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ABSTRACT 

Marine turtle conservation is most successful when it is based on sound data 

incorporating life history, historical population stability, and gene flow among populations.  This 

research attempts to provide that information through two studies.  In chapter I, I identify 

historical patterns of gene flow, population sizes, and contraction/expansion during major 

climatic shifts.  In chapter II, I reveal a life history characteristic of loggerhead turtles previously 

undocumented.  I identify a pattern of juvenile recruitment to foraging grounds proximal to their 

natal nesting beach.  This pattern results in a predictable recruitment pattern from juvenile 

foraging ground aggregations to local rookeries.    

This research will provide crucial information to conservation managers by 

demonstrating how sensitive marine turtles are to global climate change.  In the second 

component of my research, I demonstrate how threats posed to juvenile foraging grounds will 

have measurable effects on rookeries proximal to those foraging grounds.  The addition of this 

basic life history information will have dramatic effects on marine turtle conservation in the 

future, and will serve as the basis for more thorough, forward-looking recovery plans. 
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CHAPTER ONE: INTRODUCTION 

 Marine turtles as a group are globally threatened with decline and extirpation.  

Loggerhead turtles (Caretta caretta) were listed as threatened by the United States Fish and 

Wildlife Service (USFWS) in 1978.  The green turtle (Chelonia mydas) is listed as endangered 

by the USFWS and globally threatened by the IUCN Redlist.  Hawksbills (Eretmochelys 

imbricata) are listed as endangered by the USFWS and as globally critically endangered by the 

IUCN.  Global conservation efforts to recover these species have been impeded by their 

complicated migratory pathways and enigmatic dispersal patterns.  Molecular genetic studies 

have greatly improved these conservation efforts by revealing intricate population structure, gene 

flow among rookeries, and the ties between juvenile aggregations and their contributing 

rookeries.   

 Despite tremendous advances in molecular phylogeographic studies of historical 

population genetic structure, the marine turtle conservation movement has in many cases failed 

to incorporate these tools.  My research directly targets two life history characteristics that are 

integral in understanding and conserving marine turtles in the future.   

 My research first targets discerning patterns of historical population structure in three 

species of marine turtles in the face of global climate change.  The dramatic changes in climate 

and sea levels during the Pleistocene affected marine turtle populations in discernable patterns of 

modified gene flow and source-sink rookery populations. Understanding the historical responses 

in a mosaic of rookeries will have predictive value on future conservation efforts aimed at 

maximizing survival capabilities during future climate changes.  I examined previously 

published data on the population structure of a combined total of 36 loggerhead, hawksbill, and 
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green turtle rookeries.  I used coalescence and nested clade analyses to discern historical patterns 

of population expansion and contraction, sensitivity to climatic shifts, gene flow between major 

rookeries, and historical population sizes.   

In addition to discerning historical patterns of gene flow and population growth/decline, 

it is important from a conservation standpoint that researchers also understand general life 

history characteristics which dictate population dynamics.  Current conservation efforts are based 

on limited data describing the relationship between nesting beach rookeries and coastal foraging 

grounds.  My research directly addresses determining the factors which dictate the recruitment of 

juvenile loggerheads from a nesting beach to a foraging ground.  My research strongly indicates 

that threats posed to juvenile foraging ground aggregations primarily affect rookeries proximal to 

those foraging grounds.  My findings suggest that recruitment to foraging grounds is predictable 

and based on the distance from the rookery and the rookery size.  Inherent in this pattern is the 

fact that juvenile loggerheads make a second major migration before the well-established 

reproductive migration.  Although this hypothesis has been supported by recently published data 

(Bowen et al. 2004), it was entirely unknown prior to my research. 
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CHAPTER TWO: HISTORICAL PERSPECTIVES ON POPULATION 

GENETICS AND CONSERVATION OF THREE MARINE TURTLE 

SPECIES 

Introduction 
Population genetics and phylogeography of natural populations are intimately tied to life-

history, which for marine turtles is marked by long maturation time, enigmatic dispersal 

characteristics, and isolated nesting habitats. The unique biology of marine turtles includes a 

complex life history characterized by multiple distinct phases, each with unique habitat and 

geographic range associations. Although marine turtle species share many life-history 

characteristics, patterns of genetic diversity vary among species based on life-history strategies 

and historical population processes (Bowen et al. 1994, Bass et al. 1996, Encalada et al. 1996). 

Here I reexamine and compare published data on three species of marine turtles that use Western 

Atlantic and Mediterranean beaches as nesting grounds, the loggerhead (Caretta caretta), 

hawksbill (Eretmochelys imbricata), and green (Chelonia mydas) sea turtles. As threatened or 

endangered species within and outside of the United States, these species have been subjects of 

increased conservation efforts over the past 20 years.  

The wide geographic distribution of marine turtles over their lifetime contrasts with the 

discrete subset of that total range over which reproductive events are localized. Marine turtle 

migratory behavior often consists of vast journeys spanning entire ocean basins (Carr 1978, 

Witzell & Banner 1980, Parmenter 1983, Mortimer & Carr 1987, Limpus et al. 1992, Bolten et 

al. 1998). Despite these tendencies for massive migratory events and the potential for mixing of 

populations, each of these three species generally displays high levels of mitochondrial genetic 
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separation between nesting aggregations. Two key life-history traits have led to this separation, 

natal homing and nest site fidelity. Natal homing refers to the propensity for mature females to 

return to the nesting beach of their natal origin for deposition of eggs. Nest site fidelity refers to 

the subsequent return, year after year, to the same beach for nesting. The combination of these 

traits results in the localization of the same female genetic stock on the same beach, generation 

after generation. Here, I refer to natal homing (NH) and nest site fidelity (NSF) as a complex of 

forces (NH/NSF) that may affect the dispersal patterns of marine turtle matrilines. 

Natal homing and nest site fidelity (NH/NSF) have been demonstrated to some degree for 

each of the species in question. Florida loggerheads have been observed to exhibit NH/NSF on a 

scale of approximately a hundred kilometers (B. Bowen, pers. comm.). Green turtles in Florida 

display a higher degree of NH/NSF, often within 10 kilometers of their previous nest deposition 

(Carr et al. 1978, Balaz 1980, Limpus et al. 1992). High levels of NH/NSF in hawksbills have 

been demonstrated in the Caribbean (Bass et al. 1996); however, movement between adjacent 

beaches or islands has been reported in the Indian and Pacific Oceans (Diamond 1976, Limpus et 

al. 1983).  

In addition to differences in migratory and nesting behavior across species, marine turtles 

occupy unique ecological niches. Loggerheads nest primarily in warm temperate regions 

(Pritchard & Trebbau 1984), whereas green turtles and hawksbills nest primarily in the tropics 

(Bowen et al. 1992, Bass et al. 1996). Efforts to conserve marine turtle species require 

consideration of these complex life-history traits, along with an understanding of how the 

population biology of these species has shaped genetic population structure through time, and 

will continue to do so in the future. 
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I employ an array of statistical estimates of among-population geneflow and historical 

population processes, including nested clade analysis (NCA; Templeton 1998), to address large-

scale patterns of population history and genetic structure in three marine turtle species. 

Traditional interpretations of NCA need to be altered slightly in the case of marine turtles 

because reproduction is confined to only a small subset of their otherwise wide overall ranges. I 

employ NCA to infer processes centered on the geography of the reproductive portion of marine 

turtle populations (i.e. nesting beaches), which drastically contrasts with inferences regarding 

their overall distribution. Inferences of population fragmentation must be modified from the 

traditional interpretation derived from terrestrial systems, because in the case of marine turtles, 

fragmentation of nesting colonies occurs when NSF/NH sufficiently constrains geneflow 

between nesting populations. In addition to NCA, I employ neutrality test statistics, analyses of 

relationships between geographic distance and population genetic differentiation, and observed 

distributions of pairwise nucleotide differences to infer historical patterns of population 

dynamics and differentiation. I compare estimates of historical patterns of population contraction 

and effective population size to integrate inferences of historical demography with 

phylogeography. Overall, my goal was to exploit the overlap in inference capability across 

statistical methods to formulate broad cross-validated hypotheses for historical patterns and 

processes, decreasing the biases or shortcomings of any single analytical method (e.g., Knowles 

& Maddison 2002, Masta et al. 2003). I believe that such robust historical perspectives represent 

a useful resource for constructing long term goals for marine turtle conservation, given the 

insight they provide on historical and ongoing patterns of geneflow, and their predictive potential 

under scenarios of habitat loss, population extirpation, and global climatic change.  
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Methods 
 In this study, I analyzed previously published data on the same portion of the 

mitochondrial control region (~400 bp) in three marine turtle species. Loggerhead turtles 

(Caretta caretta) were evaluated using data from Pearce (2001) and Laruent et al. (1998). This 

combined dataset includes 417 individuals from 20 populations in Florida, Mexico, Brazil, and 

the Mediterranean. Hawksbill turtles (Eretmochelys imbricata) were evaluated using data from 

Bass et al. (1996) including 93 individuals from seven populations in the Caribbean and Brazil 

(excluding hawksbill/loggerhead hybrids). Green turtle (Chelonia mydas) populations were 

evaluated using data from Encalada et al. (1996) including 147 individuals from nine populations 

on the east and west coasts of the Atlantic Ocean and the Mediterranean.  

Haplotype diversity (h; Nei 1987), nucleotide diversity (π; Nei 1987), and the average 

number of nucleotide differences (k; Tajima 1983) for each species and per population were 

estimated in DnaSP v4.0 (Rozas et al. 2003). The number of migrants (Nm) was estimated for 

each species (according to Nei 1973) and Fst values between populations were estimated (based 

on Hudson et al. 1992) in DnaSP. Geographic distance and Fst values between populations were 

plotted to investigate correspondence between geographic and genetic distance across 

populations. Linear regressions were fit to Fst vs. geographic distance plots for groups of 

populations for each species to estimate correlation statistics. The overall significance of 

correlations between Fst and geographic distance matrices (per species) was tested using one-

tailed mantel tests with 10,000 permutation replicates implemented using the Poptools v2.5.9 

(Hood 2003) software supplement in MS Excel. To test the hypothesis that control region 

variation per species does not differ from neutral expectations, Fu’s Fs (Fu 1997) and Tajima’s D 

(Tajima 1989) tests of neutrality were conducted in DnaSP. 
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I calculated the effective female population sizes (Nef) for each species from the formula 

theta (θ) = 2Nefν (Tajima 1993). Theta (per DNA sequence) was estimated from the infinite-site 

equilibrium relationship between the number of segregating sites and the sample size (Watterson 

1975), implemented in DnaSP. To solve this equation I estimated ν (= sequence length [m] x the 

mutation rate per generation [µ]). I used an approximation of the generation time at 30 years for 

each species (L. Ehrhart, P. Pritchard, pers. comm.), and the mutation rate estimated by Encalada 

et al. (1996) for the control region of green turtles at ~2% per million years. Pairwise haplotype 

mismatch distributions (Rogers & Harpending 1992, Rogers 1995) under a model of constant 

population size and a model of population growth/decline were performed in DnaSP to identify 

patterns of historical population expansion or contraction. Based on models of population 

growth/decline, estimates of the time since the last major population contraction were calculated 

from tao (τ). The number of years since population contraction was estimated from the equation τ 

= 2µt, where t is the number of generations since population contraction. The Nef prior to 

population contraction was estimated from θ initial (θi), following the calculations for Nef above.  

 Evolutionary relationships among haplotypes within species were inferred by 

constructing 95% plausible parsimony networks in TCS v1.13 (Clement et al. 2000) based on 

statistical parsimony (Templeton 1998). For these analyses, gaps in alignment were treated as a 

5th character, multiple base gaps were coded as a single character/event, and cladograms were 

estimated for each species independently. Statistical parsimony networks estimated in TCS were 

used to construct the nesting design for NCA analyses (Templeton 1998). Nested cladograms 

were constructed by hand based on a haplotype network following the guidelines of Templeton 

et al. (1992) and Templeton (1998). Since all species analyzed are marine, I used GIS software 

(ArcView v3.2, ESRI) to estimate the shortest over-water (oceanic) distance between all sampled 
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sites and used these distances to construct a distance matrix between sites for each species (e.g., 

Fetzner et al. 2003). The nested clade design was used along with geographic location, 

designated by the constructed distance matrix, to analyze geographic associations among 

hierarchically nested clades using the program GeoDis v2.0 (Posada et al. 2000). Statistical 

significance was calculated by comparison with a null distribution generated from 10,000 

random permutations of clades against sampling localities. The results of GeoDis analyses were 

interpreted based on the revised inference key provided by Templeton (2004). 

Results 

Loggerheads 

Ten mitochondrial control region polymorphisms were documented on Florida, Mexico, 

Brazil, and Mediterranean beaches. Overall haplotype diversity, although moderately high (h = 

0.5867), was the lowest observed across the three species (Table 1). Overall nucleotide diversity 

(π = 0.027) and the average number of nucleotide differences (k = 7.891) were the highest among 

the three species. These relative trends in h, π, and k were observed across a majority of eastern 

Atlantic populations, yet contrasted with trends of low h and π in Mediterranean populations. 

The estimated Nm across populations of loggerheads was the highest among species (Nm = 0.76; 

Table 1). Neutrality statistics rejected neutral evolution (D = 4.015, P < 0.01; Fs = 22.548, P < 

0.01; Table 1), suggesting that loggerhead control region haplotypes defy neutral patterns.  

The estimate of θ from the number of segregating sites was θ = 2.9386 (Table 1). This 

provided an estimate of the current Nef for loggerheads at 64,106 (Table 1). The distribution of 

the pairwise nucleotide differences across loggerhead haplotypes was bimodal and independent  
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     Loggerhead  Hawksbill  Green 

  Parameter  
Caretta 
caretta  

Eretmochelys 
imbricata  

Chelonia 
mydas 

 Number of Sequences 417 93 147 
 Number of Sites 391 382 496 
 Segregating Sites (s) 20 16 18 
 Unique Haplotypes 7 17 17 
 Haplotype Diversity (h) 0.587 0.823 0.830 
 Nucleotide Diversity [per site] (π) 0.021 0.010 0.010 

 
Average Number of Nucleotide 
Differences (k) 7.891 3.745 4.700 

 Nm 0.76 0.53 0.45 
Neutrality Tests Tajima's D 4.01499* 0.74663 1.03341 
 Fu's Fs 22.548* -2.248 0.106 
Current Nef Estimates Theta [per seq.] (θ) 3.026 2.939 3.235 
 Current Nef  66,185  64,106 54,351 
Historical Inferences Theta initial [per seq.] (θi) 7.848 2.297 2.908 
 Tao (τ)  4.341  1.427 1.793 

 
Time since population contraction 
(years before present)  2,848,425  933,901 903,730 

  Nef prior to population contraction   171,654   50,109  48,858 

Table 1. Summary of population genetic statistics for all three species sampled . (* = significant 
at P<0.001). 
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peaks were well-differentiated (Figure 1a). This observed distribution differed substantially from 

null models assuming either constant population size or population growth/decline primarily 

because these models are unimodal, whereas my data were bimodal (Figure 1a). Based on a 

model of population growth/decline, a population contraction was inferred to have taken place 

ca. 2.8 million years ago, prior to which, the Nef was inferred at 171,654 (Table 1). 

The haplotype network construction in TCS identified haplotypes B and D as ancestral 

haplotypes (Figure 2) based on root probability density criterion (Templeton 1998).  The two 

ancestral loggerhead haplotypes differed by 16 mutational steps (excluding multiple base gaps). 

Restricted geneflow and dispersal, possibly with limited long-distance dispersal, was inferred 

(clade 1-1) among all Florida and Mediterranean populations sampled, except Amelia Island 

(Table 2). Continuous range expansion was inferred for clade 2-1 between Brazil and all Florida 

sites (Table 2).  

Pairwise geographic distances between populations plotted against pairwise Fst distances 

between populations showed a moderate overall trend suggesting isolation by distance across 

populations evidenced by positive correlation between Fst and geographic distances (overall r = 

0.443). The mantel test comparing the geographic distance and Fst matrices indicated that Fst and 

geographic distances between populations were correlated (P < 0.05).  

Hawksbills 

A majority of hawksbill control region polymorphisms (15 of 17) were unique to 

individual nesting colonies (as reported by Bass et al. 1996). Haplotype diversity was high in 

hawksbills (h = 0.823) although overall nucleotide diversity (π = 0.010) and the average number 

of nucleotide differences (k = 3.745) were comparatively low (Table 1). These trends were 

consistent across populations of hawksbills. The estimated Nm across populations of hawksbills  
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Figure 1. Pairwise nucleotide differences.  Distribution of observed frequencies of pairwise 
nucleotide differences, with frequencies expected under models of constant population size and 
models of population growth/decline for each species of marine turtle sampled. (a) Distribution 
of pairwise differences for loggerheads (Caretta caretta). Expected frequencies generated with θi 
= 2.297, θ final = infinite for constant population size model, and θ final = 1000 for 
growth/decline model. (b) Distribution of pairwise differences for hawksbills (Eretmochelys 
imbricata). Expected frequencies generated with θi = 2.908, θ final = infinite for constant 
population size model, and θ final = 1000 for growth/decline model. (c) Distribution of pairwise 
differences for green turtles (Chelonia mydas). Expected frequencies generated with θi = 7.848, 
θ final = infinite for constant population size model, and θ final = 1000 for growth/decline 
model.  
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Figure 2. Sampled loggerhead nesting populations. Haplotype frequencies per nesting population 
are shown in pie charts. The nested cladogram for loggerheads is also given (ovals represent 
sampled haplotypes, small circles represent inferred haplotypes not sampled, squares represent 
haplotypes inferred as ancestral by TCS). 

12 



 

 

 
   
Nested clade Chain of inference Final inference 
Loggerheads 

1-1 1-2-3-5-6-7 Restricted geneflow/dispersal but with some long-distance dispersal 
1-2 1-2-11-17 Inconclusive outcome 
2-1 1-2-11-12 Continuous range expansion 

Hawksbills with unresolved loops 
1-3 1-2-11-17-4 Restricted geneflow with isolation by distance 
1-4 1-2-11-17-4 Restricted geneflow with isolation by distance 
2-1 1-2-11-17-4-9 Allopatric fragmentation 
2-2 1-2-11-17-4 Restricted geneflow with isolation by distance 
2-3 1-19 Allopatric fragmentation 
3-1 1-2-11-12 Continuous range expansion 

Hawksbills with estimated resolved loops 
1-1 1-2-3-4 Restricted geneflow with isolation by distance 
1-4 1-2-3-5-6-7-8 Restricted geneflow/dispersal, but with some long-distance 

dispersal; or past geneflow followed by extinction of intermediate 
populations 

2-1 1-2-11-17-4-9 Allopatric fragmentation 
2-2 1-2-11-17-4 Restricted geneflow with isolation by distance 
2-3 1-19 Allopatric fragmentation 
3-1 1-2-11-12 Continuous range expansion 

Green Turtles 
1-3 1-2-3-5-6-13 Long-distance colonization with subsequent fragmentation 
1-7 1-2-11-12 Continuous range expansion 
2-1 1-2-3-5-15-21 Long-distance colonization, possibly associated with fragmentation 

event 
2-2 1-2-11-12 Continuous range expansion 
3-1 1-2-11-17-4-9 Allopatric fragmentation 

Table 2. Results from nested clade analysis for loggerhead, hawksbill, and green turtle haplotype 
data. Inferences based on Templeton 2004. 
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was intermediate among the three species (Nm = 0.53, Table 1). Neutrality statistics did not 

rejected neutral patterns of evolution for hawksbill haplotypes (Table 1).  

The estimate of theta (θ = 2.9386; Table 1) was the lowest among species, yielding an 

estimate of Nef for hawksbills at 54,351. The distribution of the pairwise number of nucleotide 

differences was bimodal and independent peaks were moderately differentiated. This observed 

distribution differed substantially from null models assuming either constant population size or 

population growth/decline (Figure 1b). Based on a model of population growth/decline, a 

population contraction was inferred ca. 900,000 years ago, prior to which, the Nef was inferred at 

50,109 (Table 1).  

The nested cladogram for hawksbills included one 3-step clade, three 2-step clades, and 

seven 1-step clades (Figure 3). The central haplotype (Q) was found only in Mexico. Two 

homoplacious loops were inferred between clades 1-1 and 1-3, and between 1-3 and 1-4. 

Alternative resolutions of these loops were analyzed via NCA to determine their potential effects 

on historical inferences. In all cases, the inferences of the two step clades were the same; with 

the exception that clade 2-2 (in one alternative) resulted in long-distance colonization rather than 

restricted geneflow with isolation by distance (Table 2). The majority of loop resolutions resulted 

in restricted geneflow with isolation by distance for clade 2-2 (Table 2). In the resolved nesting 

scheme, I find evidence for restricted gene flow with isolation by distance in the majority of one 

and two step clades (Table 2). I also find evidence for restricted geneflow/dispersal or past 

geneflow followed by the extinction of intermediate populations for haplotypes in Mexico, 

Puerto Rico, and Belize (clade 1-4). Overall, past fragmentation was inferred for Caribbean 

populations, with evidence for subsequent long distance colonization and range expansion in the 

total cladogram including all clades.  
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Figure 3. Sampled hawskbill nestintg populations.  Haplotype frequencies per nesting population 
are shown in pie charts. The nested cladogram for hawksbills is also given (ovals represent 
sampled haplotypes, small circles represent inferred haplotypes not sampled, squares represent 
haplotypes inferred as ancestral by TCS). 
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Pairwise geographic distances between populations plotted against pairwise Fst distances 

between populations showed a moderate trend indicating isolation by distance (r = 0.419). The 

mantel test comparing geographic distance and Fst matrices did not indicate a significant 

difference between matched and randomized values (P > 0.05). Subdividing populations by 

major region resulted in a weak correlation between Fst and geographic distance across 

Caribbean populations (r = 0.150) and a moderately strong correlation between Brazil vs. 

Caribbean populations (r = 0.708). 

Green Turtles 

Similar to hawksbills, green turtle haplotype diversity was high (h = 0.830; Table 1) and 

nucleotide diversity and the average number of nucleotide differences was comparatively low (π 

= 0.010, k = 4.700; Table 1). Haplotype and nucleotide diversity varied considerably across 

populations of green turtles. Mexican and Brazilian populations had the highest h while 

populations in Guinea Bissau, Cyprus, and Costa Rica had the lowest h. The estimated Nm across 

populations of green turtles was the lowest among species (Nm = 0.45; Table 1). Neutrality 

statistics did not rejected neutral evolution for green turtle haplotypes (Table 1). 

The estimate of theta was θ = 3.235, yielding an estimate of the Nef for green turtles at 

54,351 (Table 1). The distribution of the pairwise number of nucleotide differences was bimodal 

and independent peaks were not completely differentiated. This observed distribution did not 

correspond well with distributions from null models assuming either constant population size or 

population growth/decline (Figure 1c). Based on a model of population growth/decline, a 

population contraction was inferred to have taken place ca. 900,000 years ago, prior to which, 

the Nef was inferred at 48,858 (Table 1).  
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The nested cladogram included 18 unique haplotypes and 5 inferred unsampled 

haplotypes, nested as one 3-step clade, two 2-step clades, and seven 1-step clades (Figure 4). 

Allopatric fragmentation was inferred for the total cladogram (Table 2). Long distance 

colonization, possibly associated with a fragmentation event, was inferred for clade 2-1 including 

haplotypes from Surinam, Aves Island, Mexico, Brazil, Ascension Island, and Guinea Bissau. 

Long-distance colonization and subsequent fragmentation of populations in Brazil, Ascension 

Island, and Guinea Bissau was inferred for clade 1-3 (Table 2). Continuous range expansion was 

inferred for both nested clades that included Caribbean and Mediterranean haplotypes (1-7 and 

2-2; Table 2).  

Pairwise geographic distances between populations plotted against pairwise Fst distances 

between all populations showed a moderately correlated positive trend suggesting isolation by 

distance (r = 0.546). The mantel test comparing geographic distance and Fst matrices did not 

show significant correlation between matched values and randomized values (P > 0.05).  

Discussion 
Loggerheads (Caretta caretta) 

Among the three species in this study, loggerheads were characterized by relatively low 

endemism, depressed genetic structure, and elevated levels of haplotype panmixia and geneflow 

between populations (Table 1). These data are consistent with the hypothesis that loggerheads 

have the lowest levels of NH/NSF among the three species studied. The relationship between Fst 

and geographic distance between populations was significantly non-random (based on a mantel 

test), although these were only moderately correlated (r = 0.443), implicating distance as a  
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Figure 4. Sampled green turtle nesting populations. Haplotype frequencies per nesting population 
are shown in pie charts. The nested cladogram for green turtles is also given (ovals represent 
sampled haplotypes, small circles represent inferred haplotypes not sampled, squares represent 
haplotypes inferred as ancestral by TCS). 
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contributing factor determining relationships and geneflow among populations. Evidence for 

similar patterns was observed in NCA analyses (clade 1-1).   

Results of my analyses on loggerheads in the Mediterranean and Atlantic suggest a 

metapopulation scenario with strong source-sink relationships among distant populations. 

Historical periods of climatic depression are thought to have shifted the range of suitable nesting 

habitat towards the equator, while simultaneously affecting dispersal patterns via changes in the 

geography of coastlines resulting from sea-level fluctuations (Nairn & Stehli 1986). Loggerheads 

require sand temperatures of at least 25 degrees (C) to successfully nest (Dodd 1988). Climatic 

depression at the Pliocene-Pleistocene border would likely have confined loggerhead nesting to 

southern Florida, the Caribbean, and near-equatorial regions. Thus, northern portions of Florida 

may not have been continuously suitable for loggerhead nesting until after the last glacial period 

(Hedgpeth 1954, Pearce 2001). Moreover, Pleistocene fluctuations in sea level have resulted in a 

tremendously dynamic Florida coastline over the last two million years (Nairn & Stehli 1986, 

Webb 1990). Therefore, over recent evolutionary time, Florida loggerhead populations have been 

continually displaced as the coastline has cyclically changed. Additionally, Mediterranean 

nesting grounds would have been unsuitably cold during much of the Pleistocene to harbor 

nesting populations of loggerheads (Bowen et al. 1994, Encalada et al. 1996). 

Restricted geneflow with some long-distance dispersal, inferred for clade 1-1 (Figure 2), 

suggests populations in Florida and Mexico may have been sources for colonization of 

Mediterranean populations after that area again became suitable for nesting (as suggested by 

Bowen et al. 1993 and Encalada et al. 1998). The relationship between Fst and geographic 

distance between populations yielded moderately strong correlations only in comparisons of 

Mexican vs. other Caribbean and Florida populations (r = 0.744). Collectively these data support 
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the hypothesis that more tropical nesting grounds, including Mexico/southern Florida may have 

acted as Pleistocene refugia for Western Atlantic loggerhead populations.  

The haplotype diversity of loggerheads shows a unique pattern relative to the other 

species in this study, including a deep divergence between two haplotype clades (clades 2-1 and 

2-2; Figure 2), yet otherwise shallow population genetic structure. These patterns are also 

evident in the distribution of pairwise differences (Figure 1a) in the form of well-differentiated 

bimodal peaks also suggesting a historical population subdivision. The significantly positive 

value of Tajima’s D statistic (4.015) further supports the hypothesis of a substantial historical 

bottleneck (Tajima, 1993). The strongly positive, significant value of Fu’s Fs (22.548) suggests 

loggerhead population expansion (Fu 1997, Aris-Brasou & Excoffier 1996) following this 

bottleneck. Evidence for expansion is corroborated by NCA inferences of continuous range 

expansion throughout Florida (clade 2-1). Collectively, loggerhead data suggest a panmictic 

ancient population may have become subdivided and experienced a major bottleneck, probably 

prior to the Pleistocene (given deep divergence between 2-step clades; Figure 2), and 

subsequently experienced substantial population expansion.  

Unimodal models of either constant population size or population growth/decline failed 

to closely fit the observed frequencies of nucleotide differences among loggerhead haplotypes 

(Figure 1a). Therefore, I discuss demographic estimates derived from these models tentatively, 

verifying inferences with independent lines of evidence. Both frequency peaks in the plot of 

nucleotide differences across haplotypes are well differentiated and steep-sloped (Figure 1a), 

potentially indicative of expansion (from two sources) following a bottleneck that resulted in two 

population subdivisions (Slatkin & Hudson 1991, Rogers & Harpending 1992). Several authors 

(e.g. Aris-Brasou & Excoffier 1996, Schneider & Excoffier 1999) have shown that estimates of 
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tao and Nef  prior to bottlenecks can be made without much bias (even in poorly fitting models), 

whereas estimates of the present-day θ (and hence Nef), are commonly biased upwards. Under a 

population growth/decline model, a population contraction is inferred to have taken place ca. 2.8 

million years ago. This estimate falls within the Late Pliocene and is generally coincident with a 

number of significant historical events including: 1) the final closing of the Central American 

Isthmus leading to major changes in nutrient load, upwelling, and current patterns in the western 

Atlantic and Caribbean (Allmon et al. 1996, Coates & Obando 1996, Kameo 2002), 2) the 

initiation of glacial cycles and sea-level fluctuations that would continue through the Pleistocene 

(e.g., Cronin 1990, Jansen et al. 1988), and 3) patterns of widespread extinction of western 

Atlantic and Caribbean invertebrates and vertebrates (reviewed by Allmon 2001). A major 

historical bottleneck in loggerhead populations is consistent with historical events associated 

with the late Pliocene and the effects I would expect these events to have on a sub-tropical 

nesting marine turtle. These conclusions also support those of Bowen et al. (1994) that processes 

of rookery extinction and recolonization over time have homogenized populations and prevented 

accumulation of extensive mutational separation among nesting populations and extant 

haplotypes in loggerheads.  

The loggerhead population is currently estimated at 21,831 nesting females in the 

Atlantic and Mediterranean (Bolten & Witherington 2003). These estimates are conservative due 

to inconsistent population surveys and limited data on remote nesting beaches. My estimates of 

the current effective population size of females (Nef = 66,185; based on θ) overestimate current 

census population sizes. 

The parameters used to estimate Nef (mutation rate and generation time) are admittedly 

rough estimates of poorly known life history and evolutionary processes for marine turtles. 
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Additionally, the estimate of θ used to derive Nef is biased by its dependence on nucleotide 

diversity. In the case of loggerheads this value of θ is inflated due to the large divergence 

between haplotype clades (yet depressed within-clade diversity). Despite potential sources of 

error, my estimates of the current Nef are not unreasonably high considering the dramatic 

population decline estimated to have occurred over the last few centuries. The long female 

generation time and lifespan characteristic of marine turtles would be expected to result in a 

substantial lag period between the timing of a recent bottleneck and the time required for a 

population decline to be manifest in the genetic composition of populations (see also Zhang et al. 

2003). Thus, I expect estimates of present-day Nef to be largely insensitive to population decline 

occurring in recent generations, probably since the beginning of major human impacts over the 

last few centuries. Estimates of Nef preceding an inferred Late Pliocene bottleneck and genetic 

estimates of the current Nef (66,185), together with recent estimates of decline that I assume has 

not had sufficient time to affect genetic estimates of Nef, suggest that loggerheads have suffered 

an ongoing long-term trend of population decline since the Late Pliocene.  

Hawksbills (Eretmochelys imbricata) 

A high proportion of beach-specific (endemic) haplotypes were observed among 

populations of hawksbills. Relative to the more temperate-nesting loggerheads, hawksbills show 

elevated numbers of unique haplotypes, elevated haplotype diversity, and reduced overall Nm 

(Table 1). These trends correspond well with elevated levels of NH/NSF reported for hawksbills 

relative to loggerheads. In contrast to loggerheads, hawksbill populations were highly structured, 

and genetic distance among haplotypes did not show a comparably deep bifurcation, leading to 

overall lower nucleotide diversity in hawksbills.  
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Inferences from NCA analyses reinforce the potential for hawksbill rookeries to be 

genetically isolated by distance, consistent with elevated levels of hawksbill NH/NSF.  

Collectively, these inferences also suggest all populations except Mexico may have experienced 

moderate geneflow historically, and have since become allopatrically isolated, largely due to 

isolation by distance.  

Relative to loggerheads, nesting density of the more tropical hawksbill is more focused in 

the Caribbean. Pleistocene effects on climate, together with changes in sea level, represent major 

potential forces dictating historical patterns of geneflow among hawksbill populations. Most 

notably, several large, shallow shelves or platforms exist in the Caribbean, which would have 

drastically changed the surface geography of the basin, altering over-water connectivity and the 

distribution of nesting and foraging habitats. Enormous expanses of area associated with these 

shelves or platforms are submerged between 10 and 100m and would have formed extensive 

landmasses during even slight decreases in sea level during the Pleistocene (Stuart 1966, 

Westphal 1998). The emergence of the Nicaraguan Rise (Stuart 1966), drastically extending the 

NW coastline of Honduras, probably forged a broad barrier separating rookeries in northern and 

southern Middle America and those of the northern and southern Caribbean. The emergence of 

the Campeche Bank (doubling the area of the Mexican Yucatan Peninsula) and the Florida Shelf 

(expanding the Florida Peninsula), would have decreased the distance between Mexican and 

Florida rookeries, while reducing marine connectivity across the Caribbean (Stuart 1966, Nairn 

& Stehli 1986, Westphal 1998). As a result of increasing fragmentation of the Caribbean during 

the Pleistocene, hawksbill populations may have become increasingly isolated, decreasing 

geneflow and substantially isolating matrilines. I suggest that the formation of these land barriers 
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may explain the separation of Mexico from eastern Caribbean populations and the overall trend 

of high haplotype endemicity.  

I expect that cyclic patterns of climatic and sea-level change during the Pleistocene likely 

resulted in corresponding population contraction and expansion, affecting population sizes and 

extirpation/recolonization of populations, as suggested by Encalada et al. (1996) for tropically 

nesting green turtles. These historical population dynamics are distinct from Pliocene-

Pleistocene effects on loggerheads because I expect a significant portion of the nesting range of 

hawksbills (more equatorial populations) to have remained constant through the Late Pliocene 

and Pleistocene. The non-significant neutrality statistics estimated for hawksbills (Table 1) 

implies that they have not experienced major contractions or expansions since, perhaps, the Late 

Pliocene. This is consistent with the complex genetic structure observed across hawksbill 

populations (c.f. Bertorelle & Slatkin 1995), refuting the hypothesis of a major historical 

bottleneck in hawksbill populations, which would have resulted in a substantial reduction in 

haplotype diversity (contrary to loggerheads).  

Pleistocene effects on tropical climates are incompletely resolved (e.g., Stanley & 

Ruddiman 1995, Hostetler & Mix 1999, Allmon 2001), although available evidence suggests that 

Pleistocene climatic change drastically altered climates at middle and high latitudes, while 

having reduced effects on low latitudes (e.g. Hostetler & Mix 1999, Liu & Herbert 2004). Also, 

Excoffier & Schneider (1999) have shown multiple bottlenecks and/or multiple population 

expansion events may obscure resolution of historical demographics from DNA sequence data 

(especially neutrality statistics). Therefore, despite non-significant neutrality statistics, I expect 

that hawksbills have undergone minor population contractions and expansions with climatic 

cycling during the Pleistocene. These climatic changes likely concentrated impacts on peripheral 
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populations/rookeries at higher latitudes, with decreased impacts on lower latitude populations 

where effects on sea level and population connectivity (rather than temperature) predominated.  

Unimodal models of either constant population size or growth/decline did not fit the 

distribution of nucleotide differences for hawksbills (Figure 1b), thus inferences based on these 

models are tentative. The observed distribution is bimodal, implicating past population 

subdivision. The distinction between modes is much less dramatic than that for loggerheads, 

suggesting a more recent subdivision, and potentially a shorter duration of subdivision and/or a 

less dramatic population contraction associated with subdivision (Slatkin & Hudson 1991, 

Rogers & Harpending 1992, Excoffier & Schneider 1999). In contrast to loggerheads, peaks in 

frequency of nucleotide differences for hawksbills are left-skewed, suggesting historical 

population expansion following relatively minor population contractions and subdivision 

(Slatkin & Hudson 1991, Rogers & Harpending 1992). This interpretation is supported by the 

expectation that the geographic range of suitable nesting habitat for hawksbills has expanded 

since the last glacial period (and during historical glacial periods in general).  

I estimated a historical population contraction in hawksbills, based on estimates of tao, to 

have taken place ca. 900,000 years ago, which is broadly consistent with expected contractions 

of nesting habitat during Pleistocene glacial cycles. This time estimate corresponds well with the 

Mid-Pleistocene transition that is associated with increased amplitude of climatic cycles, an 

increased impact of cycles on tropical climates, and a change in climatic cycle periocity (e.g., 

Raymo et al. 1997, Diekmann & Kuhn 2002, Liu & Herbert 2004). Alternatively, this historical 

estimate may represent the center of a time period over which multiple contractions and 

expansions took place.  
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The number of nesting adult hawksbills in the Caribbean and Brazil was estimated by 

Meylan (1999) at no more than 5,000 and 600, respectively. Meylan (1999) estimated that 

hawksbills have experienced an 80% reduction in population size over the last three generations 

and that globally there were <15,000 nesting females. My estimates of the current Nef (64,106) 

are reconciled by those of Meylan (1999) that suggest a population of approximately 75,000 

nesting females in the early 1900s. Interestingly, estimates of current Nef (64,106) and Nef before 

historical population contractions (ca. 50,000) are similar and suggest minimal net (long-term) 

depletion of genetic diversity resulting from Pleistocene climatic cycling.  

Green Turtles (Chelonia mydas)  

An intermediate number of green turtle haplotypes were endemic to single populations. A 

majority of population genetic parameters and patterns for green turtles are strikingly similar (or 

identical) to those observed for hawksbills (Table 1, Figure 1c). These similarities are justifiable 

since both species are tropical nesters and are estimated to demonstrate similar levels of NH/NSF 

(Bass et al. 1996, Encalada et al. 1996, Laurent et al. 1998, Pearce 2001). Estimated migration 

among populations of green turtles was the lowest (Nm = 0.45), and evidence of genetic isolation 

of populations by distance (based on Fst vs. geographic distance) was the strongest observed 

across species (r = 0.546).  

The distribution of pairwise nucleotide differences across green turtles shows a bimodal 

pattern in which the peak size, shape, and mean frequencies are similar to hawksbills (Figures 

1c). This suggests that, like hawksbills, Atlantic green turtle populations may have been 

historically subdivided, probably around the same time as were hawksbills. Estimates of tao from 

a model of population growth/decline suggested a population contraction in green turtles, as in 
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hawksbills, during the Mid-Pleistocene (ca. 900,000 years ago). The nested cladogram for green 

turtles was nested into two 2-step clades; 2-1 comprises haplotypes possibly derived from the 

ancestral near-equatorial haplotype H, and clade 2-2 comprises haplotypes exclusively found in 

the Caribbean and Mediterranean (Figure 4). The bimodality of nucleotide differences and 

geographic distributions of haplotypes in these 2-step clades suggest an ancient subdivision of 

Atlantic green turtle populations into near-equatorial and Caribbean subpopulations.   

Encalada et al. (1996) suggested climatic depressions of the Pleistocene, accompanied by 

decreases in sea-level (ca. 100m), likely confined green turtles to a more narrow band of habitat 

straddling the equator with one refuge in the Caribbean and one in Brazil, similar to my 

hypothesis for hawksbills (and, in part, loggerheads). The ancestral haplotype (H) inferred by 

TCS for green turtles is endemic to Brazil, Ascension Island, and Guinea Bissau. Across these 

populations, long-distance colonization with subsequent fragmentation was inferred by NCA to 

explain haplotype distributions for clade 1-3 (Figure 4). Bowen et al. (1992) suggested that the 

geology of Ascension Island probably would have resulted in extirpation of this rookery during 

sea-level changes in the Pleistocene. Taken together, these lines of evidence suggest that Brazil 

may have historically acted as a significant source for populations along West Africa and 

adjacent islands. At a larger scale, these data also suggest that this near-equatorial 

metapopulation (especially Brazil and Guinea Bissau) may have acted as a Pleistocene refuge for 

Atlantic green turtles. Results from NCA further reinforce these conclusions through broad scale 

inferences of long distance colonization with subsequent fragmentation (clade 2-1) followed by 

continuous range expansion in the Caribbean (clade 2-2). 
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This bifocal (near-equatorial and Caribbean) refugia hypothesis is similar to that for 

hawksbills, and suggests that the distribution of these two tropically nesting species may have 

responded similarly to historical climatic cycles. Also, like hawksbills, the observed distribution 

of nucleotide differences among green turtle haplotypes was bimodal with left-skewed peaks 

(Figure 1c), suggesting population growth/expansion from multiple subpopulations. Considering 

the evidence available, I conclude that both tropical nesting species of marine turtles, hawksbills 

and green turtles, appear to have experienced very similar population patterns and processes over 

the last several million years.  

Among the three species studied, historical and current population sizes of green turtles 

has been the most intensively studied (Seminoff et al. 2002). The current population in the 

Atlantic and Mediterranean is estimated at 79,054-83,873 nesting females, compared to 43,593-

94,000 nesting females approximately 150 years ago. My estimate of Nef for green turtles (based 

on θ) is 54,351, well within the range of population sizes estimated to have been characteristic of 

the last few centuries.  Corresponding with a number of close similarities observed between the 

population genetics of hawksbills and green turtles, estimates of the current Nef (ca. 54,000) and 

the Nef before historical population contraction (ca. 48,000) are similar. These data for both 

tropically nesting species suggest a minimal net (long-term) depletion of genetic diversity and 

effective population sizes resulting from Pleistocene climatic cycling.  

Conclusions 

My findings provide strong evidence for long term, broad scale metapopulation dynamics 

within marine turtles, including corroborative evidence for complex source – sink relationships 

among populations. Also, these relationships appear to be plastic and even reversible over time, 
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with long-term dynamics probably driven by cycles of global climatic change. Relative levels of 

NH/NSF and nesting habitat preferences (i.e. temperate vs. tropical) appear highly correlated 

with patterns of genetic population structure and inferred historical responses to climatic cycling. 

 These data suggest differential effects of the Pleistocene glacial cycles across species, 

although the most drastic differences are observed in the effects on temperate vs. tropical nesting 

species. Tropical species show no net long-term trend of population decline or depressed genetic 

diversity as a result of Pleistocene climatic change. Apparently, tropical species experienced 

population subdivision and possibly population contraction, yet not at a level substantial enough 

(in duration or severity) to result in a major genetic bottleneck. Tropical species appear to have 

undergone this subdivision and possible contraction at some time around the Mid-Pleistocene, 

which indirectly implies they were not significantly impacted by environmental changes 

associated with the global onset of climatic cycling beginning in the Late Pliocene.  

 The temperate nesting loggerhead is inferred to have undergone substantially different 

population dynamics through the last several million years. This period, associated with dramatic 

climatic cycling, appears to have resulted in a net long-term trend of population decline and loss 

of genetic diversity, probably associated with an earlier and more dramatic bottleneck (in terms 

of duration and/or severity).  

 Conclusions regarding the differential patterns of response to global climatic change 

across species offer important insights for forecasting the impact of contemporary patterns of 

climatic change (i.e. global warming). In general, my findings suggest that tropical species are 

robust (in terms of population size and genetic diversity) to climatic change, particularly 

depression of global temperatures. In contrast, my data suggest that loggerheads may be 

negatively impacted (in population size and genetic diversity) by climatic change, although 
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details of how elevated temperatures (rather than depressed glacial temperatures) may affect this 

species are unclear from my data other than that they may induce rookery decline (or extirpation) 

as the distribution of optimal nesting habitat shifts. Already there is evidence of temporal shifts 

in the median nesting day of loggerheads on the east coast of Florida (Weishampel et al. 2004) 

consistent with similar shifts in migration and breeding patterns thought to be associated with 

global warming (Hughes 2000, Gitay et al. 2002, Root & Schneider 2002, Walther et al. 2002, 

Archaux 2003).  

Present levels of genetic diversity, along with my estimates of Nef, provide an optimistic 

perspective for conservation of marine turtles. Despite global decline in marine turtle populations 

resulting from several centuries of negative human impacts, the long generation time of these 

species has buffered rates of decline of genetic diversity. This suggests that the preservation of 

current levels of genetic diversity across species will rely heavily on the ability of conservation 

efforts to facilitate population recovery before the genetic reservoir maintained through long 

generation times is exhausted.  

Future Research  

Mitochondrial haplotype analysis has been the predominant method for analyzing 

population genetic patterns in marine turtles. Due to the nature of inheritance of mitochondrial 

haplotypes, my conclusions are limited to a matrilineal perspective of population structure and 

historical processes. Male-mediated gene flow has been detected in green turtles through 

comparisons of mitochondrial and nuclear polymorphisms (Karl et al. 1992; FitzSimmons et al. 

1997; Roberts et al. 2004) although the important question remains: How reliable are 

mitochondrial polymorphisms at representing overall population genetics and gene flow across 

marine turtle populations?  
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Bi-parentally inherited molecular markers (e.g., microsatellite loci) have been employed 

in marine turtles in multiple paternity studies (Moore & Ball 2002), and polyandry and polygamy 

have been demonstrated (FitzSimmons 1998, Hoekert 2000, Crim 2002). Although the potential 

for sex-biased dispersal has been suggested by early studies and preliminary studies (Karl et al. 

1992; Casale et al. 2002), FitzSimmons et al. (1997) observed strong tendency for male 

philopatry in Australian green turtles, supporting a broader population-wide interpretation and 

application of inferences based on matrilineal patterns of population dynamics. Pearce (2001), 

however, found that populations of Florida loggerheads with low mitochondrial diversity 

displayed normal levels of nuclear diversity.  

Recently, Roberts et al. (2004) provided evidence, based on microsatellite data, that 

male-mediated gene flow might be more widespread than previously thought in green turtles. 

Rogers et al. (2004) employed four microsatellite loci, each characterized by excessive numbers 

of alleles and, thus, subject to high amounts of homoplasy (as discussed in Rogers et al. 2004). 

Based on this feature of the molecular marker employed, it is difficult to assess the accuracy of 

estimates of male-mediated gene flow across green turtle populations suggested by Rogers et al. 

(2004). To date, no study has examined an extensive number of populations using an effective 

array of bi-parentally inherited molecular markers sufficient to address the relationship between 

nuclear and mitochondrial patterns of genetic diversity. Future studies incorporating a larger 

number of microsatellite loci not subject to excessive numbers of alleles per locus are required 

before a clear understanding of the impacts of sex-biased gene flow on marine turtle population 

genetics is resolved. It is possible that inferences based on mitochondrial gene polymorphisms 
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will require revision if nuclear diversity does not correlate well with the patterns observed in 

mtDNA based studies. 
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CHAPTER THREE: MIXED STOCK ANALYSIS OF JUVENILE 

LOGGERHEADS IN THE INDIAN RIVER LAGOON, FLORIDA: 

IMPLICATIONS FOR CONSERVATION PLANNING 

Introduction 
 Conservation of marine animals often is limited by the ability of researchers to identify 

biological trends and potential threats to organisms that make long distance migrations.  For 

example, salmon production in California may be affected by logging hundreds of miles inland 

(Cafferata et al. 1998) and marine turtle bycatch during Mediterranean shrimping operations 

decreases breeding populations on nesting beaches in Florida and Mexico (Laurent et al. 1998).  

Attempts to solve this problem by censusing breeding aggregations, while logistically feasible, 

fail to incorporate predictive modeling and primarily record the results of trends displayed by 

juvenile aggregations in the prior decade.  In the case of Florida marine turtles, the primary 

measure of population change is the number of nests deposited on a beach, which ignores the 

effects of juvenile mortality caused by disease (Work 2001), commercial fisheries (Crowder 

1995), and pollution on the future breeding population.  Understanding the factors dictating 

juvenile recruitment permits a more forward looking, predictive approach that incorporates the 

effects of pollution, disease, natural disasters, and commercial fisheries by-catch on juvenile 

populations to predict future trends.   

 Here, I use mitochondrial DNA haplotypes to investigate whether the juvenile loggerhead 

(Caretta caretta) aggregation in Indian River Lagoon, Florida represented an investment of 

several nesting beaches outside the United States, or strictly Florida and Mexico nesting beaches.  

I also test the hypothesis that large rookeries in close geographic proximity to juvenile feeding 
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aggregations contributed more individuals to those populations than expected, given their 

relative size and geographic proximity.  I tested both hypotheses with the most extensive 

quantitative and temporal sampling of juvenile marine turtles to date.  My study directly 

addresses how management units are linked through juvenile foraging grounds in the North 

Atlantic. 

 Loggerheads nest on sandy beaches throughout temperate latitudes.  The species was 

federally listed as threatened in the North Atlantic in 1978 and is a CITES Appendix I listed 

species.  The Marine Turtle Specialist Group and the IUCN Red List consider the loggerhead to 

be endangered throughout much of its range (Marine Turtle Specialist Group 1996).  Atlantic 

loggerheads leave their nesting beaches and enter oceanic current systems such as the Gulf 

Stream that later become part of the North Atlantic Gyre (Carr 1987).  After circumnavigating 

the Atlantic for 3-10 years they recruit to a juvenile foraging ground for the next 10-12 years 

(Carr, 1986; Musick and Limpus, 1997).  Much of the loggerhead population in the North 

Atlantic recruits to juvenile foraging grounds in the Azores and Madeira (Bolton 1998), but 

many others recruit to foraging grounds in Indian River Lagoon (IRL) on the east coast of central 

Florida.   

 Aggregations of juvenile marine turtles may include individuals from nesting beaches 

around the globe, but until very recently, biologists had not devised a method for modeling 

contributions of local rookeries to juvenile aggregations (Norrgard and Graves 1995, Lahanas et 

al. 1998, Bass and Witzell 2000, Witzel et al. 2002, Luke et al. 2004).   Bowen et al. (2004) 

suggested that on the scale of the North Atlantic, juvenile loggerhead recruitment to a foraging 

ground was heavily influenced by distance from the natal rookery and natal rookery size.  

Loggerheads make two separate migrations, one reproductive migration and one migration to a 
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juvenile foraging ground proximal to their natal beach (Bowen et al. 2004).  However, whether 

juvenile loggerheads from nesting beaches around the world use IRL as a foraging ground 

remained unknown.   

 Loggerheads nesting in Florida comprise 86% of all loggerhead nesting in the Atlantic 

(Bolten and Witherington 2003).  The large juvenile aggregations in IRL offer an excellent 

opportunity to examine how trends in juvenile recruitment (e.g., Bowen et al. 2004) can 

influence marine turtle conservation.  By understanding the mechanisms that influence rookery 

contributions to a mixed-source juvenile foraging ground, and the threats posed to those juvenile 

aggregations, marine turtles can be managed with a pro-active strategy.  This approach 

incorporates predictive demographic data without the lag time required for trends to manifest in 

nesting adult populations. 

Methods 

Study Site 

 Indian River Lagoon comprises more than one third of Florida’s eastern coastline and 

extends 250 km, from Ponce de Leon Inlet to Jupiter Inlet.  The lagoon system spans 5900 km2 

and is the nation’s most diverse estuarine system (Dybas 2002).  Indian River Lagoon waters are 

shallow (3-4 m depth) and the prevailing current is caused by wind rather than tides (Trocine and 

Trefry 1993).  Canals that drain heavily-irrigated farm and livestock lands further inland 

contribute massive quantities of freshwater to the brackish water system, artificially decreasing 

its salinity (Trocine and Trefry 1993).  This freshwater influx brings pesticides, heavy metals, 

dissolved nitrogen, and fertilizer residues into IRL (Trocine and Trefry 1993, MacDonald et al. 

1996), with certain areas having heavy metal concentrations up to ten times greater than natural 

levels (Trocine and Trefry 1993).  Pollutants contributed to eutrophication of IRL from a clear, 
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oyster bed-supporting system in the early 1900’s to its current low visibility, red/green algae-

dominated community (Trocine and Trefry 1993).  Polluted conditions are thought to have 

contributed to a high prevalence (up to 70%) of fibropapillomatosis in resident juvenile green 

turtles (Ehrhart 1991). 

DNA Extraction and Haplotype Identification 

 I conducted mitochondrial DNA d-loop sequence analysis on nine years of samples of 

168 juvenile loggerheads from Indian River Lagoon, approximately 2 km south of Sebastian 

Inlet, Indian River County, Florida.  I used large-mesh tangle nets to capture juvenile turtles 

monthly from 1993-2004.  I stored blood samples obtained from the dorsal cervical sinus 

(Owens and Ruiz 1980) in lysis buffer at room temperature and extracted DNA using standard 

phenol/chloroform extraction techniques (Hillis et al. 1996).  Because Florida nesting 

populations were previously defined by Pearce (2001) based on a 400 bp fragment of the 

mitochondrial d-loop (Table 1), I analyzed this fragment using primers CR-1 and CR-2 (Norman 

et al. 1994).  I subjected purified DNA to polymerase chain reaction (PCR) in 25 µL reactions by 

denaturing at 93°C for 3 min, followed by 39 cycles of (1) DNA denaturing at 93°C for 30 s, (2) 

primer annealing at 52°C for 30 s, and (3) primer extension at 72°C for 30 s, with a final primer 

extension cycle at 72°C for 10 min.  I visualized PCR products on an agarose gel and removed 

and purified the 400 bp fragment using MinElute Gel Extraction Kits (Qiagen).  I quantified 

purified PCR products post purification using an agrose gel with 1 kb size standard (Promega).  I 

sequenced the purified products on a Beckman CEQ 8000 automated sequencer following the 

manufacturer’s protocols.  I manually edited sequence data in Sequencher (Gene Codes Corp. 

1996) and aligned the sequence data in GeneDoc (Nicholas et al. 1997).  I calculated haplotype 

frequencies in TCS (Clement et al. 2000). 
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 I compared the haplotypes observed in IRL to those found on 12 nesting beaches that 

encompass all nesting regions of Florida, plus Quintana Roo, Mexico.  Currently, 11 loggerhead 

mitochondrial haplotypes define the nesting beaches of Florida and the Yucatan Peninsula of 

Mexico (Pearce 2001).  These haplotypes are widespread and common throughout the North 

Atlantic but occur in significantly different frequencies when grouped by management units 

recognized in the United States Fish and Wildlife Service (USFWS) recovery plan for the 

loggerhead (Figure 5).  I also included Brazilian and Mediterranean nesting beach haplotypes 

(Bolten et al. 1998, Laurent et al. 1998) to determine their contribution of juveniles to IRL.   

Estimating Contributions of Nesting Beaches to IRL Juvenile Aggregation 

To estimate the contribution of various nesting beaches to the IRL juvenile aggregation, I 

performed a Bayesian Markov-chain Monte Carlo (MCMC) mixed stock analysis using the 

program BAYES (Pella and Masuda 2001).  I used even prior expected distributions for all 

analyses to avoid biasing the results by incorporating rookery size or distance into the model.  

This method allows for contributions of rare haplotypes from rookeries when those haplotypes 

were not found in the juvenile aggregation sample (Pella and Masuda 2001).  Bayesian MCMC 

methods also yield more accurate probabilistic estimates of contribution than maximum-

likelihood point estimates (see Luke et al. 2004; Bolker et al. 2003). I calculated estimated 

rookery contributions to IRL juveniles based on 23,598 resamplings (as determined by BAYES) 

of one stock mixture expected to recruit juveniles from five nesting beach aggregations.  

Estimated contributions excluded the Brazil rookery because its sole haplotype was not found in  
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Figure 5. Map of Indian River Lagoon including Southeastern United States and Yucatan 
Peninsula, with estimated contributions from nesting beach regions. NEFL= Northeast Florida, 
SEFL=Southeast Florida, SWFL= Southwest Florida, NWFL=Northwest Florida, 
MEX=Mexico. 
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IRL.  I also excluded Mediterranean rookeries for two reasons: 1) no endemic mitochondrial 

haplotypes are available that indicate their contributions, and 2) while juvenile loggerheads from 

Atlantic rookeries spend extended periods in the Mediterranean Sea, the opposite is not 

suggested in the literature; Mediterranean-born loggerheads may spend their entire juvenile 

period in that basin (Laurent et al. 1998).  Similar MCMC analyses have been used to estimate 

stock composition and rookery contribution in other marine turtles and fishes (Fernandez et al. 

2002, Fillatre et al. 2003, Herwerden et al. 2003, Luke et al. 2004, Ruzzante et al. 2004). 

 I grouped haplotypes that characterize Florida and Mexico rookeries into northeast 

(NEFL), southeast (SEFL), northwest (NWFL), and southwest Florida regions (SWFL) and 

Mexico (MEX; Pearce 2001) and estimated distance from each rookery to Sebastian Inlet using 

GIS software (ArcView v3.2; ESRI). I estimated rookery size as the total number of nests 

recorded by the Florida Index Nesting Beach Program from 1988-2002.  I used linear regression 

to test whether Bayesian MCMC estimated contributions depended on rookery size or distance.  

Independent variables were log-transformed to meet analysis assumptions.  I computed Chi-

squared tests between haplotype frequencies in the IRL and each rookery to support my model of 

multiple rookery contributions. 

Results 
 I observed 8 haplotypes (Table 3) in IRL:  CCA1 (48.2%), CCA2 (44.6%), CCA3 

(1.8%), CCA7 (1.2%), CCA10 (1.8%), CCA13 (0.6%), CCA14 (0.6%), and CCA20 (0.6%).  In a 

single individual, I observed one novel haplotype, which was one bp distant from CCA2.  

Haplotype frequencies in IRL indicate that its juvenile aggregation is a genetically diverse 

assemblage with contributions of juveniles from nesting beaches throughout the Atlantic (Table  
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Northeast Florida 44 13 1    2  1   61 
Southeast Florida 32 28  1 1   1  1 1 65 
Southwest Florida 24 67 4  2 2 2   1  102 
Northwest Florida 36 7 1  2       46 
Mexico  11 2     1 1 5  20 
Brazil    11        11 
Mediterranean  78 13    1     92 
Totals 136 204 21 12 5 2 5 2 2 7 1 397 

 

 

Table 3. Frequency of loggerhead mtDNA control region haplotypes described by Bolten et al. 
(1998) and Pearce (2001). 
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4) and possibly the Mediterranean.  However, due to the lack of endemic haplotypes, and the 

absence of evidence in the literature to support Mediterranean contributions in juvenile 

loggerhead aggregations, I will test my second hypothesis including only northern Atlantic 

rookeries.   

 The program BAYES estimated 23,598 resamplings as the minimum number of 

generations required for estimation of posterior probability densities.  Results of Bayesian 

MCMC analyses using even prior expected distributions indicated contributions from rookeries 

in Mexico, southeast, southwest, northeast, and northwest Florida (Table 4).  Chi-squared tests 

between haplotype frequencies in IRL and each rookery were all significantly different at 

α=0.05.  The proportion of estimated contributions regressed significantly on both log distance 

(F1,3=20.7, p<0.020, R2=0.88) and log rookery size (F1,3=21.6, p<0.019, R2=0.88).  Distance and 

rookery size were negatively correlated albeit not significantly (r = -0.86, p=0.063).  

Discussion 
 Immature loggerheads spend 10-12 years in developmental habitats such as Indian River 

Lagoon, Florida.  Previous studies of juvenile loggerhead aggregations suggest multiple 

contributions primarily from local rookeries (Norrgard and Graves 1995, Witzell et al. 2002).  

However, recruitment of juvenile loggerheads from Florida to the Azores and Madeira suggest 

that individuals are capable of migrating to a juvenile foraging ground upwards of 6400 

kilometers from their natal nesting beach (Bolten et al. 1998).  Contradicting the findings of 

Bolten et al. (1998), a study of multiple rookeries in the North Atlantic indicates that juvenile 

loggerheads primarily recruit to foraging grounds near their natal beaches (Bowen et al. 2004).  

My data support the findings of Bowen et al. (2004) and suggest that IRL juveniles migrate from  
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Nesting Stock Mean SD 
Northwest Florida 0.069 0.112 
Southwest Florida 0.246 0.175 
Northeast Florida 0.237 0.196 
Southeast Florida 0.421 0.250 
MEXICO 0.027 0.044 

 

 

Table 4. Estimated contributions of 5 rookeries to the juvenile aggregation in Indian River 
Lagoon, Florida, based on Bayesian Markov-chain Monte Carlo (MCMC) mixed stock analyses.  
Only haplotypes from IRL that previously were identified on a nesting beach were included. 
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local Florida and Mexico rookeries.  However, the resolution offered by mitochondrial d-loop 

alleles is insufficient to rule out minimal contributions from Brazil or the Mediterranean, and 

mitochondrial DNA data supports limited contribution from these regions.  A more detailed 

study of hypervariable nuclear loci (i.e., microsatellites) may further resolve the contributions of 

South American and the Mediterranean rookeries to juvenile aggregations in IRL.  Juvenile 

green turtles in IRL have been shown through endemic mtDNA haplotypes to originate from 

Mediterranean nesting beaches (Bagley 2003).  There are no endemic Mediterranean loggerhead 

haplotypes that would directly indicate such a contribution.  The most common haplotypes found 

on Mediterranean nesting beaches also are found in the Northern Atlantic, so it is difficult to 

resolve relative contributions.  Some juveniles hatched in Florida and Mexico recruit to juvenile 

aggregations in the Mediterranean (Laurent et al. 1993, 1998).  It is possible (albeit somewhat 

unlikely) that the opposite also occurs.  For the purposes of this study, I assumed that IRL strictly 

recruits juveniles from rookeries in Florida and Mexico. 

 I determined that distance was highly correlated with estimated contributions based on 

haplotype frequencies.  Rookery size also was strongly correlated with estimated contributions of 

juveniles to the foraging ground.  The SEFL aggregation, which comprises 86% of all 

Florida/Mexico loggerhead nesting, and is significantly closer to IRL than all other rookeries, 

only contributed an estimated 42.1% of the individuals in IRL.  These data demonstrate that IRL 

receives individuals from nesting beaches throughout Florida and Mexico with proportional 

contributions from local, dense rookeries.  My results generally confirm the patterns suggested 

by Bowen et al. (2004).  Similar studies of green turtles suggested that distance either did not 

factor into recruitment (Luke et al. 2004) or was not as important as rookery size (Lahanas et al. 

1998).  Bass and Witzell (2000) did find a correlation between rookery size/distance and 
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contribution of juveniles, with distance having the greatest effect.  My study had more than twice 

as many samples as the studies listed above.  The larger sample size provides greater resolution 

of rare alleles, which may significantly affect estimated contributions.  My study also 

incorporated 108 continuous months of sampling, whereas the previous studies cited (Lahanas et 

al. 1998, Bass and Witzell 2000, Luke et al. 2004) were 1-27 months duration.  I suggest that 

longer periods of genetic sampling and greater sample size increase the accuracy of population 

assessment and support strong effects of rookery size and distance from the juvenile foraging 

ground.   

 The mixed stock composition of juvenile loggerheads in IRL suggests that nesting beach-

based management units described by the USFWS recovery plan are linked though this 

important foraging ground.  Overall, my results demonstrate the importance of IRL as a primary 

resource for juvenile loggerheads from the entire region.  The large size of IRL, its abundant and 

high quality food sources (Holloway-Adkins 2001), and lack of most pelagic predators make it 

an ideal foraging ground for both loggerhead and green turtles.  The strong correlation of 

estimated contributions with distance and rookery size indicates that juvenile turtle aggregations 

will recruit to contributing rookeries in a predictable manner.  Commercial fishing impacts, 

pollution, and diseases affecting these juvenile aggregations will have measurable outcomes for 

the rookeries that depend on them.  I suggest that these parameters be incorporated into 

predictive population-dynamic models based on monitoring of juvenile aggregations. 

 The fact that multiple rookeries contribute to a limited number of juvenile aggregations 

makes marine turtles as a group, and specifically the loggerhead, particularly vulnerable to the 

effects of pollutants in degraded juvenile foraging habitats such as IRL.  Currently, researchers 

have little data on the effects degraded ecosystems, such as IRL, have on the long term 
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development and fitness of juvenile turtles.  Certainly, in the case of green turtles, it is evident 

that high occurrence of fibropapillomatosis (upwards of 70%) in juveniles inhabiting IRL will 

have noticeably negative impacts on future populations through increased juvenile mortality and 

potential long term effects.  While fibropapillomatosis is not as prevalent in juvenile 

loggerheads, it does occur in 4.5% of individuals captured from 1982 to 2004 (unpublished data).  

The nature of juvenile loggerheads recruiting from numerous nesting beaches, possibly from all 

over the world, to a select few foraging grounds, make the threats posed to these localized 

foraging grounds relevant at a global scale.   
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CHAPTER FOUR: CONCLUSION 

My research attempts to provide information important to conservation efforts in marine 

turtles.  I have added to our understanding of historical patterns of gene flow in three species of 

marine turtles during major climatic shifts.  These findings are of significance to future 

conservation efforts by enhancing our understanding of where major population contractions will 

be centered during future climate shifts.  This research also provides data on estimated 

population sizes during the Pleistocene.  My findings on the coincidence of major climate 

changes and the severity of subsequent population contractions in the loggerhead, hawksbill, and 

green turtle demonstrate how sensitive marine turtles are to global climate change. 

In addition to historical patterns of gene flow, I have demonstrated a previously unknown 

migratory pattern in the loggerhead turtle.  My research supports a pattern by which juvenile 

loggerhead turtles make a major migration from circumnavigating the Atlantic to recruit to 

foraging grounds proximal to their natal nesting beach.  This migration results in a predictable 

pattern whereby distance from the rookery and the relative size of the rookery are proportional to 

the contribution of juveniles.  These findings demonstrate the link between threats posed to 

juvenile loggerhead aggregations and the direct implications on local nesting beaches.  Incidental 

take by commercial fisheries and the effects of disease and other threats to a foraging ground will 

directly impact local nesting beaches.  In addition, consistent monitoring of juvenile aggregations 

will serve as a predictive model for growth/decline of local rookeries.  Because juveniles will 

recruit to the natal rookeries for reproduction much as they do for their subadult development, 

population dynamics in juvenile aggregations will be mirrored by mature rookery populations.  
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These findings are of great value to conservation managers and will better our understanding of 

loggerhead turtle life history. 
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