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Abstract

The decision tree is a well-known methodology for classification and regression. In this

dissertation, we focus on the minimization of the misclassification rate for decision tree

classifiers. We derive the necessary equations that provide the optimal tree prediction, the

estimated risk of the tree’s prediction, and the reliability of the tree’s risk estimation. We

carry out an extensive analysis of the application of Lidstone’s law of succession for the

estimation of the class probabilities. In contrast to existing research, we not only compute

the expected values of the risks but also calculate the corresponding reliability of the risk

(measured by standard deviations). We also provide an explicit expression of the k-norm

estimation for the tree’s misclassification rate that combines both the expected value and the

reliability. Furthermore, our proposed and proven theorem on k-norm estimation suggests an

efficient pruning algorithm that has a clear theoretical interpretation, is easily implemented,

and does not require a validation set. Our experiments show that our proposed pruning

algorithm produces accurate trees quickly that compares very favorably with two other well-

known pruning algorithms, CCP of CART and EBP of C4.5. Finally, our work provides a

deeper understanding of decision trees.
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CHAPTER 1

INTRODUCTION

Prediction and decision making are frequently used in real world applications. To aid humans

in these tasks, the field of Machine Learning provides a variety of algorithms for automatic

learning and prediction/classification. Most of the automatic predictors/classifiers can opti-

mize their output based on a certain minimal risk criterion. In many modern applications,

however, the optimized output alone is not sufficient to solve our problems. In making de-

cisions, sometimes we need to know not only the best decision (the one with the least risk)

but also the associated risk. For example, in classification problems the risk can be defined

as the misclassification rate. Since the risk is seldom deterministic, we might also need the

reliability of the risk estimation. For example, compare the following outputs regarding the

class of an input that is presented to the classifier.

1. Class 1 has the lowest misclassification rate (or highest class probability)

2. Class 1 has the highest class probability that is approximately 0.6

3. Class 1 has the highest class probability that lies in the range 0.6± 0.1

Obviously, the last classifier gives the most complete information among the three.
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In this dissertation we focus on decision tree classifiers. The advantages of decision

trees include their time efficiency in training, their compatibility with categorical (nominal)

inputs and data with missing values, and the interpretability (to humans) of their knowledge

representation. Their accuracy is also comparable to other Machine Learning algorithms,

such as neural networks (see [LLS00]).

Through the analysis conducted in this dissertation we are not only able to provide the

optimal tree prediction, but we are also able to calculate the reliability of this prediction.

Furthermore, we propose a pruning algorithm, referred to as k-norm pruning algorithm,

which has the following properties: it has a clear theoretical interpretation, it does not

require cross-validation or a separate validation set, it can find the optimal pruned tree

within one traversal of the tree, and it is simple and easy to implement. Furthermore, it

compares favorably with two well known pruning strategies the Cost Complexity Pruning

(CCP) of CART (see [BFO84]), and the Error Based Pruning (EBP) of C4.5 (see [Qui93]).

The rest of this dissertation is organized as follows. In Chapter 2, we first discuss the pros

and cons of some well-known misclassification rate estimation approaches, and this discussion

serves as a motivation for our estimation approach. Then, the necessary background knowl-

edge is covered in Chapter 3, which introduces the reader to decision trees and probability

estimation. We elaborate on the theoretical analysis of the tree predictions in Chapter 4. In

particular, we apply Lidstone’s law of succession (see [Lid20]) for the estimation of averages

and standard deviations of misclassification rates in decision tree classifiers. Based on our

analysis, we introduce the appropriate equations to estimate the tree’s prediction accuracy,
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and a pruning algorithm to maximize the estimated accuracy, with the properties mentioned

earlier. In Chapter 5 we further show a series of useful properties of k-norm pruning. In

Chapter 6, we show the experimental results of our pruning algorithm by comparing it to

two other classical algorithms (CCP and EBP), as well as other pruning algorithms. We em-

phasize the advantages of the k-norm approach compared to alternative pruning methods,

such as CCP and EBP. We also extend our k-norm estimation to two other risk definitions in

classification problems, misclassification costs and error of class probabilities, in Chapter 7.

We summarize our work in Chapter 8. In the appendices, we provide a list of frequently

used notations and a detailed example of our estimation approach to a well studied problem,

as well as the proofs of our theorems.
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CHAPTER 2

MOTIVATION OF OUR WORK

In this chapter we take a careful look at current, well-known estimation approaches, and we

provide the motivation for our work.

2.1 Tree Pruning

Hyafil and Rivest proved that getting the optimal tree is NP-complete (see [HR76]), and

thus most algorithms employ the greedy search and the divide-and-conquer approach to

grow a tree. Like other approaches that design their models from data, a decision tree

classifier over-adapted to the training set tends to generalize poorly, when it is confronted

with unseen instances. Therefore, it has been widely accepted that the grown tree should be

pruned.

A number of pruning algorithms have been proposed, such as the Minimal Cost-Complexity

Pruning (CCP) in CART (Classification and Regression Trees; see [BFO84], page 66), Error

Based Pruning (EBP) in C4.5 (see [Qui93], page 37), Minimum Error Pruning (MEP) (see

[NB86, CB91]), Reduced Error Pruning (REP), Pessimistic Error Pruning (PEP) (see [Qui99]

for both REP and PEP), the MDL-Based Pruning (see [MRA95]), Classifiability Based Prun-
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ing (see [DK01]), the pruning using Backpropagation Neural Networks (see [KC01]), etc.

Some of the pruning algorithms are briefly analyzed and empirically compared in [EMS97].

Our basis of comparison of the merits of the proposed k-norm pruning algorithm are the

benchmark pruning algorithms, CCP and EBP. However some comparisons are also made

between k-norm pruning and the other pruning algorithms, mentioned in the above refer-

ences.

It would be very easy to estimate the error rate on unseen data if a separate validation

set with sufficient size is given. When only the training set is given, one could separate

the training set into two parts, one for growing the tree and one for validating the tree

(for example, see [Qui99] for REP and [KE03, KME04] for its two successors); in this case,

however, the resulting tree does not utilize all the training examples in its design. A better

solution is to use a V -fold cross-validation (see [Sto78]), which has been successfully applied

in CCP. Nevertheless, validation is usually a computationally expensive procedure. Most

of the estimation approaches that do not depend on validation can be divided into two

categories: maximum likelihood estimation and posterior (Bayesian) estimation. They are

discussed in the next two sections.

2.2 Maximum Likelihood Estimation

This approach seems to have attracted most of the research interest in error rate estimation

for decision tree classifiers. Although the maximum likelihood estimate cannot be used

5



by itself (otherwise the fully grown tree would have the highest estimated accuracy), it

can provide some useful information accompanied by Hoeffding’s Inequality (see [Hoe63]),

Chernoff’s Inequality (see [Che52]), or the Binomial confidence interval. For example, the

following can be derived from Hoeffding’s Inequality:

If X1, X2, . . . , Xn are independent random variables distributed in the range [0,1],

then

P

[∑n
i=1Xi

n
− E [

∑n
i=1Xi]

n
≥ ε

]
≤ e−2nε2 . (2.1)

In a tree node, many researchers define Xi as the indicator function of the event that the i-th

training example is correctly classified (1 if correct or 0 if incorrect). Under this definition,

they interpret
∑n

i=1Xi

n
as the maximum likelihood estimate of the accuracy (or observed

accuracy) and
E[
∑n

i=1Xi]
n

as the true accuracy. The above inequality (2.1) yields a practical

bound of the generalization accuracy. In [Qui93, Man97, Fre98, KM98, MM00, KE03], the

authors have experimented with different ε values and/or applying other inequalities to

achieve better confidence bounds/intervals for the generalization accuracy. Note that in

EBP (see [Qui93]), the equation for computing the estimated error rate is not shown; it can

be found in [WA01] and turns out to be a one-sided binomial confidence interval.

The above approaches are very straightforward. One of the most important advantages

is that they make no assumption on the distribution of the error rate. Some researchers

have also proposed tree pruning algorithms that can finish within one traversal of the tree

based on the upper bound of the error rate. In applying these approaches, however, many

6



researchers have sidestepped an important issue related to the correct interpretation of Ho-

effding’s/Chernoff’s Inequalities, as pointed out recently in [VJ01], page 342. For instance, if

through the observation of 1000 values (Xi’s) for the random variable X (1 if correct or 0 if

incorrect) using 1000 training examples, we come up with an average accuracy X =
∑1000

i=1 Xi

1000

(maximum likelihood estimate of the accuracy), and if ε = 0.05, we get e−2nε2 = 0.0067. In

this example, Hoeffding’s inequality simply implies that if we repeat the experiment for a

sufficiently large number of times, and in the k-th run we observe the average accuracy X
k

using 1000 independent training examples of the same distribution, then in at least 99.33%

(= 1 − 0.0067) of the runs, the actual expected value E[X] is higher than X
k − 0.05. For

any particular k, it does not imply that E[X] is higher than X
k − 0.05 at a certain proba-

bility, because E[X] and X
k − 0.05 are both deterministic. In other words, it is not safe to

state that the generalization accuracy/error rate (expected error rate) has a specific inter-

val/bound at a certain probability by simply relying on the maximum likelihood estimates

of this error rate from a single training data set. Of course, we could still use the resulting

intervals/bounds as heuristics to estimate the unknown accuracy, but we must keep in mind

the limitations of such an estimate, as explained above.

Secondly, there is another difficulty in comparing the estimated error rates before and

after pruning a sub-tree. In [Man97, KM98, MM00], the authors apply an upper bound to

estimate error rate of a sub-tree, but simply compare it to the maximum likelihood estimate

of the (pruned) leaf error rate rather than another upper bound. That is, the penalty applies

only to the tree, which makes the comparison unfair. On the other hand, if a similar penalty
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applies to the leaf, this approach tends to under-prune the tree, because in the sub-tree the

observed misclassifications are always fewer than in the leaf while the total instances are

the same. In EBP (see [Qui93]) and two improved versions of REP (see [KE03, KME04]),

the authors use a more reasonable strategy: the number of misclassifications of a tree is

estimated as the sum of those in its leaves. Then, the misclassification at a leaf is estimated

by using a confidence interval. Since in the leaves the penalty might be relatively significant,

because fewer examples are observed, the total penalty may result in the decision of pruning.

However, the comparison is still questionable. For example, if e1 and e2 are 90% confidence

upper bounds of E1 and E2 (the number of misclassifications made in the left child and in the

right child, respectively), that is, even if P [E1 ≤ e1] = 0.9 and P [E2 ≤ e2] = 0.9 (ignoring

the misinterpretation mentioned above), generally P [E1 +E2 ≤ e1 + e2] 6= 0.9, which means

that the sum e1 + e2 is not necessarily the 90% confidence upper bound of the sub-tree.

Consequently, it might not be fair to compare this sum to a 90% confidence upper bound

of the error rate of the pruned node. In summary, we have not found in the literature, a

bounding method that can be applied to both leaves and decision nodes consistently.

To the best of our knowledge, we have not seen any statistically significant (at least 1000

points in the database) experimental results showing that the above approaches can yield

a pruning algorithm superior to those using validation or those using posterior estimations.

For example, EBP tends to under-prune a tree as shown in [EMS97]. The behavior of EBP

can be explained with the theoretical analysis in [EK01], where the authors proved that in

EBP, a decision node will not be pruned unless all its immediate children are either originally

8



leaves or pruned to leaves. One could make EBP prune more nodes by using extremely small

values of the parameter CF as in [HBB03], where CF = 0.01 is shown to produce a better

tree than the default value CF = 25. In this case, however, the estimated error rate loses

its true meaning: for a leaf that has 1 misclassification out of 99 (this example is discussed

in section 4.3 of this dissertation), the error rate estimate is as pessimistic as 15.8% for

CF = 0.01, in contrast to 2.6% for CF = 25.

2.3 Posterior Estimation

Contrary to maximum likelihood estimation, posterior estimations assume that unknown

parameters θ are random variables, and model them by an posterior joint probability density

function (abbreviated as PDF; denoted by f) based on Bayesian theorem:

f(θ|O) =
f(O|θ)f(θ)

f(O)
=

f(O|θ)f(θ)∫
θ
f(O|θ)f(θ)dθ

, (2.2)

where θ is the hypothesis and O is the observation. When θ stands for one or more probabil-

ities and the observation is the result of a series of Bernoulli trials, f(O|θ) is not difficult to

compute (see (3.17)). The apparent difficulty is the unknown prior PDF f(θ). An explicit

expression of this prior PDF must be assumed, and its properness is usually difficult to verify.

Nevertheless, this approach allows, at least, the production of meaningful results.
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A typical example is MEP (see [NB86]), where Lidstone’s law of succession (see [Lid20])

is used (see section 3.2 for details). Lidstone’s law of succession can be derived by choosing

the prior joint PDF to be represented by the Dirichlet distribution (3.13) and by choosing

the posterior expected value as the estimated value. The prior PDF should model the

class probabilities rather than the misclassification rate (see section 3.2 for details). In this

dissertation, we prove that the comparison between the estimated error rates before and after

pruning is fair (see Theorem 4.1 in section 4.2). However, we also prove that MEP tends to

under-prune a tree as well: under a loose condition, the estimated error rate always drops if

a split reduces the number of training misclassifications by at least one, and thus will not be

pruned (see Theorem 4.3 in section 4.4). We argue that the expected value alone does not

serve as a good estimate of the misclassification rate, because it does not provide us with

any information about the reliability of the estimate (analogous to the confidence interval

in maximum likelihood estimation). For instance, an estimate in the range of 0.2 ± 0.01 is

much better than an estimate in the range of 0.2 ± 0.2 although they have same expected

values (see section 4.3 for a quantitative example).

2.4 k-Norm Estimate

In our work we choose to prune a tree by minimizing the estimated error rate, because we

desire not only the optimal pruned tree but also the performance prediction. In our work,

we choose not to rely on a validation set because validation may not be practical when the
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training set is small and it is expensive when the training set is large. To the best of our

knowledge, there is no error estimation approach with a strong theoretical support that does

not require validation. Based on the references discussed above that are related to prior

tree pruning work, MEP appears to be the most promising approach for improvement: the

posterior estimations can yield interpretable results as long as the prior PDF is selected

properly. The Dirichlet Distribution provides an explicit expression for the prior PDF and

results in Lidstone’s law of succession, which has been widely accepted in the statistical

literature. Since expected values are not good enough for error rate estimation, we also

calculate the standard deviation of the error rate. These considerations lead us, in a natural

way to the k-norm error rate pruning approach, which is a generalization of the 2-norm error

rate pruning (that relies on estimation of averages and standard deviations of error rates; see

section 4.4 that provides a quantitative explanation of our motivation to rely on expected

values and standard deviations of error rates to assess the tree pruning decisions).
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CHAPTER 3

PRELIMINARIES

This chapter provides some basic information on decision trees and probability estimation

approaches, needed for the rest of this dissertation.

3.1 Decision Trees

A typical tree is shown in Figure 3.1.

 
x3>1? 

x1>0? 

 
x2>4? 

 

x1>2? 

 
y=1 y=2 y=1 

x4>7? 

 
x3>9? 

 

y=3 y=2 y=1 y=3 

N Y 

N Y 

Y N Y N 

Y N Y N 

root 

t1 

t11 t12

Note: The variables x1 to x4 represent the attributes, and y represents the variable, whose
value the tree is predicting. The nodes of the tree are designated by the index t, and the Y,
N designations refer to YES or NO answer to the question posed by the node above them.

Figure 3.1: Graph of a Decision Tree
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To train a tree classifier, usually two phases are required. One is the growing phase,

where the tree is grown to a sufficient size, and the other is the pruning phase, where the

tree is pruned back to prevent over-training (see [BFO84]). In this dissertation, we do not

focus on the growing phase but the pruning phase with the error rate estimation. To pave

our way for error rate estimation, we first discuss the tree classification from the perspective

of posterior probabilities.

3.1.1 Probabilistic view of tree classification

Let X denote an input instance that can be treated as a random vector, and let Cj represent

the event that X belongs to the j-th class. To view the decision tree classification in a

probabilistic way, we can express P [Cj|X] as

P [Cj|X] = P [Cj|Aroot,X] , (3.1)

where root is the root of the tree, At is the event that node t is activated (receives the input

X). Since the root is always activated, Aroot is always true. For other nodes, At is defined

by the splits involving the ancestors of node t. For example, in Figure 3.1, At1 = (x3 ≤ 1)

and At11 = (x3 ≤ 1, x1 ≤ 0) (the comma in the parentheses stands for intersection of events).

For most decision trees, we can rely on the following assumptions:
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Partitioning Assumption: For any decision node d, the events {Ac|Ad, c ∈ Children(d)}

are mutually exclusive and collectively exhaustive, where Children(d) is the set of

immediate children of node d.

Determinacy Assumption: Given X, the path of X from the root to a leaf is deterministic,

that is, P [Ac|Ad,X] is either 0 or 1(for example, in Figure 3.1, P [At11|At1 ,X] = I[x1 ≤

0]).

Piece-wise Independence Assumption: At a leaf l, the class label is assumed to be

independent of X.

The Partitioning Assumption leads to the following equation: for any decision node d,

P [Cj|Ad,X] =
∑

c∈Children(d)

P [Cj|Ac, Ad,X]P [Ac|Ad,X] . (3.2)

Note that a child of d is activated only if d is activated, that is, Ac implies Ad, or (Ac, Ad) =

Ac. Therefore, (3.2) can be rewritten as

P [Cj|Ad,X] =
∑

c∈Children(d)

P [Cj|Ac,X]P [Ac|Ad,X] , (3.3)

or equivalently,

P [Cj|X] =
∑

l∈Leaves

P [Cj|Al,X]P [Al|X] . (3.4)
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Under the Piece-wise Independence Assumption, for any leaf l,

P [Cj|Al,X] ≈ P [Cj|Al] . (3.5)

P [Cj|Al] is unknown and has to be estimated (e.g., by maximum likelihood estimation or

Lidstone’s law of succession). Let P ∗ [Cj|Al] denote the estimated value of P [Cj|Al] (the

asterisk representing the estimated value throughout this dissertation). The predicted class

probability P ∗ [Cj|X] is estimated as follows:

P ∗ [Cj|X] =
∑

l∈Leaves

P ∗ [Cj|Al]P [Al|X] . (3.6)

Under the Determinacy Assumption, for any X, X activates only one leaf (denoted by

lX). Therefore,

P ∗ [Cj|X] = P ∗ [Cj|AlX ] . (3.7)

Interestingly, whether the maximum likelihood estimation or the Lidstone’s law of suc-

cession is applied for computing the estimated value P ∗ [Cj|Al] (the asterisk representing the

estimated value throughout this dissertation),

Label∗(X) = Label(lX) = arg max
j

P ∗ [Cj|AlX ] = arg max
j

nj,lX , (3.8)
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where nj,t is the number of training examples of class j in a node t that receives X (this

notation is also applicable to decision nodes).

The assumptions presented here are used for the proof of the theorem 1 and corollary 1,

based on which the k-norm estimation algorithm is derived (see section 4.2 and section 4.4).

The equations, presented above, are used in the discussion that follows.

3.1.2 Discussion

There is a dilemma in tree induction regarding the under-training/over-training of the tree.

The estimation in (3.6) includes two approximations:

P [Cj|X] =
∑

l∈Leaves

P [Cj|X, Al]P [Al|X] ≈
∑
l

P [Cj|Al]P [Al|X] , (3.9)

P [Cj|Al] ≈ P ∗ [Cj|Al] . (3.10)

As the tree keeps growing and each leaf l occupies a smaller region in the attribute space,

the first approximation becomes more and more accurate, since P [Cj|X, Al] of (3.9) is sub-

stituted by the piece-wise constant function P [Cj|Al]. However, the estimation of P [Cj|Al]

actually turns out to be less reliable since fewer training examples are passed to l, and it

is the cause of why a fully grown tree usually exhibits poor generalization. The dilemma

can never be completely overcome, even if the Piece-wise Independence Assumption is dis-

carded and/or Lidstone’s estimation is applied, because when fewer examples are given, the
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approximation of P [Cj|X, Al] using any predefined model (such as the Gaussian PDF or the

uniform PDF) appears easier but is less reliable.

An example is shown in Figure 3.2, to illustrate our point that the estimation of class

probabilities becomes less reliable as the tree grows in size. We generated an artificial

Gaussian database with 2 classes (20 examples in each class) and one attribute X (X|C1 ∼

N (−1, 1), X|C2 ∼ N (1, 1); the two classes are plotted at different vertical locations only for

visual purpose). We used CART to grow a tree. Before any split (when the tree has only

one leaf), each estimated class probability has a constant value 0.5, giving no information for

the classification. After the first split, the estimation of P [Cj|X] is improved significantly,

especially for the region to the left of the split: the root-mean-square-error of the probability

estimate decreases from 0.43 to 0.19, and the error rate decreases from 0.5 to 0.086. For the

fully grown tree (where each leaf is pure), the estimated class probability has many spikes

and it does not look better than the estimated class probability with only the first split; for

the fully grown tree the root-mean-square-error of the probability estimate increases from

0.19 to 0.22, and the error rate increases from 0.086 to 0.091.

Since growing the tree to its maximum size might not be beneficial, there is a point at

which we should stop growing the tree. Nevertheless, during the growing phase it is difficult

to foresee how many more splits under a newly created leaf will be finally found and whether

or not these splits will be worthy. From this point of view, we also support the widely

accepted approach of growing the tree to its maximum size and then pruning the tree, for it

allows us to find all candidate pruned trees. Now, our main problems are 1) how to evaluate
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Figure 3.2: Estimated Class Probabilities Obtained by CART for a Gaussian
Data Set.

a candidate prune tree, for the true PDF is seldom known, and 2) how to find the optimal

pruned tree efficiently, as there are usually too many candidate pruned trees to choose from.

These problems are addressed in the next chapter.

3.2 Probability Estimation

An important issue in decision trees, as well as many other classifiers, is the estimation of

the class probabilities given a set of training instances. To be more general, Let Φh(h =

1, 2, . . . , H) be H mutually exclusive and collectively exhaustive events. Let ph denote P [Φh]

and Nh denote the number of occurrences of Φh in N independent trials. Obviously, Nh is

a random variable. Suppose in N independent trials we observed nh occurrences of Φh (an

example would be observing nj out of N training instances that belong to class j). Our task

here is to estimate p1, p2, . . . , pH given n1, n2, . . . , nH .
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3.2.1 Lidstone’s law of succession

Lidstone’s law of succession (see [Lid20]) represents posterior estimation, in which ph is

estimated by p∗h, where

p∗h = E [ph|n1, . . . , nH ] =
nh + λh

N +
∑H

h=1 λh
, (3.11)

where λh’s are predefined non-negative parameters and discussed in subsection 3.2.3.

Lidstone’s estimation is widely used in probability estimation, such as in Naive Bayes

Classifiers (see [KBS97]). However, most researchers simply compute the expected value

according to (3.11). In Theorem 4.3, we will show that the expected value (1-norm) is not

sufficient to correctly evaluate a tree’s accuracy on unseen data (the theorem shows that any

effective split decreases the 1-norm error rate; consequently any effective split will not be

eliminated if the 1-norm error rate is applied). In section 4.3, we will also give an example

where an end-cut improves the expected accuracy; this example shows that by considering

both the expected accuracy and the average standard deviation of the accuracy we are able

to identify unworthy splits. This explains the reason of why, in this dissertation, we also

derive expressions for computing standard deviations.
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3.2.2 Dirichlet distribution

In Lidstone’s estimation, it is assumed (see [Goo67, Goo65]) that the prior distribution of

ph is Dirichlet distribution, denoted by

(p1, . . . , pH) ∼ Dir(λ1, λ2, . . . , λH), (3.12)

or

f (p1, . . . , pH) = αδ

(
1−

H∑
h=1

ph

)
H∏
h=1

pλh−1
h I[ph ≥ 0], (3.13)

where

α =
Γ
(∑J

j=1 λj

)
∏J

j=1 Γ (λj)
, (3.14)

Γ() is the Gamma function, I[Φ] is the indicator function (1 if Φ is true and 0 otherwise),

and δ(x) is Dirac’s delta function (or unit impulse function; see [Zem87]) such that

∫ ∞
−∞

g(x)δ(x) = g(0), (3.15)

for all continuous functions g.

Dirac’s delta function ensures that the ph’s sum up to one, for the events Φh’s are collective

exhaustive. In some works Dirac’s delta function in (3.13) is replaced with the indicator

function, probably for evaluating the magnitude. Strictly speaking, Dirac’s delta function is

necessary here because only the degree of freedom of the H random variables is H − 1 due
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to the above constraint (that is, the PDF is non-zero on a H − 1 dimensional hyperplane

only). In order for the integral of the PDF within the H dimensional space to be one, infinite

values must be present in the PDF. For example, when H = 1, p1 has a deterministic value

1, and its PDF is Dirac’s delta function rather than the indicator function. For this reason,

in the literature sometimes the joint PDF of p1, . . . , pH−1 is used to denote the Dirichlet

distribution for avoiding Dirac’s delta function. Here we use Dirac’s delta function to show

that p1, . . . , pH are assumed symmetric.

We can derive the expression of the posterior joint PDF of p1, . . . , pH using the prior

PDF (3.13) and Bayesian theorem

f(p1, . . . , pH |n1, . . . , nH) =
P [n1, . . . , nH |p1, . . . , pH ]f(p1, . . . , pH)∫

P [n1, . . . , nH |p1, . . . , pH ]f(p1, . . . , pH)dp1 . . . dpH
, (3.16)

as well as the following equation for Bernoulli trials:

P [n1, . . . , nH |p1, . . . , pH ] = N !
H∏
h=1

pnh
h

nh!
. (3.17)

Interestingly, the posterior joint PDF turns out to represent another Dirichlet distribution

(see [Goo65]):

(p1, . . . , pH |n1, . . . , nH) ∼ Dir(n1 + λ1, . . . , nH + λH). (3.18)
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In order to derive our k-norm estimate, the following equations are necessary (which

assume λh = λ regardless of h; see subsection 3.2.3 for details):

E
[
pkh
∣∣n1, . . . , nH

]
=

k−1∏
m=0

nh + λ+m

N + λH +m
, (3.19)

E
[

(1− ph)k
∣∣∣n1, . . . , nH

]
=

k−1∏
m=0

N − nh + λ(H − 1) +m

N + λH +m
, (3.20)

E [ph1ph2|nl, . . . , nH ] =
(nh1 + λ) (nh2 + λ+ I[h1 = h2])

(N + λH)(N + λH + 1)
. (3.21)

Please see Appendix C.1 for the proof of (3.19), (3.20) and (3.21). Equation (3.20) is the

basis of our proposed error rate estimation and the corresponding k-norm pruning algorithm.

Equations (3.19) and (3.21) are useful for the extensions of our k-norm estimation (see

Chapter 7).

3.2.3 Selection and implication of parameters

Usually the same value is assigned to all λh’s in the prior distribution, according to the

Principle of Indifference. Therefore, from now on we use the notation λ without subscript.

In statistics, a widely used value for λ is 0.5 (Krichevskiy suggests the value 0.50922 in

[Kri98]). In our application, the optimal value of λ remains an open problem. Nevertheless,

most of our analysis applies to all positive values of λ. In section 6.3, a heuristic is given for

our experiments.
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When we use a uniform value of λ, we imply that (p1, . . . , pH) are assumed symmetric

here, according to their equal parameters in the prior joint PDF. This means that we have

no bias towards any class without seeing any training example. An analogy is that before

throwing a die, we can treat the six events “the die shows the number h” (h = 1, 2, . . . , 6) as

symmetric, and if so, the events “the die shows the number 6” and “the die does not show

the number 6” are not symmetric. In tree classification, we are consistent if we treat the

events “X has class label j” as symmetric, but we are inconsistent if we treat the events

“X is correctly classified” versus “X is misclassified” as symmetric. For example, under the

second definition of symmetric events, if in one tree leaf class 1 is the majority class and

classes 2 and 3 are the minority classes, we consider the events “X belongs to class 1”, and

“X belongs to class 2 or 3” as symmetric; if, under the same definition, in another leaf of

the same tree class 2 is the majority class, and classes 1 and 3 are the minority classes, we

consider the events “X belongs to class 2”, and “X belongs to class 1 or 3” as symmetric.

Therefore, in our work here, we consider the events “X has class label j” as symmetric.

In the existing literature, where Lidstone’s law of succession is applied to Machine

Learning, some researchers use the terminology “Laplace Law” instead of Lidstone’s Law.

Laplace’s Law was actually proposed before Lidstone’s Law, however it represents a special

case of Lidstone’s law with λ = 1. Since Lidstone’s Law is more general, and more widely

used in the statistical literature (see [Ris95]), we refer in this dissertation to the probability

estimation approach as Lidstone’s approach.
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CHAPTER 4

K-NORM ERROR RATE ESTIMATION AND PRUNING

As explained in section 2.4, we apply the Lidstone’s law of succession to estimate the er-

ror rates. We also rely on the assumptions (Partitioning, Determinancy and Piece-Wise

Independence) discussed in subsection 3.1.1.

4.1 Terminology

We now estimate the misclassification rate P [Err|X] of a tree, by treating P [Err|X] as a

random variable. In the rest of this chapter we use expected values extensively, and thus

it is worth mentioning first that the expected value here is the integral across two random

factors: the random input attribute vector X and all the unknown probabilities P (class

probabilities P [Cj|At], child probabilities P [Ac|Ad], etc). That is, for any random variable

Q,

EX [Q] =

∫
Qf(X)dX, (4.1)

EP [Q] =

∫
Qf(P)dP, (4.2)

E [Q] = EX [EP [Q]] = EP [EX [Q]] , (4.3)
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where f(X) and f(P) are actually posterior PDFs (given the observations O with the training

examples). We omit the condition O from now on, because all the expected values are

conditional.

The (posterior) standard deviations can be computed as follows:

σP [Q] =

√
EP [Q2]− EP [Q]2, (4.4)

σ [Q] =

√
E [Q2]− E [Q]2. (4.5)

When conditions are involved, we put the conditions into the subscript. For example,

EX|At [Q] =

∫
Qf(X|At)dX. (4.6)

Note that P is composed of all probabilities, including P [Cj|At] for any node t, and the

expression “P [Cj|At]|At” is not meaningful. Therefore, we treat P as independent of At and

compute the expected value of a random variable within a node t as

Et [Q] = EP

[
EX|At [Q]

]
, (4.7)

where the superscript t represents the condition “|At”. When Q has the same subscript t, we

omit the superscript t in Et[Q]. For example, the expected error rate of the sub-tree rooted

at t is represented by E[rt] rather than Et[rt], because this expected value must, of course,

be computed with the assumption that At is true.
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4.2 Partitioning Theorem

Theorem 4.1 For any decision node d and any natural number k, under the Partitioning

Assumption (the events {Ac givenAd} for any decision node d and c ∈ Children(d) are mu-

tually exclusive and collectively exhaustive) and the Determinacy Assumption (P [Ac|Ad,X]

is either 0 or 1), the following expression is valid:

EX|Ad

[
rkd
]

=
∑

c∈Children(d)

EX|Ac

[
rkc
]
P [Ac|Ad] , (4.8)

where rt is the error rate of node t, defined as follows:

rt = P [Err|At,X] . (4.9)

Proof (The proof of Theorem 1 is provided in Appendix C.2).

Note that EX|Ad
[Q] represents only the expectation across X, and thus both sides in (4.8)

are still random variables.

Corollary 4.2 Under the Partitioning Assumption (the events {Ac given Ad} for any deci-

sion node d and c ∈ Children(d) are mutually exclusive and collectively exhaustive) and the

Determinacy Assumption (P [Ac|Ad,X] is either 0 or 1), as well as the assumption that rc

and P [Ac|Ad] are independent random variables for each child node c of the decision node
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d, the following expression is valid:

E
[
rkd
]

=
∑

c∈Children(d)

E
[
rkc
]
EP [P [Ac|Ad]] . (4.10)

This corollary can be proven by computing the expected values with respect to P of both

sides of (4.8), according to (4.7). Since P includes P [Ac|Ad], the other probabilities in

P do not contribute to EP [P [Ac|Ad]] (because EY [EZ [Z]] = EZ [Z] for any two random

variables Y and Z even if they are dependent on each other). Recall that all expected values

here are conditional, based on the training examples. It is well known that to estimate

the probabilities of a set of mutually exclusive and collectively exhaustive events with N

independent trials, the numbers of occurrences of the events are sufficient. Therefore, the

condition “given training examples” can be replaced with “given nc for all c ∈ Children(d)”

(where nt is the number of training examples covered by node t). Using Lidstone’s law of

succession, we get

EP [P [Ac|Ad]] =
nc + η

nd + ηKd

, (4.11)

where Kd is the number of immediate children of decision node d, and η has an analogous

functionality as λ (we use a different notation because λ will be used to denote the parameter

in the error rate estimation). For simplicity, from now on, we use P ∗ [Ac|Ad] to denote

EP [P [Ac|Ad]].
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Using the corollary, the standard deviation of the error rate can be computed as follows.

E [rd] =
∑

c∈Children(d)

E [rc]P
∗ [Ac|Ad] , (4.12)

E
[
r2
d

]
=

∑
c∈Children(d)

E
[
r2
c

]
P ∗ [Ac|Ad] , (4.13)

σ [rd] =

√
E [r2

d]− E [rd]
2. (4.14)

It is important to note that generally,

σ [rd] 6=
∑

c∈Children(d)

σ [rc]P
∗ [Ac|Ad] . (4.15)

Theorem 4.1 makes our error rate estimation stronger than most other approaches, such

as EBP (see section 2.3). It can also be generalized to other risk definitions (see Chapter 7).

4.3 An Example

Consider now a more specific example of a 2-class classification problem for which a binary

tree is built. Suppose a decision node d of the tree receives 98 training examples of class

1 and 1 example of class 2, and its split separates the two classes. Assume λ = η = 0.5.
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According to (3.5), before splitting,

E [rd] = EP [EX [P [Err|Ad,X]]] = EP [P [Err|Ad]]

= EP [1− P [C1|Ad]] =
1 + 0.5

99 + 0.5× 2
= 0.015000, (4.16)

E
[
r2
d

]
= EP

[
EX

[
P [Err|Ad,X]2

]]
≈ EP

[
P [Err|Ad]2

]
= EP

[
(1− P [C1|Ad])2

]
=

(1 + 0.5)(1 + 0.5 + 1)

(99 + 0.5× 2)(99 + 0.5× 2 + 1)

= 0.00037129, (4.17)

σ [rd] =

√
E [r2

d]− E [rd]
2 ≈ 0.012095. (4.18)

After splitting, for the left child c1,

E [rc1 ] =
0 + 0.5

98 + 0.5× 2
= 0.0050505, (4.19)

E
[
r2
c1

]
≈ (0 + 0.5)(0 + 0.5 + 1)

(98 + 0.5× 2)(98 + 0.5× 2 + 1)
= 0.00075758, (4.20)

P ∗ [Ac1 |Ad] =
98 + 0.5

99 + 0.5× 2
= 0.98500. (4.21)

After splitting, for the right child c2,

E [rc2 ] =
0 + 0.5

1 + 0.5× 2
= 0.25000, (4.22)

E
[
r2
c2

]
≈ (0 + 0.5)(0 + 0.5 + 1)

(1 + 0.5× 2)(1 + 0.5× 2 + 1)
= 0.12500, (4.23)

P ∗ [Ac2|Ad] =
1 + 0.5

99 + 0.5× 2
= 0.015000. (4.24)
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For the sub-tree,

E [rd] = 0.0050505× 0.985 + 0.25× 0.015 = 0.0087247, (4.25)

E
[
r2
d

]
≈ 0.00075758× 0.985 + 0.125× 0.015 = 0.0019496, (4.26)

σ [rd] ≈
√

0.0019496− (0.0087247)2 = 0.04328. (4.27)

Although the expected value of the error rate decreases by 0.006275 after the split, the

average standard deviation increases by 0.03119, which is almost 5 times larger than the

decreased amount in the expected value. Therefore, we do not expect that this split will

improve the generalization.

4.4 k-Norm Pruning Algorithm

When enough (thousands of) samples are given, one does not systematically expect higher

values than the expected value. In a tree, however, no matter how many samples are initially

given, after splitting there might be tree leaves that contain only a few samples. In this case,

the expected values calculated at these leaves are not reliable, a statement that is validated

by the standard deviations, computed in the previous example. Therefore, it is reasonable to

consider combining the expected value and the standard deviation to estimate the error rate

(e.g., by using E[r2] = E[r]2 + σ[r]2 (or
√
E [r2]) as our error rate estimate at a tree leaf).

In general, we use k-norm estimation, which estimates ‖r‖k = k
√
E [|r|k] (which is equal
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to k
√
E [rk] because in this dissertation r ≥ 0). Our choice is supported by the desirable

properties (see Chapter 5) of the k-norm pruning algorithm based on the k-norm estimation.

Apparently, the error rate of the tree is equal to r = rroot. Under the Partitioning

Assumption and the Determinacy Assumption of subsection 3.1.1, for a decision node d,

E
[
rkd
]

=
∑

c∈Children(d)

E
[
rkc
]
P ∗ [Ac|Ad] . (4.28)

For a leaf l, define J as the number of classes. Under the Piece-wise Independence Assumption

(3.5),

E
[
rkl
]

= E
[
(1− P [CLabel(l)|Al,X])k

]
≈ E

[
(1− P [CLabel(l)|Al])k

]
=

k−1∏
i=0

nl − nj,Label(l) + (J − 1)λ+ i

nl + Jλ+ i

=
k−1∏
i=0

nl −max
j

nj,l + (J − 1)λ+ i

nl + Jλ+ i
. (4.29)

By using the k-norm error rate estimation, in order to get the optimally pruned tree at

t, we can first get the optimally pruned trees below t, and then consider whether pruning t

yields a lower k-norm error rate. The algorithm is shown below:

The 1-norm error rate is the expected value of the error rate. The 2-norm ‖r‖2 =√
E [r]2 + σ [r]2 includes the expected value and the standard deviation. This is similar to

the “Bias-Variance” decomposition in [BFO84] (page 88), while the definition of the variance

31



Algorithm: R = PruneTree(t)

input : a tree rooted at node t
output: the optimal pruned tree (modified from the input),

and its k-th moment error rate R (returned value of this function)

Compute Rleaf =
∏k−1

m=0

nt−nLabel(t),t+λ(J−1)+m

nt+λJ+m
;

if t is a decision node then
Compute Rtree =

∑
c∈Children(t)

nc+η
nt+ηKt

PruneTree (c);

if Rtree < Rleaf − ε (or k
√
Rtree < k

√
Rleaf − ε) then

return Rtree;
end
Replace the subtree rooted at t with a leaf;

end
return Rleaf ;

Figure 4.1: Pseudo Code of Algorithm PruneTree(t)

in our case is easier to understand, and can be applied to multi-class problems and to any

risk definition. For higher k values, the k-norm also includes the skewness (for k ≥ 3) and/or

the kurtosis (for k ≥ 4) is also included. The behavior of the k-norm pruning algorithm is

discussed in Chapter 5. We do not recommend k = 1 for the k-norm estimation because it is

too optimistic as an error rate estimate (see also [EMS97]), and theoretically demonstrated

by the following theorem.

Theorem 4.3 Under the Partitioning Assumption (the events {AcgivenAd} for any decision

node d and c ∈ Children(d) are mutually exclusive and collectively exhaustive) and the

Determinacy Assumption (P [Ac|Ad,X] is either 0 or 1), if 0 ≤ η ≤ λJ , λ ≤ 1/(Kt−1)(J−1)

at a node t, any effective tree split decreases the 1-norm error rate. A tree split is called

effective if it reduces the training misclassifications.

Proof (The proof can be found in Appendix C.3).
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Since MEP can be represented by the 1-norm pruning with η = 0 and flexible λ, we see that

it never prunes any end-cuts, as long as they are effective.

4.5 Application in Tree Prediction

Given an input X, we can predict not only the class label but also an estimated error rate

for this prediction. Here X is deterministic and therefore we only compute EP

[
rk
]

where

r = P [Err|X]. We also apply the k-norm estimation here. Under the assumptions of

subsection 3.1.1, only one leaf lX receives X. Therefore,

EP

[
rk
]

= EP

[(
1− P

[
CLabel∗(X)|X, AlX

])k]
≈ EP

[(
1− P

[
CLabel(lX)|AlX

])k]
=

k−1∏
i=0

nlX −max
j

nj,lX + λ(J − 1) + i

nlX + λJ + i
. (4.30)

In practice, there are two reasonable ways to output the estimated error rate: 1) Output

the 2-norm error rate ‖r‖2 =
√
EP [r2] only, or 2) Output EP [r] and σP [r] =

√
EP [r2]− EP [r]2,

the latter representing the reliability or a range in the form of 0.6±0.1; the smaller the range

is, the more confident we are when using the expected value to estimate the generalization

error rate, meaning that the expected value is more reliable.
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CHAPTER 5

PROPERTIES OF K-NORM ESTIMATION/PRUNING

The k-norm pruning algorithm has a number of properties that are similar to CCP properties

of CART. A case study in Appendix B shows some of these similarities between k-norm

pruning algorithm and CART’s Minimal Cost-Complexity Pruning (CCP) algorithm. This

example serves as both the motivation and the application of our analysis and theorems on

the properties of the k-norm pruning algorithm provided in this chapter. More importantly,

since CCP’s properties have undoubtable practical significance (see the context for details),

we successfully demonstrate the same virtues of the k-norm pruning algorithm by showing

that the k-norm pruning algorithm has analogous properties. Furthermore, we show that the

k-norm pruning algorithm has additional desirable properties that CCP does not possess.

5.1 Similarities Between k-norm pruning algorithm and CCP

5.1.1 Property 1: each branch in the optimal pruned tree is also optimal

Even for binary trees, the number of possible pruned trees is typically Θ(1.5L) (see [BFO84],

page 284), where L is the number of leaves in the fully grown tree. Therefore, it is impractical
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to choose the best pruned tree by exhaustive enumeration. A general improvement has

been proposed in [BB94], where dynamic programming is used to reduce the computational

complexity to Θ(L2). For both CCP and our k-norm pruning algorithm, Property 1 allows

us to minimize the computational complexity to Θ(L), if the parameters (α for CCP and k

for k-norm) are fixed: only one tree traversal is necessary to find the optimal pruned tree,

and the chosen tree is guaranteed optimal among all possible pruned trees although we do

not visit all the Θ(1.5L) pruned trees.

For example, CART grows a tree with 1059 leaves on the abalone database (see [NHB98]),

if all stopping criteria are disabled (that is, the growing process continues until each leaf is

pure or no split can be found). There are 1.67× 10150 possible pruned trees according to the

equation given in [BFO84], page 284. For CCP and k-norm pruning algorithm, only 2117

nodes need to be visited, if the parameters α or k are given, respectively.

CCP of CART applies a cost heuristic (shown below) to evaluate the pruned trees:

rt = Rt + αLt, (5.1)

where Rt is the number of training misclassifications made by the leaves of the sub-tree

rooted at t, Lt is the number of these leaves, and α is a parameter. It is easy to see that the

cost of a sub-tree is the sum of the costs of its branches. That is, for a decision node d,

rd =
∑

c∈Children(d)

rc. (5.2)
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In the optimal pruned tree, each branch must also be optimally pruned. If for one branch T

in the optimal pruned tree T0 we can find a pruned branch T ′ with less cost, we can replace T

with T ′ and the total cost of the pruned tree can be reduced, violating our assumption that

T0 has the smallest cost. Therefore, to find the optimal pruned tree, we can first find the

optimal branches first, resulting in a recursive, divide-and-conquer CCP algorithm, which

can finish in only one tree traversal.

For our k-norm pruning algorithm, the optimal pruned tree is the one minimizing the

k-norm error rate, or equivalently, the k-th moment of the error rate. According to Theo-

rem 4.1, the k-th moment of the error rate of a sub-tree is also a weighted sum of those of

its branches. The weights do not depend on how the branches are pruned. Therefore, the

above analysis of CCP also applies to our k-norm pruning algorithm.

When the parameter values (α or k) vary, different optimal pruned trees will be found.

Therefore, finding the final tree may require more computations, including the search of all

optimal pruned trees corresponding to various parameter values, as well as the evaluation

of each tree. We have shown that this step is not necessary for k-norm pruning because we

can fix k = 2, and obtain good results. However, it is worth considering how to speed-up

this step in order to show that our algorithm is still practical if k is allowed to take different

values.
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5.1.2 Property 2: higher parameter values prune more nodes

To choose the best pruned tree by varying the parameter α or k within M values, the naive

way is to repeat finding and evaluating the optimal pruned tree for each value, resulting

in total time complexity Θ(ML) + Θ(MV ), where V is the time complexity for evaluation.

The evaluation is usually accomplished by cross-validation or the validation of the trees on

a separate set of data (in either way, V is at least linear to N , the size of the data for

validation, and it is typically Θ(N logL)). For CCP and k-norm, no preset value of M can

guarantee that all distinct pruned trees will be found. Fortunately, Property 2 implies that

we can find out all distinct pruned trees without relying on M , as explained below:

• If the parameter is raised, the optimal pruned tree is a further pruned version of the

previous one, meaning that all the optimal pruned trees can be sorted in a pruning

sequence, and each member tree of this pruning sequence corresponds to parameter

values organized in ascending order. The pruning sequence can be found by the follow-

ing: 1) for each decision node d, computing the parameter value at which the sub-tree

rooted at d is pruned, and 2) repeat finding the decision nodes with the smallest pa-

rameter value, pruning the corresponding sub-tree, and updating the parameter values

associated with the ancestor nodes of the pruned sub-tree. The time complexity of

finding all the pruned trees is Θ(L2) in the worst case (when the fully grown tree is a

linear tree and each time only one decision node is pruned) and Θ(L logL) in typical
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cases (when the fully grown tree is a balanced tree and each time only one decision

node is pruned).

• Since each pruned tree in the pruning sequence is a further pruned version of the previ-

ous tree, we do not have to pass the validation examples to all pruned trees. Instead, if

we pass the examples only to the fully grown tree, record the class distribution in each

decision node, compute the error rate of the fully grown tree, we get the performance

of each pruned tree by the following process. For each pruned tree, the number of

errors it makes is equal to that of its previous tree, plus the difference caused by the

pruned branches from the previous tree, which can be computed by one traversal of the

pruned branches. The evaluation of the fully grown tree has time complexity Θ(V ),

and the computation of the error rate of all the pruned trees add up to Θ(L), because

from the fully grown tree to the last pruned tree, at most L− 1 nodes are pruned, and

thus the time complexity of the traversal of all the pruned branches adds up to Θ(L).

Therefore, Property 2 makes the selection of the final tree affordable, typically with time

complexity Θ(L logL) + Θ(N logL). Furthermore, the parameter values corresponding to

each distinct pruned tree can be computed as a by-product, rather than being preset by

“shooting in the dark”.

For CCP, this property is proven in [BFO84], page 70. Here we prove that the k-norm

pruning algorithm has exactly the same property by first stating two lemmas that are needed

for the proof of a theorem (Theorem 5.3) and a corollary that proves Property 2.
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Lemma 5.1 If two leaves have the same k-norm error rate, the smaller leaf (the leaf receiv-

ing fewer training instances) has higher (k + 1)-norm error rate.

This lemma indicates that small leaves are penalized more when k increases. This prop-

erty is intuitive because we know that the probabilities estimated using fewer observations

are less reliable.

Lemma 5.2 If the weighted average of the k-th moment error rates of a set of leaves is equal

to that of another leaf, and if all leaves cover an equal number of training examples, then the

weighted average (with the same weights as before) of the (k + 1)-th moment error rate of

the same set of leaves is no less than the (k + 1)-th moment of the other leaf. The equality

holds if and only if all leaves have the same number of training misclassifications.

This lemma implies that the diversity (different error rates) among leaves will be punished

more with higher k value. For example, it is not difficult to see that both the sub-trees in

Figure 5.1 have a 1-norm error rate of 12% when λ = 1, regardless of η, and all leaves cover

48 examples. When k is increased to 2, the k-norm error rate of the left sub-tree is increased

to 16.2%, while the k-norm error rate of the right sub-tree is increased slightly to 12.8%.

 Class 1: 58 
Class 2: 38 

Class 1: 10 
Class 2: 38 

Class 1: 48 
Class 2: 0 

Class 1: 5 
Class 2: 43 

Figure 5.1: Sub-trees with Same 1-Norm Error But Different 2-Norm Errors
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Theorem 5.3 If a non-leaf sub-tree increases or maintains the k-norm error rate compared

to its root, it increases the (k + 1)-norm error rate.

Corollary 5.4 Let Tk denote the optimal pruned sub-tree of T that minimizes the k-norm

error rate, Tk+1 is a pruned version of Tk for any k > 0.

An example of the pruning sequence is shown in Figure B.1 with iris database. Another

example pruning sequence containing many more pruned trees is shown in Figure 5.2. In

this example we grow a tree with CART and the database abalone, and prune the tree with

various values of k.
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Figure 5.2: Size of Pruned Tree versus k on Abalone Database
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5.1.3 Property 3: higher parameter values mean more pessimism

It is easy to see that when α in (5.1) increases, the cost is higher for any node. For the

k-norm pruning algorithm, we have the same property:

Theorem 5.5 For any sub-tree, its k-norm error rate is a strictly increasing function of k.

This theorem indicates that we can control how pessimistic the estimation is by tuning

the parameter. For an illustration of the increase of the k-norm error rates, we choose the

tree shown in Figure B.1(d) and Figure B.2, and plot the k-norm error rates of its leaves

with respect to k in Figure 5.3.

0 2 4 6 8 10 12 14 16 18 20
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log2k

||r
t|| k

Leaf of class setosa     (0/50)
Leaf of class virginica   (1/46)
Leaf of class versicolor (5/54)

Note: “0/50” in the legend means 0 misclassification out of 50 training examples in the leaf.

Figure 5.3: k-Norm Leaf Error Rates of the Tree in Figure B.1(d)
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5.1.4 Property 4: any optimal pruned tree removes ineffective splits

For any α ≥ 0, CCP removes all ineffective splits, which are defined as those that do

not reduce the training misclassifications. This property is apparently desirable because

ineffective splits make no difference in performance but increase the model complexity (here

we assume that in a leaf, if two classes have the same number of examples, the first class is

chosen). For the k-norm pruning algorithm, we found the same property:

Theorem 5.6 At a node t, if 0 ≤ η ≤ λJ , any ineffective split never decreases the 1-

norm error rate; it maintains the 1-norm error rate if and only if all the classes are equally

distributed in each its leaf. A split is called effective if it reduces the training misclassifications

and ineffective otherwise.

Corollary 5.7 If 0 ≤ η ≤ λJ , any ineffective split increases the k-norm error rate for any

k ≥ 1 (when k = 1, it can be seen from Theorem 5.6; when k > 1, it can be induced with

Theorem 5.3).

Ineffective splits are not commonly seen, but they are possible to occur when the train-

ing set contains conflicting examples (two or more examples with the same attributes but

different classes). See Appendix B for an example of an ineffective split.
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5.2 Unique Characteristics of k-Norm Pruning Algorithm

In the previous section we have shown that the k-norm pruning algorithm has similar desir-

able properties as CCP, with significant practical values. Now we list some other desirable

properties that only the k-norm pruning algorithm possesses.

• Property 5: The k-norm algorithm may not need validation for finding the pruning

sequence at all. It can be shown that fixing k = 2 yields sufficiently good results,

with negligible time complexity (see Chapter 6). For CCP, there is no default value

of α, and therefore validation is necessary, resulting in higher time complexity (see

Figure 6.2 for the difference on large databases).

• Property 6: The k-norm algorithm yields an error rate estimate with clear theoretical

interpretation. Our k-norm error rate estimate is always between 0 and 1, increasing

smoothly and approaching 1 as k increases, as shown by Theorem 5.8. This means that

our estimate is meaningful for all natural numbers k; if we are infinitely pessimistic

(by setting k =∞), we postulate that the prediction of every node is definitely wrong,

and as a result, no split is worthy.

Furthermore, we can also fix k = 2, and the 2-norm estimate can be treated as an

error rate. For CCP, only a range of α values can produce meaningful predicted cost

in [0,1], and this range of α depends on the tree, resulting in the following difficulties.

If we preset α = 0.1, the cost of a tree with 100 leaves has a cost 10 which cannot be

treated as an error rate.
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Theorem 5.8 For any sub-tree, the limit of its k-norm error rate is unity as k ap-

proaches ∞.

Please refer to Figure 5.3 for an example.

In contrast, CCP’s cost estimate in (5.1) does not have an obvious correspondence to

the generalization error rate, although it is based on the regularization approach that

has been used extensively, and it can approximate the error rate with proper values

of α found by cross-validation. Furthermore, only a range of α value can produce

meaningful predicted cost in [0,1], and this range of α depends on the tree, which

means that we cannot preset α before a tree is given for error rate estimation. For

example, suppose a real-time system is required to estimate the error rate of a tree

without any data set (which means cross-validation is not applicable). When the tree

is given , α is somehow chosen to a value and an estimation is made; the α may be out

of range for all the subsequent input trees. If we decide to reduce α at some point, the

previous estimation results are not comparable to future results.

• Property 7: Sometimes only very large values of k can over-prune a tree (see Fig-

ure B.1(e) and Figure B.1(f)), which provides a protection from over-pruning.

In particular, some splits can survive under any finite value of k. For CCP, any split

will be pruned by a finite value of α (less than 1), even if they are beneficial splits. For

example, the last tree in Theorem 5.9 represents the optimal solution (assuming it has
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no ancestor node). This tree will not be pruned for any k < ∞ by k-norm pruning,

but it will be pruned to a single leaf by CCP when α = 1/3.

The importance of this property is that tree splits that with k-norm pruning can survive

pruning for a large number of k values can be safely be thought of as very useful for

the tree model. Furthermore, the following theorem states that a split that survives

pruning under any finite k value has to satisfy very strict conditions (see Theorem 5.9),

and as a result it rarely happens.

Theorem 5.9 A necessary and sufficient condition for a subtree rooted at d to reduce

the k-norm error rate for all k ∈ [1,∞) is that max
j

nj,d = max
j

nj,c for all its leaves c.

This condition is very strict because: 1) node d must have more than one majority

classes (so that at least one non-label class will not be treated as noise even when

extremely pessimistic), and 3) each leaf under d must cover all examples of at least

one majority class (which means the splits are perfect). Furthermore, this condition is

not a sufficient condition, but a necessary one, for the subtree to remain in the optimal

pruned tree for all k <∞, since one of the ancestors of the subtree might be pruned.

Theorem 5.9 is further explained by referring to Figure 5.4. In the top-left tree in Fig-

ure 5.4, if in a decision node, 10 examples belong to class 1, 10 examples belong to class

2, and less than 10 examples belong to each other class, and all the 10 examples of class 1

are sent to its left child, while all the 10 examples of class 2 are sent to its right child, this

split is locally beneficial under any k-norm criterion, because it perfectly separates the two
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 Class 1: 10 
Class 2: 10 
Class 3: 10 

Class 1: 0 
Class 2: 10 
Class 3:  4 

Class 1: 10 
Class 2: 0 
Class 3: 6 

Class 1: 10 
Class 2: 10 
Class 3: 10 

Class 1: 0 
Class 2: 10 
Class 3:  0 

Class 1: 10 
Class 2: 0 
Class 3: 0 

Class 1: 10 
Class 2: 10 
Class 3: 10 

Class 1: 0 
Class 2: 10 
Class 3:  0 

Class 1: 10 
Class 2: 0 
Class 3: 10 

 

Class 1: 0 
Class 2: 0 
Class 3: 10 

Class 1: 10 
Class 2: 10 
Class 3: 10 

Class 1: 0 
Class 2: 10 
Class 3:  0 

Class 1: 10 
Class 2: 0 
Class 3: 0 

Class 1: 0 
Class 2: 0 
Class 3: 10 

Class 1: 0 
Class 2: 10 
Class 3: 10 

Note: Majority classes are highlighted.

Figure 5.4: Pruned Trees that Survive under Any Finite k

majority classes. For this reason, the smallest optimal pruned tree at k < ∞ can never be

over-sized, because the number of leaves is at most equal to the number of majority classes.

This is also true for the other trees shown in Figure 5.4, because every leaf also cover all the

examples of at least one majority class.

Of course, if the examples of both majority classes are noise, one the ancestors of this

decision node is likely to be pruned, and this split no longer exists in the final tree (for this

reason we say it is locally beneficial). On the other hand, if only 9 examples belong to class

2, this split cannot survive eventually because when we are pessimistic enough, we can treat

the 9 examples of class 2 as noise even if the 10 examples of class 1 are not.
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CHAPTER 6

EXPERIMENTS

In this chapter, we compare our proposed 2-norm pruning algorithm with two other classical

pruning algorithms: CCP (in CART) and EBP (in C4.5).

6.1 Procedure

We show three metrics of the compared algorithms: the elapsed time in pruning (compu-

tational complexity of pruning), the accuracy of the pruned tree, and the tree size. The

tree size is not our goal, and it is shown here only as a companion measure to the accuracy

comparison.

In our experiments, each database is separated into a training set and a test set. To

reduce the randomness of the partitioning of the data in a training and test set, we repeated

the experiments 20 times with different partitioning, each time. To ensure that the classes

in the training set have approximately the same distribution as in the test set, we shuffle the

examples before partitioning.

Apparently, if the random partitioning is simply repeated, some of the examples might

appear more often in the training set than in the test set or the opposite. Although V -fold
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cross-validation can address this problem, we cannot control the training ratio when V is

fixed, and this ratio is large when V is high. For example, when V = 10, the training set

is 9 times larger than the test set, with 90% training ratio. Therefore, we slightly digress

from cross-validation as explained in the following: We partition each database only once

into 20 subsets with approximately equal size. In the i-th (i = 0, 2, . . . , 19) test, we use

subsets i mod 20, (i + 1) mod 20, . . . , (i + m − 1) mod 20 for training and the others for

testing, where m is predefined (e.g., if the training ratio is 5%, m = 1; if the training ratio

is 50%, m = 10). This approach guarantees that each example appears exactly m times in

the training set and exactly 20−m times in the test set. Furthermore, it allows the training

ratio to vary. The procedure is delineated below:

foreach Database D do
Shuffle the examples in D;
Partition D into 20 subsets D0, D1, . . . , D19;
for m = 1, 10 do

for i = 0 to 19 do

Set TrainingSet =
⋃m−1
j=0 D(i+j) mod 20;

Set TestSet = D − TrainingSet;
Grow a full tree with CART and TrainingSet;
Use CCP/EBP/2-norm for pruning the tree;
Evaluate each pruned tree with TestSet;

end

end

end

Figure 6.1: Pseudo Code of Experimental Procedure

Note that a training ratio of 5% is a challenging setting (very few training cases) for which

the robustness of the algorithms can be examined. Furthermore by increasing the training
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set size from 5% to 50% (a 10-fold increase of the training cases) allows us to investigate

how well the pruning algorithms scale with a 10-fold increase of training data size.

To make a fair and justified comparison on speed, we have implemented all the algorithms

in C++ as a Matlab MEX file, and we ran all experiments on the same computer (Intel

Pentium 4 at 2.59GHz, 1.5GB Memory, and Windows XP). No file I/O, screen display, or

keyboard input, but only number crunching is involved during timing. We used a high

resolution timer whose result is accurate to one microsecond.

6.2 Databases

To ensure that our experimental results are statistically significant, we require that the

databases must have at least 2000 examples. Furthermore, our algorithm does not handle

missing values at this time according to the Determinacy Assumption (see the discussion in

subsubsection 8.2.2.2), and therefore we choose only the databases without missing values.

The statistics of the databases that we experimented with are listed in Table 6.1.

The databases g#c## are Gaussian artificial databases. The acronym g2c15 means 2

classes and 15% minimum error rate (defined as the error rate of the Bayes optimal classi-

fier). These databases have two attributes x and y. In each class, x and y are independent

Gaussian random variables, whose means vary among the classes. The other databases are

benchmark databases obtained from the UCI Repository (see [NHB98]), according to our

criteria mentioned in the beginning of this section.
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Table 6.1: Statistics of Databases Used in Experiments

Database Examples
Numerical Categorical

Classes
Majority

Attributes Attributes Class %
abalone 4177 7 1 3 34.6
g2c15 5000 2 0 2 50.0
g2c25 5000 2 0 2 50.0
g6c15 5004 2 0 6 16.7
g6c25 5004 2 0 6 16.7

kr-vs-kp 3196 0 36 2 52.2
letter 20000 16 0 26 4.1

optdigits 5620 64 0 10 10.2
pendigits 10992 16 0 10 10.4
satellite 6435 36 0 6 23.8
segment 2310 19 0 7 14.3
shuttle 58000 9 0 7 78.6
splice 3190 0 60 3 51.9

waveform 5000 21 0 3 33.9

6.3 Parameters

In the experiments, we choose k = 2 because we consider it necessary to include the standard

deviation of the error rate in our estimation, but we do not see the benefits of taking the

skewness into account in our experiments. For the 2-norm algorithm, the η value is not

critical and is set to 0.5. However, the parameter λ affects the error rate estimate. When

λ = 0, the estimated error rate is approximately the training error rate, which results in

under-pruning. When λ = ∞, the estimated error rate is (J − 1)/J for all nodes and thus

the tree will be pruned to only one node.

In our experiments, we set λ = λ0V/J , where λ0 is a constant and V is a heuristic

indicating the overlap amount of the database. We decrease λ for the databases with more
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classes to prevent over-pruning, because given the same λ, the same training error rate and

the same training data size, the estimated error rate increases with respect to J as seen in

(4.29). For highly-overlapped databases, we increase λ to prune more nodes. The heuristic V

is computed as L/(JN), where L is the number of leaves in the fully grown tree. Apparently,

L increases with J and with N . When J and N are fixed, L is greater for the databases with

higher overlap. Our preliminary experiments based on the Iris database show that λ0 can be

set to 100, so that λ is approximately 0.5 for this database. The details of the experiments

on the Iris database are shown in Appendix B.

For CCP and EBP, the default parameters were used.

6.4 Results

6.4.1 Accuracy

The accuracies of the tree pruned by each algorithm are listed in Table 6.2. We show

the mean, the standard deviation and the t-test result of the 20 runs. We choose to call

the difference between two accuracies significant if the difference is above 1% (practically

significant) and the P-value of the t-test turns out to be at most 5% (statistically significant).

It can be seen that when the training ratio is small (5%), the 2-norm pruning algorithm

outperforms CCP 5 times out of the 14 database experiments, while CCP never outperforms
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Table 6.2: Comparison of Tree Accuracy (%) for CCP, 2-Norm and EBP

R Database
CCP 2-norm EBP 2-norm : CCP 2-norm : EBP

Mean Std Mean Std Mean Std Diff P ± Diff P ±
5 abalone 59.1 1.5 59.5 2.0 56.6 1.5 0.4 48.4 2.9 0.0 +
5 g2c15 83.4 1.1 84.7 0.9 82.5 1.1 1.3 0.0 + 2.2 0.0 +
5 g2c25 72.5 1.4 74.0 0.9 69.4 2.4 1.5 0.0 + 4.6 0.0 +
5 g6c15 79.7 1.3 79.2 1.4 78.8 1.7 -0.5 28.1 0.4 35.6
5 g6c25 69.4 1.1 69.4 1.4 68.1 1.2 0.0 97.5 1.3 0.2 +
5 kr-vs-kp 93.4 1.6 93.5 1.5 93.9 1.4 0.1 80.9 -0.4 43.0
5 letter 62.8 1.2 62.8 0.9 63.3 1.0 -0.1 81.4 -0.5 10.9
5 optdigits 70.2 1.7 71.7 1.9 72.0 2.1 1.5 1.3 + -0.3 58.9
5 pendigits 83.8 1.5 83.2 1.4 84.7 1.2 -0.6 23.0 -1.5 0.1 −
5 satellite 77.9 1.4 79.2 1.3 78.4 1.6 1.3 0.3 + 0.8 8.1
5 segment 85.5 2.6 86.2 2.4 86.8 2.4 0.7 38.8 -0.6 46.2
5 shuttle 99.7 0.1 99.6 0.1 99.7 0.1 -0.1 2.9 -0.1 0.0
5 splice 82.6 3.7 83.1 2.9 80.5 3.4 0.5 64.1 2.5 1.5 +
5 waveform 69.0 1.7 70.7 1.2 70.0 1.5 1.7 0.1 + 0.8 8.1
5 Summary 5 wins, 0 lose 5 wins, 1 lose
50 abalone 63.0 1.0 62.6 0.6 58.3 1.4 -0.4 19.2 4.3 0.0 +
50 g2c15 84.8 0.7 85.4 0.4 82.6 0.7 0.7 0.0 2.8 0.0 +
50 g2c25 74.4 0.8 74.4 0.7 71.6 1.0 0.0 99.3 2.8 0.0 +
50 g6c15 82.4 0.5 82.2 0.6 81.1 0.8 -0.1 50.9 1.1 0.0 +
50 g6c25 72.7 0.9 73.0 0.6 70.5 0.5 0.2 30.4 2.5 0.0 +
50 kr-vs-kp 99.1 0.2 98.5 0.6 99.2 0.2 -0.6 0.1 -0.7 0.0
50 letter 84.1 0.4 83.5 0.3 84.0 0.4 -0.6 0.0 -0.6 0.0
50 optdigits 88.1 1.0 87.9 0.8 88.3 0.8 -0.2 49.6 -0.4 16.9
50 pendigits 95.1 0.3 94.7 0.4 95.1 0.3 -0.4 0.1 -0.4 0.0
50 satellite 85.3 0.6 85.6 0.6 85.0 0.6 0.3 7.9 0.7 0.2
50 segment 94.0 1.0 94.2 0.7 94.6 0.6 0.1 60.9 -0.4 4.5
50 shuttle 99.9 0.0 99.9 0.0 99.9 0.0 0.0 7.8 0.0 9.2
50 splice 94.3 0.4 94.1 0.4 92.9 0.7 -0.2 15.1 1.2 0.0 +
50 waveform 75.8 1.0 76.5 0.6 75.0 0.6 0.8 0.5 1.6 0.0 +
50 Summary 0 win, 0 lose 7 wins, 0 lose

• R is the training ratio (%).
• Mean and Std are the mean and the standard deviation, respectively, of the accuracy (%) among the

20 runs in each database.
• Diff is the difference of the mean accuracy between the 2-norm pruning algorithm and the one being

compared to.
• P is the p-value (%) of the T-Test of the 20 observations. It is the probability of the observations given

that the null hypothesis is true. Small values of P cast doubt on the validity of the null hypothesis.
• ± is the comparison result. A comparison result is shown only when significant, that is, when |Diff| is

at least one (indicating practical significance) and P is at most 5% (indicating statistical significance).
If the result is significant and Diff is positive, “+” is shown (which means 2-norm wins); if the result
is significant and Diff is negative, “−” is shown.
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the 2-norm algorithm. The cause is that when the size of the training set is very small,

cross-validation is not quite reliable in evaluating the candidate pruned trees, because each

validation set has only 1/10 of the training data. We examined the error rate estimation

of cross-validation and our algorithm and it turns out that ours tends to be better. For

example, on the database g2c15, the root-mean-square-error (across the 20 runs) between

the estimated CART error rate and the actual CART error rate is 4.45% for cross-validation

and is 2.15% for 2-norm estimation. On the other hand, when the training ratio is large

(50%), the 2-norm pruning algorithm has similar accuracy as CCP (neither one of these

algorithms outperforms the other for any database experiment).

The 2-norm pruning algorithm also outperforms EBP in accuracy regardless of the train-

ing ratio used (5 times when the training ratio is 5% and 7 times when the training ratio is

50%), primarily because EBP tends to under-prune (see Table 6.3).

6.4.2 Tree size

Although our primary goal is not to minimize the tree size but the error rate, we show the

size of the pruned trees in Table 6.3. The 2-norm pruning algorithm considers the estimated

error rate only, and thus the resulting size is sometimes larger than that of CART. We also

see (from Table 6.3) that C4.5 always generates larger trees than the other two.
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Table 6.3: Comparison of Tree Size (Leaves) for CCP, 2-Norm and EBP

R Database
CCP 2-norm EBP 2-norm : CCP 2-norm : EBP

Mean Std Mean Std Mean Std Diff P ± Diff P ±
5 abalone 6.9 5.2 9.5 3.2 43.2 5.8 2.6 6.3 − -33.7 0.0 +
5 g2c15 7.0 2.6 2.2 0.7 14.2 5.2 -4.9 0.0 + -12.0 0.0 +
5 g2c25 6.3 3.6 2.7 1.9 28.5 7.4 -3.6 0.0 + -25.8 0.0 +
5 g6c15 8.8 1.9 7.4 1.4 20.9 4.3 -1.4 1.2 + -13.5 0.0 +
5 g6c25 8.5 2.5 8.6 1.9 33.2 5.3 0.1 88.8 -24.6 0.0 +
5 kr-vs-kp 7.2 2.4 6.0 1.6 9.3 2.0 -1.2 6.8 -3.4 0.0 +
5 letter 171.9 81.9 232.2 11.0 279.4 8.6 60.3 0.2 − -47.2 0.0 +
5 optdigits 19.1 4.9 31.1 5.5 47.7 4.4 12.0 0.0 − -16.6 0.0 +
5 pendigits 39.8 13.3 36.6 3.5 55.6 4.7 -3.2 30.5 -19.0 0.0 +
5 satellite 9.0 4.0 17.5 3.3 34.6 4.0 8.5 0.0 − -17.1 0.0 +
5 segment 8.5 1.8 9.4 1.3 12.6 1.3 0.9 9.5 -3.3 0.0 +
5 shuttle 8.6 2.4 6.3 1.7 11.7 1.5 -2.3 0.2 + -5.4 0.0 +
5 splice 8.6 4.2 7.9 1.2 16.7 1.8 -0.7 48.1 -8.8 0.0 +
5 waveform 7.5 4.1 13.0 2.2 31.2 1.9 5.5 0.0 − -18.2 0.0 +
5 Summary 4 wins, 5 loses 14 wins, 0 lose
50 abalone 12.2 7.3 72.1 11.2 382.8 13.8 59.9 0.0 − -310.7 0.0 +
50 g2c15 10.6 7.2 2.0 0.0 114.0 15.3 -8.6 0.0 + -112.0 0.0 +
50 g2c25 13.0 6.4 25.0 17.7 230.2 26.6 12.1 0.7 − -205.2 0.0 +
50 g6c15 16.1 3.0 22.2 6.2 145.5 13.4 6.1 0.0 − -123.4 0.0 +
50 g6c25 13.0 4.2 32.2 8.6 256.0 19.6 19.2 0.0 − -223.8 0.0 +
50 kr-vs-kp 27.0 3.4 21.4 4.5 27.9 2.7 -5.7 0.0 + -6.6 0.0 +
50 letter 1283.8 28.4 1083.0 26.7 1294.1 25.9 -200.8 0.0 + -211.1 0.0 +
50 optdigits 94.3 16.1 128.4 7.7 210.9 11.0 34.1 0.0 − -82.5 0.0 +
50 pendigits 177.3 38.9 141.6 9.9 199.0 7.2 -35.7 0.0 + -57.4 0.0 +
50 satellite 44.8 17.6 96.3 7.4 221.5 10.3 51.5 0.0 − -125.2 0.0 +
50 segment 28.3 9.6 29.1 2.4 43.2 3.1 0.9 70.3 -14.1 0.0 +
50 shuttle 23.3 4.5 19.6 1.8 21.2 2.6 -3.7 0.1 + -1.7 2.7 +
50 splice 15.7 3.2 27.4 2.5 52.5 4.2 11.7 0.0 − -25.1 0.0 +
50 waveform 28.3 11.3 82.3 7.1 234.9 6.6 54.1 0.0 − -152.6 0.0 +
50 Summary 5 wins, 8 loses 14 wins, 0 lose

• R is the training ratio (%).
• Mean and Std are the mean and the standard deviation, respectively, of the tree size (number of

leaves) among the 20 runs in each database.
• Diff is the difference of the mean size between the 2-norm pruning algorithm and the one being

compared to.
• P is the p-value (%) of the T-Test of the 20 observations. It is the probability of the observations given

that the null hypothesis is true. Small values of P cast doubt on the validity of the null hypothesis.
• ± is the comparison result. A comparison result is shown only when significant, that is, when |Diff| is

at least one and Sig is at least 95. If the result is significant and Diff is negative, “+” is shown (which
means 2-norm wins); if the result is significant and Diff is positive, “−” is shown.

54



6.4.3 Speed

The mean elapsed time (in seconds) of the three pruning algorithms is shown in Table 6.4.

For each algorithm, the elapsed time is very stable in 20 runs, and thus we do not show the

standard deviation that is negligible. For the same reason, and because the mean time is

quite different among the three algorithms, all comparisons are practically significant and

statistically significant.

Table 6.4: Comparison of Elapsed Time (Seconds) for CCP, 2-Norm and EBP

Database
CCP 2-norm EBP

T1 T2 Inc T1 T2 Inc T1 T2 Inc
abalone 8.5E−2 1.5E+0 17.5 1.3E−4 7.6E−4 6.0 1.3E−3 3.0E−2 22.8
g2c15 2.6E−2 5.9E−1 22.5 1.1E−4 5.7E−4 5.4 7.7E−4 1.8E−2 22.7
g2c25 3.6E−2 8.1E−1 22.3 1.3E−4 8.6E−4 6.5 1.4E−3 3.9E−2 27.1
g6c15 3.3E−2 6.2E−1 19.1 1.1E−4 6.9E−4 6.1 8.5E−4 1.9E−2 22.1
g6c25 4.0E−2 7.8E−1 19.3 1.4E−4 1.0E−3 7.2 1.3E−3 3.2E−2 25.4

kr-vs-kp 3.6E−2 3.6E−1 10.1 7.3E−5 1.0E−4 1.4 8.1E−4 8.4E−3 10.3
letter 1.2E+0 1.5E+1 12.2 5.1E−4 2.8E−3 5.4 1.6E−2 2.5E−1 15.6

optdigits 5.7E−1 8.7E+0 15.3 1.2E−4 3.4E−4 2.9 1.4E−3 2.6E−2 18.3
pendigits 4.9E−1 6.8E+0 13.8 1.3E−4 3.7E−4 2.7 2.2E−3 3.8E−2 17.0
satellite 5.5E−1 9.3E+0 16.9 2.8E−4 4.2E−4 1.5 1.2E−3 2.9E−2 23.5
segment 8.2E−2 1.2E+0 14.4 6.3E−5 1.4E−4 2.2 3.6E−4 4.2E−3 11.7
shuttle 6.7E−1 2.0E+1 29.5 6.1E−5 8.9E−5 1.4 3.2E−3 1.0E−1 32.4
splice 9.8E−2 1.0E+0 10.2 7.9E−5 1.8E−4 2.3 1.3E−3 1.3E−2 10.0

waveform 2.6E−1 5.7E+0 21.7 9.3E−5 4.0E−4 4.3 9.5E−4 2.4E−2 25.4

• T1 and T2 are the mean of the elapsed time (seconds) in the 20 runs of the pruning
algorithms for training ratio = 5% and 50%, respectively.

• Inc equals T2/T1.

• All numbers are rounded to one digit after the decimal.
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Table 6.4 indicates that the 2-norm pruning algorithm is significantly faster than the

other two (at least hundreds of times faster than CCP and usually tens of times faster than

EBP). The reason is that the 2-norm pruning algorithm does not access any training example

and it finishes the tree evaluation within one traversal of the tree. Although most of the

times reported in Table 6.4 are small, our experiments show the apparent advantage of the

2-norm algorithm that is expected for huge databases and/or slow machines.

Our experiments also show that the 2-norm pruning algorithm is better in scalability

than CCP and EBP. The Inc Columns in Table 6.4 show that when the size of the training

set is increased by ten times, the elapsed time of the 2-norm pruning algorithm is increased

by less than ten times, while the time of the other two algorithms is increased by more than

ten times. The explanation is as follows.

• Since the 2-norm pruning algorithm requires only one traversal of the fully grown tree

and the visit of each node has a constant number of operations, the time complexity

of the 2-norm pruning algorithm is Θ(M) where M is the number of nodes in the fully

grown tree, and usually M � N , where N is the number of training examples (in the

worst case, M = Θ(N)).

• The 10-fold cross-validation in CCP involves 10 times of tree growing (see [Sto78] and

[BFO84]). When at least one numerical attribute is present, due to the sorting involved,

the time complexity of the growing phase is Ω(N logN), that is, Θ(N logN) or higher;

the worst case complexity Θ(N2 logN) is justified in [DHS00], page 406. When only
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categorical attributes are present, the time complexity is Ω(N). This explains why

CCP’s scalability is almost linear for the databases kr-vs-kp and splice (which have

only categorical attributes) but worse for other databases. Note that although CART

grows 10 trees and produces 10 corresponding pruning sequences, for each sequence

CART does not have to evaluate all trees in the sequence with the corresponding

pruning set, but only the fully grown tree in the sequence in order to compute the

error rate for all its pruned trees. Therefore, the time of the evaluation step in CCP

does not have a higher order than the growing step.

• EBP passes the training examples through the tree to evaluate the grafting in each

decision node. Grafting in EBP considers the following three cases: a) the split test is

used and the examples are dispatched to the subtrees; b) all examples are sent to the

major child; c) the decision node is pruned to a leaf. The training examples must be

visited to evaluate Option b), and thus the time complexity is Ω(N).

The speed comparison shows that the 2-norm pruning algorithm scales very well to large

databases. Apparently, we can assume that one traversal of the tree is necessary to find the

optimal pruned tree, that is, if a sub-tree is not visited, we do not have enough information

to decide whether to prune it. Therefore, the 2-norm pruning algorithm has the minimal

time complexity. No other algorithms can have a lower order of time complexity.
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6.5 Additional Experiments

6.5.1 Performance on large databases

To verify our previous statements about time complexity, we used 2 additional large databases,

g2c15 (artificial database) and covtype (UCI benchmark) to test the scalability of each al-

gorithm. For each database, the number of training examples starts from 512 and doubles

each time up to 524288 (= 219) examples. For g2c15, the number of test examples is always

the same as that of training examples; for covtype, the examples not used for training are

used for testing. This experiment is very time consuming, and thus is not repeated.

The speed difference shown in Figure 6.2 between our algorithm and CCP and EBP is

apparent. The time required by our algorithm is linear with respect to the size of these

databases (because for these databases, the size of the fully grown tree turns out to be linear

with respect to the size of the database). At the same time, the time required by CCP

and EBP increases non-linearly (note that both axes have logarithmic scales, and a straight

line (e.g., log(y) = 2 log(x)) represents a quadratic function in linear scale (e.g., y = x2).

Therefore, for these two large databases it is obvious that as the training set size becomes

larger, the advantage of our algorithm is more pronounced. For instance, when the training

set size of the covtype database is 1024 patterns the 2-norm requires 0.0003 seconds, versus

0.013 seconds and 1.38 second required by EBP and CCP, respectively. On the other hand

for a training set size of 524,288 patterns and the covtype database, the 2-norm algorithm
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Large Databases (Gaussian and Cover Type) as Training Set Size Increases

requires 0.021 seconds, compared to 61.3 seconds and 2848 seconds required by EBP and

CCP, respectively.

As shown in Figure 6.3, for the two large databases, the accuracy of 2-norm pruning

algorithm is always similar to that of CCP, usually within 1%, and their tree sizes are also

close. Note that for g2c15, 2-norm and CCP always produces the same tree with only 2

leaves, approaching the Bayes optimal classifier. EBP always produces the largest tree with

no significantly better accuracy (2% worse on g2c15 ) than CCP and 2-norm.
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6.5.2 Other databases

To compare our algorithm with other pruning algorithms (beyond CCP and EBP) we used

the results included in [EMS97]. In particular, we ran the databases in [EMS97] using the

same protocol used there (70% of the data were used for training; experiments were repeated

25 times). At this stage, we do not consider missing values, and as a result only 4 of the

databases considered in [EMS97] were chosen.

The results in Table 6.5 show that our 2-norm algorithm is competitive to the best algo-

rithms tested in the reference, in both accuracy and size. Our results also show that CCP’s

and EBP’s performance (see Table 6.5) is close to that presented in [EMS97] (the discrepan-

cies are caused by the small size of the databases and the random factor in the partitioning

of the databases), so the readers can compare the performance of our algorithm given in this

dissertation to the performance of the other pruning algorithms given in [EMS97].

Table 6.5: Error Rate (%) and Tree Size (Leaves) on Small Databases

Dataset CCP 2-norm EBP Min Ref Max Ref Med Ref
iris 6.04±3.11 6.22±3.32 5.96±3.00 5.07±0.63 11.67±2.62 5.78±0.57

glass 34.13±6.29 32.75±5.04 33.38±5.83 35.31±1.35 41.81±1.86 38.00±1.03
p.gene 22.63±4.36 23.13±5.34 24.63±7.06 21.75±1.40 25.62±2.25 23.88±1.81
blocks 3.24±0.33 3.27±0.37 3.33±0.34 2.98±0.10 3.75±0.16 3.22±0.11

iris 4.44±1.15 3.00±0.00 4.44±0.92 3.13±0.15 5.40±0.27 3.76±0.13
glass 9.76±5.91 12.32±2.37 29.92±2.74 7.04±0.80 28.72±0.58 18.52±1.09

p.gene 4.24±2.02 3.68±1.17 8.52±1.62 4.36±0.47 15.28±0.85 8.44±0.58
blocks 14.04±5.40 20.88±3.63 50.48±4.80 8.08±0.44 78.48±1.28 28.12±2.96

“Min Ref”, “Max Ref”, and “Med Ref” mean the minimum, the maximum, and the medium
performances, respectively, of the pruning algorithms reported in [EMS97]. The error rate
comparison is shown in the upper half of the table, and the size comparison is shown in the
lower half.
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CHAPTER 7

EXTENSIONS OF K-NORM ESTIMATION/PRUNING

In this chapter, we show that our k-norm estimation can be generalized to two other tree

risk definitions: the misclassification cost (given a loss matrix) and the error of the class

probabilities. To do so, we first state a theorem generalized from Theorem 4.1:

Theorem 7.1 If the events {Ac|Ad}c∈Children(d) are mutually exclusive and collectively ex-

haustive and P [Ac|Ad,X] is either zero or one for any X, then for any decision node d, any

natural number k, any constants ah, and any events Φh,

EX|Ad

(∑
h

ahP [Φh|Ad,X]

)k
 =

∑
c∈Children(d)

EX|Ac

(∑
h

ahP [Φh|Ac,X]

)k
P [Ac|Ad] ,

(7.1)

where P [Φh|Ad,X] can be the actual or the estimated probability, as long as P [Φh|Ad,X] =∑
c∈Children(d) P [Φh|Ac,X]P [Ac|Ad,X].

The proof of this theorem is analogous to that of Theorem 4.1 (see Appendix C.2). Theo-

rem 7.1 states that if any risk can be defined as a linear summation of a set of probabilities,

the recursive evaluation of the k-norm estimate is still valid, and so is the k-pruning algo-

rithm shown in Figure 4.1 (with the minor change in the evaluation of leaves). In the next

two sections, we show that the proper definitions of ah can lead to more meaningful results.
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7.1 Misclassification Costs Given a Loss Matrix

In this section, we focus on the cases where 1) the misclassification cost is not uniform as may

well be the case in practice, and 2) the overall cost of a tree and that of each its prediction

need to be estimated, a desirable requirement in a number of practical situations. For

example, misclassifying a healthy patient as ill usually has a different cost as misclassifying an

ill patient as healthy. Furthermore, it would be more helpful to provide not only the diagnosis

but also the associated estimated cost of such a diagnosis. Given any algorithm that handles

these cases, one can design a pruning algorithm that selects the pruned tree to minimize the

estimated cost. Unfortunately, to the best of our knowledge the only widely cited pruning

algorithms that handle both the above cases in the literature are CCP (see [BFO84], page

66), Laplace-based pruning (which can be treated as MEP [NB86, CB91] for misclassification

costs, see [BKK98]), and their hybrids. In [BKK98], it has been illustrated that the optimal

tree depends on the loss matrix, and thus a classifier optimized by minimizing the error rate

(in which case the misclassification cost is treated as uniform) is not necessarily optimal

in the sense of misclassification costs. It has also been concluded by experimentation that

Laplace-based pruning has the best performance but the hybrid CCP with Laplace correction

and the no-pruning version with Laplace correction also produce good results. Since MEP

corresponds to the special case of k = 1, we provide below a general k-norm estimate of

misclassification costs.
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7.1.1 Estimation for sub-trees

To estimate the misclassification cost, a J × J loss matrix R = {Ri,j} must be given, where

Ri,j is the misclassification cost when the predicted label is i while the actual one is j

(regardless of X). We can express the misclassification cost of the sub-tree rooted at d as:

rd =
J∑
i=1

J∑
j=1

Ri,jP [C∗i , Cj|X, Ad] , (7.2)

where C∗i is the event that X is classified as belonging to class i,

P [C∗i , Cj|X, Ad] = P [Cj|X, Ad] I[i = Label∗(X)], (7.3)

and Label∗(X) is the predicted label of X, namely Label(lX) where lX is the leaf that covers

X.

Using Theorem 7.1 and setting Φi,j = (C∗i , Cj), ai,j = Ri,j, we can prove that (4.10) is

also true for misclassification costs, that is,

E
[
rkd
]

=
∑

c∈Children(d)

E
[
rkc
]
EP [P [Ac|Ad]] . (7.4)
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7.1.2 Estimation for leaves

For a leaf l, the misclassification cost rl given an input X is:

rl =
J∑
j=1

RLabel(l),jP [Cj|X, Al] . (7.5)

For k = 1,

EX|Al
[rl] =

∫
rlf(X|Al)dX =

∫ J∑
j=1

RLabel(l),jP [Cj|X, Al] f(X|Al)dX

=
J∑
j=1

RLabel(l),jP [Cj|Al] , (7.6)

E [rl] = EP

[
EX|Al

[rl]
]

=
J∑
j=1

RLabel(l),jEP [P [Cj|Al]] . (7.7)

According to (3.19),

EP [P [Cj|Al]] =
Mj,l

Ml

, (7.8)

E [rl] =
J∑
j=1

RLabel(l),j
Mj,l

Ml

. (7.9)

where Mj,l = nj,l + λ, Ml = nl + λJ =
∑J

j=1Mj,l.

To compute the k-th moment of r for k > 1, we define

rkl =

(
J∑
j=1

RLabel(l),jP [Cj|X, Al]

)k

, (7.10)
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instead of

rkl =
J∑
j=1

Rk
Label(l),jP [Cj|X, Al] , (7.11)

because in case of uniform costs, Ri,j is either 0 or 1, and Rk
i,j ≡ Ri,j, which means that the

pruning algorithm using (7.11) always produces the same pruned tree as k = 1 that tends

to be the same as the fully grown tree.

According to (3.21), for k = 2,

E
[
r2
l

]
=

∑
i,j

RLabel(l),iRLabel(l),jE [P [Ci|X, Al]P [Cj|X, Al]]

≈
∑
i,j

RLabel(l),iRLabel(l),jEP [EX [P [Ci|X, Al]]EX [P [Cj|X, Al]]]

=
∑
i,j

RLabel(l),iRLabel(l),jEP [P [Ci|Al]P [Cj|Al]]

=
∑
i,j

RLabel(l),iRj,Labe(l)
Mi,l (Mj,l + I [i = j])

Ml(Ml + 1)

=

∑
i,j RLabel(l),iRLabel(l),jMi,lMj,l +

∑
j R

2
Label(l),jMj,l

Ml(Ml + 1)

=

(∑
j RLabel(l),jMj,l

)2

+
∑

j R
2
Label(l),jMj,l

Ml(Ml + 1)
(7.12)

Note that although P [Ci|X, Al] and P [Cj|X, Al] are actually not independent, the above

approximation is necessary because we cannot estimate their product for all possible X.
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For a general value of k,

E
[
rkl
]

= E

( J∑
j=1

RLabel(l),jP [Cj|X, Al]

)k


≈ EP

( J∑
j=1

RLabel(l),jP [Cj|Al]

)k
 . (7.13)

Let E∗k denote the right hand side of the above equation. E∗k can be evaluated by recursion:

E∗k =
k∑

m=1

(k−1)!
(k−m)!

E∗k−m
∑J

i=1Mi,lR
m
Label(l),i∏m

i=1(Ml + k −m)
(7.14)

E∗0 = 1. (7.15)

Please refer to Appendix C.9 for the proof. So far we are unable to simplify (7.14), whose

computational complexity is quadratic to k.

It worth mentioning that to minimize the misclassification cost Label(l) should not be

simply chosen as the majority class as in (3.8). Instead, we should set

Label(l) = arg min E
[
rkl
]
. (7.16)

Unlike the case of minimizing the error rate, now the label depends on both k and λ.
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7.2 Error of Class Probabilities

It has been observed that decision trees can also estimate the class probabilities by simply

outputting the class proportions of the leaf chosen to represent the input. The decision trees

that perform this estimation are called Probability Estimator Trees (PETs). This estimate

of PET, turns out to be, in most cases, very poor (see [Bra97]). Being aware of the drawback

of the maximum likelihood estimate, Cestnik suggested using the Laplace’s (or Lidstone’s)

estimation in Machine Learning for probability estimation (see [Ces90]). The utilization

of Lidstone’s estimation turned out successful in class probabilities prediction and related

problems such as misclassification cost minimization (see [FFH03, PD03, PMM94]). Ferri

et al. also applied the m-Estimate and their m-Branch to smooth the probabilities (see

[FFH03]). These results are not surprising, because Lidstone’s estimation represents the

optimal posterior probability estimate assuming certain priors.

In this section, we apply our k-norm estimation to evaluate how well a tree predicts the

class probabilities. Same as before, a by-product is a pruning algorithm that prunes a PET

efficiently.
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7.2.1 Estimation for sub-trees

Our goal is to estimate the error of the class probabilities, defined below:

rj,t = P [Cj|X,At]− P ∗ [Cj|X,At] (7.17)

Applying Theorem 7.1 with H = 2, a1 = 1, a2 = −1, P [Φ1|Ad,X] = P [Cj|X,Ad], and

P [Φ2|Ad,X] = P ∗ [Cj|X,Ad], we have

E
[
rkj,d
]

=
∑

c∈Children(d)

E
[
rkj,c
]
EP [P [Ac|Ad]] . (7.18)

Note that odd values of k may result in a negative number, and they are not very

useful. For example, since E[rj,l] = 0, σ[rj,l] =
√
E[r2

j,l] and the output “0±0.1” is not quite

meaningful. Instead, we can output the mean-square-error E[r2
j,l] together with the standard

deviation of the square-error σ[r2
j,l] =

√
E[r4

j,l]− E[r2
j,l]

2.

To consider all classes in the pruning algorithm, we can combine the moments of the

errors among all classes as rt = k

√∑J
j=1 E

[
rkj,t
]

rather than rt =
∑J

j=1
k

√
E
[
rkj,t
]
, so that

the error of the branches can still sum up independently as in (4.10), which means that the

pruning algorithm can still finish in one traversal of the tree.
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7.2.2 Estimation for leaves

For a leaf l,

E
[
rkj,l
]
≈ EP

[
(P [Cj|Al]− P ∗ [Cj|Al])k

]
=

k∑
m=0

(k)!(−1)m

m! (k −m)!
E [P [Cj|Al]m]P ∗[Cj|Al]k−m (7.19)

E [P [Cj|Al]m] is evaluated with (3.19). Thus,

E
[
rkj,l
]
≈

k∑
m=0

(k)!(−1)m

m! (k −m)!

m−1∏
i=0

nj,l + λ+ i

nl + λJ + i

(
nj,l + λ

nl + λJ

)k−m
(7.20)

For example (k = 2, 4),

E
[
r2
j,l

]
≈ Mj,l(Ml −Mj,l)

M2
l (Ml + 1)

(7.21)

E
[
r4
j,l

]
≈

3Mj,l(Ml −Mj,l)(M
2
l Mj,l −MlM

2
j,l + 6M2

j,l − 6Mj,lMl + 2M2
l )

M4
l (Ml + 1)(Ml + 2)(Ml + 3)

(7.22)

where Mj,l = nj,l + λ, Ml = nl + λJ =
∑J

j=1Mj,l.

Unfortunately we cannot provide a simple expression for E
[
rkj,l
]

in a closed form (without

summation) for any value of k. Nevertheless, we know that given a set of instances of a

random variable, the estimated higher order moments are less reliable. For this reason, we

recommend k = 2 (representing the mean-square-error).
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CHAPTER 8

SUMMARY AND FUTURE RESEARCH

8.1 Summary

In this dissertation, we focused on the error rate estimation in decision tree classifiers. We

showed the lack of theoretical justification of the error rate estimation employed in current

tree pruning algorithms. We applied Lidstone’s law of succession to our estimation, but

differing from the existing approaches that simply use the expected values, our analysis is

based on the underlying Dirichlet distribution so that we are able to provide a closed-form

expression for all the moments of the error rates of tree leaves. We have completed the

derivation of overall tree error rates by proving that under a loose constraint, any moment of

a sub-tree’s error rate can be computed as the summation of those of its branches. By com-

puting the moments of the error rate, we are able to provide other statistical characteristics

of the estimate, such as the standard deviation of the estimate quantifying the reliability of

the estimate (expected value) of the error rate.

Based on the tree error rate estimation we proposed a k-norm pruning algorithm as

a generalized version of the existing MEP algorithm (which represents the special case of

k = 1). We proved that MEP tends to under-prune a tree, while our k-norm pruning
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algorithm for k ≥ 2 does not suffer from the same shortcoming, since it takes into account

both the expected value and the standard deviation of the error.

We provided a thorough analysis on the properties of our k-norm pruning algorithm. We

showed that our algorithm has the desirable properties, as follows. First, when the parameter

is k fixed it can finish the pruning within one traversal (with time complexity Θ(L)) of the

fully grown tree without examining all Θ(1.5L) possible pruned trees (L is the number of

leaves in the fully grown tree). Second, when the parameter k varies the resulting pruned

trees can be sorted in a pruning sequence, which can be found and evaluated efficiently, with

typical total time complexity Θ(L logL) + Θ(N logL) where N is the size of the validation

data set. Third, the error rate estimate can be controlled by the parameter k (higher k

produces more pessimistic estimates). Fourth, the k-norm pruning algorithm removes any

ineffective split for any natural number k. All of the above properties emulate the CCP

properties of CART, which is a well established and theoretically sound pruning procedure.

Furthermore, we showed that our algorithm possesses some unique (compared to CCP of

CART) important characteristics: (a) its parameter k can be preset to 2 in order to avoid

validation and to further reduce the time complexity to Θ(L), (b) its k-norm estimation

has a clear theoretical interpretation and the case k = ∞ can be well-explained, and (c) it

provides protection against pruning of useful splits.

We performed a thorough and empirical comparison of our k-norm pruning algorithm (for

k = 2) against two other classical pruning algorithms (CCP and EBP). The results showed

that 2-norm is better in accuracy than CCP for small training set sizes, and it is better than

72



EBP for small or medium training sizes. The results also show the 2-norm algorithm creates

smaller trees than EBP, while at times it creates smaller and other times larger trees than

CCP. One of the most pronounced advantages of the 2-norm algorithm compared to CCP

and EBP is that it requires less time to produce the pruned trees, because it does not need to

utilize any additional data (training or validation) during the pruning phase. In particular,

our experimental results demonstrated that our 2-norm algorithm is orders of magnitude

faster than CCP and EBP. Specifically, when we experimented with 2-norm, CCP and EBP

algorithms for very large databases (half a million patterns) the time required to generate

the pruned tree was tenths of a second for the 2-norm, versus hundreds of seconds for EBP

and thousands of seconds for CCP. These experiments with large databases justified our

claim that 2-norm scales better, as the database size increases, than EBP or CCP. Finally,

in comparing the 2-norm pruning algorithm with other pruning strategies (in addition to

CCP and EBP) we concluded that 2-norm compares favorably with a multitude of other

pruning strategies that have appeared in the literature.

This dissertation contributes to the literature in the following aspects: 1) We enhanced

the estimation methodology by providing explicit expressions for estimating the error rate

and for evaluating the reliability of the estimate. Since the actual error rate is unknown and

the estimate cannot be 100% accurate, the reliability is apparently helpful when performing

automatic decisions. 2) We proposed a k-pruning algorithm based on our estimation of

the statistical characteristics of the error rate (average value and standard deviation). This

algorithm has a clear theoretical interpretation and a series of desirable, good properties. It
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is accurate even when the size of the training data set is small, and it is very fast even when

the size of the training data set is huge.

8.2 Future Research

It is important to note that k-norm estimations can be generalized, as follows.

8.2.1 Other definitions of tree risks

Theorem 4.1 can be generalized to other measures of interests. For example, the risks can be

redefined using appropriate misclassification costs or by using the MSE of class probabilities,

as shown in Chapter 7. The prediction of these risks is not extensively studied, and the only

well-known approaches are cross-validation and the use of the expected values. We have

listed all the necessary equations for the k-norm risk estimation in these domains.

Similar to the error rates, we are able to compute the standard deviation to indicate the

reliability of the estimate, and we can adapt our k-norm pruning algorithm to output the

pruned tree that minimizes the k-norm risk rather than the k-norm error rate. The adapted

k-norm pruning algorithm will inherit some of the properties that we reported for the error

rate, such as that it can finish pruning within only one tree traversal. Whether or not the

other properties are applicable, as well as of how to choose the parameters for the adapted

pruning algorithm (e.g., λ), remains an open problem that requires further research.
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8.2.2 Extensions of conditions

In our derivations, equations (4.28) and (7.18) for estimating the risks (error rate, mis-

classification cost and error of class probability) of a sub-tree is based on the Partitioning

Assumption and the Determinacy Assumption; equations (4.29), (7.13) and (7.20) for esti-

mating the risks of a leaf are based on the Piece-wise Independence Assumption. It would

be interesting to see how to derive the equations for the cases where one or more of the

assumptions are violated. Following are some examples of these cases.

8.2.2.1 tree ensembles

Ensemble learning is one of the most attractive trends in current Machine Learning research.

It has been shown in [Die00, Bre01] that an ensemble tree can outperform an individual tree

significantly in accuracy, at the cost of size, speed, and interpretability. To estimate the risk

of a tree ensemble, we can view the ensemble as a tree with a higher level and each individual

tree classifier as a branch. In this case, all branches are activated when an input is given,

thus violating the Partitioning Assumption. If the estimated class probabilities (or scores)

can be treated as a linear combination among those of the branches and each branch has a

constant weight, we can normalize the weights and treat them as activation probabilities (by

considering each branch as being activated at a probability), and thus the violation of the

Partitioning Assumption is transformed to that of the Determinacy Assumption (see below).
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8.2.2.2 missing values

If a decision node d has a split test “x1 ≤ 0” (that is, P [Ac1|Ad,X] = I[x1 ≤ 0]), but x1

is missing from the input X, then P [Ac1|Ad,X] is unknown. The algorithms that handle

missing values usually approximate P [Ac1|Ad,X] by another known quantity. For example,

C4.5 (see [Qui93]) uses P [Ac1 |Ad] as an approximation. In this case, each child of d is

activated with a certain probability, introducing two issues for our k-norm risk estimation:

First, the above handling of missing values leads into a violation of the Determinacy

Assumption. For this case, it may be difficult to derive a closed-form expression to estimate

the k-norm risks for all k, but it is still possible for k = 2 and for binary trees.

Secondly, in Lidstone’s law of succession and Dirichlet distribution, the number of oc-

currences nh is assumed to be a deterministic integer, as implied in the computation of

P [{nh}|{ph}] in (3.17). If an example is covered by a leaf l at a certain probability due to

missing data, how to count nj,l has to be addressed before applying (4.29). Strictly speaking,

nj,l becomes a random number and it is no longer our observation O; the theorem of total

probability f({ph}|O) =
∑

n1+...+nH=N f({ph}|{nh})P [{nh}|O] should be applied, together

with (3.16). The expression may be very difficult to simplify due to the many terms on

the right hand side, which means we may not be able to obtain closed-form expressions for

the posterior k-norm risk estimates. An alternative is to replace nj,l with its expected value

E[nj,l] =
∑

i P [Al, Cj|Xi] (where Xi is the i-th training example) in (4.29), (7.13) and (7.20).

This approximation, however, requires more justification because (3.17) is by-passed.
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8.2.2.3 flexible in-leaf predictions

Smyth et al., questioned the validity of outputting the same class probabilities for all inputs

that activate the same leaf (see [SGF95]). They showed the advantage of their modification

on the tree prediction algorithm by incorporating kernel functions to estimate the class prob-

abilities, which become dependent on the input attributes even when the leaf is determined.

In this case, the Piece-wise Independence Assumption is violated. Since Lidstone’s law of

succession relies only on the number of examples in the region covered by the leaf, not on

the distribution of these examples, the risk estimate of leaves must be calculated differently.

8.2.3 Other classifiers

Furthermore, Theorem 4.1 can be applied to any other classifiers beyond decision trees that

iteratively create nodes to represent subregions of the input space, such as Fuzzy ARTMAP

(see [CGM92]). It is interesting to see if a similar pruning algorithm can be applied to

these classifiers, e.g., to address the category proliferation problem of Fuzzy ARTMAP, a

problem that has been studied by many researchers in the field (see [MH95, CKG01, DK01]

for example). If so, the properties and the parameter settings are, again, potential topics for

future research.
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APPENDIX A

NOTATIONS
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Table A.1: Frequently Used Notations Listed in Alphabetical Order

Symbol Definition Constraints or properties

At
The event that the node t is activated
(receives an input) At implies AParent(t)

bt = nj,t −max
j

nj,t
Number of misclassified training exam-
ples in node t 0 ≤ bt

nt
≤ Bt

Mt
≤ J−1

J

Bt = bt + (J − 1)λ
Numerator in Lidstone’s Estimate of
the error rate in node t 0 ≤ bt

nt
≤ Bt

Mt
≤ J−1

J

Children(d)
The set of immediate children nodes of
a decision node d Kd = |Children(d)| ≥ 2

E[Q] Expected value of a random variable Q

η
The smoothing parameter for the esti-
mation of the node proportions η ≥ 0

f(X)
Joint probability density function of the
attributes in X f(X) ≥ 0,

∫
f(X)dX = 1

Γ(x) Gamma function Γ(x+k)
Γ(x) = Πk−1

i=0 (x+ i)
J Number of classes J ≥ 2

Kd
Number of immediate children of a de-
cision node d Kd = |Children(d)| ≥ 2

Label(t) Predicted class label of leaf t Label(t) = arg max
j

nj,t

Leaves(t)
The set of leaf nodes in the sub-tree
rooted at node t

λ
The smoothing parameter for class
probability estimation λ ≥ 0

Mj,t = nj,t + λ
Numerator in Lidstone’s Estimate of
the class probabilities in node t Mj,t ≥ λ,

∑J
j=1Mj,t = Mt

Mt = nt + Jλ
Denominator in Lidstone’s Estimate of
the error/class probabilities in node t Jλ < Mt < MParent(t)

nj,t
Number of examples of class j passed
to node t nj,t ≥ 0,

∑J
j=1 nj,t = nt

nt =
∑J

j=1 nj,t Number of examples passed to node t nt > 0, nt ≥ nj,t

O
The observations with training exam-
ples and the tree classifier

P [Φ] Probability of event Φ 0 ≤ P [Φ] ≤ 1

Parent(t)
The parent node (immediate ancestor)
of node t

pc|d = E[P [Ac|Ad]|O]
Proportion of node c in the sub-tree
rooted at d

∑
c∈Leaves(d) pc|d = 1

Ψ(x) Digamma function Ψ(x) = d
dx log Γ(x)

‖Q‖k = k
√
E [|Q|k|O] k-norm of the random variable Q

Ri,j
Risk of classifying X as belonging to
class i while the true class label is j Ri,j ≥ 0

σ[Q] =
√
E [Q2]− E[Q]2

Average standard deviation of random
variable Q σ ≥ 0

X
A training example or an unseen input,
represented by a vector of attributes
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APPENDIX B

A CASE STUDY ON IRIS DATABASE
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The Iris database is extensively examined in the literature. It can be downloaded from

the UCI repository (see [NHB98]). For visualization purposes, we only use two attributes

(petal length and petal width in cm), which have the most significant correlation to the

classes. Figure B.1(a) shows a scatter plot of these two attributes for the Iris data. Each

class contains 50 examples, some of which are overlapped.

In this section we demonstrate how to apply the 2-norm estimation to the tree pruning

and the tree prediction with Iris database.

B.1 Tree Construction

We used CART to grow a fully grown tree with the Gini Index as the impurity measure and

using maximum likelihood estimation for the probability estimation. If we use the entropy

or the twoing rule to measure the split gain, we get exactly the same tree. The splits of the

fully grown tree are shown in Figure B.1(a). Note that an example of class versicolor (circle

marker) have exactly the same attributes as an example of class virginica (star marker).

CART attempted to separate the former from the class virginica by a vertical split, but then

it found out that no split could be found to handle the impure left region, and thus the

previous split remains as an ineffective one (a split that is not effective; see Theorem 4.3 for

the definition of effective splits).
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B.2 Tree Pruning

Both CART’s pruning (using 10-fold cross validation and 1-SE rule) and C4.5’s pruning

remove only the ineffective split. Now we compare the pruning sequence of CCP and that

generated by our k-norm pruning algorithm with various k.

By increasing α from 0, CCP yielded a pruning sequence of 5 trees, each tree is a further

pruned version of the previous tree (the 0-th tree is the fully grown tree). By raising k from 1,

the k-norm pruning algorithm yielded a pruning sequence of 4 trees (proven by Theorem 5.3).

These 4 trees also appeared in CCP’s pruning sequence, as shown in Figure B.1.

The tree pruned with k = 2 (see Figure B.1(d) and Figure B.2) can be evaluated as

follows. For the leaf c21,

E [rc21 ] =
5 + 0.5× 2

54 + 0.5× 3
= 0.1081, (B.1)

E
[
r2
c21

]
≈ 6× 7

55.5× 56.5
= 0.01339, (B.2)

P ∗ [Ac21 |Ac2 ] =
54 + 0.5

100 + 0.5× 2
= 0.5396. (B.3)

For the leaf c22,

E [rc22 ] =
1 + 0.5× 2

46 + 0.5× 3
= 0.04211, (B.4)

E
[
r2
c22

]
≈ 2× 3

47.5× 48.5
= 0.002604, (B.5)

P ∗ [Ac22|Ac2 ] =
46 + 0.5

100 + 0.5× 2
= 0.4604. (B.6)
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(b) k = 1, 0 ≤ α < 0.0067
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(c) 0 ≤ α < 0.0133
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(d) 2 ≤ k < 25680602, 0.0133 ≤ α < 0.2933
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(e) 25680602 ≤ k <∞, 0.2933 ≤ α < 0.3333
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(f) k =∞, α ≥ 0.3333

• setosa examples ◦ versicolor examples * virginica examples

Figure B.1: Splits in Pruning Sequence for Iris Database

83



root 

 Setosa 50 
Versicolor 50 
Virginica 50 

Petal length ≤ 2.45 cm Petal length > 2.45 cm 

Petal width ≤ 1.75 cm Petal width > 1.75 cm 

c1: Setosa 

 Setosa 50 
Versicolor 0 
Virginica 0 

c2 

 Setosa 0 
Versicolor 50 
Virginica 50 

c21: Versicolor 

 Setosa 0 
Versicolor 49 
Virginica 5 

c22: Virginica 

 Setosa 0 
Versicolor 1 
Virginica 45 

Note: The numbers of examples of each iris type residing at every node of the tree is shown.
Furthermore, on top of every link (connecting two tree nodes) the criterion used to split the
data at the node is shown. Tree nodes are designated as root, or c; when the c designation
is used to denote a node the associated subscripts indicate the ancestry (e.g., c21 means the
first child of the second child of the root). The decision regions are plotted in Figure B.1(d).

Figure B.2: Tree Grown with Iris Database and Pruned with 2-Norm Criterion

For the decision node c2,

E [rc2 ] = E [rc21 ]P
∗ [Ac21|Ac2 ] + E [rc22 ]P

∗ [Ac22|Ac2 ] = 0.07772, (B.7)

E
[
r2
c2

]
= E

[
r2
c21

]
P ∗ [Ac21|Ac2 ] + E

[
r2
c22

]
P ∗ [Ac21|Ac2 ] ≈ 0.008427, (B.8)

P ∗ [Ac2|Aroot] =
100 + 0.5

150 + 0.5× 2
= 0.6656. (B.9)

For the leaf c1,

E [rc1 ] =
0 + 0.5× 2

50 + 0.5× 3
= 0.01942, (B.10)

E
[
r2
c1

]
≈ 1× 2

51.5× 52.5
= 0.0007397, (B.11)

P ∗ [Ac1 |Aroot] =
50 + 0.5

150 + 0.5× 2
= 0.3344. (B.12)
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For the root (representing the entire tree)

E [rroot] = E [rc1 ]P
∗ [Ac1|Aroot] + E [rc2 ]P

∗ [Ac2|Aroot] = 0.05822, (B.13)

E
[
r2
root

]
= E

[
r2
c1

]
P ∗ [Ac1|Aroot] + E

[
r2
c2

]
P ∗ [Ac2|Aroot] ≈ 0.005856, (B.14)

σ [rroot] =

√
E [r2

root]− E [rroot]
2 ≈ 0.04966, (B.15)

‖rroot‖2 =
√
E [r2

root] = 0.07652, (B.16)

where E [rroot] is the expected value of the error rate and the standard deviation 0.04966

measures the uncertainty of the error rate; ‖rroot‖2 gives a 2-norm estimation of the error

rate (combining the expected value and the standard deviation). These measures are defined

for the average case. When an input X is given, we have more specific measures that depend

on X, as shown in the next subsection.

B.3 Tree Prediction

We use the tree pruned with k = 2 (see Figure B.1(d) and Figure B.2). If an unseen datum

falls in the leaf c1 (left sub-region), the predicted class is “setosa,” with the predicted error

rate and the corresponding reliability computed as follows:

EP [r] ≈ E [rc1 ] = 0.01942, (B.17)

σP [r] ≈
√
E
[
r2
c1

]
− E [rc1 ]

2 = 0.0190. (B.18)
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To combine the standard deviation into the estimate of the error rate, we can use the 2-norm:

‖r‖2 ≈
√
E
[
r2
c1

]
= 0.0272. (B.19)

Similarly, if an unseen datum falls in the leaf c21 (bottom-right sub-region), the predicted

class is “versicolor,” with the following predicted error rate:

EP [r] ≈ E [rc21 ] = 0.1081, (B.20)

σP [r] ≈
√
E
[
r2
c21

]
− E [rc21 ]

2 = 0.04131, (B.21)

‖r‖2 ≈
√
E
[
r2
c21

]
= 0.1157. (B.22)

If an unseen datum falls in the leaf c22 (top-right sub-region), the predicted class is “vir-

ginica,” with the following predicted error rate:

EP [r] ≈ E [rc22 ] = 0.04211, (B.23)

σP [r] ≈
√
E
[
r2
c22

]
− E [rc22 ]

2 = 0.02884, (B.24)

‖r‖2 ≈
√
E
[
r2
c22

]
= 0.05103. (B.25)
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PROOFS OF THEOREMS AND EQUATIONS
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C.1 Proof of Equations (3.19), (3.20) and (3.21)

we first list some important properties of Dirichlet distribution. If

(p1, . . . , pH) ∼ Dir(λ1, . . . , λH), (C.1)

then the following are true.

1. The posterior probabilities also follow the Dirichlet distribution (see [Goo65]). In

particular,

(p1, . . . , pH |n1, . . . , nH) ∼ Dir(n1 + λ1, . . . , nH + λH). (C.2)

2. It has also been shown (see [GCS95], page 482) that

(ph, 1− ph) ∼ Dir

(
λh,
∑
m 6=h

λm

)
. (C.3)

3. It can be easily proven that the product of the probabilities has the following expected

value (see [BN03], page 274):

E
[
pk11 . . . pkH

H

]
=

Γ(
∑H

h=1 λh)
Γ(
∑H

h=1(λh+kh))∏H
h=1

Γ(λh)
Γ(λh+kh)

, (C.4)

88



where k1, . . . , kH are non-negative integers. Using the following property of Γ() func-

tion:

Γ(x+ k)

Γ(x)
=

k−1∏
m=0

(x+m), (C.5)

we have

E
[
pk11 . . . pkH

H

]
=

∏H
h=1

∏kh−1
m=0 (λh +m)∏k−1

m=0(
∑H

h=1 λh +m)
, (C.6)

where k =
∑H

h=1 kh. As two special cases,

E
[
pkh
]

=
k−1∏
m=0

λh +m∑H
h=1 λh +m

, (C.7)

E [ph1ph2 ] =
λh1 (λh2 + I[h1 = h2])∑H
h=1 λh

(
1 +

∑H
h=1 λh

) . (C.8)

Using (C.2) and (C.7), we prove (3.19); using (C.2), (C.3) and (C.7), we prove (3.20);

using (C.2) and (C.8), we prove (3.21).

C.2 Proof of Theorem 4.1

Our goal is to prove the following equation for any decision node d and any event Φ:

EX|Ad

[
rkd
]

=
∑

c∈Children(d)

EX|Ac

[
rkc
]
P [Ac|Ad] , (C.9)
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where

rd = P [Φ|Ad,X] , (C.10)

given that the events {Ac|Ad}c∈Children(d) are mutually exclusive and collectively exhaustive

and that P [Ac|Ad,X] is either zero or one for any X.

Proof Recall that for any c ∈ Children(d), Ac implies Ad, which means Ac = (Ac, Ad). As

a result,

P [Φ|Ad,X] =
∑

c∈Children(d)

P [Φ|Ac,X]P [Ac|Ad,X] , (C.11)

that is,

rd =
∑

c∈Children(d)

rcP [Ac|Ad,X] . (C.12)

Since P [Ac|Ad,X] is one for one of the children and is zero for the other children,

P [Ac1|Ad,X]P [Ac2|Ad,X] = 0, if c1 6= c2, (C.13)

P [Ac|Ad,X]k = P [Ac|Ad,X] , (C.14)

and therefore,

rkd =
∑

c∈Children(d)

rkcP [Ac|Ad,X] , (C.15)

EX|Ad

[
rkd
]

=

∫
rkdf(X|Ad)dX

=
∑

c∈Children(d)

∫ [
rkc
]
P [Ac|Ad,X] f(X|Ad)dX. (C.16)
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According to Bayesian Theory,

P [Ac|Ad,X] f(X|Ad) = f(X|Ac, Ad)P [Ac|Ad] = f(X|Ac)P [Ac|Ad] , (C.17)

and therefore,

EX|Ad

[
rkd
]

=
∑

c∈Children(d)

∫ [
rkc
]
f(X|Ac)dXP [Ac|Ad]

=
∑

c∈Children(d)

EX|Ac

[
rkc
]
P [Ac|Ad] . (C.18)

C.3 Proof of Theorem 4.3

The 1-norm error rate of the node t before the split is

rleaf (t) =
bt + (J − 1)λ

nt + Jλ
, (C.19)

where bt is the number of training examples in t of minority classes (that is, the number of

misclassified training examples in t), and bt = nt −max
j

nj,t. After the split,

rtree(t) =
∑

c∈Children(t)

rleaf (c)
nc + η

nt +Ktη
. (C.20)
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Our goal is to prove rtree(t) < rleaf (t) under the following assumptions:

1. The Determinacy Assumption. Under this assumption, when the number of misclassi-

fications is decreased, the decrease is at least one, that is,
∑

c∈Children(t) bc ≤ bt − 1.

2. 0 ≤ η ≤ λJ .

3. λ ≤ 1
(Kt−1)(J−1)

.

Proof Note that rleaf (t) is independent of η. We first find the maximum value of rtree(t)

with respect to η.

∂

∂η

∑
c

(bc + (J − 1)λ) (nc + η)

(nc + Jλ) (nt +Ktη)
=

∑
c

(bc + (J − 1)λ) (nt −Ktnc)

(nc + Jλ) (nt +Ktη)2

=
q

(nt +Ktη)2 . (C.21)

Note that q is independent of η and thus the sign of the above derivative is independent of

η, which means that the maximum value is achieved either when η = 0 or when η = Jλ. It

suffices to prove the theorem for these two cases.
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Case η = 0:

rtree(t) =
1

nt

∑
c∈Children(t)

nc (bc + (J − 1)λ)

nc + Jλ

<
1

nt

∑
c∈Children(t)

nt (bc + (J − 1)λ)

nt + Jλ

≤ bt +Kt(J − 1)λ− 1

nt + Jλ

≤ bt +Kt(J − 1)λ− (Kt − 1)(J − 1)λ

nt + Jλ

=
bt + (J − 1)λ

nt + Jλ

= rleaf (t). (C.22)

Case η = Jλ:

rtree(t) =

∑
c∈Children(t) (bc + (J − 1)λ)

nt +KtJλ

≤ bt − 1 + (J − 1)Ktλ

nt +KtJλ

<
bt

nt + Jλ
+

(J − 1)Ktλ− 1

nt +KtJλ
. (C.23)

Given 0 ≤ λ ≤ 1
(J−1)(Kt−1)

, it is not difficult to prove that

(J − 1)Ktλ− 1

nt +KtJλ
<

(J − 1)λ

nt + Jλ
, (C.24)

and thus rtree(t) < rleaf (t).
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C.4 Proof of Theorem 5.3

The theorem states that if a sub-tree does not decrease the k-norm error rate compared to

a leaf, it increases the (k + 1)-norm error rate. To express the theorem mathematically, we

define two functions:

gk(x) =
Γ(x+ k)

Γ(x)
=

k−1∏
i=0

(x+ i), (C.25)

fk(B,M) =
gk(B)

gk(M)
=

Γ(B + k)Γ(M)

Γ(B)Γ(M + k)
. (C.26)

For a leaf l, fk(Bl,Ml) represents the k-th moment of the error rate in l. Please refer to

Appendix A for the definitions of the symbols. The theorem can now be expressed as follows:

Assume k ≥ 1 and 0 < Bc < Mc < Md for any leaf c under a decision node d. If

∑
c∈Leaves(d)

fk(Bc,Mc)pc|d ≥ fk(Bd,Md), (C.27)

then ∑
c∈Leaves(d)

fk+1(Bc,Mc)pc|d > fk+1(Bd,Md). (C.28)

Proof To prove this theorem, we find two values between the left hand side and the right

hand side of (C.28). We prove that they are in between by two lemmas.
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C.4.1 Proof of Lemma 5.1

This lemma is proposed in subsection 5.1.2. It states that if two leaves have the same k-norm

error rate, the smaller leaf have higher (k + 1)-norm error rate. That is, If there exists a

value s, such that

fk(Bc,Mc) = fk(s,Md), (C.29)

and 0 < Bc < Mc < Md, then fk+1(Bc,Mc) > fk+1(s,Md).

Assume s and Md are fixed. Bc is a function of Mc due to (C.29), and so is fk+1(Bc,Mc).

Note that once Mc is given, there is a unique solution for Bc in (0,Mc). Now we prove that

fk+1(Bc,Mc) is a strictly decreasing function of Mc. According to (C.29),

Γ(Bc + k)

Γ(Bc)
= fk(s,Md)

Γ(Mc + k)

Γ(Mc)
. (C.30)

Taking the derivative of both sides with respect to Mc,

d

dBc

(
Γ(Bc + k)

Γ(Bc)

)
dBc

dMc

= fk(s,Md)
d

dMc

(
Γ(Mc + k)

Γ(Mc)

)
, (C.31)
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dBc

dMc

=
fk(s,Md)

d
dMc

(
Γ(Mc+k)

Γ(Mc)

)
d
dBc

(
Γ(Bc+k)

Γ(Bc)

)
=

fk(s,Md)

fk(Bc,Mc)
· Ψ (Mc + k)−Ψ (Mc)

Ψ (Bc + k)−Ψ (Bc)

=
Ψ (Mc + k)−Ψ (Mc)

Ψ (Bc + k)−Ψ (Bc)
, (C.32)

dfk+1(Bc,Mc)

dMc

=
∂fk+1(Bc,Mc)

∂Bc

dBc

dMc

+
∂fk+1(Bc,Mc)

∂Mc

= fk+1(Bc,Mc) (Ψ (Bc + k + 1)−Ψ (Bc))
Ψ (Mc + k)−Ψ (Mc)

Ψ (Bc + k)−Ψ (Bc)

−fk+1(Bc,Mc) (Ψ (Mc + k + 1)−Ψ (Mc)) . (C.33)

Let ui = 1
Mc+i

, vi = 1
Bc+i

, qi = ui

vi
= Bc+i

Mc+i
, i = 0, 1, . . . , k. Apparently, {qi} is an increasing

sequence.

Ψ (Mc + k + 1)−Ψ (Mc)

Ψ (Bc + k + 1)−Ψ (Bc)
=

∑k
i=0 ui∑k
i=0 vi

=

∑k
i=0 qivi∑k
i=0 vi

=
qkvk +

∑k−1
i=0 qivi

vk +
∑k−1

i=0 vi

>

∑k−1
i=0 qivi∑k−1
i=0 vi

=
Ψ (Mc + k)−Ψ (Mc)

Ψ (Bc + k)−Ψ (Bc)
, (C.34)

dfk+1(Bc,Mc)

dMc

< 0. (C.35)

Therefore, fk+1(Bc,Mc) is a strictly decreasing function of Mc. Since Mc < Md,

fk+1(Bc,Mc) > fk+1(Bc,Mc)|Mc=Md
= fk+1(s,Md). (C.36)
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C.4.2 Proof of Lemma 5.2

This lemma is also proposed in subsection 5.1.2. It states that if the weighted average of the

k-th moment error rates of a set of leaves is equal to that of another leaf, and if all leaves cover

an equal number of training examples, then the weighted average (with the same weights

as before) of the (k + 1)-th moment error rate of the same set of leaves is no less than the

(k+ 1)-th moment of the other leaf; the equality holds if and only if all leaves have the same

number of training misclassifications. Mathematically speaking, if
∑

i pigk(xi) = gk(X),

xi > 0, pi > 0, and
∑

i pi = 1, then
∑

i pigk+1(xi) ≥ gk+1(X); the equality holds if and only

if xi = X for all i.

Apparently gk(x) is a strictly increasing function of x when x > 0, and gk(x) is unbounded

when x → ∞. Therefore, the inverse function of gk(x) exists for x > 0. Define yi = gk(xi),

Y = gk(X), and h(y) = g−1
k (y). Since

∑
i

piyi = Y, (C.37)

we have:

∑
i

pigk+1(xi)− gk+1(X) =
∑
i

pigk(xi)(xi + k)− gk+1(X)(X + k)

=
∑
i

pigk(xi)xi − gk+1(X)X

=
∑
i

piyih(yi)− Y h(Y ). (C.38)
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It suffices to prove the convexity of the function yh(y). In fact,

d2 (yh(y))

dy2
= 2h(1)(y) + yh(2)(y), (C.39)

h(1)(y) =
dx

dy
=

1

g
(1)
k (x)

, (C.40)

h(2)(y) =
d

dy

(
1

g
(1)
k (x)

)
=

d

dx

(
1

g
(1)
k (x)

)
dx

dy
= − g

(2)
k (x)(

g
(1)
k (x)

)3 , (C.41)

g
(1)
k (x) = gk(x) (Ψ(x+ k)−Ψ(x)) , (C.42)

g
(2)
k (x) = gk(x) (Ψ(x+ k)−Ψ(x))2 + gk(x)

(
Ψ(1)(x+ k)−Ψ(1)(x)

)
. (C.43)

Since Ψ(x + k) − Ψ(x) =
∑k−1

j=0
1
x+j

, Ψ(1)(x + k) − Ψ(1)(x) < 0. Considering gk(x) > 0 and

g
(1)
k (x) > 0,

g
(2)
k (x) < gk(x) (Ψ(x+ k)−Ψ(x))2 , (C.44)

d2 (yh(y))

dy2
=

2

g
(1)
k (x)

− gk(x)g
(2)
k (x)(

g
(1)
k (x)

)3

>

(
g

(1)
k (x)

)2

− gk(x)g
(2)
k (x)(

g
(1)
k (x)

)3

>

(
g

(1)
k (x)

)2

− gk(x)2 (Ψ(x+ k)−Ψ(x))2(
g

(1)
k (x)

)3

= 0. (C.45)

Therefore, the function yh(y) is convex.
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C.4.3 Proof of the theorem

Since 0 < Bc < Mc < Md for any leaf c under the decision node d, and fk(B,M) is strictly

increasing with respect to B and decreasing with respect to M ,

fk(0,Md) ≤ fk(0,Mc) < fk(Bc,Mc) < fk(Mc,Mc) = fk(Md,Md). (C.46)

Note that both the bounds fk(0,Md) and fk(Md,Md) are independent of c. As a result,

fk(0,Md) <
∑

c∈Leaves(d)

fk(Bc,Mc)pc|d < fk(Md,Md). (C.47)

Therefore, there is a unique solution s in (0,Md) for the following equation:

∑
c∈Leaves(d)

fk(Bc,Mc)pc|d = fk(s,Md). (C.48)

Since fk(s,Md) ≥ fk(Bd,Md), we know that s ≥ Bd and fk+1(s,Md) ≥ fk+1(Bd,Md). It

suffices to prove: ∑
c∈Leaves(d)

fk+1(Bc,Mc)pc|d > fk+1(s,Md). (C.49)

For each leaf c below d, let sc be the solution (which is also unique) of the following

equation:

fk(Bc,Mc) = fk(sc,Md), (C.50)
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which means ∑
c∈Leaves(d)

fk(sc,Md)pc|d = fk(s,Md), (C.51)

namely ∑
c∈Leaves(d)

gk(sc)pc|d = gk(s). (C.52)

According to Lemma 2, ∑
c∈Leaves(d)

gk+1(sc)pc|d ≥ gk+1(s), (C.53)

which means ∑
c∈Leaves(d)

fk+1(sc,Md)pc|d ≥ fk+1(s,Md). (C.54)

According to Lemma 1,

fk+1(Bc,Mc) > fk+1(sc,Md). (C.55)

Therefore, (C.49) is proven. The proof of this theorem is completed.

C.5 Proof of Theorem 5.5

The theorem states that the k-norm of the error rate of any node is a strictly increasing

function of k.

Proof For a leaf, the theorem is apparently true, because the k-norm of any random variable

is an increasing function of k according to Lyapunov’s inequality (see [KP00]), which can be
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derived easily from Jensen’s inequality (see [Jen06]). In the proof of Jensen’s inequality we

can easily see that if the random variable is not a constant number, its k-norm is strictly

increasing with k. In our application, the class probabilities at any leaf obey the Dirichlet

distribution, and thus the error rate is not a deterministic number. Therefore, the k-norm

error rate at any leaf is a strictly increasing function of k.

For a decision node d, the k-th moment of the error rate is computed as:

E
[
rkd
]

=
∑

c∈Leaves(d)

E
[
rkc
]
pc|d

=
∑

c∈Leaves(d)

pc|d

∫ 1

0

xkfc(x)dx

=

∫ 1

0

xk

 ∑
c∈Leaves(d)

pc|dfc(x)

 dx, (C.56)

where fc(x) is the PDF of the error rate in the leaf c. Define

g(x) =
∑

c∈Leaves(d)

pc|dfc(x). (C.57)

It is easily seen that g(x) qualifies as a PDF. Since fc(x) is not an impulse function for any

c, (i.e., none of the error rates in the leaves has a deterministic value), g(x) also represents

the distribution of a non-deterministic variable. Therefore, the k-norm of the error rate in a

decision node is also a strictly increasing function of k.

101



C.6 Proof of Theorem 5.6

This theorem states that an ineffective split never decreases the 1-norm error rate. The

1-norm error rate of the node t before the split is

rleaf (t) =
bt + (J − 1)λ

nt + Jλ
. (C.58)

After the split,

rtree(t) =
∑

c∈Children(t)

rleaf (c)
nc + η

nt +Ktη
. (C.59)

Our goal is to prove

rtree(t) ≥ rleaf (t), (C.60)

when
∑

c∈Children(t) bc = bt and 0 ≤ η ≤ Jλ.

Proof We first find the minimum value of the left hand side of (C.60) with respect to η.

∂

∂η

∑
c

(bc + (J − 1)λ) (nc + η)

(nc + Jλ) (nt +Ktη)
=
∑
c

(bc + (J − 1)λ) (nt −Ktnc)

(nc + Jλ) (nt +Ktη)2 . (C.61)

Note that the sign of the above derivative is invariant to η, which means that the minimum

value is achieved either when η = 0 or when η = Jλ. It suffices to prove the theorem for

these two cases.
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Case η = 0: Since nc < nt and bt ≤ J−1
J
nt,

rtree(t) =
∑

c∈Children(t)

bc + (J − 1)λ

nc + Jλ

nc
nt

=
∑

c∈Children(t)

(
bc
nc

+
λ ((J − 1)nc − Jbc)

nc(nc + Jλ)

)
nc
nt

=
bt
nt

+
λ

nt

∑
c∈Children(t)

(J − 1)nc − Jbc
nc + Jλ

≥ bt
nt

+
λ

nt (nt + Jλ)

∑
c∈Children(t)

((J − 1)nc − Jbc)

=
bt
nt

+
λ ((J − 1)nt − Jbt)

nt (nt + Jλ)

=
bt + (J − 1)λ

nt + Jλ

= rleaf (t). (C.62)

Case η = Jλ:

rtree(t) =

∑
c∈Children(t) (bc + (J − 1)λ)

nt +KtJλ
=
bt + (J − 1)Ktλ

nt +KtJλ
, (C.63)

∂rtree(t)

∂Kt

=
(J − 1)λ (nt +KtJλ)− (bt + (J − 1)Ktλ) Jλ

(nt +KtJλ)2

=
λ ((J − 1)nt − Jbt)

(nt +KtJλ)2

≥ 0. (C.64)

Since Kt > 1, rtree(t) ≥ rtree(t)|Kt=1 = rleaf (t).

For both cases η = 0 and η = Jλ, the equality holds if and only if (J − 1)nc = Jbc for all

leaves, i.e., all classes have exactly the same number of examples at each leaf.
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C.7 Proof of Theorem 5.8

This theorem states that when k approaches∞, the k-norm error rate of any node approaches

one, meaning that when we are infinitely pessimistic, we think the prediction of every node

is definitely wrong.

Proof We first prove the theorem for a leaf by proving that the log-error approaches zero

as k →∞. For any leaf c,

log ‖rc‖k =
log Γ (Bc + k)− log Γ (Bc) + log Γ (Mc)− log Γ (Mc + k)

k
. (C.65)

According to l’Hospital’s Rule,

lim
k→∞

log ‖rc‖k = lim
k→∞

∂ (log Γ (Bc + k)− log Γ (Bc) + log Γ (Mc)− log Γ (Mc + k))

∂k

= lim
k→∞

(Ψ (Bc + k)−Ψ (Mc + k)) , (C.66)

where Ψ() is the digamma function that can be represented below:

Ψ(x) =

∫ ∞
0

(
e−y

y
− e−xy

1− e−y

)
dy. (C.67)

Apparently, when x > 0, Ψ(x) is an increasing function of x. Therefore,

Ψ (Bc + k)−Ψ (Bc + dMc −Bce+ k) ≤ Ψ (Bc + k)−Ψ (Mc + k) ≤ 0, (C.68)
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where dMc −Bce is the ceiling function ofMc−Bc and is designated by ∆c. SinceMc−Bc > 0,

∆c is a natural number. According to the property of the digamma function,

Ψ (Bc + k)−Ψ (Bc + ∆c + k) = −
∆c−1∑
i=0

1

Bc + k + i
. (C.69)

Note that the number of terms in the above summation is at least one and is invariant to k.

Each term approaches zero as k →∞, which means

lim
k→∞

(Ψ (Bc + k)−Ψ (Bc + ∆c + k)) = 0. (C.70)

According to the Squeezing Theorem, the k-norm of the error rate at a leaf approaches one.

Now consider a decision node d. Its k-norm of the error rate is

‖rd‖k =

 ∑
c∈Leaves(d)

pc|d ‖rc‖kk

1/k

. (C.71)

Apparently,

min
c∈Leaves(d)

‖rc‖k ≤ ‖rd‖k ≤ max
c∈Leaves(d)

‖rc‖k . (C.72)

Since ‖rc‖k → 1 for any leaf c when k →∞, minc ‖rc‖k and maxc ‖rc‖k also approach 1, and

so does ‖rd‖k.
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C.8 Proof of Theorem 5.9

Theorem 5.9 provides a necessary and sufficient condition for a sub-tree to be beneficial

under any k-norm error rate criterion for finite k. We use the same notation as in the proof

of Theorem 5.3. This theorem is re-stated below:
∑

c∈Leaves(d) fk(Bc,Mc)pc|d < fk(Bd,Md)

for all natural numbers k if and only if Mc −Bc = Md −Bd for all leaves c below d.

Proof We first prove the sufficiency and then prove the necessity.

C.8.1 Sufficiency

If Mc − Bc = Md − Bd for all leaves c below d, we have the following inequality for any

non-negative number i (since Mc < Md):

Bc + i

Mc + i
= 1− Mc −Bc

Mc + i
< 1− Md −Bd

Md + i
=
Bd + i

Md + i
. (C.73)

Therefore, for any natural number k,

fk(Bc,Mc) =
k−1∏
i=0

Bc + i

Mc + i
<

k−1∏
i=0

Bd + i

Md + i
= fk(Bd,Md), (C.74)

which implies that ∑
c∈Leaves(d)

fk(Bc,Mc)pc|d < fk(Bd,Md). (C.75)
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C.8.2 Necessity

Assume there exists a leaf s below d such that Ms − Bs 6= Md − Bd. To prove that there

exists a threshold k2 such that for any k > k2,
∑

c∈Leaves(d) fk(Bc,Mc)pc|d > fk(Bd,Md), it

suffices to prove that

lim
k→∞

fk(Bs,Ms)ps|d
fk(Bd,Md)

= ps|d lim
k→∞

k−1∏
i=0

(Md + i) (Bs + i)

(Ms + i) (Bd + i)
=∞. (C.76)

Since nj,s ≤ nj,d for any j,

Ms −Bs = max
j

nj,s + (J − 1)λ ≤ max
j

nj,d + (J − 1)λ = Md −Bd. (C.77)

According to our assumption, Ms−Bs < Md−Bd. In order to demonstrate (C.76), we first

prove that there exists ε1 > 0 and k1 > 0 such that for any k > k1,

(Md + k) (Bs + k)

(Ms + k) (Bd + k)
>

(k + 1)ε1

kε1
. (C.78)

Let ε = Md +Bs −Ms −Bd > 0,

(Md + k) (Bs + k)

(Ms + k) (Bd + k)
= 1 +

εk +MdBs −MsBd

(Ms + k) (Md + k)
. (C.79)
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There exist ε1 and ε2 such that 0 < ε1 < ε2 < ε. Since

lim
k→∞

(εk +MdBs −MsBd) k

(Ms + k) (Md + k) ε2

=
ε

ε2

> 1, (C.80)

and according to l’Hospital’s Rule,

lim
k→∞

log
(
1 + ε2

k

)
log (k+1)ε1

kε1

= lim
k→∞

d
dk

log
(
1 + ε2

k

)
ε1

d
dk

log k+1
k

= lim
k→∞

ε2
k(k+ε2)

ε1
k(k+1)

=
ε2

ε1

> 1, (C.81)

when k is above a certain threshold k1,

(Md + k) (Bs + k)

(Ms + k) (Bd + k)
= 1 +

εk +MdBs −MsBd

(Ms + k) (Md + k)
> 1 +

ε2

k
>

(k + 1)ε1

kε1
, (C.82)

which means (C.78) is true. Therefore,

lim
k→∞

fk(Bs,Ms)ps|d
fk(Bd,Md)

= ps|d lim
k→∞

k−1∏
i=0

(Md + i) (Bs + i)

(Ms + i) (Bd + i)
= α lim

k→∞

k−1∏
i=k1+1

(Md + i) (Bs + i)

(Ms + i) (Bd + i)
,

(C.83)

where α is positive and independent of k:

α = ps|d

k1∏
i=0

(Md + i) (Bs + i)

(Ms + i) (Bd + i)
> 0. (C.84)
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According to (C.78),

lim
k→∞

fk(Bs,Ms)ps|d
fk(Bd,Md)

≥ α lim
k→∞

k−1∏
i=k1+1

(i+ 1)ε1

iε1
= α lim

k→∞

kε1

(k1 + 1)ε1
=∞. (C.85)

Therefore, there exists a threshold k2 such that
∑

c∈Leaves(d) fk(Bc,Mc)pc|d > fk(Bd,Md) for

any k > k2.

C.9 Proof of Equation (7.14)

Define

qj = RLabel(l),j, (C.86)

pj = P [Cj|Al] , (C.87)

Mj = nj,l + λ (C.88)

M =
J∑
j=1

Mj (C.89)

then

E∗k = E

( J∑
j=1

qjpj

)k


= E

[ ∑
k1+k2+...+kJ=k

k!

k1! . . . kJ !

(
qk11 . . . qkJ

J

)(
pk11 . . . pkJ

J

)]
, (C.90)
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Define

gn(x) =
Γ (x+ n)

Γ (x)
, (C.91)

where n is a non-negative integer. According to (C.4),

E [pn1
1 . . . pnJ

J ] =
gn1(M1) . . . gnJ

(MJ)

gk(M)
. (C.92)

For k > 1,

E∗k = E

( J∑
j=1

qjpj

)k


= E

( J∑
i=1

qipi

)(
J∑
j=1

qjpj

)k−1


= E

 J∑
i=1

(
J∑
j=1

qjpj

)k−1

qipi


= E

[
J∑
i=1

∑
k1+...+kJ=k−1

(k − 1)!

k1! . . . kJ !

(
qk11 . . . qkJ

J

)(
pk11 . . . pkJ

J

)
qipi

]

=
J∑
i=1

∑
k1+...+kJ=k−1

(k − 1)!

k1! . . . kJ !

(
qk11 . . . qkJ

J

)
·E
[
pk11 . . . p

k(i−1)

(i−1) p
(ki)+1
i p

k(i+1)

(i+1) . . . p
kJ
J

]
qi

=
J∑
i=1

∑
k1+...+kJ=k−1

(k − 1)!

k1! . . . kJ !

(
qk11 . . . qkJ

J

)
·
gk1(M1) . . . gk(i−1)

(M(i−1))g(ki)+1(Mi)gk(i+1)
(M(i+1)) . . . gkJ

(MJ)

gk(M)
qi (C.93)

110



According to the property of Gamma function,

gn(x) =
n−1∏
m=0

(x+m), (C.94)

and therefore, for k > 1,

gn(x) = g(n−1)(x)(x+ n− 1). (C.95)

Thus,

E∗k =
J∑
i=1

∑
k1+...+kJ=k−1

(k − 1)!

k1! . . . kJ !

(
qk11 . . . qkJ

J

) gk1(M1) . . . gkJ
(MJ)(Mi + ki)qi

gk−1(M)(M + k − 1)
(C.96)

=
J∑
i=1

∑
k1+...+kJ=k−1

(k − 1)!

k1! . . . kJ !

(
qk11 . . . qkJ

J

) gk1(M1) . . . gkJ
(MJ)Miqi

gk−1(M)(M + k − 1)

+
J∑
i=1

∑
k1+...+kJ=k−1

(k − 1)!

k1! . . . kJ !

(
qk11 . . . qkJ

J

)
qi
gk1(M1) . . . gkJ

(MJ)ki
gk−1(M)(M + k − 1)

(C.97)

Using (C.92) again,

E∗k = E∗k−1

∑J
i=1Miqi

M + k − 1
+

J∑
i=1

∑
k1+...+kJ=k−1,ki>0

(k − 1)!

k1! . . . k(i−1)!((ki)− 1)!k(i+1)! . . . kJ !

·
(
qk11 . . . qkJ

J

)
qi
gk1(M1) . . . gkJ

(MJ)

gk−1(M)(M + k − 1)
(C.98)
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Let k′j = kj for j 6= i and let k′i = ki − 1. Then,

E∗k = E∗k−1

∑J
i=1 Miqi

M + k − 1
+

J∑
i=1

∑
k′1+...+k′J=k−2

(k − 1)!

k′1! . . . k′J !

(
q
k′1
1 . . . q

k′J
J

)
q2
i

·
gk′1(M1) . . . gk′

(i−1)
(M(i−1))g(k′i)+1(Mi)gk′

(i+1)
(M(i+1)) . . . g

′
kJ

(MJ)

gk−1(M)(M + k − 1)

= E∗k−1

∑J
i=1 Miqi

M + k − 1
+

J∑
i=1

∑
k′1+...+k′J=k−2

(k − 1)(k − 2)!

k′1! . . . k′J !

·
(
q
k′1
1 . . . q

k′J
J

) gk′1(M1) . . . gk′J (MJ)(Mi + k′i)q
2
i

gk−2(M)(M + k − 1)(M + k − 2)

= E∗k−1

∑J
i=1 Miqi

M + k − 1
+

k − 1

M + k − 1

J∑
i=1

∑
k′1+...+k′J=k−2

(k − 2)!

k′1! . . . k′J !

·
(
q
k′1
1 . . . q

k′J
J

) gk′1(M1) . . . gk′J (MJ)(Mi + k′i)q
2
i

gk−2(M)(M + k − 2)
(C.99)

Note that the second term in the right hand side of the above equation has exactly the same

form as (C.96), and thus the above process can be repeated, yielding

E∗k =
k∑

m=1

(k−1)!
(k−m)!

E∗k−m
∑J

i=1 Miq
m
i∏m

i=1(M + k −m)
(C.100)
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