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 ABSTRACT 

In this thesis, the impact of multihomed clients and multihomed proxy servers on the 

performance of modern networks is investigated. The network model used in our investigation 

integrates three main components: the new one-to-any Anycast communication paradigm that 

facilitates server replication, the next generation Internet Protocol Version 6 (IPv6) that offers 

larger address space for packet switched networks, and the emerging multihoming trend of 

connecting devices and smart phones to more than one Internet service provider thereby acquiring 

more than one IP address.  

 The design of a previously proposed Proxy IP Anycast service is modified to integrate 

user device multihoming and Ipv6 routing. The impact of user device multihoming (single-homed, 

dual-homed, and triple-homed) on network performance is extensively analyzed using realistic 

network topologies and different traffic scenarios of client-server TCP flows. Network throughput, 

packet latency delay and packet loss rate are the three performance metrics used in our analysis. 

Performance comparisons between the Anycast Proxy service and the native IP Anycast protocol 

are presented. The number of Anycast proxy servers and their placement are studied. Five 

placement methods have been implemented and evaluated including random placement, highest 

traffic placement, highest number of active interface placements, K-DS placement and a hybrid 

placement method. The work presented in this thesis provides new insight into the performance of 

some new emerging communication paradigms and how to improve their design. Although the 

work has been limited to investigating Anycast proxy servers, the results can be beneficial and 

applicable to other types of overlay proxy services such as multicast proxies.  
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CHAPTER1:  INTRODUCTION 

 

This chapter is an introduction to IPv6 addressing space and what the new features 

provided by IPv6 are. Different types of IPv6 traffic including IPv6 unicast, multicast and anycast 

are described. A multihoming concept and different proxy types are identified. The problem 

statements, project contributions, and objectives are described. 

1.1 IPv6 and IPv6 Traffic Overview 

Nowadays computer networks have become one of the main global common interests and 

concerns. The field of data communications has advanced quickly and has had the highest impact. 

These advancements make automated data a basic technology. These advances have led to the 

creation of different internet addresses. The Internet Protocol version 4 (IPv4) was designed in the 

1970s. It was developed to satisfy ever changing requirements  and demands (e.g., multicasting 

support) [1]. Theoretically, a 32-bit IPv4 address can introduce over 4 billion hosts and distribute 

over a 16.7 million network [2] to increase efficiency By adding more machines to the internet, 

IPv4 addresses were assigned to these  new machines in order to be  connected to the internet. This 

resulted in a growing shortage of IPv4 address space. More importantly, the rise of the IPv4 address 

space problems resulted in a demand for new Internet Protocol for the next generation of internet 

users in 1994. After long iterations, the IETF (Internet Engineering Task Force) formalized the 

succeeding protocol. In 1998 [3], the Internet Protocol version 6 (IPv6) was introduced as the 

standard internet protocol for the next generation. This IPv6 protocol was selected from three 

participating candidate protocols. Theoretically,  IPv6 uses a 128-bit address, allowing 2128 
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addresses which are approximately 3.4×1038.This wide range of addresses is capable of 

introducing more than 7.9×1028 times as much as IPv4 [4]. The IPv6 rectifies many of the 

problems associated with IPv4. The basic problem was the limited number of IP addresses. This 

was in addition to other problems such as security issues. New enhanced features such as the auto 

configuration feature were introduced. These applications had been changing frequently, and the 

internet applications were spreading over a wide range distributed across a long distance. The new 

internet protocol IPv6 is compatible with the old Internet protocol and can be used on nodes to 

communicate. It also supports new types of nodes. These nodes include  mobile nodes, home 

appliances and  automobiles [5].  

There are different types of IPv6 traffic. These types include the following: 

1. IPv6 Unicast 

2. IPv6 Multicast 

3. IPv6 Anycast 

1.1.1 IPv6 Unicast 

 Unicast IP addresses are traditional addresses that are assigned to a single interface on a 

specific host. This unicast address is unique in the sense that it uses a lot of address space  [6]. 

IPv6 node uses this address space to deliver packets of data to a single interface, of the IPv6 

destination. Each single node can have multiple unicast addresses on a single interface, but this 

address is unique. On the other hand, if multiple interfaces are configured to appear as a single 

interface of an IPv6 node, these interfaces can use the same address. Unicast addresses can be 
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classified into different address groups. These groups include the following unique global, link 

local, unique local or site local addresses, unspecific and loopback address [7]: 

 Global Unicast  

 

This group of addresses is used on the Internet. It is equivalent to IPv4 public 

addresses which are able to be routed through the internet. IPv6 addresses have a 

hierarchical structural design. One of the basic advantages of this design is to support 

efficient routing infrastructure across the Internet [8]. 

 Link-Local 

 

This group of addresses is used by IPv6 nodes to communicate with other nodes on 

the same subnet. The concept of link local indicate that nodes in the same network can 

communicate with each other without connecting to the network router. This router will 

facilitate this group of addresses and will not forward any packets outside the same link 

using a  link local address [9]. 

 

 Unique Local or Site Local 

 

This group of addresses are equivalent to the IPv4 private address spaces [9], such 

as 192.168.0.0.0/16. These groups of addresses can be used in networks that are isolated 

from the internet. These addresses are not routed through the Internet. The first 10 bits of 

the site local addresses are reserved and always start with FEC0:: /10. 
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 Unspecific Addresses 

 This group of addresses use all the digits that are assigned to zeros 

i.e.0:0:0:0:0:0:0:0/128 or:: /128. When a node has an address that belongs to group, the 

IPv6 nodes are not  assigned a IPv6 address yet [9]. 

 

 Loopback Addresses 

This group of addresses is equivalent to the IPv4 loop back addresses, which are 

used to identify a loopback interface and check the network card interface. This node sends 

a packet to itself.  The IPv6 loopback address is represented by the following: 

0:0:0:0:0:0:0:1 or ::1 [10]. 

 

1.1.2 IPv6 Multicast 

Likewise, a single node or multiple nodes can be identified by using this type of address. 

A single multicast address can be used to identify a group of nodes. The function of a multicast 

address with regard to a IPv6 address has the same function as the IPv4 but with different 

addresses. If a packet is sent to a multicast address, it is delivered to all nodes represented by the 

used multicast address. The first eight bits of the IPv6 multicast address is  always ones and always 

begins with “FF” [11]. 
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1.1.3 IPV6 Anycast 

A paradigm “Anycast” has been newly defined in the IPv6 to allow for networking from 

supporting service oriented addresses [12]. In addition to assigning an identical address, it also 

provides multiple nodes for a specific service. More importantly an anycast packet which is 

destined for an anycast address is delivered to only one of these nodes, which has the same anycast 

address. The anycast idea was first described in RFC 1546 [13]. The primary purpose of the 

anycasting service was to make the task of locating a suitable server on the Internet simpler. The 

basic principle of the anycast service is to create a separation between the logical service identifier 

and the physical host equipment. The assignment of the anycast address is based on the type of 

service. This allows the network service to perform as a logical host. Moreover, anycasting is not 

limited only to the network layer. It  can also be accomplished through other layers, such as the 

application layer [14].  

Anycasting for both the network and application layers has both strengths and weakness. 

On the other hand, IPv6 anycasting has had various problems. These problems need to be identified 

within the context of the current specifications. One major problem with anycasting of IPv6 is that  

is specification has not included the routing protocol, which  play a critical role in wide spread 

anycasting [15]. The active role should be performed by the router which specifies the destination 

network. Then the anycast packets can be forwarded by the proper way. There is a critical need to 

design and implement an application anycast routing protocol to support anycast applications. A 

suitable design is needed to increase support for anycasting on the internet. Anycast routing has to 

work efficiently despite the small number of anycast routers that support anycast within the 

internet. Stateful applications need to be able to identify and utilize anycasting when designing 
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their routing protocols [16]. Internet applications depend on the use of TCP-based or some UDP-

based protocols. The current anycast definition is basically stateless. As a result, the router should 

determine the destination host of each packet.   

 

1.2 Multihoming 

Multihoming is a host network configuration that has a specific client and several first hop 

connections to a given destination. Such connections can be accommodated through single or 

multiple (physical or logical) network interfaces [17]. Alternative definitions consider 

multihoming as the availability of two or more connectivity providers that offer fault tolerance and 

traffic engineering capabilities. Put simply, a host is considered multihomed if it has multiple IP 

addresses. Moreover, Multihoming has achieved resilience, ubiquity, load sharing, and flow 

distribution [18]. This approach of analyzing multihoming support is more objective than other 

approaches that use only one metric, such as cost, or which focus only on a subset of multihoming 

protocols. However, multihoming is defined as the following: an end-host, end-site and hybrid. 

These types are associated with other concepts, including multi-addressing, overlapping networks, 

multiple interfaces and overlay routing. Multi-addressing corresponds to a configuration in which 

multiple addresses are assigned to a given host based on prefixes advertised in different 

connections [19]. Networks that have a common area of coverage are defined as overlapping 

networks. For example, mobile end nodes that connect to these overlapping networks must have 

more than a single interfaces. Each one of these interfaces is specific to the type of technology 

being used. Hence, End-Host Multihoming is a host entity configuration that has several first-hop 
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connections to a given destination and employs its own mechanisms to select a connection.  Also, 

a multihomed host with different interfaces (logical or physical)  can have different configured 

network prefixes [19]. On the other hand, End-Site Multihoming is a network entity configuration 

that has several first-hop connections to a given destination. Also, it corresponds to a site using 

multiple internet connections to increase network reliability or to improve performance. As a 

result, the ownership of the Home Agent (HA) and Mobile Routers can be taken into account.  

A mobile router is defined as an entity providing Internet access to the multihomed 

network. If these network elements are controlled by a single entity, it is called the Internet Service 

Provider (ISP) model. Otherwise, it is referred to as the Subscriber/Provider model. Hybrid 

Multihoming is an entity configuration that has several first-hop connections to a given destination, 

which requires cooperation between the nodes and the network to facilitate an efficient operation. 

Hybrid Multihoming mixes both end-host and end-site characteristics but requires the participation 

of end-host and network entities (e.g. servers) for full multihoming support. Most current proposals 

include hybrid multihoming solutions that target network issues, such as routing scalability, but at 

the same time also address the drawbacks of the current TCP/IP architecture, such as the dual role 

of IP address (identifier and locator) [19]. 

Figure 1 shows a multi-homed site connected to two upstream service providers, ISP A and 

ISP B to address a remote network. 
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ISP A ISP B

Source Client 

Destination Network

 

Figure 1:  The Multi-Homed Domain 

. 

1.3 Proxy Service and Proxy Types 

In this section, the function of the proxy is described. Different types of proxy types and 

services are listed. 

 

1.3.1 Proxy Server 

A proxy server is a hardware host or a software application that runs on a computer and 

acts as a connector or an intermediator between an endpoint device, such as a client, and another 
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server from which a user or client is requesting a service. The proxy server may exist in single 

machine as both a firewall and a proxy server or it may be located on a separate proxy server, 

which then forwards requests through the firewall device. Figure 2 shows an example of a web 

proxy server   

 

 

Figure 2:  Web Proxy Server 

There are different types of proxies. Proxies depend on services which act as an 

intermediary for the network. These types include the following: web proxy, anycast proxy, and 

multicast proxy. 

1.3.2 Web Proxy 

A web proxy server is a server that acts as intermediary between a web browser (such as 

Internet Explorer) and the Internet. Proxy servers help improve web performance by caching a 
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copy of frequently used webpages. It also supports additional monitoring and access rules. Web 

proxies have different features and functionalities. The best web proxies offer SSL security, which 

encrypts communications between the user and the proxy. A beneficial side effect of SSL is the 

ability to bypass supervision restrictions in countries which restrict access to websites. Web 

proxies also provide some additional options such as, including User Agent masking, cookie 

management, and advertisement removal which unique to this type of proxy. 

1.3.3 Anycast Proxy 

PIAS (Proxy IP Anycast Service) [20], is a proxy service that works as an intermediary 

between anycast clients and their destination but does not impact the IP routing infrastructure. The 

term service implies that this proxy service is fully transparent for the view of the user. It makes 

existing IP stacks and applications transparent. 

PIAS allows clients which are members of an anycast group to receive anycast packets for 

that group by using their own normal unicast address. The anycast target also joins and enrolls in 

the anycast group by transmitting a request packet to an anycast address using its unicast interface 

and address. The target may leave the group through a request packet or by simply sending nothing. 

The main feature of PIAS is that it efficiently utilizes the IP address space. A single IP address can 

identify tens of hundreds of IP anycast groups. This procedure is highly measurable due to 

increases in the number of anycast groups. Whether the size of the group gets larger or not has no 

impact on the infrastructure of the IP routing. This feature allows for efficient and fast failover in 

response to either failures or errors for both target hosts and the nodes of the PIAS infrastructure. 
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The selection criteria of target hosts requires clients to use a proxy service rather than a 

router to send information to the host. This factors apply the load balance ability between targets 

based on available routing details. Another important and very unique feature for PIAS allows any 

group member to send packets to their neighbors (members of the same group) in their group. This 

feature is not available to clients who use native IP anycast. This group member would receive its 

own packet if it is transmitted to the group. Also, this important feature allows IP anycast to support 

different vital applications including P2P applications, something not possible if a host cannot both 

send and receive data from the anycast group. 

PIAS provides the following features: 

1. Simple enrollment process  

       Members can join or leave a group very easily .Target hosts do not have to interact 

with IP routing to join and leave. 

2. Scalability 

The number of members in a single group. It can multiply by the typical metrics of 

memory and bandwidth. One of the requirements of the PIAS is to make efficient use of 

the IP address space so that PIAS is able to work well with thousands of groups within a 

single address by incorporating TCP and UDP port numbers as part of the group address. 

PIAS is also measured according to group dynamics. If an IP routing behaves badly 

different routers are added and withdrawn frequently. The idea is that this PIAS overlay 

hides member dynamics from IP routing and can handle dynamics caused both by 

continuous members who frequent join and leave. This including those issued caused by 

Distributed Denial of Service attacks 
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3. The Criteria of Target Selection 

IP anycast can only choose targets based on proximity. At a minimum, PIAS can 

add load and connection affinity as needed. 

 

1.3.4 Multicast Proxies 

Reliable Multicast proxy (RMX) [21] is a proposed proxy that can act as a proxy service 

for multicast traffic. As illustrated in Figure 3, the RMX divides the session into two sub-sessions: 

the RM session and the “proxied" session. The RM agent serves as the interface to the main 

multicast session. The core of the RMX is the protocol adapter which uses the transformation 

engines to assist in converting the data store between the formats of the main session and the 

proxied session. Finally, the protocol agent serves as the interface to the proxied session. 

 

Figure 3:  Multicast Proxy Architecture 

 

The Reliable Multicast agent is considered to be the primary interface of the proxy during 

a multicast session. This agent participates in the reliable multicast session when reliable multicast 
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proxy clients are present. It handles the communication protocol details, and then recovers the data 

that has been lost. This recovery process is accomplished by requesting the missing data units from 

other members of that session. Conceptually, the reliable multicast agent creates a data store of all 

objects that are part of the reliable session. This data store is changed whenever data is received 

from either the proxied session or the reliable multicast session. The reliable multicast agent saves 

any new received data objects in the data store. The reliable multicast agent forward any updates 

from the data store to the proxied session or to the multicast session. 

The data store is identified as a soft copy of the session and is considered to be reliable 

multicast data. A Reliable Multicast agent applies the lost recovery mechanisms which are built 

into the protocol to build the data store. If that store is lost due to a system crash or system halt, it 

can be rebuilt by recovering the lost data or by acquiring it from other agents in the reliable 

multicast session. A protocol agent and a protocol adapter provide the interface for the proxied 

session where by the protocol agent has the ability to actually implement communication protocol 

to the clients. This communication protocol may be a different instance of a reliable multicast 

session using the same or some other reliable multicast protocol, or it can be a different 

communication protocol such as TCP. Protocol agent design is accomplished through ALF 

principles. This protocol agent mainly depends on the proxied clients and network’s 

characteristics. For example, clients that do not support multicast can use a unicast protocol agent 

which can provides a tunnel between the client and multicast session. On the other hand, a 

congestion control can be handled by reliable multicast agent by limiting its transmission rate 

based on specific application policies. In this scenario, both sides of the proxy and another RM 

agent communicate with the proxied session and run two instances of the same reliable multicast 
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protocol. The most sophisticated component of the reliable multicast proxy model is the protocol 

adapter. It provides the requisite functionality for heterogeneous environments and relies heavily 

on ALF to achieve reasonable performance. 

1.4 Problem Statement 

 

The performance of TCP traffic in IPv6 networks for anycast varies based on the network 

topologies. Using multi-homed clients and servers can affect the performance of the network. 

When the number of the links that connects clients to the network increases, the performance of 

sending and receiving data can be affected. Also, the links that connect servers to the network can 

vary in with regard to the number of connection that can affect the overall network performance. 

A proxy in the network can handle a client’s connection and direct it to a server to provide 

the required service. This behavior can affect the network’s performance, especially when the 

proxies are placed in specific locations in the network rather than other locations. 

Evaluating the network performance under these different conditions can be very useful 

and informative for researchers who want to quantify the impact of using different scenarios and 

implementations in any TCP traffic topologies.  

The objectives of this project are as follows: 

 Evaluation of the performance of TCP in anycast IPv6 networks with multihomed  clients 

 Evaluation of the performance of TCP in anycast IPv6 networks with  multihomed servers 

 Evaluation of the performance of TCP in anycast IPv6 networks with different numbers of 

proxies  
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 Evaluation of the performance of TCP in anycast IPv6 networks with different proxy 

locations  

 Recommendations for the best proxy placement methods based on performance 

evaluations  

1.5 Contribution 

A comparison study of TCP performance in different environments for IPv6 networks is 

provided. TCP performance for anycast in IPv6 network is investigated. The performance of TCP in 

a multihomed network is measured from the perspective of both clients and servers. 

 The impact of using a proxy in the IPv6 anycast networks is also explored .The performance 

of the network with and without proxies is compared. Also we have investigated the impact of the 

number of proxies and their location in the network. Network performance with proxies in random 

positions, proxies near the highest traffic routers, proxies near routers with highest interfaces and 

proxies near dominating routers using K- dominating set algorithm are compared. 

In addition, a simple but effective method to place proxies in TCP anycast IPv6 network based 

on highest traffic nodes which received the highest connection requests is recommended. An extensive 

comparison between results among different multihomed TCP networks and proxies placement is 

provided.   
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CHAPTER 2: TCP MULTIHOMING FOR IPV6 ANYCAST NETWORKS 

AND PROXY PLACEMENT HEURISTICS 

 

In this chapter the concept of TCP multihoming, its details and benefits will be described 

with a focus on the limitations of TCP in multihomed environments. Finally the proxy service for 

anycast and proxy placement heuristics to provide better performance will be further explored. 

 

2.1 TCP Multihoming  

 

Generally, there are several reasons behind applying multihoming, such as redundancy, 

independency of ISP, load sharing, and performance to obtain simultaneous IP connectivity from 

multiple ISPs and polies. Hence, there are  various challenges when designing a good site 

multihoming solution without significant drawbacks [17]. 

During the start of 2000, IETF received many proposals about overcoming  the challenges 

of IPv6 multihoming, Pekka Savola et al.[22] analyze, the implications of having multiple 

addresses from multiple ISPs on a host, and describe, and analyze the IPv6 site multihoming 

solution called “shim6”. The biggest constraint of the protocol appears to be the inflexibility of so-

called Hash Based Addresses, which are used to provide the security for session survivability.  

Naderi Carpenter et al. [23] briefly reviewed active solutions that have been proposed for 

multihoming in IPv6 and performed an analysis, from deploy ability viewpoint,  Sugimoto , Ryoji 

and Toshikane et al.[24] made comparisons between SCTP and SHIM6 from different perspective. 
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The goal of these comparisons was to specify the differences and its implications on the effects 

and usability of multihoming features. Firstly, they take the protocols architectural view and then 

they examine the possible of impact each protocol has on TCP/IP stack of an end host. Next, they 

compare the mechanism of failure detection for SCTP and SHIM6 in order to understand what is 

the functional difference between these two protocols. They also explore different scenarios of 

protecting SCTP sessions when using IPsec and multihoming IPsec tunnel with SHIM6. 

 

Jun Bi et al. [25] summarized IPv4 multihoming by using  different solutions. They 

reviewed and analyzed different IPv6 site multihoming approaches and they chose SHIM6 as the 

best and most appropriate solution, Richard Clayton [26] analyzed multihoming from an economic 

viewpoint. 

 

In fact, the research has continued for the past several years to introduce various solutions 

for IPv6 multihoming, and the most common goal was to find a solution for scalability to avoid 

huge routing tables. 

When TCP was first introduced, end hosts had only a single interface and they were 

connected to a remote single homed end site. Standard TCP does not have any mechanisms to deal 

with a multipath system nor multi interfaced nodes. Based on this knowledge, using standard TCP 

in a multihomed network might affect the overall performance of TCP. TCP takes into 

consideration that packet losses are always caused by network congestion. Thus, packet losses are 

an indication of congestion in the path between the source and the sink for TCP protocol. The 

detection of this packet losses is done either by a timeout of the TCP Retransmission Timer or by 
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receiving duplicated acknowledgment packets. When TCP receives three duplicated 

acknowledgments, TCP minimizes its congestion window by half. The congestion windows of 

TCP is similar to the mechanism of the flow control window. It limits the number of bytes that 

may be sent and received between two hosts. This mechanism avoids the overloading of the link 

between the two hosts. Multihomed environment increase the probability of receiving out-of-order 

TCP segments. Based on receiving an out-of-order segment, TCP sends a duplicated 

acknowledgment. As previously mentioned, three duplicated acknowledgments cause the 

reduction of the TCP congestion window. In such an environment, TCP concludes that duplicated 

acknowledgments are due to packet losses and enter the  congestion avoidance phase [27].  

Different mechanisms have been proposed to enable multihoming support in the transport 

layer such as Multihomed TCP, TCP MH, DCCP, SCTP and Multi-path TCP. Multihomed TCP 

[28], TCP-MH [29] and Multi-path TCP[30]  add  multihoming support for TCP while SCTP and 

DCCP are completely  new transport protocols. Multihomed TCP replaces IP address and ports 

with a context identifier to identify a connection. TCP-MH alters the SYN segment. This change 

allows it to contain all addresses and implements primitives, which includes adding and deleting 

Multihomed operations to update the currently used address.  

Multi-path TCP is a completely new protocol. It is a standardized IETF protocol [31] which 

provides a regular TCP flow with the ability to deal with and send traffic among multiple paths. 

The Datagram Congestion Control Protocol (DCCP) provides bidirectional unicast connections 

for congestion-controlled unreliable datagrams. Its initial design did not support multihoming. In 

fact, a multihoming feature was  added as an extension [32]. This extension added primitive to 

move the existing running connection from on address to another of the available multihomed 
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links. SCTP [33] is a new transport protocol. The basic feature of this protocol is multi-homing. It 

provides native multihoming support by creating an association between one session and multiple 

IP addresses so every session can use multiple paths. One of these paths is marked as primary and 

the other paths are backup. 

 

Tahar , Dhraief  and Belghith [27] provide TCP performance evaluation over multihomed networks. 

Their goal was to measure the impact of the multihoming nature of the end-hosts on TCP. They 

designed a novel multi-interfaced mobile node using OMNeT++ network simulator. Their 

proposed model depends on the Layer 2 virtualization approach to develop an abstraction of the 

available wireless interfaces towards the upper-layers protocols. The obtained results indicate the   

Layer 2 virtualization approach mitigate the misbehavior of TCP in multi- path networks.  

.  

2.2 Proxy Types and Anycast Proxy  

 

A proxy server is a computer that offers a computer network service to allow clients to 

make indirect network connections to other network services. Different types of proxy has been 

proposed for different purposes. Web proxy provides clients with web service where multicast 

proxy is a proposed proxy that can act as a proxy for multicast. 

For the purposes of this research a service for anycast traffic will be used since the main 

focal point of this research is TCP traffic in IPv6 network for anycast traffic. 
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Proxy IP Anycast Service (PIAS) is a detailed description of the architecture of an IP 

anycast service that can be deployed and overcome the limitations of the “native” IP anycast. This 

architecture can add new features, some of which are typically associated with application-level 

anycast. 

This architecture is composed of an overlay or intermediator and it does not have any effect 

on the infrastructure of IP routing. IP anycast service is transparent when used in the client view, 

the client does not need to add an extra configuration. It allows any client   who are members of 

the anycast group to receive anycast traffic from that group using a traditional unicast address and 

traditional protocol stack. The anycast target or destination is enrolled in the anycast group through 

the transmission of a request packet to an anycast address via traditional unicast address and 

interface. The target may likewise leave the group using a request packet, or stop sending data. 

The main feature of the anycast proxy service is the reduction of using anycast address 

space where thousands of IP anycast groups may be identified through a single IP address. It is 

very scalable due to number of groups, group size and group dynamics which do not effect on the 

IP routing infrastructure. This method can provide fast failover when failures of both target hosts 

and PIAS infrastructure nodes has occurred. 

The target selection by proxy can be based on criteria other than the proximity of the 

sending host. Also the ability of load balancing among targets can be provided by this proxy 

service. Another beneficial feature is the ability of each group member to send packets to other 

members of the same anycast group directly which is not possible when using the IPv6 anycast 

native service. This feature can be support for P2P applications.  
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2.3 Proxy Placement Heuristics 

 

The placement of proxies and the amount used can greatly affect the performance of the 

network. Many heuristic algorithms for placing a given number of proxies in a specific 

placement to enhance the overall performance of the throughput and minimize delay and packet 

loss.  

2.3.1 Random Placement Heuristic  

For the algorithm of Random Placement, the routers which are used to place the proxies are 

chosen arbitrarily. This systematical method does not follow a placement algorithm, and all the routers 

in the network have equal probability of having proxy connected to it. Randomly allocating proxies in 

the network provides proxy service to clients. Although, this heuristic does not achieve optimal results, 

it is still useful for comparison purposes to demonstrate the importance of having well-designed proxy 

placement algorithms to provide proxy service and achieve the best throughput.  

2.3.2 Highest Traffic Placement Heuristic 

This is a well-known heuristic to optimize proxy placement by adding the proxies next to 

the routers that have the highest traffic. Routers with the highest traffic are routers that receive the 

greatest number of connections and traffic which are routed through these routers. The amount of 

traffic is measured using statistical counters which represent the amount of data being received, 

processed, and routed. 
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In order to specify which routers have the highest amount of traffic, we must first run the 

network without any proxies. After the sending process is completed, the counter statistics of each 

router in the network are retrieved, then the routers are ranked based on the amount of packets 

being received and routed correctly. The following diagram illustrates describe this procedures  

 

 

 

 

 

Figure 4:  Highest Traffic Routers Selection 

2.3.3 Highest Interfaces Placement Heuristic 

This is another heuristic that optimizes proxy placement by adding the proxies next to the 

routers that have the highest number of active interfaces. Routers always have many interfaces to 

handle traffic from different sources and route it to different destinations. Each interface can be 

either active or passive. Active interfaces are online interfaces that receive and send data and route 

updates. On the other hand, passive interfaces are not used to send and receive data. Routers that 

have the highest number of active interfaces always have higher rate of traffic.  

In order to specify which routers have the highest number of active interfaces, the active 

interfaces of each router in the network must be counted. Then the routers are ranked based on the 

active interfaces. The following diagram illustrates this procedure.  

 

 

Run network 

without proxy 

Get routers 

data counters 

Rank routers based 

on processed packets 



23 

 

 

 

 

 

 

 

 

Figure 5:  Highest Number of Active Interfaces Routers Selection 

2.3.4 K-DS Placement Heuristic 

The Minimum Dominating Set  problem is NP-complete [34] [35] and it is related to the 

traveling salesperson problem [36] which requires approximating heuristics. These heuristic were 

connected to Wormhole-Routing in massively parallel computers [37] by finding dominating 

nodes that can deliver and receive messages to and from a larger set of nodes (not in the dominating 

set) while avoiding channel congestion. 

 

Figure 6:  1-DS for Two Different Topologies 
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In the above examples, the 1-DS set is shown for two different topologies. In the first 

topology, the size of the 1-DS set is 4. As illustrated in the figure above every node is either a 

master node which is a member of the dominating set or is at one node away of a master node. 

Topology 2 with 16 nodes has a 1-DS set of size 4.  

In [38], dominating sets are used for broadcasting wireless networks to determine gateway 

nodes. The goal of using the dominating set is to ensure reliability and fault tolerance. When 

position information is available for every node, each node can determine the gateway nodes, 

without sending or receiving a message between the neighbors. 

The algorithm of K-DS: 

A developed approximation algorithm has been used  for the k-DS problem for the purpose 

of computing  the set of master nodes with regard to proxy placement  [39]. The algorithm provides 

a sub-optimal placement methodology of proxies in the network. Using the topology of the 

network as input allows the traffic per link to be independent. The k-DS method assumes a regular 

traffic pattern between each node pair exists (source s and destination d). The algorithm ensures 

that the resulting set T has the following properties: every node x ∈ X is either in D or is at most 

k hops away from a node in D.  

Some definitions and notations that are used in the k-DS algorithm:  

1. Cardinality (S): is the number of members in the set S.  

2. Neighbor (x): is the set of nodes sharing a link with a node x.  

3. Neighbor
k 

(x): is the set of nodes that are at most within k hops away from a node 

x. For k equals 0, Neighbor
0
(v) contains the node v only. 

4. Connect
k
(x), called the k-connectivity of a node x, represents a connectivity index 

based on nodes within k hops of the node x. It’s defined as show in equations 2.1 , 2.2 

and 2.3 below :  

Connect
0 

(x) = Degree (x) = Cardinality (Neighbor (x))                                             (2.1) 
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Connect
1 

(x) = Connect
0 

(x) + ∑ 𝐶𝑜𝑛𝑛𝑒𝑐𝑡0(𝑛)
𝑛 ∈𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑥)

                                   (2.2) 

 

Recursively we define Connect
k 
(x) as:  

Connect
k 
(x) = Connect

k-1 
(x) + ∑ 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑘−1(𝑛)

𝑛 ∈𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑥)
                              (2.3) 

With a uniform traffic assumption, higher values of the k-connectivity of node 

v correspond to higher volumes of traffic passing through node v. Note that, a node m 

can contribute more than once to the k-connectivity of a node v, since traffic can arrive 

from the same node through different paths.  

5. Master
k 

(x), called the k-Master of a node x, represents the node p, member of 

Neighbor
k
(x), with the highest Connect

k 
value over all nodes n that are at most k hops 

away from node x (i.e., all nodes n ∈ Neighbor
k
(x)). For k equals 0, Master

k
(x) is the 

node x itself. 

The Proposed k-DS algorithm initializes the set of k-DS to the empty set. Each node 

computes its own connectivity index k-Connect by adding the Connect
k-1 

values of its neighbors 

The k-DS algorithm is described below, for k > 0:  

1. Initialize the working set S to the empty set φ.  

2. For all nodes x in G, compute Connectk (x).  

3. For all nodes x do  

If S ∩ Neighbork (x) is empty do  

{Find the node n that is Masterk (x);  

Add node n to the set S}  

 

4. Set k-DS to S; Return (k-DS)  
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with its initial values. A voting stage allows each node to select its Master
k 

from its neighbors 

within k hops based on their connectivity index.  

The pseudo code of iteration # k of the heuristic algorithm is shown below. The algorithm 

also implements a priority voting scheme for cases with ties. Furthermore, it keeps a master node 

from voting for a node outside the k-DS set. The k-DS heuristic for graph G uses k iterations to 

compute the sets 1-DS, 2-DS… k-DS. In iteration j, the connectivity values Connect
j-1 

of iteration 

j-1 are used to compute the connectivity values Connect
j 
of the current iteration (as explained 

earlier).  

2.3.5 K-DS HYBRID Placement Heuristics 

An obvious limitation of the k-DS algorithm is that if M proxies are used in the network, 

the k-ds algorithm results in the following n nodes and M < n. To overcome this limitation, an 

extended k-DS algorithm has been proposed [39] which  has the ability to provide solutions for 

the problem regarding the number of proxies being used. If the number does not exactly match 

the cardinality of any k-Master set, the extension, denoted as HYBRID, takes advantage of k-DS. 

   

Given that M is the arbitrary number of proxies to be placed in the network, it is best to 

start with the largest k-DS set of size smaller than M and add a new node at each step. In each step, 

the simulation is run and the network performance measured. The node with the highest active 

interfaces is added to the final solution. The HYBRID algorithm stops when the M nodes have 

been selected. The HYBRID algorithm takes advantage of k-DS by building the initial set and uses 

k-BLK to extend it.  The pseudo code of the heuristic algorithm is shown below.  
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1.  Repeat starting at k =1  

Compute k-DS  

Increment k by 1  

Until NumberNodes = cardinality(k-DS)≤ X.  

We denote the largest k, such that the size of ℑ-

DS ≤ X, as ℑ.  

2.  If NumberNodes = X, return ℑ-DS as the list of nodes 

that should have proxies next to it and exit the 

algorithm.  

Otherwise, put proxy in each of the nodes in ℑ-DS 

(the largest k-DS set of size smaller than X)  

3.  Repeat starting at j = NumberNodes  

3.1 Run simulation with j nodes having proxies as 

selected in the pervious step.  

3.2 Select the next (j+1)
th 

node to be the node 

with heist active interfaces.  

Add a proxy to this node.  

3.3 Increment j by 1  

Until j =X 
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CHAPTER 3:  NETWORK MODEL AND SIMULATION SCHEMES 

 

 The network topologies used in the simulation analysis will be presented. The following 

proxy placement methods are used: random placement, highest traffic placement, highest number 

of active interfaces, K-DS placement and HYBRID K-DS placement. These placement methods 

have been illustrated through examples to show the methodology used to determine the perfect set 

of nodes for proxies placement. The different scenarios that were implemented include 

multihomed clients, multihomed servers, different number of proxies and different placement 

methods. The parameters that were used to evaluate the performance are described. Finally 

experimental procedures are proposed including the GNS3 simulator and simulation parameters.  

 

3.1 Evaluation Topologies 

 

In order to carry out the simulation tests and evaluate multihomed TCP over IPv6 for 

anycast network, a 25 router network as show in Figure 7 has been built. The routers are 

connected as shown in the figure. Each router is connected to different routers. 
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Figure 7:  Simulation Network 

In order to do a performance comparison of TCP traffic in an anycast network. Two 

anycast methods are going to be compared.  

3.1.1 Method 1: Traditional Anycast Network  

For this method, a traditional anycast network that routes anycast traffic via network 

routers was used. Different scenarios for clients including single home, dual home and triple 

home clients and single home, dual home and triple home servers were simulated. 

For each scenario, two networks topologies were simulated. The first one consisted of 20 

clients and 5 servers as shown in Figure 8, and the second one had 12 clients and 12 servers as 

shown in Figure 9. 
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Figure 8:  Simulation network with 20 clients and 5 servers without a proxy 

 

Figure 9:  Simulation network with 12 clients and 12 servers without a proxy 
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3.1.2 Method 2: Proxy IP Anycast Service: 

For this method, an IP anycast proxy that directed anycast traffic to a proxy closest to its 

destination was used. Different scenarios regarding the position of the proxy and the position of 

the single home, dual home and triple home clients and servers were simulated. 

For each scenario, two networks topologies were simulated. The first one consisted of 20 

clients and 5 servers, and the second one had 12 clients and 12 servers. Also, for each topology, a 

different number of proxies was used to investigate the impact of increasing the number of proxies 

in the network performance. The networks were simulated with one, two, three and four proxies. 

Based on the proxy placement heuristics described in chapter two, the position of the 

proxies were selected in accordance with the following consideration: 

1. Random location 

2. Proxies connected to routers with the highest traffic 

3. Proxies connected to routers with the highest number of active interfaces  

4. Proxies connected to dominating routers using k-DS  

5. Proxies connected to dominating routers using Hybrid k-DS 

 

3.2 Proxies Locations 

In this section, the locations of the proxies with regard to the topologies were applied to 

different locations and number of proxies. Proxies were located next to network routers, and the 

number of proxies used was based on the number of routers as shown in the figure of the simulation 

network. 
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3.2.1 Random Location 

Two network topologies were randomly selected. These random locations were constant 

for all network scenarios of different proxy numbers and the two topologies. 

The random locations of the proxies were next to R4, R8, R12 and R16 as illustrated in 

Table 1.  

Table 1  Random Locatoin of Proxies 

Scenario number     Number of Proxies Location of proxies 

1 1 R8 

2 2 R8,R12 

3 3 R8, R12,R16 

4 4 R4,R8,R12,R16 

 

3.2.2 Proxies Connected to Traffic with Highest Traffic 

In order to evaluate the performance of the network, proxies were placed next to the highest 

traffic routers. The algorithm explained in Chapter 2 was implemented. The network traffic was 

measured before any proxies for each router were added. Then routers were ranked based on the 

traffic of the data. Finally, proxies were located near routers with the highest traffic. 

Table 2 illustrates the location of the proxies used. 
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Table 2   Highest Traffic proxies’ locations 

Scenario number      Number of Proxies Location of proxies 

1 1 R14 

2 2 R14,R17 

3 3 R13, R14,R17 

4 4 R13,R14,R15,R17 

 

 

3.2.3 Proxies Connected to Routers with Highest Number of Active Interfaces  

In order to evaluate the performance of the network, proxies were placed next to routers 

that had the most active interfaces that were implemented using the algorithm explained in Chapter 

2. Active interfaces for each router were counted. Then routers were ranked based on the number 

of active interfaces. Finally, proxies were placed close to routers that have the highest number of 

interfaces. 

Table 3 illustrates the location of the proxies used. 
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Table 3    Proxies’ Location with Highest Number of Active Interfaces 

Scenario number       Number of Proxies Location of proxies 

1 1 R7 

2 2 R7,R15 

3 3 R7, R12,R15 

4 4 R7,R12,R13,R15 

 

3.2.4 Proxies Connected to Dominating Routers Using K-DS  

The K-DS algorithm was applied over the network topology that was used to obtain the set 

of the master nodes for values of k equal to 2 and 3. The algorithm was initially run starting with 

k equals 2, the set of master nodes that were returned were recorded. The algorithm was run with 

k equal to 3. Table 4 shows the 𝑀𝑎𝑠𝑡𝑒𝑟𝑘 sets correspond to the network topology for k= 2, 3. 

Table 4   K-DS Master Nodes 

K-DS Master nodes 

2-DS R3 , R6 , R15 , R18 

3-DS R6 , R19 
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3.2.5 Proxies Connected to Dominating Routers Using Hybrid K-DS 

The 2-DS algorithm was applied to the network topologies that were to obtain the set of 

master nodes for four positions, R3, R6, R15, and R18. By appling a hybrid algorithm, new master 

nodes were discovered. Table 5 shows the 𝑀𝑎𝑠𝑡𝑒𝑟𝑘 sets corresponding to the network topology. 

Table 5  Hybrid k-DS Master Nodes 

K-DS -Hybrid Master nodes 

2-DS-Hybrid R6, R14, R15 , R18 

 

3.3 Simulation Scenarios 

 

In the previous section, all of the network scenarios required to evaluate and compare the 

performance of TCP for anycast in IPv6 infrastructure for multihomed clients and servers were 

presented. In addition, different numbers of proxies with different locations were used. 

Two main topologies were adopted. The first one consisted of 20 clients and 5 servers, and 

the last one consisted of 12 clients and 12 servers. 

To perform this evaluation, 106 scenarios with different number of clients, servers and 

proxies’ number and locations were built. The tables below show the first 53 scenarios for the first 

main topology, and this process was repeated for the second main topology. 

Table 6 shows the first 9 scenarios of single, dual and triple homed clients and servers 

without using any proxies.  
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Table 6  Multihomed Clients and Servers 

Scenario 

number 

Client links 

Server 

Links 

No. of 

Proxies 

Location 

Description 

Proxies Location 

1 ,2 ,3 

Single , Dual 

,Triple 

Single 0 - - 

4 ,5 ,6 

Single , Dual , 

Triple 

Dual 0 - - 

7 ,8, 9 

Single , Dual , 

Triple 

Triple 0 - - 

 

The next table, table 7 shows 9 network scenarios when we use one proxy with different 

location algorithms and multihomed clients was used.  

Table 7  Network Scenarios of Single Proxy with Different Locations for Multihomed Clients 

Scenario 

number 

Client links 

Server 

Links 

No. of 

Proxies 

Location 

Description 

Proxies Location 

10 ,11,12 

Single, Dual, 

Triple 

Single        1 Random Position R8 

13 ,14,15 

Single, Dual, 

Triple 

Single        1 Highest traffic  R14 

16,17,18 

Single, Dual, 

Triple 

Single       1 Highest number of 

active interfaces 

R7 
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Table 8 shows 9 network scenarios when one proxy with different location algorithms and 

multihomed clients were used.  

Table 8  Network Scenarios of Single Proxy with Different Locations for Multihomed Servers 

Scenario 

number 

Client 

links 

Server 

Links 

No. of 

Proxies 

Location 

Description 

Proxies Location 

19,20,21 

Single Single , 

Dual, Triple 

1 Random Position R8 

22,23,24 

Single Single, Dual, 

Triple 

1 Highest traffic  R14 

25,26,27 

Single Single, Dual, 

Triple 

1 Highest number of 

active interfaces 

R7 

 

Table 9 shows 12 network scenarios when two proxies with different location algorithms 

and multihomed clients were used. 

Table 9  Network Scenarios of Two Proxies with Different Locations for Multihomed Clients 

Scenario 

number 

Client links 

Server 

Links 

No. of 

Proxies 

Location 

Description 

Proxies Location 

28,29,30 

Single, 

Dual, Triple 

Single 2 Random Position R8 , R16 

31,32,33 

Single, 

Dual, Triple 

Single 2 Highest traffic  R14 , R17 
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Scenario 

number 

Client links Server 

Links 

No. of 

Proxies 

Location 

Description 

Proxies Location 

34,35,36 

Single, 

Dual, Triple 

Single 2 Highest number 

of active 

interfaces 

R7 , R15 

37,38,39 

Single, 

Dual, Triple 

Single 2 3-DS R6 , R19 

 

Table 10 shows 12 network scenarios when two proxies with different location 

algorithms and multihomed servers were used 

 

Table 10  Network Scenarios of Two Proxies with Different Locations for Multihomed Servers 

Scenario 

number 

Client links Server Links 

No. of 

Proxies 

Location 

Description 

Proxies Location 

40,41,42 

Single Single, Dual, 

Triple 

2 Random Position R8 , R16 

43,44,45 

Single Single, Dual, 

Triple 

2 Highest traffic  R14 , R17 

46,47,48 

Single Single, Dual, 

Triple 

2 Highest number of 

active interfaces 

R7 , R15 
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Scenario 

number 

Client links Server Links 

No. of 

Proxies 

Location 

Description 

Proxies Location 

49,50,51 

Single Single, Dual, 

Triple 

2 3-DS R6 , R19 

  

Table 11 shows 12 network scenarios when three proxies with different location algorithms and 

multihomed clients were used. 

Table 11  Network Scenarios of Three Proxies with Different Locations for Multihomed Clients 

Scenario 

number 

Client links 

Server 

Links 

No. of 

Proxies 

Location 

Description 

Proxies Location 

52,53,54 

Single, Dual, 

Triple 

Single 3 Random Position R8 , R12 ,R16 

55,56,57 

Single, Dual, 

Triple 

Single 3 Highest traffic  R13, R14, R17 

58,59,60 

Single, Dual, 

Triple 

Single 3 Highest number of 

active interfaces 

R7 , R12 , R15 

61,62,63 

Single, Dual, 

Triple 

Single 3 2-DS R6 , R15, R18 

 

Table 12 shows 12 network scenarios when three proxies with different location 

algorithms and multihomed servers were used. 
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Table 12  Network Scenarios of Three Proxies with Different Locations for Multihomed Servers 

 

Scenario 

number 

Client 

links 

Server 

Links 

No. of 

Proxies 

Location 

Description 

Proxies Location 

64,65,66 

Single Single, 

Dual, Triple 

3 Random Position R8 , R12 ,R16 

67,68,69 

Single Single, 

Dual, Triple 

3 Highest traffic  R13, R14, 

R17 

70,71,72 

Single Single, 

Dual, Triple 

3 Highest number of 

active interfaces 

R7 , R12 , 

R15 

73,74,75 

Single Single, 

Dual, Triple 

3 2-DS R6 , R15, 

R18 

 

Table 13 shows 15 network scenarios four proxies with different location algorithms and 

multihomed clients were used. 

Table 13  Network Scenarios of Four Proxies with Different Locations for Multihomed Clients 

Scenario 

number 

Client 

links 

Server 

Links 

No. of 

Proxies 

Location 

Description 

Proxies Location 

76,77,78 Single, 

Dual, 

Triple 

Single 4 Random Position R4,R8,R12,R16 



41 

 

Scenario 

number 

Client 

links 

Server 

Links 

No. of 

Proxies 

Location 

Description 

Proxies Location 

79,80,81 Single, 

Dual, 

Triple 

Single 4 Highest traffic R13,R14,R15,R17 

79,80,81 Single, 

Dual, 

Triple 

Single 4 Highest traffic R13,R14,R15,R17 

82,83,84 Single, 

Dual, 

Triple 

Single 4 Highest number  

of active 

interfaces 

R7,R12, R13,R15 

76,77,78 

Single, 

Dual, 

Triple 

Single 4 Random Position R4,R8,R12,R16 

79,80,81 

Single, 

Dual, 

Triple 

Single 4 Highest traffic R13,R14,R15,R17 

82,83,84 

Single, 

Dual, 

Triple 

Single 4 Highest number  

of active 

interfaces 

R7,R12, R13,R15 
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Scenario 

number 

Client 

links 

Server 

Links 

No. of 

Proxies 

Location 

Description 

Proxies Location 

85,86,87 

Single, 

Dual, 

Triple 

Single 4 2-DS R3 , R6 , R15, 

R18 

88,89,90 

Single, 

Dual, 

Triple 

Single 4 Hybrid 2-DS R6,R14,R15,R18 

 

Table 14 shows 15 network scenarios when four proxies with different location 

algorithms and multihomed clients were used. 

 

Table 14  Network Scenarios of Four Proxies with Different Locations for Multihomed Servers 

Scenario 

number 

Client links 

Server 

Links 

No. of 

Proxies 

Location 

Description 

Proxies Location 

91,92,93 

Single Single, Dual, 

Triple 

4 Random Position R4,R8,R12,R16 

94,95,96 

Single Single, Dual, 

Triple 

4 Highest traffic R13,R14,R15,R17 

97,98,99 

Single Single, Dual, 

Triple 

4 Highest number of 

active interfaces 

R7,R12, R13,R15 
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Scenario 

number 

Client links 

Server 

Links 

No. of 

Proxies 

Location 

Description 

Proxies Location 

100,101,102 

Single Single, Dual, 

Triple 

4 2-DS R3 , R6 , R15, R18 

103,104,105 

Single Single, Dual, 

Triple 

4 Hybrid 2-DS R6,R14,R15,R18 

 

3.4 Evaluation Method 

 

The evaluation metrics that were used to evaluate and compare the performance of the 

different network scenarios will be presented. 

3.4.1 Throughput 

Throughput is determined by the number of packets passing through the network during a 

certain period of time. It counts the  total  number  of  packets  that  have  been  successfully 

delivered  to  the  desired  node. It is measured in bits per second (bit/s or bps). 

Throughput can be represented mathematically as found in equation 3.1 below; 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =  
𝑛𝑜.𝑜𝑓 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡∗𝑝𝑎𝑐𝑘𝑒𝑡 𝑠𝑖𝑧𝑒∗8

𝑡𝑜𝑡𝑎𝑙 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
                        (3.1) 
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3.4.2 Latency 

End-to-end latency (or delay) is defined as the time taken for a packet to be transmitted 

across a network from source to destination. The end-to-end delay of a network is a basic indicator 

of network performance evaluation. It is calculated by averaging the amount of time it takes a data 

packet to arrive at the destination. It also includes the delay caused by the route discovery process 

and the queue in data packet transmission. Only data packets that are successfully delivered to 

their destination are counted. If the value of delay is low, it means that the performance of the 

protocol is better. The following calculation is used to determine the average end-to-end delay,  

 

𝑇𝐸2𝐸 = (𝑇_𝑅 –  𝑇_𝑆)                                                                                          (3.2) 

 

 𝑇𝐸2𝐸 is the Average End-to-End Latency. T_R is the time when packets are received at the 

destination node. T_S is the time when packets are sent from the source node.  

 

3.2.3 Packet Retransmission  

Packets are resent after having been either lost or damaged. As a result, the number of 

packets retransmitted is a measure of congestion and network reliability. As the number of 

retransmitted packet increased, the performance of the network got worse.   
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3.2.4 Congestion Window Size  

The congestion window of the Transmission Control Protocol (TCP) is a TCP state 

connection variable which is set by the sender to specify the amount of bytes that can be sent. For 

any specific time TCP, cannot send data with a sequence number higher than the sum of the highest 

acknowledged sequence number and the minimum of congestion window size and receiver 

window.  

There is a difference between CWND and Window size. TCP window size is maintained 

by the receiver. The congestion window prevents a link between the sender and the receiver from 

being overloaded with too much data. CWND is calculated by estimating the amount of congestion 

between the two places. 

When a connection is started, the value of the congestion window is maintained 

independently. At each host, this value is set to a small multiple of the maximum segment size 

(MSS) allowed. This multiple is based on the connection type. The variance in the congestion 

window is managed by an Additive Increase/Multiplicative Decrease approach. 

Increasing or decreasing window size depends on the behavior of the data being 

transferred. If all segments that have been sent are received and their acknowledgment has 

successfully reached the source, a constant is added to the size of the window. The growth of the 

window with regard to such behavior is continued until a timeout event has occurred, which means 

that the segment is not delivered correctly or is lost. When this happens, the congestion window 

increases linearly at the rate of 1/ (congestion window) packets when a new acknowledgement 

packet is received. 
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3.5 Experimental Procedures 

The simulator used to simulate the proposed scenarios will be described. The simulation 

parameters will be illustrated. 

3.5.1 GNS 3 Simulator. 

GNS3 is a Graphical Network Simulator [40] that provides emulation of real networks. A 

VMware or Virtual PC may be used to emulate various operating systems in a virtual environment. 

These applications allow the operating system to run like Windows 7 or Ubuntu Linux in a virtual 

environment. GNS3 allows for the same type of emulation using the Internetwork Operating 

Systems of Cisco.  Cisco IOS in a virtual environment can be run.  

Dynamips is the core of GNS simulator and is responsible for the IOS emulation. Dynagen 

is a text-based front-end for Dynamips, It runs on top of Dynamips, which makes it easier and 

more user friendly in a text-based environment. Dynagen allows users to create network topologies 

using simple Windows ini-type files. GNS3 enhances this feature by providing a full graphical 

environment. 

GNS3 allows the Cisco Internetwork Operating Systems emulation on a Windows or Linux 

based computer. The emulation is supported by a long list of Cisco Firewalls and Cisco router 

platforms. When an Ether Switch card of a router is used, platforms switch is possible and can be 

emulated. This means that GNS3 is a vital tool for preparing Cisco labs for Cisco certifications 

and simulating real networks.  

Different numbers of routers simulators are available, but they are based on what the 

developer provides. In different simulators, there are parameters or commands that are not 
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supported in a practice lab. With these kinds of simulators, the real output of the system cannot be 

seen. Only a representation of the output of a simulated router can be seen. The accuracy of the 

simulator depends on the experience of the developer. 

When using GNS3 while working on real Cisco IOS, the ability of how the IOS works and 

how to have access to any IOS command or parameter is explored. In addition, GNS3 is an open 

source program. However, due to licensing restrictions, an individual Cisco IOSs must be used 

with GNS3 which can be downloaded from the Cisco website. Also, GNS3 supports a throughput 

of approximately 1,000 packets per second in a virtual environment. A normal router will provide 

a hundred to a thousand times greater throughput. 

 

3.5.2 Simulation Parameters  

To evaluate multihomed TCP over IPv6 for anycast network, a GNS3 Simulator, which is 

a real time simulator that can deal with complete CISCO IOS has to be used for the client, servers 

and proxies Linux operating system should be used. The routing algorithm that was used for 

routing data was EIGRP, which is the most suitable and effective way of handling both equal and 

unequal load balancing for better performance. To start TCP traffic, an IPERF3 application can be 

used to generate a TCP traffic from the client to a server. Then the throughput, delay, packet 

retransmission and congestion window size can be measured. Each server has the same IPv6 

anycast address. Each client has its own IPv6 address. All of the network work on IPV6. 
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When proxies are used, every proxy and client has a unique IPv6 address. Servers still have 

their anycast address. A client sends a request to the proxy, and the proxy forwards it to the nearest 

server. 

In a simulation environment, an Enhanced Interior Gateway Routing Protocol (EIGRP) is 

used. An advanced distance-vector routing protocol is used on a computer network to help 

automate routing decisions and configuration. In fact, EIGRP protocol is an enhanced version of 

the Interior Gateway Routing Protocol (IGRP), which was released in 1993 to rectify the problem 

of supporting IPv4 classes [41]. All routers contain a routing table rules to make decisions and a 

system whereby traffic is forwarded to a network. If the router does not contain a valid path to the 

destination, the traffic is discarded. EIGRP is a dynamic routing protocol by which routers 

automatically share route information. EIGRP protocol supports equal and unequal load balancing 

which supports better functionality to utilize multiple links and multihomed connections. This 

eases the workload on the network administrator who does not have to configure changes to the 

routing table manually [42] 

In the simulation, clients were instructed to send 100 MB of data to the anycast address on 

the server. To send this amount of data and measure the evaluation parameters, the IPERF 

application was used. IPERF is a tool for active measurements of the maximum achievable 

bandwidth of IP networks. It supports the tuning of various parameters related to timing, protocols, 

and buffers. For each test, it reports the bandwidth, loss, and other parameters. 

A new version of IPERF was used. The IPERF3 is a new design of a basic version 

developed at NLANR / DAST. Iperf3 is a new implementation to achieve the goal of smaller, 

simpler code base, and a library version of the functionality that can be used in other programs. 
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IPERF3 can evaluate parameters after the send process is completed. It measures the throughput 

of the network, the end to end delay, and the number of packet losses and the size of the congested 

windows.  
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CHAPTER 4: PERFORMANCE COMPARISON AND SIMULATION 

RESULTS 

In this chapter, the simulation results using different scenarios will be discussed. The first 

section discusses the impact of using multihomed clients and servers and how they can affect 

network performance. In the next section, the impact of adding proxies to the network including 

how the number of proxies added can enhance the network performance will be discussed. After 

that, different proxy placement methods and what the best placement method for network 

performance is will be investigated. The placement methods used are random placement, highest 

traffic placement, highest number of active interfaces placement, K-DS placement and HYBRID 

placement. In the last section, the number of proxies used and their placement will be compared 

to networks that did not have any proxies. Also, how to overcome the obstacle of using native IPv6 

anycast will also be investigated. 

4.1 Multihomed Clients without a Proxy 

First, the results of increasing the number of links that the client can use to reach the 

destination from a single home client to a triple home client will be compared. 

For the first topology, 25 routers, 20 clients and 5 servers were used. The results as shown 

in Figures 10 and 11 indicate that the throughput increases when the number of links is increased 

from a single link to a dual link for clients. There is a small increase when a triple link is used. 

Also, for the other topology, 12 clients and 12 servers were used and the impact of using a 

multihomed client can be seen in the chart below. The throughput of the network increases when 

number of links used increases.   
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Based on these results, when the number of client links increases from single to dual, the 

throughput of the network increases 24% on average. Increasing the number of links for clients 

from dual to triple has a smaller impact and the throughput is very close.  

For single home clients, when increasing the number of servers is from 5 to 12 while 

decreasing the number of clients from 20 to 12, the throughput of the network is enhanced by 

approximately 12%.  

 

Figure 10:  Throughput for 25 routers, 20 clients, and 5 servers with multihomed clients  
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Figure 11:  Throughput for 25 routers, 12 clients, and 12 servers with multihomed clients 
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Figure 12:  Delay for 25 routers, 20 clients and 5 servers with multihomed clients 

 

Figure 13:  Delay for 25 routers, 12 clients and 12 servers with multihomed clients 
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For the number of packet retransmissions, as seen in Figures 14 and 15, decreased when a 

client became a dual home, and it is decreased more when clients became a triple home. The 

average rate of packet loss enhancement was approximately 24%. 

 

 

Figure 14:   Number of packet tetransmission for 25 routers, 20 clients and 5 servers with 

multihomed clients 
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Figure 15:  Number of packets retransmission for 25 routers, 12 clients, and 12 servers with 

multihomed clients 
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Figure 16:  CWND for 25 routers, 20 clients and 5 servers with multihomed clients. 

 

Figure 17:  CWND for 25 routers, 12 clients and 12 servers with multihomed clients 
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4.2 Multihomed Servers without a Proxy 

 

In this section, the impact of increasing the number of links that the server can use to 

receive connections from clients was investigated. The number of links were increased from a 

single link to triple links. 

For the topology, 25 routers, 12 clients and 12 servers were used. As we can see as shown 

in Figures 18 and 19, the throughput increased when the number of server links was increased 

from a single link to a dual link. The throughput increased by an average of 25% while there was 

only a small increase when a triple link was used. 

When the number of clients decreased from 20 to 12 and the number of servers increased 

from 5 to 12, the network performance was better, especially with a single home connection as 

shown in Figure 19. When the number of links was increased, an increase of the number of servers 

did not affect the performance of the network, so the throughput of the dual and triple links for 12 

servers and 5 servers was very close. 
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Figure 18:  Throughput for 25 routers, 20 clients, and 5 servers with multihomed servers 

 

Figure 19:  Throughput for 25 routers, 12 clients, and 12 servers with multihomed servers 
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links were increased. The delay significantly decreased when the number of the links from a single 

to dual were increased. The decrease continued when it was increased from dual to triple home 

clients. 

The delay decreased by an average of 20% when the server links were increased form 

single to dual. 

 

Figure 20:  Delay for 25 routers, 20 clients, and 5 servers with multihomed servers  
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Figure 21: Delay for 25 routers, 12 clients, and 12 servers with multihomed servers 
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throughput and less delay and packet loss. 
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Figure 22:  Number of packet retransmission for 25 routers, 20 clients and 5 servers  

 

Figure 23:  Number of packets retransmitted for 25 routers, 12 clients, and 12 servers 
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4.3 Proxy Results: 

In this section, the results of using proxies will be discussed. The impact of increasing the 

number of proxies in the network and different proxy placement scenarios will also be explored. 

4.3.1 Anycast Proxy 

To simulate the impact of using proxies for multihomed TCP for anycast traffic in an IPv6 

network, anycast proxy was used. This kind of proxy, as previously illustrated in chapter 2, works 

as an intermediator between clients and anycast targets. This type of proxy is deployed in different 

locations on the network. These proxies advertise the same range of a requested IPv6 anycast 

address which is referred to as an anycast prefix. When a client requests a unicast address, this 

request is redirect to the nearest proxy. However, this proxy is not the real or required anycast 

target. Then the proxy redirects the request to the required target using IPv6 unicast traffic.       

 4.3.2 Impact of Increasing Proxies with Multihomed Clients  

Two network topologies with different number of proxies were simulated, and the impact 

of increasing the number of proxies with multihomed clients and single home server was found. 

The network was simulated with a single proxy, two proxies, three proxies and four proxies. These 

scenarios were applied with single, dual and triple clients and single home servers with different 

placements methods including random, highest traffic, highest number of links, K-DS and hybrid 

placements. 

Figures 24 and 25 show the throughput of the network when using one, two, three and four 

proxies on a multihomed client and a single home server with random placements in the network 
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topology of 12 clients and 12 servers and network topology of 5 servers and 20 clients. As can be 

seen, the throughput of the network increased when the number of proxies increased. The increased 

number of proxies provided better handling regarding clients’ connections because clients’ 

connections could be divided among available proxies. This increased the overall throughput of 

the network.  

 

Figure 24:  Throughput for different number of proxies for multihomed clients in random 

placement for 12 servers and 12 clients 
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Figure 25:  Throughput for different number of proxies for multihomed clients in random 

placement for 5 servers and 20 clients 

 

Figures 26 and 27 show the delay of the network when using one, two, three or four proxies 

on a multihomed client and single home server with random placements in the two network 

topologies. As can be seen, the end to end delay of the network decreased when the number of 

proxies increased. Increasing the number of proxies allowed the proxies to handle the client’s 

connections faster and the network congestion decreased.  
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Figure 26:  Delay for different number of proxies for multihomed clients in random placement for 

12 servers and 12 clients 

 

Figure 27:  Delay for different number of proxies for multihomed clients in random placement for 

5 servers and 20 clients 

Figures 28 and 29 show packet losses of the network when using one, two, three and four 
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the number of packets lost in the network decreased when the number of proxies increased. 

1 proxy 2 proxies 3 proxies 4 proxies

Single Home 2492 2360 2288 2243

dual Home 2001 1831 1820 1795

Triple Home 1912 1720 1717 1715

0

500

1000

1500

2000

2500

3000

se
co

n
d

s
Delay With differnt Proxies

1 proxy 2 proxies 3 proxies 4 proxies

Single Home 2745 2644 2580 2531

dual Home 2309 1962 1940 1923

Triple Home 2053 1794 1789 1772

0

500

1000

1500

2000

2500

3000

se
co

n
d

s

Delay for different number of proxies 



66 

 

Increasing the number of proxies will decrease network congestion which will be reflected in the 

decreasing the number of packet retransmissions.  

 

Figure 28:  Packet loss for different number of proxies for multihomed clients in random 

placement for 12 servers and 12 clients 

 

Figure 29:  Packet loss for different number of proxies for multihomed clients in random 

placement for 5 servers and 20 clients 
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These experiments were repeated using different placement methods including the highest 

traffic, highest number of active interfaces, k-DS and hybrid. The behavior of the network when 

the number of proxies increased is the same. When the number of proxies increased, the throughput 

increased and the delay and packet loss decreased, which indicates a better performance when the 

number of proxies increased. 

  4.3.3 Impact of Increasing Proxies with Multihomed Servers  

The network topologies were simulated with different numbers of proxies and the impact 

of increasing the number of proxies with multihomed servers and a single home client was found. 

Networks with single proxy, two proxies, three proxies and four proxies were explored. These 

scenarios were applied with single, dual and triple servers and single home clients with different 

placement methods including random, highest traffic, highest number of links, K-DS and Hybrid 

placements. 

Figures 30 and 31 show the throughput of a network using one, two, three and four proxies 

on single, dual and triple homed servers and a single home client with random placements in the 

network topology of 12 clients and 12 servers and network topology of 5 servers and 20 clients. 

The increased number of proxies provides better handling for clients’ connections because  clients’ 

connections can be divided among available proxies. This will increase the overall throughput of 

the network.  
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Figure 30:  Throughput for different number of proxies for multihomed servers in random 

placement for 12 servers and 12 clients 

 

Figure 31:  Throughput for different number of proxies for multihomed servers in random 

placement for 5 servers and 20 clients 
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topologies, as can be seen, the end to end delay of the network decreased when the number of 

proxies increased. Increasing the number of proxies allows the proxies to handle a client’s 

connections faster, and the network congestion decreases.  

 

Figure 32:  Delay for different number of proxies for multihomed servers in random placement 

for 12 servers and 12 clients 

 

Figure 33:  Delay for different number of proxies for multihomed servers in random placement 

for 5 servers and 20 clients 
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Figures 34 and 35 show packet loss of the network when using one, two, three and four 

proxies on a single home client and multihomed server with random placements. As can be seen, 

the number of packets lost in the network decreased when the number of proxies increased. 

Increasing the number of proxies allows proxies to handle more of the client’s connections and the 

network congestion decreases.  

 

Figure 34:  Packet loss for different number of proxies for multihomed servers in random 

placement for 12 servers and 12 clients 
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Figure 35:  Packet loss for different number of proxies for multihomed servers in random 

placement for 5 servers and 20 clients 

 

These experiments were repeated using different placement methods. The behavior of the 

network when the number of proxies is increased is the same. When the number of proxies is 

increased, the throughput increases and the delay and packet loss decreases which indicates a better 

performance with the increased number of proxies. 
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In this section, the result of different simulation scenarios will be investigated. The first 

scenario is a simulation of a single proxy using 3 different placement method: random placement, 

highest traffic and highest number of active interfaces with multihomed clients, and a single home 

server. 

Figures 36 and 37 show the throughput of the two topologies for the three placement 

methods. The highest traffic placement method provides the best throughput. The highest number 

of active interfaces comes in next, and the random method provides the least throughput   

 

Figure 36:  Throughput of different placement methods with one proxy for 20 clients and 

5 servers topology 
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Figure 37:  Throughput of different placement methods with one proxy for 12 clients and 

12 server’s topology 

 

 

Figures 38 and 39 show the delay of the three placement methods in the topology of 20 

clients and 5 servers and the topology of 12 clients and 12 servers. The highest traffic placement 

method provides the least delay. The highest number of active interfaces comes in next, and the 

random method provides the highest delay. 
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Figure 38:  Delay of different placement methods with one proxy for 20 clients and 5  

servers topology 

 

 

Figure 39:  Delay of different placement methods with one proxy for 12 clients and 12 

servers topology 
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Figure 40:  Packet retransmission of different placement methods with one proxy for 20 

clients and 5 servers topology 

 

Figure 41:  Packet retransmission of different placement methods with one proxy for 12 

clients and 12 servers topology 
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43 illustrate the throughput of these placement methods. The highest traffic comes in the first place. 

It has the highest throughput while 3-DS and the highest number of link has closed throughput. 

The random method had the worst performance with minimum throughput. 

 

Figure 42: throughput of different placement methods with two proxy for 20 clients and 5 

servers topology 
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Figure 43: throughput of different placement methods with two proxy for 12 clients and 

12 servers topology 
 

Figures 44 and 45 illustrate the delay of the four placement method. The highest traffic 
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Figure 44: delay of different placement methods with two proxy for 20 clients and 5 

servers topology 

. 

 

Figure 45: delay of different placement methods with two proxy for 12clients and 12 

servers topology 

 

Figures 46 and 47 illustrate the number of packet retransmissions of the four placement 

methods. The random placement method has the worst performance with the highest number of 

Random Highest Traffic Highest No. Link 3-DS

Single Home 2644 2274 2379 2450

Dual Home 1962 1728 1802 1829

Triple Home 1794 1685 1756 1773

0

500

1000

1500

2000

2500

3000

Se
co

n
d

s
Delay With 2 Proxies

Random Highest Traffic Highest No. Link 3-DS

Single Home 2360 2174 2290 2265

dual Home 1831 1802 1835 1832

Triple Home 1720 1708 1717 1721

0

500

1000

1500

2000

2500

Se
co

n
d

s

Delay With 2 Proxies



79 

 

packet retransmission. 3-DS and the highest number of link methods have the same packet loss 

rate, which is less than the random method while the highest traffic placement method has the 

minimum number of packet retransmission.  

 

Figure 46: Packet retransmission of different placement methods with two proxy for 20 clients 

and 5 servers topology 

 

Figure 47: Packet retransmission of different placement methods with two proxy for 12 

clients and 12 servers topology 
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The third scenario consisted of 3 proxies with four placement methods including random, 

the highest traffic, the highest number of active interfaces, 3-DS with multihomed clients and 

single home server. Figures 48 and 49 show the throughput of the network when 3 proxies with a 

multihomed clients and single home servers in the topology of 12 clients and 12 servers topology 

and 5 servers and 20 clients topology are used. The applied placement methods include random 

placement, highest traffic, highest number of active interfaces and 2-DS. Based on results, the 

highest traffic placement method provides the best throughput. The highest number of active links 

method and 2-DS methods provide a very close performance while random placement has the least 

throughput. 

 

Figure 48:  throughput of different placement methods for 3 proxies for 12servers and 12 clients 

topology 
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Figure 49:   throughput of different placement methods for 3 proxies for 5 servers and 20 clients 

topology 

 Figures 50 and 51 show the end to end delay of the network when three proxies with a 

multihomed clients and a single home servers in the two topologies were used. The applied 

placement methods include random placement, highest traffic, highest number of active interfaces 

and 2-DS. Based on results, the highest traffic placement method provides the lease delay. 2-DS 

and highest active initerface come in next with the same end to end delay while random placement 

has the highest delay. 

Random Highest Traffic Highest No. Link 2-DS

Single Home 652 771 723 725

dual Home 971 1025 995 993

Triple Home 986 1030 998 996

0

200

400

600

800

1000

1200

kb
p

s
Throughput With 3 Proxies



82 

 

 

Figure 50:  delay of different placement methods for 4 proxies for 12servers and 12 clients 

topology 

 

Figure 51:  delay of different placement methods for 4 proxies for 5 servers and 20 clients 

topology 
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interfaces and 2-DS. Based on results, the highest traffic placement method provides the least rate 

of packet loss. 2-DS and the highest no of active interface methods have a similar packet while 

random placement has the highest packet loss. 

 

Figure 52:   packet loss of different placement methods for 4 proxies for 12servers and 12 clients 

topology 
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Figure 53:  packet loss of different placement methods for 4 proxies for 5servers and 20 clients 

topology 

 

 

For the fourth scenario, Figures 54 and 55 show the throughput of the network when 4 

proxies with a single home clients and single home servers are used in the topology of 12 clients 

and 12 servers and the topology of 5 servers and 20 clients. The applied placement methods include 

random placement, highest traffic, and highest number of active interfaces, 2-DS and Hybrid 

placement methods. Based on results, the highest traffic placement method provides the best 

throughput. Hybrid placement method follows. The highest number of active links method and 2-

DS methods provide a very similar performance while random placement has the least throughput. 

Placing proxies next to routers with highest traffic allow proxies to receive connections 

from clients with better throughput and forward connection to the closest server which enhanced 

the overall network throughput. 
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Also, it is clear that that hybrid method has a better performance than the K-DS method as 

was indicated in the previous experiments.  

 

 

Figure 54:  Throughput of different placement methods for 4 proxies, 12 servers and 12 clients 

topology 
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Figure 55:   Throughput of different placement methods for 4 proxies for 5 servers and 20 clients 

topology 

 

Figures 56 and 57 show the end to end delay of the network when four proxies with a 

multihomed clients and single home servers are used in the two topologies. The applied placement 

methods include random placement, highest traffic, and highest number of active interfaces, 2-DS 

and hybrid. Based on results, the highest traffic placement method provides the least delay. The 

delay of the hybrid method is very close to that of the highest traffic method while the highest 

number of active links method and 2-DS method provide a very close delay. Finally, the random 

placement has the highest delay. 

Placing proxies next to routers with highest traffic allow proxies to receive connections 

from clients faster than other methods and forward connection to the closest server which enhanced 

the overall network end to end delay. 
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Figure 56:  Delay of different placement methods for 4 proxies’ for12 servers and 12 clients 

topology 

 

Figure 57:   Delay of different placement methods for 4 proxies for 5 servers and 20 clients 

topology 

 

Figures 58 and 59 show the packet loss of the network of the previous experiment. The 
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of packet loss. The highest number of active links method and 2-DS method provide a very similar 

packet loss while random placement has the highest packet loss. 

Networks with a proxy close to highest traffic have a higher packet loss rate since the 

packets are received by a proxy and are retransmitted to the server. This makes the proxy links 

more congested and increases the number of packet lost. 

 

Figure 58:   Packet Loss of different placement methods for 4 proxies for 12 servers and 12 

clients topology 
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Figure 59:   Packet Loss of different placement methods for 4 proxies for 5 servers and 20 clients 

topology 

The pervious experiments were repeated with multihomed servers and single home clients. 

The behavior of the network is almost the same as the highest traffic placement methods always 

provides the best performance.  

4.4 Network Performance with a Proxy and Without A Proxy  
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As illustrated, the throughput of the network with 4 proxies placed using the highest 

traffic is the same as throughput of the network without a proxy.    

 

Figure 60:  throughput of network without proxy and with 4 proxies in different 

placement method for 12 clients and 12 servers topology with multihomed clients  
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Figure 61 Throughput of network without a proxy and with 4 proxies in different 

placement methods for 12 clients and 12 servers topology with multihomed servers 

 

 

Figure 62:  Throughput of network without a proxy and with 4 proxies in different 

placement methods for 20 clients and 5 servers topology with multihomed clients  
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Figure 63:  tThroughput of network without a proxy and with 4 proxies using different 

placement methods for 20 clients and 5 servers topology with multihomed servers 

 

In Figures 64, 65, 66 , and 67  the delay of the different placement methods of 4 proxies 

when compared to the delay of the network without a proxy for both the topology of 12 clients and 

12 servers and the topology of 20 clients and 5 server with multihomed clients and multihomed 

servers is shown. 

As illustrated, the delay of the network with 4 proxies placed using highest traffic is close 

to the delay of the network without a proxy.    
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Figure 64:  Delay of network without proxy and with 4 proxies in different placement 

methods for 12 clients and 12 servers topology with multihomed clients  

 

Figure 65: Delay of network without proxy and with 4 proxies in different placement 

method for 12 clients and 12 servers topology with multihomed servers 
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Figure 66:  Delay of network without proxy and with 4 proxies in different placement 

method for 20 clients and 5 servers topology for multihomed clients 

 

 

Figure 67: Delay of network without proxy and with 4 proxies in different placement 

method for 20 clients and 5 servers topology for multihomed servers 
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In Figures 68, 69, 70, and 71 the number of packet retransmissions and different placement 

methods of 4 proxies when compared to the packet retransmission of a no proxy network with a 

single homed client and server for both the topology of 12 clients and 12 servers and the topology 

of 20 clients and 5 servers is shown. 

As illustrated, the number packet retransmissions of the network with 4 proxies placed 

using the highest traffic is greater than the number of packet retransmissions of the network 

without a proxy. This higher number of packet retransmissions occurs because the proxies are 

limited to 4 proxies which can be congested and the number of packet drops increased. 

 

Figure 68:  packet loss for network without proxy and with 4 proxies in different 

placement method for 12 clients and 12 servers topology for multihomed clients  
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Figure 69: packet loss for network without proxy and with 4 proxies in different 

placement method for 12 clients and 12 servers topology for multihomed servers 

 

 

Figure 70:  packet loss for network without proxy and with 4 proxies in different 

placement method for 20 clients and 5 servers’ topology and 12 servers’ topology with 

multihomed clients 
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Figure 71: packet loss for network without proxy and with 4 proxies in different 

placement method for 20 clients and 5 servers’ topology and 12 servers topology with 

multihomed servers 

 

4.5 Discussion  
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4.5.1 Impact of Multihomed Clients and Servers: 

It can be estimated from the results shown above that the performance of the network is 

greatly affected by the number of links. When the number of links for the clients is increased, the 

throughput of the network increases, the delay decreases, the number of packet retransmissions 

decreases and the value of CWND increases.  

The increase in the number of links for the client allows it to load balance the traffic 

between multiple links and distribute the traffic among different paths and routers which enhance 

the performance of the network by increasing the congested window size and the network 

throughput and decreasing the delay of delivering data and the number of packet retransmissions. 

The increasing of links for servers results in better performance when compared to 

increasing the links of clients while servers have a better response time and better bandwidth to 

serve clients which is reflected in increased bandwidth, decreased delay, and number of packet 

retransmissions.  

The performance of the network is greatly enhanced when the number of links increases or 

the degree of multihoming increases from a single home to dual home. The throughput of the 

network is enhanced by approximately 17 %, the delay of the network is enhanced by about 23%, 

and the number of packet retransmissions is decreased by about 32%. The enhancement of using 

a triple home over a dual home is smaller in the first stage of moving from a single home to a dual 

home, and these results meet the specifications of a multihomed TCP.   



99 

 

4.5.2 Impact of Using Anycast Proxy: 

A proxy can play a critical role in the network. The use of the proxy depends on the service 

that the proxy is designed for. In the IPv6 anycast network an anycast proxy was used, and this 

kind of proxy can provide different features:   

1. Easier deployment: using native IPv6 anycast service is not common since it needs 

specific routing protocols to support this feature and a specific agreement between service 

providers is also needed. 

2. Group enrolment flexibility: Target clients and servers can easily join or leave the anycast 

groups. 

3. Scalable Group size: IP address space can be used efficiently and in an optimized way 

using an anycast proxy service. PIAS is able to handle thousands of groups within a single 

address by TCP and UDP port numbers when incorporated as part of the group address. 

4. Scalable group dynamics: IP routing is frequently affected by dynamic clients both when 

they are online and offline in several ways. This can downgrade the performance of routing 

protocols. The PIAS hides these frequent changes from IP routing and can handle dynamics 

without affecting the routing behavior. 

5. Target Selection mechanism: IP anycast only chooses targets on the basis of proximity. 

PIAS add load and connection affinity as criteria for target selection. 

6. Monitoring of the traffic: PIAS can allow the administrator to monitor their own anycast 

traffic and control which path the data will be routed using their own proxy. 

The impact of using a proxy in the network is affected by two main factors: 
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1. The number of proxies serving the clients  

2. The location of the proxies in the network. 

Based on results shown above, by the performance of the network is greatly affected by 

the number of proxies. When the number of proxies in the network is increased, the performance 

of the network increases. The throughput of the network increases while the delay and number of 

packet retransmissions decreases. 

When the number of proxies is increased, the load of the clients is balanced among the 

available proxies, so the overall performance of the network increases. When the number proxies 

increases, the number of clients to be served by each proxy decreases, so better service is provided. 

The location of a proxy in the network has a significant impact on the performance of the 

network. The following five location methods were explored: 

1. Random location method 

2. Highest traffic location method 

3. Highest number of active interface location method 

4. K-DS location method 

5. Hybrid K-DS method 

Placing proxies near routers with the highest number of active interfaces or near 

dominating routers of K-DS result in the same performance, which is better than random 

positioning whereby placing the proxy near routers with the highest traffic provides the best 

performance. Hybrid method provides a better performance than using the pure K-DS method.  

Placing proxies near routers with the highest traffic minimizes the load needed to re-route 

the traffic to the proxies and makes the path to the proxies shorter. Clients can reach the proxies 
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with shorter delays and higher throughput and proxies can respond to clients and connect to servers 

efficiently. 

4.4.3 Networks with a proxy and without a proxy: 

To compare the results of the performance of the network with and without a proxy network 

without proxy were compared with networks that have four proxies when connected to routers that 

have the highest traffic since it has the best performance.  

Implementing native IPv4 anycast is a theoretical concept and cannot be implemented on 

the internet because implementing this service requires special agreements between internet 

service providers to allow such traffic to pass between them. Also, native IPv6 anycast requires 

central management to allocate an anycast address and provide a mechanism to use it. Also, the 

support for such service is limited in some routing protocols.   

Based on these results, anycast proxy can be used to provide IPv6 anycast with the same 

performance as a native anycast service.  Throughput and delay of the network without a proxy 

are the same as the throughput and delay of the network with 4 proxies when placed using highest 

traffic placement method. The difference in the number of packet retransmissions can be seen 

when compared to the features of using a proxy. The throughput of the network decreases when a 

proxy is used. 

Thus, the proposed method for proxy placement is based on placing proxies near routers 

with the highest traffic. This can be a real alternative for native IPv6 anycast service with extra 

features. 
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CHAPTER 5:  CONCLUSION AND FUTURE WORK 

 

 In this thesis, we investigated the impact of multihomed clients and multihomed proxy 

servers on the performance of modern networks. The impact of using a proxy in the IPv6 anycast 

networks was investigated and the performance of the network with and without a proxy was 

compared. In addition, the impact of the number of proxies and their locations in the network were 

investigated. Network performance with proxies in random positions, proxies near the highest traffic 

routers, proxies near routers with highest interfaces and proxies near dominating routers using K- 

dominating set algorithm were compared. 

The extensive simulation tests have shown that the performance of the network is greatly 

enhanced when the number of links increases or the degree of multihoming increases from a single 

home to dual home. The throughput of the network is enhanced by approximately 17 %, the delay of 

the network is enhanced by about 23%, and the number of packet retransmissions is decreased by about 

32%. The performance of the network is also greatly affected by the number of proxies. When the 

number of proxies in the network is increased, the performance of the network increases. The 

throughput of the network increases while the delay and number of packet retransmissions decreases. 

It was found that placing a proxy near the router with the highest traffic gives the best performance. A 

simple but effective method to place proxies in TCP anycast IPv6 network based on highest traffic 

nodes is highly recommended.   

The work described in this thesis can be extended in many ways. Areas for future 

investigation include the following:  
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1. Investigating similar performance enhancements for multicast proxy servers, web 

cache proxies and Anonymous proxy servers.  

2. Investigating the impact of network security enhancement measures on the multihomed 

proxy schemes.  

3. Running evaluation tests on larger networks and larger number of clients and servers using 

a more powerful simulation platform.   
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