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ABSTRACT 

In this dissertation, novel phase compensation technologies are applied to the designs of 

wide viewing angle and high transmittance liquid crystal displays. First, a design of wide 

viewing angle liquid crystal displays utilizing crossed linear polarizers is proposed. The designed 

multi-domain vertical-alignment liquid crystal display predicts superb contrast ratio over wide 

viewing angles. Next, to increase the bright state transmittance while maintain the high contrast 

ratio, wide viewing angle circular polarizers are developed. The produced states of polarization 

are very close to the ideal circular state of polarization over a wide range of incident angles 

within the visual spectrum. This guarantees not only high contrast ratio but also high and 

uniform transmittance.  

Finally, to reduce the cost and improve the applicability of the broadband and wide-view 

circular polarizer, the device configuration of the broadband and wide-view circular polarizer is 

significantly simplified by the application of biaxial compensation films. The produced states of 

polarization remain close to the ideal circular polarization over a wide range of incident angles 

within the visual spectrum. With this circular polarizer, the presented wide-view liquid crystal 

display predicts high contrast ratio as well as high and uniform transmittance over wide viewing 

angles within the visual spectrum.  
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CHAPTER ONE: INTRODUCTION 

Liquid crystal is such a kind of material that it is strongly anisotropic in some properties 

and has a certain degree of fluidity [1-3]. The molecules of liquid crystal are aligned 

approximately parallel to each other in the neighborhood. The preferred direction of liquid 

crystal molecules in the neighborhood is called director. Liquid crystal directors reorient if an 

external applied voltage is greater than a certain value, which is called the threshold voltage. 

Because of its fluidity and the strong anisotropies in some electrical and optical properties, liquid 

crystal plays important roles in many applications, including display applications and non-

display applications. Typical display applications include handheld electronics, cell phones, 

computer monitors, instrument monitors, televisions, and so on. Non-display applications include 

electrical tunable lenses, optical phase arrays, and otherwise. Currently display applications are 

the major applications of liquid crystal. The markets of liquid crystal displays are growing fast 

and steadily due to the improved performance and the reduced cost. 

Liquid crystal displays are non-emissive display devices where each display pixel 

performs as a light modulator [1-3]. Figure 1.1 depicts the schematic diagram of a transmissive 

mode thin-film-transistor liquid crystal display (TFT-LCD). As Figure 1.1 illustrates, to render 

full color images, each display pixel is divided into Red, Green, and Blue (RGB) sub-pixels, in 

which the red, green, and blue spectra are produced from the white color backlight by the 

corresponding red, green, and blue color filters, respectively.  
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Figure 1.1: Schematic diagram of a transmissive mode liquid crystal display [1]. 

 

As drafted in Figure 1.1, an aligned liquid crystal cell is laminated between two linear 

polarizers. Liquid crystal is filled into the gap between two glass substrates to compose the liquid 

crystal cell. Alignment layers on the substrate-LC interfaces provide a certain kind of boundary 

condition so that the liquid crystal directors are aligned uniformly. The unpolarized white light 

emitting from the backlight unit is converted into the linearly polarized light after it passes 

through the linear polarizer (polarizer). Due to the anisotropic characteristics of liquid crystal, 

the polarization state of the incident light deviates from the linear polarization when the light 

passes thorough the liquid crystal layer. If the emerging state of polarization is linear and 

vibrates along the absorption direction of the other linear polarizer (analyzer), which is laminated 
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on the other side of the liquid crystal cell, then the most of light is absorbed. This results in the 

dark state. If the emerging state of polarization is other than the linear polarization, then some of 

the light can be transmitted. This gives the gray levels. If the emerging state of polarization is 

still linear but vibrates perpendicular to the absorption direction of the analyzer, then the most of 

the light is transmitted. This produces the bright state.  

To produce different states of polarization, various voltages are applied to the liquid 

crystal so that the liquid crystal directors are reoriented and the phase retardations of the liquid 

crystal layer are different. Common electrodes and display electrodes are deposited on the glass 

substrates adjacent to the liquid crystal, which is illustrated in Figure 1.1. The display electrodes 

are connected to the corresponding thin-film-transistor. Alignment layers are deposited on the 

surfaces of the electrodes. For the twisted-nematic liquid crystal (TN-LC) cell and vertical-

alignment liquid crystal (VA-LC) cell, the common electrodes and display electrodes are on the 

other sides of the liquid crystal layer. For the in-plane-switching liquid crystal (IPS-LC) cell, the 

common electrodes and display electrodes are interlaced on the same side of the liquid crystal 

layer.  

The majority of liquid crystal displays operate in the normally black mode, i.e., the liquid 

crystal displays are dark without applied voltage and become brighter when the applied voltage 

increases [1-3]. Comparing with the normally white mode, normally black mode has the 

advantage of intrinsically high contrast ratio, because the liquid crystal displays are designed and 

optimized for the dark state. Inside most of these liquid crystal displays, the linear polarizers are 

crossed to each other to produce normally back mode.  

Currently liquid crystal displays are dominating the flat panel display markets and the 

sharing of large screen television markets is growing fast [1-3]. Wide viewing angle, high 
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contrast ratio, small color shift, deep color saturation, fast response time, and low power 

consumption are the major technical challenges for the next generation liquid crystal displays in 

addition to lower production cost [1, 3-6]. Driven by the growing demands on the markets, wide 

viewing angle becomes increasingly important when the screen size of liquid crystal televisions 

becomes larger and larger. 

The viewing angle characteristics of liquid crystal displays strongly depend on the 

employed liquid crystal modes. From the viewpoint of the applied electric field, these liquid 

crystal modes can be categorized into two groups: longitudinal and transversal (or fringing) 

electric fields. In the voltage-on state, if the liquid crystal directors are tilted out-of-the-plane 

under the longitudinal electric fields, e.g., the 90o twisted-nematic liquid crystal cell [7], vertical-

alignment liquid crystal [8-9], and bend cell [10], then their intrinsic viewing angle is narrow and 

asymmetric, because the polarization produced from the liquid crystal layer changes dramatically 

with the viewing angle so that the light leakage becomes significant at oblique viewing angles. 

To reduce the light leakage and widen the viewing angle, optical phase compensation films are 

applied so that the polarization state emerging from the liquid crystal layer is less sensitive to the 

viewing angle. If the liquid crystal directors are reoriented in the same plane under the 

transversal electric fields, e.g., the in-plane-switching liquid crystal cell [11-12], then the 

intrinsic viewing angle is wider. However, the light leakage of the crossed polarizers at oblique 

viewing angles puts an ultimate limitation to the viewing angle. To suppress this kind of light 

leakage, additional phase compensation films are laminated to the crossed polarizers. Therefore, 

the designs of the optical phase compensation films are critical for the wide viewing angle liquid 

crystal displays. 
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Several designs were proposed to reduce the dark state light leakage [6-9, 11-15]. Higher 

than 300:1 contrast ratio over the ±80o viewing cone was reported for an in-plane-switching 

liquid crystal display (IPS-LCD) [11-12]. However, for the vertical-alignment liquid crystal 

display (VA-LCD), the reported ~100:1 iso-contrast ratio is limited to the ±50o viewing cone 

[13-15]. This is insufficient for television applications, although the vertical alignment mode 

liquid crystal displays have the advantages of excellent contrast ratio at normal viewing direction, 

weak color dispersion, and fast response time. There is an urgent need to extend the high contrast 

ratio to a wider viewing cone. 

This dissertation researches on the designs of wide viewing angle liquid crystal displays. 

Different novel wide-view and high contrast liquid crystal displays using linear polarizers and 

circular polarizers are proposed. 

After an introduction of wide-view technologies in Chapter 1, Chapter 2 discusses the 

applied numerical simulation methods. Finite difference method is employed to simulate the 

liquid crystal director distributions. The extended Jones matrix method and the four-by-four 

matrix method are applied to evaluate the light transmittance and calculate the states of 

polarization for the liquid crystal displays.  

Chapter 3 presents a wide viewing angle and high contrast ratio vertical-alignment liquid 

crystal display utilizing crossed linear polarizers [16]. Phase compensation films are applied to 

reduce the dark state light leakage. After analyzing the polarization states inside this VA-LCD, 

the design of compensation films is optimized using the oblique angle Jones matrix. With the 

proposed design, the dark state light leakages are minimized and high contrast ratio is achieved 

over wide viewing angles for a multi-domain VA-LCD.  



   
  

6 

Chapter 4 proposes the designs of wide-view and broadband circular polarizers using a 

linear polarizer and the combinations of uniaxial phase retardation films [26]. In addition to high 

contrast ratio, high transmittance and low color shift over wide viewing angles are also highly 

desired for high performance liquid crystal televisions (LCD TVs). It was shown that the 

transmittance of a multi-domain VA-LCD can be significantly improved using crossed circular 

polarizers [17-25]. Using the combinations of phase retardation films, the linear polarization 

emerging from the linear polarizer is converted into circular polarization. At oblique viewing 

angles, the polarizations are subtly modified in the retardation films so that the viewing angle 

sensitivity of the circular polarizer is significantly reduced. The produced states of polarization 

are very close to the ideal circular state of polarization over wide viewing angles for the visual 

spectrum. This guarantees not only high contrast ratio but also high and uniform transmittance 

over wide viewing angles for wide-view liquid crystal display.  

Chapter 5 applies the designed wide-view and broadband circular polarizer to a multi-

domain VA-LCD [26]. Both the transmittance and the angular uniformity of the presented wide-

view multi-domain VA-LCD are significantly improved and the high contrast ratio is maintained. 

Chapter 6 proposes a broadband and wide-view circular polarizer consisting of a linear 

polarizer and two biaxial phase retardation films [27]. The device configuration of the broadband 

and wide-view circular polarizer is significantly simplified while the produced states of 

polarization remain close to the circular polarization over wide viewing angles for the visual 

white light. This reduces the cost and improves the applicability of the broadband and wide-view 

circular polarizer.  

Chapter 7 applies the wide-view circular polarize introduced in Chapter 6 to a vide-view 

liquid crystal display [28]. The proposed wide-view LCD demonstrates high contrast ratio as 
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well as high and uniform transmittance over wide viewing angles for the visual spectrum. Finally, 

a conclusion is given in Chapter 8. 
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CHAPTER TWO: NUMERICAL SIMULATIONS FOR LIQUID 
CRYSTAL DISPLAYS 

The knowledge of the liquid crystal (LC) director distribution and the light transmittance 

is important in the design and optimization of wide viewing angle liquid crystal displays. Both 

the director distribution and the light transmittance can be numerically simulated [29-40]. In this 

dissertation, the director distribution is simulated using the finite difference method and the light 

transmittance is evaluated using the extended Jones matrix method or the four-by-four matrix 

method.  

2.1. Numerical modeling of the liquid crystal director distributions 

To analyze the electro-optical characteristics of liquid crystal devices, the liquid crystal 

director distributions under the applied voltage must be known. We use two steps approach to 

solve the director distributions: solve the voltage distributions using the finite element method 

(FEM) [34-35], and then obtain the liquid crystal director distributions using the finite difference 

method (FDM) [31-35]. 

The electric energy under applied voltage is [2, 32-34] 

∫∫∫∫∫∫∫∫∫ ⎟
⎠
⎞

⎜
⎝
⎛ ∇⋅∇=⎟

⎠
⎞

⎜
⎝
⎛ ⋅=⎟

⎠
⎞

⎜
⎝
⎛ ⋅= dvVVdvdvf Electric ε

2
1

2
1

2
1 EEED ,  (2.1) 
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where V is voltage distribution, and ε is the dielectric tensor of the liquid crystal. Applying the 

variational method, the liquid crystal device is discretized by the first order uniform rectangular 

mesh so that there are eight nodes in each rectangular element. The voltage distribution is 

expressed as a set of linear equations [34] 

( ) ( ) ( )∑∑
= =

=
Ne

e i

e
i

e
i zyxNzyxVzyxV

1

8

1

,,,,,, ,   (2.2) 

where e
iV is the unknown voltage at the node i of element e, Ne is the total number of elements, 

and ),,( zyxN e
i  is the shape function.  

The variation of the electric energy ElectricF  on the voltage Vm of node m is equal to 0, 

which gives the voltage distributions after solving the following linear algebraic equation [34] 
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where 
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mn VV
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∂
=

2

.

 
In the following, we will discuss the solution of liquid crystal director distributions. 

Using Euler-Lagrangian equation together with a Rayleigh dissipation function we have [31-33]  

[ ] zyxinf
dt
dn

ing
i

i
,,   ,1 =+−= λγ .         (2.4) 
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Here γ1, ni, and λ are the rotational viscosity, Cartesian component of liquid crystal director, a 

Lagrange multiplier to keep the liquid crystal director as a unit vector, respectively. [ ]
ingf in 

Equation 2.4 is [31-33] 
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Here fg is the Gibbs free energy density given by  

ESg fff −= ,       (2.6) 

where fs and fE are the elastic free energy and the electric energy, respectively.  

The elastic free energy of liquid crystal can be expressed as [31-33] 

( ) ( ) ( )233
2

22
2

11 2
1

2
1

2
1 nnnnn ×∇×+×∇⋅+⋅∇= kkkf Elastic ,    (2.7) 

where n is the director vector, and K11, K22, and K33 are and the elastic constants associated with 

spray, twist and bend, respectively. 

With the known electric energy and the elastic free energy, the update equation of the 

liquid crystal directors after each time step dt can be derived from Equation 2.5 as 

[ ] zyxi
dt
dnfn i

ngi
i

,,   ,1
1 =⎟

⎠
⎞

⎜
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⎛ += γ

λ
.     (2.8) 

Inside a multi-domain vertical-alignment liquid crystal display (VA-LCD), initially the 

liquid crystal directors are perpendicular to the substrates. After applying the external voltage, 

the electric field is built up and the liquid crystal directors start to reorient so that the liquid 
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crystal director distributions are changed. The changes in the liquid crystal director distributions 

result in the changes of the voltage distributions and the electric energy distributions. This 

process continues until the total free energy is uniform [31-33]. 

In the simulation of a vertical alignment liquid crystal (VA-LC) device, the liquid crystal 

directors are initialized as perpendicular to the substrates. After the voltage is applied, the 

voltage distributions can be solved using the above mentioned simulation method. With the 

known voltage distributions, the liquid crystal director distributions are updated using Equations 

2.6 to 2.8 with a time step less than the maximum time step, which is defined as [31-33] 

33

1
2

max 2K
xt γΔ

=Δ ,       (2.9) 

where Δx is the minimum meshing size of the x, y, z direction. At each time step, the director 

distributions are recorded and later will be used in the simulation of the light transmittance of 

liquid crystal device. After the liquid crystal director distributions are updated, the voltage 

distributions and the electric energy distributions must be updated to represent the changes in the 

voltage distributions. This iteration continues till an arbitrary number of iteration is reached or 

the variation in the liquid crystal director distributions is smaller than a threshold.  

2.2. Numerical modeling of optical characteristics of liquid crystal displays 

 With the known liquid crystal director distributions, the light transmittance can be solved 

using the extended Jones matrix method or the four-by-four matrix method [36-39]. Applying 

either the extended Jones matrix method or the four-by-four matrix method, the liquid crystal 
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device including the two polarizers is discretized into N layers in the direction perpendicular to 

the substrates, as shown in Figure 2.1. A Cartesian coordinate system can be chosen such that the 

x-y plane is parallel to the substrates and the wavevector k of the incident plane wave is inside 

the x-z plane. The direction of z-axis is pointing from the entrance polarizer to the exit polarizer. 

The wavevector of the incident wave in this coordinate system is given by [37-39] 

koko kk θθ cos0sin zyxk in ++=     (2.10) 

where k0 is the wavenumber in free space, θk is elevation angle of the incident plane wave, and x, 

y, and z are and the unit vector in the x, y, z direction, respectively.  

 

 

 

Figure 2.1: Schematic diagram of a VA-LCD, which is divided into N layers. 
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If we define a normalized magnetic field intensity [39] 
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Maxwell’s equations become 
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After the expansion of Maxwell’s equations, we have 
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where Q is a coupling matrix defined by 
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For each layer, the matrix Q can be diagonalized as 
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where q1, q2, q3 and q4 are the four eigenvalues given by 



   
  

14 

 

( )

,
,

,sinsincos1sin

,sin

24

13

21

222
2

22

2

2122
1

qq
qq

n
nnnnq

nq

k
e

oe
zz

zz

eo
k

zz

xz

ko

−=
−=

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−+−=

−=

θφθε
ε

θ
ε
ε

θ

      (2.16) 

where q1 and q2 correspond to two forward eigenwaves, and q3 and q4 correspond to two 

backward eigenwaves. 

If we define [39] 
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applying Equations 2.15 and 2.17 to Equation 2.13, we have the decoupled equation 
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For the nth layer, the solution of Equation 2.18 is 
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Applying Equation 2.19 to Equation 2.17, the electric field on the output boundary of the nth 

layer is related to the electric field on the input boundary of the same layer by 
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where Pn is the 4-by-4 matrix of the nth layer, 

  1−= nnnn HHTP .          (2.23) 

Thus the 4-by-4 matrix of the simulated LC device is 

  121 PPPPP L−= NN .          (2.24) 



   
  

16 

For the extended Jones matrix method, we assume the reflections inside the LC device are 

neglectable and consider only the forward eigenwaves. Equation 2.17 becomes 
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For the eigenwave in the nth layer, we have 
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Applying Equation 2.25 to Equation 2.24, the extended Jones matrix of the nth layer is 

    1−= nnnn SGSJ ,          (2.28) 

from which we can obtain the extended Jones matrix of the simulated LC device as 

  121 JJJJJ L−= NN .          (2.29) 

Considering the transmission loss in the air-LCD interface, the transmitted electric field is related 

to the incident electric field by [37-39] 
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where JExt and JEnt are the matrices considering the surface reflections on the air-LCD interfaces, 

which are governed by [37-39] 
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where np is the index of refraction of the polarizer, and θp is defined as 

( )( )[ ]2Re/sinsin ,,
1

popekp nn += − θθ ,     (2.32) 

here ne,p and no,p are the refractive indices of the polarizer. 

Thus, the overall optical transmittance top is 
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2.3. Summary 

To analyze the electro-optical characteristics of liquid crystal displays, we first use the 

finite difference method to simulate the liquid crystal director distributions under the applied 

voltages. With the known liquid crystal director distributions, we use the extended Jones matrix 

method or the four-by-four matrix method to solve the transmittance or the reflectance of liquid 

crystal displays as well as the polarization states of the light. 
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CHAPTER THREE: WIDE VIEW AND HIGH CONTRAST 
LIQUID CRYSTAL DISPLAYS USING CROSSED LINEAR 

POLARIZERS 

High contrast ratio and wide viewing angle are critical requirements for liquid crystal 

televisions. Presently, the view angle of a liquid crystal display (LCD) is defined at iso-contrast 

ratio greater than 10:1. A low contrast ratio implies a poor color rendering. Vertical alignment 

liquid crystal (VA-LCD) exhibits an excellent contrast ratio at normal viewing direction, weak 

color dispersion, and fast response time [1, 5-6, 8-9, 11-13], however, its dark state light leakage 

at oblique angles is relatively large resulting in a degraded contrast ratio. Several analyses 

indicate that the dark state light leakage is determined by the polarization state of the outgoing 

light beam before reaching the analyzer [1, 3, 6-9, 11-15]. To reduce the dark state light leakage, 

different liquid crystal operation modes and compensation films have been proposed. For 

examples, the in-plane-switching (IPS) and optically compensated bend (OCB) mode could 

exhibit a 300:1 contrast ratio over the ±80o viewing cone [11-12]. However, for vertical-

alignment (VA) mode the reported ~100:1 iso-contrast ratio is limited to the ±50o viewing cone 

[14-15]. This is insufficient for television applications. There is an urgent need to extend the high 

contrast ratio to a wider viewing cone.  

In this chapter, we optimize the design of a four-domain VA-LCD which shows an 

extraordinarily high contrast ratio over the entire ±85o viewing cone [16]. We begin with 

analyzing the polarization states inside the VA-LCD, and then optimizing the design of the 
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compensation films using the oblique angle Jones matrix so that the dark state light leakages are 

minimized. Finally, we are able to obtain a VA-LCD with iso-contrast ratio higher than 10,000:1 

over the ±85o viewing cone.  

3.1. State of polarization inside the VA-LCD 

Figure 3.1 depicts the device configuration of a four-domain VA-LCD with A-plate and 

C-plate compensation films. The absorption axes of polarizer and analyzer are in 0o and 90o, 

respectively. Two A-plate films with equal thickness are laminated on the inner side of the 

crossed linear polarizers with their slow axes perpendicular to the absorption axes of the 

corresponding polarizers. Two equal thickness C-plate films are inserted between A-plate films 

and glass substrates. In the bright state, four domains are formed at 45o, 135o, 225o, and 315o. We 

use the finite difference method to simulate the bright state LC director distributions [31-33]. 

 

 

Figure 3.1: Structure of a VA-LCD for the optimized design. The slow axis of each A-plate film 

is perpendicular to the absorption axis of the adjacent polarizer.  
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The entire LCD is treated as multi-layer device with each layer approximated by uniaxial 

anisotropic media [38-39]. Assuming the reflections between internal layers are negligible, the 

transmitted wave after the mth layer is related to the incident wave as [37-39] 
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where Jm is the Jones matrix of the mth layer and Jent is the correction matrix considering 

reflections on the air-polarizer interface. Approximating the propagating light inside LCD by 

plane wave, at viewing angle θ and azimuthal angle of incident plane φ, Jm is obtained as [41-42] 
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where λ is the wavelength, d is the thickness of the mth layer, θm is the angle of light inside the 

mth layer, and en′  and on′  are the refractive indices of the mth layer media on the wave plane.1, 13 

As shown in Figure 3.2,  denotes the projection of the optical axis of the mth layer ( ) on 

the wave plane and Ψ is the angle between //E  and , which is found to be 

( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

Θ
−

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=Ψ

sin
sincosarcsin

tan
coscossin nene

m

nene
nesign φφθ

θ
φφθθ ,       (3.3) 

where sign() is the sign function to distinguish angles greater than 90o, and θne and φne are the tilt 

and twist angles of , respectively. In Figure 3.2, Θ is the angle between  and wave vector 

( k ), which can be obtained from the dot product of  and k .  



   
  

21 

 

Figure 3.2: The principal optical axis of the mth layer ( ) and its projection on the wave plane 

( ). 

 

State of polarization can be represented by Stokes parameters and plotted on Poincaré 

sphere, as shown in Figure 3.3, after //E  and ⊥E  are solved [41-42]. Coordinates of Poincaré 

sphere are the standard Stokes parameters S1, S2 and S3. Due to the symmetry of VA-LCD in the 

dark state, we only investigate the states of polarization when 0o ≤ φ ≤ 90o. Results are applicable 

to 90o ≤ φ ≤ 360o. With the known //E  and ⊥E , the bright and dark state transmittance can be 

obtained [37-39]. Contrast ratio is defined as the ratio of bright state transmittance over dark 

state light leakage. 
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In Figure 3.3, A denotes the state of polarization absorbed by the analyzer, B denotes the 

state of polarization in front of the analyzer, D denotes the state of polarization emerging from 

the VA LC layer, G denotes the state of polarization emerging behind the first A-plate film, and 

P denotes the state of polarization passing through the polarizer.   

 

 

Figure 3.3: States of polarization inside a VA-LCD with optimized designed compensation films 

at θ = 70o, φ = 45o and λ = 550 nm. P, G, D, B, and A denote the state of polarization passing 

through polarizer, emerging from 1st A-plate film, emerging from the VA LC layer, in front of 

the analyzer, and absorbed by the analyzer, respectively.  
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3.2. Effects of viewing angle on the states of polarization inside the VA-LCD 

To analyze the effects of viewing angle on the states of polarization inside VA-LCD, we 

first obtain the Jones matrix of VA LC layer from Equation 3.2 as 
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As Equation 3.4 shows, there is no coupling between //E  and ⊥E  so that S1 is not 

changed when light passes through LC layer. However, the phase of ⊥E  leads the phase of //E  

for a positive LC ( oe nn > ) and the difference increases with viewing angle θ. Therefore, at 

oblique viewing angle, S3 of D is greater than zero and increases with viewing angle for a 

linearly polarized input light. If there is no anisotropic media between LC layer and analyzer, B 

equals D. Next, we model linear polarizer as lossy uniaxial anisotropic media. As Figure 3.4 

illustrates, on the wave plane, the maximum absorption direction of analyzer is along  and 

the maximum transmission direction of polarizer is along . Therefore, the difference 

between S1 of P and S1 of A depends on the angle between  and , which is related to 

viewing angle θ and azimuthal angle φ as 
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Taking the derivative of Φ with respect to φ reveals that Φ reaches maximum at φ = 45o. Next, 

taking the derivative of Φ with respect to θpol at φ = 45o shows that Φ increases with viewing 

angle θ. Therefore, the maximum of the difference between S1 of A and S1 of P occurs at 



   
  

24 

maximal viewing angle when φ = 45o. For a conventional VA-LCD, S1 of P is not changed 

before the light reaches analyzer. Therefore, the S1 of B equals the S1 of P. 
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Figure 3.4: Angle between the maximum transmission direction of the polarizer ( ) and the 

maximum absorption direction of the analyzer ( ).  is perpendicular to the maximum 

absorption direction of the polarizer ( ).  

 

For a conventional VA-LCD, the difference between B and A increases with viewing 

angle. If B and A are equal at a large oblique viewing angle when φ = 45o, then the dark state 

light leakage would be greatly reduced at other viewing angles as well. Due to the symmetry of 

the device configuration shown in Figure 3.1, the S1 of G should satisfy the following condition  

( ) 2111 _A_P_G SS=S + .          (3.6) 

Figure 3.3 illustrates the above relationship.  
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3.3. Optimization design of the phase compensation films 

To design A-plate film, we first find GE //_  and GE _⊥  (after the 1st A-plate film) in terms 

of the A-plate film thickness (dA-plate) using Equation 3.1, provided that the polarizer thickness  

and refractive index and the A-plate refractive index are known. Next, after S1 of A and S1 of P 

are solved, Equation 3.6 can be expressed as   

( )
( )

( )
2

11
2

_

2

//_

2

_

2

//_
1

_A_P

GG

GG
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EE

EE
S

+
=

+

−
=

⊥

⊥ .            (3.7) 

Simplification of Equation 3.7 results in 

( ) ( ) 2cos 11111 _A_PplateA SSLdKH +=−⋅⋅ − ,              (3.8) 

where constants H1, K1, and L1 depend on the polarizer thickness and the refractive indices of the 

polarizer and A-plate film. Finally, from Equation 3.8 we obtain dA-plate in the form of 

( )
⎟⎟
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⎝

⎛ ++
⋅=−

1

111

1

2
arccos1

H
LSS

K
d _A_P

plateA .                   (3.9) 

To design C-plate film, we first note that for the optimum design, B satisfies conditions 

S1_B = S1_A and S3_B = S3_A. Similarly, we can find BE //_  and BE _⊥  (after the 2nd A-plate film) in 

terms of the C-plate thickness (dC-plate). Next, applying S1_B = S1_A yields 

( )
( ) _A

BB

BB S
EE

EE
12

_

2
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2

_

2

//_ =
+

−
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⊥ .              (3.10) 

After simplifying Equation 3.10 we derive the following expression 

( ) ( ) _AplateCplateC SdKLdKH 12222 sincos =⋅⋅+⋅⋅ −− ,     (3.11) 
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where constants H2, K2, and L2 depend on the thickness of polarizer, A-plate film, LC cell gap 

and the refractive indices of polarizer, A-plate film, C-plate film, and LC material. Finally, from 

Equation 3.11 we can find the thickness of each C-plate film dC-plate.  

Now we apply the above methodology to design a VA-LCD shown in Figure 3.1. The 

employed refractive indices of the polarizers, liquid crystal, A-plate, and C-plate are as follows: 

ne_pol = 1.5 + i×3.251×10-3 and no_pol = 1.5 + i×2.86×10-5, ne_LC = 1.5514 and no_LC = 1.4737 at λ 

= 550 nm, ne_A-plate = 1. 5124 and no_A-plate = 1.5089, and ne_C-plate = 1.5089 and no_C-plate = 1.5124. 

The thickness of the polarizer is 150 μm and LC cell gap is 4 μm.  

We designed the compensation films at θ = 70o, φ = 45o, and λ = 550 nm. From Equation 

3.9 we find the A-plate thickness dA-plate =26.62 μm and the dΔn of each A-plate film is 93.17 nm. 

Using Equation 3.11, we find the thickness of each C-plate film dC-plate = 21.54 μm. Therefore, 

the dΔn of each C-plate film is −75.39 nm. With this design, in the dark state the polarization 

state in front of the analyzer equals to the polarization state absorbed by the analyzer at θ = 70o 

and φ = 45o. Therefore, contrast ratio higher than 10,000:1 over ±85o viewing cone is achieved, 

as shown in Figure 3.5. The above ideal simulation results are obtained using the four-by-four 

matrix method [39]. In a real display panel, the actual contrast ratio could be lowered because the 

abovementioned ideal parameters may not be controlled precisely. Moreover, the compensation 

film thickness variation and nonuniformity, LC alignment distortion near spacer balls, stress 

birefringence from films and substrates, and interface reflections between layers could also 

reduce the contrast ratio. 
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Figure 3.5: Iso-contrast ratio plot of the four-domain VA LCD with optimal compensation films 

optimized at θ = 70o and φ = 45o.  

3.4. Design tolerance 

Design tolerance is an important concern for display manufacturing. Figure 3.6 plots the 

minimum contrast ratio over the entire ±85o viewing cone if the dΔn of A-plate film, C-plate film, 

and LC cell varies by ±5%, assuming the compensation films are optimized at θ = 70o and φ = 

45o. From Figure 3.6, the proposed VA-LCD is less sensitive to the dΔn variation of the C-plate 

but more sensitive to the dΔn variation of the LC cell. In the least favorable case (i.e., the LC 

dΔn is 5% higher than the optimal value), the minimum contrast ratio is still higher than 100:1.  

≥ 10000:1 

≥ 20000:1 

≥ 15000:1 

≥ 40000:1 
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Figure 3.6: Tolerance in the errors of dΔn of A-plate film, C-plate film, and LC cell when the 

compensation films are optimized at θ = 70o and φ = 45o.  

3.5. Summary 

In this chapter, we demonstrate a wide view VA LCD with a superb contrast ratio. We 

use Poincaré sphere method to obtain the optimal compensation film parameters and then use 4-

by-4 matrix method to calculate and plot the iso-contrast contours. In the proposed design, a 

contrast ratio higher than 10,000:1 is predicted over the entire ±85o viewing cone for the film-

compensated four-domain VA LCD. The tolerance of the design is also investigated. Within 

±5% manufacturing margin, the contrast ratio maintains higher than 100:1.  
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CHAPTER FOUR: WIDE VIEW AND BROAD BAND CIRCULAR 
POLARIZERS CONSISTING OF UNIAXIAL PHASE 

RETARDATION FILMS 

Circular polarizer is an important optical component with many useful applications, such 

as optical communications, optical remote sensors, and liquid crystal displays (LCDs) [23-25]. 

Two methods have been commonly applied to generate a circularly polarized light: Bragg 

reflection using a cholesteric liquid crystal (CLC) film and a linear polarizer laminated with a 

quarter-wave film. In the former approach, a right-handed CLC film would reflect the right-

handed circularly polarized light and transmit the left-handed component [1-2, 43]. A drawback 

is that blue shift occurs at oblique incident angles. In the latter approach a quarter-wave film is 

laminated to a linear polarizer [41-42]. In the normal incidence, a very good circular polarization 

is produced. However, at oblique angles the produced state of polarization becomes elliptical 

resulting in light leakage through the crossed circular polarizers. Wide-view circular polarizers 

using biaxial retardation films have been proposed for improving the light efficiency of LCDs 

[24-25]. However, the reported contrast ratio is limited to ~10:1 at 60o viewing cone because of 

the still large light leakage. In addition, broad bandwidth is as important as wide viewing angle 

for direct-view LCDs.  

Phase compensation methods have been widely applied in liquid crystal displays for 

reducing the dark state light leakage and thus increasing the contrast ratio at wide viewing angles 

[1, 6-9, 11-15]. To obtain a wide-view circular polarizer, a straightforward approach is to 
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combine a wide-view linear polarizer [11-15] with a wide-view quarter-wave film [24-25]. 

However, this approach is difficult to obtain a pure circular polarization state, especially at a 

large incident angle. In this chapter, we apply the phase compensation methods to develop wide-

view circular polarizers for both single wavelength and broadband white light [26]. The 

produced state of polarization is very close to the ideal circular state of polarization over a wide 

range of incident angles. Over the entire ±85o viewing cone, after reducing the air-interface 

surface reflection, the light leakage from the crossed single-wavelength circular polarizers is less 

than 2.87×10-4 at λ = 550 nm and less than 1.7×10-3 over the 450~650 nm spectrum for the 

crossed broadband circular polarizers. This device is particularly useful for enhancing the optical 

efficiency of direct-view LCDs.  

4.1. Stokes parameters 

The state of polarization can be represented by Stokes parameters (S1, S2, and S3) and 

plotted on Poincaré sphere [41-42] after the parallel and perpendicular components of the electric 

field are solved using the 4-by-4 matrix method [39]. If the state of polarization is represented by 

vector P = (S1, S2, S3), then the polarization difference between two states of polarization P(1) and 

P(2) can be described by 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )22_31_3
2

2_21_2
2

2_11_121 SSSSSS −+−+−=Δ −P ,  (4.1) 

where S1_(1), S2_(1), S3_(1), S1_(2), S2_(2), and S3_(2) are the Stokes parameters of P(1) and P(2), 

respectively. P(LCP) = (0, 0, 1) denotes the left-handed circular polarization and P(RCP) = (0, 0, −1) 



   
  

31 

gives the right-handed circular polarization. S3 equals to zero for the linear polarization and |S3| is 

neither zero nor one for the elliptical polarization. Since S1, S2 and S3 satisfy the relationship that 

12
3

2
2

2
1 =++ SSS , Equation 4.1 can be simplified so that the polarization difference between P(X) 

and P(RCP) is related to the S3 of P(X) by 

( ) ( ) ( ) ( ) ( )
( )

X_3RCPXRCPX 12 S+=−=Δ − PPP ,           (4.2) 

where P(X) = (S1_(X), S2_(X), S3_(X)). Once S3_(X) descents to −1, ΔP(X)−(RCP) approaches zero and P(X) 

becomes P(RCP).  

In this chapter, the linear polarizer is modeled as a lossy uniaxial material. The employed 

refractive indices of the polarizer, positive birefringence uniaxial A-plate and C-plate, and 

negative birefringence uniaxial A-plate and C-plate are as follows: ne_pol = 1.5 + i×3.251×10-3, 

no_pol = 1.5 + i×2.86×10-5, ne_p_A-plate = 1. 5124, no_p_A-plate = 1.5089, ne_p_C-plate = 1.5124, no_p_C-plate 

= 1.5089, ne_n_A-plate = 1.5089, no_n_A-plate = 1. 5124, ne_n_C-plate = 1.5089, and no_n_C-plate = 1.5124. 

The thickness of the polarizer is 210 μm. The A-plate and C-plate with negative dΔn can be 

realized by negative birefringence A-plate and C-plate. We assume the color dispersions of linear 

polarizer, A-plate, and C-plate are negligible.  

On both sides of the absorptive polarizer, the protective Tri-Acetyl-Cellulose (TAC) 

films exhibit a small birefringence and act as negative birefringence C-plates. The phase change 

due to the TAC film can be minimized if we laminate a positive birefringence C-plate to the exit 

protective film. The phase retardation of this C-plate compensates for the adjacent protective 

film so that the C-plate effect of the linear polarizer is negligible.  
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4.2. Single-wavelength wide-view circular polarizers 

A conventional circular polarizer consists of a linear polarizer and a quarter-wave plate. 

The quarter-wave plate is laminated on the light emerging side of the linear polarizer and its slow 

axis is oriented at 45o with respect to the absorption direction of the polarizer. At normal 

incidence, the light emerging from the linear polarizer sustains π/2 phase change from the 

quarter-wave plate so that it becomes circularly polarized light. However, at oblique angles, the 

phase change contributed by the λ/4 plate is different from π/2 [24-25] so that the produced 

polarization state becomes elliptical as Figure 4.1(a) illustrates.  
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(a) 

       

 (b) 

Figure.4.1: (a) States of polarization produced by a conventional circular polarizer. The red lines 

show the states of polarization for θ = 0o ~ 85o at each fixed φ, where φ = 0o ~ 360o with 10o 

interval. (b) S3 of the produced states of polarization at different view angles. S3 = −1 at normal 

incidence angle and reaches its maximum of −0.829 at θ = 85o, φ = 130o and 310o. In both 

figures, λ = 550 nm. 
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In Figure 4.1(a), the S3 of the produced polarization increases from –1 to –0.829 

(ΔP(λ/4)−(RCP) = 0.585) when the incident angle θ increases from 0o to 85o at φ = 130o and 320o. 

Figure 4.1(b) plots the variation in the produced S3 with respect to the incident angle θ and the 

azimuth of incident plane φ. The variation in S3 is relatively small when the incident angle is 

within 30o. Above 45o, S3 increases drastically. The peaks of S3 occur at φ = 40o, 130o, 220o, and 

320o.  

If a pair of crossed circular polarizers is constructed as Figure 4.2(a) depicts, the polarizer 

and the first quarter-wave plate form a circular polarizer, and the analyzer and the second 

quarter-wave plate form a crossed circular polarizer. Figure 4.2(b) plots the iso-transmittance 

contour of light leakage. Although the light leakage is almost zero at normal viewing direction, it 

increases to 0.098 at θ = 85o because of the resulted elliptical polarization. The light leakage is 

the strongest at near bisectors (φ = 40o, 130o, 220o, and 320o) since the produced S3 peaks at these 

angles, as depicted in Figure 4.1(b).  
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(b) 

Figure 4.2: Conventional crossed circular polarizers: (a) device configuration; (b) iso-

transmittance contour showing the light leakage at λ = 550 nm. Ten-layer anti-reflection film is 

assumed. 
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During simulations, an ideal anti-reflection (AR) film is assumed in order to reduce the 

interference of the air-polarizer surface reflection. The ten-layer anti-reflection film is coated on 

the air interface of both polarizers. This AR film is designed using genetic algorithm [44-45] and 

the gradient refractive indices profile is illustrated in Figure 4.3(a). The origin represents the air-

AR interface. The transmittance of this ten-layer AR film is greater than 0.97 over the ±85o 

incident cone for λ = 450 ~ 650 nm as Figure 4.3(b) illustrates. 
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(a) 

 

(b) 

Figure 4.3: Ten-layer anti-reflection film: (a) refractive indices profile, and (b) transmittance. 

 

To produce circular state of polarization at a large incidence angle, we laminate one 

uniaxial C-plate to the quarter-wave plate as Figure 4.4 drafts. This positive birefringence C-

plate contributes phase retardation at oblique angles [1, 6, 9, 14-16] so that the produced 

polarization is closer to an ideal circular polarization, while the normal incidence angle 

performance of conventional circular polarizer is not compromised.  
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Figure 4.4: Configuration of a wide-view circular polarizer with a linear polarizer, a quarter-

wave plate, and a uniaxial C-plate.  

 

Figure 4.5(a) uses Poincaré sphere to demonstrate how the C-plate with dΔn = 59.9 nm 

reduces the S3 of the produced polarization to −0.952 at θ = 85o. Although the state of 

polarization emerging from the quarter-wave plate is deviated from an ideal circular polarization, 

the C-plate reduces the difference by modifying the transmitted S2 and S3.  
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(a) 

  

(b) 

Figure 4.5: (a) States of polarization inside a wide-view circular polarizer when dΔn of C-plate 

equals 59.9 nm, where θ = 85o, φ = 130o, and λ = 550nm. (b) Variations in the produced S3 with 

respect to the dΔn of C-plate when θ = 85o. The configuration of this circular polarizer is shown 

in Figure 4.4. 
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To find the dΔn of this C-plate for minimizing S3 over the ±85o viewing cone, Figure 

4.5(b) illustrates that the produced S3 decreases to its minimum when the dΔn of the C-plate is 

gradually increased from 0 to 59.9 nm. Further increasing the dΔn of the C-plate increases the 

produced S3. By exhaustive search we can find when the dΔn of the C-plate equals 59.90 nm, the 

S3 of the produced state of polarization is less than −0.952 (ΔP(λ/4+1C)−(RCP) ≤ 0.31) over the entire 

±85o viewing cone as Figure 4.6(a) shows. Due to this additional C-plate, the produced S3 

remains −1 at normal incidence and slowly increases to −0.952 as the viewing angle increases to 

85o, which is significantly reduced in contrast to a conventional circular polarizer. This decreases 

the light leakage of the crossed circular polarizers to 0.027 over the ±85o viewing cone, as 

demonstrates in Figure 4.6(b). The peaks of light leakage shift to φ = 55o, 145o, 235o, and 325o 

due to the presence of the C-plate. Ten-layer ideal anti-reflection film in Figure 4.3(a) is assumed 

and coated on the air interface of both polarizers. 
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(a) 

         

(b) 

Figure 4.6: (a) States of polarization emerging from a wide-view circular polarizer when the dΔn 

of C-plate equals 59.9 nm, red lines show the states of polarization when θ = 0o ~ 85o at each 

fixed φ, where φ = 0o ~ 360o with 10o interval. (b) iso-transmittance contour showing the light 

leakage from the crossed wide-view circular polarizers. The configuration of this circular 

polarizer is shown in Fig. 4. Ten-layer anti-reflection film is assumed and λ = 550 nm.  
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Since the C-plate does not change the S1 of the polarization state [16], the produced S3 

remains as high as −0.952 at 85o viewing angle and cannot be further reduced as we observed in 

Figures 4.5 and 4.6. Whereas all of the three Stokes parameters are changed inside an A-plate 

[16], to further improve the viewing angle performance we could laminate an extra A-plate to the 

circular polarizer shown in Figure 4.4 and obtain a new design shown in Figure 4.7. The C-plate 

is laminated between two A-plates. Over wide incident angles, the combination of these A-plates 

and C-plate is expect to be equivalent to the quarter-wave plate in the conventional circular 

polarizer at normal incidence. Due to the presence of the additional A-plate, the azimuthal angle 

and the dΔn of the quarter-wave plate must be redesigned so that the produced state of 

polarization remains circular at normal incidence. The azimuthal angles of both A-plates as well 

as the dΔn of all A-plates and C-plate are the subject of design. Using genetic algorithm [44-45], 

by minimizing the cost function 

( )( ) ( ){ }0000
C1A2_3 360~0,85~0|12maxcos ==+= + φθSt ,

  
(4.3) 

where S3_(2A+1C) is the S3 of the produced state of polarization P(2A+1C), we obtain the parameters 

of the phase retardation films. For this design, the azimuthal angles of A-plates are: φne_A_1st = 

72.36o and φne_A_2nd = 36.84o; the dΔn of all retardation films are: dΔn_A_1st = 89.77 nm, dΔn_A_2nd 

= 89.77 nm, and dΔn_C = 106.08 nm.  
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Figure 4.7: Configuration of a wide-acceptance-angle circular polarizer with one linear polarizer, 

two uniaxial A-plates, and one uniaxial C-plate.  

 

Inside this circular polarizer, all of the S1, S2 and S3 are modified so that the 

compensations between the retardation films are further improved as Figure 4.8(a) demonstrates. 

The two A-plates not only reduce S3 to −1 but also reduce the transmitted S1 and S2 to zero. On 

the other hand, the C-plate tempers the transmitted state of polarization to further reduce the 

viewing angle sensitivity. Therefore, the produced S3 is only slightly increased to −0.991 when 

the viewing angle increases to 85o as depicted in Figure 4.8(b). This is equivalent to having the 

polarization difference ΔP(2A+1C)−(RCP) less than 0.134 over the ±85o viewing cone. The produced 

S3 remains at −1 at normal angle as in the conventional right-handed circular polarizer. For the 

left-handed circular polarizer using the configuration shown in Figure 4.7, the dΔn of all A-plates 

and C-plate are not changed but the azimuthal angles of the A-plates are the negative of their 

counterparts in the right-handed circular polarizer. 
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(a) 

      

 (b) 

Figure 4.8: (a) States of polarization inside a wide-view circular polarizer at θ = 85o and φ = 130o. 

Red and blue lines show the states of polarization inside the A-plates and C-plates, respectively. 

(b) State of polarization emerging from a wide-view circular polarizer. Red lines show the states 

of polarization when θ = 0o ~ 85o at each fixed φ, where φ = 0o ~ 360o with 10o interval. In both 

figures, the configuration of the circular polarizer is in Figure 4.7. λ = 550 nm.  
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From above discussions, an extra phase retardation film gives an extra degree of freedom 

to improve the viewing angle of a circular polarizer. By laminating an additional A-plate and a 

C-plate to the above circular polarizer as Figure 4.9 depicts, the polarization difference between 

the produced polarization and the desired circular polarization can be further reduced. In this 

configuration, A-plates are interlaced with C-plates. By minimizing the cost ( )( )12 C2A3_3 ++S  

over the ±85o viewing cone using genetic algorithm [44-45], we obtain the design parameters of 

A-plates and C-plates, where S3_(3A+2C) is the S3 of the produced state of polarization P(3A+2C). 

From this design, the azimuthal angles of A-plates are: φne_A_1st = 78.55o, φne_A_2nd = −28.71o, and 

φne_A_3rd = 42.46o; the dΔn of all retardation films are: dΔn_A_1st = 75.69 nm, dΔn_A_2nd = 24.30 

nm, dΔn_A_3rd = 128.96 nm, dΔn_C_1st = 106.56 nm, and dΔn_C_2nd = −21.08 nm.  
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Figure 4.9: Configuration of a wide-view circular polarizer with one linear polarizer, three 

uniaxial A-plates and two uniaxial C-plates. 

 



   
  

46 

The additional A-plate and C-plate significantly reduce the viewing angle sensitivity of 

the circular polarizer because of the extra compensations between retardation films. As 

illustrated in Figure 4.10(a), all of the S1, S2 and S3 are subtly modified in the retardation films so 

that the produced S3 remains less than −0.999 (ΔP(3A+2C)−(RCP) ≤ 0.045) over the entire ±85o 

viewing cone, which can be seen in Figure 4.10(b). Variation in the produced S3 is further 

reduced so that the produced polarization is nearly circular at any incident angle within ±85o.  
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(a) 

 

(b) 

Figure 4.10: (a) States of polarization inside a wide-view circular polarizer at θ = 85o and φ = 

130o. Red and blue lines show the polarizations inside A-plates and C-plates, respectively. (b) 

State of polarization emerging from a wide-view circular polarizer. Red lines show the 

polarizations when θ = 0o ~ 85o at each fixed φ, where φ = 0o ~ 360o with 10o interval. In both 

figures, the configuration of the circular polarizer is shown in Figure 4.9. λ = 550 nm.  



   
  

48 

Since the produced polarization approaches the ideal circular polarization, the light 

leakage of the crossed circular polarizers is less than 2.87×10-4 over the ±85o viewing cone as 

Figure 4.11(a) shows. Although the light leakage is more pronounced at φ ~ 10o, 100o, 190o, and 

280o, it is still less than 1.72×10-4 at other azimuthal angles when the incident angle is within 

±85o. As compared to the case of using conventional circular polarizer, as shown in Figure 4.2(b), 

our results are significantly improved despite the increased cost.  

Figure 4.11(b) depicts the configuration of the crossed circular polarizers. The polarizer 

and the first three A-plates together with the first two C-plates form a wide-view right-handed 

circular polarizer. The analyzer and the last three A-plates together with the last two C-plates 

form a second circular polarizer crossed to the first one. The arrangement of the A-plates and C-

plates are reversed for the crossed polarizers so that the state of polarization emerging from the 

last A-plate is linear along the absorption direction of the analyzer, thus the light leakage is small. 

The ideal anti-reflection film in Figure 4.3(a) is assumed and coated on the air interface of both 

polarizers. For a left-handed circular polarizer using the configuration in Figure 4.9, the dΔn of 

all A-plates and C-plates are not changed but the azimuthal angles of the A-plates are the 

negative of their counterparts in the right-handed circular polarizer.  
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Figure 4.11: Crossed wide-view circular polarizers: (a) iso-transmittance contour showing the 

light leakage at λ = 550 nm; (b) device configuration. The ideal anti-reflection film is assumed. 
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4.3. Broadband wide-view circular polarizers 

In the above designs, the produced states of polarization are very close to the ideal 

circular polarization over a wide viewing cone, however, only at a single wavelength. As the 

incident wavelength deviates from the designed one, the phase retardations of the A-plates and 

C-plates will walk off from the designed values. As a result, the produced polarization state is no 

longer circular as Figure 4.12 demonstrates. In Figure 4.12, the conventional broadband circular 

polarizer (red line) is indeed quite insensitive to the wavelength in the 450-650 nm spectral range, 

but only at normal incident angle. All the other three designs (black, blue and green curves) 

based on a single wavelength are rather sensitive to the wavelength. In this section we will focus 

on the designs of broadband and wide-view circular polarizers. 
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Figure 4.12: The calculated S3 as a function of wavelength for the four types of circular 

polarizers, as described in the insert. The viewing cone is ±85o for the proposed wide-view 

circular polarizers, and the viewing angle is 0o for the conventional circular polarizers. 

 

A commonly used broadband circular polarizer is comprised of laminating a half-wave 

plate between the linear polarizer and the quarter-wave plate as illustrated in Figure 4.13(a) [46, 

47]. When the azimuthal angles of the half-wave plate and the quarter-wave plate satisfy the 

following relationship  

0
2_4_ 9042 =− λλ θθ nene ,     (4.4) 

the produced state of polarization is very close to the ideal circular polarization over a broad 

spectrum at normal incidence as observed from Figure 4.12. However, at oblique angles, the 

relationship in Equation 4.4 is no longer satisfied on the wave plane and the phase retardations of 

the half-wave plate and the quarter-wave plate are changed. Thus, the produced polarization is no 
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longer circular and varies significantly with the incident spectrum [24-25]. As Figure 4.14 shows, 

the produced S3 from a conventional broadband circular polarizer (black curve) is larger than 

−0.5 at 85o incident angle over the spectrum of 450 ~ 650 nm. The red line in Figure 4.14 shows 

the produced S3 from a broadband wide-view circular polarizer that we are going to discuss.  
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(a)     (b) 

Figure 4.13: (a) Configuration of a conventional broadband circular polarizer with one linear 

polarizer, one half-wave plate and one quarter-wave plate. The azimuthal angle of the half-wave 

plate is 75o with respect to the absorption axis of the polarizer and the azimuthal angle of the 

quarter-wave plate is 15o. (b) Device configuration of a wide-view broadband circular polarizer 

with one linear polarizer, five uniaxial A-plates and three uniaxial C-plates. 
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Figure 4.14: The calculated maximum S3 over the ±85o viewing cone as a function of wavelength 

for the four types of circular polarizers, as described in the insert. 

 

The above designs of single-wavelength circular polarizer show that replacing the 

quarter-wave plate in the conventional circular polarizer with the combination of A-plates and C-

plates significantly reduces the viewing angle sensitivity of the produced state of polarization. 

Likewise, if both half-wave plate and quarter-wave plate in the conventional broadband circular 

polarizer can be replaced by multi-layer equivalent plates, then the resulted circular polarizer 

would be broadband and wide-view. In this case, over wide viewing angle and broad spectrum, 

the multi-layer equivalent plates should produce similar states of polarization as their single-

layer counterparts do at normal incidence.  

To design the multi-layer equivalent half-wave plate, we first derive the states of 

polarization Pλ/2 emerging from the half-wave plate at θ = 0o and φ = 0o ~ 360o for λ = 450 ~ 650 
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nm. Then we use the combination of two A-plates and one C-plate to replace the half-wave plate 

as Figure 4.13(b) depicts. Next, by using genetic algorithm to minimize the cost 

( ) ( ) ( ){ }nm550~nm450,360~0,85~0|maxcos 0000
2λ/2C_λ_1A2 ===Δ= −+ λφθPt ,      (4.5) 

we find the phase retardation film parameters, where ΔP(2A+1C_λ/2)−( λ/2) is the polarization 

difference between the state of polarization P(2A+1C_λ/2) emerging from the equivalent λ/2 plate 

and the state of polarization Pλ/2 emerging from the single-layer half-wave plate. For this multi-

layer equivalent half-wave plate, the azimuthal angles of A-plates are: φne_A_1st = −61.45o, 

φne_A_2nd = −5.05o; the dΔn of retardation films are: dΔn_A_1st = −72.95 nm, , dΔn_A_2nd = −201.90 

nm, and dΔn_C_1st = −103.38 nm. Using this design, ΔP(2A+1C_λ/2)−( λ/2) < 0.217 over the entire ±85o 

viewing cone in the 450 ~ 650 nm spectrum.  

With the multi-layer equivalent half-wave plate, the quarter-wave plate in the 

conventional broadband circular polarizer is replaced by the combination of three A-plates and 

two C-plates as Fig. 13(b) sketches. By minimizing the cost 

( )( ) ( ){ }nm550~nm450,360~0,85~0|12maxcos 0000
4λC_2A3_3 ===+= + λφθSt   (4.6) 

using genetic algorithm we have the design of the equivalent quarter-wave plate, where 

S3_(3A+2C_λ/4) is the S3 of the state of polarization P(3A+2C_λ/4) emerging from the multi-layer 

equivalent quarter-wave plate. For this multi-layer equivalent quarter-wave plate, the azimuthal 

angles of A-plates are: φne_A_3rd = 37.61o, φne_A_4th = 2.40o, and φne_A_5th = −46.97o; the dΔn of 

retardation films are: dΔn_A_3rd = 90.71 nm, dΔn_A_4th = 74.71 nm, dΔn_A_5th = −33.68 nm, 

dΔn_C_2nd = 48.09 nm, and dΔn_C_3rd = −6.04 nm. 
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Unlike above single wavelength circular polarizers, the variation in the produced state of 

polarization over a broad spectrum is similar to the conventional broadband circular polarizer at 

normal incidence angle. This can be seen in Figure 4.14, in which the red line shows that, over 

the ±85o viewing cone, the produced S3 is less than −0.963 at λ = 450 nm and decreases to 

−0.995 at λ = 530 ~ 650 nm. The wavelength sensitivity is reduced by satisfying the relationship 

in Equation 4.4 and the viewing angle sensitivity is reduced by the above multi-layer equivalent 

plates. Thus the light leakage of the crossed circular polarizers is suppressed below 1.7×10-3 over 

the ±85o viewing cone within the 450~650 nm spectral range, as Figure 4.15 depicts.  

 

 

Figure 4.15: The calculated maximum light leakage from three-types crossed circular polarizers 

over the ±85o viewing cone as a function of wavelength. The ten-layer anti-reflection film is 

assumed.  
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In Figure 4.15, with the broadband wide-view circular polarizer, the light leakage of the 

crossed circular polarizers is not only kept below 1.7×10-3 in the visual spectrum but also less 

than 3.79×10-4 at λ = 550 nm. This is preferred in the liquid crystal displays since human visual 

system is more sensitive to the green light so that the green color requires a higher contrast ratio. 

In contrast, using single wavelength circular polarizers the light leakage increases dramatically 

when the incident spectrum deviates from the designed wavelength. 

To form the crossed broadband circular polarizer, the polarizer and the first five A-plates 

together with the first three C-plates compose a right-handed circular polarizer as Figure 4.13(b) 

sketches. The analyzer and the other five A-plates together with the other three C-plates form the 

second circular polarizer. The arrangement of the A-plates and C-plates laminating to the 

analyzer are in reverse order and the azimuthal angles of the A-plates are at ninety degree with 

respect to their counter parts laminating to the polarizer. The ideal anti-reflection film in Figure 

4.3(a) is assumed and coated on the air interface of both polarizers. For a left-handed circular 

polarizer using the configuration in Figure 4.13(b), the dΔn of all A-plates and C-plate are not 

changed but the azimuthal angles of the A-plates are the negative of their counterparts in the 

right-handed circular polarizer.  

4.4 Design tolerance 

Design tolerance is an important concern for display manufacturing. For the design of a 

single-wavelength circular polarizer shown in Figure 4.9, we calculate the maximum light 

leakage of the crossed circular polarizers over the ±85o viewing cone if the dΔn of the A-plates 
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or C-plates varies by ±5%. As depicted in Figure 4.16(a), while the light leakage is insensitive to 

the errors in the second C-plate, a −5% error in the first C-plate increases the light leakage to 

1.43×10-3. Figure 4.16(b) depicts the maximum light leakage if the orientations of A-plates vary 

by ±5%. The light leakage rises to 1.61×10-3 with a +5% error in the first A-plate. However, the 

light leakage is almost invariant when the orientation of the second A-plate varies by ±5%. Thus, 

for this design, the accuracy in the first A-plate and the first C-plate are more critical. 

For the broadband circular polarizer shown in Figure 4.13(b), we calculate the maximum 

light leakage of the crossed circular polarizers if the dΔn of the A-plates or C-plates varies by 

±5%. Results are plotted in Figure 4.17(a). Although the light leakage is increased to 1.21×10-3 

with a +5% error in the first two A-plates and increased to 1.49×10-3 with a −5% error in the first 

C-plate, it is less than 5.58×10-4 in all other cases. Figure 4.17(b) shows the maximum light 

leakage if the orientations of the A-plates are deviated by ±5%. Although a +5% error in the first 

A-plate increases the light leakage to 1.49×10-3, the light leakage is almost invariant with ±5% 

errors in the second and the third A-plats. The first two A-plates together with the first C-plate 

compose the equivalent half-wave plate and the other A-plates and C-plates compose the 

equivalent quarter-wave plate. This circular polarizer is more sensitive to the errors in the 

equivalent half-wave plate but insensitive to the errors in the equivalent quarter-wave plate. 

Comparing Figures 4.16 and 4.17, in the least favorable case, the maximum light leakage is still 

less than 1.61×10-3 and 1.49×10-3 for the single-wavelength and broadband circular polarizers, 

respectively.  
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(a) 

 

 (b) 

Figure 4.16: Design tolerance of the wide-view single wavelength circular polarizer shown in 

Figure 4.9: (a) variations in the dΔn of A-plates and C-plates; (b) variations in the azimuthal 

angles of A-plates. The viewing cone is ±85o and λ = 550 nm. Ten-layer anti-reflection film is 

assumed. 
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(a) 

 

 (b) 

Figure 4.17: Design tolerance of the wide-view broadband circular polarizer shown in Figure 

4.13(b): (a) variations in the dΔn of A-plates and C-plates; (b) variations in the azimuthal angles 

of A-plates. The viewing cone is ±85o and λ = 550 nm. Ten-layer anti-reflection film is assumed. 
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4.5. Summary 

We demonstrate a novel methodology for designing wide-view circular polarizers. Both 

single wavelength and broadband circular polarizers are discussed. We use phase compensation 

techniques to reduce the difference between the produced state of polarization and the desired 

circular state of polarization over a wide range of viewing angle. The phase retardation film 

parameters are designed using genetic algorithm. The light leakage from the crossed circular 

polarizers using the proposed single-wavelength circular polarizer is less than 2.87×10-4 over the 

±85o viewing cone at λ = 550 nm. Using the proposed broadband circular polarizer, the light 

leakage is predicted to be less than 1.7×10-3 over the ±85o viewing cone for the visual white light 

and it is lower than 3.79×10-4 at λ = 550 nm.  
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CHAPTER FIVE: WIDE VIEW LIQUID CRYSTAL DISPLAYS 
USING CROSSED CIRCULAR POLARIZERS CONSISTING OF 

UNIAXIAL PHASE RETARDATION FILMS 

In addition to high contrast ratio, high and uniform transmittance over wide viewing 

angles is also highly desired for large screen liquid crystal televisions (LCD TVs). With the 

increase in the screen size of liquid crystal displays (LCDs), high transmittance effectively 

reduces the power consumption while the high contrast ratio and uniform transmittance ensure 

vivid images at flexible viewing positions for the audiences. 

A pair of crossed polarizers is of key components in many transmissive mode liquid 

crystal displays [1]. If a liquid crystal (LC) cell is laminated between two crossed linear 

polarizers, to achieve maximum transmittance in the bright state the LC directors should be 

reoriented to the bisectors of the crossed linear polarizers [1-2, 16-17, 24-25]. Vertical alignment 

(VA) mode has been employed in many LCDs because of its excellent contrast ratio at normal 

incidence. In a vertical-alignment liquid crystal display (VA-LCD), in order to have uniform 

image quality over all the azimuthal angles, four domains are formed along the bisectors of the 

crossed linear polarizers [6, 16-17, 24-25]. However, due to the continuity the LC directors twist 

continuously from domain to domain so that the boundary areas are formed between domains [1-

2, 17-18, 21-22, 24-25]. These boundary areas become dark areas under crossed linear polarizers 

so that the transmittance of the whole pixel is reduced. Nevertheless, under crossed circular 

polarizers, the transmittance of LCD only depends on the phase retardation (δ) of the LC layer: 
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( )2sin 2 δ=T .      (5.1) 

Hence, the azimuthal angles of the LC directors are not necessary to be at the bisectors. As a 

result, the use of circular polarizers greatly enhances the bright state transmittance [24-25].  

However, the light leakage from the crossed conventional circular polarizer is large at 

wide viewing angles so that the contrast ratio of VA-LCDs would be low [24-25]. To improve 

the light efficiency without sacrificing the contrast ratio at wide viewing angles, we can apply the 

wide-view circular polarizers discussed in Chapter 4 to the multi-domain VA-LCDs [26].  

5.1. Multi-domain VA-LCD using wide-view circular polarizers 

Figure 5.1(a) drafts the simplified schematic diagram of such a wide-view VA-LCD 

using crossed wide-view circular polarizers. Broadband wide-view circular polarizer designed in 

Chapter 4 is applied to cover the entire visual spectrum. The LC director distributions are 

simplified into eight domains at every 45o from 22.5o to 337.5o in the bright state as Figure 5.1(b) 

sketches.  
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(a)     (b)   

Figure 5.1: (a) Configuration of a high-contrast wide-view VA-LCD with crossed circular 

polarizers. (b) LC director distributions are simplified into eight domains at every 45o from 22.5o 

to 337.5o in the bright state. For this design, the light entering the VA LC layer is circularly 

polarized. In the bright state, eight domains of LC director distributions are formed at every 45o 

from 22.5 o to and 337.5 o with respect to the absorption direction of the polarizer. 

 

On each side of LC layer, five A-plates and three C-plates are laminated to the adjacent 

linear polarizer to form a broadband wide-view circular polarizer as illustrated in Figure 5.2. The 

arrangement of the A-plates and C-plates are reversed on two sides and the azimuthal angles of 

the A-plates are at ninety degree with respect to their counter parts on the other side. Since the 

vertical alignment LC layer is not considered in the design of wide-view circular polarizers as we 

discussed in Chapter 4, to compensate the phase retardation of the LC layer in the dark state, two 

C-plates with equal thickness are laminated on both sides of the LC layer. The summation of the 

phase retardations of these two C-plates is the negative of the phase retardation of the LC layer. 
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We should emphasize that, in the dark state the light at the center of the LC layer is circularly 

polarized at wide viewing angles.  
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Figure 5.2: Device configuration of a broadband wide-view circular polarizer consisting of one 

linear polarizer, five uniaxial A-plates and three uniaxial C-plates. The design of this circular 

polarized is discussed in Chapter 4. 

 

We use the finite difference method to simulate the bright state LC director distributions 

[31-33] and then use the 4-by-4 matrix method [39] to calculate the transmittance. The employed 

refractive indices of the polarizers and LC are as follows: ne_pol =1.5 + i×3.251×10-3, no_pol = 1.5 

+ i×2.86×10-5, ne_LC = 1.5514 and no_LC = 1.4737 at λ = 550 nm. Here the color dispersion is 

assumed to be weak and not considered. The thickness of the polarizer is 210 μm and LC cell 

gap is 4 μm. We also assume the backlight is uniform within the ±85o viewing cone. The color 
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filters are not considered during calculations. To reduce air-polarizer surface reflection, an ideal 

anti-reflection film in Figure 5.3(a) is assumed and coated on the air interface of both polarizers. 

 

 

(a) 

 

(b) 

Figure 5.3: Ten-layer anti-reflection film: (a) refractive indices profile, and (b) transmittance. 
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5.2. Optical characteristics of a multi-domain VA-LCD using wide-view circular polarizers 

Figure 5.4 depicts the optical characteristics of this LCD at λ = 450, 550 and 650 nm. The 

maximum transmittance is higher than 0.34 (maximum transmittance for paralleled linear 

polarizers is 0.378) at normal viewing angle for the green and blue light, for red it is still ~0.30. 

The major optical loss comes from the absorption of the dichroic linear polarizers. Over the 

entire ±85o viewing cone, the minimum bright state transmittance remains ~68% and ~90% of 

the maximum transmittance for the green and red light, respectively. Further more, in all cases 

the transmittance is uniform over all the azimuth angles. Among these three colors, the green 

light has the highest contrast ratio, which is greater than 420:1 over the ±85o viewing cone. 

Although the contrast ratio is lower for the red light, it is still higher than 115:1 over all the 

viewing angles.  
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(f) 

Figure 5.4: A VA-LCD using crossed broadband wide-view circular polarizers when LC 

directors form eight domains in the bright state: (a) iso-transmittance contour at λ = 450 nm; (b) 

iso-contrast contour at λ = 450 nm; c) iso-transmittance contour at λ = 550 nm; (d) iso-contrast 

contour at λ = 550 nm; e) iso-transmittance contour at λ = 650 nm; (f) iso-contrast contour at λ = 

650 nm. The LCD configuration is sketched in Figure 5.1(a) and ten-layer anti-reflection film is 

assumed. 

 

In a real display panel, the actual contrast ratio could be lowered because the above-

mentioned ideal parameters may not be controlled precisely. Moreover, the lower extinction ratio 

of linear polarizer, imperfect LC alignment, variation and non-uniformity of the compensation 

film thickness, color dispersions of optical components, as well as the stress birefringence from 

films and substrates could also reduce the contrast ratio. Other than the above reasons, the actual 

angular brightness uniformity could also be lowered because of the non-ideal anti-reflection film. 
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At the same time, some LC directors around the domains’ boundaries are not reoriented in the 

bright state because of the discontinuities between LC directors in different domains [1-2, 17-18, 

21-22, 24-25]. This decreases the actual bright state transmittance. Color filters in a real display 

panel further reduce the actual bright state transmittance. 

5.3. Summary 

In this chapter, we demonstrate a wide view VA LCD with both high contrast ratio and 

high transmittance over the entire visual spectrum. Applying the wide-view and broadband 

circular polarizer proposed in Chapter 4, the maximum transmittance of the presented multi-

domain VA LCD is predicted to be greater than 90% (0.34 out of 0.378) and the contrast ratio is 

higher than 420:1 for the green light. Over the entire visual spectrum the maximum transmittance 

is greater than 81% (0.30 out of 0.378) and the contrast ratio is higher than 115:1. The uniformity 

of better than 68% in the bright state transmittance is achievable over the ±85o viewing cone if 

the air-interface surface reflection is suppressed. 
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CHAPTER SIX: WIDE VIEW AND BROADBAND CIRCUALR 
POLARIZER CONSISTING OF BIAXIAL PHASE 

RETARDATION FILMS 

Circular polarizer is an important component for optical communications, optical remote 

sensing, and liquid crystal displays (LCDs) [23-25]. For the direct view liquid crystal displays, 

vertical alignment (VA) mode has been widely employed because of its excellent contrast ratio. 

In order to have uniform image quality over all the azimuthal angles, four domains are formed 

along the bisectors of the crossed linear polarizers [6, 16-17, 24-25] in a vertical-alignment liquid 

crystal display (VA-LCD). Because of the continuity of liquid crystal, the LC directors twist 

continuously from domain to domain inside multi-domain liquid crystal displays [1-2, 17-18, 21-

22, 24-25] so that the boundary areas are formed between domains. These boundary areas appear 

dark under crossed linear polarizers and the pixel’s transmittance is reduced. Nevertheless, as it 

was shown in Chapter 5, these dark zones are removed by using a pair of crossed circular 

polarizers [24-26]. 

A conventional circular polarizer consisting of a linear polarizer and a uniaxial quarter-

wave plate produces circular polarization only at normal incidence. Replacing the uniaxial 

quarter-wave plate with a biaxial quarter-wave plate only slightly improves the acceptance angle 

[24-25]. In Chapter 4, a broadband wide-view circular polarizer using the combinations of 

optimally designed uniaxial A-plates and C-plates significantly widens the acceptance angle, but 

its device configuration is too sophisticated [26]. As a result, it is difficult to fabricate and the 
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cost is high. There is an urgent need to develop a simple and low cost wide-view circular 

polarizer.  

Comparing to a uniaxial retardation film, the biaxial film provides an extra degree of 

freedom so that the device configuration of the wide-view circular polarizer can be simplified 

[15]. In this chapter, we demonstrate a wide-view circular polarizer consisting of a linear 

polarizer and two biaxial films [27]. The produced states of polarization are very close to the 

ideal circular polarization over a wide range of incident angles. Over the entire ±85o viewing 

cone, the light leakage of the crossed circular polarizers is less than 8.23×10−5, provided that the 

air-interface surface reflections are suppressed.  

6.1. Design of wide-view circular polarizer 

To design a wide-view circular polarizer, we represent the state of polarization with 

Stokes parameters (S1, S2, and S3) and portray on Poincaré sphere after the orthogonal 

components of the electric field are solved using the 4-by-4 matrix method [36-39]. If the state of 

polarization is represented by vector P = (S1, S2, S3), then the polarization difference between an 

arbitrary polarization P(X) = (S1_(x), S2_(x), S3_(x)) and the right-handed circular polarization P(RCP) 

= (0, 0, −1) can be described by [26-27, 41-42]:  
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As shown in Equation. 6.1, once S3_(X) descends to −1, ΔP(X)−(RCP) approaches zero and the 

polarization P(X) becomes the right-handed circular polarization P(RCP). 

In this chapter, the absorptive linear polarizer is modeled as a lossy uniaxial material. We 

assume the refractive indices of the liner polarizer and the biaxial retardation films are as follows: 

nx_pol = 1.5 + i×3.251×10−3, ny_pol = 1.5 + i×2.86×10−5, nz_pol = 1.5 + i×2.86×10−5, nx_film = 1. 5124, 

ny_film = 1.5089. The refractive index nz_film of each biaxial film is determined by its NZ factor, 

where NZ = (nx – nz)/(nx – ny) [15]. The linear polarizer has a thickness of 210 μm and its 

absorption axis is oriented along 0o. The design wavelength is λ=550 nm.  

On both sides of the absorptive polarizer, the protective Tri-Acetyl-Cellulose (TAC) 

films exhibit a small birefringence and act as negative birefringence C-plates. The phase change 

due to the TAC film can be minimized if we laminate a positive birefringence C-plate to the exit 

protective film. The phase retardation of this C-plate compensates for the adjacent protective 

film so that the C-plate effect of the linear polarizer is negligible.  

A circular state of polarization is achieved when a quarter-wave plate is illuminated by a 

linearly polarized light vibrating at 45o with respect to its slow axis [41-42]. If this light is 

produced by a linear polarizer, the quarter-wave plate together with the linear polarizer forms a 

conventional circular polarizer. At normal incidence, when the linearly polarized light passes 

through the quarter-wave plate, the light sustains π/2 phase change while the magnitudes of its 

orthogonal components remain equal so that the light becomes circularly polarized. However, at 

oblique angles the quarter-wave plate contributes other than π/2 phase change [24-25] and the 

slow axis is not at 45o with respect to the incoming linear polarization. As a result, the produced 

polarization state becomes elliptical and a relatively large amount of light leaks through the 
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crossed circular polarizers. Replacing the uniaxial quarter-wave plate with a biaxial quarter-wave 

plate reduces the variation in the π/2 phase change at oblique incident angles. However, the 45o 

angle between the light’s vibration direction and the biaxial film’s slow axis is not maintained at 

oblique incidence [15, 16]. Therefore, although the produced polarization is relatively close to 

the circular polarization, the light leakage of the crossed circular polarizers is still large at wide 

viewing angles [24-25]. 

To preserve circular polarization over a wide range of incident angle, we laminate two 

biaxial retardation films to the linear polarizer as shown in Figure 6.1. Since all of the three 

Stokes parameters are modified inside a biaxial film, the azimuthal angles and the d·(nx – ny) as 

well as the NZ factors of both biaxial films are the key design parameters. Here the azimuthal 

angle of biaxial film is the angle between the nx axis of the biaxial film and the absorption 

direction of the polarizer as Figure 6.1 shows.  

 

Polarizer

1st biaxial film φ1

2nd A-plate φ2

k

PolarizerPolarizer

1st biaxial film φ1

2nd A-plate φ2

kkk

 

Figure 6.1: Configuration of a wide-view circular polarizer with a linear polarizer and two 

biaxial films.  

 

We use genetic algorithm [45, 46] to optimize the polarizer design. For a given 

combination of the above parameters, we first solve the orthogonal components of the electric 
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field using the 4-by-4 matrix method. Then we find the produced polarization and apply it into 

the following cost function  

( ) ( ){ }00
in

00
in2B_3 360~0,85~0|)1(2maxcos ==+= φθSt ,  (6.2) 

where S3_(2B) is the S3 of the produced state of polarization P(2B). By minimizing the cost function 

shown in Equation 6.2, we could obtain the optimal design parameters for the biaxial films. For 

the two biaxial films, their azimuthal angles are: φ1 = 0.68o and φ2 = 46.37o; the d·(nx −ny) values 

are: d·(nx−ny)1 =264.08 nm and d·(nx−ny)2 = 134.13 nm; and the NZ factors are: NZ1 = 0.75 and 

NZ2 = 0.53.  

Figure 6.2 illustrates the polarization states inside this circular polarizer using Poincaré 

sphere representation. As Figure 6.2 depicts, the first biaxial film serves as a wide-view half-

wave plate so that the light entering the second biaxial film is almost linearly polarized and 

vibrating at ~45o with respect to the nx axis of the second biaxial film. Meanwhile, the second 

biaxial film performs as a wide-view quarter-wave plate. Therefore, although the polarizations 

across each biaxial film vary with the incident angle, they compensate each other so that the final 

polarization remains circular over a wide viewing cone.  
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1st biaxial film

2nd biaxial film

1st biaxial film

2nd biaxial film

1st biaxial film

2nd biaxial film

 

Figure 6.2: States of polarization inside a wide-view circular polarizer at oblique incidence θ = 

85o. Dotted lines and solid line show the polarization states when the azimuths of incident plane 

φ are at 30o and 60o, respectively. Red and blue lines show the polarizations inside the first and 

second biaxial films, respectively. 

 

As demonstrated in Figure 6.3, for the proposed right-handed circular polarizer S3 only 

increases to −0.997 when the viewing angle increases to 85o. This is equivalent to having the 

polarization difference ΔP(2B)−(RCP) less than 0.078 over the ±85o viewing cone. The produced S3 

remains at −1 at normal angle as in the conventional right-handed circular polarizer. For a left-

handed circular polarizer using above configuration, the NZ factors and d·(nx − ny) of both 

biaxial films are not changed but the azimuthal angles of the biaxial films are the negative of 

their counterparts in the right-handed circular polarizer.  
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θ = 85o, S3 = −0.997

θ = 0o, S3 = −1

θ = 85o, S3 = −0.997

θ = 0o, S3 = −1

 

Figure 6.3: State of polarization emerging from a wide-view circular polarizer when θ = 0o ~ 85o 

at each fixed φ, where φ = 0o ~ 360o with 10o interval. 

6.2. Optical characteristics of the designed wide-view circular polarizer 

Since the produced polarization approaches ideal circular polarization, the light leakage 

from crossed circular polarizers can be significantly reduced. Figure 6.4 sketches the 

configuration of the crossed circular polarizers. The bottom linear polarizer and the first two 

biaxial films compose a wide-view right-handed circular polarizer. The top analyzer and the last 

two biaxial films form a second circular polarizer crossed to the first one. The absorption axis of 

the analyzer and the azimuthal angles of the last two biaxial films are perpendicular to their 

counter parts in the first circular polarizer.  
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3rd biaxial film φne = 136.37o, dΔn = 134.13 nm, NZ = 0.53

2nd biaxial film φne = 46.37o,   dΔn = 134.13 nm, NZ = 0.53

1st biaxial film φne = 0.68o,     dΔn = 264.08 nm, NZ = 0.75

 

Figure 6.4: Device configuration of the crossed wide-view circular polarizers. 

 

The circular polarization emerging from the first circular polarizer is converted into linear 

polarization after it passes though the two biaxial films attached to the analyzer. Due to the 

symmetric configuration of the crossed circular polarizers, this linearly polarized light vibrates 

along the analyzer’s absorption direction. Therefore, the light leakage of the crossed circular 

polarizers is less than 8.23×10−5 over the ±85o viewing cone as Figure 6.5(a) demonstrates.  

Besides the light leakage of crossed polarizers, for wide-view LCD applications we also 

need to know the angular-dependent transmittance when the polarizers are open. Results are 

plotted in Figure 6.5(b). The maximum transmittance is 0.378 (maximum transmittance for 

paralleled linear polarizers is 0.378), which occurs at normal incidence. The major optical loss is 

from the absorption of the dichroic linear polarizers. The iso-transmittance contour shown in 

Figure 6.5(b) is relatively symmetric. At ±85o viewing cone, the transmittance remains greater 

than 0.311. Thus, from Figures 6.5(a) and 6.5(b), the calculated extinction ratio (at λ = 550 nm) 

of the circular polarizer remains ~4000:1 at the ±85o viewing cone.  
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≥ 0.335
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≥ 0.350

≥ 0.320

≥ 0.335

= 0.311

= 0.378

 

(b) 

Figure 6.5: Iso-transmittance contour showing: (a) light leakage of the crossed wide-view 

circular polarizers, and (b) transmittance of two parallel circular polarizers. λ = 550 nm. Ten-

layer anti-reflection film in Figure 6.6 is assumed. 
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In order to reduce the interference of the air-polarizer surface reflection, an ideal anti-

reflection (AR) film is assumed during simulations. The ten-layer anti-reflection film is coated 

on the air interface of both polarizers. This AR film is designed using genetic algorithm and the 

gradient refractive indices profile is illustrated in Figure 6(a) [44, 45]. The origin represents the 

air-AR interface. The transmittance of this ten-layer AR film is greater than 0.99 over the ±85o 

incident cone within the 450 nm ~ 650 nm spectrum as Figure 6.6(b) depicts. 

 

 

(a) 

 

(b) 

Figure 6.6: Ten-layer ideal anti-reflection film: (a) refractive indices profile, (b) transmittance. 
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6.3. Spectral bandwidth of the designed wide-view circular polarizer 

For some applications such as direct-view LCDs, broad bandwidth is as important as 

wide viewing angle [1, 3-6, 23-28]. Although the proposed wide-view circular polarizer is 

designed at a single wavelength λ = 550 nm, however, at normal incidence the retardation of the 

first biaxial film is almost equal to one half of the designed wavelength, i.e., d·(nx − ny)1 = 264.08 

nm ≈ 550 nm/2 = λ/2, and the retardation of the second biaxial film is close to a quarter of the 

designed wavelength, d·(nx − ny)2 =134.13 nm ≈ 550 nm/4 = λ/4. At the same time, the azimuthal 

angles of the two biaxial films satisfy the following relationship: 

( )

0

0
21

90
02.90

0.68180446.37)+(360242

≈

=

+×−×=− φφ

,   (6.3) 

which describes the relationship between the azimuthal angles of the half-wave plate and the 

quarter-wave plate inside a broadband circular polarizer [46]. Therefore, at normal incidence the 

proposed circular polarizer performs as a broadband circular polarizer so that the light leakage of 

the crossed circular polarizers is less than 1.64×10−6 over the 450~650 nm spectral range, as 

shown in Figure 6.7. Within the ±60o viewing cone, the light leakage is maintained less than 1.90 

×10−3 over the specified visible spectral range. At ±85o viewing cone, the maximum light 

leakage reaches 3.92 ×10−3 at λ = 450 nm and 1.39 ×10−3 at λ = 650 nm. For display applications, 

the light leakage at blue is more forgiven than green and red because human visual system is less 

sensitive to blue. Moreover, the blue spectral content is the weakest among the three primary 

colors.  
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Figure 6.7: The calculated maximum light leakage of the crossed circular polarizers at different 

viewing angles as a function of wavelength. The configuration of the crossed circular polarizers 

is in Figure 6.1 and the anti-reflection film in Figure 6.6 is assumed.  

6.4. Design tolerance 

Design tolerance is an important concern from manufacturing viewpoint. For the 

proposed design of a wide-view circular polarizer, we calculate the maximum light leakage of 

the crossed circular polarizers over the ±85o viewing cone if the film parameters of the biaxial 

films deviate from the optimal values by ±5%. The simulation results are plotted in Figure 6.8. 

First we evaluate the influence of film thickness. The blue line in Figure 6.8 indicates that a +5% 

deviation in the first biaxial film thickness boosts the light leakage to 4.1×10−4. By contrast, the 

light leakage is quite inert to the errors of the second biaxial film thickness (dashed blue lines). 

Next, we study how the NZ factor affects the light leakage. As shown by the black solid line in 
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Figure 6.8, the NZ factor of the first biaxial film plays a significant role. A ±5% deviation causes 

~7.0×10−4 light leakage. On the other hand, a +5% error in the NZ factor of the second biaxial 

film boosts the light leakage to 4.5×10−4 (black dashed line). The solid and dashed red lines in 

Figure 6.8 almost overlap with the blue dashed lines implying the light leakage is almost 

invariant when the orientations of both biaxial films vary by ±5%. Thus, from this tolerance 

analysis we find that the accuracy of the first biaxial film parameters is more critical than that of 

the second biaxial film and the NZ factors of both biaxial films require a higher accuracy.  

 

 

Figure 6.8: Design tolerance of the proposed wide-view circular polarizer. The viewing cone is 

±85o and λ = 550 nm. Ten-layer anti-reflection film is assumed. 
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6.5. Summary 

In this chapter we propose a new wide-view circular polarizer consisting of a linear 

polarizer and two biaxial films. We use phase compensation techniques to constrain the resultant 

polarization state to the desired circular polarization over a wide range of viewing angle. The 

phase retardation film parameters are designed using genetic algorithm. The light leakage from 

the crossed circular polarizers using the proposed circular polarizer is less than 8.23×10−5 over 

the ±85o viewing cone at the designed wavelength λ = 550 nm. Within the 450~650 nm spectral 

range, the light leakage of the crossed circular polarizers is kept below 3.92 ×10−3 over the entire 

±85o viewing cone. This simple circular polarizer will find useful application for enhancing the 

transmittance of the multi-domain vertically-aligned liquid crystal displays.  
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CHAPTER SEVEN: WIDE VIEW LIQUID CRYSTAL DISPLAYS 
USING CIRCUALR POLARIZERS CONSISTING OF BIAXIAL 

PHASE RETARDATION FILMS 

In Chapter 5 we demonstrate a wide-view multi-domain vertical alignment liquid crystal 

display (VA-LCD), which employs a broadband wide-view circular polarizer using the 

combinations of optimized uniaxial A-plates and C-plates. Both high transmittance and high 

contrast ratio are maintained over a wide viewing zone [26]. However, its sophisticated device 

configuration results in complicated manufacture and high cost. There is an urgent need to 

develop a simple and low cost wide-view LCD with high transmittance.  

Comparing to a uniaxial retardation film, the biaxial film provides an extra degree of 

freedom so that the device configuration of the wide-view circular polarizer can be simplified 

[15, 27]. In Chapter 6 we propose a broadband wide-view circular polarizer consisting of a linear 

polarizer and two biaxial films. The produced states of polarization are very close to the ideal 

circular polarization so that the light leakage from the crossed circular polarizers is less than 

8.23×10−5 over the ±85o viewing cone at the designed wavelength λ = 550 nm. In this chapter, 

we apply this broadband wide-view circular polarizer to a multi-domain VA-LCD. The contrast 

ratio of the proposed multi-domain VA-LCD is predicted to be higher than 800:1 over the ±85o 

viewing cone at λ = 550 nm and the calculated bright state transmittance is higher than 88%  (out 

of 37.8%) at normal view. Over the entire visual spectrum the maximum transmittance is higher 

than 78% (out of 37.8%) and the contrast ratio remains higher than 110:1. The uniformity of 
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better than 70% in the bright state transmittance is predicted over the ±85o viewing cone if the 

air-interface surface reflection is suppressed. 

7.1. Multi-domain VA-LCD using wide-view circular polarizers 

Figure 7.1 depicts the simplified schematic diagram of a wide-view VA-LCD using 

crossed wide-view circular polarizers. The bottom linear polarizer and the first two biaxial films 

compose a wide-view right-handed circular polarizer. The top analyzer and the last two biaxial 

films form a second circular polarizer crossed to the first one. The absorption axis of the analyzer 

and the azimuthal angles of the last two biaxial films are perpendicular to their counter parts in 

the first circular polarizer. To compensate the phase changes introduced by the vertical alignment 

LC cell at oblique viewing angles, two negative uniaxial C-plates with equal phase retardations 

are laminated to the both sides of LC cell. The d·(nx - ny) values of both C-plates are −161.67 nm 

when the d ·(nx - ny) of the VA LC layer is 341.88 nm. The LC director distributions are 

simplified into eight domains at every 45o from 22.5o to 337.5o in the bright state. 
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Figure 7.1: Configuration of a wide-view multi-domain VA-LCD with crossed wide-view 

circular polarizer. 

 

In the dark state, since the phase changes due to the VA-LC layer are compensated by the 

negative C-plates, the circular polarization emerging from the first circular polarizer reaches the 

second circular polarizer and is converted into linear polarization after it passes though the two 

biaxial films attached to the analyzer. Due to the symmetric configuration of the crossed circular 

polarizers, this linearly polarized light vibrates along the analyzer’s absorption direction. 

Therefore, the dark state light leakage is significantly reduced so that the calculated contrast ratio 

is higher than 800:1 between ±85o viewing angles as shown in Figure 7.2(a). Since the bright 

state transmittance is only determined by the phase retardation of the LC layer as we discussed in 

Chapter 5, the simulated bright state transmittance is higher than 0.333 (maximum transmittance 

for paralleled linear polarizers is 0.378) at the normal view as Figure 7.2(b) depicts. Furthermore, 
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if the air-interface surface reflection is assumed to be reduced by an ideal anti-reflection film in 

Figure 7.3, the bright state transmittance is higher than 0.233 over the entire ±85o viewing cone 

as demonstrated in Figure 7.2(b).  

For direct-view LCDs, broad bandwidth is as important as wide viewing angle [1, 3-6, 

23-28]. Although the above wide-view circular polarizer is designed at a single wavelength λ = 

550 nm, however, at normal incidence the retardation of the first biaxial film is almost equal to 

one half of the designed wavelength, i.e., d·(nx - ny)1 = 265.43 nm ≈ 550 nm/2 = λ/2, and the 

retardation of the second biaxial film is close to a quarter of the designed wavelength, d·(nx - ny)2 

= 129.57 nm ≈ 550 nm/4 = λ/4. At the same time, the azimuthal angles of the two biaxial films 

satisfy the relationship 0
21 9042 ≈− φφ , which describes the relationship between the azimuthal 

angles of the half-wave plate and the quarter-wave plate inside a broadband circular polarizer 

[26]. Therefore, over ±85o viewing cone, the contrast ratio of the proposed wide-view LCD 

remains higher than 110:1 for both blue and red light as Figures 7.2(c) and 7.5(e) illustrate. At 

the same time, as depicted in Figures 7.2(d) and 7.2(f), the bright state transmittance maintains 

higher than 0.340 and 0.289 for the blue and red light, respectively. 
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(f) 

Figure 7.2: A VA-LCD using crossed wide-view circular polarizers when LC directors form 

eight domains in the bright state: (a) iso-contrast plot at λ = 550 nm; (b) iso- transmittance plot at 

λ = 550 nm; c) iso-contrast plot at λ = 450 nm; (d) iso-transmittance plot at λ = 450 nm; e) iso-

contrast plot at λ = 650 nm; (f) iso-transmittance plot at λ = 650 nm. Ten-layer anti-reflection 

film in Figure 7.3 is assumed. 
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(a) 

 

(b) 

Figure 7.3: Ten-layer ideal anti-reflection film: (a) refractive indices profile, (b) transmittance. 
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7.2. Design tolerance 

Design tolerance is an important concern from manufacturing viewpoint. For the 

proposed design of a wide-view VA-LCD, we calculate the minimum contrast ratio over the 

±85o viewing cone if the film parameters of the biaxial films deviate from the optimal values by 

±5%. The incident wavelength is 550 nm and the simulation results are plotted in Figure 7.4. 

First we evaluate the influence of film thickness. The solid line with plus sign markers in Figure 

7.4 indicates that a −5% deviation in the first biaxial film thickness reduces the contrast to 400:1. 

By contrast, the light leakage is quite inert to the errors of the second biaxial film thickness 

(dashed line with plus sign markers). Next, we study how the NZ factor affects the contrast. As 

shown by the solid line with triangular markers in Figure 7.4, the NZ factor of the first biaxial 

film plays a significant role. The contrast ratio decrease to 200:1 with a ±5% deviation. On the 

other hand, a −5% error in the NZ factor of the second biaxial film decreases the contrast ratio to 

300:1 (dashed line with triangular markers). The solid and dashed lines with circle markers in 

Figure 7.4 illustrate that the contrast ratio is almost invariant when the orientations of both 

biaxial films vary by ±5%. Thus, from this tolerance analysis we find that the accuracy of the 

first biaxial film parameters is more critical than that of the second biaxial film and the NZ 

factors of both biaxial films require a higher accuracy 
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Figure 7.4: Design tolerance of the proposed wide-view VA-LCD. The viewing cone is ±85o and 

λ = 550 nm. Ten-layer anti-reflection film is assumed. 

7.3. Summary 

In this chapter, we demonstrate a wide view VA LCD with both high contrast ratio and 

high transmittance over the entire visual spectrum. With crossed wide-view circular polarizers, 

the maximum transmittance of the presented multi-domain VA-LCD is higher than 88% (0.333 

out of 0.378) and the contrast ratio is higher than 800:1 for the green light. Over the entire visual 

spectrum the maximum transmittance is higher than 78% (0.289 out of 0.378) and the contrast 

ratio remains higher than 110:1. The uniformity of better than 70% in the bright state 

transmittance is predicted over the ±85o viewing cone if the air-interface surface reflection is 

suppressed. Furthermore, the configuration of the wide view LCD is simplified by employing the 

simple configuration wide-view circular polarizer. 
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CHAPTER EIGHT: CONCLUSION 

In this dissertation, by applying the phase compensation technologies, the polarization 

states of the light are transferred into the desired states of polarization over a wide range of 

viewing angles. The dark state light leakages are suppressed and the bright state transmittances 

are increased. These produce high and uniform transmittance for the liquid crystal displays and 

ensure high contrast ratio over wide viewing angles. 

A wide viewing angle vertical-alignment liquid crystal display (VA-LCD) using crossed 

linear polarizers is investigated [16]. After analyzing the polarization states inside the uniaxial 

phase retardation films and the vertical-alignment liquid crystal layer, a design methodology for 

the wide viewing angle multi-domain VA-LCDs is proposed. With the optimization design, a 

multi-domain VA-LCD predicts iso-contrast ratio higher than 10,000:1 over the ±85o viewing 

cone.  

In addition to high contrast ratio, high and uniform transmittance is also highly desired 

for the wide viewing angle liquid crystal displays. It was shown that the light efficiency of wide-

view LCDs can be improved by the applications of wide-view circular polarizers. Wide viewing 

angle circular polarizers for both single wavelength and broadband white light are developed 

using the phase compensation technologies. The produced states of polarization are very close to 

the ideal circular state of polarization over a wide range of incident angles within the visual 

spectrum. Therefore, the light leakage from the crossed circular polarizers using the proposed 



   
  

96 

single-wavelength circular polarizer is less than 2.87×10-4 over the ±85o viewing cone at λ = 550 

nm. Using the proposed broadband wide-view circular polarizer, the light leakage is predicted to 

be less than 1.7×10-3 over the ±85o viewing cone for the visual white light and it is lower than 

3.79×10-4 at λ = 550 nm.  

The proposed wide-view circular polarizers guarantee not only high contrast ratio but 

also high and uniform transmittance over wide viewing angles for wide-view liquid crystal 

displays. Applying the broadband wide-view circular polarizer to a multi-domain VA-LCD, the 

maximum transmittance of the presented multi-domain VA-LCD is predicted to be greater than 

90% and the contrast ratio is higher than 420:1 for the green light. Over the entire visual 

spectrum the maximum transmittance is greater than 81% and the contrast ratio remains higher 

than 115:1. The uniformity of better than 68% in the bright state transmittance is achievable over 

the ±85o viewing cone if the air-interface surface reflection is suppressed. 

To reduce the cost and improve the applicability of the broadband and wide-view circular 

polarizers, the device configuration of the broadband wide-view circular polarizer is significantly 

simplified by the application of biaxial compensation films. A broadband wide-view circular 

polarizer consisting of a linear polarizer and two biaxial phase retardation films is proposed. The 

produced states of polarization remain close to the ideal circular polarization over a wide range 

of incident angles within the white light spectrum. The light leakage from the crossed circular 

polarizers is less than 8.23×10−5 over the ±85o viewing cone at the designed wavelength λ = 550 

nm. Within the 450~650 nm spectral range, this light leakage is kept below 3.92 ×10−3 over the 

entire ±85o viewing cone.  
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Applying this simplified broadband and wide viewing angle circular polarizer to a multi-

domain VA-LCD, the maximum transmittance is predicted to be higher than 88% and the 

contrast ratio is higher than 800:1 for the green light. Over the entire visual spectrum the 

maximum transmittance is higher than 78% and the contrast ratio remains higher than 110:1. The 

uniformity of better than 70% in the bright state transmittance is predicted over the ±85o viewing 

cone if the air-interface surface reflection is suppressed. 
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