developed by Abdel-Aty et al (2004) with historical data taken from 

the same stretch of Interstate-4.  In building the model, Abdel-Aty et al argued that the accuracy 

of a real-time crash prediction model would be increased if the model considered information 

from both crash cases and matched non-crash cases with similar offline factors (location, time of 

day, etc).  Therefore, they created a matched case controlled logistic regression model that 

implicitly accounted for location and geometry of the freeway.  In this process two separate 

models were created to determine the crash risk separately for the low-speed (less than 37.5 

mph) and high speed (greater than 37.5 mph) flow regimes.  Using this risk measure as the basis 

for his study, Dilmore (2005) found that the application of variable speed limits along the 

freeway would successfully reduce the crash risk at a particular location during the high speed 

scenario.  During the low speed situations, variable speed limits did not have as great of an effect 

since speeds tended to be limited by congestion.   

A study by Abdel-Aty and Dhindsa (2007) expanded on this research considerably by 

examining the potential benefits of both ramp metering and variable speed limits.  Dhindsa used 

the same PARAMICS network and models as Dilmore (2005) but focused his efforts on 

strategies to improve the real-time crash risk during the low speed scenario.  Additionally, the 
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variable speed limit methodology adopted by Dhindsa was more realistic than the 

implementation plan used by Dilmore and Dhindsa also tried implementing ramp metering and 

variable speed limit simultaneously to gauge the potential benefits.  His study reached the 

conclusion that feedback ramp metering has significant potential to reduce the real-time crash 

risk during the low speed scenario.  He also found that using variable speed limits on a network 

wide level had a significant effect of reducing the crash potential on the freeway.  However, one 

of the main limitations in his work was that while the metering of successive ramps was 

attempted the metering strategy employed (ALINEA) was not a coordinated strategy.  While it 

was found to reduce the crash risk there is the possibility that a coordinated ramp metering 

strategy would be able to reduce the crash risk even further.  Additionally, Dhindsa only 

implemented ramp metering by treating the meters as traffic cycles.  However, many ramp 

meters that are used in the United States and Europe use the one-car-per-cycle method which 

allows only a single vehicle to enter the freeway at a time.  Lastly, Dhindsa found that when 

using the ALINEA strategy a higher critical occupancy value should be used for best safety 

benefits.  However, this result is contradictory of what is expected based on the metering 

equation and needs to be re-examined.   

2.1.4  Selecting a Traffic Simulation Software 

Since the objective of this project is to determine the effects of route diversion and ramp 

metering on the safety of an urban freeway a microscopic simulator is deemed the most pertinent 

choice of simulation software.  While the freeway corridor to be modeled is rather simplistic and 

could warrant a macroscopic model for operational studies, the purpose of the ramp metering and 

route diversion would be to reduce the negative effect of vehicles merging from the on-ramps to 
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disrupt the traffic stream.  Since merging behavior is directly related to vehicular interaction, it is 

decided that the best method to capture this phenomena and the effect on the traffic safety would 

be through the use of a microscopic simulation software.  Additionally, a stochastic software 

would be best used since this more accurately models the behavior of vehicles on the freeway 

and, additionally, a discrete time model should be used since there are no discrete events on the 

freeway that could be used to reduce the runtime of the simulation. 

A review of the literature shows that there are a myriad of transportation simulation 

packages that are available.  John Shaw and Do Nam (2002) worked extensively with the 

CORSIM 4.2 software but noted that there were some severe limitations.  One of the main 

drawbacks of CORSIM 4.2 was a maximum of 500 nodes allowed per network.  The purpose of 

their simulation was to model the metropolitan Milwaukee freeway system.  However, creating 

just a single, complex interchange required the use of 430 nodes which severely limited the rest 

of their model.  Additional problems with CORSIM included cumbersome network editing, older 

traffic algorithms (reflecting the fact that the original CORSIM code dated back to the 1970’s), 

and unrealistic simulation results.  They looked instead to two newer simulation packages, 

PARAMICS (PARAllel MICroscopic Simulation) and VISSIM.   A comparison of the three 

microscopic simulation software packages was performed and the results are summarized below 

in Table 2-1.  As shown, both PARAMICS and VISSIM were found to be far superior to the 

CORSIM package.   
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Table 2-1.  Comparison of CORSIM, PARAMICS, and VISSIM Packages (Shaw and Nam, 2002) 

Evaluation Criteria CORSIM PARAMICS VISSIM 
A. Model Capability 
1 Network Size Limit    

2 Network Representation    

3 Traffic Flow Representation    

4 Detail of Output    

5 Network Merge    

6 3-D Modeling    

7 Traffic Composition    

8 Animation    

B. Ease of Use 
9 Input Data Requirements    

10 Network Coding / Editing    

11 Input / Output Review    

C. FSOA Application Requirements 
12 VISTA (GIS) Interface    

13 Economic Analysis Interface    

14 Incident Management Analysis    

15 Actuated Signal Control Devices    

16 User-Defined Traffic Control & API    

17 Public Transportation    

D. Other 
18 Calibration Results    

19 Program Integrity    

20 Technical Support    

21 Documentation    

22 Record of Large-Scale Freeway Applications    

23 Software Cost per Copy    

FINAL RATING 
 4 17 9 

 4 4 10 
 15 2 4 

 

Boxill and Yu (2000) evaluated over 70 software packages to determine which were 

more suited to study Intelligent Transportation Systems (ITS) issues.  Of the 76 software 

packages examined, the top nine were determined which included CORSIM, VISSIM, and 
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PARAMICS.  Table 2-2 (below) shows a summary of the nine top software packages and 

evaluates their ability to model certain ITS features as well as other helpful properties. 

Table 2-2.  Comparison of Multiple Micro-simulation Packages for ITS Purposes (Boxill and Yu, 2000) 
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ITS Features Modeled   
Traffic devices  X           X X   
Traffic device functions X           X X   
Traffic calming          X X X X X 
Driver behavior  X     X X   X X   
Vehicle interaction X     X X   X X   
Congestion pricing            X   X   
Incident  X   X X X X X X X 
Queue spillback  X     X X X X X X 
Ramp metering  X     X X X X X X 
Coordinated traffic signals X X X X X X X X X 
Adaptive traffic signals X X X X X X X X X 
Interface w/other ITS algorithms X                 
Network conditions    X       X   X   
Network flow pattern predictions         X X X X X 
Route guidance                    
Integrated simulation X X   X X X X X X 
Other Properties   
Runs on a PC  X X   X X X X X X 
Graphical Network Builder X X     X X     X 
Graphical Presentation of Results X X   X X X X X X 
Well Documented  X X X X X X X X X 
 

As shown above, PARAMICS and AIMSUN 2 appear to be the best software packages 

with respect to ITS features modeled as well as other properties.  Although none of the software 

packages appear to be able to implement route guidance, PARAMICS features an Application 

Programmer Interface (API) that allows to user to edit select built-in functions within the 
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PARAMICS code that can be used to control the behavior of the vehicles.  By creating an API 

one can change the route of a vehicle along the network while the simulation is running which 

effectively mimics the implementation of route guidance.  Therefore, based on the studies 

performed by Shaw and Nam (2002) and Boxill and Yu (2000), as well as the numerous studies 

that have used PARAMICS in the past and have shown its reliability on freeways and urban 

roads, the PARAMICS software package was selected for use in this study. 

2.2  Route Diversion 

Most regional planning processes include a network assignment stage where vehicles are 

placed on a traffic network.  Usually the most important factor concerning the network 

assignment is the travel time.  Using the travel times of various links, planners are able to 

determine the optimal distribution of vehicles through a traffic network.  However, this 

distribution is made under the assumption that the travel times are known to the users of the 

traffic network.  In fact, this is rarely the case as the travel time is continually changing due to 

congestion, incidents, and events that cannot be fully predicted.  Therefore, the actual assignment 

of vehicles onto a real traffic network is usually less than ideal.  One method that has been 

proposed to alleviate this problem is to provide drivers with real-time information regarding the 

status of the network.  Providing this information through Advanced Traveler Information 

Systems (ATIS) will allow users to make more informed decisions about mode and route choice 

which should help the traffic network achieve a state of equilibrium. 

As summarized by Hall (1983), “For any given quantity of passive information there 

exists an ideal travel time and an actual travel time.  The ideal travel time is the travel time for a 

traveler who chooses the best possible route using the given information, the actual travel time is 
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the travel time for actual travelers using the given information.”  Therefore, it can be seen that 

the purpose of ATIS is to reduce the gap between ideal travel times and actual travel times.   

Abdel-Aty et al (1993) performed a literature review noting several important studies that 

were performed to assess the effect of ATIS on route choice.  These studies showed, in general, 

that the impact of ATIS on driving behavior and route choice was significant.  However, it was 

not clear what factors prompted drivers to change their route when not given travel information.  

This needs to be fully understood if researchers hope to gauge the true benefits of providing 

users with advanced travel information.  Abdel-Aty noted that the effect of ATIS on an actual 

traffic network was not significant and this was mainly due to the lack of market penetration of 

ATIS at the time of his investigation.  A later study performed by Abdel-Aty and Abdalla (2004) 

showed that as the level of information provided to the driver increases, the average travel time 

decreases.  This clearly shows the effectiveness of ATIS and route diversion on travel time.    

In the past few years, however, drivers have been receiving increasingly more 

information about the state of the traffic network than ever before.  News stations provide traffic 

updates throughout the day that inform viewers of increasing congestion, incidents, and gives 

suggested alternative routes based on these situations.  Radio programs offer the same advice but 

this is mostly heard in the car by users who have already embarked on their trip.  The installation 

of navigation systems in vehicles, which were first used to give general directions, help to show 

drivers potential problems and can offer alternate routes as well.  In Florida, a telephone service 

has been implemented that drivers can call and receive updated information about travel time and 

traffic incidents (511 Traveler Information Telephone Services).  This information is also 

available on the internet (www.fl511.com).  Systems such as these allow drivers to make more 
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informed decisions about their departure time and route choice in order to reach their destination 

as quickly as possible. 

2.2.1  Studies on Benefits of Route Diversion 

Recent advances in traffic simulation have also allowed researchers the opportunity to 

model some of the effects of ATIS on a traffic network.  Yang and Koutsopoulos (1996) used the 

MITSIM program to model a segment of the A10 beltway in Amsterdam.  Non-recurrent 

congestion was simulated by a 20 minute incident and the effect of ATIS on drivers was 

modeled.  When 30% of the vehicles were given updated real-time traffic information, the 

average travel time in the network fell 2-4%.  For drivers who had alternate routes available, this 

resulted in an 18% savings in travel time. 

Chu et al (2004) performed a study in which various ITS strategies were employed to 

reduce incident related congestion in Irvine, California.  The results showed that the most 

effective way to reduce incident based congestion was to provide real-time information to the 

users.  When drivers were given information about the incident, they diverted their routes so that 

they would experience shorter travel times.  This helped the network reach a state of equilibrium 

much faster than if the drivers traveled under the assumption that there was no incident.   

Shah et al (2003) performed a study in the Washington, D. C. area comparing simulated 

travel times of network users.  Paired travelers were created: one using ATIS technologies and 

one using a habitual route and departure time.  The results showed that using ATIS significantly 

reduced the number of early and late arrivals of a trip.  In some cases this involved users altering 

their departure time but it also involved drivers using an alternate route if their habitual route 

would cause significant delay that would reduce the chances of arriving on time.  The study 
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found that the addition of ATIS also reduced trip disutility by 15%; however, no significant 

change in the overall travel time was found.   

Work done by Oh and Jayakrishnan (2002) examined a system in which private ATIS 

companies could give real-time information to users currently in route.  In this system, the 

companies would collect information from users with in-vehicle navigation systems equipped 

(IVNS) while also providing them with real-time traffic information.  As a part of the study, the 

researchers also created two simulation networks to examine the ability of the IVNS to 

accurately describe the real-time traffic situation of the network.  The two networks created were 

a simple traffic corridor and a model of the highway infrastructure in Anaheim, California.  The 

simulation showed that users who were guided by ATIS information had a reduced travel time 

compared to non-ATIS users.  However, the gap in travel time between guided and unguided 

vehicles decreased with the increase in market share of the IVNS.  This is probably due to the 

fact that more vehicles having IVNS would mean fewer vehicles without.  Additionally, the 

average travel time for all vehicles decreased significantly as the market penetration of the IVNS 

increased.  This, once again, showed that route diversion based on information given by ATIS 

has a positive effect on the overall travel time of the network.  However, while there have been 

many studies performed to describe the effectiveness of route diversion on the operational 

characteristics of a traffic network no studies have been found relating route diversion to 

improved safety conditions. 

2.3  Ramp Metering 

Ramp metering is becoming an increasingly popular method of relieving congestion on 

freeways.  The idea behind ramp metering is to limit the number of vehicles that enter the 
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freeway to reduce the turbulence caused at on-ramps when slow moving vehicles try to enter the 

faster moving traffic stream.  Ramp meters are basically traffic signals placed on the ramp that 

control when and how many vehicles enter the freeway.  The earliest recorded use of ramp 

metering was on I-290 in Chicago, Illinois in 1963.  This was rather simplistic, however, in that a 

police office directed traffic onto the freeway one vehicle at a time.  However, the current use of 

ramp metering has expanded throughout the United States and the rest of the world and now 

involves complex algorithms that use traffic data taken from the freeway to determine how many 

vehicles are allowed to enter the freeway.  Extensive use of ramp metering can currently be seen 

in the United States in Minnesota, California, New York and Washington State as well as across 

the world in Amsterdam, Paris, and Glasgow.   

Originally, the signals that controlled ramp metering were pre-timed signals which 

allowed vehicles into the freeway at a controlled, but constant, rate.  Now, however, actuated 

signals are used that take into account the conditions on the mainline when determining how 

much green time to allot to the meter.  These strategies have two distinct types: local and 

coordinated.  Local ramp metering takes into account the traffic conditions only near the ramp 

that is being metered.  When using this type of strategy the metering rate of a particular ramp is 

independent of the rate at another ramp.  Coordinated ramp metering, on the other hand, requires 

that the metering rate of a particular ramp to be based on traffic data from various locations 

within the corridor.  This effectively allows the metering rate of each ramp in the corridor to be 

related to each other so that traffic conditions at one location could affect the metering rate of a 

ramp located miles away. 
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2.3.1  Ramp Metering Algorithms 

There are many different methods that are used to determine the metering rate of the on-

ramps.  The demand capacity algorithm, proposed by Masher et al (1975) works by measuring 

the occupancy downstream from the location where the on-ramp merges onto the freeway.  If 

this occupancy value exceeds a predetermined critical occupancy value related to congested 

conditions then the metering rate is set to a minimum value.  In this algorithm it is undesirable to 

have occupancies greater than the critical occupancy since this will lead to congested conditions.  

If the measured occupancy is equal to less than the critical occupancy then the metering rate is 

set to a value that is equal to the difference between the downstream capacity and upstream 

volume.  This is summarized below in Equation 1. 
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Please note that in this equation R represents the metering rate,  the minimum rate, 

the measured occupancy,  the critical occupancy,  the flow rate at capacity, and  the 

upstream flow rate.   
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The percent occupancy algorithm suggested by Koble et al (1980) uses occupancy 

measurements upstream of the on-ramp entrance area to measure levels of congestion.  In this 

strategy the critical occupancy is determined from historical data (Hadj-Salem et al, 1988).  

Equation 2 below describes the logic of this algorithm. 
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Where  is the metering rate for time interval k,   is the flow at capacity,  is the 

slope of a straight line approximation of the un-congested flow portion of fundamental traffic 

flow diagram, and  is occupancy of the upstream detector.   
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These two algorithms are known as feed-forward algorithms since the metering rate at a 

particular time interval is independent of the rate at any previous interval.  This is the major flaw 

in these methods as there is too much variation in successive metering rates during the 

application of these algorithms.  Papageorgiou et al (1991) solved this by developed a feed-back 

algorithm that considers previous metering rates when determining the current metering rate.  

This method, known as ALINEA, is one of the most common ramp metering algorithms used 

and is based on the Proportional Integral (PI) feed-back control law.  The metering rate, R[t], is 

also a function of the difference between the measured occupancy O [t] downstream of the ramp 

at time t and a target set critical occupancy, Oc.  KR is a regulator parameter and tδ  is the length 

of interval at which each re-evaluation of the algorithm is done.  The equation for ALINEA 

algorithm is given in Equation 3. 

 

])[(][][ tOOKtRtR cRt −+−= δ  (3) 

 

The ALINEA algorithm has been modified to improve its accuracy in different situations.  

MALINEA proposed by Oh and Sisiopiku (2001) is modified to take into account the occupancy 

both upstream and downstream of the on-ramp.  FL-ALINEA proposed by Smaragdis and 
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Papageorgiou (2003) expands the application of ALINEA to use flow measurements from 

downstream detectors rather than occupancy measurements.  UP-ALINEA (Smaragdis and 

Papageorgiou, 2003) uses occupancy measurement upstream of the on-ramp and estimates the 

downstream occupancy.  This method shows good results in areas that previously used the 

demand capacity algorithm or the percent occupancy method.  Lastly, X-ALINEA/Q (Smaragdis 

and Parageorgiou, 2003) modifies ALINEA to add queue control.  This method accounts for 

queues building into the on-ramp and increases the release rate to reduce the amount of 

congestion on the on-ramp that spills over into surrounding surface streets.  Excluding 

X-ALINEA/Q, these variations of ALINEA are all less efficient than the traditional ALINEA 

method but allow for use of the ALINEA method when certain detector information is missing.  

The ALINEA method has also been modified for coordinated ramp metering use.  The algorithm, 

termed METALINE, was assessed by Papageorgiou et al (1997) and it was determined that 

ALINEA was not inferior to METALINE.  Since ALINEA is much simpler to implement than 

the complex METALINE algorithm, ALINEA is preferred for use. 

Another popular ramp metering algorithm is the ZONE ramp metering algorithm.  In this 

method, which is a coordinated algorithm, the freeway is broken up into small sections 3 to 6 

miles long (called zones) and all ramps within each zone are examined together (Stepanedes, 

1993).  Typically, the upstream area of each zone is a free flow area and the downstream area is 

a bottleneck section but this does not have to be the case.  The objective of this method is to 

balance the volume of traffic entering the zone with the traffic leaving the zone.   Stephanedes 

(1994) tested this strategy on a ring road in Minneapolis, Minnesota and found that it yielded a 

31% reduction in travel time.  Detailed information on the implementation of the Zone algorithm 

is provided in Section 3.6.2.1. 
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Note that there are two ways to implement any ramp metering method in the field 

(Papageorgiou and Kotsialos, 2002).  The first, termed one-car-per-green realization, allows only 

one car to enter the freeway per metered traffic cycle.  Therefore, the green time is fixed at a 

small value (between 1.3 and 2.0 seconds) to allow for a single vehicle to enter.  The metering 

rate that is determined using the algorithms mentioned above is then enacted by altering the 

cycle length.  A longer cycle length would be more restrictive while a shorter cycle length would 

allow more vehicles to enter the freeway.  The second method is called the traffic-cycle 

realization.  In this method the cycle length is held constant and the green time is altered.  When 

this method is implemented more than one vehicle will be allowed to enter the traffic stream at a 

time, permitting that there is enough green time on the cycle to allow this.   

2.3.2  Studies on the Benefits of Ramp Metering 

There have been several field studies performed to assess the benefits of ramp metering.  

A study performed by Cambridge Systematics (2001) on the Zone ramp metering strategy in 

Minnesota determined that ramp metering saves the city over $40 million annually and increases 

average mainline freeway speeds from 46 mph to 53 mph.  This is also noted with a reduction in 

the number of traffic crashes. 

Papageorgiou et al (1997) also tested the benefits of ALINEA on the Boulevard 

Peripherique in Paris, France, as well as the A10 Motorway in Amsterdam, Netherlands.  The 

study showed that ALINEA provided superior results and helped to reduce travel and congestion 

along the roadway.  The study also proclaimed that ALINEA distinguished itself from other local 

ramp metering strategies due to its simplicity, transferability, low implementation costs, 

efficiency, and flexibility. 
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Due to public opposition to ramp metering, the Minnesota legislature passed a law in 

2000 requiring ramp metering (which used the Zone algorithm) to be turned off for 8 weeks.  In 

those eight weeks, congestion and the number of traffic crashes were shown to increase 

significantly.  Additionally, the travel patterns of drivers changed based on the increased 

congestion.  However, the study also showed that ramp metering increases travel time for shorter 

trips while decreasing travel time for longer trips (Levinson et al., 2002).   

Zhang et al (2001) as part of the PATH program at the University of California used 

PARAMICS to compare four typical metering algorithms: ALINEA, Bottleneck, Zone, and 

SWARM.  The results showed that all of the algorithms serve to improve the traffic flow.  

Additionally, none of the algorithms significantly distinguished itself in terms of operational 

benefits.  Hasan et al (2002) used MITSIMLab to study ramp metering on the Big Dig network 

in Boston, Massachusetts.  The study compared the local strategy ALINEA with the coordinated 

strategy FLOW.  The results showed that although ramp metering almost always improved the 

mainline flow, the overall system performance was reduced when ramp metering was 

implemented at lower demand levels.  Coordination was found to be very effective at higher 

demand levels and at locations with bottlenecks while the addition of queue control always 

served to improve the system performance. 

 Therefore, ramp metering has been shown to have tremendous operational benefits.  

Additionally, in Minnesota it was proved that removing ramp metering decreased traffic crashes 

by 26 percent (Cambridge Systematics, 2001).  However this is not a real-time benefit of ramp 

metering but rather a benefit aggregated after some time.  Lee et al (2006) used PARAMICS to 

show the real-time benefit of ramp metering on the crash potential on a freeway.  However, this 

study considered a very small network with only a single ramp.  Dhindsa (2005) expanded on 
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this research to include up to 7 ramps and showed that ramp metering provided good real-time 

safety benefits in congested conditions.  However, in this study only local ramp metering was 

considered using the ALINEA strategy.  It is likely that the use of a coordinated ramp metering 

strategy such as the Zone algorithm would reduce the crash risk even further during specific 

traffic conditions.  Also, Dhindsa’s study only focused on the traffic-cycle realization of ramp 

metering and did not consider the possibility of using the one-car-per-cycle method. 

After a review of the literature it is clear that both route diversion and ramp metering 

have the ability to greatly improve the operational capability of a given traffic network.  What is 

less known, however, is the real-time effects on the safety of the network.  While some 

preliminary work has been performed with ramp metering, it is not comprehensive enough to 

make a formal decision about the potential of ramp metering to be a real-time crash prevention 

device.  PARAMICS has been found to be a tool that can be accurately used to assess the effects 

of both route diversion and ramp metering on the safety of a typical urban freeway.  
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CHAPTER 3.   METHODOLOGY 

3.1  PARAMICS Micro-simulator 

As mentioned in Section 2.1.4, the software chosen to model the network used in this 

study is the PARAMICS program.  PARAMICS (short for PARAllel MICroscopic Simulation) 

is a suite of traffic simulation software tools developed by Quadstone Limited (2002).  The 

PARAMICS project suite consists of the Modeler, Processor, and Analyser.  The Modeler is the 

main tool that provides a visual representation of the road network through a graphical user 

interface (GUI).  It is in this program that the user will code the network by entering information 

about the network geometry and travel data.  Because the program has to simulate the 

movements of each vehicle and update the visualization on the screen, the speed of the Modeler 

is directly related to the size of the network and processing power available on the computer.  

Once a network is coded in the Modeler, the Processor module can be used to simulate runs 

without the visualization option.  This allows the simulation to run much faster than in the 

Modeler and is the most used method once the network has been coded.  The Analyser module 

(not used in this study) allows the user to take runs that have already been completed and 

compare the simulation results through a GUI.   

3.2  Study Area 

The study area for this work was a portion of Interstate-4 that runs through Orlando, 

Florida.  Interstate-4 generally runs in an east-west direction from Daytona Beach, Florida to 

Tampa, Florida, bisecting Orlando, Florida along the way.  The specific area that was modeled 

for this study was the 36.25 mile segment that runs through the downtown Orlando metropolitan 

28 



area.  Although the movements along I-4 are described as east-west, this segment actually runs 

north-south through the heart of the downtown area starting at S.R. 192 in the southwest and 

ending just north of Lake Mary Blvd in the northeast.  Figure 3-1 (below) shows a map of 

Orlando with the Study Area highlighted.  In Figure 3-1, the downtown area is outlined with a 

dotted line.  This is the area that will be mostly affected by route diversion and ramp metering. 

 
Figure 3-1.  Map of Orlando Showing I-4 (Study Area) 

 

For the majority of its length through downtown, I-4 is a 6-lane freeway (although in 

some areas the freeway is either 4 or 8-lanes wide) with 12-ft lanes and speed limits varying 

between 50 mph and 65 mph.  The speed limit throughout the downtown area, the heart of the 
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network, is the lowest (50 mph) while the speed limit generally increases with the distance from 

downtown.  The composite AADT as defined by the Florida Department of Transportation to 

give an estimate of the amount of traffic that exists on I-4 through the Orlando region is 

approximately 183,000 vehicles/day (FDOT, 2003).  This composite AADT value is an average 

AADT from different locations along I-4 through Orlando. 

3.3  Network Building 

The following sections describe in detail the process that was completed to code the I-4 network 

into PARAMICS.  The steps involved, in order, were:  

• Overlay Generation 

• Coding of Nodes and Links 

• Coding of Zones and Vehicular Demand 

• Coding of Loop Detectors 

• Network Calibration 

• Creation of Origin-Destination Matrix 

• Network Validation 

• Implementation of Route Diversion 

• Implementation of Ramp Metering 

 

3.3.1  Overlay Generation 

In order to accurately code the freeway geometry an overlay of the roadway was needed.  

A previous network created by Dilmore (2005), which studied a smaller section of the same 
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freeway corridor, used a combination of aerial photography obtained from the Seminole County 

Property Appraiser’s Office and the Orange County Property Appraiser’s Office as the base for 

the overlay.  This aerial photograph was also combined with AutoCad drawings obtained from 

the Orange County Transportation GIS department (Dilmore, 2005).  A sample of this hybrid 

overlay is shown below in Figure 3-2. 

 

 
Figure 3-2.  Sample of Hybrid Overlay Used by Dilmore (2005) 

 

While this process was sufficient for the study area used by Dilmore (2005) the study 

area for the present research was significantly larger (36 miles compared to just 20 miles).  

Therefore, the remaining geometry was obtained from aerial imagery obtained from the Google 

Earth Aerial Mapping program.  This program allows users to have free access to aerial images 
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of several heavily populated areas throughout the world.  The aerial images in the Google Earth 

program available for Orlando, Florida were taken during April 2002.   

Obtaining a single aerial for the entire study area was not practical as it did not have a 

sufficient resolution to see detailed portions of the roadway.  Therefore, individual pieces of the 

aerial were obtained from the Google Earth program and then assembled into one master file 

using the Adobe Photoshop program.  Great care was taken when extracting the aerials from 

Google Earth to ensure that the graphical scales of all individual pieces were the same.  Once the 

entire network was captured using individual aerials, they were overlaid against the low 

resolution image to ensure that there were no errors with the individual components that were 

used and that the roadway alignment was correct.   

Since PARAMICS only accepts *.dxf and *.bmp files as overlays, the master aerial was 

then saved as a *.bmp file for import into the simulation program.  However, this file was too 

large to be imported directly (greater than 100 MB) so the master overlay had to be split into 

seven distinct segments to be imported into PARAMICS.  A sample of one of the 7 segments is 

given below in Figure 3-3.  Please note in Figure 3-3 the two sample grids that were drawn next 

to the aerial.  Each box in the grid represented a 500 ft x 500 ft square and was used in the 

scaling of the aerial in PARAMICS. 
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Figure 3-3.  One of Seven Distinct Sections of Aerial Used in Network Construction 
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Once each segment was imported, it was scaled individually (using the grid boxes seen in 

Figure 3-3) and then reassembled in the PARAMICS program to form the master aerial.  This 

was then checked once again with a single, low-resolution image to ensure that there were no 

scaling errors.  Once this was completed, the next step was to draw the roadway network. 

3.3.2  Two One-Way Roads vs. One Two-Way Road 

It was decided at this stage to code the eastbound and westbound directions separately as 

two different one-way roads rather than a single, two-way roadway.  This choice was made for a 

few different reasons.  First, and more simply, the two directions had different speed limits and 

geometries that could only be properly modeled if the two directions were coded independently 

of one another.   

The second reason requires a more intimate knowledge of how a network is coded in 

PARAMICS and how vehicles behave in the network.  A PARAMICS network is a series of 

“links” or segments of roadway that have homogenous properties (number of lanes, speed limits, 

etc).  Each link is defined at the extremities by two “nodes.”  These nodes designate the starting 

and ending point of a link.  Therefore, changes in the roadway geometry, such as a lane addition 

or drop, is defined by a node which separates the two links with different properties.  When a 

link merges with another link, such as a ramp entrance point, another node must be created to 

define this point.  Vehicles in PARAMICS are only capable of making lane changing and routing 

decisions for the next two links it will encounter.  If one two-way roadway is used to define the 

freeway, this will essentially double the number of links that will be used in either direction of 

freeway; the network will also have to include many extremely short links to properly place the 

entrance ramps.  Additionally, each on-ramp is given a value for the awareness distance.  This 
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awareness distance defines how far upstream of the ramp vehicles on the mainline recognize the 

existence of the ramp and merge left in order to allow vehicles on the ramp to merge into the 

traffic stream.  The maximum value for the awareness distance of any ramp cannot be greater 

than the length of the nearest link.  Therefore, having a single roadway with many shorter links 

would result in improper vehicular behavior at the on-ramps as there will not be sufficient gaps 

for vehicles to merge onto the freeway.  Separating the two directions of traffic would reduce the 

number of short links since each direction would only have to split links for its own on-ramps or 

off-ramps.  Lastly, when a single roadway is used the default PARAMICS options would allow 

vehicles traveling in the eastbound direction to exit using off-ramps in the westbound direction 

and vice versa.  Clearly this does not occur in the field as vehicles can only use off-ramps for the 

particular direction of the freeway that they are using.  Although this could be turned off 

manually by editing the junction properties, this would have to be set for every single on-ramp 

and off-ramp which is a very tedious process.  Using two one-way roadways will counter this 

problem without any extra coding effort.  

The only drawback to using two one-way roads to code the freeway is that it neglects the 

presence of “rubber-necking” or the reduction in capacity on one direction of the freeway due to 

situations that occur on the other direction.  The rubber-necking phenomenon is especially 

important when incidents occur on the network as it has been proven to reduce the capacity of 

the freeway by as much as 12.7% (Masinick and Teng, 2004).   However, for this study this 

effect was assumed to be negligible since no incident occurred during the simulation. 
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3.3.3  Building Network Nodes and Links 

Once it was determined to code both directions of the freeway separately, the nodes that 

defined the links for each direction were coded into the simulation.  A new node was created at 

every location where the roadway changed geometry (curved section to straight section), number 

of lanes, speed limits, or a ramp entered the mainline.  These different nodes were then 

connected with links which represented the roadway that the simulated vehicles would use.  Each 

roadway link was assigned to a category that contained information about the number of lanes 

and speed limit on the link.  The information from the number of lanes and curvature of each link 

was obtained visually from the Google Earth aerial maps.  The speed limit for each link was 

determined from the placement of speed limit signs that were found from watching a video 

stream of I-4 obtained from the Roadway Characteristics Information (RCI) obtained from the 

Mainframe Database operated by the Florida Department of Transportation (FDOT).  Once the 

links were created, the next step was to adjust the kerb points in the links to match the real 

roadway geometry.  Kerb points are locations on each link that define the shape of the link more 

specifically than simply using the nodes and curvature tools.  Adjusting the kerb points is 

essential to ensure that the simulated vehicles move freely between links without interruption. 

3.3.4  Creating Ramps 

Another decision that had to be made was the coding of the individual ramps.  

PARAMICS includes a special function to code an on-ramp and another to code the deceleration 

lane that typically precedes an off-ramp.  However, these two functions can only be used in 

specific cases which do not represent the gamut of ramp types found on I-4.  Therefore, most of 

the ramps in the network that could use the on-ramp or slip lane function were coded using these 
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functions while the rest were coded as a regular merge or diverge area.  Figure 3-4 shows a brief 

summary of when the PARAMICS on-ramp or slip lane functions were used and when the merge 

/ diverge areas were chosen. 

 

 
Figure 3-4.  Types of Ramps Encountered and How They Were Coded in PARAMICS 
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There was one major problem that was noted concerning vehicular behavior on 

PARAMICS defined on-ramps.  The problem was that vehicles were not merging onto the 

mainline freeway with regularity causing the ramp to back-up and not allowing any vehicles on 

the network.  This was alleviated by adjusting the signpost distance for the ramp.  Increasing the 

signpost distance for the ramp increased the awareness of the mainline vehicles to the ramp and 

caused the mainline vehicles to change lanes to give vehicles on the on-ramps sufficient gaps to 

merge onto the mainline freeway.  Once the signposting distance was adjusted, merging behavior 

using the ramp function behaved as would be expected in the field. 

3.3.5  Adding Zones and Vehicles 

Once the geometry was completed, the zones that defined the origins and destinations of 

the network were created.  For the freeway portion, defining the origins and destinations were 

rather simple as each on-ramp represented an origin and each off-ramp represented a destination.  

Once finished, vehicles were loaded artificially onto the network to test the vehicular behavior.  

It was noted in many places, particularly merge and diverge areas where the number of lanes 

changed at the end of one link and the beginning of another, that vehicles were changing lanes 

improperly (for example, a vehicle changing from the right-most lane directly to the left-most 

lane while crossing over other simulated vehicles in the process).  This problem was fixed by 

adjusting the nextlanes function which defined which lanes were available for vehicles traveling 

from one link to the next on a specific lane.  
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3.3.6  Loop Detectors 

One of the reasons that this section of freeway was chosen was because the specific 

section of I-4 that is used in this study contained induction loop detectors embedded in the 

asphalt.  These loop detectors were spaced approximately every 0.5 miles apart on the roadway 

and gave values of the average speed, volume, and lane occupancy at 30-second intervals for the 

mainline freeway lanes.  Therefore, in order to make sure the data obtained from the 

PARAMICS network matched the real-life data obtained in the field, the detectors had to be 

placed in the same locations.  The detector mileposts were obtained from the FDOT Roadway 

Characteristics Information (RCI) database and placed in the appropriate positions along the 

network.  After every simulation run, during the post-processing stage, the loop data was 

extracted from the PARAMICS data files and stored in the same format as the loop data obtained 

from the real I-4 roadway.  

As previously mentioned, throughout the majority of the study section Interstate-4 is a 6-

lane freeway.  However, at some sections the roadway was widened to eight lanes.  In these 

locations loop detectors exist in each lane but only information from three lanes is archived.  

These three lanes are considered to be the three “mainline” lanes.  In most instances, these 

mainline lanes are the left-most lanes since vehicles typically enter and exit from ramps on the 

right-hand side of the freeway.  However, on Interstate-4 there are a few locations where left-

hand ramps are present.  For these locations, the three mainline lanes are considered to be the 

right-hand most lanes.  In order to simplify the network creation procedure, loop detectors in the 

network were built over all lanes and the mainline lane issue was resolved in the post-processing 

procedure.  As will be explained, the post-processing procedure involved converting the 
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PARAMICS output to the loop detector data format that is archived.  In this process, only the 

mainline information will be converted to ensure that the data obtained by loop detectors in the 

network is equivalent to that found in the field. 

3.4  Network Calibration and Validation 

Typically, the most tedious process in creating any micro-simulation network is the 

Calibration and Validation.  The calibration procedure involves changing pre-specified model 

parameters that affect driving behavior of the simulated vehicles to match the driving behavior of 

drivers in the real network.  Although the default values have been shown to approximate decent 

driving behavior, tweaking the parameters would more accurately represent driving behavior for 

the particular study area.  A review of the literature shows that the values of these parameters are 

found by comparing the flow and travel time along the network (Bertini et al, 2002; Abdullhai et 

al, 2002; Trapp, 2002, and Stewart, 2001).  The calibration parameters that are typically changed 

are mean headway and driver reaction time (Gardes et al, 2002; Abdulhai et al, 2002; Lee et al, 

2004). 

3.4.1  Previous Calibration Procedure 

In a previous study performed by Dhindsa (2005), a 20 mile segment of I-4 (contained 

within the 36 mile corridor modeled in this study) was created in PARAMICS and used to test 

various ITS strategies (locally coordinated ramp metering and variable speed limits).  An 

exhaustive calibration procedure was carried out to determine the values of four calibration 

parameters: mean driver reaction time, mean driver headway, queuing distance, and queue speed.  

The mean driver reaction time refers to the time vehicles take to react to events around them 
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such as the merging of a vehicle into its lane or the deceleration of a vehicle that it was 

following.  The mean driver headway refers to the average time gap that vehicles try to maintain 

while moving through the freeway.  The queue speed is the maximum speed with which queuing 

behavior occurs.  Vehicles traveling below this speed will behave using the built-in PARAMICS 

queue behavior.  Queuing distance is the minimum distance between two vehicles that causes 

queuing behavior to end.  Once this distance is achieved between successive vehicles in a queue, 

the queuing behavior of that vehicle will end.  This calibration procedure used 5-min vehicular 

flows as well as 5-min vehicular speeds as factors used to calibrate the network.  Although the 

use of flows has been seen in previous studies, this was the first use of flows at such short time 

intervals (5-min) as well as the use of 5-min speeds.   

Since the study area in the network used by Dhindsa is incorporated in the 36.25 mile 

network created for this study, and also because his calibration procedure is so comprehensive, 

the calibration parameters determined by Dhindsa to represent traffic behavior is used in this 

study.  It is unlikely that the addition of just over 16 miles of the network would change the 

driver behavior significantly to alter the values of the calibration parameters that are needed to be 

used.  The following sections will give a brief overview of some of the steps taken during the 

previous calibration procedure.  For more information, please refer to Dhindsa (2005).   

3.4.1.1  Calibration of O-D Matrix 

In order to estimate the OD Matrix that would used to define vehicular demand on the 

network, the study by Dhindsa used traffic data obtained from the 2003 Florida Traffic 

Information (FTI) CD.  Hourly ramp volumes were also available from the Center of Advanced 

Transportation Systems Simulation at the University of Central Florida. 
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Since the basic freeway segment contained two one-way roads, there were some simple 

rules that were used in the OD matrix estimation.  First, all rows that held the origin data for 

zones on off-ramps were given a value of zero as no off-ramp could produce vehicles onto the 

freeway.  Second, all columns that held destination data for on-ramps were treated similarly as 

vehicles could not end their trip (exit the freeway) at an on-ramp.   Additionally, ramps from one 

direction of the freeway could not have trips that originated from or were destined to ramps in 

the other direction of the freeway.  Therefore, these pairs were given a value of zero in the OD 

matrix. Last, all cells that represented a trip from an on-ramp that was located downstream of an 

off-ramp was given a value of zero since a vehicle could not travel backwards on the freeway 

(Dhindsa, 2005).  The rest of the values of the origin-destination matrix were calculated using a 

simple gravity model.  Using the gravity model showed some differences between the sum of the 

columns and the known ramp volumes at that ramp.  This was corrected using the following 

steps: 

• If the sum of a row or column is either both too high or too low the count is adjusted 

appropriately to change this 

• When the sum of a column is too high the count is lowered 

• If both the sum of a column and row value for a cell is too low the count is increased 

• Steps 2 and 3 are repeated until the error is minimized 

It should be noted that the previous steps were performed at all ramps excluding the East-

West Expressway (S. R. 408) ramps since the majority of error was expected to be found at this 

location.  Once the errors at the other ramps were minimized, the S. R. 408 ramps were adjusted.  

The final error of the OD matrix, found by comparing the simulation on-ramps and off-ramp 

volumes with those found in the field, was 4.10%. 
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3.4.1.2  Calibration of Flows and Speeds 

The simulation was run and the volumes on the mainline were compared to data obtained 

from the loop detectors embedded in I-4.  The flows in the simulation were checked against the 

average flows taken from a 20-day period between September 23, 2003 to November 20, 2003 

(note: only data obtained from Tuesdays, Wednesdays, and Thursdays were used).  Initially, the 

mainline flows were lower than what was expected by the loop data.  The flows between the end 

zones were increased and re-run to get a more adequate value.  A sample of the comparison 

between the actual flow and simulated flow on a 5-minute basis for a group of 6 stations is 

shown below in Table 3-1.  Note that this table does not show the best case but is just a sample 

of the tables used to determine which set of calibration parameters yield the best results. 
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Table 3-1.  Difference between 5-min flows for Simulated and Real Data from Dhindsa (2006) 

5 min. 
Time 
Interval 

Detector 
33 

Detector 
34 

Detector 
35 

Detector 
36 

Detector 
37 

Detector 
38 

1 69.5594 72.5338 51.8638 51.5588 129.5172 164.1730
2 46.7231 59.1504 24.9548 57.2571 128.3921 150.6219
3 20.3438 59.2487 41.9722 61.9213 120.5060 138.7657
4 20.9601 48.3512 23.5370 52.8326 102.1730 120.8567
5 -20.5063 5.0061 -18.9889 3.6741 47.3865 71.4978
6 7.1344 0.1267 -30.6444 -6.2352 48.4093 77.1837
7 -31.2777 -25.3324 -34.8509 1.8475 51.6759 73.6704
8 -27.3818 -26.5561 -49.1922 -32.1415 39.6663 78.2341
9 -75.9589 -68.6024 -85.1784 -11.0970 45.6919 48.7433

10 -84.1765 -55.1797 -43.9852 -24.4583 28.4913 62.6543
11 -82.7436 -65.7757 -61.2659 10.4417 35.9804 58.0231
12 -85.7216 -29.1626 -36.4718 17.5000 71.5478 94.7971
13 -50.3237 -20.7685 13.5167 51.7796 60.0415 61.1008
14 -6.8202 25.9179 -4.5537 12.6169 6.2121 26.1900
15 -20.5017 -15.5427 -59.3002 -6.5659 39.6744 83.0488
16 -80.5463 -49.8531 -15.6204 33.0861 44.5268 51.8855
17 -42.2757 6.3500 -2.5989 -9.7932 11.1174 35.8532
18 -36.6879 -36.5705 -48.3998 -39.7924 13.9457 47.0101
19 -105.9332 -77.9436 -44.9802 -11.4575 36.5701 81.7641
20 -103.8652 -61.0370 -41.5275 -6.0697 50.9495 102.6571
21 -57.7538 -14.9252 -8.5558 -5.0798 58.9383 93.2179
22 -62.6049 -30.1087 -18.3831 -15.0128 44.4453 100.8202
23 -12.5058 -33.5481 -33.0565 -10.7173 47.9923 87.5548
24 -40.1569 -47.8800 -28.6787 -32.1049 53.9039 118.1519
25 -19.2656 -56.0143 -27.5900 16.8254 67.9889 121.8310
26 11.0968 -5.1175 14.2253 -26.2165 41.8273 120.7842
27 -8.3443 -30.9317 -37.0866 -20.2100 52.8059 109.0692
28 -31.0426 -52.6972 -34.9500 -31.8696 76.5455 124.3371
29 14.2661 -33.0025 -24.1252 -24.1400 51.4606 96.0697
30 41.7084 -12.2174 -33.3755 -49.8579 37.5833 94.8364
 

Additionally, plots were made that compared the average simulated speed and the 

average speed from the loop detectors at 5-minuate intervals.  These plots contained 10% error 

bars for the simulation data to show the acceptable range of speeds that the simulation data 

represented.  An example of such a plot is shown below in Figure 3-5. 
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Figure 3-5.  Sample Plot Showing Real Average Speeds with 10% Error Bars and Simulated Speed from 
Dhindsa (2006) 

 

At this point, various values of the mean driver headway and mean driver reaction time 

were selected and tried to minimize the error in flows and speeds while holding the queue speed 

and queue distance constant at 8 mph and 9 ft, respectively.  These values for queue speed and 

queue distance were chosen because increasing them tended to increase the persistence of queues 

at any location once formed.   

Based on the errors in the flows and speed, the final mean headway and mean driver 

reaction time were chosen to be 1.00 seconds and 0.45 seconds, respectively.  These values were 

close to previous values used on a similar project performed by Dilmore (2005) and, therefore, 

found to be acceptable in the calibration of driver behavior along Interstate-4 in Orlando, Florida.   
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3.4.2  Origin-Destination Matrix 

As previously mentioned, these same calibration parameters from Dhindsa (2006) were 

used in this study since the two studies have essentially the same study area.  However, since the 

network used in this study is larger and contains several new on-ramps and off-ramps the origin-

destination matrix for this study had to be recreated.   

The procedure used to create the origin-destination matrix was similar to the procedure 

used by Dhindsa described above in Section 3.4.1.2.  Rows holding origin data for off-ramps 

were given a value of 0.  Columns containing destination data for on-ramps were also given a 

value of 0.  Last, values below the diagonal (which represented a vehicle traveling from an on-

ramp downstream of a particular off-ramp) were given a value of 0.  This minimized the number 

of cells that needed to be calibrated.   

Using traffic data obtained from the Florida Traffic Information (FTI) 2003 CD and 

hourly data obtained from the Center for Advanced Transportation Systems Simulation (CATSS) 

as well as the origin-destination matrix that was used by Dhindsa as a starting point, the O-D 

matrix for this study was computed using a simple gravity model.  The resulting OD matrix was 

then input to PARAMICS and the network checked against expected queues.  From basic field 

observations it was noticed that there were large queues that took occurred at the downtown 

areas during a majority of the simulation time period.  However, using the OD matrix that was 

created from the gravity model did not reflect this observation.  Instead, vehicles tended to move 

freely and the queues that did form were not reoccurring queues formed by congestion but were 

instead short-term queues that involved 4 or 5 vehicles and dissipated very quickly.  The OD 

matrix was then modified to include more vehicles at the Interstate-4 / S.R. 408 interchange and 
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at the terminus zones of the network to increase the flow and induce congestion.  This resulted in 

the formation of queues around the Interstate-4 / S.R. 408 interchange and a traffic flow that was 

more consistent with the field observations that were done. 

3.4.3  Network Validation 

Once the OD matrix was determined, the next step was to perform a brief validation 

procedure to confirm that the traffic flow in the simulation closely resembled the traffic flow in 

the field.  Field data for the validation procedure was taken from a database that contained loop 

detector data from Interstate-4.  Loop data for a period of 20 weekdays, excluding Mondays and 

Fridays, were extracted from the loop detector database.   The period during which data was 

extracted was from September 23, 2003 to November 20, 2003; this was the same time period 

that was used in the validation procedure in work done by Dhindsa.  Please note that due to 

periodic loop failure data was note available for all loop stations during this time period. 

Flow data from 20 selected stations were then compared against the simulated flows in 

the PARAMICS network.  The comparison was performed by computing the GEH statistic.  The 

GEH statistic is a measure that is essentially a modified chi-squared statistic that takes into 

account both the absolute and relative difference in the observed and simulated traffic data.  This 

statistic is widely used by researchers working with PARAMICS (Oketch and Carrick, 2005).  

The GEH statistic is calculated at each location as follows in Equation 4. 
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Where M = the hourly flow rate obtained from the simulated network and O = the hourly 

flow rate obtained from the field.  Generally, a GEH statistic less than or equal to 5 represents a 

good fit while a GEH statistic between 5 and 10 could still be considered good but requires 

further investigation.  A value of the GEH greater than 10 implies that the simulated flow rate is 

not a good fit of the observed data. 

The 20 stations for which flows were compared were selected based on the availability of 

the loop data and based on the need to get a good representation of the entire traffic network with 

a focus on the downtown area (since this area will be the area mainly affected by the route 

diversion and ramp metering).  Simulated data was averaged for 10 PARAMICS runs and the 

hourly volume was determined at each station selected and then compared to the loop data that 

was acquired from the loop database.  Table 3-2 (below) gives a summary of the 20 stations 

selected, the actual and simulated volumes, and the GEH statistic at each location. 

 

48 



Table 3-2.  Comparison of Observed vs. Simulated Flow Rates 

Station 

Flow From 
Loop Data  

(veh/hr/lane) 

Simulated 
Flow  

(veh/hr/lane) 
GEH 

Statistic 
7 932 700 8.14 

18 1102 1031 2.17 
19 1104 1031 2.25 
20 1129 959 5.26 
21 1073 954 3.76 
22 1183 1006 5.35 
23 934 933 0.01 
24 1011 920 2.91 
26 914 994 2.59 
30 1380 1038 9.82 
34 1317 1316 0.01 
35 1304 1333 0.80 
36 1331 1251 2.22 
37 1342 1494 4.03 
41 1550 1748 4.87 
42 1535 1706 4.24 
43 1870 1884 0.33 
44 1520 1917 9.57 
49 1840 1791 1.15 
50 1849 1987 3.16 
52 1532 1581 1.24 
53 1549 1483 1.69 
56 1495 1514 0.50 
57 1411 1257 4.22 
61 1389 1250 3.83 

 

Based on this comparison, 80% of the loop stations have a GEH statistic less than 5.  

Additionally, the average GEH value for all stations considered is well under 5 at 3.36 and no 

station has a GEH statistic greater than 10.  Therefore, this shows that the origin-destination 

matrix, which was calibrated to induce queues at the downtown locations, actually provides a 

good fit of the observed field data in terms of hourly volumes as well.  This validates the 

network as providing an accurate representation of the field data and should allow conclusions to 

be made as the result of the implementation of various strategies to the network.  
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3.5  Implementation of Route Diversion 

The implementation of the route diversion into the PARAMICS network was a two-fold 

process.  First, the alternate routes that were to be simulated had to be coded onto the network.  

Before this was completed, the only route available to vehicles was Intersate-4.  The route 

diversion that is used here does not allow vehicles to bypass I-4 completely.  Rather, vehicles 

forego entering I-4 at one location and travel to a later on-ramp for entry onto I-4.  The second 

part of implementing route diversion involved getting vehicles to use the secondary route.  Left 

to their own network assignment models, the simulated vehicles would travel on the shortest 

path.  On this network, this is always on I-4.  Therefore, a method had to be devised to force 

some simulated vehicles to use the alternative routes.  These two steps are further explained in 

the following sections. 

3.5.1  Alternate Routes 

When initially deciding to implement route diversion on the I-4 network the question of 

where to include the diversion routes arose.  Since the goal of this research is to reduce the crash 

risk on I-4 the initial thought was to implement the route diversion in such a way that the 

changes in the crash risk would occur at a location of high crash risk along the freeway.  

However, this is all dependent upon the availability of an alternate route.  Therefore, when 

selecting the area on the freeway to implement route diversion two factors were considered:  the 

existence of natural diversion routes and an area known to have high risk.  Previous knowledge 

of the area and driving experience in Orlando, Florida gives that the Interstate-4 / S. R. 408 

Interchange is an area of high freeway turbulence.  This turbulence is caused by the large amount 

of vehicles that travel from S. R. 408 (the main east-west arterial road in Orlando) to Interstate-4 
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(the main north-south arterial through downtown Orlando) and vice versa.  During the peak 

periods, this large merging volume onto Interstate-4 causes considerable congestion which is 

known to be related to traffic incidents.  Therefore, when considering diversion routes, an 

emphasis was placed on routes that would have an effect on the crash risk at or around this 

interchange.    

To determine the specific routes used in the route diversion, a map of Interstate-4 was 

visually inspected to determine what the best feasible alternate routes would be.  Alternate routes 

were determined to be roads that formed a practical connector between one I-4 on-ramp and 

another downstream on-ramp.  Three specific routes were found to be suitable through the 

downtown I-4 area which would directly affect traffic conditions around the Interstate-4 / S. R. 

408 Interchange.  These routes were defined as Route Diversion 1, 2, and 3.  Route 1 is shown in 

Figure 3-6 as DP-1A and DP-1B.  Route 2 is also shown in this figure.  Route 3 is shown in 

Figure 3-7 as DP-3A and DP-3B and is a mirror image of Route 1 which affects the westbound 

direction of I-4 (Route 1 affects only the eastbound direction).  
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Figure 3-6.  Decision Points for Eastbound Diversion Routes 

52 



 
Figure 3-7.  Decision Points for Westbound Diversion Routes 
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Each route has either one or two decision points, depending on the length of the diversion 

route.  A decision point defines whether a vehicle enters I-4 at a particular location or continues 

traveling for the next convenient entrance point.  The decision points are also shown in Figures 

3-6 and 3-7 and are labeled as DP-1A through DP-3B.  Route Diversion 1 is comprised of 

DP-1A and DP-1B.  At DP-1A, the vehicle must choose between entering the EB direction of 

Interstate-4 or continue traveling north on Orange Blossom Trail to reach the next entrance point.  

While traveling north on Orange Blossom Trail, the vehicle will encounter another decision 

point, DP-1B.  At DP-1B, the vehicle can decide to turn east onto Anderson Street and enter I-4 

in the eastbound direction by using an on-ramp location further downstream.  The alternative to 

this is traveling north to the intersection of OBT and Colonial Drive, traveling east on Colonial 

Drive and entering EB I-4 at an on-ramp located on Colonial Drive.   This route would 

essentially divert vehicles from entering the freeway just before the Interstate-4 / S. R. 408 

Interchange and have them re-enter downstream of this location. 

Another choice is Route Diversion 2 which is rather short compared to the previous 

route.  Route Diversion 2 consists of only one decision point, DP-2.  At DP-2, vehicles traveling 

west on South Street can either enter eastbound I-4 immediately or travel north on Garland 

Avenue until they reach the I-4 on-ramp further downstream on Garland Avenue near Colonial 

Drive.  This route affects the Interstate-4 / S. R. 408 by diverting vehicles that would enter the 

freeway just after the interchange (causing more congestion around this area) and require them to 

enter a little less than 1 mile downstream.  By diverting vehicles in this manner the traffic 

volume is reduced immediate downstream of the I-4 / S. R. 408 Interchange and reintroduced 

onto the freeway further downstream which should reduce the potential for a bottleneck at the 

Interchange. 
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The previous two diversion routes described affect the eastbound travel direction of 

Intestate-4.  The only diversion route that affects westbound travel is denoted as Route Diversion 

3 (shown in Figure 3-7).  Route Diversion 3 is also comprised of two unique decision points, 

DP-3A and DP-3B.  Please note that Route Diversion 3 is approximately a mirror image of 

Route Diversion 1 except it affects traveling in the westbound direction on I-4 as opposed to the 

eastbound direction (which is affected by Route Diversion 1).  At DP-3A vehicles trying to enter 

I-4 in the westbound direction may do so or traveling west on Colonial Drive and then south on 

OBT until the next decision point.  At DP-3B, the shorter path for vehicles is to continue 

traveling south on OBT until the WB I-4 on-ramp.  However, vehicles may elect to travel east on 

Gore Street and enter I-4 on the WB on-ramp that is located on Gore Street.  Since this is a 

mirror of Route Diversion 1, this route would halt vehicles traveling in the westbound direction 

from entering before the Interstate-4 / S. R. 408 Interchange and cause them to enter just 

downstream of this location. 

Coding the Diversion Routes onto the network required the creation of traffic signals in 

the PARAMICS network.  The three diversion routes actually included 29 traffic signals.  

However, in order to reduce the amount of coding required in the creation of the network as well 

as to reduce the amount of traffic data needed, only 19 traffic signals from major intersections 

were considered.  The important signals were decided based on both the size of the intersection 

(all of the larger intersections were included) and field observations as to which signals delayed 

vehicles the most along the diversion routes in order to successfully capture that added delay in 

this analysis.  The traffic signal timing data was obtained from the Orange County Traffic 

Engineering Department. 
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The signal timing data indicated that most of the signals that were to be included in this 

network were actuated signals.  However, in order to reduce the complexity of the PARAMICS 

simulation, the signals were treated as pre-timed signals.  At the intersection of two major 

roadways (Orange Blossom Trail and Colonial Drive, for instance) the pre-timed signal timings 

that were used were set to maximum green time for each direction.  Doing this assumed that all 

approaches of the intersection were saturated (or nearly so) during the peak period.  Based on 

field observations, this was most always the case.  At the intersection of a major roadway and 

minor roadway (Colonial Drive and Parramore Road, for example) preference in the signal 

timing was always given to the major roadway (Colonial Driver or Orange Blossom Trail in all 

cases).   

Once the diversion routes were created, the next step required was to add vehicles to the 

diversion routes to approximate the traffic conditions that diverted vehicles would encounter on 

the surface streets.  However, there was a question of how to approximate volumes and delays 

that are experienced by these vehicles.  Unlike the freeway, where loop data was recorded and 

stored at regular intervals, there was no automatic counter in place along these roads.  One idea 

was to use the AADT (annual average daily traffic) value and K value to approximate the DDHV 

(directional design hourly volume).  However, there is question over the accuracy of these 

estimates.  While they are traditionally used by traffic engineers and planners, AADT’s are 

usually only an estimate from data taken over the course of a few days.  Additionally, AADT 

values are not updated every year.   

Therefore, the surface streets were calibrated based on previous knowledge of traffic flow 

on the diversion routes.  The goal of this calibration became to match the long queues at 

intersections along Orange Blossom Trail and Colonial Drive through the downtown region that 
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is typically expected during the afternoon peak hour on any particular day.  Additionally, surface 

streets within the downtown area (diversion route 2) were always congested during this time 

period. 

3.5.2  Route Diversion API 

As previously mentioned, there are two decision points that comprise Route Diversion 1.  

Each of these decision points represent a variable in the simulation in that a vehicle may either 

choose one of two paths to get onto I-4 from that location.  However, after creating the network 

with the alternate routes and observing the simulation, it was seen that vehicles only took a 

single path to reach their final destination – the path through I-4.  Therefore, a method had to be 

devised to force some vehicles to divert from their traditional route and to instead travel on the 

surface streets to re-enter I-4 downstream and, eventually, reach its destination zone.   

PARAMICS allows for dealing with multiple paths between zones by the addition of 

dynamic traffic assignment.  However, even when the dynamic traffic assignment is calibrated 

properly the dynamic traffic assignment method does not allow for specific user control over the 

amount of vehicles diverted from a particular point.  Instead, each vehicle selects a path that will 

reduce its disutility of travel.  Therefore, in order to control the amount of diversion, code had to 

be written to control vehicular behavior through the use of the PARAMICS Application 

Programmer Interface (API).  The API allows a user to use C programming to write a code that 

will access and modify certain preexisting PARAMICS functions during the simulation run.  The 

result of an API can be as simple as reporting the average speed at a location at regular time 

intervals or as involved as changing the speed limit at a particular location based on specified 

conditions.   
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In order to get vehicles to divert from their natural path, an API was written to override 

the preexisting route choice algorithm in select situations.  Since the route choice algorithm is 

accessed by every vehicle on the network, special conditions had to be met before the route 

choice algorithm was overridden to ensure that the right vehicles were diverted.  The special 

conditions were the origin zone of the vehicle, destination zone, and current link.  The origin 

zone was used to ensure that only vehicles that are entering I-4 at one of the diversion locations 

were diverted.  The destination zone was used to ensure that vehicles that were diverted to a 

downstream on-ramp would not overshoot their intended off-ramp and have no logical route to 

reach their destination once they entered I-4 downstream.  Note that if diverted vehicle did 

overshoot its destination, the vehicle would proceed to the downstream off-ramp, circle back to 

the original on-ramp and enter I-4 from the original location.  Lastly, the current link was 

specified to ensure that vehicles were only diverted when they were located on the link 

immediately upstream of a decision point.  Not specifying this link caused vehicles to travel in a 

circle continuously. 

Therefore, if a vehicle was traveling from a specific zone near the on-ramp of interest and 

its destination was at a location further downstream on I-4 than the vehicle’s re-entry ramp the 

vehicle would only divert its route at the link preceding the on-ramp of interest.  Additional code 

was added to control how many vehicles diverted per simulation run.  This was done by 

specifying the percentage of vehicles that would divert at each decision point.  Once each vehicle 

met the diversion conditions it was assigned a random number between 0 and 100.  If that 

random number was less than the percentage of vehicles that were to be diverted, the vehicle’s 

course was altered to use the route diversion.  If not, the vehicle was left to its own route choice 

algorithm.   Therefore, the percentage of vehicles diverting were not exact due to the random 
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nature of the diversion assignment but generally averaged out to the number that was specified.  

The code for the API is given in the Appendix. 

3.6  Implementation of Ramp Metering 

Because there were two types of ramp metering that were considered in this analysis, two 

unique methods of implementing ramp metering had to be used.  In order for both methods to be 

implemented some changes first had to be made to the network.  These changes included the 

lengthening of the on-ramps to include the full storage capacity since vehicles would be queued 

in the ramp while waiting for the meter.  Additionally, traffic signals were added to the merge 

area on the ramp which would act as the main control (or meter) in the ramp metering process.  

For the ALINEA ramp metering method those were all the changes that were needed.  However, 

for the ZONE ramp metering algorithm meters were also added to the beginning of each ramp to 

measure the inflow of vehicles onto the ramp.   A basic description of how each method was 

implemented is in PARAMICS given in the following sections.   

3.6.1  ALINEA Ramp Metering 

As previously mentioned in Section 2.3.1, the ALINEA ramp metering algorithm is 

rather simple to implement.  The ALINEA algorithm calculates the metering rate for a particular 

freeway on-ramp by using only occupancy measurements taken from the nearest loop detector 

downstream of the on-ramp in question.  If the occupancy is higher than a pre-determined critical 

value, the metering rate is reduced to allow time for the congestion to decrease before the ramp is 

open to free-flow. 
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To implement the ALINEA ramp metering algorithm special controls that are available in 

PARAMICS to model vehicle actuated signal controls (VA signals) were used.  The VA signals 

allows the program to access data obtained from loop detectors in the network and, based on an 

algorithm coded by the user, changes the signal timing with changes in the traffic flow.  Using 

this methodology involves the creation of two new network files called the “phases” and “plans” 

files.  The phases file specifies which signal is to be controlled (i.e. which ramp to be metered) 

and what detectors are to be accessed by the metering algorithm (which are the nearest 

downstream loop detectors).  The plans file defines the algorithm that will be used to change the 

signal timing.  In this file the occupancy values are calculated from the loop detectors in 

PARAMICS and the metering rate is changed as per Equation 3.  Because the ALINEA controls 

are the same for each ramp, the code only had to be written once and was then copied for each 

subsequent meter.  A sample of the phases and plans files for the ALINEA control is given in the 

Appendix.      

3.6.2  ZONE Ramp Metering 

3.6.2.1  Zone Ramp Metering Algorithm 

As previously mentioned in the review of current literature, the main purpose of the Zone 

Ramp Metering Algorithm is to balance the number of vehicles entering a freeway zone with the 

number of vehicles leaving.  This is done by using Equation 5 given below (Bogenberger and 

May, 1999). 

SXBUAM ++≤++ , where:  (5) 

M = the on-ramp flow through the metered ramps 
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B = the downstream bottleneck capacity (1800 - 2100 vehicles per hour per lane) 

X = the sum of the measured off-ramp volumes 

S = the spare capacity available on the mainline (measure of density and speed)  

A = the measured upstream mainline traffic volume 

U = the measured sum of the un-metered on-ramps 

Looking at Equation 5, the only variable that can be altered by ramp metering is the 

variable M.  Therefore, M is a function of the measured in-flow volume, out-flow volume and 

the spare capacity within the zone.  For the Zone algorithm, M will be updated every time period, 

in this study 5 minutes, to determine the allowable flow rate of vehicles from metering ramps 

onto the mainline.  Once M has been calculated, the metering rate of each metered on-ramp,  

in veh/hr, is calculated by using Equation 6. 

nR

 

D
DM

R n
n

*
=  (6) 

 

In this equation,  is equal to the proposed meter rate for ramp n,  is equal to the 

current flow rate of vehicles entering ramp n, and D is the total number of vehicles wishing to 

enter the freeway through any of the metered on-ramps in the zone.  As can be seen in the 

equation, the equation basically assigns the total allowable inflow rate for the entire zone, M, to 

each of n metered ramps proportionally by the volume of vehicles that are using the ramp.  

Therefore, a ramp that has twice the volume of another ramp should receive twice the green time 

of the second ramp.   

nR nD
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Once  is determined, this rate is checked against a predetermined minimum rate.  If the 

proposed rate is less than the minimum metering rate, then the rate is set to the minimum rate.  

The minimum metering rate is determined based on the length of the ramp and the density of 

queued vehicles waiting on the on-ramp.  The goal of the minimum metering rate is allow 

vehicles into the freeway stream after a maximum waiting time of four minutes.  Therefore, 

calculating the minimum metering rate is done by determining the number of vehicles that can be 

queued in the ramp and dividing this value by four minutes.  Once scaled to vehicles per hour 

this will yield the minimum metering rate for the ramp and would represent the rate that would 

allow vehicles queued on the ramp to enter the freeway after waiting for a maximum of four 

minutes.    

nR

3.6.2.2  Zone Algorithm in PARAMICS 

Implementing the ZONE ramp metering algorithm was a considerably more difficult 

process than implementing the ALINEA algorithm due to the large amount of data required to 

calculate the respective metering rates.  While the ALINEA algorithm requires just the 

occupancy reading from a single detector, the Zone algorithm requires that speeds, densities, and 

flows be known from multiple locations on the freeway mainline as well as the various on-ramps 

and off-ramps within the metered zone.  Even more importantly, however, is the fact that the 

respective metering rates within a zone are all dependant on one another.  If it were not for this 

fact, the VA built-in signal controls in PARAMICS could still be used to model the Zone 

algorithm although the code would be much more complicated than the code for the ALINEA 

algorithm. 
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Instead, an API was created to control the signals.  Using an API is advantageous for a 

few reasons.  For one, using an API allows the code to be written in the C-language instead of 

the built-in VA control language.  Although the VA control language resembles C, there are 

some functions that are not possible using the VA control language.  Because the API is written 

in C-code, multiple functions can be created in the API, each representing the metering of a 

different zone.  Doing this allows the user to easily turn zones on or off depending on the control 

strategy being tested.  This allows multiple scenarios to be tested much easier than with the VA 

control method which would require the creation of individual phases and plans files for each 

combination of control strategies that is to be tested.   

3.7  Output of PARAMICS 

There are two types of output from PARAMICS that will be useful to this analysis.  

Global output is data taken from the entire network and does not require a location to be 

specified in order for the data to be collected.  This type of network output includes the travel 

time (total vehicle hours traveled – VHT), total distance traveled (total vehicle miles traveled – 

VMT), and total number of vehicles on the network at any point in time, among other measures.  

The other type of output is specific to a particular location and usually requires the inclusion of a 

loop detector on the network at that location.  Data that can be collected from a particular 

detector includes flow, headway, speed, occupancy, acceleration, gap, and density (on a 

particular link – does not require a detector but the link must be specified).   

The detectors included in the PARAMICS network were placed in the same locations as 

the detectors in the field so that the two sets of data could be compared.  This is important 

because the models that will be used to define the crash risk in the simulation were created with 
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the loop data extracted directly from Intersate-4.  However, PARAMICS outputs the loop 

detector data in a manner that is inconvenient for analysis.  The loop data that is collected along 

I-4 is an average of the speed, flow, and occupancy on every lane at 30 second intervals.  

PARAMICS outputs the speed and occupancy data at every detector at every instant that a 

vehicle completely crosses the detector.  Therefore, the PARAMICS output provides a signal 

line of data every time a vehicle crosses over a detector.  In order for the two to be compared, the 

output from PARAMICS must be post-processed to convert it from the given form into the form 

that is available in the field.  This is accomplished by using a Visual Basic macro written in 

Microsoft Excel.  This macro essentially reads the data line by line and groups the data into 30 

second time intervals and, using those groups, computes the average speed, volume, and 

occupancy.  Once completed, the macro outputs the data in exactly the same format as that 

collected in the field.  The only downside to the macro is the processing time.  While a typical 

simulation run takes anywhere between 20 to 80 minutes to run in the PARAMICS Processor 

module, running the macro for a single set of output data takes anywhere from 1 to 6 hours 

depending on the processing power of the computer.  Therefore, the time needed to analyze a 

single set of 10 runs can be as little as 12 hours to 2 or more days. 

Once the output has been converted into the loop data format, there is still one more step 

that must take place before the crash risk (the variable of interest) can be determined.  All models 

defining crash risk use traffic parameters that have been aggregated into 5 minute intervals.  

However, the output from PARAMICS (and the real loop data) is given in 30 second intervals.  

Therefore, another macro was written to group the 30 second data into 5 minute intervals and 

compute the average, standard deviation, and coefficient of variance for speed, volume, and 

occupancy.  In order to save time, however, this macro does not convert all of the data, only the 
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specific variables that are needed in order to calculate the crash risk measure.  These parameters 

are listed later in Sections 4.3 and 4.5.  For this reason, this macro has a much shorter runtime 

(about 30 to 90 minutes per run) than the first macro.  Therefore, a typical set of 10 runs takes 

about 10 hours to complete.  This brings the average time to perform a group of 10 runs in 

PARAMICS processor batch mode, convert the data to loop data format, and pull the variables 

needed to compute the crash risk to about 50 hours.  Note, however, that this value changes 

based on the processing power of the computer used to run the macro and the loading case being 

performed.  Due to the large number of scenarios and multiple runs performed per scenario, 

multiple computers were used to run the macros.  The runtimes for the various computers and 

loading scenarios ranged from 20 hours at lower loading cases (60 percent loading) with the 

fastest computer  to about three days for higher loading cases (100 percent loading) with the 

slowest. 
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CHAPTER 4.   EXPERIMENTAL DESIGN 

The purpose of the experimental design is to evaluate the effects of route diversion and 

compare the effects of different ramp metering strategies on the real-time safety of an urban 

freeway using the PARAMICS microscopic simulation program.  Although micro-simulation 

packages have been used extensively in studying the effects of various ITS measures on traffic 

flow, the use of micro-simulation in the field of traffic safety presents the challenge of how to 

quantify the effects of the ITS strategy.  For changes in the traffic flow, measures of 

effectiveness can include many simple metrics ranging from the traffic volume entering a 

particular roadway segment or intersection, the total travel time for all vehicles in the simulation, 

the density on a particular link, etc.  These quantities are directly measurable by the simulation 

program and are often reported automatically upon the conclusion of the simulation run.   

However, there is no standard metric which provides the level of safety on a simulated 

traffic network.  Real networks can rely on case studies over a period of time in which the 

number of crashes that occur at a particular location or section of roadway is used as the variable 

of interest.  Even though this is essentially a flawed approach due to the random nature and 

human error involved in most traffic crashes, it is still the best approach transportation engineers 

can use when a large dataset is present.  This method allows researchers to determine the areas 

that are more prone to traffic collisions with respect to the rest of the traffic network.  However, 

it is impossible to include the occurrence of crashes on a simulated network since it is impossible 

for a computer to determine when and where a crash will occur.  Instead, when using simulation 

packages researchers look to other measurable variables that have a known relationship to traffic 
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crashes.  These surrogate measures of traffic safety do not directly depend on the frequency of 

crashes and instead reflect the behavior of all the vehicles traveling in the traffic stream.   

Some surrogate measures of safety include simple variables such as mean speed or speed 

variance (Gettman and Head, 2003).  Other, slightly more complicated, safety measures 

described in this work were variables such as Time to Collision and Post Encroachment Time.  

However, some researchers have spent much time developing models which use these directly 

measurable values as inputs to describe the safety (or crash risk) on the roadway.  These models 

would then be used to describe the level of safety on a network during the simulation.  One such 

example, from researchers in Virginia, is an equation that compares the actual following distance 

of a vehicle to the recommended safe following distance (Park and Yadlapati, 2003).  Another 

example comes from researchers at the University of Central Florida who created a measure of  

crash risk based on a logistic regression model developed using within stratum matched 

sampling and real-time traffic variables taken from loop detectors embedded in the freeway 

(Abdel-Aty et al, 2004).  This measure was used in studies that assessed the change in the crash 

risk based on the implementation of variable speed limits (Dilmore, 2005) and localized ramp 

metering (Dhindsa, 2005).    

However, one problem with using the metric described in Abdel-Aty et al (2004) is the 

fact that it describes the crash risk locally for each loop detector station.  Therefore, this measure 

of crash risk is not comparable across different stations.  By using these measures one cannot 

determine which location on the freeway has the highest risk of a collision.  To overcome this, 

more recent research done by Pande and Abdel-Aty (2006) has created newer models to 

determine the real-time risk of rear-end and lane-change crashes using neural networks.  These 

models include explicit variables to account for location (instead of implicitly accounting for 
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location) and, therefore, produce rear-end and lane-change crash risk values that are able to be 

compared across location.  This will provide a better picture of the rear-end and lane-change 

crash risk along the freeway.   

This study will focus on these models presented by Pande and Abdel-Aty (2006) to 

describe the rear-end and lane change crash risk along the Interstate-4 freeway.  The following 

sections will provide more information about the models that are used to calculate the rear-end 

and lane-change crash risks as well as how the models are implemented in this study. 

4.1  Clustering of Rear-End Crashes 

Similar to the research that calculated the crash risk based on logistic regression models 

(Abdel-Aty et al, 2005) which that found that crashes occur within two separate speed conditions 

(high-speed and low-speed), the more recent research by Pande and Abdel-Aty (2006) has found 

that rear-end crashes are more accurately described as occurring within one of two distinct traffic 

regimes.  These traffic regimes cannot be defined as simply high-speed or low-speed, however, 

and require loop data from multiple locations in the freeway in order to be classified.  To 

describe these different regimes, a classification tree model was created that used freeway speeds 

at different locations around the station of interest as the input.  The two regimes were originally 

defined using speed data taken from 0 to 5 minutes before the rear-end crash.  However, in an 

effort for the final rear-end crash risk model to be used in real-time in a predictive fashion, the 

classification tree used to separate crashes into the two different regimes used speed data taken 

from 5 to 10 minutes before the crash.  More information on the classification tree method can be 

found in Pande and Abdel-Aty (2006).   
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The result of the classification tree model was a set of simple if-then statements that used 

the speed variables to classify the data into seven distinct “leaves” on the tree.  Each of these 

leaves had a different percentage of regime 1 crashes and regime 2 crashes and this probability 

was used to define the traffic conditions as either regime 1 or regime 2.  If a particular leaf had a 

percentage of regime 1 crashes that was greater than 0.50, then that leaf was assumed to 

represent regime 1 conditions.  Likewise, if the percentage of regime 1 crashes was less than 

0.50, then the leaf was said to denote regime 2 conditions.  Figure 4-1 below gives a summary of 

the classification tree rules as well as the associated percentages of regime 1 to regime 2 

conditions for each leaf.  Please note that the percentage of regime 1 crashes for a particular leaf 

is also known as the probability that traffic conditions belonging to regime 1.  This value was 

given the variable name “a” and will be used as part of the surrogate measure of safety. 

 

 
Figure 4-1.  Classification Tree to Determine Regime Conditions for Traffic Data (Pande, 2005) 

 
In order to understand the nomenclature for each variable in Figure 4-1 it is necessary to 

understand the format of the loop data that are used to calculate these variables.  The loop data is 

given as the average speed, volume, and lane occupancy every 30 seconds for each of three lanes 
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on the freeway.   The variables listed above are all calculated for a time period of 5 minutes.  

Therefore, each variable takes into account 30 data points since there are 10 observations for 

each of the three lanes in the 5 minute period.   

The first letter(s) in each variable name describes the measure that is calculated from the 

30 data points.  “A” represents average, “S” represents standard deviation and “CV” represents 

the coefficient of variation.  The coefficient of variation is defined as the standard deviation 

divided by the average value.  The next letter refers to what measure is being computed.  “O” 

refers to occupancy, “S” refers to speed and “V” refers to the volume.  The final letter refers to 

which station is used to calculate this value.  Figure 4-2 (below) shows how the stations are 

referenced by letter.  Station F refers to the station of interest.  Stations A through E are upstream 

of the station of interest while Stations G and H are downstream.  Since each station is 

approximately 0.5 mile apart, Station D would represent the station 1 mile upstream of the 

station of interest.  Although the classification tree in Figure 4-1 only uses variables of average 

speed, the other variable terms will be used in the crash risk models described in subsequent 

sections. 
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Figure 4-2.  Time-Space Diagram Showing Time and Location of Interest 

 

The final number at the end of the variable name refers to the time period over which this 

value is calculated.  The time period used for all variables in this measure of rear-end crash risk 

is time period 2 which refers to the time 5 to 10 minutes before the time of interest.  For 

reference, time period 1 refers to 0 to 5 minutes before the time of interest.  Therefore, based on 

this coding system, the meaning of any of the loop variables above can be determined.  For 

example, ASD2 refers to the average speed 1 mile upstream of the station of interest, 5 to 10 

minutes before the time of interest.  Figure 4-3 is provided to summarize the variable 

nomenclature. 
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Figure 4-3.  Nomenclature of Variables Describing Loop Data 

 

As seen from Figure 4-1, regime 1 conditions are generally lower speed conditions that 

represent congestion on the freeway.  Regime 2 conditions tend to occur at higher speeds and 

represent un-congested traffic flow.  Also, please note that the typical value of “a” for each leaf 

is not close to 0.50.  This shows that the classification tree does a good job of partitioning the 

data into one of the two traffic regime conditions. 

4.2  Crash Frequencies in the Different Regime Conditions 

Once the classification tree model was created, the rear-end crash data was sorted into 

two categories: regime 1 crashes and regime 2 crashes.  It was found that 45.8% of all rear-end 

crashes occur during regime 1 conditions while the remaining 54.2% occurred during regime 2 

conditions.  Random non-crash data was then subjected to the classification tree and it was 

determined that regime 1 conditions were only prevalent in 6.3% of the random non-crash data 

while regime 2 conditions represented the remaining 93.7%.  This led to the belief that regime 1 

conditions were more risky since nearly 46% of the crashes occurred in situations that were only 

seen 6% of the time on the freeway.  This shows that there is a definite difference between the 
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regime 1 and regime 2 conditions.  Initial measures of effectiveness tried to capture this increase 

in the crash risk during regime 1 conditions. 

4.3  Posterior Probability Models 

Once the rear-end crashes were grouped into their respective regimes the modeling 

procedure began.  Separate models were created to describe the crash risk in regime 1 and 

regime 2 conditions since it was likely that these two types of crashes would have different 

factors associated with the likelihood of a crash.  Classification trees were used to identify 

factors that were significantly associated with rear-end collisions within each respective regime.  

Factors considered included both on-line factors (loop detector variables describing the currently 

conditions on the roadway) and off-line data (variables describing location and geometry along 

the roadway).  In the first stage, only loop data taken from the station of the crash was included.  

However, subsequent analyses included data from three and five loop detector stations around 

the crash in order to see if this would improve the accuracy of the model.  As will be mentioned 

later, adding loop data from multiple stations was required to improve the accuracy of the regime 

2 model. 

Once significant factors were determined, models were created using neural networks.  A 

neural network can be described as a parallel-distributed processor that is made up of several 

independent processing units, or nodes.  These nodes are capable of storing data and making it 

available for use by other nodes.  The basic structure for a neural network involves an input layer 

of nodes, a hidden layer, and an output layer.  Each node is connected to other nodes in the 

previous and following layer and each connection has an interconnection weight.  Training the 

model is the performed by applying the model to a set of data using arbitrary weight values and 
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continually adjusting the interconnection weights in an effort to minimize the difference between 

the output provided by the model and the actual output.  The most important factor affecting the 

performance of neural networks is the number of nodes that are used in the hidden layer.  The 

modeling procedure performed by Pande and Abdel-Aty (2006) considered using between 1 and 

10 nodes (in 1 node increments) in the hidden layer to determine the best case.  For each trial, the 

output of the model was compared by using a measure to capture the accuracy of the model 

classification.  More information on the model building procedure and the neural network 

architecture that was used can be found in Pande and Abdel-Aty (2006) and Pande (2005). 

The final outcome of this was a model to determine the rear-end crash risk when traffic 

conditions are within regime 1 conditions and another to determine the crash risk in regime 2 

conditions.  The rear-end crash risk values that are outputted by each model are actually posterior 

probabilities that a crash will occur given the inputted traffic and offline factors.  A posterior 

probability of a random event (crash) is the conditional probability of the event occurring taking 

into account the relevant evidence of the dataset used to create the model.  Therefore, the output 

of the regime 1 model is analogous to the probability that a crash will occur for the inputted 

conditions given the data used to train the neural network model.  Please note that the models 

describe the rear-end crash risk at a particular location and time use loop data taken 5 to 10 

minutes before the particular time of interest.  Therefore, if the model is fed continuously with 

loop data taken in real-time it will essentially describe the crash risk that should be expected on 

the freeway for the next 5 to 10 minutes.  This allows time for crash prevention measures to be 

implemented if this crash risk measure is used in real-time. 
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The best model created to determine the posterior probability of a crash during regime 1 

conditions contained the following variables: 

• AOF2 

• CVSF2 

• SOF2 

• SVF2 

• base_milepost 

• downstreamon  

• upstreamoff  

• downstreamoff  

Note that the first four variables are variables derived from the loop detector data.  The 

coding of these variables is given above in the previous section.  The other four variables are 

categorical variables describing off-line information about the location in question.  These 

variables describe the location and proximity of the location to ramps along the freeway.  A full 

description of these variables is given in Table 4-1.  Of the variables listed previously, the 

variable that most affects the Regime 1 crash risk is AOF2 (Pande, 2005).  Increasing the 

occupancy at the location of interest serves to increase the probability that a rear-end crash risk 

occur.   

The best regime 2 model created was much more complex.  This model used data from 

the station of interest (Station F) as well as the stations included up to one mile upstream and one 

mile downstream of the station of interest.  The reason for this has to do with the differences 

between the two traffic regimes.  Regime 1 generally represents congested traffic conditions.  In 

these situations, only the station of interest needs to be examined since the traffic flow is moving 
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very slowly and there is not much of a speed difference between adjacent stations.  In such a case 

the occupancy at the station of interest becomes very important to describing the rear-end crash 

risk.  However, if conditions are not congested (regime 2) then speeds are much higher and 

factors across multiple stations are needed to assess the risk of a rear-end crash.  Such important 

factors are the speed difference between upstream and downstream locations as well as the speed 

variance at different stations.  Therefore, more variables are needed from a larger area around the 

station of interest.  The variables used in this model are as follows: 

• ASD2 

• AVD2 

• ASE2  

• AVE2  

• SSE2   

• ASF2  

• AVF2   

• ASG2  

• SOG2  

• SSG2  

• SVG2  

• AOH2  

• ASH2  

• AVH2 

• crashtime 
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• downstreamon 

• upstreamoff 

• downstreamoff 

• base_milepost 

• stationf 

The variables with the most influence on the Regime 2 crash risk are ASG2 and ASF2.  

These two variables are the most important because in un-congested conditions the speed 

differential (faster moving vehicles approaching slower moving vehicles) contributes to the 

chance of a rear-end crash occurring.  In addition to the loop variables described previously, 

there are several offline variables needed to determine the crash risk.  These variables are: the 

time (crashtime), the milepost of the location being analyzed (base_milepost), the distance from 

this location to the nearest upstream off-ramp (upstreamoff), nearest downstream on-ramp 

(downstreamon), nearest downstream off-ramp (downstreamoff), and whether or not the location 

being analyzed is location upstream or downstream of the nearest loop detector station (stationf).  

The purpose of these variables is to take into account location and geometry in the model which 

will allow the crash risk to be compared across locations.  The coding of these variables is given 

below in Table 4-1.  The categories that are created for each variable are not random and were 

obtained by Pande and Abdel-Aty (2006) based on the relationship between each variable and 

the binary target variable (crash or non-crash).   
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Table 4-1.  List of Categorical Variables Used to Determine Rear-End Crash Risk 

CRASHTIME 
=0 if Time of crash between midnight to 12:26 AM 
=1 if Time of crash between 12:26 AM to 6:46 AM 
=2 if Time of crash between 6:46  AM to 7:24 PM 
=3 if Time of crash between 7:24 PM to midnight 
 
BASE_MILPOST 
=0 if 0<base_milepost<=13.75 
=1 if 13.75<base_milepost<=15.96 
=2 if 15.96<base_milepost<=25.74 
=3 if 25.74<base_milepost<=36.25 
 
DOWNSTREAMON 
=0 if nearest downstream on-ramp is located further 
than 0.7743 miles 
=1 if nearest downstream on-ramp is located within  
0.7743 miles 
 
DOWNSTREAMOFF 
=0 if nearest downstream off-ramp is located further 
than 0.6323 miles 
=1 if nearest downstream off-ramp is located within  
0.6323 miles 
 
UPSTREAMOFF 
=0 if nearest upstream off-ramp is located further than 
0.3196 miles 
=1 if nearest upstream off-ramp is located within  
0.3196 miles 
 
STATIONF 
=0 if Loop detector station nearest to crash location is 
located upstream 
=1 if Loop detector station nearest to crash location is 
located downstream 

 

4.4  Problems with Assessing Risk Using Regime 1 and Regime 2 Models 

As previously mentioned, two different models were created to assess the posterior 

probability of a rear-end crash occurring within regime 1 and regime 2 conditions.  However, 

one of the major problems with these models it that they are not comparable to each other.  The 

values outputted by each model would only be comparable to values outputted by the same 

model since they are not on the same scale.  In other words, the risk of a regime 2 crash 
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occurring could be determined for two continuous time slices to compare whether or not the 

crash risk has increased, decreased, or remained the same.  However, this assumes that the 

conditions for the two time slices are both regime 2 conditions.  When the traffic conditions 

change from regime 1 to regime 2 conditions (or vice versa), the values outputted by the models 

cannot be used to say that the risk in regime 1 is greater or less than regime 2.   

Since this shift between traffic conditions occurs mostly during specific times on the real 

network (only when congested conditions are formed and dissipated, i.e. the beginning and 

ending of the peak hour) this problem could possibly be neglected in the field since the change 

would occur for a more or less known period of time.  However, the lack of comparability 

between the two models presents a problem to the simulation.  The purpose of the simulation 

will be to test various ITS strategies and their effects on the crash risk.  The strategies tested will 

change the rear-end crash risk by altering the traffic flow which can (and does) change the traffic 

conditions from regime 1 to regime 2 and vice versa.  It is essential to know how changing the 

traffic conditions from one regime to another affects the crash risk.  If the two models are not 

comparable, then there is no way of knowing if the implemented procedure is increasing or 

decreasing the risk of a rear-end crash on the freeway.  Therefore, some method must be used to 

transform the output of the two models into a single measure that can be used to assess the crash 

risk.  Details about the methods considered a given in the following sections. 

4.4.1  Method 1 

The first method that was considered to make the output of the two models comparable to 

each other was to apply a scale factor to the value outputted by one of the models and then 

compare this to the second model.  To determine the value of the scale factor, the probability of 
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observing a crash in each particular traffic condition as well as the probability of observing each 

particular traffic condition in the field was considered.  In general, it was seen that 46% of the 

rear-end crashes occur during Regime 1 conditions while the remaining 54% occur during 

Regime 2 conditions.  However, using randomly collected traffic data it was observe that Regime 

1 conditions are only persistent 6% of the time while Regime 2 conditions are more prevalent 

and occur in 94% of all traffic cases. Using ratios, Regime 1 conditions are about 13.65 times 

more risky (on average) than Regime 2 conditions ([0.46 / 0.06] / [0.54 / 0.94]).  Therefore, the 

initial idea was to multiply the Regime 1 risk (R1) by 13.65 and compare it with the Regime 2 

risk (R2).  Using this method, Equation 7 was used to describe the crash risk: 

 

⎩
⎨
⎧

=
ConditionsregimeR
ConditionsregimeR

Risk
22
11*65.13

1_  (7) 

 

The initial thought was that using such a large number would greatly undervalue the 

importance of the Regime 2 risk. This could have been the case if the output from the models 

were actual probabilities of crash occurrence within each of the regime. However, the actual 

output is posterior probabilities which are relative measures of the crash risk and not actual 

probabilities of crash occurrence.  In actuality, using a scale factor of 13.65 did not undervalue 

the importance of the Regime 2 risk at all due to the scale of the Regime 2 risk vs. the Regime 1 

risk.  When the values that were outputted by the two models for 10 simulations runs were 

compared, it was seen that the range of the values outputted by the regime 1 model was 

extremely different from the range of values outputted by the regime 2 model.  Figures 4-4 and 

4-5 (below) show the distribution of the outputs from the two models for random traffic 
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conditions.  As can be seen, the output of the regime 1 model lies between 0.0 and 0.015 while 

the output of the regime 2 model lies between 0.0 and 0.60 making them incomparable to each 

other.   

 
Figure 4-4.  Distribution of Regime 1 Model Output 

 

 
Figure 4-5.  Distribution of Regime 2 Model Output 
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Therefore, applying a scaling factor of 13.65 would only increase the range of the 

regime 1 risk values to between 0.0 and 0.218.  This range is still much smaller than the range of 

values outputted by the regime 2 model which would mean that regime 2 conditions are more 

risky than regime 1 conditions.  However, since 46% of the crashes occur within regime 1 

conditions (6% of the traffic flow) it is expected that the regime 1 risk value would be higher 

than the regime 2 risk value.   

The range of the regime 1 conditions could be artificially increased by applying a larger 

scale factor.  However, the problem still remains of which number to use as the scale factor.  

Applying too large of a scale factor would overemphasize the importance of the regime 1 risk 

while applying scale factor that is too small would emphasize the importance of the regime 2 

risk.  In either case, no other scaling factor is justifiable and since the value of the scale factor is 

essential to the calculation of the crash risk this method was abandoned.   

4.4.2  Method 2 

Since such a large number of crashes (46%) occurred during regime 1 conditions, which 

were typically rare (6% of all non-crash cases), the next method of assessing the rear-end crash 

risk considered treating all regime 1 conditions as equally risky.  This method would assign a 

single value of the crash risk during regime 1 conditions to represent regime 1 conditions since it 

would be assumed that all regime 1 conditions are equally undesirable.  One problem with this 

method lies with what value of risk should be assigned to regime 1 conditions.  In general, the 

value of regime 1 risk that is to be selected needs to be higher than any regime 2 risk value (since 

regime 1 conditions have been shown to be more dangerous than regime 2 conditions).  Since the 

range of regime 2 risk values is between 0.0 and 1.0, selecting a value of 1.0 (upper-bound on the 
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posterior probability) seems the most appropriate.  Therefore, the measure called Risk_2 was 

created (Equation 8).  

 

⎩
⎨
⎧

=
ConditionsregimeR
Conditionsregime

Risk
22
11

2_  (8) 

 

Using this measure would ensure that the regime 1 risk is higher than the regime 2 risk at 

all times.  Therefore, if a crash prevention plan is implemented and the conditions change from 

regime 1 to regime 2, the risk will always be reduced. However, if the resulting regime 2 risk 

turns out to be a high value, like 0.91, it would ensure that the improvement that was made is not 

overestimated.  

Note that the value of regime 1 risk chosen should not be influenced by the value of the 

regime 2 crash-risk value.  It was proposed that the equivalent regime 2 rear-end crash risk of 

regime 1 conditions be equal to the maximum of the rear-end risk during regime 2 conditions.  

However, this option was ruled out as the maximum would vary for different test cases, loading 

cases, and starting value seeds.  Using 1.0 is independent of the regime 2 risk.  It should also be 

noted that using the value 1.0 does not imply that regime 1 conditions will ALWAYS lead to a 

crash.  Since the probabilities that are determined by the model are posterior probabilities, the 

value outputted by the crash prediction models give a measure of the crash likelihood – not the 

probability that it will occur.  Therefore, using a value of 1.0 for regime 1 conditions merely 

implies that regime 1 conditions are always worse from a crash standpoint than regime 2 

conditions.  
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The main problem with this method is that it inherently treats all regime 1 conditions as 

the same.  This essentially ignores the output of the regime 1 crash risk model which has proved 

that there were indeed different levels of crash risk within the regime 1 conditions.  Since the 

output of the regime 1 crash risk model shows that there is a definite variation in the crash risk 

during regime 1 conditions, treating all regime 1 conditions as having equal crash risk would be 

an incorrect assumption.  Additionally, this method assumes that regime 1 conditions are 

ALWAYS more likely to have a crash than regime 2 conditions, regardless of the exact traffic 

conditions.  While it is expected that regime 1 conditions would be more risky on average, it is 

an incorrect assumption to assume that the lowest regime 1 crash risk value is more risky than 

the highest regime 2 crash risk value.  For these reasons, this method was abandoned. 

4.4.3  Method 3 

The next method that was tried considered standardizing the output of the two models in 

order to normalize the scales of the models.  A simple standardization procedure that can be used 

to force the mean of a distribution to be equal to zero and the standard deviation to equal one is 

to subtract the actual mean from each value and divide this by the actual standard deviation.  

This is given in Equation 9. 

 

Risk

RiskRiskRiskNorm
σ
−

=_   (9) 

 

Using this equation, the risk output from the regime 1 and the regime 2 models were 

standardized so that they were on the same scale.  However, there is still the problem of how to 
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determine the standard deviation and mean of each model’s output.  The mean and standard 

deviation of the regime 1 risk could be calculated from traffic situations that are in regime 1 only 

or all random traffic situations, regardless of if they are regime 1 or regime 2.  A case can be 

made to use both methods to calculate the mean and standard deviation of the crash risk.  

Therefore, both methods were initially used in different forms to assess the crash risk.  The 

standardized output from the models using only the respective traffic conditions (using only 

regime 1 conditions to determine the regime 1 risk) is denoted as the first normalized risk (N1) 

while the standardized output using all random traffic situations is denoted as the second 

normalized risk (N2).  Therefore, the normalized risk values for each model will be denoted as 

follows: [normalization method]_[risk model].  For example, N1_R1 would represent the output 

of the regime 1 model normalized using the first method.   

The scales of both the R1 and R2 when standardized by the two normalization methods 

are presented below in Figures 4-6 through 4-9.  Please note that the scales of the standardized 

risk values are now approximately equal. 
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Figure 4-6.  Regime 1 Model Normalized by First Method 

 

 
Figure 4-7.  Regime 2 Model Normalized by First Method 
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Figure 4-8.  Regime 1 Model Normalized by Second Method 

 
Figure 4-9.  Regime 2 Model Normalized by Second Method 

 

Now that there are two standardized risk variables for each model, the next step is to 

determine a single metric of the crash risk at a certain location and time.  One method is to use 

the normalized risk of a respective regime condition if the traffic conditions fall into that regime.  
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In this case, the first normalization method would be used since the traffic conditions are already 

known to be of that regime.  Therefore, the equation for Risk_3A is given in Equation 10. 

 

  (10) 
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However, this assumes that regime 1 and regime 2 conditions (which are based on the 

classification tree model described in Figure 4-1) are absolute.  In reality, after the classification 

tree is applied, the result is a probability that the traffic conditions are regime 1 conditions or 

regime 2 conditions; this probability is labeled as the value a or 1-a, respectively, in Figure 4-1.  

Therefore, combining this probability into the risk equation would make the measure of crash 

risk more accurate.  Since the output of the regime 1 and regime 2 models are posterior 

probabilities (the probability of having a regime 1 or regime 2 crash given those conditions), it 

would make sense to compute a weighted average of the normalized regime 1 risk and the 

normalized regime 2 risk based on the probability of the traffic conditions being regime 1 or 

regime 2.  Therefore, risk metrics 3B and 3C are defined in Equations 11 and 12, respectively. 

 

)2_1(*)1()1_1(*3_ RNaRNaBRisk −+=  (11) 

)2_2(*)1()1_2(*3_ RNaRNaCRisk −+=  (12) 

 

Where a = the probability that the traffic conditions are regime 1 conditions and 1 – a is 

the probability that the traffic conditions belong in regime 2.  N1_R1, N1_R2, N2_R1, and 

N2_R2 have been previously defined as the risk models from regime 1 or 2 normalized by the 
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first or second method.  These risk measures (Risk_3B and Risk_3C) are essentially weighted 

averages of the normalized output from the regime 1 and regime 2 models using the probability 

that the traffic conditions belong to that specific traffic regime as the weighting factor. 

If the probability of a particular traffic condition belonging to regime 1 or regime 2 is 

used then the second method of crash risk normalization is more applicable since this recognizes 

that the regime conditions are not absolute.  Therefore, Risk_3C is more justified than Risk_3B 

from a theoretical standpoint.  This makes sense since using the weighted average risk measure 

inherently assumes that the regime of the traffic conditions is not an absolute value but a 

probability.  The first method of normalization (used in Risk_3B) assumes (by normalizing based 

on values only from within the corresponding regime) that the regime is absolute and, therefore, 

is not as appropriate as Risk_3C.  However, both measures will be compared to determine the 

final, best metric. 

4.4.4  Comparison of Risk Methods 

The first step taken to compare the usefulness of the three different risk measures is to 

compare them visually by graphing the measures for the same situation.  Once graphed, the 

individual values can be compared against one another as well as against what is expected in that 

situation to determine which measure best represents the data.  This was done for different 

situations to see how the metrics change for different traffic conditions.  Figures 4-10 to 4-16 

show a plot of the three measures in question (Risk_3A, Risk_3B, and Risk_3C) for various 

situations.  In addition, a line is shown on the plot (regime) that shows whether or not the traffic 

conditions are of regime 1 or regime 2 to compare the crash risk values between regime 1 and 

regime 2 conditions. 
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Figure 4-10.  Graph of Crash Risk Values at Station 32 E 0 
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Figure 4-11.  Graph of Crash Risk Values at Station 38 E 1 
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Figure 4-12.  Graph of Crash Risk Values at Station 42 E 0 
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Figure 4-13.  Graph of Crash Risk Values at Station 46 E 1 
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Figure 4-14.  Graph of Crash Risk Values at Station 58 E 1 
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Figure 4-15.  Graph of Crash Risk Values at Station 24 E 0 
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From Figures 4-10 to 4-16, it is seen that the values of Risk_3A and Risk_3B seem to be 

nearly equivalent.  Judging by the equations that define Risk_3A and Risk_3B this only occurs 

when the value of “a” is close to 0 or 1 (which is most often the case as seen in Figure 4-1).  

Looking at the trend of values of each risk measure, the average risk values for Risk_3A and 

Risk_3B are lower when the traffic conditions are regime 1 compared to when traffic conditions 

are in regime 2.  This is the opposite of what is expected to occur.  This trend is also apparent at 

times for Risk_3C.  However, there is an important difference in the measure Risk 3A, Risk_3B, 

and Risk_3C.  As shown in the plot of the crash risks at nearly all stations provided, the value of 

Risk_3C is almost always lower than the value of Risk_3B / Risk_3A during regime 2 conditions 

and higher during regime 1 conditions.  This means that Risk_3C gives higher values during 

regime 1 conditions and lower values during regime 2 conditions, which is what is expected.  

Therefore, Risk_3C shows potential to be used as the rear-end crash risk measure.   

However, there is still the issue of whether or not Risk_3C provides higher risk values 

(on average) during regime 1 conditions compared to regime 2 conditions.  To test whether or 

not this is true, the correlation of the risk values is computed with Risk_2 and the regime 

conditions.  The correlation coefficient will give an indication of whether or not two separate 

measures have the same general trend.  Comparing the correlation of Risk_3C with Risk_2 

(which has a maximum risk value of 1 during ALL regime 1 conditions) will show whether or 

not the values of Risk_3C are higher during regime 1 conditions than regime 2 conditions.  The 

correlation matrix between all 5 risk measures and the regime of the traffic conditions are shown 

below in Table 4-2. 
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Table 4-2.  Correlation of Various Risk Metrics and Regime Conditions 

  risk_1 risk_2 risk_3a risk_3b risk_3c regime 
-0.0102 0.9333 0.9071 0.6655 0.2206 risk_1 1.0000 

          
-0.0102 0.2005 0.2903 0.6501 -0.9761 risk_2 

  
1.0000 

        
0.9333 0.2005 0.9874 0.8599 -0.0142 risk_3a 

    
1.0000 

      
0.9071 0.2903 0.9874 0.9019 -0.1059 risk_3b 

      
1.0000 

    
0.6655 0.6501 0.8599 0.9019 -0.5114 risk_3c 

        
1.0000 

  
0.2206 -0.9761 -0.0142 -0.1059 -0.5114 regime 

          
1.0000 

 

As shown in Table 4-2, the correlation between Risk_2 and Risk_3C is very high 

(0.65005) compared to the correlation of Risk_2 with Risk_3A (0.2005) and Risk_3B (0.2903).  

Additionally, the correlation between Risk_3C and the regime conditions is also high (-0.51140) 

compared to the correlation of the regime conditions and Risk_3A (-0.0142) and Risk_3B 

(-0.1059).  This implies that Risk_3C shows more clearly a higher value of crash risk for 

segment 1 conditions.  Only Risk_2 has a higher correlation with the regime conditions (-0.9761) 

and that occurs because for this measure all regime 1 conditions are artificially given the highest 

value of risk (1.0).  Therefore, Risk_3C provides not only the best measure from a practical 

perspective, but Risk_3C also describes the higher risk during regime 1 conditions better from a 

statistical perspective as well.  Therefore, the measure of rear-end crash risk that will be used for 

this study will be computed using the method described above for Risk_3C.  

4.5  Lane-Change Crash Risk 

As previously mentioned, Pande and Abdel-Aty (2006) also created a model to assess the 

lane changing crash risk along Interstate-4.  For this model a lane change crash was assumed to 
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be all sideswipe crashes and also the angle crashes that occurred on the left most and center lanes 

along the freeway since these crashes are typically associated with lane changing maneuvers.  

Lane-changing crashes were not found to occur within different traffic regimes and, therefore, 

one model was sufficient to assess the lane-change risk for all situations encountered.  This 

makes the lane-change crash risk measure extremely easy to use as no process is needed to relate 

different risk values (since there is only one model).  However, the output of the lane-change 

crash risk model was normalized by subtracting the mean and dividing by the standard deviation 

in order to equate the scales of the rear-end and lane-change crash risk.  The mean of this new 

lane-change crash risk measure is now equal to 0.0 and the standard deviation equal to 1.0. 

Because lane-changing behavior is dependant upon the traffic characteristics in individual 

lanes of the freeway, some of the variables used considered occupancy in individual lanes in 

addition to variables aggregated over the three lanes like in the rear-end model case.  

Classification trees were used to determine variables that are significantly related to lane 

changing crashes and a neural network approach was used to create the model.   The following 

variables were found significant to the prediction of lane changing crash risk: 

• ASW2 

• ASU2 

• AOW2 

• ADALOU2 

• SVW2 

• SSW2 

The nomenclature used to describe the variables is the same as previously mentioned 

except for two important differences.  First, the variable ADALOU2 is a unique variable that 
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takes into account the difference in occupancy between adjacent lanes.  This variable can be 

described as in Equation 13. 
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In this equation LO, CO, and RO represent the lane occupancy in the left, center, and 

right lane, respectively.  The second difference between the naming of the variables in the rear-

end models and the lane changing models is the variable that represents the station name.  In the 

lane changing models the station name is represented by U or W which represents the station 

upstream or downstream of the location of interest, respectively.    

4.6  Travel Time 

In addition to the measures of rear-end and lane-change crash risk, the travel time will be 

considered in examining the effects of the various test scenarios performed in this study.  The 

travel time is an important measure to consider due to the potential negative impacts of route 

diversion and ramp metering on the operational capabilities on the network.  Diverting vehicles 

from entering Interstate-4 at one location and moving them to another downstream location will 

increase the volume of vehicles using the surface streets.  This would not only increase the travel 

time of the diverted vehicles but the vehicles currently on the surface streets would experience 

additional delays due to the added volume on the network.  Ramp metering will also directly 

affect travel time by delaying vehicles on the on-ramps before they are allowed to enter the 

freeway.  The travel time that will be used as a measure of effectiveness in this study is the 
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overall network travel time.  This value is given as a standard parameter in the PARAMICS 

program and is computed by summing the individual travel times for all vehicles on the network.  

A change in this value will indicate the effects of the ITS strategy on the overall network 

performance.  For this reason, even a modest increase in the travel time of 10% is significant 

since this would mean that the average travel time for ALL vehicles is increased by this amount.  

In selecting the best metering algorithm, while preference will be given to strategies that most 

effectively reduce the crash risk along the freeway, travel time will also be used to determine 

which strategies are feasible to implement.  For this study the maximum allowable increase in 

the network-wide travel time for any of the scenarios was set at 5%.  This is a small enough 

value that it will not significantly hinder the network users and can be sacrificed to improve the 

overall safety of the freeway. 

4.7  Network Loading Scenarios 

During the peak period, the downtown area of Interstate-4 usually operates at a Level of 

Service F.  The simulation represents this as heavy congestion is present during a majority of the 

simulation runtime in the downtown area.  However, this study wishes to test the ITS alternatives 

at various levels of congestion on the freeway that occurs throughout a typical day.  This is 

desired as implementing route diversion and ramp metering may yield different results at the 

different loading cases.  Therefore, four loading scenarios have been created for testing of the 

ITS alternatives.  These loading scenarios are as follows: 100% loading (heavy congestion), 90% 

loading (typical congestion), 80% loading (approaching congestion), and 60% loading (free flow 

conditions).  The 90% loading condition is what can be expected on a typical day on I-4 during 

the peak hour.  The 100% loading condition is an extreme condition that occurs when the travel 
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demand peaks at the same time.  Since there are 4 different loading scenarios in this study, the 

network loading will be the first variable tested in the experimental design for both route 

diversion and ramp metering. 

4.8  Route Diversion Scenarios 

The purpose of the first half of the experimental design is to examine the feasibility of 

route diversion as a real-time crash risk prevention strategy.  Additionally, the experimental 

design is meant to determine the best diversion strategy given the specific diversion routes that 

are being used.  The two unique diversion routes presented in this study are Diversion Route 1 

and Diversion Route 2. 

4.8.1  Route Diversion 1 

The first diversion route has two decision points.  The initial decision point (DP-1A) will 

determine the number of vehicles that divert from their initial ramp entrance.  The second 

decision point will determine which entrance the diverted vehicles will use to re-enter the 

freeway.  Vehicles that do not use the second diversion (DP-1B) will enter the freeway 2 miles 

downstream of their initial entrance location and enter the freeway on Anderson St.  If DP-1B is 

used, however, these vehicles will enter the freeway 1 mile further downstream at Colonial Drive 

which increases the length that vehicles were diverted by 50% (see Figure 3-6).  Please note that 

the secondary decision point is contingent upon the first.  Only vehicles that have diverted at DP-

1A will be available to divert at DP-1B.  Therefore, diverting 50% of the vehicles at DP-1B 

when 60% of the vehicles were diverted initially (% 1A) will result in 30% of the vehicles using 

the nearer re-entry location and 30% of the vehicles traveling to the further re-entry location.  
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The variables that will be used in the experimental design to test the feasibility of Route 

Diversion 1 are: the percentage of vehicles diverted at DP-1A (% 1A), the percentage of vehicles 

diverted at DP-1B (% 1B), and the network loading.  Figure 4-16 represents the levels of each 

variable that were used in the experimental design.  For this study, a factorial design was 

employed which examined every variable combination in order to determine the best case and 

trends within each variable.  The individual test cases created by the factorial design are shown 

below in Table 4-3.   

 

 Factor 1: 
Network 
Loading 

Factor 2: Percent of 
Vehicles Diverted 

from DP-1A 

Factor 3: Percent of 
Vehicles Diverted 

from DP-1B 

• 60 Percent 
• 80 Percent 
• 90 Percent 
• 100 Percent 

• 20 Percent 
• 40 Percent 
• 60 Percent 
• 80 Percent 
• 100 Percent

• 0 Percent 
• 50 Percent 
• 100 Percent 

 
Figure 4-16.  Factorial Design for Route Diversion 1 
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Table 4-3.  Test Cases for Route Diversion 1 

Case 
Number 

Percent 
Loading 

Percent Vehicles 
Diverted From 

DP-1A 

Percent Vehicles 
Diverted From 

DP-1B 
1 60 20 0 
2 60 40 0 
3 60 60 0 
4 60 80 0 
5 60 100 0 
6 60 20 50 
7 60 40 50 
8 60 60 50 
9 60 80 50 

10 60 100 50 
11 60 20 100 
12 60 40 100 
13 60 60 100 
14 60 80 100 
15 60 100 100 
16 80 20 0 
17 80 40 0 
18 80 60 0 
19 80 80 0 
20 80 100 0 
21 80 20 50 
22 80 40 50 
23 80 60 50 
24 80 80 50 
25 80 100 50 
26 80 20 100 
27 80 40 100 
28 80 60 100 
29 80 80 100 
30 80 100 100 
31 90 20 0 
32 90 40 0 
33 90 60 0 
34 90 80 0 
35 90 100 0 
36 90 20 50 
37 90 40 50 
38 90 60 50 
39 90 80 50 
40 90 100 50 
41 90 20 100 
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Case 
Number 

Percent 
Loading 

Percent Vehicles 
Diverted From 

DP-1A 

Percent Vehicles 
Diverted From 

DP-1B 
42 90 40 100 
43 90 60 100 
44 90 80 100 
45 90 100 100 
46 100 20 0 
47 100 40 0 
48 100 60 0 
49 100 80 0 
50 100 100 0 
51 100 20 50 
52 100 40 50 
53 100 60 50 
54 100 80 50 
55 100 100 50 
56 100 20 100 
57 100 40 100 
58 100 60 100 
59 100 80 100 
60 100 100 100 

 

4.8.2  Route Diversion 2 

A similar factorial experimental design was used to examine the effects of Diversion 

Route 2.  As shown in Figure 3-6, this diversion route is much smaller than the previous route.  

Diverted vehicles will travel less than 1 mile on the surface streets before re-entering the freeway 

at Colonial Drive.  Because there is only one re-entry location for these diverted vehicles, route 

diversion 2 contains only a single decision point (DP-2) which controls the number of vehicles 

that are diverted.  This is shown visually in Figure 3-6.  Note from this figure that the area of the 

freeway affected by route diversion 2 is encompassed in the latter half of route diversion 1.   

The two variables considered in this section of the experimental design were the network 

loading and the percentage of vehicles diverted at DP-2.  The levels of the factorial design are 

presented below in Figure 4-17.  The individual test cases are also given in Table 4-4.   
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Factor 1: 
Network 
Loading 

Factor 2: Percent of 
Vehicles Diverted 

from DP-2 

• 60 Percent 
• 80 Percent 
• 90 Percent 
• 100 Percent

• 20 Percent 
• 40 Percent 
• 60 Percent 
• 80 Percent 
• 100 Percent  

Figure 4-17.  Factorial Design for Route Diversion 2 

 
Table 4-4.  Test Cases for Route Diversion 2 

Case 
Number 

Percent 
Loading 

Percent Vehicles 
Diverted From 

DP-2 
61 60 20 
62 60 40 
63 60 60 
64 60 80 
65 60 100 
66 80 20 
67 80 40 
68 80 60 
69 80 80 
70 80 100 
71 90 20 
72 90 40 
73 90 60 
74 90 80 
75 90 100 
76 100 20 
77 100 40 
78 100 60 
79 100 80 
80 100 100 
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4.9  Ramp Metering Scenarios  

The purpose of the second half of the experimental design is to find the best ramp 

metering strategy to reduce the crash risk through the downtown Orlando portion of the network.  

The experimental design will compare the feasibility of using the ALINEA ramp metering 

strategy and the Zone Algorithm against the no metering case and against each other (Section 

4.9.2.1).  Additionally, the experimental design will also compare the effectiveness of both the 

Zone and ALINEA algorithm using the traffic cycle realization and the one-car-per-cycle 

realization (Section 4.9.2.2).  However, the first portion of the experimental design will be 

completed to confirm the best operational parameters for the ALINEA strategy. 

4.9.1  Calibration of ALINEA Parameters  

Previous work has been done to examine the effects of using the ALINEA ramp metering 

strategy to reduce the real-time crash risk on a freeway (Lee et al, 2006; Dhindsa, 2005).  

However, the calibration parameters for the ALINEA algorithm, such as the critical occupancy 

and cycle length, differ between the study performed by Dhindsa (2005) and what is expected in 

the field.  Dhindsa (2005) found that using a higher critical occupancy (which would make the 

algorithm less restrictive) increased the safety benefits which does not make sense as allowing 

more vehicles onto the network should increase the crash risk.  Therefore, a portion of the 

experimental design must be dedicated to determining the calibration parameters for the 

ALINEA network.  As seen in the ALINEA equation (Equation 3) the following parameters can 

be altered when using ALINEA:  the regulator parameter (  ) and the critical occupancy ( ).  

Additionally, when the traffic-cycle realization is used the cycle length becomes another 

RK co
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important factor.  Previous work by Dhindsa (2005) as well as studies performed to optimize the 

operational capabilities of ALINEA (Papageorgiou et al, 1997) has found that the optimal value 

of the regulator parameter is 70 veh/hr.  However, various different cycle lengths and critical 

occupancy values have been used.   

The first portion of the experimental design will implement ALINEA and the traffic-

cycle realization using different cycle lengths and critical occupancies to determine the best 

combination to use to compare against the Zone algorithm.  A factorial design was again chosen 

to test three values of cycle length (30, 45, and 60 seconds) as well as three values of the critical 

occupancy (0.17, 0.20, and 0.23).  The last factor in the factorial design was the network loading 

level.  Since the purpose of ramp metering is to alleviate and eliminate congestion (Jin and 

Zhang, 2001), it is impractical to implement ramp metering in non-congested situations.  

Therefore, only two loading levels were deemed appropriate for this analysis – the 90 percent 

loading and 100 percent loading scenarios.  The 60 percent loading and 80 percent loading 

scenarios were briefly examined outside the experimental design but were found to show no 

significant crash risk changes as a result of ramp metering.  The individual cases in the 

experimental design are shown below in Table 4-5.   
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Table 4-5.  Test Cases for ALINEA Parameters 

Case 
Number 

Percent 
Loading 

Cycle 
Length 

Critical 
Occupancy 

81 100 30 0.17 
82 100 30 0.20 
83 100 30 0.23 
84 100 45 0.17 
85 100 45 0.20 
86 100 45 0.23 
87 100 60 0.17 
88 100 60 0.20 
89 100 60 0.23 
90 90 30 0.17 
91 90 30 0.20 
92 90 30 0.23 
93 90 45 0.17 
94 90 45 0.20 
95 90 45 0.23 
96 90 60 0.17 
97 90 60 0.20 
98 90 60 0.23 

 

The section of freeway that is metered using ALINEA for this portion of the experimental 

design is the area immediately upstream of the Interstate-4 / S. R. 408 Interchange.  This section 

includes 3 ramps that are metered and denoted in Figure 4-18 (Section 4.9.3) as Zone 1.  Note 

that even though the ramps are designated as Zone 1 this does not mean that the Zone algorithm 

is used or the metering algorithm is coordinated.  This just means that the ramps that make up 

Zone 1 will be metered individually in this portion of the experimental design. 
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4.9.2  Comparison of Ramp Metering Strategies 

4.9.2.1  Differences in Zone and ALINEA Algorithms 

The ALINEA and Zone ramp metering algorithms were described in detail in Sections 

2.3.1 and 3.6.2.1, respectively.  The major differences between the two algorithms are 

summarized below. 

• The ALINEA algorithm considers only the occupancy on the freeway in order to 

determine the metering rate at a particular ramp.  However, the Zone algorithm considers 

traffic volumes (at on-ramps, off-ramps, and entry and exit points to the zone in 

question), speeds, and densities.  Therefore, the Zone algorithm is more complex and 

requires more information to be implemented but uses a more complete picture of the 

traffic flow to determine the metering rate. 

• The Zone algorithm requires that the ramps in the freeway be grouped into zones or 

groups of ramps that will be metered together.  This again increases the complexity of the 

algorithm as a single ramp cannot be metered by itself.  However, the ALINEA algorithm 

can meter single ramps as well as consecutive ramps with ease. 

• The ALINEA algorithm is not coordinated and only considers loop information from the 

nearest detector in order to meter a particular ramp.  The algorithm cannot “look ahead” 

at traffic conditions upstream or downstream to see how to best change the metering rate.  

On the other hand, the Zone algorithm considers traffic information for the entire zone in 

order meter any particular ramp.  Therefore, this method is more suited to handle 

situations with large areas of congestion as the algorithm will recognize these areas and 

account for it by lowering the metering rate. 
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• The ALINEA algorithm does not take into account the traffic demand at any on-ramp.  

Therefore, when using ALINEA a ramp that has a high traffic demand could have a more 

restrictive metering rate than another ramp that few vehicles use.  This would result in 

unnecessary delays and queues as vehicles that need to enter the freeway are not able to 

while excessive green time is allowed for ramps that have no traffic demand.  This 

unnecessary restrictiveness actually causes the ALINEA algorithm to perform better from 

an operational standpoint since fewer vehicles are allowed onto the freeway.  The Zone 

algorithm, on the other hand, accounts for on-ramp demand and proportionally allows for 

green time based on how many vehicles at each ramp need to enter the freeway. 

•  Because ALINEA meters ramps individually this algorithm performs better when there 

is localized congestion.  When localized congestion is present, the metering rate near the 

ramp in question it reduced to allow the congested conditions to dissipate.  The Zone 

algorithm cannot handle these situations as well since the localized congestion at one 

detector would be just a small part of the larger zone.  

Looking at the various differences between the two metering algorithms there is no clear 

“best” strategy for reducing the rear-end and lane-change crash risk.  Each algorithm has its own 

unique advantages and disadvantages.  Therefore, in order to determine which algorithm 

provides the best safety results they must be compared in the last part of the experimental design 

to determine the overall best ramp metering strategy. 

4.9.2.2  Differences in Traffic-Cycle and One-Car-Per-Cycle Realizations 

Both the ALINEA and Zone ramp metering algorithms yield the metering rate in veh/hr 

for each of the on-ramps that are being metered.  Once the metering rate is known, however, the 
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traffic signals that control the ramp must then reflect that particular metering rate.  As mentioned 

by Papageorgiou et al (1997), there are two methods of implementing the ramp metering strategy 

– the traffic-cycle realization and the one-car-per-cycle realization. 

In the traffic-cycle realization method, after the final metering rate values (  for 

ALINEA and  for Zone) are assigned, the rates must be converted to green time for the ramp 

meter.  The meters used in this study assume a cycle length between 30 and 60 seconds.  

Assuming a saturation flow rate of the meter of 1900 vehicles per hour (Highway Capacity 

Manual, 2000), Equation 14 converts the flow rate into green time for the meter (assuming lost 

time is equal to extension of effective green time).   Using this method allows vehicles to enter 

the freeway in platoons.  The average size of the platoon that is allowed to enter the freeway is 

determined by the cycle length.  For equal metering rates, a longer cycle length would mean that 

larger platoons are allowed to enter the freeway.   

][tR

nR

 

1900
_* lengthcyclerateGreen =  (14) 

 

For the one-car-per-cycle method, the implementation is slightly different.  Once the 

metering rate is determined, the average cycle length is calculated assuming that only a single 

vehicle enters the freeway per cycle.  From this cycle length, the red-time is determined by 

assuming a constant green-time for each cycle (2 seconds, enough for one vehicle to utilize the 

phase).  The cycle lengths used range from 2.1 seconds (1714 veh/hr) to a maximum cycle length 

defined for each ramp that is metered.  This maximum cycle length is calculated by determining 

the minimum metering rate for the respective ramp by using the method mentioned in Section 
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3.6.2.1 which sets the minimum metering rate to keep average vehicular delay at on-ramps to 4 

minutes.  When this method is used, platoons of vehicles are prohibited from entering the 

freeway at once.  This reduces the amount of turbulence to the mainline traffic flow caused by 

vehicles entering the traffic stream from the on-ramps since only one vehicle would have to 

merge into the traffic stream at a time.  However, the drawback to this strategy is reduced 

operational capabilities as vehicles are delayed at the ramp meters for a longer amount of time.  

Additionally, when this method is used at less restrictive metering rates vehicles (smaller cycle 

lengths) vehicles will have extremely small delays at the meters and will enter the freeway 

almost as quickly as they arrived at the ramp).  In other words, the meter will essential not do 

anything during these situations. 

4.9.3  Ramp Metering Scenarios 

The major variable in the implementation of the Zone ramp metering algorithm is the 

zone that is chosen to be metered.  Once the zone is chosen, there are no major algorithm 

variables that can be used to alter the effectiveness of the metering strategy.  However, since the 

traffic-cycle realization is being applied the optimal cycle length is still a factor that needs to be 

determined.  The experimental design will therefore include the varying cycle lengths and three 

different zones that have been created to explore the effectiveness of the Zone algorithm in 

downtown Orlando.  The three chosen zones are shown in a schematic drawing presented in 

Figure 4-18. 
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Figure 4-18.  Zones Metered for Ramp Metering Strategies 

 

The zones were chosen with the objective of reducing the crash risk in the downtown 

area around the Interstate-4 / S. R. 408 Interchange.  The ramp leading from S. R. 408 to 

Interstate-4 (located between stations 36 and 37) is included as a non-metered ramp due to the 

large volumes that use this interchange.  Each of the three zones includes this interchange so that 

the large in-flow volume from this interchange factors into the metering algorithm.  The first 

zone is located just upstream of the interchange and includes the three ramps upstream.  The 

second zone extends downstream from the interchange to incorporate the ramps four 

downstream.  The third zone is the largest zone that incorporates most of the downtown area and 

is a union of zones 1 and 2.   

In the experimental design, each zone was metered using both the Zone and ALINEA 

algorithms.  Although the ALINEA strategy is a localized strategy, the same zones could be 

metered using ALINEA by simply metering the ramps that encompass the zone individually.  
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For the ALINEA algorithm the calibration parameters from Section 4.9.1 (Table 4-5) were used 

and the ramps involved in the zone were metered in an uncoordinated fashion.  For the Zone 

algorithm with the traffic-cycle realization, each zone was metered three times with varying 

cycle lengths.  This was done to determine if the cycle length was an important variable in the 

traffic-cycle realization of the Zone algorithm.  Additionally, each zone was metered with the 

ALINEA and Zone algorithms using the one-car-per-cycle (OCPC) method of allowing vehicles 

onto the mainline.  The full experimental design is listed below.  Note this is basically another 

factorial design with 4 factors.  The factors are: loading (90 or 100 percent), Zone (1, 2, or 3), 

Algorithm (Zone or ALINEA), and cycle properties (30 second, 45 second, 60 second, one-car-

per-cycle).  However, there is a partial factor in the experimental design as the ALINEA 

algorithm will only be run with the best cycle length (from Section 4.9.1) and the one-car-per-

cycle length.   
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Table 4-6.  Test Cases for Zone and ALINEA Ramp Metering 

Case 
Number 

Percent 
Loading 

Metered 
Zone Algorithm 

Cycle 
Length 

99 100 1 Zone 30 
100 100 1 Zone 45 
101 100 1 Zone 60 
102 100 1 ALINEA BEST 
103 100 1 Zone OCPC 
104 100 1 ALINEA OCPC 
105 100 2 Zone 30 
106 100 2 Zone 45 
107 100 2 Zone 60 
108 100 2 ALINEA BEST 
109 100 2 Zone OCPC 
110 100 2 ALINEA OCPC 
111 100 3 Zone 30 
112 100 3 Zone 45 
113 100 3 Zone 60 
114 100 3 ALINEA BEST 
115 100 3 Zone OCPC 
116 100 3 ALINEA OCPC 
117 90 1 Zone 30 
118 90 1 Zone 45 
119 90 1 Zone 60 
120 90 1 ALINEA BEST 
121 90 1 Zone OCPC 
122 90 1 ALINEA OCPC 
123 90 2 Zone 30 
124 90 2 Zone 45 
125 90 2 Zone 60 
126 90 2 ALINEA BEST 
127 90 2 Zone OCPC 
128 90 2 ALINEA OCPC 
129 90 3 Zone 30 
130 90 3 Zone 45 
131 90 3 Zone 60 
132 90 3 ALINEA BEST 
133 90 3 Zone OCPC 
134 90 3 ALINEA OCPC 
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4.10  Number of Simulation Runs 

Due to the stochastic nature of the PARAMICS micro-simulation there is a fair amount of 

variation in-between runs of a specific testing alternative.  This variation occurs because each 

run that is performed is unique.  A random number generator is used to assign individual 

headways, trip departure times, minimum gap acceptance values, etc. for individual vehicles in 

the network in stochastic fashion.  For each run a different random number seed is used which 

defines the rest of the random numbers used by PARAMICS.  Therefore, if two runs are 

performed with the same seed value the results from PARAMICS will be identical for the two 

runs.  In this study, multiple runs of different seed values were used to ensure that the results that 

were determined were based on the tested strategy and not an isolated event resulting from 

behavior due to a particular seed value.  Because of this a large number of runs needed to be 

performed in order to reduce the variation in the crash risk to acceptable levels.   

A good rule of thumb in simulation is that a minimum of 30 runs should be performed for 

each case in order to have a statistically sound experimental design.  This requires no calculation 

of the amount of variation within the data as this number of runs is assumed to be large enough 

to account for the simulation variance.  However, performing this many runs would require an 

enormous amount of processing time (especially for the macros that are used to summarize the 

data).  Therefore, another method has been used to help reduce the number of runs to be 

performed.  In this method, a group of runs (10 for this study) is performed for all cases.  Once 

completed, the variation of within runs is determined.  Using Equation 15 the number of required 

runs is calculated based on the variation observed in the initial group of runs. 
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In this equation, N represents the number of runs required, K is a statistical factor related 

to the confidence level that is required (K = 1.645 for the 90% confidence level which is used in 

this study), S is the standard deviation of the data in question, and E is the error that is allowable 

for the runs.  For this study, S was calculated by examining the average crash risk at a particular 

station across the 10 initial runs.  A separate N value was calculated for every station within a 

group of runs.  The station that yielded the highest N value was used to determine the number of 

runs required for that particular group of test runs.  The allowable error was assumed to be 0.100 

for the rear-end crash risk; note the rear-end crash risk was used as it generally had more 

variation than the lane-change crash risk.  The value of 0.100 is equivalent to about 2% of the 

range of the rear-end crash risk values that were observed (-1.0, 3.5). 

In all cases, scenarios performed at the 60 percent loading scenario required no further 

runs to be performed.  The majority of other scenarios also required no further runs to be 

performed.  For those test cases that did require additional runs the maximum number that was 

needed to be done for any particular test case was a total of 20.  Note that this is significantly less 

than 30 runs that are typically used to ensure a good experimental design. 
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CHAPTER 5.   RESULTS 

5.1  Analyzing Simulation Runs 

Values of the rear-end and lane-change crash risk were calculated at every time period 

and location for each of the individual runs performed for each test case using the 

aforementioned crash risk models.  Although a statistically sufficient number of runs were 

performed for each test case described in Section 4.10, there still is a fair amount of variation of 

the rear-end and lane-change for a particular time and location between the individual runs of a 

particular test case.  This variation occurs due to the random, stochastic nature of the simulation 

program and is reflected equally in the field due to the random fluctuations in traffic flow over 

multiple days.  An example of this variation is shown in Figure 5-1 which is a plot of the rear-

end crash risk values vs. time for each run at a particular station of a particular scenario (case 25) 

in the experimental design.  Note that the rear-end crash risk values plotted in all subsequent 

sections is the Risk_3C that is defined in Equation 12.  The scale of the rear-end and lane-change 

crash risk is between -1.0 and 3.5.  This occurs because the probabilities obtained from the 

neural network models are normalized by subtracting the mean and dividing by the standard 

deviation.  Therefore, these crash risk values should be used to compare the risk at different 

times and locations.  A crash risk value of 0.0 would represent crash risk conditions that are 

equal to the mean crash risk that is experienced while a higher value would show the crash risk is 

higher than the mean risk of the freeway corridor.   
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Crash Risk vs. Time (Station 40 E 0)
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Figure 5-1.  Plot of Crash Risk vs. Time at Station 40 E 0 for All Runs in Test Case 25 

 

If the individual crash risk curves for each run were used to compare two different test 

cases even more crash risk vs. time curves would be required on a single plot than shown on 

Figure 5-1.  If ten runs were performed for each of the two test cases this would mean that 20 

curves would be required on a single plot to compare two alternatives.  Visually comparing the 

change in crash risk in this manner would be difficult due to the large number of curves on the 

plot.  Deciphering which of the test cases has a higher or lower crash risk would also be equally 

challenging.  Additionally, these plots would be unreadable due to the large number of curves 

and would not provide any insights into the trends of the ITS strategies on the different crash risk 

values along the network corridor.  In an effort to eliminate this problem, a single crash risk 

profile was created for each test scenario for both the rear-end and lane-change crash risk.  This 
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single rear-end crash risk profile has a value of the rear-end (or lane-change) crash risk at every 

station and time that is equal to the average of the rear-end crash risk values at the respective 

station and time over the number of simulation runs performed at that particular scenario.  

Equation 16 (below) shows how this average crash risk profile is calculated. 

 

∑
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lrtlt Risk

N
profileRisk

1
)(1)_(  (16) 

Where: (Risk) t r l = the crash risk for time t, run r, and location l for particular test case 

scenario 

N = the number of runs required for the particular test case scenario 

(Risk_profile) t l = the crash risk averaged over the number of runs for each location l and 

time t 

 

Using a single crash risk curve for each scenario is ideal for two main reasons.  First, 

comparing the crash risk between two scenarios would be much simpler since only two lines 

would have to be compared with each other.  Second, averaging the rear-end crash risk over 

multiple runs should inherently account for the natural variation that occurs due to the different 

simulation seed values that were used.  Comparing this to the field, this should account for that 

natural fluctuation in speed and flow that are observed over a particular location at the same time 

on multiple days.  A plot of the average rear-end crash risk profile for the scenario shown in 

Figure 5-1 is given below in Figure 5-2 to show the result of this process. 
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Figure 5-2.  Average Crash Risk Profiles Station 40 E 0 for Test Case 25 

 

To compare the change in the crash risk for the various route diversion and ramp 

metering strategies, two types of graphical comparisons were created.  These two methods 

compare the crash risk across space (location of loop detector stations) and time, respectively.  

To compare the average crash risk versus location, the average risk at each station was found by 

computing the average of the crash risk values at individual time periods throughout the 3 hour 

simulation.  Since the both the rear-end and lane-change crash risk are calculated every 5 

minutes, this resulted in each station having 36 distinct crash risk values per 3 hour period.  The 

calculation of the average crash risk value for each location is shown more clearly in 

Equation 17. 
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Where: (Risk_profile) t l = the crash risk averaged over the number of runs for each 

location l and time t 

T = the total number of time periods that the risk is calculated during the simulation (T = 

36 as there are 36 5-minute periods in the 3 hour simulation time) 

(Average_Risk) l = the crash risk averaged by both time and number of simulation runs at 

location l 

 

This process was completed for the rear-end crash risk as well as the lane-change crash 

risk.  A typical profile of the rear-end crash risk (for the base case of the 60 percent loading 

scenario) is shown in Figure 5-3. 
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Figure 5-3.  Plot of Average Crash Risk vs. Location for 60 Percent Base Scenario 

 

Please note that for each loop detector station two crash risk values are calculated.  The 

first value is calculated for the area immediately upstream of the loop detector station while the 

second value describes the crash risk downstream of the detector station. In order to denote crash 

risk both upstream and downstream of each detector the flowing naming convention was 

adopted.  The first number identifies the loop detector station, the following letter represents the 

direction of the freeway being considered (this study focuses solely on the eastbound direction of 

travel so this letter is always E) and the last number represents whether the area is upstream or 

downstream of the loop detector station.  The number 0 represents an upstream area while 1 

represents a downstream area.  Therefore, the location named 42 E 0 represents the area 

upstream of loop detector station 42 in the eastbound direction.  The various plots of the crash 
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risk given do not include the label for the downstream crash risk value due to the limited space 

on the plots but it should be noted that this value has been calculated and is included on all plots.  

Also, please note that Station 39 does not exist.  Therefore, all plots show Station 38 

immediately followed by Station 40. 

As shown in Figure 5-3, the plot of average rear-end crash risk versus location shows 

numerous peaks and valleys where the rear-end crash risk increases or decreases suddenly.  The 

sudden changes in the crash risk value over locations are caused by both the different traffic 

conditions at the various locations as well as the presence of on-ramps and off-ramps along the 

freeway.  As previously mentioned in Chapter 4, the rear-end and lane-change crash risk values 

are based on both on-line loop detector data and off-line information about the geometry of the 

freeway.  The occurrence of these ramps greatly affects the value of the crash risk.  Therefore, at 

a particular station the value of the crash risk for the upstream area and downstream area could 

differ greatly solely because a nearby ramp even though the loop detector data for that single 

location is identical.  

Another type of plot that can be examined is the crash risk vs. time for a particular 

station.  This graph will be used to ensure that the application of a particular crash prevention 

strategy reduces the crash risk over all (or most) time periods.  A sample plot is given below in 

Figure 5-4 for the base case during the 90 percent loading scenario. As shown below in Figure 4, 

the rear-end crash risk is calculated every 5-minutes for the length of the 3-hour simulation run.  

The peaks and valleys in this plot are due solely to the interaction vehicles on the network since 

the location (in this example, Station 42 E 1) is constant.   
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Figure 5-4.  Plot of Crash Risk vs. Time for Station 42 E 1 at 90 Percent Base Case 

 

The first type of plot (risk vs. location) will allow for the identification of areas that were 

affected by the various diversion and metering strategies that will be employed.  Once 

discovered, the value of the change in risk over those individual areas can be determined by 

comparing the average risk value for that area for the base and test cases.  Once this change in 

risk value is determined, the statistical significance of the change in risk will be calculated using 

a traditional two sample t-test.  The t-test will show whether the change in rear-end or lane-

change crash risk is based on the implementation of the crash prevention strategy (it is 

statistically significant) or random simulation error (not statistically significant).   

In addition to quantifying the risk changes at particular locations the overall change in the 

both the rear-end and lane-change crash risk was calculated throughout the length of the 

network.  This measure, hereafter named the Overall Risk Change Index (ORCI) for the rear-end 
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crash risk and the Lane-Change Risk Change Index (LCRCI) for the lane-change crash risk, is 

calculated by summing the differences in the average crash risk between the base case and test 

case for stations that exhibit a crash risk change.  This value will include stations that show both 

a positive and negative change in the respective crash risk values.  Therefore, the values of the 

ORCI or LCRCI can be either positive or negative which would show an overall improvement or 

deterioration in the crash risk, respectively.  These values can then be used to compare various 

strategies across a single loading condition to determine which strategy more effectively reduces 

the respective crash risks.  The result is that the strategy with the highest ORCI or LCRCI will 

yield the greatest overall improvement in rear-end crash risk or lane-change crash risk, 

respectively, over the study area. 

Please note that the percent change in the risk is NOT calculated for the rear-end crash 

risk.  The reason for this is because since the range of the risk values is (-1.5, 3.5) there is a 

chance that the average risk could be 0.0 for certain stations.  This will lead to deceiving results 

as the percent change would be deceptively high for a station (or group of stations) whose 

average rear-end crash risk value is about equal to 0.0.  When compared to another group of 

stations, the group with the average rear-end crash risk nearer to 0.0 will always have a much 

higher percent change in risk even if the change is miniscule.  Therefore, in order to avoid this 

problem, the absolute difference in the rear-end crash risk will be determined and used to 

compare stations.  Since the range of the lane-change crash risk is always greater than zero (0.02 

to 0.06) the percent change in the crash risk is a meaningful value. 
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5.2  Analysis of Route Diversion 

5.2.1  First Diversion Route 

As previously mentioned in Section 4.8.1, using the 1st diversion route a vehicle can be 

diverted either 2 or 3 miles downstream of its initial entry ramp at Orange Blossom Trail.  This 

on-ramp typically has a very high volume of about 1020 veh/hr in the peak hour (100 percent 

loading scenario).   Therefore, it is expected that the effects of route diversion would be readily 

seen since such a large volume of vehicles can be diverted.  Note that the nearer re-entry ramp 

typical has a volume of about 300 veh/hr while the further re-entry ramp has a much higher 

volume of about 970 veh/hr.  Therefore, diverting too many vehicles to the further on-ramp 

would increase the volume beyond capacity and would lead to the deterioration of traffic 

operations on the ramp and surrounding surface streets. 

5.2.1.1  60 Percent Loading Scenario 

As previously mentioned in the Experimental Design (Section 4.8.1), there were 15 

different route diversion cases that were run at the 60 percent loading case.  The 15 cases were 

designed to test the effect of the total amount of vehicles diverted (controlled by DP-1A) as well 

as where the vehicles are diverted to (controlled by DP-1B).  Figure 5-5 shows the average rear-

end crash risk vs. location plot for the base case and cases 1 to 5 of the experimental design.  

Test cases 1 to 5 all have in common that 0% of the diverted vehicles are re-diverted at DP-1B 

which means that all the diverted vehicles re-enter I-4 at the nearer re-entry location.  The cases 

differ in the percentage of vehicles initially diverted at DP-1A.  For example, the line with 
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reference 20% (1A) means that this line shows the crash risk curve when 20% of the vehicles are 

diverted from decision point DP-1A.  
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Figure 5-5.  Average Rear-End Crash Risk vs. Location for Cases 1 to 5 

 

As shown in Figure 5-5, the area over which the average rear-end crash risk is different 

for the test cases is rather small compared to the overall network.  This makes sense since the 

route diversion occurs in a localized area and, therefore, should only affect the rear-end crash 

risk for a very short portion of the freeway.  For Diversion Route 1, when vehicles forego the 

secondary diversion at DP-1B they are diverted from entering just before Station 34 and are 

instead enter the freeway at Station 38.  In Figure 5-5, it appears that this area is encompassed 

within the area that shows a change in the rear-end crash risk along the freeway.  In order to 
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better interpret this plot it is advantageous to zoom in on the portion that shows change in the 

rear-end crash risk due to the route diversion strategies.  This plot is given below in Figure 5-6.   
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Figure 5-6.  Average Rear-End Crash Risk vs. Location for Cases 1 to 5 - Magnified 

 

As shown in Figure 5-6 (above), upon magnification of Figure 5-5 it can be seen that 

there is indeed a difference between the average rear-end crash risks for the different scenarios.  

This change in risk occurs between Stations 34 and 41, although the crash risk changes between 

Stations 39 and 41 are very small.  Each line in the plot represents a different percentage of the 

vehicles diverted (% 1A) from the initial entry location on I-4.  As expected, the value of the 

rear-end crash risk decreases proportionally with the number of vehicles that are diverted.  When 

only 20% of the vehicles are diverted the change is minimal while there is considerable change 

when 100% of the vehicles are diverted from the ramp.  The average rear-end crash risk for each 
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of the test cases along with the base case is given in Table 5-1.  This table also includes the 

difference in the crash risk between the base case and each of the subsequent test cases.  Each of 

the test cases is described by the case number as well as the type of diversion that was 

implemented.  For example, test case 1 is also denoted as 20% 1A, 0% 1B.  This means that for 

test case 1, 20% of the vehicles were diverted at the initial diversion location (DP-1A) and 0% of 

the vehicles were diverted at the secondary position (DP-1B). 

Table 5-1.  Summary of Average Rear-End Crash Risk Change for Cases 1 to 5 

Test Case ID 
Base Case 1 Case 2 Case 3 Case 4 Case 5 

  --- 
20% 1A 
0% 1B 

40% 1A 
0% 1B 

60% 1A 
0% 1B 

80% 1A 
0% 1B 

100% 1A 
0% 1B 

Average Crash Risk  
(Stations 34 to 41) 1.3538 1.3088 1.2880 1.2261 1.2095 1.1486 
Crash Risk Benefit --- 0.0450 0.0658 0.1277 0.1444 0.2053 
T-Statistic (Benefit Significance) --- 3.7444 5.4070 9.3844 13.3827 18.7122 
        
ORCI --- 0.6305 0.9213 1.7876 2.0213 2.8737 

 

Please note that the amount of change has been calculated as the difference between the 

average risk values for the base case and scenario case for all stations that show a significant 

change in risk (Stations 34 to 41).  What is also interesting to note is that there is a direct 

relationship between the amount of vehicles that are diverted and the change in the risk value.  In 

Figure 5-6, this is shown by the fact that the amount of decrease in the rear-end crash risk at each 

station increases with the number of vehicles that are diverted (% 1A).   

Also shown in Table 5-1 is the t-statistic comparing the change in risk between each test 

case and the base case versus the value zero.  This value must be compared to the critical t-

statistic value in order to determine whether or not the change in the crash risk is statistically 

significant.  The critical value for a t-test given 18 degrees of freedom and a 90% confidence 
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level is found to be 1.7341.  Since the calculated t-statistic for all levels of diversion are greater 

than this value, the average decrease in the rear-end crash risk for each level of diversion is 

shown to be statistically significant.  This means that diverting any amount of vehicles at the 60 

percent loading case will provide significant reductions in the rear-end crash risk between 

Stations 34 and 41.  Additionally, Table 5-1 shows that the average overall reduction in the rear-

end crash risk increases with the amount of vehicles that are diverted from DP-1A.  This is also 

reflected in the value of the ORCI which increases with the number of vehicles that have been 

diverted.  As previously mentioned, the ORCI value is calculated by summing the change in the 

crash risk for all the locations that exhibit a rear-end crash risk difference between the base case 

and test case. 

A similar process has been carried out for cases 6 to 10 (in which 50% of the vehicles are 

diverted at DP-1B and, therefore, use the further re-entry location while the remaining 50% of 

the vehicles use the nearer re-entry location) and cases 11 to 15 (in which 100% of the vehicles 

are diverted at DP-1B and use the further re-entry location).  The results of these analyses are 

presented below in Tables 5-2 and 5-3, respectively.   

Table 5-2.  Summary of Average Rear-End Crash Risk Change for Cases 6 to 10 

Test Case ID 
Base Case 6 Case 7 Case 8 Case 9 Case 10 

  --- 
20% 1A 
50% 1B 

40% 1A 
50% 1B 

60% 1A 
50% 1B 

80% 1A 
50% 1B 

100% 1A 
50% 1B 

Average Crash Risk  
(Stations 34 to 41) 1.354 1.325 1.266 1.217 1.172 1.124 
Crash Risk Benefit --- 0.028 0.088 0.136 0.182 0.230 
T-Statistic (Benefit Significance) --- 2.567 6.596 13.024 11.852 19.130 
              
ORCI --- 0.397 1.232 1.910 2.550 3.224 
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Table 5-3.  Summary of Average Rear-End Crash Risk Change for Cases 11 to 15 

Test Case ID 
Base Case 11 Case 12 Case 13 Case 14 Case 15 

  --- 
20% 1A 
100% 1B 

40% 1A 
10% 1B 

60% 1A 
100% 1B 

80% 1A 
100% 1B 

100% 1A 
100% 1B 

Average Crash Risk 
(Stations 34 to 41) 1.354 1.324 1.261 1.205 1.155 1.092 
Crash Risk Benefit --- 0.030 0.093 0.149 0.198 0.262 
T-Statistic (Significant of Change) --- 2.165 6.561 9.725 13.506 20.068 
        
ORCI --- 0.418 1.299 2.085 2.777 3.666 

 

Tables 5-2 and 5-3 show trends in the results that are similar to those presented in 

Table 5-1.  The average change in rear-end crash risk for the cases where 50% of the vehicles are 

diverted at DP-1B (Table 5-2) and the cases where 100% of the vehicles are diverted at DP-1B 

(Table 5-3) are statistically significant for all levels of diversion.  Additionally, the trend that 

diverting more vehicles leads to a greater reduction in the rear-end crash risk holds for these two 

groups of cases as well.  This means that regardless of where the vehicles are diverted there will 

always be a safety benefit if vehicles are diverted during the 60 percent loading scenario.  

However, this still leaves the question of which diversion route is more preferable.  When 

considering Tables 5-1, 5-2, and 5-3 simultaneously, it can bee seen that 1) the safety benefit 

increases with an increase in the number of vehicles that are diverted and 2) the safety benefit 

increases with an increase in the number of vehicles diverted to the further re-entry area.  This 

trend can be proved by fitting a simple linear regression equation to determine the value of the 

ORCI based on the values of % 1A and % 1B.  The results of the linear regression analysis, 

presented in Table 5-4 below, show that both the percentage of vehicles diverted initially (% 1A) 

and the percentage of vehicles using the secondary diversion (% 1B) are significant to the 

measurement of safety (ORCI).  Additionally, both have a positive coefficient which states the 
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more vehicles diverted and the more vehicles diverted to the farther re-entry location, the higher 

the value of ORCI which means an improved rear-end crash risk situation. 

Table 5-4.  Linear Regression Analysis for ORCI in Test Cases 1 to 15 (60 Percent Loading) 

Parameter Estimate Standard Error t Value Pr > |t| 
Intercept -0.4016 0.1271 -3.16 0.0082 

% 1A 0.0342 0.0017 20.16 <.0001 
% 1B 0.0040 0.0012 3.42 0.0051 

 

Please note from Tables 5-1, 5-2, and 5-3 that the area that is affected by the route 

diversion during this specific loading condition is the same regardless of the level of % 1B (the 

percentage of vehicles using the secondary diversion).  This shows that, at the 60 percent loading 

scenario, diverting vehicles further downstream has no significant impact on the location of rear-

end crash risk changes along the network for this specific diversion route.  Figure 5-7 shows the 

location of the rear-end crash risk change along the network graphically for the various levels of 

% 1B tested.  In this figure, the vertical axis represents location along the freeway with vehicles 

traveling downwards.  The horizontal axis represents the different values of % 1B tested.  

Lighter shaded areas represent locations which realize a decrease in the rear-end crash risk with 

respect to the specific implementation of route diversion while darker shaded areas represent 

locations that realize an increase in the crash risk.  Note that there is no increase in the crash risk 

during the 60 percent loading scenarios; therefore no dark areas are shown.  Medium shades 

represent locations that exhibit no change in the crash risk due to route diversion.  These shades 

can be seen upstream and downstream of Stations 34 and 41, respectively, in Figure 5-7.  The 

location at which vehicles are initially diverted from is denoted as a solid horizontal line.  The 

locations where vehicles are diverted to are denoted as dashed horizontal lines.  The nearer re-

entry location is used only in the 0% 1B and 50% 1B case and the further re-entry location is 
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only used in the 50% 1B and 100% 1B case.  Note the 50% 1B case has two dotted lines 

showing the two re-entry locations that are used in this scenario.  This figure will be used to 

compare with the results realized at higher loading levels. 

 
Figure 5-7.  Locations Affected by Route Diversion at 60 Percent Loading Scenario 
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In addition to comparing the average crash risk between the base case and test cases, it is 

also important to look at the range of the average crash risk values for each run within a 

particular test case.  The size of this range will show how reliable the change in crash risk is for 

any particular case.  Figure 5-8 shows the best test case found for the 60 percent loading scenario 

(case 15) compared to the base case.  In addition, the average crash risk range is given as a 95% 

confidence interval of the average rear-end crash value based on the individual simulation runs 

for test case 15.  As shown in Figure 5-8, the range given by the 95% confidence interval is very 

small.  Therefore, implementing route diversion in this manner should not induce any 

particularly high rear-end crash risk values compared to the average. 
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Figure 5-8.  Range of Rear-End Crash Risk Values for Case 15 
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In addition to the average crash risk at every location, it is important to look at the crash 

risk over time at every location to ensure that the crash risk is reduced in real-time.  A typical 

plot of the rear-end crash risk vs. time is provided below in Figure 5-9 for case 15.  As shown, 

the rear-end crash risk is decreased for every time step during the simulation.  This shows the 

real-time benefit in addition to the overall benefit provided in the previous figures.  

Rear-End Crash Risk vs. Time (Station 37 0)
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Figure 5-9.   Rear-End Crash Risk vs. Time for Case 15 (Station 37 E 0) 

 

The lane-change risk was also taken into account for these test cases.  Figure 5-10 shows 

the lane change crash risk vs. location for the length of the simulation corridor for experimental 

cases 1 to 5.   
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LC Risk vs. Location
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Figure 5-10.  Average Lane-Change Crash Risk vs. Location for Cases 1 to 5 (20 % 1A to 100 % 1A, 0 % 1B) 

 

This plot looks very similar to the corresponding rear-end crash plot for these test cases 

(Figure 5-5).  As noticed, only a small area of the freeway is affected by the implementation of 

route diversion with respect to the lane-change crash risk.  This area is magnified in Figure 5-11. 
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Figure 5-11.  Average Lane-Change Crash Risk vs. Location for Cases 1 to 5 - Magnified 

 

Figure 5-11 shows the same gradual trend in the reduction of the lane change crash risk 

as the number the diverted vehicles increase that was seen in the plot for the rear-end crash risk.  

Table 5-5 is a numeric summary of the change of the lane change crash risk with the number of 

vehicles that are diverted for test cases 1 to 5.  The values of % 1A and % 1B shown in this table 

are defined the same as given in Tables 5-1, 5-2, and 5-3 regarding the rear-end crash risk.  A 

measure similar to the ORCI is calculated to quantify the benefits of each test case using the 

lane-change risk value.  This is called the Lane Change Risk Change Index (LCRCI).  Note also 

that the crash risk benefit is calculated as a percentage for the lane change crash risk.  This is 

allowed since the range of the lane change crash risk value does not include 0.0.  Additionally, 

please note that the values of the LCRCI are very small compared to the ORCI.  This is due to 
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the scale of the lane changing risk which is only 0.02 to 0.06 while the rear-end crash risk value 

has a scale of about -1 to 3.5.   

Table 5-5.  Summary of Average Lane-Change Crash Risk Change for Cases 1 to 5 

Test Case ID 
Base Case 1 Case 2 Case 3 Case 4 Case 5 

  --- 
20% 1A 
0% 1B 

40% 1A 
0% 1B 

60% 1A 
0% 1B 

80% 1A 
0% 1B 

100% 1A 
0% 1B 

Average Crash Risk 
(Stations 36 to 42) 0.9395 0.9274 0.9050 0.8495 0.8108 0.7421 
Crash Risk Benefit --- 0.0121 0.0345 0.0900 0.1287 0.1974 
T-Statistic (Benefit Significance) --- 1.7950 4.8340 10.7082 14.6298 27.4801 
        
LCRCI --- 0.1453 0.4137 1.0798 1.5440 2.3687 
 

The numeric summary for the 50% 1B cases and 100% 1B cases are given in Tables 5-6 

and 5-7, respectively.   

Table 5-6.  Summary of Average Lane-Change Crash Risk Change for Cases 6 to 10 

Test Case ID 
Base Case 6 Case 7 Case 8 Case 9 Case 10 

  --- 
20% 1A 
50% 1B 

40% 1A 
50% 1B 

60% 1A 
50% 1B 

80% 1A 
50% 1B 

100% 1A 
50% 1B 

Average Crash Risk 
(Stations 36 to 42) 0.9395 0.9266 0.9075 0.8676 0.8289 0.7720 
Crash Risk Benefit --- 0.0129 0.0320 0.0719 0.1106 0.1675 
T-Statistic (Benefit Significance) --- 1.5796 3.5120 11.4692 13.7860 18.1482 
        
LCRCI --- 0.1549 0.3844 0.8631 1.3271 2.0104 
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Table 5-7.  Summary of Average Lane-Change Crash Risk Change for Cases 11 to 15 

Test Case ID 
Base Case 11 Case 12 Case 13 Case 14 Case 15 

  --- 
20% 1A 
100% 1B 

40% 1A 
100% 1B 

60% 1A 
100% 1B 

80% 1A 
100% 1B 

100% 1A 
100% 1B 

Average Crash Risk 
(Stations 36 to 42) 0.9395 0.9252 0.9059 0.8686 0.8400 0.7928 
Crash Risk Benefit --- 0.0143 0.0336 0.0709 0.0995 0.1467 
T-Statistic (Benefit Significance) --- 2.1469 4.5328 8.2624 13.6808 18.2020 
        
LCRCI --- 0.1713 0.4029 0.8503 1.1939 1.7599 
 

For all cases (1 to 15) the general trend is that the crash risk benefits increase as the 

number of vehicles diverted increases.  The change in the crash risk is also statistically 

significant in all cases which shows that the impact is statistically sound.  What is interesting, 

however, is that the greatest benefit in the lane change crash risk is realized when vehicles are 

diverted to the nearer re-entry location (0% 1B).  This opposes what is seen for the rear-end 

crash risk value which is minimized when vehicles are diverted further away.  This is shown 

more clearly in the linear regression equation that is fit for this data which relates the LCRCI 

with % 1A and % 1B (percent of vehicles diverted at the respective diversion location).  As 

shown in Table 5-8, the positive coefficient of the % 1A variable indicates that the LCRCI 

increases with the percentage of vehicles that are diverted while the negative coefficient of the 

% 1B variable means that the overall lane-change crash risk decreases as vehicles are diverted 

further downstream.  One of the reasons for this could be the fact that the further re-entry 

location has a much higher original on-ramp volume than the nearer re-entry location.  

Therefore, diverting vehicles to the further re-entry location will increase the occupancy of the 

right most lane in the loop detectors near the on-ramp.  Increasing this occupancy increases the 
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lane-change crash risk since the occupancy in each individual lane is an important factor in the 

model. 

Table 5-8.  Linear Regression Analysis for LCRCI in Test Cases 1 to 15 (60 Percent Loading) 

Parameter Estimate Standard Error t Value Pr > |t| 
Intercept -0.3246 0.1089 -2.98 0.0115 

% 1A 0.0237 0.0015 16.26 <.0001 
% 1B -0.0023 0.0010 -2.33 0.0383 

 

5.2.1.1.1  Travel Time Analysis 

Based on crash risk (rear-end and lane-change) results it is easy to say that if route 

diversion is being used then 100% of the vehicles should always be diverted (100% 1A) since 

this produces the maximum benefit in the crash risk index.  However, there is an added negative 

effect to implementing route diversion.  As vehicles are diverted from the freeway to the surface 

streets it is expected that the travel time would be greater as 1) vehicles would have to travel a 

further distance to re-enter Interstate-4, 2) the speed limit is much lower on the surface streets 

than the freeway, and 3) the additional traffic volume and presence of signals along the surface 

streets would increase congestion and cause more delays.  Therefore, in addition to a plot of the 

change in crash risk for each test scenario, a plot of the average travel time versus the percentage 

of vehicles diverted has been created for cases 1 to 15 and is shown below in Figure 5-12.  As 

can be seen, the data has been fit to three quadratic regression curves – one for each level of 

% 1B – to help explain the results.  The 2R  values for the 0% 1B, 50% 1B, and 100% 1B curves 

are 0.9695, 0.8539, and 0.9189, respectively, which shows that the models provide a good fit of 

the data.  The curves have been created to see if the change in the travel time can be predicted 

with a reasonable accuracy at other diversion levels.  If the curve has a good fit, this will help to 
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determine the maximum amount of diversion that is allowed without an unreasonable increase in 

the overall network travel time. 
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Figure 5-12.  Travel Time Plot for Cases 1 to 15 

 

As shown in the plot, the travel time and the number of vehicles that are diverted have a 

direct relationship.  However, the maximum increase in the travel time – realized by diverting 

100% of the vehicles from % 1A – is only 1.2%.  Since this is a rather small increase it is safe to 

conclude that at the 60 percent loading scenario the maximum number of vehicles should be 

diverted to help reduce the crash risk the most.  Please note that this travel time increase includes 

the change in travel time for the freeway traffic as well as traffic on the surface streets which 

increases due to the route diversion. 
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5.2.1.2  80 Percent Loading Scenario 

A similar analysis was performed for test cases 16 to 30 in the experiment design.  These 

test cases contained the same diversion parameters (% 1A and % 1B) as cases 1 to 15 except 

considered the 80 percent loading scenario instead of the 60 percent loading scenario.  However, 

there were two important differences between the scenarios performed at 60 percent loading and 

those performed at 80 percent loading.  First, both a decrease and increase in the rear-end crash 

risk was noted due to the implementation of route diversion.  This is significant as it shows that 

there is the potential for crash migration – the decreasing of rear-end crash risk at one location 

coupled with a simultaneous increase in rear-end crash risk at another location – due to the 1st 

diversion route.  The second important difference is that the stations affected by the route 

diversion were different depending on the amount of vehicles using the secondary diversion.  

This is an important point as it shows that in addition to examining the magnitude of the risk 

change (whether positive or negative) the location of the risk change must also be assessed.  The 

magnified plots of the average rear-end crash risk vs. location for the cases 16 to 20 (0% of 

vehicles using DP-1B) is presented in Figure 5-13.  The plots for cases 21 to 25 (50% of the 

vehicles using DP-1B) and cases 26 to 30 (100% of the vehicles using DP-1B) were very similar 

to Figure 5-13 and are not shown. 
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Figure 5-13.  Average Rear-End Crash Risk vs. Location for Cases 16 to 20 

 

As noted in Figure 5-13 during the 80 percent loading case, using diversion route 1 

causes a decrease in the rear-end crash risk starting near the location that vehicles are diverted 

from.  Near the area where vehicles are diverted to (Station 38, nearer re-entry point, and Station 

41, farther re-entry location), however, an increase in the rear-end crash risk is noted.  This is 

caused by the increase in the number of vehicles entering the freeway at this ramp location 

combined with the higher traffic volume that is currently on the freeway at that point.  The added 

inflow on the ramp will increase the congestion in that area enough to increase the rear-end crash 

risk in this location.  Directly downstream of this area exists a short length of freeway at which 

the rear-end crash risk was reduced.  This is most likely a result of the added congestion 

upstream, at the re-entry location.  The added congestion creates a small bottleneck and 

immediately downstream of this bottleneck free-flow conditions persist which yields a slightly 
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reduced rear-end crash risk versus the base case.  However, this area is rather small and the 

effect is shown as not statistically significant in most cases.  Also worth noting from Figure 5-13 

is the fact that at most stations there is a direct relationship between the number of vehicles 

diverted and the change in the risk.  Diverting 20% of the vehicles will reduce the risk less at a 

station of reduced risk than diverting 40% of the vehicles.  This trend continues for all levels of 

diversion at the 80 percent loading scenario. 

Figure 5-14 was created to show the locations affected by route diversion along the 

freeway graphically.  This figure is similar to Figure 5-7 created for the 60 percent loading 

scenario.  In Figure 5-14, the lighter colored areas represent stations that experienced a decrease 

in the rear-end crash risk due to route diversion while the darker areas represent areas that 

experienced an increase in the rear-end crash risk.  Medium shades are used to represent areas 

that experienced no significant change in the rear-end crash risk due to the route diversion.  The 

results of this figure are very interesting.  First, the crash migration effect, described above, 

occurs directly downstream of the re-entry ramps in all cases.  This is probably caused by the 

added inflow of vehicles at these ramps which increase the traffic flow and, therefore, induce 

short-term congestion.  Second, the further vehicles are diverted from the original location, the 

further the effects of the route diversion on the rear-end crash risk.  This result is expected since 

it makes sense that by diverting vehicles further away, the rear-end crash risk will be affected for 

a longer distance.  What is also interesting is the fact that diverting vehicles further away appears 

to increase the overall safety benefit of the network.   As shown in Figure 5-16, the further 

vehicles are diverted away from the original ramp location, the smaller the area of negative 

safety benefit on the freeway.  One reason for this could be the fact that if diverted vehicles have 

to travel farther to reach the re-entry location, there is a greater chance of platoons of diverted 
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vehicles being separated by traffic signals and other vehicles on the surface streets.  Therefore, 

they will enter the freeway in a more staggered arrival pattern which would affect the mainline 

flow in a less obtrusive manner.  Vehicles diverted to the closer re-entry location have a greater 

probability of re-entering the freeway as a platoon which causes longer queues in the 

PARAMICS simulation. 

 

 
Figure 5-14.  Locations Affected by Route Diversion at 80 Percent Loading Scenario 
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The average rear-end crash risk change over the different areas presented above in Figure 

16 are given below in a Tables 5-9, 5-10, and 5-11 for the 0% 1B, 50% 1B, and 100% 1B cases, 

respectively.  Instead of calculating the change in crash risk for a single area along the freeway, 

as was done for the cases performed at 60 percent loading, these tables show the crash risk for 

three distinct areas.  This was done because, as mentioned previously, at 80 percent loading the 

route diversion caused three distinct areas of rear-end crash risk change – two areas with 

decreased risk and one area of increased risk.   

Table 5-9.  Summary of Average Rear-End Crash Risk Change for Cases 16 to 20 

Test Case ID 
Base Case 16 Case 17 Case 18 Case 19 Case 20 

  --- 
20% 1A 
0% 1B 

40% 1A 
0% 1B 

60% 1A 
0% 1B 

80% 1A 
0% 1B 

100% 1A 
0% 1B 

Average Crash Risk 
(Stations 33 to 40) 1.561 1.504 1.466 1.410 1.383 1.332 
Crash Risk Benefit --- 0.057 0.095 0.151 0.178 0.229 
T-Statistic  
(Benefit Significance) --- 4.359 9.296 13.882 14.136 19.894 
        
Average Crash Risk   
(Stations 41 to 42) 1.380 1.376 1.414 1.440 1.514 1.525 
Crash Risk Benefit --- 0.004 -0.034 -0.060 -0.135 -0.145 
T-Statistic  
(Benefit Significance) --- 0.106 1.099 2.096 3.548 4.113 
        
Average Crash Risk  
(Station 43) 1.993 1.979 1.937 1.967 1.933 1.867 
Crash Risk Benefit --- 0.015 0.056 0.027 0.061 0.127 
T-Statistic  
(Benefit Significance) --- 0.264 1.302 0.569 1.266 2.690 
        
ORCI --- 0.788 1.211 1.779 1.893 2.651 
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Table 5-10.  Summary of Average Rear-End Crash Risk Change for Cases 21 to 25 

Test Case ID 
Base Case 21 Case 22 Case 23 Case 24 Case 25   

  
  --- 

20% 1A 
50% 1B 

40% 1A 
50% 1B 

60% 1A 
50% 1B 

80% 1A 
50% 1B 

100% 1A 
50% 1B 

Average Crash Risk   
(Stations 33 to 40) 1.561 1.504 1.463 1.409 1.355 1.291 
Crash Risk Benefit --- 0.057 0.098 0.152 0.206 0.270 
T-Statistic  
(Benefit Significance) --- 4.431 8.304 12.956 15.193 23.837 
        
Average Crash Risk  
(Stations 41 to 42) 1.588 1.616 1.646 1.650 1.666 1.709 
Crash Risk Benefit --- -0.028 -0.058 -0.062 -0.079 -0.121 
T-Statistic  
(Benefit Significance) --- 0.627 1.268 1.446 2.006 3.786 
        
Average Crash Risk  
(Stations 43 to 44) 1.193 1.191 1.169 1.155 1.136 1.111 
Crash Risk Benefit --- 0.002 0.024 0.037 0.056 0.081 
T-Statistic  
(Benefit Significance) --- 0.035 0.449 0.707 1.012 1.479 
        
ORCI --- 0.666 1.173 1.901 2.613 3.391 
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Table 5-11.  Summary of Average Rear-End Crash Risk Change for Cases 26 to 30 

Test Case ID 
Base Case 26 Case 27 Case 28 Case 29 Case 30   

  
  --- 

20% 1A 
100% 1B 

40% 1A 
100% 1B 

60% 1A 
100% 1B 

80% 1A 
100% 1B 

100% 1A 
100% 1B 

Average Crash Risk  
(Stations 33 to 40) 1.503 1.445 1.402 1.353 1.295 1.229 
Crash Risk Benefit --- 0.058 0.101 0.151 0.209 0.275 
T-Statistic  
(Benefit Significance) --- 5.454 10.030 13.431 18.700 26.401 
        
Average Crash Risk   
(Station 42) 1.618 1.622 1.675 1.700 1.693 1.775 
Crash Risk Benefit --- -0.003 -0.057 -0.082 -0.075 -0.157 
T-Statistic  
(Benefit Significance) --- 0.060 1.088 1.593 1.258 3.324 
        
Average Crash Risk   
(Stations 43 to 45) 1.112 1.091 1.091 1.093 1.029 0.977 
Crash Risk Benefit --- 0.022 0.021 0.020 0.083 0.135 
T-Statistic  
(Benefit Significance) --- 0.461 0.530 0.427 1.805 2.902 
        
ORCI --- 0.899 1.390 2.026 3.105 4.069 

 

The results show that increasing the percentage of vehicles that are diverted (increasing 

% 1A) increases the safety benefit in the upstream locations (near the initial diversion location) 

and increases the rear-end crash risk at the re-entry location.  Additionally, diverting vehicles 

farther away from the original entry point increases the overall safety on the freeway.  This is 

seen by the increasing ORCI values at the same level of diversion (% 1A) for increasing levels of 

% 1B.  A simple linear regression analysis was performed again to confirm these results.  The 

results (given below) show that the values of % 1A and % 1B are both statistically related to the 

value of ORCI. 
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Table 5-12.  Linear Regression Analysis for ORCI in Test Cases 16 to 30 (80 Percent Loading) 

Parameter Estimate Standard Error t Value Pr > |t| 
Intercept -0.2818 0.1918 -1.47 0.1676 
% 1A 0.0323 0.0026 12.58 <.0001 
% 1B 0.0063 0.0018 3.57 0.0039 

 

Once again a plot was created to analyze the best case found above (case 30) with respect 

to the variation within the individual runs.  This plot is given below in Figure 5-15.  As shown in 

this figure, the range of the average rear-end crash risk values is relatively small for most of the 

locations that show a crash risk change.  However, between Stations 41 to 44 there is fair amount 

of variation which shows that the average crash-risk value might be slightly higher or lower than 

the average.  However, this change is not that great compared to the base case and should not be 

considered significant. 
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Figure 5-15.   Range of Rear-End Crash Risk Values for Case 30 

 

147 



Plots were also created to analyze the effect of the route diversion on the lane-change 

crash risk at the 80 percent loading scenario.  These plots are provided below in Figures 5-16, 5-

17, and 5-18 for cases 16 to 20, 21 to 25, and 26 to 30, respectively.  As shown in those Figures, 

the lane-change crash risk only differed between stations 36 to 42. 
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Figure 5-16.  Average Lane-Change Crash Risk vs. Location for Cases 16 to 20 
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Figure 5-17.  Average Lane-Change Crash Risk vs. Location for Cases 21 to 25 
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Figure 5-18.  Average Lane-Change Crash Risk vs. Location for Cases 26 to 30 

 

149 



As shown in these plots, the lane-change crash risk decreases gradually with the number 

of vehicles that are diverted.  Except for the few locations when there is no change between the 

base case and test cases (Station 36 E 1, for example) the change is logical in that the 20% 1A 

case has a higher risk than the 40% 1A case which, in turn, has a higher crash risk than the 60% 

1A case and so on.  The numerical summary of this risk value at the 80 percent loading case is 

given below in Tables 5-13, 5-14, and 5-15. 

 

Table 5-13.  Summary of Average Lane-Change Crash Risk Change for Cases 16 to 20 

Test Case ID 
Base Case 16 Case 17 Case 18 Case 19 Case 20 

  --- 
20% 1A 
0% 1B 

40% 1A 
0% 1B 

60% 1A 
0% 1B 

80% 1A 
0% 1B 

100% 1A 
0% 1B 

Average Crash Risk 
(Stations 36 to 42) 1.0541 1.0771 1.0021 0.9596 0.9398 0.8848 
Crash Risk Benefit --- -0.0230 0.0520 0.0945 0.1143 0.1693 
T-Statistic  
(Benefit Significance) --- 0.5500 2.1193 4.2403 4.5826 7.3334 
        
LCRCI --- -0.2765 0.6240 1.1340 1.3718 2.0311 
 

Table 5-14.  Summary of Average Lane-Change Crash Risk Change for Cases 21 to 25 

Test Case ID 
Base Case 21 Case 22 Case 23 Case 24 Case 25 

  --- 
20% 1A 
50% 1B 

40% 1A 
50% 1B 

60% 1A 
50% 1B 

80% 1A 
50% 1B 

100% 1A 
50% 1B 

Average Crash Risk 
(Stations 36 to 42) 1.0541 1.0209 1.0023 0.9710 0.9450 0.8610 
Crash Risk Benefit --- 0.0331 0.0518 0.0831 0.1091 0.1931 
T-Statistic  
(Benefit Significance) --- 1.2178 1.8977 3.1574 2.8484 7.7045 
        
LCRCI --- 0.3977 0.6216 0.9969 1.3087 2.3167 
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Table 5-15.  Summary of Average Lane-Change Crash Risk Change for Cases 26 to 30 

Test Case ID 
Base Case 26 Case 27 Case 28 Case 29 Case 30 

  --- 
20% 1A 
100% 1B 

40% 1A 
100% 1B 

60% 1A 
100% 1B 

80% 1A 
100% 1B 

100% 1A 
100% 1B 

Average Crash Risk 
(Stations 36 to 42) 1.0541 1.0224 1.0007 0.9802 0.9284 0.8547 
Crash Risk Benefit --- 0.0317 0.0534 0.0739 0.1257 0.1994 
T-Statistic  
(Benefit Significance) --- 1.2799 1.9297 2.0889 5.3954 9.6223 
        
LCRCI --- 0.3809 0.6411 0.8872 1.5085 2.3923 
 

As shown in the Tables and linear regression equation (Table 5-16), the general trend of 

the LCRCI at the 80 percent loading case is to increase with higher values of % 1A and % 1B.  

This is contrary to what was observed at the 60 percent loading case but since the parameter 

estimate for % 1B is insignificant (p > 0.05) it can be assumed that there is no real difference in 

the lane change risk change index for different levels of % 1B.  A comparison of the tables 

shows that this makes sense since there is no definitive pattern of the LCRCI values compared to 

various levels of % 1B. 

Table 5-16.  Linear Regression Analysis for LCRCI in Test Cases 16 to 30 (80 Percent Loading) 

Parameter Estimate Standard Error t Value Pr > |t|

Intercept -0.4814 0.1479 -3.25 0.0069 
% 1A 0.0246 0.0020 12.46 <.0001 
% 1B 0.001851 0.001369 1.35 0.2013 

 

5.2.1.2.1  Travel Time Analysis 

Once again a travel time analysis was performed to ensure that the change in travel time 

due to route diversion is reasonable.  Figure 5-19 shows the plot that was created to examine this.  

Quadratic equations were fit for the 0 % 1B, 50 % 1B, and 100 % 1B cases.  The latter two 
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equations have reasonable 2R  values.  However, for the 0 % 1B cases a quadratic equation does 

not provide a good fit for the data as its 2R  value was extremely low at 0.1423.  However, as 

shown in Figure 5-19, since the travel time does not change very much for this level of % 1B this 

should be okay since the expected travel time at the various diversion levels does not change 

much compared to the base case.    
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Figure 5-19.  Travel Time Plot for Cases 16 to 30 

 

The largest increase in travel time due to route diversion is 5.2%.  This occurs when 100 

percent of the vehicles are diverted to the further re-entry location.  Since this is close to 5%, the 

target that is deemed reasonable, it can be concluded that diverting the maximum number of 

vehicles can be diverted at the 80 percent loading case would results in the maximum amount of 

risk without significantly increasing the travel time.   
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5.2.1.3  90 Percent Loading Scenario 

Cases 31 to 45 all test the 1st diversion route during the 90 percent loading scenario.  

There are a few differences in the results between the cases run at the 80 percent loading 

scenario and the 90 percent loading scenario.  The first major difference is that the area of the 

freeway that is affected by route diversion is significantly increased.  This is caused primarily 

because of the high traffic volume that is present at this loading scenario.  Since the network is at 

typical levels of congestion during this scenario, diverting some of the vehicles serves to reduce 

the severity of some of the long queues that form during congestion.  This essential causes the 

traffic conditions to change from regime 1 to regime 2 which is the reason the rear-end crash risk 

models for regime 1 and 2 had to be normalized and combined into a single crash risk metric.  

The second difference is that the statistical significance of the crash risk increase near the re-

entry areas is much greater than at the previous loading scenario.  This means that diverted 

vehicles cause a much more significant increase in the crash risk than seen previously and the 

effects of crash migration are more apparent. 

Figures 5-20 and 5-21 show the plot of the average rear-end crash risk vs. location for 

cases 31 to 35 in the experimental design.  Note that two figures are needed to show the larger 

area that is affected by route diversion at this level of loading.  
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Figure 5-20.  Average Rear-End Crash Risk vs. Location for Cases 31 to 35 
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Figure 5-21.  Average Rear-End Crash Risk vs. Location for Cases 31 to 35 - 2 
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The numerical summary of the change in rear-end risk realized in cases 31 to 35 is given 

below in Table 5-17.  The changes in the rear-end crash risk for this case were contained within 

two distinct areas – one area with a crash risk decrease and another with a crash risk increase.  

The reduction in the crash risk only becomes statistically significant at the 60 percent diversion 

case while the increase in the crash risk is significant at diversion levels higher than 20 percent.  

As shown in Table 5-17, the value of ORCI does not always increase as the percentage of 

vehicles that are diverted from DP-1A increase.  While all levels of diversion have a positive 

value of ORCI (which means an overall positive rear-end crash risk change) the fact that the 

crash risk increase at Stations 37 to 42 is statistically significant at lower levels of diversion 

shows that crash risk migration issue is more significant than the crash risk decrease.  Therefore, 

there is a chance that the crash risk will be increased to unacceptably high levels at certain 

locations. 

Table 5-17.  Summary of Average Rear-End Crash Risk Change for Cases 31 to 35 

Test Case ID 
Base Case 31 Case 32 Case 33 Case 34 Case 35 

  --- 
20% 1A 
0% 1B 

40% 1A 
0% 1B 

60% 1A 
0% 1B 

80% 1A 
0% 1B 

100% 1A 
0% 1B 

Average Crash Risk  
(Stations 28 to 35) 0.679 0.653 0.631 0.600 0.595 0.517 
Crash Risk Benefit --- 0.026 0.048 0.079 0.084 0.162 
T-Statistic  
(Benefit Significance) --- 0.649 1.444 2.169 2.506 4.157 
        
Average Crash Risk  
(Stations 37 to 42) 1.203 1.230 1.266 1.242 1.275 1.252 
Crash Risk Benefit --- -0.027 -0.063 -0.039 -0.072 -0.049 
T-Statistic  
(Benefit Significance) --- 1.188 2.559 1.491 2.996 1.908 
        
ORCI --- 0.144 0.135 0.866 0.622 2.096 
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Similar results are seen for test cases 36 to 40 and 41 to 45.  The summary of those cases 

are given below in Tables 5-18 and 5-19.  Cases 37 and 38 show the first instances of negative 

ORCI values.  This means that diverting vehicles in this manner decreases the overall safety 

along the network corridor.  The cases involving diverting all vehicles to the further re-entry 

location (100% 1B) all show much higher decreases in the rear-end crash risk than using the 

nearer on-ramp exclusively or splitting the diverted vehicles between the two options.   

 

Table 5-18.  Summary of Average Rear-End Crash Risk Change for Cases 36 to 40 

Test Case ID 
Base Case 36 Case 37 Case 38 Case 39 Case 40 

  --- 
20% 1A 
50% 1B 

40% 1A 
50% 1B 

60% 1A 
50% 1B 

80% 1A 
50% 1B 

100% 1A 
50% 1B 

Average Crash Risk  
(Stations 28 to 36) 0.763 0.702 0.744 0.699 0.652 0.605 
Crash Risk Benefit --- 0.061 0.019 0.065 0.112 0.158 
T-Statistic  
(Benefit Significance) --- 1.580 0.593 1.773 2.807 4.466 
        
Average Crash Risk  
(Stations 37 to 43) 1.263 1.305 1.353 1.367 1.362 1.402 
Crash Risk Benefit --- -0.042 -0.090 -0.105 -0.099 -0.139 
T-Statistic  
(Benefit Significance) --- 2.031 4.084 5.424 5.112 6.168 
        
ORCI --- 0.535 -0.754 -0.155 0.704 1.021 
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Table 5-19.  Summary of Average Rear-End Crash Risk Change for Cases 41 to 45 

Test Case ID 
Base Case 41 Case 42 Case 43 Case 44 Case 45 

  --- 
20% 1A 
100% 1B 

40% 1A 
100% 1B 

60% 1A 
100% 1B 

80% 1A 
100% 1B 

100% 1A 
100% 1B 

Average Crash Risk  
(Stations 28 to 37) 0.845 0.810 0.818 0.713 0.600 0.456 
Crash Risk Benefit --- 0.034 0.027 0.132 0.245 0.389 
T-Statistic  
(Benefit Significance) --- 1.087 0.716 3.821 7.632 14.207 
        
Average Crash Risk  
(Stations 41 to 43) 0.955 1.032 1.009 1.041 1.055 1.131 
Crash Risk Benefit --- -0.077 -0.054 -0.086 -0.100 -0.176 
T-Statistic  
(Benefit Significance) --- 2.571 2.175 2.850 4.122 8.164 
        
Average Crash Risk  
(Stations 44 to 45) 0.914 0.940 0.952 0.915 0.868 0.777 
Crash Risk Benefit --- -0.026 -0.038 0.000 0.047 0.137 
T-Statistic  
(Benefit Significance) --- 0.961 1.616 0.020 1.652 5.577 
        
ORCI --- 0.113 0.070 1.995 4.188 6.746 
 

Table 5-20.  Linear Regression Analysis for ORCI in Test Cases 31 to 45 (90 Percent Loading) 

Parameter Estimate Standard Error t Value Pr > |t| 

Intercept -2.1239 0.9772 -2.17 0.0505 
% 1A 0.0403 0.0131 3.09 0.0094 
% 1B 0.0185 0.0090 2.04 0.0635 

 

The linear regression analysis, presented in Table 5-20, show that the ORCI values 

increase with increasing values of % 1A and % 1B.  However, even though the fit of the data to 

the regression line is statistically significant the results are in question based on the 

inconsistencies seen in the ORCI in Tables 5-17, 5-18, and 5-19.  Especially in Table 5-18 which 

shows that diverting 20 percent of the vehicles (20% 1A) increases the safety of the freeway 

while diverting 40 or 60 percent of the vehicles (40% 1A, 60% 1A) decreases the safety.  The 
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regression parameters are also in question due to the large ORCI values of cases 44 and 45 on the 

model fit.  These large values, 4.188 and 6.746, respectively, tend to influence the model more 

than the other values and therefore cause the linear regression model to be significant when 

values of the ORCI show otherwise.  Therefore, this model should not be used to describe the 

data and it would appear that the application of route diversion at 90 percent loading is 

inconsistent at reducing the rear-end crash risk with respect to the variables % 1A and % 1B. 

Figure 5-22 shows which locations the implementation of route diversion affects the rear-

end crash risk at the 90 percent loading scenario.  As expected when vehicles are diverted further 

away from the original ramp (50% 1B and 100% 1B cases) the location of rear-end crash risk 

change moves further downstream.  The 50% 1B case affects both the nearer and further re-entry 

locations since vehicles are diverted to both locations.    
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Figure 5-22.  Locations Affected by Route Diversion at 90 Percent Loading Scenario 
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Figures 5-23 and 5-24 show the variation in the average rear-end crash risk vs. location.  

As shown, there is more variation for the best case (case 45) at the 90 percent loading scenario 

than the 60 or 80 percent loading scenarios.  However, this variation is still rather modest and the 

upper bound does not deviate from the results found previously.   
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Figure 5-23.  Range of Rear-End Crash Risk Values for Case 45 
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Figure 5-24.  Range of Rear-End Crash Risk Values for Case 45 - 2 

 

The effect of the route diversion on the lane-change crash risk is quite similar to the 

results found for the rear-end crash risk.  Figure 5-25 shows a plot of the lane change crash risk 

for the areas affected by route diversion for cases 36 to 40.  Please note in this figure the 

randomness of the order of LCRCI for different diversion values across different stations.  There 

does not appear to be a pattern present for the crash risk vs. the percent of vehicles diverted like 

shown in the lower loading scenarios.  Tables 5-21, 5-22, and 5-23 summarize the results for the 

lane-change crash risk for cases 36 to 40, 41 to 45, and 46 to 50, respectively.  Note in Table 

5-21 that diverting vehicles at the 90 percent loading scenarios almost always causes an increase 

in the overall lane-change crash risk along the network. 
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Figure 5-25.  Average Lane-Change Crash Risk vs. Location for Cases 31 to 35 

 

Table 5-21.  Summary of Average Lane-Change Crash Risk Change for Cases 31 to 35 

Test Case ID 
Base Case 31 Case 32 Case 33 Case 34 Case 35 

  --- 
20% 1A 
0% 1B 

40% 1A 
0% 1B 

60% 1A 
0% 1B 

80% 1A 
0% 1B 

100% 1A 
0% 1B 

Average Crash Risk  
(Stations 28 to 32) 0.4212 0.5648 0.4602 0.3936 0.4333 0.2520 
Crash Risk Benefit --- -0.1437 -0.0390 0.0276 -0.0122 0.1692 
T-Statistic  
(Benefit Significance) --- 1.3870 0.4460 0.2980 0.1240 1.6610 
        
Average Crash Risk 
(Stations 33 to 36) 1.0724 1.0986 1.1287 1.1496 1.1891 1.2592 
Crash Risk Benefit --- -0.0262 -0.0563 -0.0772 -0.1166 -0.1868 
T-Statistic 
(Benefit Significance) --- 2.0350 1.9110 5.8960 7.3830 12.5740 
        
LCRCI --- -1.6460 -0.8402 -0.3415 -1.0547 0.1982 
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Table 5-22.  Summary of Average Lane-Change Crash Risk Change for Cases 36 to 40 

Test Case ID 
Base Case 36 Case 37 Case 38 Case 39 Case 40 

  --- 
20% 1A 
50% 1B 

40% 1A 
50% 1B 

60% 1A 
50% 1B 

80% 1A 
50% 1B 

100% 1A 
50% 1B 

Average Crash Risk  
(Stations 28 to 32) 0.5822 0.4651 0.5061 0.4307 0.3400 0.2530 
Crash Risk Benefit --- 0.1170 0.0761 0.1514 0.2422 0.3292 
T-Statistic  
(Benefit Significance) --- 1.9296 1.4832 2.5668 4.1311 6.1533 
        
Average Crash Risk 
(Stations 33 to 36) 1.0900 1.1096 1.1256 1.1627 1.1716 1.2311 
Crash Risk Benefit --- -0.0196 -0.0356 -0.0726 -0.0816 -0.1410 
T-Statistic  
(Benefit Significance) --- 1.8130 2.5044 6.1690 6.6057 10.9459 
        
LCRCI --- 1.0137 0.4761 0.9333 1.7692 2.1639 
 

Table 5-23.  Summary of Average Lane-Change Crash Risk Change for Cases 41 to 45 

  Test Case ID 
  Base Case 41 Case 42 Case 43 Case 44 Case 45 

  --- 
20% 1A 
100% 1B 

40% 1A 
100% 1B 

60% 1A 
100% 1B 

80% 1A 
100% 1B 

100% 1A 
100% 1B 

Average Crash Risk 
(Stations 28 to 42) 0.9567 0.9210 0.9095 0.8424 0.7761 0.6796 
Crash Risk Benefit --- 0.0357 0.0471 0.1143 0.1805 0.2771 
T-Statistic  
(Benefit Significance) --- 1.5987 2.1049 4.7948 9.1894 17.0662 
        
LCRCI --- 0.9293 1.2258 2.9725 4.6942 7.2035 
 

Table 5-24.  Linear Regression Analysis for LCRCI in Test Cases 31 to 45 (90 Percent Loading) 

Parameter Estimate Standard Error t Value Pr > |t|
Intercept -3.0662 0.7174 -4.27 0.0011 
% 1A 0.0385 0.0096 4.01 0.0017 
% 1B 0.0414 0.0066 6.24 <.0001 

 

A linear regression analysis of the change in LCRCI versus the various levels of route 

diversion is also presented in Table 5-24.  As shown in this table, the linear regression is a good 
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fit of the data due to the low p-values.  This shows that there is a definite pattern in the LCRCI 

value compared to the amount of route diversion.  In general, the LCRCI value increases as the 

number of vehicles are diverted and also increases as more vehicles re-enter the freeway further 

away from the initial diversion location.  This conforms to the general trend that was realized at 

other loading cases. 

5.2.1.3.1  Travel Time Analysis 

The travel time plot for cases 31 to 45 are presented below in Figure 5-26.  Both the 0% 

1B and 100% 1B curves have well-fitting regression equations.  The 50% 1B curve does not 

have a well-fitting equation but the travel time does not appear to change much in this case 

compared to the amount of diversion.  The maximum change in the travel time is an increase of 

7.3%.  Since this is rather high, full diversion at the 90 percent loading scenario will have 

unreasonable effects on the network operations.  The next level down (80% 1A, 100% 1B) only 

has a 5.2% increase in the travel time.  This is much closer to 5% but still high.  Diverting a 

lower number of vehicles than this would increase the travel time within reasonable limits.  

However, it should be noted that the benefits of route diversion on the crash risk are much lower 

at lower diversion levels. 
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Figure 5-26.  Travel Time Plot for Cases 31 to 45 

 

5.2.1.3.2  Re-Entry Ramp Volume 

In addition to the increase in the overall network travel time, there is another 

disadvantage that must be considered when diverting vehicles at such high loading scenarios.  

The ramp capacity at the on-ramp where vehicles are diverted to must be considered to make 

sure that the ramp is not oversaturated.  At the 60 and 80 percent loading scenarios this is not 

much of an issue due to the very low levels of congestion.  However, during the 90 percent 

loading scenario this can be quite problematic.  For example, when 100 percent of the vehicles 

are sent to the further re-entry location the flow rate on that ramp increases by more than 900 

vehicles / hour.  Added to the 875 veh/hr that would normally use the ramp during the 90 percent 

loading scenario this means that the ramp volume would be increased to almost 1900 veh/hr.  At 
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the 100 percent loading scenario this ramp volume would be even higher at just under 

2000 veh/hr.  With such high volumes congestion builds up on the on-ramps and spills onto the 

surface street.  Additionally the level of service of the on-ramp will be decreased severely.  For 

the further re-entry location the surface street that is affected is S.R. 50 (Colonial Drive) which is 

a major arterial roadway throughout Orlando.  Even though the overall travel time increase is 

acceptable, blocking such a major roadway would cause problems on portion of Colonial Drive 

that are not built on this network.  Therefore, route diversion does not look to be a viable option 

at the 90 percent loading scenario. 

5.2.1.4  100 Percent Loading Scenario 

The 100 percent loading scenario is analyzed by test cases 46 to 60 as stated in the 

experimental design.  The method of analysis mirrors the previous analysis of similar test runs 

performed at varying loading levels.  As previously seen during the analysis of route diversion at 

the 90 percent loading scenario, the area of effect of route diversion on the crash risk along the 

freeway increases as the traffic volume increases.  The 100 percent loading scenario is no 

different as the area of effect is quite large.  As can be seen in Figure 5-27, diverting vehicles 

during such high traffic volumes changes the crash risk as far away from the diversion location 

(Station 33) as 7 miles upstream (Station 19).  The effect can also extend downstream for 7 miles 

(Station 46) as evidenced in Figure 5-27.   

Once again the most likely cause for this large area of effect is the heavy congestion that 

dominates the loading scenario.  During this scenario there are several large queues that envelope 

the downtown area.  When route diversion is applied, the queues still remain but they are either 

reduced in length or simply move downstream.   Therefore, the tail end of the congested area 
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would move downstream as well causing a change in the traffic conditions, and therefore the 

rear-end crash risk, at only the upstream end of the queuing area.  This effect can be seen in 

Figure 5-27 by noting the large decreases in crash risk from stations 18 to 22 at all diversion 

levels.  When vehicles are diverted further downstream on the freeway – they are effectively kept 

off of the freeway for a longer period of time – the queue tends to move further downstream and 

causes an even greater safety benefit in the upstream area.  This is evidenced by comparing the 

0% 1B (short diversion) and the 100% 1B (long diversion) cases.  Note this is also seen in 

Figures 5-14 and 5-22 for the 80 and 90 percent loading scenarios, respectively.  However, in the 

latter two cases the effect is not as apparent as the 100 percent loading scenario since in this 

loading scenario the traffic volumes are much higher.  Note that downstream of the crash risk 

reduction areas (stations 18 to 22 for 0% and 50% 1B and stations 18 to 27 for 100% 1B) there is 

an area of increased rear-end crash risk.  This crash risk increase is caused by the speed 

differential that is created between the free flow areas upstream of the queue and the congested 

conditions that occur at the tail end of the queue.  Upstream of this crash risk increase the traffic 

flow operates in regime 2 (free flow) conditions.  At this location and downstream into the 

downtown area, the traffic conditions are congested (regime 1).  The speed differential of faster 

moving vehicles approaching the slower moving vehicles in the queue increases the crash risk at 

the interface between the free flow and queuing conditions. 
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Figure 5-27.  Locations Affected by Route Diversion at 100 Percent Loading Scenario 
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Tables 5-25, 5-26, and 5-27 summarize the change in the crash risk for the test cases 46 

to 60.  Please note that for the 0% 1B cases there are many areas where the risk changes as 

opposed to the 3 distinct areas for the other % 1B scenarios.  Therefore, the overall average 

change in the risk over all of these stations is calculated. 

 
Table 5-25.  Summary of Average Rear-End Crash Risk Change for Cases 46 to 50 

Test Case ID 
Base Case 46 Case 47 Case 48 Case 49 Case 50 

  --- 
20% 1A 
0% 1B 

40% 1A 
0% 1B 

60% 1A 
0% 1B 

80% 1A 
0% 1B 

100% 1A 
0% 1B 

Average Crash Risk  
(All Stations with Change) 0.466 0.479 0.474 0.482 0.487 0.473 
Crash Risk Benefit --- -0.013 -0.008 -0.015 -0.021 -0.007 
T-Statistic  
(Benefit Significance) --- 1.481 0.965 2.084 2.896 0.563 
        

ORCI --- -0.318 -0.206 -0.385 -0.523 -0.179 
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Table 5-26.  Summary of Average Rear-End Crash Risk Change for Cases 51 to 55 

Test Case ID 
Base Case 51 Case 52 Case 53 Case 54 Case 55 

  --- 
20% 1A 
50% 1B 

40% 1A 
50% 1B 

60% 1A 
50% 1B 

80% 1A 
50% 1B 

100% 1A 
50% 1B 

Average Crash Risk 
(Stations 19 to 22) -0.278 -0.331 -0.326 -0.377 -0.452 -0.482 
Crash Risk Benefit --- 0.054 0.048 0.099 0.174 0.204 
T-Statistic  
(Benefit Significance) --- 3.051 2.241 5.465 14.261 23.156 
        
Average Crash Risk 
(Stations 24 to 26) -0.131 -0.111 -0.105 -0.072 -0.009 0.020 
Crash Risk Benefit --- -0.020 -0.026 -0.059 -0.121 -0.151 
T-Statistic  
(Benefit Significance) --- 1.544 2.016 4.372 10.882 6.405 
        
Average Crash Risk  
(Stations 37 to 42) 1.102 1.152 1.167 1.177 1.221 1.242 
Crash Risk Benefit --- -0.051 -0.065 -0.075 -0.120 -0.140 
T-Statistic  
(Benefit Significance) --- 3.466 3.094 4.115 7.310 8.276 
        
ORCI --- -0.198 -0.421 -0.312 -0.531 -0.676 
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Table 5-27.  Summary of Average Rear-End Crash Risk Change for Cases 56 to 60 

Test Case ID 
Base Case 56 Case 57 Case 58 Case 59 Case 60 

  --- 
20% 1A 
0% 1B 

40% 1A 
0% 1B 

60% 1A 
0% 1B 

80% 1A 
0% 1B 

100% 1A 
0% 1B 

Average Crash Risk 
(Stations 19 to 27) -0.168 -0.167 -0.165 -0.204 -0.278 -0.367 
Crash Risk Benefit --- -0.001 -0.003 0.037 0.110 0.200 
T-Statistic  
(Benefit Significance) --- 0.116 0.339 2.999 7.240 14.235 
        
Average Crash Risk  
(Stations 28 to 29) -0.225 -0.206 -0.219 -0.202 -0.151 -0.112 
Crash Risk Benefit --- -0.019 -0.006 -0.023 -0.074 -0.113 
T-Statistic  
(Benefit Significance) --- 1.860 0.519 2.220 5.517 9.601 
        
Average Crash Risk 
(Stations 37 to 43) 1.137 1.176 1.197 1.229 1.234 1.235 
Crash Risk Benefit --- -0.039 -0.060 -0.092 -0.097 -0.098 
T-Statistic  
(Benefit Significance) --- 2.226 3.936 5.634 5.753 6.379 
        
ORCI --- -0.558 -0.795 -0.572 0.413 1.763 
 

The first interesting trend that is noticed upon examining Tables 5-25, 5-26, and 5-27 is 

the fact that the ORCI values are almost all negative.  For the previous loading scenarios there 

were very few negative values which showed that route diversion almost always provided a net 

safety benefit.  However, for the 100 percent loading scenario it appears that route diversion 

primarily serves to decrease the overall safety of the corridor.  Additionally, it does not appear 

that larger values of % 1A provide a larger value of ORCI as was seen in the previous loading 

scenarios.  Lastly, there is no trend for the values of % 1B and the ORCI.  In some cases larger 

% 1B values increases the crash risk (40% 1A), in other cases the crash risk is decreased (100% 

1A).   The linear regression equation (Table 5-28) shows that both the % 1A and % 1B variables 

are statistically insignificant. 
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Table 5-28.  Linear Regression Analysis for L in Test Cases 46 to 60 (100 Percent Loading) 

Parameter Estimate Standard Error t Value Pr > |t| 

Intercept -0.89407 0.408276 -2.19 0.049 
% 1A 0.007912 0.005456 1.45 0.1727 
% 1B 0.003727 0.00378 0.99 0.3436 

 

While the rear-end crash risk is increased due to route diversion at the 100 percent 

loading level, the lane-change crash risk tends to decrease.  Tables 5-29, 5-30, and 5-31 

summarize the change in the lane-change risk for cases 46 to 50, 51 to 55, and 56 to 60, 

respectively.  Due to the large number of very small individual areas that are affected by route 

diversion, the average crash risk is calculated over the affected areas together rather than for 

specific areas that are affected.  The areas that exhibit a change in the lane-change risk due to 

route diversion are outlined in Figure 5-28.   

Table 5-29.  Summary of Average Lane-Change Crash Risk Change for Cases 46 to 50 

Test Case ID 
Base Case 46 Case 47 Case 48 Case 49 Case 50   

  
  --- 

20% 1A 
0% 1B 

40% 1A 
0% 1B 

60% 1A 
0% 1B 

80% 1A 
0% 1B 

100% 1A
0% 1B 

Average Crash Risk 
(All Stations with Change) 0.5332 0.5109 0.4769 0.4521 0.3580 0.2695 
Crash Risk Benefit --- 0.0224 0.0564 0.0812 0.1753 0.2637 
T-Statistic  
(Benefit Significance) --- 0.8283 2.4508 3.5977 7.4541 10.9271 
        
LCRCI --- 0.4027 1.0147 1.4612 3.1549 4.7468 
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Table 5-30.  Summary of Average Lane-Change Crash Risk Change for Cases 51 to 55 

Test Case ID 
Base Case 51 Case 52 Case 53 Case 54 Case 55   

  
  --- 

20% 1A
50% 1B 

40% 1A
50% 1B 

60% 1A
50% 1B 

80% 1A 
50% 1B 

100% 1A
50% 1B 

Average Crash Risk 
(All Stations with Change) 0.5643 0.5062 0.4961 0.4522 0.3923 0.3490 
Crash Risk Benefit --- 0.0581 0.0682 0.1120 0.1720 0.2153 
T-Statistic  
(Benefit Significance) --- 3.1448 3.4135 6.9400 10.8968 12.9103 
        
LCRCI --- 1.5103 1.7742 2.9133 4.4731 5.5983 
 

Table 5-31.  Summary of Average Lane-Change Crash Risk Change for Cases 56 to 60 

Test Case ID 
Base Case 56 Case 57 Case 58 Case 59 Case 60 

  --- 
20% 1A 
100% 1B 

40% 1A 
100% 1B 

60% 1A 
100% 1B 

80% 1A 
100% 1B 

100% 1A
100% 1B 

Average Crash Risk 
(All Stations with Change) 0.5744 0.5496 0.4969 0.4049 0.3519 0.2975 
Crash Risk Benefit --- 0.0248 0.0775 0.1694 0.2225 0.2769 
T-Statistic  
(Benefit Significance) --- 1.4680 5.7177 10.8796 15.2773 19.1712 
        
LCRCI --- 0.7432 2.3237 5.0834 6.6753 8.3067 

 

 

173 



 
Figure 5-28.  Locations Affected by Route Diversion at 100 Percent Loading Scenario (Lane-Change Risk) 
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It is interesting to note that the same trends appear in the lane-change crash risk values at 

the 100 percent loading scenario that were seen for the other measures for crash risk at lower 

loading levels.  Also interesting is the fact that the LCRCI value shows an improvement in the 

lane-change crash risk due to route diversion even though the rear-end crash risk worsened.  The 

general trend in the LCRCI versus the diversion is shown in the linear regression model given in 

Table 5-32. 

Table 5-32.  Linear Regression Analysis for LCRCI in Test Cases 46 to 60 (100 Percent Loading) 

Parameter Estimate Standard Error t Value Pr > |t|
Intercept -2.0080 0.5128 -3.92 0.0021 
% 1A 0.0686 0.0069 10.02 <.0001 
% 1B 0.024704 0.004748 5.20 0.0002 

 

5.2.1.4.1  Travel Time Analysis 

The travel time plot for cases 46 to 60 is presented below in Figure 5-29.  The travel time 

during the 0% 1B scenarios do not change very much.  Therefore, the low 2R  is not that 

unreasonable since it can be expected that the travel time would never change much when 

vehicles are diverted at that level.  The other two curves show a much greater change in the 

travel time due to route diversion and are fit within reasonable limits by a quadratic curve.  The 

maximum travel time seen by the route diversion is 7.2% for the 100 % 1A, 100% 1B case.  To 

reach reasonable limits at the 100% 1B scenario the maximum amount of diversion at % 1A 

would only be about 40% which provides only a 4% increase in the travel time.  For the 50% 1B 

curve, diverting any amount of vehicles would provide a reasonable travel time for the network 

with a maximum increase of 4.9%.   
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Figure 5-29.  Travel Time Plot for Cases 46 to 60 

 

5.2.1.3.2  Re-Entry Ramp Volume 

Like the 90 percent loading scenario, diverting vehicles at the 100 percent loading 

scenario will increase the demand of the downstream on-ramps to levels greater than capacity.  

For example, when all vehicles are diverted to the furthest re-entry location, a scenario which 

provides the highest safety benefits – the ramp volume would be increased to 2000 veh/hr.  This 

high ramp volume is unreasonable as it will reduce the level of service on the ramp to F and will 

also cause major delays and backups on Colonial Drive.  Therefore, this cannot be accepted as a 

realistic strategy. 
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5.2.2  Analysis of Second Diversion Route 

As previously mentioned in Section 4.8.2, the second diversion route is short compared to 

the first.  There is only one diversion point for this route (DP 2) and this controls the percentage 

of vehicles that are diverted.  The on-ramp that vehicles are diverted from typically has a low 

traffic flow rate as well (approximately 350 vehicles / hour) and the vehicles are diverted to the 

same ramp described as the furthest re-entry location in the previous section.  This on-ramp has a 

typical volume of 970 veh/hr.  The short diversion distance, in addition to the low diversion 

volumes, causes this route to not be as effective at reducing the crash risk along the freeway as 

the first route.  The results of the analysis of the 2nd diversion route are given in the following 

sections. 

5.2.2.1  60 Percent Loading Scenario 

Cases 61 to 65 were created to examine the effects of diverting 20 to 100 percent of the 

vehicles from the South Street ramp using the 2nd diversion route.  These test cases are labeled as 

20% to 100%, respectively, which indicates the percentage of vehicles diverted for each case.  

As shown below in Figure 5-30, the rear-end crash risk does not change much during the 

application of the third diversion route at the 60 percent loading case.  This lack of change is also 

presented in Table 5-33.  Note the very small values of the ORCI given in this table. 
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Figure 5-30.  Average Rear-End Crash Risk vs. Location for Cases 61 to 65 

 

Table 5-33.  Summary of Average Rear-End Crash Risk Change for Cases 61 to 65 

Test Case ID 
Base Case 61 Case 62 Case 63 Case 64 Case 65 

  --- 20% 40% 60% 80% 100% 
Average Crash Risk   
(Stations with Difference) 2.195 2.198 2.208 2.192 2.174 2.162 
Crash Risk Benefit --- -0.003 -0.013 0.003 0.021 0.033 
T-Statistic  
(Benefit Significance) --- 0.148 0.902 0.190 1.356 2.422 
        
ORCI --- -0.014 -0.066 0.016 0.106 0.163 

 

This lack of effect by the second diversion route compared to the first occurs for a few 

reasons.  First, the ramp volumes affected are much different.  The South Street ramp that 

vehicles are diverted from at DP-2 has a much lower volume (about 350 veh/hr) than the Orange 

Blossom Trail ramp that vehicles are diverted from using DP-1A (about 1020 veh/hr).  
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Therefore, it is expected that the effects would be much lower since a much smaller volume of 

traffic flow is being moved.  Secondly, in the second diversion route vehicles are only diverted a 

little less than 1.0 mile downstream.  Because this distance is extremely short, the traffic stream 

may not develop a stable traffic pattern due to the reduced flow rate before the vehicles are 

reinserted onto the network.  Lastly, since this is the 60 percent loading scenario the traffic flow 

volumes are not very high.  Therefore, the effect of the route diversion would be minimized.  

Note that only at the highest level of loading (case 65 – 100%) was the change in the crash risk 

significant.  Even still, this value is rather small at 0.033 for each of five stations that were 

affected. 

The effect of cases 61 to 65 are almost the same on the lane-change risk as the rear-end 

risk.  Basically, there is almost no change in the lane-change crash risk.  This can be seen in the 

Figure 5-31.  For this reason, the LCRCI values are not calculated since no station showed 

significant change in the crash risk in any of the test cases.   
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Figure 5-31.  Average Lane-Change Crash Risk vs. Location for Cases 61 to 65 

 

5.2.2.2  80 Percent Loading Scenario 

The effects of using the shorter diversion route on the rear-end crash risk are not much 

more apparent during the 80 percent loading scenario than the 60 percent loading scenario.  As 

can be seen in Figure 5-32, all of the curves representing the crash risk at different levels of 

diversion have about equal rear-end risk values.  This is further shown in Table 5-34 where it can 

be seen that the change in the crash risk is insignificant at all cases and the values of ORCI are 

very low.  Additionally, note that the values do not increase or decrease in sequence but rather 

they are random.  This further shows the ineffectiveness of this shorter route diversion at this 

loading scenario.    
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Figure 5-32.  Average Rear-End Crash Risk vs. Location for Cases 66 to 70 

 

Table 5-34.  Summary of Average Rear-End Crash Risk Change for Cases 66 to 70 

Test Case ID 
Base Base 66 Case 67 Case 68 Case 69 Case 70 

  --- 20% 40% 60% 80% 100% 
Average Crash Risk   
(Stations with Difference) 1.440 1.408 1.439 1.416 1.419 1.432 
Crash Risk Benefit --- 0.032 0.002 0.024 0.021 0.008 
T-Statistic  
(Benefit Significance) --- 1.730 0.095 1.310 1.090 0.691 
        
ORCI --- 0.421 0.021 0.318 0.270 0.110 

 

Once again the lane-change crash risk mirrors the rear-end crash risk for these test cases.  

There is almost no change between any of the five test cases (66 to 70) and the base case for the 

80 percent loading case.  The LCRCI values have been calculated for each case and are 
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presented in Table 5-35.  Please note that the changes in the risk are never statistically significant 

and all LCRCI values are extremely small. 

Table 5-35.  Summary of Average Lane-Change Crash Risk Change for Cases 66 to 70 

Test Case ID 
Base Case 61 Case 62 Case 63 Case 64 Case 65 

  --- 20% 40% 60% 80% 100% 
Average Crash Risk   
(Stations with Difference) 1.1359 1.1487 1.1327 1.1047 1.1466 1.0778 
Crash Risk Benefit --- -0.0128 0.0033 0.0312 -0.0106 0.0581 
T-Statistic  
(Benefit Significance) --- 0.1893 0.0602 0.5945 0.1594 1.0245 
        
ORCI --- -0.0767 0.0196 0.1875 -0.0639 0.3487 
 

5.2.2.3  90 Percent Loading Scenario 

At the 90 percent loading scenario the cases involving the 2nd diversion route (cases 71 to 

75) show much more change in the crash risk than the previous loading scenarios.  Multiple 

stations along the freeway show a change in the crash risk.  Figures 5-33 and 5-34 (below) show 

a plot of the rear-end crash risk vs. location.  It is important to note that unlike the cases for the 

1st diversion route, which showed change in the crash risk that could be clearly defined into 

specific sections with lower and higher crash risk, the locations exhibiting change in the rear-end 

crash risk are not well defined.  Most of the stations that show a change have a higher crash risk 

due to the route diversion.  The stations that do show an improvement, Stations 28 and 37, are 

surrounded by stations which have a much higher crash risk when route diversion is 

implemented.   
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Figure 5-33.  Average Rear-End Crash Risk vs. Location for Cases 71 to 75 
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Figure 5-34.  Average Rear-End Crash Risk vs. Location for Cases 71 to 75 – 2 
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The tabulated results of the rear-end crash risk for cases 71 to 75 are given in Table 5-36.  

Almost all values of the ORCI are negative implying that route diversion reduces the rear-end 

crash safety along the freeway in these cases.  The general pattern is increasing values of ORCI 

until a peak at the 80% diversion case and then dipping back to a negative value.   

Table 5-36.  Summary of Average Rear-End Crash Risk Change for Cases 71 to 75 

Test Case ID 
Base Case 71 Case 72 Case 73 Case 74 Case 75 

  --- 20% 40% 60% 80% 100% 
Average Crash Risk   
(Stations with Difference) 1.082 1.122 1.116 1.106 1.080 1.115 
Crash Risk Benefit --- -0.040 -0.034 -0.024 0.002 -0.033 
T-Statistic  
(Benefit Significance) --- 2.084 0.797 0.833 0.070 1.427 
        
ORCI --- -0.556 -0.472 -0.340 0.028 -0.467 

 

Although the lane-change crash risk shows a significant change during these scenarios, 

all values of the LCRCI are negative as well.  This means that route diversion has a negative 

impact on the lane-change crash risk at all diversion levels.  The results are given in Table 5-37 

below.  Additionally, no location showed a positive benefit in the lane-change risk during these 

test cases.  The effects of route diversion 2 are to increase the lane-change risk significantly.    

Table 5-37.  Summary of Average Lane-Change Crash Risk Change for Cases 71 to 75 

Test Case ID 
Base Case 71 Case 72 Case 73 Case 74 Case 75 

  --- 20% 40% 60% 80% 100% 
Average Crash Risk   
(Stations with Difference) 0.8391 0.9316 0.9315 0.9235 0.8654 0.9260 
Crash Risk Benefit --- -0.0925 -0.0924 -0.0844 -0.0263 -0.0869 
T-Statistic  
(Benefit Significance) --- 1.9665 1.8845 1.7583 0.5316 1.8559 
        
LCRCI --- -2.2205 -2.2172 -2.0263 -0.6319 -2.0853 
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5.2.2.4  100 Percent Loading Scenario 

At the 100 percent loading scenario the results are about the same.  Implementation of the 

2nd diversion route causes an increase in the overall rear-end crash risk throughout the network.  

This can be seen in Table 5-38.  Additionally, much like the 90 percent loading case, the 

locations that experience a change in the rear-end crash risk are not well defined along the 

network.  Because of this and the lack of a general pattern in the ORCI and the amount of 

vehicles the 2nd diversion route does not seem to be a reliable option. 

Table 5-38.  Summary of Average Rear-End Crash Risk Change for Cases 76 to 80 

Test Case ID 
Base Case 76 Case 77 Case 78 Case 79 Case 80 

  --- 20% 40% 60% 80% 100% 
Average Crash Risk   
(Stations with Difference) 0.484 0.486 0.488 0.494 0.500 0.497 
Crash Risk Benefit --- -0.001 -0.003 -0.010 -0.016 -0.013 
T-Statistic  
(Benefit Significance) --- 0.214 0.527 0.958 1.984 1.789 
        
ORCI --- -0.054 -0.153 -0.445 -0.714 -0.589 
 

 The lane-change crash also shows very little change due to the 2nd diversion route.  The 

results are presented in Table 5-39 for inspection. 

Table 5-39.  Summary of Average Lane-Change Crash Risk Change for Cases 76 to 80 

Test Case ID 
Base Case 76 Case 77 Case 78 Case 79 Case 80 

  --- 20% 40% 60% 80% 100% 
Average Crash Risk   
(Stations with Difference) 0.6310 0.6315 0.5999 0.6337 0.6222 0.5797 
Crash Risk Benefit --- -0.0005 0.0311 -0.0027 0.0087 0.0513 
T-Statistic  
(Benefit Significance) --- 0.0230 1.2305 0.1118 0.3301 2.0912 
        
ORCI --- -0.0082 0.4976 -0.0435 0.1396 0.8203 
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5.2.2  Route Diversion Summary 

It is important to note that the specific results found in this study are applicable only to 

the specific area of the network that is modeled and route diversion implemented.  Therefore, the 

values of the risk change for a particular test case and the linear regression models that were 

created to compare the ORCI and LCRCI based on the amount of vehicles diverted are specific 

to Interstate-4 through downtown Orlando for the specific ramps used in this study.  Because of 

this, the regression models created cannot be used to predict the change in the ORCI or LCRCI 

for other diversion locations.  However, the general trends found from these should remain 

regardless of the location.  For example, the trend that the risk decreases at the location where 

vehicles are diverted from and increases at the location where diverted vehicles are reinserted 

onto the freeway should hold for any situation.  However, the amount of the decrease and 

increase in the crash risk will depend on the ramp volumes and traffic flow along the freeway 

location.  The conclusions and trends that are found from this study are as follows: 

• Route diversion serves to reduce the overall rear-end and lane-change crash risk on the 

freeway at lower loading levels (up to 90 percent loading) for the first diversion route. 

• Route diversion serves to increase the overall rear-end and lane-change crash risk on the 

freeway at extremely high levels of congestion (100 percent loading) for the first 

diversion route. 

• The length of the freeway that is affected by route diversion increases as the amount of 

traffic increases along the network. 

• At lower levels of congestion, the primary area affected by route diversion is the area 

between the initial diversion point and the re-entry area. 
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• At higher levels of congestion, route diversion reduces the crash risk at the upstream end 

of queues that are formed during this loading case.  Therefore, the main area affected by 

route diversion is located much upstream of the area where the route diversion actually 

occurs.  This occurs because when vehicles are diverted the traffic demand is reduced at 

the middle of a very long queuing section.  This reduced flow serves to shorten the length 

of the queuing section on the tail (upstream) end of the queue by providing more storage 

space in the middle of the queue that would have been filled by the diverted vehicles.  

Comparing the base case to the route diversion case, the only difference that is seen is 

upstream end of the queuing section – in the base case it remains congested while in the 

diversion case the congested is reduced.  This area where the congestion is reduced 

shows lower values of both the rear-end and lane-change crash risk.    

• At lower levels of congestion (60 and 80 percent loading), the reduction in rear-end crash 

risk increases with the increasing number of vehicles that are diverted and also increase 

the further away vehicles are diverted to.  The reduction in the lane-change crash risk 

only increases with the number of vehicles that were diverted although there is some 

evidence which shows that diverting vehicles further away helps to reduce the lane-

change crash risk even further. 

• At levels of moderate and high congestion (90 and 100 percent loading, respectively), the 

effects of route diversion are not predictable in nature.  Diverting a higher percentage of 

vehicles may not necessarily reduce the crash risk more. 

• At levels of moderate and high congestion (90 and 100 percent loading, respectively), 

high levels of route diversion causes congestion on the on-ramps that vehicles use to re-
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enter the freeway.  This congestion spills onto the surface streets and blocks a major 

arterial roadway during the peak traffic periods. 

• At lower levels of congestion (60 and 80 percent loading) the increase in travel time that 

is realized due to route diversion is minimal. 

• The travel time increase due to route diversion increases as congestion increases.   

• When congestion starts to build up on the network (80 – 100 percent loading), route 

diversion shows a crash migration effect at the area where the vehicles are diverted to on 

the network.  Therefore, at higher levels of congestion route diversion decreases the crash 

risk in the upstream areas nearer the diversion location and increases the crash risk at the 

downstream areas where diverted vehicles re-enter the freeway. 

• Diverting vehicles a very small distance along the freeway (less than 1 mile) from an on-

ramp with a small traffic volume does not serve to change the crash risk significantly. 

 

Therefore, route diversion should only be applied in off-peak situations (when the 

mainline traffic flow is un-congested) if the goal of diverting vehicles is to reduce the real-time 

crash risk along the freeway.  Not only do the results show an overall improvement in the crash 

risk for all diversion levels but the increase in the travel time is relatively small during these low 

network loading scenarios.  However, care must be taken during the 80 percent loading case to 

ensure the that small area of the freeway that experiences an increase in the crash risk does not 

already have a high crash risk value.  If so, route diversion may serve to make an already high 

risk area even more risky and cause more crashes.  Additionally, vehicles should be diverted 

from ramps with high inflow volumes and be diverted as far downstream as possible in order to 

maximize the safety benefits.   
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5.3  Analysis of Ramp Metering 

As previously mentioned, the second half of the experimental design was performed to 

evaluate the effectiveness of ramp metering at reducing the two different crash risk measures 

along the freeway.  The first step in this process was to determine the best ALINEA parameters 

which are used to compare the ALINEA metering strategy with the Zone metering strategy.  

Once completed, the different cases performed with the traffic-cycle realization of the Zone 

algorithm were examined to determine the best cycle length to use.  Next the different one-car-

per-cycle methods were compared and, finally, the most beneficial strategies from all categories 

were compared against each other to determine the “best” ramp metering strategy for reducing 

the crash risk along the network corridor.   

The analysis of these test cases is performed in a similar manner as the route diversion 

test cases.  However, there is one important difference that must be mentioned.  In general, for 

route diversion, the area of the freeway that is affected by a particular diversion strategy is 

constant for varying percentages of vehicles that are diverted.  In other words, the area of the 

freeway that is affected when 100 percent of the vehicles are diverted is about the same as when 

40 percent of the vehicles are diverted – the 40 percent diversion case just shows a much smaller 

change in the crash risk.  This is not true for the ramp metering cases, however.  When different 

metering strategies are used, the locations that are affected by ramp metering change.  Therefore, 

when analyzing the ramp metering cases, specific areas of crash risk increase and decrease are 

not specified.  Instead, the network as a whole is examined and all locations that show a change 

in the crash risk are analyzed together.   
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5.3.1  Analysis of ALINEA Parameters 

5.3.1.1  100 Percent Loading Scenario 

The experimental design used to find the best ALINEA parameters is given in Table 4-5 

in Section 4.9.1.  The ramps metered as part of this subsection of the experimental design are the 

ramps that make up zone 1 (Figure 4-18).  This zone encompasses the 3 ramps immediately 

upstream of the Interstate-4 / S. R. 408 Interchange.  To analyze the changes in the rear-end and 

lane-change crash risks due to the different ALINEA parameter configurations, the ORCI and 

LCRCI are used, respectively.  As noted previously, these values are calculated from all stations 

within the network that experience a change in the respective risk value due to the 

implementation of the ramp metering strategy.  The values of the ORCI and LCRCI are given 

below in Table 5-40 for potion of the experimental design performed at the 100 percent loading 

scenario.  Note in Table 5-40 that each test case is denoted by its respective case number and the 

ALINEA parameters that the case represents.  For example, Case 81 (C 30, O 0.17) represents 

the case with a 30 second cycle length and a critical occupancy of 0.17.   

Table 5-40.  Summary of ORCI and LCRCI for Cases 81 to 89 

  Test Case ID 
  Case 81 Case 82 Case 83 Case 84 Case 85 Case 86 Case 87 Case 88 Case 89

  
C 30 
O 0.17 

C 30 
O 0.20 

C 30 
O 0.23 

C 45 
O 0.17 

C 45 
O 0.20 

C 45 
O 0.23 

C 60 
O 0.17 

C 60 
O 0.20 

C 60 
O 0.23 

# of Stations with 
RE Risk Change 16 18 15 20 15 17 17 13 9 
ORCI 0.0061 -0.4203 -0.2962 -0.2241 -0.1659 -0.5479 -0.3304 -0.3587 -0.3591 
# of Stations with 
LC Risk Change 8 6 6 8 10 10 6 8 4 
LCRCI 3.0360 2.6416 2.5904 3.3258 2.2548 2.0591 1.5371 1.1249 1.1040 
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It is important to note that the ORCI value is negative for all cases except the case with 

the smallest cycle length (30 seconds) and critical occupancy (0.17).  Negative values of the 

ORCI and LCRCI mean that the rear-end and lane-change crash risk, respectively, are increased 

in the particular scenario; however, the magnitude of this increase is very small in every case.  

Therefore, the overall rear-end safety along the network is decreased slightly with the application 

of ALINEA ramp metering using most of the tested configurations.  This slight increase in the 

crash risk occurs due to the particular ramps that are metered in this scenario – the ramps 

immediately upstream of the Interstate-4 / S. R. 408 Interchange.  Metering these ramps alone 

does not significantly change the amount of congestion on the freeway since there is a large 

inflow of vehicles at the Interstate-4 / S. R. 408 Interchange located immediately downstream of 

this area.  In fact the occupancies increases (slightly) which causes a small increase in the rear-

end and lane-change crash risk.   

Looking at the values of ORCI and LCRCI in Table 5-40 it is also apparent that higher 

values of these two variables occur during shorter cycle lengths and lower values of the critical 

occupancy.  In other words, crash risk is reduced more on the network with lower values of cycle 

length and critical occupancy.  This is more clearly seen when the ORCI and LCRCI values are 

averaged across individual levels of a particular value (i.e. ORCI averaged for all cases with a 30 

second cycle length compared to ORCI averaged for all cases with a 45 second cycle length).  

This is presented below in Table 5-41.  As shown more clearly in Table 5-41, the values of ORCI 

and LCRCI increase with shorter cycle lengths and smaller critical occupancies.  Therefore, 

shorter cycle lengths and smaller critical occupancy values provide the best safety results. The 

smaller critical occupancy values allow the metering algorithm to become more restrictive at 

lower levels of congestion while the smaller cycle lengths allow smaller platoons of vehicles 

191 



onto the network which, in this particular traffic flow condition, results in smaller crash risk 

values. 

Table 5-41.  ORCI and LCRCI across different levels of ALINEA Parameters (100 Percent Loading) 

 ORCI LCRCI 
O = 0.17 -0.1828 2.6330 
O = 0.20 -0.3149 2.0071 
O = 0.23 -0.4010 1.9178 

   
C = 30 -0.2368 2.7560 
C = 45 -0.3126 2.5466 
C = 60 -0.3494 1.2553 

 

A linear regression model was created to help explain the trends between the two 

ALINEA parameters and the ORCI and LCRCI.  These two models are displayed in Tables 5-42 

and 5-43, respectively.  Since the coefficients of the cycle length and critical occupancy 

parameters are negative for both of the models, this implies that lower values of these two 

variables provide better safety benefits.  Even though the parameter estimates in the ORCI model 

are not statistically significant (which probably signifies the lack of a linear relationship rather 

than the lack of a relationship altogether), the sign of the parameter estimate shows that if it were 

significant lower cycle lengths would provide greater safety benefits. 

Table 5-42.  Linear Regression Analysis for ORCI in Test Cases 81 to 89 (100 Percent Loading) 

Parameter Estimate Standard Error t Value Pr > |t|

Intercept 0.5968 0.4080 1.46 0.1939 
Cycle -0.0038 0.0037 -1.01 0.3493 

Crit_Occ -3.6373 1.8491 -1.97 0.0967 
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Table 5-43.  Linear Regression Analysis for LCRCI in Test Cases 81 to 89 (100 Percent Loading) 

Parameter Estimate Standard Error t Value Pr > |t|

Intercept 6.8209 1.2175 5.60 0.0014 
Cycle -0.0500 0.0110 -4.53 0.0040 

Crit_Occ -11.9195 5.517058 -2.16 0.0740 
 

5.3.1.2  90 Percent Loading Scenario 

Like the ALINEA runs for the 100 percent loading cases, the values of the ORCI and 

LCRCI were calculated for cases 90 to 98 which were run at 90 percent loading.  These values 

are represented below in Table 5-44.   

Table 5-44.  Summary of ORCI and LCRCI for Cases 90 to 98 

  Test Case ID 
  Case 90 Case 91 Case 92 Case 93 Case 94 Case 95 Case 96 Case 97 Case 98

  
C 30 

O 0.17 
C 30 

O 0.20 
C 30 

O 0.23 
C 45 

O 0.17 
C 45 

O 0.20 
C 45 

O 0.23 
C 60 

O 0.17 
C 60 

O 0.20 
C 60 

O 0.23 
# of Stations with 
RE Risk Change 16 12 11 16 17 8 14 5 9 
ORCI 2.0057 0.8274 0.4980 1.3397 0.8875 0.0695 1.1504 0.2043 0.2055 
# of Stations with 
LC Risk Change 4 2 4 6 0 2 4 6 6 
LCRCI 1.3549 0.4174 0.0369 0.6966 0.0000 -0.5846 0.9367 -0.5275 -0.4792 
 

Once again the values of the ORCI and LCRCI found in Table 5-45 have the general 

trend that they decrease with increasing values of the cycle length and critical occupancy.  For 

the 90 percent loading cases (unlike the 100 percent loading cases), the ORCI and LCRCI values 

are mostly positive which implies that, in general, the ALINEA strategies serve to reduce both 

the rear-end and lane-change crash risk.  The averages of the two crash risk summary variables 

across individual levels of a particular variable (presented in Table 5-45) confirm this trend.   

193 



Table 5-45.  ORCI and LCRCI across different levels of ALINEA Parameters (90 Percent Loading) 

 ORCI LCRCI 
O = 0.17 1.4986 0.9961 
O = 0.20 0.6397 -0.0367 
O = 0.23 0.2577 -0.3423 

   
C = 30 1.1104 0.6031 
C = 45 0.7655 0.0373 
C = 60 0.5201 -0.0233 

 

The linear regression models for the ORCI and LCRCI shown in Tables 5-46 and 5-47, 

respectively, confirm the same trends found for the scenarios performed at the 100 percent 

loading scenario.  Please note that all of the parameter estimates are statistically significant in 

this case which shows that these trends are linear for the 90 percent loading scenarios.  The 

coefficients of the cycle length and critical occupancy parameters are negative (like the 100 

percent loading case) for both models.  This shows that the overall risk benefit is maximized 

when lower values of the cycle length and critical occupancy are used for the ALINEA 

parameters.    

Table 5-46.  Linear Regression Analysis for ORCI in Test Cases 90 to 98 (90 Percent Loading) 

Parameter Estimate Standard Error t Value Pr > |t|

Intercept 5.8205 0.7525 7.73 0.0002 
Cycle -0.0197 0.0068 -2.88 0.0279 

Crit_Occ -20.6821 3.4100 -6.07 0.0009 

 

Table 5-47.  Linear Regression Analysis for LCRCI in Test Cases 90 to 98 (90 Percent Loading) 

Parameter Estimate Standard Error t Value Pr > |t|

Intercept 5.6066 0.9236 6.07 0.0009 
Cycle -0.0209 0.0084 -2.49 0.0469 

Crit_Occ -22.3063 4.185329 -5.33 0.0018 
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As a result of this portion of the experimental design, the following results are found: 

• A lower value of the critical occupancy in the ALINEA algorithm provides the highest 

safety benefits 

• A lower value of the cycle length provides the highest safety benefits when the traffic-

cycle realization of ALINEA is applied 

 

Dhindsa (2005) performed a similar study to determine the best values of the cycle length 

and critical occupancy for the ALINEA algorithm when used to reduce the real-time crash risk 

on a freeway.  In his study, much like this study, Dhindsa showed that a smaller cycle length 

provides greater safety results when the ALINEA algorithm is implemented.  Using a smaller 

cycle length with this restrictive metering algorithm allows smaller platoons of vehicles to enter 

the freeway mainline at an increased frequency.  Typically, this would serve to increase the risk 

of a rear-end crash as vehicles merge onto the freeway mainline more frequently.  However, 

when the traffic pattern on the mainline has small gaps between successive vehicles that can 

accommodate only a few vehicles merging at a time, this situation provides greater safety 

benefits than when larger platoons of vehicles try to merge into the same small gaps in the 

mainline traffic.   At the particular levels of traffic flows experienced on this network, these 

smaller platoons cause less turbulence in the traffic flow and effectively reduce the crash risk 

more than if a larger cycle length is used with the same metering algorithm. 

However, Dhindsa found that using a higher value of critical occupancy in the ALINEA 

algorithm would improve the safety conditions on the freeway; this is contradictory to the results 

found in this study.  To understand which of these values is most appropriate then, it is important 

to examine the ALINEA algorithm in detail.  From Equation 3, using lower value of the critical 
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occupancy would cause the ALINEA algorithm to restrict the metering rate at lower levels of 

congestion than if a higher value of the critical occupancy is used.  This would essentially allow 

fewer vehicles onto the network per metering cycle during periods of light congestion which will 

induce less turbulence on the mainline traffic flow.  However, if a higher critical occupancy 

value is used the meter would not be as restrictive and allow more vehicles onto the network for 

a given time period.  This does not make sense from a safety perspective as this would increase 

congestion and speed variation.   For this reason, the results of this study are used to describe the 

relationship between the critical occupancy and crash risk. 

 Therefore, the final outcome of this portion of the experimental design is that the optimal 

values for the ALINEA algorithm with the traffic-cycle realization are a cycle length of 30 

seconds and a critical occupancy of 0.17.  These values will be used to compare ALINEA traffic-

cycle method with the other ramp metering methods being considered. 

5.3.2  Analysis of Zone Strategy with Traffic-Cycle Realization 

The experimental design given in Section 4.9.3 describes the other ramp metering test 

cases that are examined in this study.  In order to determine the trends between the rear-end and 

lane-change crash risk and specific variables in the experimental design, these cases are split into 

different groups for analysis.  The first group that will be looked at are the cases that use the 

Zone ramp metering algorithm with the traffic cycle realization.  These cases are analyzed 

together in order to determine which cycle length and which metered zone most successfully 

reduces the two real-time crash risk measures and are reproduced below in Table 5-48.  Zone 1 

encompasses the area just upstream of the I-4 / S. R. 408 interchange, Zone 2 meters the four 
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ramps just downstream of this interchange, and Zone 3 meters an that is the union of Zones 1 

and 2.  A schematic drawing of the Zones is shown in Figure 4-18. 

Table 5-48.  Test Cases Representing Zone Metering Algorithm and Traffic-Cycle Realization 

Case Number Percent Loading Metered Zone Algorithm Cycle Length 
99 100 1 Zone 30 
100 100 1 Zone 45 
101 100 1 Zone 60 
105 100 2 Zone 30 
106 100 2 Zone 45 
107 100 2 Zone 60 
111 100 3 Zone 30 
112 100 3 Zone 45 
113 100 3 Zone 60 
117 90 1 Zone 30 
118 90 1 Zone 45 
119 90 1 Zone 60 
123 90 2 Zone 30 
124 90 2 Zone 45 
125 90 2 Zone 60 
129 90 3 Zone 30 
130 90 3 Zone 45 
131 90 3 Zone 60 

 

The values of the ORCI and LCRCI have been calculated for the cases performed at the 

100 percent loading scenario and are presented below in Table 5-49.  The cases are denoted in 

Table 5-49 by the zone that is being metered and the cycle length that is used as well as the 

corresponding case number from Table 5-48.  For example, Case 111 represents the case where 

zone 3 is metered using a 30 second cycle length.  As shown in Table 5-49, the values of the 

ORCI and LCRI tend to increase for longer cycle lengths which show improved safety 

conditions as the cycle lengths increases.  Metering zone 1 does not appear to yield significant 

safety benefits as evidenced by the low values of ORCI and LCRCI.  In fact, the majority of the 

cases involving zone 1 have a negative overall safety impact.  Metering zone 2 provides better 
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safety improvements but zone 3 provides the most substantial reduction in both the rear-end and 

lane-change crash risk.  The average value of ORCI for zone 3 is about 6 times as high as the 

average value of the ORCI for zone 2. 

Table 5-49.  Summary of ORCI and LCRCI for Zone TC Cases at 100 Percent Loading 

Test Case ID 
Case  

99 
Case  
100 

Case 
101 

Case 
105 

Case 
106 

Case 
107 

Case  
111 

Case 
112 

Case 
113 

  
Z 1 

C 30 
Z 1 

C 45 
Z 1 

C 60 
Z 2 

C 30 
Z 2 

C 45 
Z 2 

C 60 
Z 3 

C 30 
Z 3 

C 45 
Z 3 

C 60 
# of Stations with 
RE Risk Change 1 2 1 10 21 27 42 45 46 
ORCI -0.0605 -0.0081 0.0657 0.7435 1.5832 1.7290 6.4865 8.9248 8.4413 
# of Stations with 
LC Risk Change 0 6 14 14 14 12 32 36 38 
LCRCI 0.0000 -0.6198 -0.9364 1.5090 1.7608 1.8896 7.3917 9.5295 8.7241 
 

The test cases from Table 5-48 performed at the 90 percent loading scenario show similar 

results.  The values of the ORCI and LCRCI are presented below in Table 5-50.  The trends 

found in Table 5-49 are the same found above in Table 5-50.  In general, the values of ORCI and 

LCRCI increase with the cycle length.  Additionally, metering zone 1 tends to yield a negative 

safety impact while metering zones 2 and 3 have a positive safety impact.   

Table 5-50.  Summary of ORCI and LCRCI for Zone TC Cases at 90 Percent Loading 

Test Case ID 
Case  
117 

Case  
118 

Case 
119 

Case 
123 

Case 
124 

Case 
125 

Case  
129 

Case 
130 

Case 
131 

  
Z 1 

C 30 
Z 1 

C 45 
Z 1 

C 60 
Z 2 

C 30 
Z 2 

C 45 
Z 2 

C 60 
Z 3 

C 30 
Z 3 

C 45 
Z 3 

C 60 
# of Stations with 
RE Risk Change 8 3 1 17 20 28 25 30 34 
ORCI -0.2957 -0.3318 -0.0881 1.7783 2.3628 3.5568 5.2674 6.7534 7.0750 
# of Stations with 
LC Risk Change 8 8 6 4 4 8 12 16 12 
LCRCI -1.5900 -1.7860 -1.5152 0.9005 0.9776 1.4372 3.7512 4.7700 3.8661 
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Note that for the runs performed at both the 90 percent and 100 percent loading scenarios 

the values of the ORCI and LCRCI are correlated with the number of stations that show a rear-

end or lane-change crash risk, respectively.  This means that greater safety benefits are found 

when a larger section of the freeway is affected by the ramp metering strategy.  Therefore, it 

makes sense that metering zone 3 would provide the best results since this zone is the largest of 

the three zones considered in this study; this zone had 7 metered ramps and spanned a length of 

4.5 miles.  Although zone 1 is almost 2.5 miles long, the reason that large safety benefits are not 

realized when zone 1 is metered is that there is a bottleneck that occurs in the downstream end of 

this zone at the Interstate-4 / S. R. 408 Interchange.   

The positive values of ORCI and LCRCI when zones 2 and 3 are metered show that net 

safety benefits are realized for these scenarios.  However, looking at the individual loop detector 

stations shows that while most stations exhibit a decrease in the respective crash risk, at some 

locations the crash risk is increased significantly.  This implies that ramp metering, like route 

diversion, has the potential to cause crash migration – the reduction of the crash risk at one area 

combined with the increase in the crash risk at another.  Because of this phenomenon the crash 

risk vs. location is examined to determine the strength of its effects.  Figure 5-35 shows a plot of 

the rear-end crash risk for the test cases that are shown in Table 5-48 for the 100 percent loading 

case.   
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Average Rear-End Crash Risk vs. Location
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Figure 5-35.  Average Rear-End Crash Risk vs. Location for Zone TC Cases at 100 Percent Loading 

 

Figure 5-35 is rather confusing due to the large number of curves representing the 

different test cases.  Additionally, the scale of the plot is relatively large compared to the 

differences in the crash risk.  Zooming in on individual areas of the plot could be done (similar to 

the route diversion cases) however this would require numerous plots as the area of effect is 

spread out over multiple stations.  Instead, a plot of the difference in the rear-end crash risk for 

each case compared to the base case vs. location is created for the stations that were affected by 

ramp metering.  These crash difference values are found by subtracting the crash risk at a 

particular location from the base case to determine the difference.  Positive values imply a 

reduction in the crash risk while negative values show an increase in the crash risk.  This plot is 

shown below in Figure 5-36. 
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Average Rear-End Crash Risk Difference vs. Location
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Figure 5-36.  Average Rear-End Crash Risk Difference vs. Location for Zone TC Cases at 100 Percent 
Loading 

 

From Tables 5-49 and 5-50, the best Zone algorithm, traffic-cycle realization cases are 

those that metered zone 3.  In Figure 5-36, it is clear to see that for these cases the crash risk is 

increased between Stations 28-30 and 41-42 (denoted by a negative crash risk difference for 

these locations).  These two locations have the largest increases in the crash risk compared to the 

other, trivial, increases elsewhere.  The rear-end crash increase at Stations 28-30 occurs due to 

the congested conditions that typically persist at these locations during the base case.  When 

ramp metering is implemented the tail of the queue conditions, which typically occurs just 

upstream of this location, moves downstream near Stations 28-30.  This causes slightly more 
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congestion which increases the crash risk compared to the typical (base) conditions at this 

location.  This movement of congestion throughout the network is the reason that the output of 

two rear-end crash risk regime models needed to be normalized.  Ramp metering causes areas of 

congestion (regime 1 conditions) to become un-congested (regime 2 conditions) and vice versa.  

Only by combining the models were the crash risk effects able to be determined. 

The crash risk increase at Stations 41-42 occurs for the same reason.  Congested 

conditions from the downtown area move slightly downstream as the traffic volume in the 

downtown area decreases.  This, in turn, increases the congestion around Stations 41-42 which 

causes increased values of the rear-end crash risk.  Although the crash risk increases are rather 

large in these two areas they are considered allowable for two reasons.  The first is that they 

occur at locations that typically have a low rear-end crash risk value compared to surrounding 

locations.  This can be seen by examining Figure 5-37, below, which shows a plot of the base 

rear-end crash risk at the 100 percent loading scenario.  At Stations 27-28 the average crash risk 

is 0.0 (which is already low) while at Stations 41-42 the average crash risk is 0.45.  Just upstream 

and downstream of Stations 41-42 the rear-end crash risk value is 2.3 and 1.8, respectively.  

Therefore, since the crash risk is lower at Stations 41-42 than the surrounding stations, raising it 

slightly (to 0.65) in order to increase the overall safety of the network seems like a reasonable 

compromise.  The second reason to allow this crash risk increase is that the overall rear-end 

safety benefit is large and amounts to an average decrease of the rear-end crash risk of about 0.2 

per location (34 stations).  Increasing the rear-end risk by 0.4 for a small area (just 4 stations) in 

order to reduce the risk by 0.2 over a much larger area seems reasonable. 
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Figure 5-37.  Average Rear-End Crash Risk for Base Case at 100 Percent Loading 

 

The plot of the lane-change crash risk difference vs. location is given below in 

Figure 5-38 for the 100 percent loading scenarios.  As shown in Figure 5-38, the best Zone 

traffic-cycle realization cases (metering zone 3) causes a decrease in the lane-change crash risk at 

the upstream locations while implementing this method increases the lane-change crash risk 

slightly between Stations 29 to 43 (which encompasses the downtown area).  The decrease in the 

crash risk is much more substantial than (about 8 times the magnitude of) the increase in the 

crash risk.  As shown in Figure 5-39, the location where the lane-change crash risk is increased 

due to the Zone ramp metering is an area where the lane-change crash risk is already high along 

the network corridor.  Therefore, care would have to be taken when implementing the ramp 

203 



metering due to the increase in the lane-change crash risk at a location where it is already high.  

However, the increase is only about 2% of the original value so it should not have that great of 

an effect.  Metering zones 1 or 2 does not cause this increase in the crash risk at Stations 29 to 43 

but the lane-change safety benefit provided by these scenarios is minimal.  
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Figure 5-38.  Average Lane-Change Crash Risk Difference vs. Location for Zone TC Cases at 100 Percent 
Loading 
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Figure 5-39.  Average Lane-Change Crash Risk for Base Case at 100 Percent Loading 

 

For the cases performed at the 90 percent loading scenario, the results are similar.  Figure 

5-40 shows the difference in the rear-end crash risk while Figure 5-41 shows the difference in the 

lane-change crash risk for the various test cases.   
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Figure 5-40.  Average Rear-End Crash Risk Difference vs. Location for Zone TC Cases at 90 Percent Loading 
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Figure 5-41.  Average Lane-Change Crash Risk Difference vs. Location for Zone TC Cases at 90 Percent 
Loading 

 

The plot of the rear-end crash risk difference shows that for the best zone ramp metering 

case the crash risk is only increased at Stations 41 to 42.  Once again this is just an isolated 

instance and the base crash risk at this location is already lower than the surrounding stations so 

the small crash risk increase can be overlooked for the greater crash risk decrease.  Figure 5-41 

shows that at the 90 percent loading scenario the lane-change crash risk also increased for just a 

small area of the freeway as compared to the 100 percent loading scenarios.  Therefore, this 

section shows that the best case involving the Zone algorithm with the traffic-cycle realization is 

to meter zone 3 using a 60 second cycle length.  Although this method causes some crash 

migration effects, the locations that experience high levels of rear-end crash risk migration are 
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areas with traditionally low rear-end crash risk values.  The effects of the lane-change crash risk 

migration is small compared to the overall reduction in the lane-change crash risk and can 

therefore be tolerated in order to reduce the overall lane-change crash risk across the network. 

5.3.3  Analysis of One-Car-Per-Cycle Realization Strategies 

The previous two sections examined both the ALINEA and Zone algorithm when used 

with the traffic-cycle realization.  The next group of ramp metering cases that are examined are 

those cases that implement the one-car-per-cycle realization as opposed to the traffic-cycle 

realization.  The specific cases from the experimental design that are analyzed in this group are 

displayed below in Table 5-51. 

Table 5-51.   Test Cases Representing One-Car-Per-Cycle Realization of Zone and ALINEA 

Case Number Percent Loading Metered Zone Algorithm Cycle Length 
103 100 1 Zone OCPC 
104 100 1 ALINEA OCPC 
109 100 2 Zone OCPC 
110 100 2 ALINEA OCPC 
115 100 3 Zone OCPC 
116 100 3 ALINEA OCPC 
121 90 1 Zone OCPC 
122 90 1 ALINEA OCPC 
127 90 2 Zone OCPC 
128 90 2 ALINEA OCPC 
133 90 3 Zone OCPC 
134 90 3 ALINEA OCPC 

 

The values of ORCI and LCRCI have been calculated for both the 100 percent loading 

scenarios and the 90 percent loading scenarios and are presented below in Tables 5-52 and 5-53, 

respectively.  The tables reference the test case numbers presented above in Table 5-51 as well as 

describes the cases by the metering type and traffic realization.  For example, case 104 (Z 1 
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ALINEA OCPC) represents using the ALINEA algorithm to meter the ramps that comprise zone 

1 while implementing the one-car-per-cycle (or OCPC) realization. 

Table 5-52.  Summary of ORCI and LCRCI for OCPC Cases at 100 Percent Loading 

  Test Case ID 
  Case 103 Case 104 Case 109 Case 110 Case 115 Case 116 

  
Z 1 

OCPC 

Z 1 
ALINEA 

OCPC 
Z 2 

OCPC 

Z 2 
ALINEA 

OCPC 
Z 3 

OCPC 

Z 3 
ALINEA 

OCPC 
# of Stations with RE 
Risk Change 5 7 0 36 3 39 
ORCI 0.1578 0.0883 0.0000 5.2296 0.1139 7.2222 
# of Stations with LC 
Risk Change 0 8 4 26 0 34 
LCRCI 0.0000 1.5736 -0.4676 8.1495 0.0000 12.0102 
 

Table 5-53.  Summary of ORCI and LCRCI for OCPC Cases at 90 Percent Loading 

  Test Case ID 
  Case 121 Case 122 Case 127 Case 128 Case 133 Case 134 

  
Z 1 

OCPC 

Z 1 
ALINEA 

OCPC 
Z 2 

OCPC 

Z 2 
ALINEA 

OCPC 
Z 3 

OCPC 

Z 3 
ALINEA 

OCPC 
# of Stations with RE Risk 
Change 1 5 3 34 6 37 
ORCI -0.0719 0.0029 -0.4136 5.8677 -0.7912 5.7074 
# of Stations with LC Risk 
Change 6 2 2 20 6 22 
LCRCI -1.5124 -0.5614 -0.7378 6.6130 -1.9127 8.3968 
 

For each of the crash risk performance measures (ORCI and LCRCI) almost every test 

case using the ALINEA algorithm with the one-car-per-cycle realization outperforms using the 

Zone Algorithm with the one-car-per-cycle-realization.  This is expected based on the previous 

findings.  In the experimental design to determine the best ALINEA parameters, the safety along 

the freeway corridor increased as the cycle length decreased.  This shows that when using 

ALINEA, allowing smaller platoons of vehicles onto the freeway more frequently provides the 
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best results.  Therefore, it would make sense that the one-car-per-cycle realization would provide 

good safety results since this method allows only a single vehicle to enter the freeway at an 

increased frequency.  Similarly, the previous section showed that using a longer cycle length 

improves the ability of the Zone algorithm to decrease the two crash risk values.  Therefore, 

implementing the one-car-per-cycle realization, which uses the shortest cycle lengths, goes 

against this trend and, therefore, does not perform well. 

Additionally, ALINEA is more restrictive than the Zone algorithm at higher levels of 

congestion.  As seen in Equation 5, the Zone algorithm includes a term that accounts for the 

spare capacity of the zone.  This spare capacity is found by examining all mainline loop detectors 

within the zone, not just those near entrance ramps.  Therefore, if congestion is increased near 

the ramps that are being metered but the detectors still show a relatively low traffic density the 

Zone algorithm will allow more vehicles into the network to fill this spare capacity.  The 

ALINEA algorithm does not consider the spare capacity and would therefore be more restrictive.  

This will lead to a reduction in the safety measures of effectiveness (ORCI and LCRCI) for the 

Zone algorithm as allowing more vehicles into the network would increase the crash risk.  When 

this is combined with the one-car-per-cycle realization, at some ramps vehicles enter the freeway 

almost as soon as they arrive at the ramp.  Therefore, the Zone algorithm with one-car-per-cycle 

methodology shows no great difference between the metering and non-metering case.  

Figures 5-42 and 5-43 below show the differences in the rear-end and lane-change crash 

risk vs. location, respectively, for the cases run at 100 percent loading.   
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Figure 5-42.  Average Rear-End Crash Risk Difference vs. Location for OCPC Cases at 100 Percent Loading 
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Figure 5-43.  Average Lane-Change Crash Risk Difference vs. Location for OCPC Cases at 100 Percent 
Loading 

 

Once again Figures 5-42 and 5-43 show that ramp metering causes a crash migration 

effect when the best ALINEA OCPC case (metering zone 3) is implemented.  However, as 

evidenced by the positive values of ORCI and LCRCI for the one-car-per-cycle realization 

performed with the ALINEA algorithm, the overall effect of the ALINEA cases is a reduction in 

the crash risk through the network corridor.  The rear-end crash risk is increased in a localized 

area and caused primarily by the creation of a new bottleneck area just downstream of the 

downtown area.  The lane-change crash risk increases throughout the downtown area (Stations 

32 to 40) but this increase is rather trivial compared to the crash risk decrease that is noted.    
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Similar plots are created for the 90 percent loading scenarios and are presented below in 

Figures 5-44 and 5-45.  The same trends exist for metering at the 90 percent loading case.  Any 

metering performed at zone 1 does little to reduce the crash risk significantly.  Additionally, 

metering any zone using the Zone algorithm and one-car-per-cycle realization does not affect the 

crash risk substantially.  The increase in the rear-end crash risk caused by the ALINEA strategies 

occurs near Stations 41 to 43 which is traditionally a low rear-end crash risk region.  For the 

lane-change crash risk, implementing the ALINEA ramp metering strategy at the 90 percent 

loading scenario does not show any evidence of crash migration. 
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Figure 5-44.  Average Rear-End Crash Risk Difference vs. Location for OCPC Cases at 90 Percent Loading 
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Figure 5-45.  Average Lane-Change Crash Risk Difference vs. Location for OCPC Cases at 90 Percent 
Loading 

 

Therefore, this section shows that when the one-car-per-cycle realization method is 

applied to the ramp metering algorithms that are being considered, ALINEA outperforms the 

Zone algorithm at reducing both the rear-end and lane-change crash risk.  Also, the trends in this 

section show that metering zone 1 with either the ALINEA or Zone algorithm shows very 

minimal, though existent, crash risk benefits compared to metering zones 2 or 3.  

5.3.4  Determining the Final “Best” Ramp Metering Strategy 

The purpose of the previous sections was to compare similar ramp metering strategies to 

determine the best implementation methods for these strategies.  For example, Section 5.3.1 
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found that the best implementation of the ALINEA algorithm with the traffic-cycle realization is 

to use a small cycle length of 30 seconds and a critical occupancy of 0.17 (found from the 

experimental design given in Table 4-5).  Section 5.3.2 found that when the Zone algorithm is 

used with the traffic-cycle realization a longer cycle length is needed (60 seconds) to provide the 

best safety results.  Section 5.3.3 showed that the one-car-per-cycle implementation method with 

the Zone algorithm causes negligible safety benefits while the one-car-per-cycle implementation 

of the ALINEA algorithm significantly decreases both crash risk measures.  In all cases, 

metering zones 2 and 3 provided the best safety results.  Previous results have shown that 

metering zone 1 (using any method) causes a negligible change in the crash risk on the network 

compared to metering the other two zones.  This occurs because zone 1 is located immediately 

upstream of the bottleneck that occurs at the Interstate-4 / S. R. 408 Interchange.  Therefore, 

zone 1 scenarios will be excluded from the comparison in this section in order to reduce the 

complexity of this analysis.  However, these strategies now need to be compared against each 

other to determine which metering strategy provides the best overall crash risk change in the 

downtown portion of Interstate-4.   

  Table 5-54 shows the remaining test cases at the 100 percent loading level as well as the 

summarized ORCI and LCRCI values.  The test cases are denoted with the same nomenclature 

that has been used in previous sections.  A similar table is presented in Table 5-55 for the test 

cases run at the 90 percent loading scenario.  Note that in these tables the strategies that use the 

traffic-cycle realization are denoted with the abbreviation TC while the one-car-per-cycle 

abbreviation used is OCPC.   
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Table 5-54.  Summary of ORCI and LCRCI for Best Ramp Metering Cases at 100 Percent Loading 

Test Case ID 
Case 107 Case 108 Case 110 Case 113 Case 114 Case 116 

  
Z 2 

Zone TC 

Z 2 
ALINEA 

TC 

Z 2 
ALINEA 

OCPC 
Z 3 

Zone TC 

Z 3 
ALINEA 

TC 

Z 3 
ALINEA 

OCPC 
# of Stations with RE Risk 
Change 27 37 39 46 48 42 
ORCI 1.7290 9.9240 5.4254 8.4413 12.7085 7.1622 
# of Stations with LC Risk 
Change 20 40 34 48 40 44 
LCRCI 1.9229 10.4808 8.1703 8.2556 15.5739 12.1375 
 

Table 5-55.  Summary of ORCI and LCRCI for Best Ramp Metering Cases at 90 Percent Loading 

Test Case ID 
Case 125 Case 126 Case 128 Case 131 Case 132 Case 134 

  
Z 2 

Zone TC 

Z 2 
ALINEA 

TC 

Z 2 
ALINEA 

OCPC 
Z 3 

Zone TC 

Z 3 
ALINEA 

TC 

Z 3 
ALINEA 

OCPC 
# of Stations with RE Risk 
Change 28 37 32 35 41 34 
ORCI 3.5568 5.0898 5.8645 6.9996 5.9780 5.6343 
# of Stations with LC Risk 
Change 18 30 28 24 32 28 
LCRCI 1.3670 10.3241 7.2852 4.1848 11.1706 8.9160 
 

From Table 5-54, comparing the values of the ORCI and LCRCI shows that the best 

ramp metering combination at the 100 percent loading scenario is using the ALINEA strategy 

with the traffic-cycle realization.  From Table 5-55, the best metering combination at the 90 

percent loading scenario is not so clear.  The ALINEA TC method provides the highest LCRCI 

values as well as the second highest ORCI for each metered zone.  However, the other cases 

have a higher values of ORCI which shows they are better at reducing the rear-end crash risk.   

Therefore, no judgment about the best case at the 90 percent loading scenario could be made 

until the effects of crash migration are considered. 
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To examine for possible crash migration issues of this best ramp metering strategy a plot 

of the rear-end crash risk difference and lane-change crash risk difference vs. location is 

produced.  These plots are presented in Figures 5-46 and 5-47, respectively, for the 100 percent 

loading scenario.   
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Figure 5-46.  Average Rear-End Crash Risk Difference vs. Location for Best Cases at 100 Percent Loading 
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Figure 5-47.  Average Lane-Change Crash Risk Difference vs. Location for Best Cases at 100 Percent 
Loading 

 

As shown in Figure 5-46, the rear-end crash migration is minimal for the ALINEA 

traffic-cycle strategy compared with the other well-performing metering scenarios.  The crash 

risk only increases significantly only for the area between Stations 41 and 42.  This risk increase 

is much less than a similar increase experienced by other strategies.  The lane-change crash risk 

increases slightly between stations 28 and 43 but this increase is very small in magnitude and 

does not compare to the crash risk decrease realized just upstream.   

Similar plots are created for runs performed at the 90 percent loading scenario.  These 

plots are produced below in Figures 5-48 and 5-49.  From Figure 5-48 it is seen that using the 

ALINEA strategy with the traffic-cycle realization causes a crash risk increase from stations 37 
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to 43.  Although the magnitude of the increase is small from Stations 37 to 40, between Stations 

41 to 43 this crash risk increase is substantial.  The other metering strategies show a similar crash 

risk increase at Stations 41 to 43 but not to the magnitude that is realized with the ALINEA TC 

method.  However, for the lane-change crash risk (presented in Figure 5-49) the ALINEA TC 

method causes greater crash risk decreases and less crash migration.   
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Figure 5-48.  Average Rear-End Crash Risk Difference vs. Location for Best Cases at 90 Percent Loading 
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Figure 5-49.  Average Lane-Change Crash Risk Difference vs. Location for Best Cases at 90 Percent Loading 

 

Therefore, at the 90 percent loading scenario, there is significant rear-end crash risk 

migration caused by the best ALINEA traffic-cycle strategy.  In fact, the largest increase in the 

rear-end crash risk (1.08 at Station 42 E 1) is greater than the largest decrease in the rear-end 

crash risk (0.91 at Station 36 E 0).  This amount of crash migration has never occurred in any of 

the scenarios presented before and should not be considered as reasonable.  The next best 

strategy appears to be using the ALINEA strategy with the one-car-per-cycle realization as 

evidenced by the high values of ORCI and LCRCI in Table 5-55.  The crash migration that 

occurs for this scenario is much less than the ALINEA traffic-cycle strategy and it provides 

reasonable safety benefits.   
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5.3.5  Travel Time Analysis 

While ramp metering has a positive effect on the rear-end and lane-change crash risk 

along the Interstate-4 corridor there is the potential that delaying vehicles on the on-ramps will 

have negative impacts on the operational capabilities of the network.  In order to account for this 

fact the total network travel time was calculated for each of the scenarios performed and 

compared.  The network travel time for all runs performed in this portion of the experimental 

design is given below in Table 5-56.  The average travel time considered for this table was the 

overall network travel time which included both the decreased travel time on the mainline 

freeway and the increased travel times of vehicles delayed at the metered on-ramps. 

221 



Table 5-56.  Travel Time Summary for Ramp Metering Scenarios 

Case 
Number 

Percent 
Loading 

Metered 
Zone Algorithm 

Cycle 
Length 

Average 
Travel 
Time 

Increase 
99 100 1 Zone 30 0.77% 
100 100 1 Zone 45 1.18% 
101 100 1 Zone 60 1.57% 
102 100 1 ALINEA BEST -0.84% 
103 100 1 Zone OCPC -0.22% 
104 100 1 ALINEA OCPC 0.35% 
105 100 2 Zone 30 1.42% 
106 100 2 Zone 45 0.20% 
107 100 2 Zone 60 1.49% 
108 100 2 ALINEA BEST -0.37% 
109 100 2 Zone OCPC 0.84% 
110 100 2 ALINEA OCPC 3.35% 
111 100 3 Zone 30 -1.42% 
112 100 3 Zone 45 -1.92% 
113 100 3 Zone 60 -1.69% 
114 100 3 ALINEA BEST -1.87% 
115 100 3 Zone OCPC 0.63% 
116 100 3 ALINEA OCPC 3.17% 
117 90 1 Zone 30 -1.44% 
118 90 1 Zone 45 -1.02% 
119 90 1 Zone 60 -0.35% 
120 90 1 ALINEA BEST 0.01% 
121 90 1 Zone OCPC -1.14% 
122 90 1 ALINEA OCPC 0.04% 
123 90 2 Zone 30 -0.60% 
124 90 2 Zone 45 -0.35% 
125 90 2 Zone 60 -1.71% 
126 90 2 ALINEA BEST 4.61% 
127 90 2 Zone OCPC -1.04% 
128 90 2 ALINEA OCPC 10.23% 
129 90 3 Zone 30 0.96% 
130 90 3 Zone 45 1.77% 
131 90 3 Zone 60 -0.28% 
132 90 3 ALINEA BEST 5.35% 
133 90 3 Zone OCPC 0.68% 
134 90 3 ALINEA OCPC 9.41% 
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From Table 5-56 it can be seen that the overall network travel times for the Zone 

algorithm are smaller than the network travel times that are experienced when the ALINEA 

metering algorithm is used.  The coordination of the Zone metering algorithm, which increases 

the metering rate at one ramp to compensate for reduced flows at other on-ramps, helps to 

decrease the average delay for all vehicles on the on-ramps.  This, in turn, reduces the average 

travel time along the entire network.  Similar travel time decreases have been realized in other 

studies that used the Zone metering algorithm to improve traffic operations (Stephanedes, 1994).  

When ALINEA is used the metering rate at one ramp is defined only by the conditions of the 

nearest downstream loop detector.  Therefore, a large queue of vehicles can be formed at one 

ramp while another ramp operates at near free-flow due to the lack of demand.  This causes the 

network travel time to be much higher than when the Zone algorithm is used.  Additionally, as 

the cycle length increases for each metering algorithm the average network travel time decreases.  

This shows that using the traffic-cycle realization outperforms the one-car-per-cycle realization 

from a traffic operations perspective as well as a traffic safety perspective. 

As noted in Table 5-56, the strategy that was found to be the most beneficial during the 

100 percent loading scenario (ALINEA with traffic-cycle realization) also provided a decrease in 

the average travel time along the network.  When zone 2 is metered, this travel time decrease 

was about 0.4% of the overall network travel time while there was a 1.9% decrease when zone 3 

was metered.  Therefore, this strategy provides both safety and operational benefits.  The best 

metering strategy at the 90 percent loading strategy (ALINEA with one-car-per-cycle realization) 

did not have reasonable travel time changes.  When this strategy is used the average network 

travel time is increased by 10%.  Such a large travel time increase is unrealistic to impose on 

drivers in the field and, therefore, this scenario cannot be considered as a practical metering 
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alternative.  Using the ALINEA algorithm with traffic-cycle realization also has increased travel 

times of about 5%.  Combined with the high levels of crash migration shown in Section 5.3.4 and 

this strategy is not a viable alternative.  Therefore, the next best strategy, using the Zone 

algorithm with the traffic-cycle realization, should be used.  This method provides good safety 

benefits as seen in Section 5.3.4 and serves to help decrease the average network travel time 

(1.7% decrease for zone 2 and 0.3% decrease for zone 3).  As shown in Figures 5-48 and 5-49, 

this method also does not induce high levels of crash migration.  Therefore, this strategy should 

be used in the downtown area at moderate levels of congestion (90 percent loading). 

5.3.6  Metering Ramps over the Entire Network Corridor 

5.3.6.1  100 Percent Loading Scenario 

As previously determined, the best ramp metering strategy at the 100 percent loading 

scenario is to employ the ALINEA metering algorithm with the traffic-cycle realization (30 

second cycle length).  In the previous sections, the safety effects of ramp metering were only 

examined when the ramps in the downtown portion of the Interstate-4 freeway were metered.  

However, ramp metering is not necessarily constrained to this area like route diversion is (since 

ramp metering does not depend on the availability of practical diversion routes).  Therefore, in 

order to reduce the rear-end and lane-change crash risk over the entire freeway area it is possible 

to implement ramp metering at all on-ramps within the network corridor. 

The ALINEA algorithm with the traffic-cycle realization and 30 second cycle length was 

applied to the on-ramps within the network on the eastbound direction of Interstate-4.    

Summary statistics comparing the network wide implementation of ramp metering with the 
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implementation in the downtown area only is given in Table 5-57.  As shown in this table, both 

the rear-end and lane-change safety are clearly increased with the network wide metering 

implementation which is evidenced by the increased values of ORCI and LCRCI.   

Table 5-57.  Summary of Network-Wide Ramp Metering Strategies at 100 Percent Loading 

Test Case 

  
Whole 

Network 
Downtown 

Portion 
# of Stations with RE 
Risk Change 68 48 
ORCI 17.3678 12.7085 
# of Stations with LC 
Risk Change 73 40 
LCRCI 24.3552 15.5739 

 

The increase in the ORCI and LCRCI is about 34% and 56%, respectively, when the all 

the ramps in the network corridor are metered compared to when just the ramps in the downtown 

region are metered.  However, the number of ramps that are metered in the network wide 

implementation is about triple the number of ramps that are metered in the downtown 

implementation.  This implies that the safety increase is not proportionally related to the number 

of ramps metered.  A plot of the average rear-end and lane-change crash risk difference is shown 

below in Figures 5-50 and 5-51, respectively.   

 

225 



Average Rear-End Crash Risk Difference vs. Location
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Figure 5-50.  Average Rear-End Crash Risk Difference vs. Location for Network-Wide Cases at 100 Percent 
Loading 
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Average Lane-Change Crash Risk Difference vs. Location
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Figure 5-51.  Average Lane-Change Crash Risk Difference vs. Location for Network-Wide Cases at 100 
Percent Loading 

 

As shown in Figures 5-50 and 5-51, at most locations the crash risk difference is greater 

for the network wide implementation than the downtown only implementation.  This shows that 

the safety is improved when all of the ramps along Interstate-4 are metered as compared to when 

just the ramps in the downtown area are metered.  What is interesting to note, however, is that 

the additional crash risk changes (both rear-end and lane-change) caused by the network wide 

implementation are only realized in the downtown area and downstream of this area (Stations 29 

to 66).  Stations 4 to 28 do not show a significant difference in the respective crash risk values 

between the network wide implementation and the downtown only implementation.  One of the 

reasons for this is that the crash risk values in this upstream area are already low.  These low 
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crash risk values are caused by the lower traffic volumes and higher speeds that occur in this area 

compared to other areas along the network.  Additionally, the ramps in this area of the network 

are spaced further apart than the ramps in the downtown portion and just north of downtown.  

Therefore, when ramps are metered the effect isn’t as magnified as when multiple, closer ramps 

are metered in succession in other areas of the network. 

Looking at the real-time crash risk vs. time, it can be seen that this reduction in the crash 

risk occurs during the majority of the simulation run-time.  This is shown in Figures 5-52 and 

5-53 and confirms that the rear-end and lane-change crash risk, respectively, are reduced in real-

time for most time periods when ramp metering is implemented.  The time periods that show an 

increase in the crash risk have only a very small increase that can be deemed insignificant.   

Therefore, it is confirmed that at the 100 percent loading scenario implementing the ALINEA 

algorithm with the traffic-cycle realization throughout the entire network provides a better real-

time safety benefit than by just metering the downtown ramps. 
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Rear-End Crash Risk vs. Time (Station 30 E 0)
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Figure 5-52.  Plot of Rear-End Crash Risk vs. Time for Station 30 E 0 at 100 Percent Loading 
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Figure 5-53.  Plot of Lane-Change Crash Risk vs. Time for Station 30 E 0 at 100 Percent Loading 
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Additionally, implementing the ALINEA traffic-cycle strategy over the entire network 

serves to reduce the overall network travel time by 5%.  When compared to the 2% reduction in 

travel time that is realized when ALINEA is implemented in the downtown area only, this means 

that implementing ALINEA network-wide provides both additional operational and safety 

benefits. 

5.3.6.2  90 Percent Loading Scenario 

In order to reduce the crash risk across the entire network at the 90 percent loading 

scenario, the best metering algorithm needs to be implemented in both the downtown and non-

downtown regions throughout the network.  However, unlike the 100 percent loading scenario, 

the 90 percent loading scenario did not have a clear-cut best algorithm.  The ALINEA algorithm 

with a 30 second cycle length provided an excellent lane-change crash risk reduction and was the 

second best strategy at reducing the rear-end crash risk (as evidenced in Table 5-55).  However, 

this strategy had very large crash migration effects that increased the crash risk greatly at some 

locations and even caused unreasonable travel time increases.  The Zone algorithm with a 60 

second cycle length had better rear-end crash risk reduction but also a less substantial lane-

change crash risk benefit.   

For this reason, Zone method was selected as the best and should be implemented 

throughout the network.  However, because the ALINEA was ruled out in the downtown area 

mainly due to crash migration, there is the possibility that if implemented network-wide the 

effects of crash migration would be lessened and ALINEA would yield the best safety results.  

Therefore, both methods were tested throughout the entire network to determine the best 
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network-wide metering case at the 90 percent loading scenario.  Additionally, a combination of 

Zone in the downtown area and ALINEA in the non-downtown areas was tested to see if the 

safety could be improved while minimizing the effects of crash migration.  A numerical 

summary of the results is presented below in Table 5-58. 

Table 5-58.  Summary of Network-Wide Ramp Metering Strategies at 100 Percent Loading 

Test Case 

  

Zone 
Downtown 

Only 

Zone 
Entire 

Network 

Zone 
Downtown, 
ALINEA 
Elsewhere 

ALINEA 
Entire 

Network 
# of Stations with RE 
Risk Change 35 49 49 55 
ORCI 6.9996 8.2178 9.0507 8.6979 
# of Stations with LC 
Risk Change 24 77 63 63 
LCRCI 4.1848 9.8322 11.5249 14.4103 

 

From these results, it appears that applying the combination of Zone and ALINEA 

provides the best rear-end crash risk results while implementing the ALINEA algorithm alone 

throughout the network corridor improves the lane-change crash risk safety the most.  In order to 

determine which strategy is the best overall strategy, the plot of the crash risk differences need to 

be examined to discover potential crash migration issues.  The plots for the rear-end and lane-

change crash risk differences are given below in Figures 5-54 and 5-55, respectively.   
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Average Rear-End Crash Risk Difference vs. Location
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Figure 5-54.  Average Rear-End Crash Risk Difference vs. Location for Network-Wide Cases at 90 Percent 
Loading 
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Average Lane-Change Crash Risk Difference vs. Location
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Figure 5-55.  Average Lane-Change Crash Risk Difference vs. Location for Network-Wide Cases at 90 
Percent Loading 

 

Figure 5-54 shows that when the Zone and ALINEA algorithms are both implemented 

network-wide the effects of crash migration increase significantly at Stations 41 to 42.  However, 

the combination of Zone and ALINEA, with the Zone algorithm implemented in the downtown 

areas and the ALINEA algorithm implemented in the non-downtown areas, decreases the effects 

of the crash migration to levels similar to the downtown only implementation of ramp metering.  

Figure 5-55, which shows the lane-change crash risk difference, shows that the effects of crash 

migration are about equal for each of the network-wide ramp metering implementations.  

Therefore, based on the reduced crash migration effects as well as the high ORCI and LCRCI 
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values, the best network-wide ramp metering strategy is determined to be the combination of 

Zone and ALINEA.  Similar to the 100 percent loading scenarios, changes in the rear-end crash 

risk are mainly seen between Stations 28 through 62 even when all the ramps are metered.  

Although there are some lane-change crash risk changes upstream of this area (Stations 6 to 24) 

these differences are extremely small in magnitude and could be ignored.  

Considering the change in the overall network travel time verifies the results of the best 

metering scenario.  The overall network travel time is increased 3% when ALINEA is 

implemented network-wide.  However, both the ALINEA and Zone combination as well as the 

Zone network-wide implementation yield a decrease in the overall network travel time of about 

3%.  Compared to the 0.5% reduction that is seen when just the Zone algorithm is implemented 

downtown, this shows that metering ramps throughout the entire corridor provides additional 

operational and safety benefits.  Since the safety benefits are slightly higher for the Zone and 

ALINEA combination, this strategy is determined to be the best strategy at the 90 percent 

loading scenario. 

5.4  Ramp Metering Summary 

The general conclusions from the ramp metering portion of the experimental design are as 

follows: 

• The implementation of ramp metering helps to reduce both the overall rear-end and lane-

change crash risk across the network corridor. 

• The implementation of ramp metering also causes crash risk migration.  Although the 

extent of the crash migration is not large compared to the overall crash benefit (the 

increase in the crash risk is much smaller than the decrease in the crash risk) it must still 
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be noted.  The area at which the crash risk is increased is usually an area that operated at 

mild levels of congestion in the base case and became congested due to the 

implementation of ramp metering.  In most cases the migration effect was rather 

negligible due to already low crash risk values at that location.  However, in some cases 

the increase was significant and, therefore, care must be taken before ramp metering can 

be implemented in that area.  

• When using the ALINEA algorithm with the traffic-cycle realization, a lower critical 

occupancy (0.17) and shorter cycle length (30 seconds) performs the best at reducing the 

crash risk. 

• When using the Zone ramp metering algorithm along with the traffic-cycle realization, a 

longer cycle length (60 seconds) provides the best results from a safety perspective. 

• Using the one-car-per-cycle traffic realization method does not perform as well at 

reducing the rear-end and lane-change crash risk as using the traffic-cycle realization in 

the manner mentioned previously. 

• The best ramp metering strategy at heavy congestion (100 percent loading) is to use the 

ALINEA algorithm with the traffic-cycle realization.  The reason for this is that the 

ALINEA algorithm is more restrictive than the Zone algorithm during periods of heavy 

congestion.  This occurs because the ALINEA algorithm does not account for spare 

capacity of the freeway to store vehicles like the Zone algorithm does (Equation 5).  

Therefore, as long as the detectors associated with on-ramps show congestion the meters 

will all operate at the minimum rates even if there is spare capacity within the metered 

section.  Allowing less vehicles onto the network will greatly reduce the overall crash 

risk on the network.  When this method is applied to all the ramps in the network, not just 
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the ones in the downtown area, the crash risk values and total network travel time are 

reduced even further. 

• The best ramp metering strategy at lower levels of congestion (90 percent loading) is to 

use the Zone algorithm with the traffic-cycle realization.  This occurs because the 

ALINEA algorithm causes unacceptable levels of crash migration during this loading 

scenario.  However, neglecting to consider effects of crash migration, the ALINEA 

traffic-cycle algorithm also provides the good safety benefits at the 90 percent loading 

scenario.  When ramp metering is applied to the entire network corridor at the 90 percent 

loading case, the best metering strategy is to employ the Zone algorithm in the downtown 

area and the ALINEA algorithm elsewhere.  This provides a reduction in the two crash 

risk measures as well as the total network travel time. 

• Of the three different zones that were metered (Zone 1, 2, and 3) the best results were 

found when Zone 3 was metered.  This zone was the largest zone which encompassed the 

other two zones in their entirety and spanned the entire length of the downtown area of 

Interstate-4.  Based on the results of this study, larger crash risk decreases are seen when 

a longer portion of the freeway is metered.  

• When a large interchange (such as the I-4 / S. R. 408 Interchange) is present, metering 

the area just downstream of this interchange (Zone 2) provides much better safety 

benefits than metering the area just upstream (Zone 1). 
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CHAPTER 6. CONCLUSIONS  

This study has examined the potential of route diversion and ramp metering to be used as 

a real-time crash prevention technique.  The objective of this study was to assess whether or not 

each of these ITS strategies would reduce the real-time rear-end and lane-change crash risk along 

an urban freeway and identify the most effective implementation methods and situations to 

employ them.  To do this, Interstate-4 through Orlando, Florida was simulated in the 

PARAMICS micro-simulation program.  Various implementations of route diversion and ramp 

metering were applied to the network and the crash risk values compared to determine the best 

cases.  Multiple network loading scenarios were considered (60%, 80%, 90%, and 100%) to 

examine the effectiveness of the ITS measures at different levels of congestion.  Additionally, 

the effect of the strategies on the network travel time was considered to ensure that the ITS 

strategies did not sacrifice operational capabilities of the traffic network in an attempt to improve 

the safety conditions. 

The study found that route diversion successfully reduces both the rear-end and lane-

change crash risk at periods of low traffic volumes (realized at the 60% and 80% network 

loading scenarios).  In general, the further vehicles are diverted away from the initial diversion 

location, the more the crash risk values are reduced.  Diverting more vehicles from a particular 

on-ramp increases the safety benefit.  Therefore, vehicles should be diverted from on-ramps with 

higher demand volumes in order to maximize the safety benefits.  At higher loading levels, 

although the crash risk is decreased at the diversion area, it is significantly increased at the 

location of the freeway that diverted vehicles re-enter the traffic stream.  In order to minimize 

this crash migration effect, vehicles should be diverted to locations with lower real-time crash 
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risk values.  In general, when vehicles are diverted during times of extreme congestion (100% 

loading) the overall safety benefit is an increase in the crash risk along the freeway.   

Ramp metering is found to be beneficial at the higher loading scenarios (90% and 100% 

loading).  Since the ramp metering algorithms are only activated when the freeway is congested, 

implementing ramp metering at the lower loading scenarios does not change the crash risk 

significantly along the network corridor.  As found in this study, when the ramps in the 

downtown Orlando area are metered the best safety benefits during the 100% loading scenario is 

realized when the uncoordinated ALINEA metering algorithm is used.  This occurs because 

ALINEA is generally more restrictive than the coordinated strategy tested – the Zone algorithm.  

At the 90% loading scenario, ALINEA causes large amount of crash migration downstream of 

the downtown area.  Therefore, the coordinated Zone algorithm is preferred as it reduces the 

crash migration effects significantly.  In both cases, the traffic-cycle realization of ramp metering 

yields significantly higher safety results than implementing the algorithms on a one-car-per-cycle 

basis.   

When ramp metering is applied to the entire network, as opposed to just the extremely 

congested downtown areas, the crash risk values are shown to decrease for a longer section of 

the freeway.  At the 100% loading scenario, applying ALINEA to all the ramps within the study 

area increases the overall safety benefits realized.  At the 90% loading scenario, applying the 

Zone algorithm in the downtown areas and the ALINEA algorithm in the non-downtown areas 

serves to decrease the overall crash risk for the freeway corridor and reduces the crash risk for a 

longer section of the freeway.  Also found in this study is the fact that ALINEA yields the best 

safety results when a shorter cycle length of 30 seconds is used while the best benefits from the 

Zone algorithm are realized when a longer, 60 second, cycle length is applied. 
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6.1  Recommendations for Further Research 

This research clearly shows the benefits of both route diversion and ramp metering on the 

real-time rear-end and lane-change crash risk on a typical urban freeway.  However, there are 

several ways in which this research could be expanded.  First, the transferability of this work 

needs to be examined.  Route diversion and ramp metering should be tested on other freeways in 

different locations to ensure that the trends found in the results of this study hold for other 

regions as well.  This will involve recalibrating the risk models that were used in this study using 

loop data taken from other freeways as the models used in this study are unique to Interstate-4.  

Once new models are created, the freeways used to calibrate the models should be simulated and 

the various route diversion and ramp metering strategies tested to confirm the trends found in 

this study.  The transferability of the route diversion results could also be extended to this same 

freeway corridor by modeling the effects of other diversion routes through downtown Orlando.  

These routes would have to be feasible for drivers to use but would confirm that the general 

trends from this study are applicable to other diversions.  Note that it is expected that the general 

trends from these results will hold on other freeways – mainly that more diverting vehicles 

further away and at lower loading scenarios will improve the safety conditions on the freeway.  

However, the exact results will not be transferable due to the uniqueness of geometry and ramp 

conditions on each freeway.  Additionally, with the ramp metering strategies it is expected that 

the general trends of metering more ramps and using the more restrictive algorithm (ALINEA) at 

higher loading conditions improves the safety conditions will hold true.  The exact results, 

however, depend on different factors that define the uniqueness of each freeway. 

239 



Another way in which this research could be extended is to test the route diversion and 

ramp metering strategies in the field.  While the micro-simulation gives researchers an idea of 

what should be expected when these strategies are implemented, it is possible that drivers will 

react to the strategies in a way that cannot be simulated.  Therefore, the scenarios that show 

improved safety results could be implemented in the field to confirm that this is truly the case.  

Note that the strategies that show negative safety impacts should not be implemented in the field 

until there is evidence that they will not increase the crash risk.  Only by field implementation 

will this be truly known. 

Finally, combinations of route diversion and ramp metering could be tested.  Previous 

studies by Dilmore (2004) and Dhindsa (2006) have shown that variable speed limits have 

potential for safety benefits.  Therefore, combinations of these three ITS strategies could be 

examined to see if they will enhance the risk reducing potential of each strategy. 
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APPENDIX: ROUTE DIVERSION AND RAMP METERING CODE 
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Route Diversion API Code 

static int diversion1 = 80; 
static int diversion2 = 0; 
static int diversion3 = 0; 
static int diversion4 = 0; 
static int diversion5 = 0; 
int count1 = 0; 
int count2 = 0; 
int count3 = 0; 
int count4 = 0;  
int count5 = 0; 
int  qpo_RTM_decision(LINK* link, VEHICLE* vehicle)  
{  
 if (qpg_VHC_origin(vehicle) == 25 || qpg_VHC_origin(vehicle) == 82 || qpg_VHC_origin(vehicle) == 35) 
 { 
  if (link == qpg_NET_linkByIndex(1414) && qpg_VHC_origin(vehicle) == 25 && 
(qpg_VHC_destination(vehicle) >= 39 && qpg_VHC_destination(vehicle) <= 58)) 
  { 
   if (rand()%100 < diversion1)  
   { 
    count1++; 
    qps_GUI_printf("Diversion 1 %i\n", count1); 
    return 2; 
   } 
   else return 0; 
  } 
  else if (link == qpg_NET_linkByIndex(1209) && qpg_VHC_origin(vehicle) == 25 && 
(qpg_VHC_destination(vehicle) >= 39 && qpg_VHC_destination(vehicle) <= 58))  
  { 
   if (rand()%100 < diversion2 && (qpg_VHC_destination(vehicle) < 123)) 
   { 
    count2++; 
    qps_GUI_printf("Diversion 2 %i\n", count2); 
    return 2; 
   } 
   else return 0;  
  } 
  else if (link == qpg_NET_linkByIndex(1132) && qpg_VHC_origin(vehicle) == 82 && 
(qpg_VHC_destination(vehicle) == 3 || (qpg_VHC_destination(vehicle) >= 96 && qpg_VHC_destination(vehicle) 
<= 121)))  
  { 
   if (rand()%100 < diversion3) 
   { 
    count3++; 
    qps_GUI_printf("Diversion 3 %i\n", count3); 
    return 2; 
   } 
   else return 0; 
  } 
  else if (link == qpg_NET_linkByIndex(1248) && qpg_VHC_origin(vehicle) == 82 && 
(qpg_VHC_destination(vehicle) == 3 || (qpg_VHC_destination(vehicle) >= 96 && qpg_VHC_destination(vehicle) 
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<= 121)))  
  { 
   if (rand()%100 < diversion4) 
   { 
    count4++; 
    qps_GUI_printf("Diversion 4 %i\n", count4); 
    return 3; 
   } 
   else return 0;;  
  } 
  else if (link == qpg_NET_linkByIndex(1329) && qpg_VHC_origin(vehicle) == 35 && 
(qpg_VHC_destination(vehicle) >= 39 && qpg_VHC_destination(vehicle) <= 58))  
  { 
   if (rand()%100 < diversion5) 
   { 
    count5++; 
    qps_GUI_printf("Diversion 5 %i\n", count5); 
    return 1; 
   } 
   else return 0; 
  } 
  else return 0; 
 } 
 else return 0;  
}  
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Sample of “Phases” File used for ALINEA Ramp Metering 

 
use plan 1 
 on node 811 phase 1 
 with loops  
  Detector68 lane 1 
  Detector68 lane 2 
  Detector68 lane 3 
   
 with parameters 
30 ##1 cycle length 
0.17 ##2 critical occupancy 
10.5 ##3  minimum green 
27 ##4 maximum green  
0 ##5 
0 ##6 
0 ##7 
0 ##8 
0 ##9 
0 ##10 
0 ##11 
0 ##12 
0 ##13 
0 ##14  
1 ##15 
0 ##16 
27 ##17 
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Sample of “Plans” File used for ALINEA Ramp Metering 

 
plan count 1 
 
plan 1 definition 
loops 3 
parameters 17 
 
if (init)  { fixed; } 
if (parameter[15] < 2 * parameter[1])  
 
{ 
 
parameter[5] = occupancy[1] running; 
parameter[6] = occupancy[2] running; 
parameter[7] = occupancy[3] running; 
 
 
if (parameter[5] > 0.5) {parameter[5] = 0.5;} 
if (parameter[6] > 0.5) {parameter[6] = 0.5;} 
if (parameter[7] > 0.5) {parameter[7] = 0.5;} 
 
parameter[11] = parameter[11] + parameter[5];  
parameter[12] = parameter[12] + parameter[6];   
parameter[13] = parameter[13] + parameter[7];  
 
parameter[15] = parameter[15] + 1; 
green2=parameter [16]; 
green3=parameter [16]; 
 
} 
 
else 
 
{ 
 
parameter[14] = (parameter[11] + parameter[12] + parameter[13]) / (3 * parameter[1]); 
if (parameter[14] > 1) {parameter[14] = 1;} 
 
parameter[8] = parameter[5]; 
parameter[9] = parameter[6]; 
parameter[10] = parameter[7]; 
 
report parameter[14]; 
 
 
parameter[15] = 1; 
parameter[8] = 0; parameter[9] = 0; parameter[10] = 0; parameter[11] = 0; parameter[12] = 0; parameter[13] = 0; 
 
parameter[16] = parameter[17] + parameter[1] / 730 * 70 * (parameter[2] - parameter[14]); 
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report parameter[16]; 
 
        if ( parameter [16] < parameter [3] ) 
             { 
         parameter [16] = parameter [3]; 
         
             } 
 if ( parameter [16] > parameter [4] )   
             { 
         parameter [16] = parameter [4] ;  
         
             } 
 
green2=parameter [16]; 
green3=parameter [16]; 
 
report parameter[16]; 
 
parameter[17] = parameter[16]; 
 
 
} 
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Zone Algorithm API Code 

 
#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 
#include <math.h> 
#include <limits.h> 
 
#include "programmer.h" 
#include "plugin_p.h" 
 
static int deteccount[15]; 
static int deteccountold[15]; 
static int detecflow[15]; 
static float smoothedflow[15]; 
static float smoothedflowold[15]; 
static float averagespeed[15]; 
 
static int oncount[9]; 
static int oncountold[9]; 
static int onflow[9]; 
static float onsmoothedflow[9]; 
static float onsmoothedflowold[9]; 
 
static int offcount[11]; 
static int offcountold[11]; 
static int offflow[11]; 
static float offsmoothedflow[11]; 
static float offsmoothedflowold[11]; 
 
static float proprate[9]; 
 
static float M; 
static float rate[9]; 
static float minrate[9]; 
 
static int cycle = 30;    // change me!!! 
 
  
 
 
DETECTOR* det1; 
NODE* n[9]; 
LINK* deteclink[15]; 
float density[15]; 
 
void zone1(); 
void zone2(); 
void zone3(); 
 
void qpx_NET_postOpen(void) 
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{ 
 int i; 
 
 
 qps_GUI_printf("API: Ramp Metering\n"); 
 
 qps_GUI_printf("%s\n",qpg_DTC_name(qpg_NET_detectorByIndex(64))); 
 
 n[0] = qpg_NET_nodeByIndex(765); 
 n[1] = qpg_NET_nodeByIndex(758); 
 n[2] = qpg_NET_nodeByIndex(759); 
 n[4] = qpg_NET_nodeByIndex(188); 
 n[5] = qpg_NET_nodeByIndex(460); 
 n[6] = qpg_NET_nodeByIndex(761);  
 n[7] = qpg_NET_nodeByIndex(199); 
 n[8] = qpg_NET_nodeByIndex(202); 
 
 
 qps_SIG_action(n[0], 1, 2, API_ACTION_MAXIMUM_GREEN, API_ACTIONMODE_SET, cycle); 
 qps_SIG_action(n[0], 1, 2, API_ACTION_MINIMUM_GREEN, API_ACTIONMODE_SET, 0); 
 qps_SIG_action(n[0], 2, 1, API_ACTION_MAXIMUM_GREEN, API_ACTIONMODE_SET, cycle);  
 qps_SIG_action(n[0], 2, 1, API_ACTION_MINIMUM_GREEN, API_ACTIONMODE_SET, 0); 
 
 qps_SIG_action(n[1], 1, 2, API_ACTION_MAXIMUM_GREEN, API_ACTIONMODE_SET, cycle); 
 qps_SIG_action(n[1], 1, 2, API_ACTION_MINIMUM_GREEN, API_ACTIONMODE_SET, 0); 
 qps_SIG_action(n[1], 2, 1, API_ACTION_MAXIMUM_GREEN, API_ACTIONMODE_SET, cycle);  
 qps_SIG_action(n[1], 2, 1, API_ACTION_MINIMUM_GREEN, API_ACTIONMODE_SET, 0); 
 
 qps_SIG_action(n[2], 1, 2, API_ACTION_MAXIMUM_GREEN, API_ACTIONMODE_SET, cycle); 
 qps_SIG_action(n[2], 1, 2, API_ACTION_MINIMUM_GREEN, API_ACTIONMODE_SET, 0); 
 qps_SIG_action(n[2], 2, 1, API_ACTION_MAXIMUM_GREEN, API_ACTIONMODE_SET, cycle);  
 qps_SIG_action(n[2], 2, 1, API_ACTION_MINIMUM_GREEN, API_ACTIONMODE_SET, 0); 
 
 qps_SIG_action(n[4], 1, 2, API_ACTION_MAXIMUM_GREEN, API_ACTIONMODE_SET, cycle); 
 qps_SIG_action(n[4], 1, 2, API_ACTION_MINIMUM_GREEN, API_ACTIONMODE_SET, 0); 
 qps_SIG_action(n[4], 2, 1, API_ACTION_MAXIMUM_GREEN, API_ACTIONMODE_SET, cycle);  
 qps_SIG_action(n[4], 2, 1, API_ACTION_MINIMUM_GREEN, API_ACTIONMODE_SET, 0); 
 
 qps_SIG_action(n[5], 1, 2, API_ACTION_MAXIMUM_GREEN, API_ACTIONMODE_SET, cycle); 
 qps_SIG_action(n[5], 1, 2, API_ACTION_MINIMUM_GREEN, API_ACTIONMODE_SET, 0); 
 qps_SIG_action(n[5], 2, 1, API_ACTION_MAXIMUM_GREEN, API_ACTIONMODE_SET, cycle);  
 qps_SIG_action(n[5], 2, 1, API_ACTION_MINIMUM_GREEN, API_ACTIONMODE_SET, 0); 
 
 qps_SIG_action(n[6], 1, 2, API_ACTION_MAXIMUM_GREEN, API_ACTIONMODE_SET, cycle); 
 qps_SIG_action(n[6], 1, 2, API_ACTION_MINIMUM_GREEN, API_ACTIONMODE_SET, 0); 
 qps_SIG_action(n[6], 2, 1, API_ACTION_MAXIMUM_GREEN, API_ACTIONMODE_SET, cycle);  
 qps_SIG_action(n[6], 2, 1, API_ACTION_MINIMUM_GREEN, API_ACTIONMODE_SET, 0); 
 
 qps_SIG_action(n[7], 1, 2, API_ACTION_MAXIMUM_GREEN, API_ACTIONMODE_SET, cycle); 
 qps_SIG_action(n[7], 1, 2, API_ACTION_MINIMUM_GREEN, API_ACTIONMODE_SET, 0); 
 qps_SIG_action(n[7], 2, 1, API_ACTION_MAXIMUM_GREEN, API_ACTIONMODE_SET, cycle);  
 qps_SIG_action(n[7], 2, 1, API_ACTION_MINIMUM_GREEN, API_ACTIONMODE_SET, 0); 
 
 qps_SIG_action(n[8], 1, 2, API_ACTION_MAXIMUM_GREEN, API_ACTIONMODE_SET, cycle); 
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 qps_SIG_action(n[8], 1, 2, API_ACTION_MINIMUM_GREEN, API_ACTIONMODE_SET, 0); 
 qps_SIG_action(n[8], 2, 1, API_ACTION_MAXIMUM_GREEN, API_ACTIONMODE_SET, cycle);  
 qps_SIG_action(n[8], 2, 1, API_ACTION_MINIMUM_GREEN, API_ACTIONMODE_SET, 0); 
 
  
 
 
 for (i = 0; i < 15; i++) 
 { 
  deteccount[i] = 0; 
  deteccountold[i] = 0; 
  detecflow[i] = 0; 
  smoothedflowold[i] = 0; 
  smoothedflow[i] = 0; 
 
  oncount[i] = 0; 
  oncountold[i] = 0; 
  onflow[i] = 0; 
  onsmoothedflow[i] = 0; 
  onsmoothedflowold[i] = 0; 
 
  offcount[i] = 0; 
  offcountold[i]=0; 
  offflow[i]=0; 
  offsmoothedflow[i]=0; 
  offsmoothedflowold[i]=0; 
 
  deteclink[i] = qpg_DTC_link(qpg_NET_detectorByIndex(i*2 + 62)); 
 
  density[i] = 0; 
 
 } 
  
 rate[0] = 2000; 
 rate[1] = 2000; 
 rate[2] = 2000; 
 rate[4] = 2000; 
 rate[5] = 2000; 
 rate[6] = 2000; 
 rate[7] = 2000; 
 rate[8] = 2000; 
 
 
 minrate[0] = 670; 
 minrate[1] = 188; 
 minrate[2] = 222; 
 minrate[4] = 301; 
 minrate[5] = 540; 
 minrate[6] = 295; 
 minrate[7] = 455; 
 
} 
 
void qpx_NET_timeStep(void) 
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{ 
 int i; 
 int g; 
 float meterrate; 
 
  
 if ((double)qpg_CFG_simulationTime() - (float)floor((double)qpg_CFG_simulationTime())>0.0) 
  return; 
 
 if ((int)qpg_CFG_simulationTime() % cycle == 1) 
 { 
  if (rate[0] < 1900) 
  { 
   meterrate = rate[0] * cycle / 1900; 
   qps_SIG_action(n[0], 1, 2, API_ACTION_CURRENT_GREEN, API_ACTIONMODE_SET, (int)meterrate);  
   qps_GUI_printf("SIGNAL ACTIVATED 0 %f %f %f %i\n", qpg_CFG_simulationTime(), rate[0], 
onsmoothedflow[0],  (int)meterrate); 
 
  } 
  else 
  { 
   meterrate = cycle; 
   qps_SIG_action(n[0], 1, 2, API_ACTION_CURRENT_GREEN, API_ACTIONMODE_SET, (int)meterrate); 
  } 
 
  if (rate[1] < 1900) 
  { 
   meterrate = rate[1] * cycle / 1900; 
   qps_SIG_action(n[1], 1, 2, API_ACTION_CURRENT_GREEN, API_ACTIONMODE_SET, (int)meterrate); 
   qps_GUI_printf("SIGNAL ACTIVATED 1 %f %f %f %i\n", qpg_CFG_simulationTime(), rate[1], 
onsmoothedflow[1],  (int)meterrate);  
  } 
  else 
  { 
   meterrate = cycle; 
   qps_SIG_action(n[1], 1, 2, API_ACTION_CURRENT_GREEN, API_ACTIONMODE_SET, (int)meterrate); 
  } 
 
  if (rate[2] < 1900) 
  { 
   meterrate = rate[2] * cycle / 1900; 
   qps_SIG_action(n[2], 1, 2, API_ACTION_CURRENT_GREEN, API_ACTIONMODE_SET, (int)meterrate); 
   qps_GUI_printf("SIGNAL ACTIVATED 2 %f %f %f %i\n", qpg_CFG_simulationTime(), rate[2], 
onsmoothedflow[2],  (int)meterrate);  
  } 
  else 
  { 
   meterrate = cycle; 
   qps_SIG_action(n[2], 1, 2, API_ACTION_CURRENT_GREEN, API_ACTIONMODE_SET, (int)meterrate); 
  } 
 
  if (rate[4] < 1900) 
  { 
   meterrate = rate[4] * cycle / 1900; 
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   qps_SIG_action(n[4], 1, 2, API_ACTION_CURRENT_GREEN, API_ACTIONMODE_SET, (int)meterrate); 
   qps_GUI_printf("SIGNAL ACTIVATED 4 %f %f %f %i\n", qpg_CFG_simulationTime(), rate[4], 
onsmoothedflow[4],  (int)meterrate);  
  } 
  else 
  { 
   meterrate = cycle; 
   qps_SIG_action(n[4], 1, 2, API_ACTION_CURRENT_GREEN, API_ACTIONMODE_SET, (int)meterrate); 
  } 
 
  if (rate[5] < 1900) 
  { 
   meterrate = rate[5] * cycle / 1900; 
   qps_SIG_action(n[5], 1, 2, API_ACTION_CURRENT_GREEN, API_ACTIONMODE_SET, (int)meterrate); 
   qps_GUI_printf("SIGNAL ACTIVATED 5 %f %f %f %i\n", qpg_CFG_simulationTime(), rate[5], 
onsmoothedflow[5],  (int)meterrate);  
  } 
  else 
  { 
   meterrate = cycle; 
   qps_SIG_action(n[5], 1, 2, API_ACTION_CURRENT_GREEN, API_ACTIONMODE_SET, (int)meterrate); 
  } 
 
  if (rate[6] < 1900) 
  { 
   meterrate = rate[6] * cycle / 1900; 
   qps_SIG_action(n[6], 1, 2, API_ACTION_CURRENT_GREEN, API_ACTIONMODE_SET, (int)meterrate); 
   qps_GUI_printf("SIGNAL ACTIVATED 6 %f %f %f %i\n", qpg_CFG_simulationTime(), rate[6], 
onsmoothedflow[6],  (int)meterrate);  
  } 
  else 
  { 
   meterrate = cycle; 
   qps_SIG_action(n[6], 1, 2, API_ACTION_CURRENT_GREEN, API_ACTIONMODE_SET, (int)meterrate); 
  } 
 
  if (rate[7] < 1900) 
  { 
   meterrate = rate[7] * cycle / 1900; 
   qps_SIG_action(n[7], 1, 2, API_ACTION_CURRENT_GREEN, API_ACTIONMODE_SET, (int)meterrate); 
   qps_GUI_printf("SIGNAL ACTIVATED 7 %f %f %f %i\n", qpg_CFG_simulationTime(), rate[7], 
onsmoothedflow[7],  (int)meterrate);  
  } 
  else 
  { 
   meterrate = cycle; 
   qps_SIG_action(n[7], 1, 2, API_ACTION_CURRENT_GREEN, API_ACTIONMODE_SET, (int)meterrate); 
  } 
 
  if (rate[8] < 1900) 
  { 
   meterrate = rate[8] * cycle / 1900; 
   qps_SIG_action(n[8], 1, 2, API_ACTION_CURRENT_GREEN, API_ACTIONMODE_SET, (int)meterrate); 
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   qps_GUI_printf("SIGNAL ACTIVATED 8 %f %f %f %i\n", qpg_CFG_simulationTime(), rate[8], 
onsmoothedflow[8],  (int)meterrate);  
  } 
  else 
  { 
   meterrate = cycle; 
   qps_SIG_action(n[8], 1, 2, API_ACTION_CURRENT_GREEN, API_ACTIONMODE_SET, (int)meterrate); 
  } 
 
 } 
 
 if ((int)qpg_CFG_simulationTime() % 30 == 0) 
 { 
 
  
 
  for (i=0; i<15; i++) 
  { 
   smoothedflowold[i] = smoothedflow[i]; 
   deteccountold[i] = deteccount[i]; 
   deteccount[i] = qpg_DTI_count(i*2+62, 1, 0) + qpg_DTI_count(i*2+62, 2, 0) + qpg_DTI_count(i*2+62, 3, 0);  
   detecflow[i] = deteccount[i] - deteccountold[i]; 
   g = detecflow[i] * 120; 
   smoothedflow[i] = (g - smoothedflowold[i])*0.15 + smoothedflowold[i]; 
 
   density[i] = 5280 * ((qpg_DTI_occupancy(i*2+62,1,APILOOP_SMOOTHED) + 
qpg_DTI_occupancy(i*2+62,2,APILOOP_SMOOTHED) + 
qpg_DTI_occupancy(i*2+62,3,APILOOP_SMOOTHED)) / 3 / 300 * detecflow[i]) / 14; 
 
//   qps_GUI_printf("%f %f %f\n", qpg_DTI_occupancy(i*2+62,1,APILOOP_SMOOTHED), density[i]); 
 
   averagespeed[i] = (qpg_DTI_speed(i*2+62,1,APILOOP_SMOOTHED) + 
qpg_DTI_speed(i*2+62,2,APILOOP_SMOOTHED) + qpg_DTI_speed(i*2+62,3,APILOOP_SMOOTHED) 
)*2.2369 / 3; 
  } 
 
  for (i=0; i < 9; i++) 
  { 
   onsmoothedflowold[i] = onsmoothedflow[i]; 
   oncountold[i] = oncount[i]; 
   oncount[i] = qpg_DTI_count(i+135,1,0); 
   onflow[i] = oncount[i] - oncountold[i]; 
   g = onflow[i] * 120;  
   onsmoothedflow[i] = (g - onsmoothedflowold[i]) * .15 + onsmoothedflow[i]; 
 
    
  } 
 
  for (i=0; i < 11; i++) 
  { 
   offsmoothedflowold[i] = offsmoothedflow[i]; 
   offcountold[i] = offcount[i]; 
   offcount[i] = qpg_DTI_count(i+144,1,0); 
   offflow[i] = offcount[i] - offcountold[i]; 
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   g = offflow[i] * 120; 
   offsmoothedflow[i] = (g - offsmoothedflowold[i]) * .15 + offsmoothedflow[i]; 
  } 
 
//  qps_GUI_printf("%i %f %f \n", offflow[3], offsmoothedflowold[3], offsmoothedflow[3]); 
 
 } 
 
 
 if ((int)qpg_CFG_simulationTime() % cycle == 0) 
 { 
 
// CHANGE THIS zone1() zone2() zone3()  also change CYCLE variable 
   
  zone1(); 
  
 
 } 
} 
 
[0] * M / (onsmoothedflow[0] + onsmoothedflow[1]); 
 rate[1] = M - rate[0]; 
 
 if (rate[0] < minrate[0]) 
 { 
  rate[0] = minrate[0]; 
 } 
 if (rate[1] < minrate[1]) 
 { 
  rate[1] = minrate[1]; 
 } 
} 
 
void zone24() 
{ 
 float maxdens; 
 float minspeed; 
 float S; 
 
 if (max(density[5], max(density[4], density[3])) < 32) 
 { 
  maxdens = max(density[5], max(density[4], density[3])); 
  minspeed = min(averagespeed[5], min(averagespeed[4], averagespeed[3])); 
 
  S = (32 - maxdens)*(minspeed*3);  
 } 
 else  
 { 
  S = 0; 
 } 
 
 M = 1800 + 2100 + 2100 + offsmoothedflow[4] + offsmoothedflow[3] + S - smoothedflow[3] - 
onsmoothedflow[3]; 
 

253 



 rate[2] = M; 
 
 if (rate[2] < minrate[2]) 
 { 
  rate[2] = minrate[2]; 
 } 
} 
 
 
void zone61() 
{ 
 float maxdens; 
 float minspeed; 
 float S; 
 float demand; 
 
 if(max(density[0], max(density[1], max(density[2], max(density[3], max(density[4], density[5]))))) < 32) 
 { 
  maxdens = max(density[0], max(density[1], max(density[2], max(density[3], max(density[4], density[5])))));  
  minspeed = min(averagespeed[0], min(averagespeed[1], min(averagespeed[2], min(averagespeed[3], 
min(averagespeed[4], averagespeed[5]))))); 
 
  S = (32 - maxdens) * (minspeed * 3); 
 } 
 else 
 { 
  S = 0; 
 } 
 
 M = 6000 + offsmoothedflow[4] + offsmoothedflow[3] + offsmoothedflow[2] + offsmoothedflow[1] + 
offsmoothedflow[0] + S - smoothedflow[0] - onsmoothedflow[3]; 
 
 qps_GUI_printf("%f %f %f  ", -1*smoothedflow[0], S, M); 
 
 demand = onsmoothedflow[0] + onsmoothedflow[1] + onsmoothedflow[2]; 
 
 rate[0] = onsmoothedflow[0] * M / demand; 
 rate[1] = onsmoothedflow[1] * M / demand; 
 rate[2] = onsmoothedflow[2] * M / demand; 
 
 if (rate[0] < minrate[0]) 
  rate[0] = minrate[0]; 
 if (rate[1] < minrate[1]) 
  rate[1] = minrate[1]; 
 if (rate[2] < minrate[2]) 
  rate[2] = minrate[2]; 
 
 qps_GUI_printf("%f %f %f\n", rate[0], rate[1], rate[2]); 
 
} 
 
void zone62() 
{ 
 float maxdens; 
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 float minspeed; 
 float S; 
 float demand; 
 
 
 if(max(density[10], max(density[9], max(density[8], max(density[7], max(density[6], density[5]))))) < 32) 
 { 
  maxdens = max(density[10], max(density[9], max(density[8], max(density[7], max(density[6], density[5])))));  
  minspeed = min(averagespeed[10], min(averagespeed[9], min(averagespeed[8], min(averagespeed[7], 
min(averagespeed[6], averagespeed[5]))))); 
 
  S = (32 - maxdens) * (minspeed * 3); 
 } 
 else 
 { 
  S = 0; 
 } 
 
 M = 6000 + offsmoothedflow[5] + offsmoothedflow[6] + offsmoothedflow[7] + S - smoothedflow[5]; 
 
 qps_GUI_printf("%f %f %f ", -1*smoothedflow[5], S, M); 
 
 demand = onsmoothedflow[4] + onsmoothedflow[5] + onsmoothedflow[6] + onsmoothedflow[7]; 
 
 rate[4] = onsmoothedflow[4] * M / demand; 
 rate[5] = onsmoothedflow[5] * M / demand; 
 rate[6] = onsmoothedflow[6] * M / demand; 
 rate[7] = onsmoothedflow[7] * M / demand; 
 
 if (rate[4] < minrate[4]) 
  rate[4] = minrate[4]; 
 if (rate[5] < minrate[5]) 
  rate[5] = minrate[5]; 
 if (rate[6] < minrate[6]) 
  rate[6] = minrate[6]; 
 if (rate[7] < minrate[7]) 
  rate[7] = minrate[7];  
 
 qps_GUI_printf("%f %f %f %f\n", rate[4], rate[5], rate[6], rate[7]); 
 
} 
 
void zone63() 
{ 
 float maxdens; 
 float minspeed; 
 float S; 
 
 
 if(max(density[10], max(density[11], max(density[12], max(density[13], density[14])))) < 32) 
 { 
  maxdens = max(density[10], max(density[11], max(density[12], max(density[13], density[14])))); 
  minspeed = min(averagespeed[10], min(averagespeed[11], min(averagespeed[12], min(averagespeed[13], 
averagespeed[14],))));  
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  S = (32 - maxdens) * (minspeed * 3); 
 } 
 else 
 { 
  S = 0; 
 } 
 
 M = 6000 + offsmoothedflow[8] + offsmoothedflow[9] + offsmoothedflow[10] + S - smoothedflow[10]; 
 
 qps_GUI_printf("%f %f %f ", -1*smoothedflow[10], S, M); 
 
 rate[8] = M; 
  
 
 if (rate[8] < minrate[8]) 
  rate[8] = minrate[8]; 
 
 
 qps_GUI_printf("%f\n", rate[8]); 
 
} 
 
void largezone() 
{ 
 float maxdens; 
 float minspeed; 
 float S; 
 float demand; 
 
 
 if(max(density[14], max(density[13], max(density[12], max(density[11], max(density[10], max(density[9], 
max(density[8], max(density[7], max(density[6], max(density[5], max(density[4], max(density[3], max(density[2], 
max(density[1], density[0])))))))))))))) < 32)  
 { 
  maxdens = max(density[0], max(density[1], max(density[2], max(density[3], max(density[4], max(density[5], 
max(density[6], density[7]))))))); 
  maxdens = max(maxdens, max(density[13], max(density[8], max(density[9], max(density[10], max(density[11], 
max(density[12], density[14])))))));  
 
  minspeed = min(averagespeed[0], min(averagespeed[1], min(averagespeed[2], min(averagespeed[3], 
min(averagespeed[4], min(averagespeed[5], min(averagespeed[6], averagespeed[7]))))))); 
  minspeed = min(minspeed, min(averagespeed[13], min(averagespeed[8], min(averagespeed[9], 
min(averagespeed[10], min(averagespeed[11], min(averagespeed[12], averagespeed[14])))))));  
 
 
  S = (32 - maxdens) * (minspeed * 3); 
 } 
 else 
 { 
  S = 0; 
 } 
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 M = 6000 + offsmoothedflow[0] + offsmoothedflow[1] + offsmoothedflow[2] + offsmoothedflow[3] + 
offsmoothedflow[4] + offsmoothedflow[5] + offsmoothedflow[6] + offsmoothedflow[7] + offsmoothedflow[8] + 
offsmoothedflow[9] + offsmoothedflow[10] + S - smoothedflow[0];  
 
 qps_GUI_printf("%f %f %f ", -1*smoothedflow[0], S, M); 
 
 demand = onsmoothedflow[0] + onsmoothedflow[1] + onsmoothedflow[2] + onsmoothedflow[3] + 
onsmoothedflow[4] + onsmoothedflow[5] + onsmoothedflow[6] + onsmoothedflow[7] + onsmoothedflow[8]; 
 
 rate[0] = onsmoothedflow[0] * M / demand; 
 rate[1] = onsmoothedflow[1] * M / demand; 
 rate[2] = onsmoothedflow[2] * M / demand; 
 rate[3] = onsmoothedflow[3] * M / demand; 
 rate[4] = onsmoothedflow[4] * M / demand;  
 rate[5] = onsmoothedflow[5] * M / demand; 
 rate[6] = onsmoothedflow[6] * M / demand; 
 rate[7] = onsmoothedflow[7] * M / demand; 
 rate[8] = onsmoothedflow[8] * M / demand; 
  
 
 if (rate[0] < minrate[0]) 
  rate[0] = minrate[0]; 
 if (rate[1] < minrate[1]) 
  rate[1] = minrate[1]; 
 if (rate[2] < minrate[2]) 
  rate[2] = minrate[2]; 
 if (rate[3] < minrate[3]) 
  rate[3] = minrate[3];  
 if (rate[4] < minrate[4]) 
  rate[4] = minrate[4]; 
 if (rate[5] < minrate[5]) 
  rate[5] = minrate[5]; 
 if (rate[6] < minrate[6]) 
  rate[6] = minrate[6]; 
 if (rate[7] < minrate[7]) 
  rate[7] = minrate[7];  
 if (rate[8] < minrate[8]) 
  rate[8] = minrate[8]; 
 
 qps_GUI_printf("%f %f %f %f %f %f %f %f %f\n", rate[0], rate[1], rate[2], rate[3] , rate[4], rate[5], rate[6], rate[7] 
, rate[8]); 
 
} 
*/ 
 
void zone1() 
{ 
 float maxdens; 
 float minspeed; 
 float S; 
 float demand; 
 
 if(max(density[0], max(density[1], max(density[2], max(density[3], max(density[4], density[5]))))) < 32) 
 { 
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  maxdens = max(density[0], max(density[1], max(density[2], max(density[3], max(density[4], density[5])))));  
  minspeed = min(averagespeed[0], min(averagespeed[1], min(averagespeed[2], min(averagespeed[3], 
min(averagespeed[4], averagespeed[5]))))); 
 
  S = (32 - maxdens) * (minspeed * 3); 
 } 
 else 
 { 
  S = 0; 
 } 
 
 M = 6000 + offsmoothedflow[4] + offsmoothedflow[3] + offsmoothedflow[2] + offsmoothedflow[1] + 
offsmoothedflow[0] + S - smoothedflow[0] - onsmoothedflow[3]; 
 
 qps_GUI_printf("%f %f %f  ", -1*smoothedflow[0], S, M); 
 
 demand = onsmoothedflow[0] + onsmoothedflow[1] + onsmoothedflow[2]; 
 
 rate[0] = onsmoothedflow[0] * M / demand; 
 rate[1] = onsmoothedflow[1] * M / demand; 
 rate[2] = onsmoothedflow[2] * M / demand; 
 
 if (rate[0] < minrate[0]) 
  rate[0] = minrate[0]; 
 if (rate[1] < minrate[1]) 
  rate[1] = minrate[1]; 
 if (rate[2] < minrate[2]) 
  rate[2] = minrate[2]; 
 
 qps_GUI_printf("%f %f %f\n", rate[0], rate[1], rate[2]); 
 
} 
 
void zone2() 
{ 
 float maxdens; 
 float minspeed; 
 float S; 
 float demand; 
 
 if(max(density[4], max(density[5], max(density[6], max(density[7], max(density[8], max(density[9], 
density[10])))))) < 32) 
 { 
  maxdens = max(density[4], max(density[5], max(density[6], max(density[7], max(density[8], max(density[9], 
density[10]))))));  
  minspeed = min(averagespeed[4], min(averagespeed[5], min(averagespeed[6], min(averagespeed[7], 
min(averagespeed[8], min(averagespeed[9], averagespeed[10])))))); 
  
  S = (32 - maxdens) * (minspeed * 3); 
 } 
 else 
 { 
  S = 0; 
 } 
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 M = 6000 + offsmoothedflow[4] + offsmoothedflow[5] + offsmoothedflow[6] + offsmoothedflow[7] + S - 
smoothedflow[4]; 
  
 qps_GUI_printf("%f %f %f  ", -1*smoothedflow[0], S, M); 
 
 demand = onsmoothedflow[4] + onsmoothedflow[5] + onsmoothedflow[6] + onsmoothedflow[7]; 
 
 rate[4] = onsmoothedflow[4] * M / demand; 
 rate[5] = onsmoothedflow[5] * M / demand; 
 rate[6] = onsmoothedflow[6] * M / demand; 
 rate[7] = onsmoothedflow[7] * M / demand; 
 
 if (rate[4] < minrate[4]) 
  rate[4] = minrate[4]; 
 if (rate[5] < minrate[5]) 
  rate[5] = minrate[5]; 
 if (rate[6] < minrate[6]) 
  rate[6] = minrate[6]; 
 if (rate[7] < minrate[7]) 
  rate[7] = minrate[7];  
 
 qps_GUI_printf("%f %f %f % f\n", rate[4], rate[5], rate[6], rate[7]); 
} 
 
void zone3() 
{ 
 float maxdens; 
 float minspeed; 
 float S; 
 float demand; 
 
 if(max(density[10], max(density[9], max(density[8], max(density[7], max(density[6], max(density[5], 
max(density[4], max(density[3], max(density[2], max(density[1], density[0])))))))))) < 32) 
 { 
  maxdens = max(density[0], max(density[1], max(density[2], max(density[3], max(density[4], max(density[5], 
max(density[6], density[7])))))));  
  maxdens = max(maxdens, max(density[8], max(density[9], density[10]))); 
 
  minspeed = min(averagespeed[0], min(averagespeed[1], min(averagespeed[2], min(averagespeed[3], 
min(averagespeed[4], min(averagespeed[5], min(averagespeed[6], averagespeed[7]))))))); 
  minspeed = min(minspeed, min(averagespeed[8], min(averagespeed[9], averagespeed[10])));  
 
 
  S = (32 - maxdens) * (minspeed * 3); 
 } 
 else 
 { 
  S = 0; 
 } 
 
 M = 6000 + offsmoothedflow[0] + offsmoothedflow[1] + offsmoothedflow[2] + offsmoothedflow[3] + 
offsmoothedflow[4] + offsmoothedflow[5] + offsmoothedflow[6] + offsmoothedflow[7] + S - smoothedflow[0]; 
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 qps_GUI_printf("%f %f %f ", -1*smoothedflow[0], S, M); 
 
 demand = onsmoothedflow[0] + onsmoothedflow[1] + onsmoothedflow[2] + onsmoothedflow[3] + 
onsmoothedflow[4] + onsmoothedflow[5] + onsmoothedflow[6] + onsmoothedflow[7]; 
 
 rate[0] = onsmoothedflow[0] * M / demand; 
 rate[1] = onsmoothedflow[1] * M / demand; 
 rate[2] = onsmoothedflow[2] * M / demand; 
 rate[3] = onsmoothedflow[3] * M / demand; 
 rate[4] = onsmoothedflow[4] * M / demand;  
 rate[5] = onsmoothedflow[5] * M / demand; 
 rate[6] = onsmoothedflow[6] * M / demand; 
 rate[7] = onsmoothedflow[7] * M / demand; 
  
 
 if (rate[0] < minrate[0]) 
  rate[0] = minrate[0]; 
 if (rate[1] < minrate[1]) 
  rate[1] = minrate[1]; 
 if (rate[2] < minrate[2]) 
  rate[2] = minrate[2]; 
 if (rate[3] < minrate[3]) 
  rate[3] = minrate[3];  
 if (rate[4] < minrate[4]) 
  rate[4] = minrate[4]; 
 if (rate[5] < minrate[5]) 
  rate[5] = minrate[5]; 
 if (rate[6] < minrate[6]) 
  rate[6] = minrate[6]; 
 if (rate[7] < minrate[7]) 
  rate[7] = minrate[7];  
 
 qps_GUI_printf("%f %f %f %f %f %f %f %f \n", rate[0], rate[1], rate[2], rate[3] , rate[4], rate[5], rate[6], rate[7]); 
} 
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