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ABSTRACT 

Liquid crystal (LC) devices can be operated as amplitude modulators and phase 

modulators. LC amplitude modulation is commonly used in liquid crystal display (LCD) 

while phase-only modulation is useful for laser beam steering, tunable grating, prism, 

lens, and other photonic devices. Most LC devices are polarization dependent and require 

at least one polarizer. As a result, the optical efficiency is low. To enhance display 

brightness, a power hungry backlight has to be used leading to a high power consumption 

and short battery life. In a LC phase modulator, the polarization dependent property 

complicates the laser beam steering system. It is highly desirable to develop new 

operating mechanisms that are independent of the incident light polarization.  

In this dissertation, we have developed eight polarization-independent liquid 

crystal operation principles: three of them are aimed for displays and the other five are 

for phase modulators. For amplitude modulations, a new polymer-dispersed liquid crystal 

(PDLC) and two new dye-doped LC gels are polarizer-free by combining light scattering 

with dye-absorption effects. In phase modulation, we explore five device concepts: 

PDLC and Polymer-Stabilized Cholesteric Texture (PSCT), homeotropic LC gels, thin 

polymer film separated double-layered structure, and double-layered LC gels. In the low 

voltage regime, both PDLC and PSCT have a strong light scattering. However, as the 

voltage exceeds a certain level, the phase modulation is scattering-free and is independent 

of polarization. The homeotropic LC gels do not require any biased voltage and the 

response time is still fast. Although the remaining phase in these devices is small, they 
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are still useful for micro-photonic device applications. To increase the phase change, thin 

polymer film separated double-layered structure is a solution. The orthogonal 

arrangement of top and bottom LC directors results in polarization independence. 

However, the response time is slow. Similarly, double-layered LC gels are not only 

polarization independent but also fast response due to the established polymer network.  
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CHAPTER 1: INTRODUCTION 

1.1 Motivation: Liquid Crystals as Amplitude Modulators 

Liquid crystal displays (LCDs) have become the dominant display technology. 

402HFigure 1 shows some LCD applications such as high definition TV, aircraft cockpit 

display, notebook computer, desktop monitor, cell phone, etc. In a LCD, the LC medium 

functions as an electro-optic amplitude modulator. Commercial LCD devices suffer a low 

optical efficiency (~3%) because of the use of two polarizers. It is highly desirable to 

develop polarizer-free LCD devices. 

  Aerospace application (CMO)Aerospace application (CMO)  
  Samsung 82” LCD TV 

 

Sony Vaioi-pod nano

Samsung

Kodak V530

RefrigeratorSony Vaioi-pod nanoi-pod nano

Samsung

Kodak V530

Refrigerator
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Master Spas ®Master Spas ®
 

Home theaterHome theater

 
 

Figure 1: Some applications of LC amplitude modulators.  

 

In Chapter 2, we introduce some general guidelines for designing polarization 

independent amplitude modulators. In Chapter 3, we demonstrate four polarization 

independent LC amplitude modulators using 1) twisted nematic polymer-dispersed liquid 

crystal (PDLC) 403H

11,
404H

12, 2) dye-doped PDLC405H

11,, 3) dye-doped dual-frequency liquid crystal 

(DFLC) gels406H

13,
407H

14, and 4) dye-doped negative LC gels408H

15. In the twisted nematic PDLC cell, 

we also experimentally show how and why the surface pinning effect helps the device 

performance.  

1.2 Motivation: Liquid Crystals as Phase Modulators 

Phase-only modulation is useful for tunable grating, prism, lens, and other 

photonic devices. The phase modulators are important for laser beam steering409H

16,
410H

17. 

Mechanical beam steering requires stabilization system so that its total system is complex, 

power consumption is large, and cost is high for large aperture operation. On the other 
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hand, LC-based phase modulators have several advantages, e.g., low cost, light weight, 

low power consumption, no mechanical moving part, and large aperture. Besides laser 

beam steering, LC phase modulators can also be used in laser beam splitting, beam 

shaping, and adaptive focus lens, etc.  

411HFigure 2 illustrates an optical phase grating using a LC phase modulator for laser 

beam steering. By controlling the applied voltage of each pixel, the optical phased array 

works as a phase grating. The deflection angle (θ) depends on the wavelength (λ) and 

grating period (Lg) as:412H

16 

Two dimensional laser beam steering can be obtained by cascading two orthogonally 

oriented one-dimensional (1-D) LC phase gratings.  

                                 

Glass substrate

ITO electrode

Alignment layer

θ

Lg

Glass substrate

ITO electrode

Alignment layer

Glass substrate

ITO electrode

Alignment layer

θ

Lg
 

Figure 2: A LC phase modulator is used as an optical phase grating. 

 

LC-based optical phase arrays which consist of pixilated LC phase modulators 

can be used for multiple target laser weapons as 413HFigure 3(a) depicts. Such an optical 

phased array can also be used as part of tracking network which supports the high-data-

 
Lg

Sin λθ = , (1) 
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rate communication links. For example, Airborne Laser Terminal shown in 414HFigure 3(b) 

can link between spacecrafts, aircrafts, space platforms, and the bases on the earth. 

On the transmitter side, no polarizer on the phase modulator is required because 

the laser is usually linearly polarized. However, on the receiver side, polarizer is needed 

in order to assure the incoming light is in the correct polarization. The use of polarizer 

greatly reduces the light efficiency of the beam steering system. It is highly desirable to 

develop new operating mechanisms that are independent of the incident light polarization. 

In chapter 2, we introduce some general principles for designing a polarization-

independent LC phase modulator. In chapter 4, we develop five polarization-independent 

liquid crystal phase modulations using 1) PDLC415H

18, 2) PSCT416H

19, 3) homeotropic LC gels417H

20, 

4) a thin polymer-separated doubled-layered structure 418H

21, and 5) double-layered LC gels419H

22. 

 

                 

(a)                                                                    (b) 

 Figure 3: Applications of LC phase modulators. (a) Directed energy weapon, and (b) 
airborne laser terminal. (200Hhttp://www.raytheon.com/) 
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1.3 Introduction of Liquid Crystal (LC) 

1.3.1 What is Liquid Crystal? 

Liquid crystal (LC) is a state of matter intermediate between crystalline solid and 

isotropic liquid420H

1-
421H

3. In 422HFigure 4, nematic liquid crystal is used as an example. This 

intermediate was first observed by F. Reinitzer in 1888. When the LC molecules are 

sandwiched between two glass substrates with surface alignment treatment, the molecular 

axis tends to point along a preferred direction, called director (n). The average LC 

director indicates that the LC orientation is not totally random even though their positions 

are random. Because of this directionality, LC is an anisotropic medium. Besides, LC 

directors can be reoriented by an electric field or magnetic field. The unique electro-

optical properties of liquid crystal are widely used in many devices, such as displays, 

phase modulators, light shutters, etc. 

 

 

n

Crystal Nematic LC Isotropic

T

nn

Crystal Nematic LC Isotropic

T

 

Figure 4: The nematic liquid crystal is an intermediate phase between crystalline phase 
and isotropic liquid phase. For thermotropic nematic liquid crystal, its nematic range 
exists between the melting and clearing temperatures. 
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A single LC compound usually possesses a narrow mesogenic phase. To widen 

the LC temperature range, forming eutectic mixtures is a general approach. It is quite 

common that a eutectic mixture might consist of a dozen single compounds. 423HFigure 5 

shows the chemical structure of a well-known LC compound: 4-cyano-4’-n-alkylbiphenyl, 

abbreviated as nCB, where n is the number of carbon in the flexible side chain. The width 

of nCB is around 5 Å and the length is about 20 Å. 

 

 

Figure 5: The chemical structure of nCB (4-cyano-4’-n-alkylbiphenyl) LC compound 

1.3.2 Liquid crystals in Electric Fields 

The applied electric field ( E
ρ

) produces a dipole moment per unit volume which 

is called polarization P
ρ

. In general, the relation between E
ρ

 and P
ρ

 can be expressed as 

follows. 424H

1-
425H

3 

where oε  is the permittivity of free space (=8.85x 10-12 C2/Nm2), eχ
ρ is the electric 

susceptibility, and the director is oriented along the z-axis. The unit of the electric field is 
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ρτρ
χε= , or ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⊥

⊥

z

y

x

e

e

e

o

z

y

x

E
E
E

P
P
P

//00
00
00

χ
χ

χ
ε

 (2) 



7

V/m. Therefore, the unit of polarization of liquid crystals is C/m2 because P
ρ

 is equal to 

the dipole moment (Cm) per unit volume (m3) 

Then, the electric displacement D
ρ

can be defined by the applied electric field and 

polarization of LCs as: 

The unit of D
ρ

 is the same as P
ρ

. From Eqs. 426H(2) and 427H(3), D
ρ

becomes: 

where )1(0 eχεε
ττ

+=  ε
τ

is also called the permittivity of materials.  

A nematic liquid crystal has two components of permittivity, also called dielectric 

constants. One is along the LC director ( //ε ), and the other is perpendicular ( ⊥ε ). We 

can define the dielectric anisotropy of LC in permittivity as: 

For a LC compound or mixture, the dielectric anisotropy can be positive, zero, or 

negative, depending on the positions and strength of the dipole moments. A positive (or 

negative) LC is referred to the sign (+ or −) of the dielectric anisotropy of the LC. When 

Δε~0, the LC is called non-polar. 

 

When the applied electric field is not parallel to the induced dipole moments of 

LC molecules, it creates a net torque to reorient the LC directors along the electric field 

for a positive LC or perpendicular to the electric field for a negative LC in order to 

minimize the electrostatic energy, as shown in 428HFigure 6. 

 PED o

ρρρ
+= ε , (3) 

 ED
ρρ

ε= , (4) 

 ⊥−=Δ εεε // . (5) 
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E

Δε >0

E

Δε <0

EE

Δε >0

EE

Δε <0  

Figure 6: The orientation of positive and negative LCs under an applied electric field. 

1.4 Dual-frequency Liquid Crystals 

Dual-frequency liquid crystal (DFLC) 429H

3 is a special mixture of positive and 

negative LCs. Due to dielectric relaxation, the //ε  of the positive LC decreases as the 

electric field frequency increases. On the other hand, ⊥ε  is independent of frequency up 

to the MHz range. The crossover frequency of the DFLC mixture is the frequency where 

Δε changes sign. The value of the crossover frequency depends on the molecular 

structure and dipole properties of the DFLC compositions. To make a DFLC useful, the 

crossover frequency should be in the few kHz range. A typical relation between dielectric 

constant and frequency in DFLC is shown in 430HFigure 7. The frequency effect of DFLC 

results from the longer relaxation time at higher frequency while the polarization of LC 

induced by the applied electric field is prompt. Besides, the molecular rotation along the 

short axis of LC molecules is more difficult than that along the long axis of LC. 

Therefore, the frequency dispersion is mainly for //ε . 431HFigure 7 shows the typical 

dielectric constants of DFLC as a function of frequency. 
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Figure 7: The dielectric constant as a function of frequency for a DFLC material. 

1.5 Polymer-dispersed Liquid Crystal (PDLC) 

Polymer-dispersed liquid crystals (PDLC) 432H

4 consist of micron-sized liquid crystal 

droplets that are dispersed in a solid polymer matrix as shown in 433HFigure 8. It is similar to 

a sort of “Swiss cheese” polymer with liquid crystal droplets filling in the holes. The 

droplets are randomly distributed in the polymer matrix and their sizes are close to the 

visible wavelengths. The incident light is strongly scattered by the PDLC in the voltage-

off state because of the refractive index mismatch and Rayleigh scattering. In the voltage-

on state, the liquid crystal droplets are reoriented along the applied electric field. The LC 

is transparent to the incident light because the refractive index of the polymer is closed to 

the ordinary refractive index of the LC. Therefore, in a PDLC the incoming light could be 

modulated by changing the LC orientation with an electric field. 
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Figure 8: The operation principle of PDLC. 

1.6 Polymer Stabilized Cholesteric Texture (PSCT) 

Polymer stabilized cholesteric texture (PSCT)434H

5 consists of cholesteric liquid 

crystal and some diacrylate monomer. The LC pitch length is around 0.5-5μm. Here we 

only take a normal mode PSCT as an example. Without the applied electric field, the 

liquid crystal tends to keep the helical structure and the directions of helical axes are 

random. Meanwhile, the polymer network perpendicular to the glass substrates attempts 

to keep the LC director parallel to the polymer network. Besides the focal conic structure 

as show in 435HFigure 9(a), the PSCT has multi-domain structures which are stabilized by the 

polymer networks. Therefore, PSCT strongly scatters the incident light at V=0. When the 

electric field is high enough to unwind the LC helical structure, the LC directors become 

homeotropic alignment as shown in 436HFigure 9(b). Then, the PSCT is transparent for the 

incident light. 

ITO
Cholesteric LC

Polymer network

Glass substrate

VITO
Cholesteric LC

Polymer network

Glass substrate

VVVV

 

(a)                                                                          (b) 

Figure 9: The operation principle of PSCT at (a) voltage-off state, and (b) voltage-on 
state. 
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1.7 Guest-host Liquid Crystal Displays (GH LCD) 

The guest-host (GH) display consists of a host LC and guest dichroic dye.437H

5 The 

orientation of dye molecules is affected by the LC alignment. The overall arrangement of 

the structure of GH LCD also affects the electro-optical properties of LCD, such as 

brightness and contrast ratio. 

The operation mechanism of dichroic dye is shown in 438HFigure 10. When the 

polarization (x-direction) of the incident light is parallel to the long axis of dye molecules, 

the light is strongly absorbed. The absorption is weak as the polarization (y-direction) of 

incident light is perpendicular to the long axis of dye molecules. 

z
x

y

Dye molecule
Incident light

z
x

y z
x

y

Dye molecule
Incident light

 

Figure 10: The operation mechanism of the guest-host LCD.  

 



12

CHAPTER 2: GENERAL PRINCIPLES OF A POLARIZATION 
INDEPENDENT LC DEVICES 

In this chapter, we introduce the general principles of polarization independent 

LC devices. Keeping those concepts in mind helps us to design a good polarization 

independent LC device no matter phase modulators or amplitude modulators. First, the 

nature of an unpolarized light is discussed. The polarization of an unpolarized light is 

random and the refractive index of a liquid crystal molecule is polarization sensitive. 

Better knowing the nature of light undoubtedly helps us to design a better LC device. 

Second, three main mechanisms for achieving polarization independent amplitude 

modulators are reviewed. By manipulating those mechanisms, we can design high 

performance polarization independent amplitude modulators. Third, the relation between 

polarization dependency and spatial symmetry of a LC structure is studied in section 2.3 

to assist in designing polarization independent LC phase modulators. Then, several novel 

polarization independent phase modulators are also proposed and discussed at the end of 

this chapter. 

2.1 Natural Light 

A light wave which is an electromagnetic wave is produced by the vibration of a 

number of atomic emitters439H

23. All emitters radiating polarized wavetrains with a same 

frequency and then all the waves combine together to form a polarized wave. This 

polarized wave persists for less than 10-8 s. The natural light is unpolarized which means 
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the light is randomly polarized. The unpolarized light consists of a rapidly varying series 

of different polarization states. Moreover, the unpolarized light can be represented 

mathematically by two arbitrary, incoherent, orthogonal, linearly polarized waves with 

equal amplitude.  

Generally speaking, a monochromic plane and polarized wave can be expressed in 

complex notation as: 

where 0E , xA0 , yA0  are the amplitude of the light, xie ϕ
,

yie ϕ
are the phase terms, 

ω  is the frequency of the wave, κ
ρ

 is the wave vector of the wave, t  is time, and r
ρ

 is 

the propagation distance in a vector form. The )ˆˆ( 00 yeAxeA yx i
y

i
x ⋅⋅+⋅⋅ ϕϕ  term 

represents the polarization of the light. Moreover, xA0 and yA0  should satisfy the 

following relation: 

For an unpolarized light, xϕ and yϕ are randomly varied with time. 

When the wave propagates in a medium, the amplitude of the output wave 

changes and then this medium is operated as an amplitude modulator. Similarly, the 

phase terms (
)( rtie

ρρ
⋅−⋅⋅ κω

, xie ϕ
, and 

yie ϕ
) of the output wave is modulated by the 

medium and then the medium is a phase modulator.  

 )ˆˆ(),( 00
)(

0 yeAxeAeEtrE yx i
y

i
x

rti ⋅⋅+⋅⋅⋅⋅= ⋅−⋅⋅ ϕϕκω ρρρρ
, (6) 

 12
0

2
0 =+ yx AA , (7) 
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In a typical LC device, no matter amplitude or phase modulator, they require at 

least one polarizer. Therefore, the light efficiency is sacrificed. The main goal of this 

dissertation is to explore and design new polarization independent LC devices.  

2.2 Mechanisms for Designing a Polarization Independent LC Amplitude 
Modulator 

Since the refractive indices of LC molecules are polarization sensitive, how do we 

design a polarization insensitive LC device by just relocating the distribution of LC 

molecules? As a matter of fact, there are three mechanisms we can exploit for designing a 

polarization independent LC amplitude modulator: absorption, scattering, and reflection. 

Followed by a brief introduction of each mechanism, combining and re-mixing those 

three mechanisms are discussed. We also propose several designs at the end of this 

section. 

2.2.1 Absorption 

The dichroic dyes used in liquid crystal amplitude modulators typically have 

elongated and rigid molecular shape. 440H

4,
441H

5 When a small percentage (2-5 wt%) of dichroic 

dye is dissolved in a LC host, the dye molecules tend to follow the LC alignment. When 

the transition dipole of the dye molecules lies along the long axis of LC molecules, it is 

called a positive dye. Similarly, a negative dye has transition dipole perpendicular to the 

principal axis of the LC molecules. The absorbance of the dichroic dyes in a nematic LC 

host depends on the relative orientation of LC directors and polarization of the incident 
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light. Here we use a positive dye as an example shown in 442HFigure 11. Light is absorbed 

strongly when the polarization of the incident light (x-direction in 443HFigure 11) is parallel to 

the long axis of the dye molecules. The light is absorbed weakly when the polarization of 

incoming light (y-direction in 444HFigure 11) is perpendicular to the long axis of the dye 

molecules.  

z
x

y

Dye molecule

LC molecule
Incident light

z
x

y

Dye molecule

LC molecule

z
x

y

Dye molecule
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Figure 11: Schematic of positive dichroic dyes in a nematic liquid crystal host.  

 

Basically the dye absorption is polarization dependent. To realize polarizer-free 

GH LCD, Dr. T Uchida proposed a double cell method in 1981.445H

6 The device structure and 

a display panel are shown in 446HFigure 12(a) and (c), respectively. Two homogeneous GH 

cells are stacked together in orthogonal directions. One polarization of an incident 

unpolarized light is strongly absorbed by the fist GH layer because the polarization of the 

light is parallel to the long axis of the dye molecules. The residual polarization of the 

light is absorbed by the second GH layer. However, the middle glass substrate results in 

parallax and hinders the GH LCD from the high resolution display although the 

brightness is good. Later, Hasegawa et al proposed a similar structure to reduce the 

parallax by using a thin Mylar film447H

7,
448H

8 as shown in 449HFigure 12(b); however, the middle 

Mylar film can not align LC so that the contrast ratio is not very high. 
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(c) 

Figure 12: (a) Double-layered GH LCD using a middle glass substrate, (b) similar 
structure but using a thin mylar film, and (c) A dashboard display using structure (a). 

 

2.2.2 Scattering 

Scattering is another mechanism for designing a polarization independent 

amplitude modulator. Typically, we mix a small amount of monomer into a host liquid 

crystal mixture. The resulted polymer-stabilized liquid crystal strongly scatters light. The 

light scattering properties mainly depend on the domain size, refractive index mismatch 

between the LC and monomer, and LC and monomer miscibility 450H

4. 

After phase separation process under a properly controlled experimental condition, 

the LC molecules are randomly dispersed in the sub-domains of polymer networks. Such 
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a scattering mechanism is polarization independent. When the domain size is comparable 

to the incident light wavelength, the light is strongly scattered by the polymer stabilized 

liquid crystals. As the refractive index mismatch increases, the scattering efficiency 

increases. Chemical solubility and different materials can form network structures or 

droplet structures which are called polymer network liquid crystals (or LC gels) and 

polymer dispersed liquid crystals, respectively, as shown in 451HFigure 13. 

Polymer

LC droplet

ITO

ITO

Polymer

LC droplet

Polymer

LC droplet

ITO

ITO

ITO

ITO

VVV

 

(a) 

ITO
LC

Polymer network

Glass substrate
ITO
LC
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 (b) 

Figure 13: Schematic diagram of two scattering-type polymer stabilized liquid crystals. (a) 
Polymer-dispersed liquid crystals and (b) polymer network liquid crystals. 

2.2.3 Reflection 

The operation principle of cholesteric liquid crystals is also polarizer-free.452H

5 

Choelsteric liquid crystal exhibits helical structure due the imbedded chial center or chiral 

dopant. Similar to nematic liquid crystal, it has long-range orientation order but no long 

range position order. The structures of cholesteric liquid crystal are shown in 453HFigure 14. 
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The cholesteric liquid crystal has a helical structure. In 454HFigure 14(a), the average 

direction of the long axes of LC molecules is in a plane perpendicular to the helical axis. 

Along the helical axis, the liquid crystal directors on two near planes are twisted slightly 

to each other. The distance which the director rotates 2π along the helical axis is called 

pitch length (P).  

                                        

P
d

P
d

P
d

 

(a) 

 

(b) 

 

(c) 

Figure 14: The structures of chlesteric liquid crystals. (a) Planar texture, (b) focal conic 
texture, and (c) homeotropic texture. 
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In the planar texture, for the normally incident light due to the periodic structure 

of the refractive index, the liquid crystal exhibits Bragg reflection at the central 

wavelength λ0=nP, where n is the average refractive index of liquid crystal. The reflected 

bandwidth is ΔnP, where Δn is the LC birefringence. When an unpolarized white light 

propagates in the LC cell, the light can be decomposed into a right-handed circularly 

polarized light and a left-handed circularly polarized light. Only the circularly polarized 

light with the same handedness as the helical structure of cholesteric liquid crystals is 

reflected strongly due to the constructive interference of the reflected light from different 

layers. The other circularly polarized light with the opposite handedness is transmitted.  

Incidentally, cholesteric liquid crystals have two stable states, the planar texture 

and the focal conic texture, at zero fields. In the focal conic texture, the direction of the 

helical axis is random and then it scatters the incident light. When the applied voltage is 

large, the helical structure is unwound and then the structure turns to a homeotropic 

texture as shown in 455HFigure 14(c). Both focal conic and homeotropic states are 

polarization independent. 

2.2.4 Combination of Different Effects 

We have introduced three mechanisms for designing a polarization independent 

LC amplitude modulator. By manipulating them together, we can design a novel 

polarization independent LC amplitude modulator. For example, by combining dye 

absorption with the scattering effect, e.g., dye-doped LC gels, dye-doped PDLC, and dye-

doped PSCT are possible designs showing a fairly good contrast ratio and reasonably fast 
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response time. The experimental results of the dye-doped LC gels and dye-doped PDLC 

are discussed in chapter 3. By combining scattering with reflection, A. Magnaldo et al 

has demonstrated a polymer dispersed cholesteric liquid crystal which contains 

cholesteric structure in the LC droplets456H

9,
457H

10. Or we can have dye-doped polymer-dispersed 

cholesteric liquid crystals. However, some designs may have problem about the materials 

or the instability of the whole structure. At last, we have discussed the guidelines for 

designing a polarization independent amplitude modulator. 

2.3 Designing a Polarization Independent LC Phase Modulator 

A piece of an isotropic glass plate is the simplest passive polarization independent 

phase modulator458H

24. The isotropic molecules in a glass plate are randomly positioned and 

distributed. The phase of an incident light is modulated but the amplitude remains 

unchanged. The phase difference is proportional to the optical length and the refraction 

index of the isotropic medium. 

n(V)

L
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n(V)n(V)

L

EoutEin

 

Figure 15: Schematic polarization independent phase modulator. 

 

The concept of an electrically tunable phase modulator is illustrated in 459HFigure 15. 

After traversing through the device as shown in 460HFigure 15, the electric field of the 

outgoing light can be expressed as: 



21

where outE
ρ

 and inE
ρ

 are the output and incident electric field of the light, and Ψ is the 

phase difference which can be expressed as: 

where λ is the wavelength of the light, L is the length of the medium, and )(Vn is the 

refractive index as a function of the applied voltage. 

Here comes a question. Can we have a polarization independent LC phase 

modulator whose refractive index is electrically tunable as shown in 461HFigure 15? The 

answer is positive. In the following sections, we discuss the relation between polarization 

and the spatial symmetry of a LC structure and then discuss how to design a polarization 

independent LC phase modulator. All the discussions are based on an assumption: the 

unpolarized light is at normal incidence. 

2.3.1 Polarization Dependency and Spatial Symmetry of LC Structure 

A typical LC phase modulator is homogeneous LC cell462H

3 as shown in 463HFigure 16(a). 

The homogeneous LC cell is an electrically tunable wave plate. In the voltage-off state, 

the refractive index of the slow axis is ne and the refractive index of the fast axis is no, 

where ne and no are the extraordinary and ordinary refractive indices of LC. In a voltage-

on state, the LC directors are reoriented by the applied electric field and the refractive 

index of the slow axis changes. At a high voltage state, the LC cell becomes isotropic for 

 Ψ⋅⋅= i
inout eEE

ρρ
, (8) 

 LVn ⋅⋅=Ψ )(2
λ
π

, (9) 
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all the polarization of incident light. In order to operate the homogeneous cell as a phase 

modulator with maximal signal, the linear polarization of the incident light must be at 45 

degrees with respect to the rubbing direction of the LC director. That means it is 

polarization dependent. From top view of LC cell, we can project all the LC directors in 

to x-y plane as shown in 464HFigure 16(b). Because all the LC directors are along x-direction, 

the refractive index varies for different polarizations. In order to mimic an amorphous 

glass plate, we must rearrange the distribution of LC directors to have spatial symmetry 

in x-y plane as shown in 465HFigure 17. 
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Figure 16: (a) A homogeneous LC cell at voltage-off and voltage-on states. (b) The top 
view of the projection of the LC molecules in x-y plane at the voltage-off state. 
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(a)                             (b) 

Figure 17: Spatial symmetry of the projected LC directors in x-y plane. 

 

In 466HFigure 17(a), all the projected LC directors are in a dotted circle with a fixed 

diameter in x-y plane. The average refractive index is same for all the polarization of the 

incident light; hence, it is polarization independent. In 467HFigure 17(b), it is polarization 

independent for an unpolarized light only if we use double layered LC structure. All the 

polarized light can be decomposed into two linearly polarized lights in x-direction and y-

direction (x-polarization and y-polarization). By using a double-layered structure, both x-

polarization and y-polarization experience the same phase change and then the total 

polarization would not change. Therefore, it is polarization independent. We will 

continue to discuss this subject in next section. 

2.3.2 Design a Polarization Independent LC Phase Modulator  

By arranging the spatially symmetric distribution of LC directors, we can design 

various polarization independent LC phase modulators. Nevertheless, we need to be 

careful when we design a polarization independent LC phase modulator in order not to 

turn our designs to an amplitude modulator or polarization dependent device. Next, we 

discuss several examples. 
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A. Residual phase type of LC phase modulators 

The first example is residual phase type of LC phase modulators. The name of 

“residual phase” is because the phase of this type for LC phase modulators is usually very 

small and it requires a bias voltage to keep the same tilt angle of LC directors at random 

positions. We extract the remaining phases from the LC cells.  
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(c)                                                                         (d) 

Figure 18: Residual phase type of LC phase modulators at (a) voltage-off state and (b) 
voltage-on state. (c) The projected LC directors of (a) in x-y plane. (d) The projected LC 
directors of (b) in x-y plane 

 

The general principle of this type of LC phase modulator is as follows. In the 

voltage-off state we can arrange all the LC directors to have the same tilt angle at random 

positions as shown in (a). All the LC directors in (a) can be projected in the x-y plane as 

shown in  (c). Assumed we have a normally unpolarized incident light which consists of 

randomly polarized light together and it can be expressed as: 
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where ja  is the weight factor for the jth component. When an unpolarized light 

propagates into the LC cell, the average refractive index depending on the tilt angles is 

the same for all the polarizations. Hence, the output light can be expressed as: 

where phase shift ( δ  ) depending on wavelength ( λ ), cell gap ( d ) and average 

refractive index ( aven ) can be expressed as: 

Then, we rearrange Eq.468H(11). Eq.469H(11) becomes:  

Therefore, it is polarization independent. 

Such an average refractive index ( )(θaven ) depends on the tilt angle (θ) and 

ordinary refractive index ( on ) of the LC as: 

where the effective refractive index )(θeffn  has following expression: 
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The tilt angle is the angle between the LC director and the surface normal of the 

substrates. When the applied voltage further increases, the tilt angle of all LC directors 

decreases as well; in other words, the distribution of the projected LC directors is similar 

to  (c), but the radius of the circle decreases. When the voltage is high enough to fully 

reorient the LC directors along the electric field direction as shown in  (b), the 

distribution of the projected LC director in the x-y plane, as shown in  (d), remains spatial 

symmetric similar to  (c). It is still polarization independent.  

The total phase shift between high voltage and zero voltage can be expressed as: 

 

The concept of residual phase type phase modulators is simple. However, to realize such 

a device in experiment is not so easy. We have successfully demonstrated several residual 

phase types of polarization independent LC phase modulators, such as PDLC, PSCT and 

homeotropic LC gels which are discussed in chapter 4. As we mention in previous 

sections, PDLC, PSCT and LC gels are scattering type amplitude modulations. However, 

they can be pure phase modulators when the voltage is larger than a saturated voltage. 

The details are discussed in chapter 4. 

B. Double-layered type phase modulators 

Another design to achieve a polarization independent phase modulator is to stack 

two layers together. Two identical LC cells, such as two homogeneous cells shown in 

470HFigure 19(b) or π-cell shown in 471HFigure 19(c), are stacked together in orthogonal 

directions. The projected LC directions in x-y plane at different voltages are illustrated in  

472HFigure 19(a). An unpolarized light can be decomposed into x- and y- linear polarizations. 

 dnnVthV oave ⋅−⋅=>> ))((2)0 ,( θ
λ
πδ . (16) 
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After propagating through the two LC layers, both x- and y- polarized lights experience 

the same phase change, Therefore the output polarization remains the same. The radius of 

the circle of projected LC directiors decreases woth applied voltage as shown in 473HFigure 

19(a). Besides the projected LC directors keep in x- or y- directors. It is polarization 

independent at all voltage levels. 
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Figure 19: Double-layered type phase modulators. (a) Projected LC directors in x-y plane 
at difference voltages. (b) A doubled-layered homogeneous cell. (c) A doubled-layered π-
cell. 

 

We can prove the double-layered LC cells are polarization independent. Let us 

take double-layered homogeneous cells as an example as shown in 474HFigure 19(b). The 

polarization-independent mechanism of the double-layered LC device can be proven as 

follows. Let us assume the normal incident unpolarized light can be expressed in Eq. 475H(10). 

After propagating through the LC modulator at 0 Vrms, the output light can be expressed 

as: 

Any polarized light can be decomposed as x- and y- linearly polarized light. Each eigen 

mode experience some phase shift which depends on 1δ  and 2δ . When 1δ  equals to 2δ  

( δδδ == 21 ), Eq.476H(17) can be expressed as: 
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Therefore, it is polarization independent. When applied voltage is larger than threshold 

voltage, the distribution of the projected LC directors remains the same with smaller 

radius. Hence, it is still polarization independent when we applied voltage on the LC 

modulators. 

When the light traverses through the LC cell (with V=0), the total accumulated 

phases of the x component and y components are dnni oee ⋅+⋅⋅ )(κ  and dnni oee ⋅+⋅⋅ )(κ , 

respectively, where the placement of the indices has been ordered to reflect the sequence 

of materials traversed from top to bottom,κ is the wave vector in the vacuum, d is the cell 

gap of each layer, and en and on are the extraordinary and ordinary refractive indices of 

the LC.  The output electric field of the light becomes: 

With an applied voltage, the total accumulated phases of the x- and y- components 

become dni effe ⋅⋅⋅ ),( ψθκ  and 
dni effe

⋅+⋅⋅ )
2

,( ψπθκ
, respectively, where ),( ψθeffn  is the effective 

refractive index of the LC, and θ  and ψ  respectively represent the tilt angle and the twist 

angle of the LC directors.  

Therefore, the electric field of the outgoing light becomes: 
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From Eqs 477H(19) and 478H(20), the polarization of the output electric field remains the same at a 

given applied voltage. Therefore, our LC device is polarization-independent in all 

different voltage states. The phase change increases with increasing voltage. The total 

phase change between V=0 and a voltage V is: 

Similarly, we can use double-layered π-cell as shown in 479HFigure 19(c). The π cell 

means the rubbing directions of two alignment layers are parallel to each other. The 

response time of the double-layered π-cell is faster than that of a double-layered 

homogeneous cell because of the flow effect. However, it requires a non-zero bias 

voltage to turn the π-cell from splay to bend mode. Therefore, the phase change is greatly 

sacrificed compared to the phase change in a double-layered homogeneous cell. 

 

C. Single twist nematic (TN) cell as a phase modulator 

A single TN cell can also be used as a polarization independent phase modulator. 

The structure of a TN cell is plotted in 480HFigure 20(a). The main operation principle is 

waveguiding effect or polarization rotation effect481H

2,
482H

3,
483H

5. At 0 Vrms, the polarization of an 

incident light propagates in a TN cell along the direction of the twisted axis. This is not a 

phase modulation. The middle layer of LC directors is reoriented first with increasing 

voltage. When the applied voltage is slightly above the Freedericksz transition threshold, 

some bulk LC directors are reoriented along the electric field direction and several layers 

near the boundaries are anchored by the alignment layers, as shown in 484HFigure 20(b). As 

the voltage further increases, almost all the LC directors are along the electric field as 
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485HFigure 20(c) shows. By switching between the states depicted in 486HFigure 20(b) and 487HFigure 

20(c), the TN cell works as a phase modulator. Similar to the double-layered type phase 

modulator, the two orthogonal LC directors are separated by the vertically aligned bulk 

directors. Therefore, it is polarization independent.488H

52,
489H

53 The operation voltage of such a 

TN cell is low. However, the phase change is relatively small because the bulk LC 

directors make little contribution. This residual phase is not too sensitive to the cell gap. 
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Figure 20: A single TN cell as a polarization independent phase modulator. (a) The TN 
cell at (a) voltage-off state, (b) intermediate voltage state (V> Vth), and (c) High voltage 
state (V>> Vth).  

 

D. Others 

Another structure which also meets the spatial symmetric condition is cholesteric 

LC. For a cholesteric LC, the focal conic state is unavoidable. The property of 

polarization independence is destroyed once the twist properties are not perfect. 
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Moreover, the pitch of cholesteric LC has to be small in order to behave as a polarization 

independent phase modulator for a visible unpolarized light. Under such a circumstance, 

the whole cholesteric structure is unstable because the pitch is much smaller than the cell 

gap. 

2.4 Conclusion 

In this chapter, we introduce some basic and general principles to design a 

polarization independent LC amplitude modulator and a polarization independent LC 

phase modulator. Several examples are given in this chapter. In the following chapters, 

we focus on demonstrating polarization independent LC amplitude modulators and phase 

modulators in detail based on our design principles.  
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CHAPTER 3: POLARIZATION INDEPENDENT LIQUID CRYSTAL 
AMPLITUDE MODULATORS 

3.1 Polymer-dispersed liquid crystal in a 900 twisted cell (TPDLC) 

Polymer-dispersed liquid crystal (PDLC) which does not require a polarizer is a 

useful electro-optic material for displays490H

25-
491H

26, light switches492H

27-
493H

32, and tunable-focus lens 494H

33. 

For displays, the polarizer-free PDLC has a higher transmittance and wider viewing angle 

than the conventional twisted-nematic (TN) LCD. However, the LC molecules inside the 

droplets have many contact surfaces with polymer matrix, thus, the PDLC operating 

voltage is relatively high (~5 Vrms/µm). Reducing cell gap or polymer concentration 

would lower the operating voltage; however, the contrast ratio is reduced accordingly. It 

is important to develop a low voltage PDLC while maintaining high contrast ratio. 

In this section, we demonstrate a polymer-dispersed liquid crystal confined in a 

90o twisted cell (abbreviated as T-PDLC) which exhibits a higher contrast ratio than a 

conventional PDLC. Unlike the traditional PDLC cell, our polyimide-buffed substrates 

are rubbed in orthogonal directions, similar to a 90o twisted nematic cell. Due to surface 

pinning effect in a thin cell, the T-PDLC not only preserves the advantage of polarization 

independence but also exhibits a higher light scattering efficiency. 
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3.1.1 Sample Preparation 

We mixed UV-curable monomer NOA65 in a nematic LC host (E48, Δn=0.231 at 

λ=589 nm). The concentration of NOA65 is in the 15%–50% range. The LC/monomer 

mixture was injected into an empty 90° twisted cell in the isotropic state. The pretilt 

angle of the LC cell is ~3° and the cell gaps are d=6.5 and 8 μm. For comparison, a 

conventional PDLC cell, i.e., the indium-tin-oxide (ITO) glass substrates without 

alignment layer, was also prepared under the same conditions (d=8 μm). In our 

experiments, the UV exposure intensity is I=60 mW/cm2 and curing time for both cells is 

15 min at T=20 °C. 

3.1.2 Experimental Setup 

The electro-optic properties of the PDLC and T-PDLC cells were studied by 

measuring the transmittance of an unpolarized He–Ne laser beam (λ=633 nm) at normal 

incidence. The photodiode detector was placed at ~20 cm behind the sample; the 

corresponding collection angle is ±1°. The voltage dependent transmittance curves were 

recorded by the LabVIEW data acquisition system. The response time was measured 

using a digital phosphor oscilloscope. 

 



35

3.1.3 Morphologies 

495HFigure21 (a) and (b) show the morphologies of the 8μm PDLC and T-PDLC cells, 

respectively, observed from a polarized optical microscope in the voltage-off state. The 

polymer concentration (c) is 30% for both cells. From 496HFigure21 (a) and 1(b), we find that 

the liquid crystal droplets in the T-PDLC cell are smaller and more uniformly distributed 

than those in the PDLC cell. In the voltage-off state, these oriented droplets nearby the 

surface alignment layers enhance the light scattering efficiency because of the enlarged 

refractive index mismatch between the LC droplets and polymer matrix. Therefore, to 

achieve the same light scattering level the required T-PDLC layer is thinner than that of a 

PDLC. 

 

                                                (a)                                      (b) 

Figure21: Phase separation morphologies of (a) PDLC and (b) T-PDLC observed from a 
polarized optical microscope. NOA65:E48=30:70. Both devices have same cell gap d~8 
µm. The T-PDLC has a ~1.5X smaller and more uniform droplet size than PDLC 

 

The physical mechanism responsible for the observed smaller droplets and more 

uniform size distribution in T-PDLC, as shown in 497HFigure21 (b), is believed to originate 

from the surface pinning effect of the buffed polyimide surfaces.  The strong surface 

pinning energy prevents LC droplets from growing and aggregating with the surrounding 

droplets during phase separation process. As a result, T-PDLC exhibits a smaller droplet 
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and more uniform droplet distribution than PDLC under the same polymer concentration 

and UV exposure conditions. The better droplet uniformity helps to enhance light 

scattering efficiency when the droplet size is comparable to the wavelength.  In 

498HFigure21(b), the droplet size is ~2 µm. A 6-7 µm cell gap would contain roughly 3 

droplets in each cross-section.  

3.1.4 Electro-optical Properties 

To evaluate the contrast ratios of the T-PDLC and PDLC cells, we measured their 

voltage-dependent transmittance. To calibrate the substrate reflection losses, the 

transmittance of a homogeneous cell filled with E48 LC mixture is defined as unity. 

499HFigure22 compares the voltage dependent transmittance of an 8-μm PDLC (gray line) 

and a 6.5-μm T-PDLC (dark line) cells at the same polymer concentration (c=40%). The 

T-PDLC cell has a better dark state at V=0 and slightly higher transmittance in the 

voltage-on state than PDLC. Thus, T-PDLC exhibits a higher contrast ratio than the 

PDLC even though its cell gap is thinner than that of PDLC. To understand this 

phenomenon, we need to consider the surface alignment effect.  
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Figure22: The voltage-dependent transmittance of T-PDLC (dark line) and PDLC (gray 
line). LC/polymer mixture: NOA65:E48=40:60; λ=633 nm. 

 

In a T-PDLC, the LC molecules inside the droplets near the substrates present 

orthogonal orientation. In the bulk, the LC droplets are randomly distributed. Therefore, 

its light scattering behavior in the voltage-off state is also independent of polarization, 

similar to a PDLC. In the low voltage regime, the T-PDLC cell exhibits a better dark state 

than PDLC, as shown in 500HFigure22. The saturation voltage of both cells occurs at ~20 

Vrms. Thus, we compare the contrast ratio at V= 20Vrms, i.e. CR=T(V=20)/T(V=0). 

From 501HFigure22, T-PDLC exhibits a higher contrast ratio than PDLC. 

3.1.5 Concentration Effect 

In addition to surface alignment, polymer concentration also plays an important 

role in affecting the device contrast ratio. We have varied the polymer concentration from 

15% to 50%. In both T-PDLC and PDLC cells, the droplet size decreases as the polymer 

concentration increases. In the same polymer concentration, the droplet size of T-PDLC 

is roughly ~1.5X smaller than that of PDLC. Therefore, the optimal polymer 

concentration for maximizing light scattering (i.e. droplet size is comparable to the laser 

wavelength) for T-PDLC and PDLC is different. For T-PDLC, the optimal polymer 

concentration would be lower than that for PDLC.   

502HFigure 23 shows the polymer concentration dependent contrast ratio (measured at 

V=20 Vrms) for T-PDLC (triangles) and PDLC (circles). From 503HFigure 23, as the polymer 

concentration increases, the contrast ratios for both T-PDLC and PDLC cells increase 
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almost linearly but at different slopes. For the 6.5-µm T-PDLC, the optimal polymer 

concentration occurs at c~40% where the contrast ratio reaches ~35:1. At c=50%, the 

droplet size becomes much smaller than the He-Ne laser wavelength. Moreover, the 

influence of surface anchoring to these tiny droplets is no longer significant. As a result, 

the contrast ratio decreases sharply. On the other hand, for the 8-µm PDLC at c=50% its 

droplet size is still ~1.5X larger than that of T-PDLC so that the light scattering remains 

significant. Its optimal polymer concentration should occur at a higher level. Increasing 

cell gap would improve the contrast ratio for both T-PDLC and PDLC at the expense of 

increased voltage. Increasing curing temperature504H

34 is another option for improving 

contrast ratio. However, the response time becomes slower.  
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Figure 23: Polymer concentration effect on device contrast ratio. Triangles are for the 6.5 
μm T-PDLC cell and circles are for the 8 μm PDLC cell.  

3.1.6 Response Time 

The response time of the transmissive T-PDLC and PDLC cells was measured at 

room temperature using 20 Vrms square pulses. In general, the PDLC response time 

depends on the LC viscosity, droplet size and shape, and the ratio of the applied voltage 
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over threshold voltage.505H

35 For the 6.5-μm-thick T-PDLC cell (c=40%), the measured rise 

time (10-90%) is ~5 ms and decay time (90-10%) is ~10 ms. In contrast, the 40% PDLC 

has 7.6 ms rise time and 21 ms decay time. The faster response time of T-PDLC 

originates from its smaller droplet sizes. To further improve switching speed, we could 

reduce the droplet size by increasing the polymer concentration or use a lower viscosity 

LC. However, smaller droplet sizes require a higher operating voltage. Holographic 

PDLC is such an example.506H

28 

3.1.7 Reflective Mode TPDLC 

From 507HFigure22, the contrast ratio of the thin transmissive T-PDLC and PDLC 

cells is insufficient for display or light switch applications. To enhance contrast ratio, a 

thicker LC layer or reflective mode operation can be considered. A thicker PDLC layer 

would result in a higher operating voltage. For the interest of keeping operating voltage 

low, reflective mode is preferred. In a reflective device, the incident light traverses the 

LC layer twice so that its contrast ratio is increased by a quadratic function.508H

36 

509HFigure 24 depicts the voltage-dependent reflectance of the T-PDLC (solid line) 

and PDLC (dashed lines) cells with c= 40%. The cell gap for the T-PDLC and PDLC is 

6.5 μm and 8.0 μm, respectively. In principle, the reflector should be imbedded in the 

inner side of the cell in order to avoid parallax.510H

37 For proving concept, we simply placed a 

dielectric mirror behind the transmissive cell. To avoid overlapping, the reflected 

unpolarized He-Ne laser beam was deviated from the incident beam by ~4°. The 

collection angle of the photodiode detector remains at ±1°. The inlet in 511HFigure 24 shows 
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the magnified dark state reflectance. Apparently, T-PDLC exhibits a better dark state than 

PDLC, although its cell gap is thinner. At V~20 Vrms, the measured contrast ratio of the 

PDLC cell is ~250:1. For T-PDLC, the measured contrast ratio is ~900:1, which is not 

too far off from the square of 35:1 (the contrast ratio of the transmissive mode). Indeed, 

double pass significantly improves the device contrast ratio. 
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Figure 24: The voltage dependent reflectance of T-PDLC (solid line; d=6.5 µm) and 
PDLC (dashed lines; d=8 µm). The inlet shows the magnified scale for comparing the 
dark state. 

3.1.8 Reflective Dye-doped TPDLC 

The dark state of a light scattering-based display is translucent, rather than black. 

To realize a black and white display, we added a ~2 wt% black dye to the c=40% T-

PDLC cell. The cell gap is d~6.7 μm. The bottom ITO electrode was etched into a 

segmented number “8”. The T-PDLC cell preparation process remains the same. For 

demonstration purpose, we placed a piece of white paper behind the bottom substrate to 

serve as a diffusive reflector. 512HFigure 25 shows the displayed image at V=20 Vrms. The on-

state T-PDLC is highly transparent so that the reflected image appears white. Since the 



41

display does not require a polarizer, the viewing angle is wide and the display is bright 

under room light condition. The display contrast ratio was measured to be ~10:1, limited 

by the dichroic ratio of the employed dye molecules. The doped 2% dye molecules 

slightly increase the switching time. Further increasing the dye concentration would 

enhance the display contrast ratio at the tradeoffs of lower bright state reflectance and 

slower response time 

 

 

Figure 25: The displayed image using a dye-doped T-PDLC reflective display. Black dye 
concentration: 2%, LC/polymer mixture: NOA65:E48=40:60, d=6.7 µm, and V=20 Vrms. 
A white paper was placed behind the bottom substrate to act as a diffusive reflector. 

 

The contrast ratio of the dye-doped T-PDLC is still not good enough in 513HFigure 25. 

There are several reasons514H

4. First, it is the solubility problem which means some dyes are 

dissolved not only in liquid crystal host but also in the polymer matrix. The dyes 

dissolved in the polymer matrix affect the light scattering and also change the absorbance. 

Second, the order parameter of dye is not as good as liquid crystal molecules. Third, the 

dye concentration we used is low and its dichroic ratio is not high enough. To reduce the 

dye in the polymer matrix, we can instead use polymer network structure. 
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3.1.9 Conclusion 

In conclusion, the T-PDLC exhibits a more efficient light scattering than the 

conventional PDLC. The formed droplets are smaller and more uniform in T-PDLC 

because of the surface pinning effect in thin cells which will be discussed in next section. 

A reflective black and white display using 2% dye-doped T-PDLC shows a reasonably 

good contrast ratio. The required operating voltage is still too high to be used for active 

matrix display. To avoid image flickering for active matrix display, the employed LC 

mixture should have a high resistivity. 
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3.2 Surface Pinning Effect in Thin PDLCs 

The phase separation, which is an important process affecting the electro-optic 

properties of PDLCs, has been studied by computer simulations 515H

38-
516H

41 and by experiments 

517H

42-
518H

43. In a conventional PDLC, the formed droplets, each about the size of a visible 

wavelength, are randomly distributed in the polymer matrix. Typically, the LC and 

monomer mixture is sandwiched between two indium-tin-oxide (ITO) glasses without 

any surface treatments. After photo-induced phase separation, the droplets are formed 

and their sizes vary. Due to the relatively large cell gap and micron-sized LC droplets, 

phase separation dynamics do not depend on surface interaction. The phase separation 

dynamics determine the final composite morphology of PDLC. The more uniform LC 

droplets exhibit a higher light scattering efficiency and higher device contrast ratio 519H

4,
520H

11.  

Several  factors, such as the transition from isotropic to nematic ordering of the LCs, 

the solubility of the LC and monomer, the growing molecular weight and the gelation of 

polymer matrix and elastic forces in the polymer matrix 521H

4,
522H

44, compete with each other to 

determine the phase separation dynamics of PDLCs. In this paper, we demonstrate that 

the phase separation dynamics are influenced by the surface effect for a PDLC confined 

in a thin cell. The PDLCs with a strong surface anchoring exhibit smaller LC droplets and 

better uniformity because the anchoring force in the boundaries fixes the droplets and 

prevents them from flowing and coalescing.  

In this section, we demonstrate that the phase separation dynamics are influenced 

by the surface effect for a PDLC confined in a thin cell523H

12,
524H

46. The PDLCs with a strong 

surface anchoring exhibit smaller LC droplets and better uniformity because the 
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anchoring force in the boundaries fixes the droplets and prevents them from flowing and 

coalescing.  

3.2.1 Sample Preparation 

To fabricate a PDLC device, we mixed UV-curable monomer NOA65 in a 

nematic LC host (E48, Δn= 0.231 at λ=589 nm and T=22oC). We varied the polymer 

concentration from 20 to 40 wt%. However, the general phenomena remain the same 

except for the different droplet sizes. Thus, we focus our discussions using the PDLC 

with 30 wt% NOA65 as examples. The LC and monomer mixture was injected into an 

empty cell in the isotropic state. The cell gap is d=8 µm. For comparison, we prepared 

several types of cells with different surface treatments: 1) a conventional PDLC cell, i.e. 

the indium-tin-oxide (ITO) glass substrates without polyimide (PI) alignment layers, 2) a 

PI cell, i.e. an ITO glass cell with each inner surface overcoated with a thin (~10 nm) PI 

layer but without rubbing, 3) a 90o twisted nematic (TN) cell, i.e. the ITO glass substrates 

with orthogonal rubbing alignment layers, 4) a homogeneous cell, i.e. the ITO glass 

substrates with anti-parallel rubbing alignment layers, 5) a 45o twisted nematic (45o-TN) 

cell, i.e. the rubbing directions of the ITO glass substrates are at 45o, and 6) a single-sided 

rubbing cell, in which only one substrate was rubbed, the other had plain PI. In the TN 

and homogeneous cells, the polar anchoring energy of the buffed PI layers was measured 

to be ~3x10-4 J/m2 by the voltage-dependent phase retardation method 525H

45,
526H

47. The pretilt 

angle of these cells is about 3o. 
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3.2.2 Surface Pinning Effect 

527HFigure 26(a) to (f) show the morphologies of the abovementioned UV-cured 

PDLC cells observed from a polarized optical microscope in the voltage-off state. The 

UV exposure intensity was I=60 mW/cm2 and the curing time for both cells was 15 min 

at T=20 oC. From 528HFigure 26(a) and 529HFigure 26(b), we find that the LC droplets in the 

conventional and non-rubbed PI cells are larger and less uniform than those observed in 

530HFigure 26(d) for the 90o-TN cells, 531HFigure 26(e) for the 45o-TN cells and 532HFigure 26(f) for 

the homogeneous cells. That means the rubbed PI surfaces have a crucial influence on the 

phase separation of PDLC when the cell gap is thin. The smaller and more uniform LC 

droplets exhibit a higher light scattering efficiency which, in turn, leads to a higher device 

contrast ratio533H

11. The droplets are more uniform in the single-sided rubbing than in the 

conventional and non-rubbed PI cells. Besides, the single-sided rubbing has larger droplet 

sizes than the TN, 45o-TN and homogeneous cells.  For comparison, the morphologies of 

a weak-rubbing homogeneous cell (534HFigure 26(g); anchoring energy W~1x10-4 J/m2) and 

sputtered SiO2 alignment layers (535HFigure 26(h); W~8x10-5 J/m2) are also less uniform. 

   

(a)                                          (b)                                         (c) 
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(d)                                          (e)                                         (f) 

  

(g)                                          (h) 

Figure 26: Phase separation morphologies of PDLC in (a) conventional cell, (b) PI cell 
without rubbing, (c) single-side rubbing (d) 90o-TN cell (anchoring energy W~3x10-4 
J/m2), (e) 45o-TN cell (W~3x10-4 J/m2), (f) homogeneous cell (W~3x10-4 J/m2), (g) 
homogeneous cell (weak rubbing, W~1x10-4 J/m2), and (h) homogeneous cell with SiO2 
alignment layers (W~8x10-5 J/m2) observed from a polarized optical microscope. 
LC/monomer mixture: 70 wt% E48 and 30 wt% NOA65. All the devices have the same 
cell gap d~8 µm. 

 

3.2.3 Thermal-induced Phase Separation of PDLC 

To show that the phase separation dynamics indeed depend on the surface rubbing 

conditions, we observed the morphologies of the four PDLC cells from a polarized 

optical microscope in the voltage-off state before UV curing. Results are shown in 536HFigure 

27 (a)-(d). The cells were put on a heating stage and their temperatures were probed by a 

thermocouple. In 537HFigure 27 (a) and 538HFigure 27 (b), the LC droplets in the conventional 



47

substrates and in the PI cells start to appear at T~40 °C when the temperature was cooled 

from the clearing point ( cT =65 °C) of the LC/monomer mixture. In both figures, the LC 

droplets nucleate and grow at the beginning and then rapidly flow and coalesce due to the 

absence of the anchoring force (for the conventional cell) or a weak anchoring force (for 

the PI cell) in the ITO substrates during the cooling process. In 539HFigure 27 (c) and 540HFigure 

27 (d), the LC droplets confined in the TN and homogeneous cells begin to appear at 

T~38 oC when the temperature is cooled down slowly from cT =65 oC. The LC droplets 

continue to nucleate and grow but remain basically static during the cooling process. 

These “pinned” droplets move only slightly but barely coalesce with the surrounding 

droplets. This is because the strong anchoring forces from the boundaries prevent the LC 

droplets from flowing. As the temperature decreases, the sizes of the LC droplets in both 

of the rubbed cells are smaller and the size variation is less than those in the non-rubbed 

PI cells. The color difference between the low and high temperatures is due to the 

temperature-dependent LC birefringence541H

48. 

    

(a) 
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(b) 

   

(c) 

   

(d) 

Figure 27: The dynamic phase separation morphologies of PDLC observed from a 
polarized optical microscope under different temperatures without UV illumination: (a) 
conventional PDLC cell, (b) PI without rubbing, (c) TN cell, and (d) homogeneous cell. 

3.2.4 Dynamic Phase Separation of PDLC 

In 542HFigure 28 and 543HFigure 29, the cells were cooled to T=27oC and then illuminated 

by UV light at t=0. Meanwhile, the phase separation animations were simultaneously 

recorded on a digital camera (Olympus Camedia C-3040) connected to a polarized optical 
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microscope. In 544HFigure 28(a)-(b), we show the time-resolved morphologies in the 

conventional cell (without PI) and the PI cell without rubbing. The LC droplets exist at 

t=0 due to the thermal-induced phase separation even before UV exposure took place. 

The following nucleated LC droplets caused by the increased expulsion of LCs from the 

polymer matrix flow in the conventional and PI cells due to the weak or the lack of 

anchoring forces in the boundary substrates. When the nucleated and flowing LC droplets 

approach each other, they coalesce. As the polymerization reaction continues, gelation 

gradually occurs which resists the growth of the moving and nucleating LC droplets. The 

LC droplets are frozen by the polymer matrix when the polymer matrix reaches its 

gelation point. The morphologies remain basically unchanged after t=6 s for the 

conventional cell and after t=5 s for the PI cell without rubbing because the polymer 

matrix has either grown sufficiently in molecular weight or reached its gelation point, 

impeding further coalescence. The resultant morphology consists of LC droplets 

dispersed in the polymer matrix. The droplet size decreases with an increase in the  UV 

curing temperature or UV exposure intensity. The sizes of the LC droplets are not quite 

uniform due to first the flow and then the coalescence.  

The time-resolved morphologies in the TN and homogeneous cells are shown in 

545HFigure 29(a) and 546HFigure 29(b), respectively. The cells were also cooled to T=27oC and 

illuminated by UV light at t=0. At t=0, the morphologies shown in 547HFigure 29(a) and 

548HFigure 29(b) are different from those shown in 549HFigure 28(a) and 550HFigure 28(b). The LC 

droplets appear to be smaller in size and are uniformly dispersed at t=0 because they are 

anchored by the boundary anchoring force which prevents the droplets from moving and 

coalescing. As the photo-induced polymerization reaction goes on, the LC droplets are 
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frozen by the boundary anchoring force and by the polymer matrix which gradually 

reaches its gelation point. The LC droplets stop growing when the gelation point of the 

polymer matrix is reached. The morphologies which have better uniformity and smaller 

droplet sizes remain the same after 4 seconds in the TN and homogeneous cells.  

 

 

(a) 

 

 

(b) 
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Figure 28: The dynamic phase separation morphologies of PDLC at T=27oC with UV 
exposure starting at t=0: (a) conventional cell without PI, and (b) PI cell without rubbing. 
The UV intensity is I=60 mw/cm2.   

 

 

 

(a) 

  

(b) 

Figure 29: The dynamic phase separation morphologies of PDLC at T=27oC with UV 
exposure starting at t=0: (a) TN cell, and (b) homogeneous cell. The UV intensity is I=60 
mw/cm2 and cell gap d=8 µm. 

3.2.5 Cell Gap Effect 

551HFigure 30 shows the morphologies of homogeneous PDLC cells with various cell 

gaps at T=20oC, as observed from a polarized optical microscope. The larger cell gap 

shows a larger droplet size. This is because the strong boundary effect only influences the 

droplets nearby the surfaces. As the cell gap increases, the bulk droplets are not 

influenced by the surfaces. During the phase separation processes, the PDLC droplets in 
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the middle layers can still flow and result in larger droplets sizes as illustrated in 552HFigure 

31. Due to the pinning effect of the droplets near surfaces, the morphologies of the cell 

whose gap is <16 μm are still uniform. 

 

  

Figure 30: The morphologies of the homogeneous PDLC cells with various cell gaps at 
T=20oC observed from a polarized optical microscope. LC/monomer mixture: 70 wt% 
E48 and 30 wt% NOA65.  
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Figure 31: When the cell gap is larger, the surface anchoring effect is weaker to the bulk. 
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Figure 32: PDLC in orthogonal-rubbed thin cell is polarization independent. The cell gap 
is 6.5 μm.  

 

Similar to a conventional PDLC, the light scattering behavior of the thin TN 

PDLC cell is also independent of light polarization as shown in 553HFigure 32. In 554HFigure 32, 

the voltage dependent transmission in the thin TN PDLC cell remains the same when we 

rotate the polarizer at 0, 45 and 90 degrees. This is because the orthogonal surface 

alignments influence the LC orientation in the boundary PDLC layers. This phenomenon 

of the complementary birefringence colors of the cell is observed under polarized optical 

microscope when the polarizers are crossed. On the other hand, the PDLC in the thin 

(d=4 µm) homogeneous cell is dependent on the incident light polarization, as shown in 

555HFigure 33. As the cell gap increases, the surface effect to the bulk LC droplets is reduced 

due to the longer distance. Therefore, the bulk LC droplets are more randomly distributed 

and the light scattering behavior is less sensitive to polarization. Also included in 556HFigure 

33 is the voltage-dependent transmittance of a 16-μm homogeneous PDLC cell. Although 

the cell has the same anchoring energy as the thin cell, the bulk droplets are less ordered 
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in a thicker cell so that the overall light scattering behavior is less dependent on the 

incident light polarization. 

 

 

0

20

40

60

80

100

0 10 20 30 40 50
Voltage, Vrms

Tr
an

sm
itt

an
ce

,%

 

Figure 33: Voltage-dependent transmittance of the 16-μm (black solid and dashed lines) 
and 4-μm (gray solid and dashed lines) homogeneous PDLC cells. Solid lines: the input 
polarization is parallel to the cell rubbing direction. Dashed lines: the input polarization is 
perpendicular to the rubbing direction. λ=633 nm and T=22oC.  

3.2.6 Conclusion 

The surface pining effects on phase separation dynamics of PDLCs with thin cell 

gaps are demonstrated. Comparing various boundary conditions, the inner surfaces of the 

substrates with or without polyimide layers [but no rubbing] cannot provide enough 

anchoring force, so in either case the LC droplets flow and coalesce to form larger and 

less uniform droplets. However, if the inner surfaces of the substrates are coated with 

rubbed polyimide layers with anchoring energy >1x10-4 J/m2, almost all the nucleated LC 

droplets grow at a fixed position during phase separation. The appearance of the 
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coalescence is not obvious and the formed LC droplets are relatively uniform. The 

surface anchoring has a significant effect on the morphology of PDLCs. 
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3.3 Reflective Dye-doped Dual-frequency LC Gels 

The dye-doped T-PDLC presented in previous section has inadequate contrast 

ratio. To avoid that the dye dissolved into the polymer matrix, in this section we consider 

polymer network liquid crystals. Here, we demonstrate a new GH LCD using a dye-

doped DFLC gel to realize polarizer-free, fast response, and high contrast reflective 

display557H

13,
558H

14. This is a normally white display utilizing both light scattering and absorption 

effects. In the voltage-off state, the gel exhibits ~50% reflectance. At ~30 Vrms, a good 

black state is observed. The device contrast ratio as high as ~230:1 is obtained. The 

response time is ~5 ms.  

3.3.1 Operation Principle 

To improve response time and light scattering efficiency, our group has developed 

a polarization independent DFLC gel559H

49. The gel is also a light scattering device. Two 

important features of the DFLC gel are fast response time and high contrast ratio. This 

gel has been used for high speed photonic devices. But for displays, we need a good 

black state, high contrast ratio, and wide viewing angle.  

The light modulation mechanisms of the dye-doped DFLC gel can be 

schematically depicted in 560HFigure 34(a) to 561HFigure 34(c). At V=0, the cell does not scatter 

light and the absorption is rather weak because the dye molecules are aligned 

perpendicular to the substrates, as shown in 562HFigure 34(a). Therefore, the display has the 

highest reflectance. This is known as the normally-white mode. When the applied high-
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frequency (f >fc) voltage exceeds a threshold, the LC directors and dye molecules are 

tilted away from the electric field because the LC has a negative Δε. Under such a 

circumstance, the gel is switched into micron-sized domain structure. The titled direction 

is random because the substrates do not have any alignment treatment, as depicted in 

563HFigure 34(b). As a result, the reflectance is reduced due to light scattering of the gel and 

absorption of the dyes. As the applied voltage increases further, the liquid crystals and 

dye molecules are reoriented in the x-y plane, as shown in 564HFigure 34(c), so that light 

scattering and dye absorption efficiency reach their maxima and the display appears black 

and is polarization independent. 
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Figure 34: Schematic representation of the operating principle. (a) Voltage-off state, (b) 
voltage-on state, and (c) voltage-on state and V2> V1. The PI has no rubbing treatment. 
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3.3.2 Sample Preparation 

To fabricate DFLC gel, we first prepare a DFLC mixture consisting of some 

biphenyl esters and lateral difluoro tolanes. The formulated DFLC mixture has following 

physical properties: birefringence Δn=0.267 (at λ=633 nm. T=21oC), cross-over 

frequency fc=10 kHz, and dielectric anisotropy Δε= 7.72 at f= 1 kHz and Δε= -3.51 at f= 

50 kHz. We mixed the DFLC, a diacrylate monomer (bisphenol-A-dimethacrylate), and 

the dichroic dye S428 (Mitsui Chemicals Inc.) at 90:5:5 wt % ratios. The mixture was 

injected into an empty cell whose inner surfaces were coated with a thin indium-tin-oxide 

(ITO) electrode. The cell gap is d=5 µm. The filled cell was irradiated by a UV light 

(λ~365 nm, I~15 mW/cm2) at room temperature for 1 hour with a biased voltage ~40 

Vrms (f= 1 kHz). The formed chain-like polymer networks are along the electric field 

direction because the LC directors are aligned perpendicular to the glass substrates during 

the UV curing process, as shown in 565HFigure 34(a). 

3.3.3 Electro-optical Properties 

To measure the reflectance of the dye-doped DFLC gel, ideally we should use an 

unpolarized white light. The dye we employed appears black, but when dissolved in the 

gel system it appears dark red. Its cutoff wavelength was measured to be ~650 nm. That 

means it has some light leakage in the red spectral region. Therefore, we used a linearly 

polarized green diode laser (λ=532 nm) for characterizing the device performances. A 

dielectric mirror was put behind the cell so that the laser beam passed through the cell 

twice. A large area photodiode detector was placed at ~40 cm behind the sample which 
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corresponds to ~1.5o collection angle. A computer controlled LabVIEW data acquisition 

system was used for driving the sample and recording the light reflectance. 

566HFigure 35 plots the voltage-dependant reflectance of the dye-doped DFLC gel. 

The reflectance is normalized to that of a pure DFLC cell with the same cell gap. At f=1 

kHz, the applied voltage cannot reorient the dye-doped DFLC gel because the LC 

directors are in homeotropic structure and Δε is negative. At f=50 kHz, the reflectance 

remains higher than 50% in the low voltage regime and decreases gradually as V>Vth. 

For the 5-μm gel, Vth~7Vrms. At V=30 Vrms, the measured contrast ratio for the green 

laser beam is as high as 150:1. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30

Voltage,Vrms

R
ef

le
ct

an
ce P 1kHz
P 50kHz
C 1kHz
C 50KHz

 

Figure 35 Voltage-dependent reflectance of dye-doped DFLC gel. P and C’s polarizations 
of the incident light are orthogonal. 

 

To verify that the gel is indeed polarization independent, we rotated the cell by 

90o and repeated the voltage-dependant reflectance curves. Results are plotted in 567HFigure 

35, where P and C’s polarization of the incident light are orthogonal to the LC cell. From 

568HFigure 35, the P and C curves almost overlap each other. That means our dye-doped 

DFLC gel is polarization independent. The contrast ratio (CR) is defined as the ratio of 
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reflectance at V= 30 Vrms and 0. The CR is ~230 at f=50 kHz and the maximum 

reflectance is ~50%. 

For a scattering device, the contrast ratio is dependent on the distance of the 

detector from the sample, as shown in 569HFigure 36. In a handheld reflective display, a 

comfortable viewing distance is about 20-25 cm. To mimic this condition, we shortened 

the detecting distance from 40 to 20 cm and the measured contrast ratio is still 120:1. 

This result indicates that our gel has a very strong scattering property. The scattered light 

diverges quite fast. 
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Figure 36: Contrast ratio as a function of detector’s distance from sample. 

 

In our sample, the dark state voltage is still high (~30Vrms) and it can be reduced 

by using a higher Δε DFLC material, thinner cell gap, or lower monomer concentration. 

The contrast ratio can be further improved by increasing the cell gap, monomer 

concentration, or dye concentration. However, increasing dye concentration would reduce 

display reflectance and lead to a slower response time, increasing polymer concentration 

would cause a higher operating voltage, and increasing cell gap would increase the 

operating voltage, reduce the voltage-off state reflectance, and lengthen the response time. 
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570HFigure 37 shows the voltage-dependant reflectance of a 5-μm and 8-μm cells. In 

both cells, the LC host and dye and polymer concentrations are kept the same. As the cell 

gap increases from 5 to 8 μm, the bright-state reflectance decreases from 52% to 28% 

when a high-frequency voltage is applied. Although the contrast ratio is improved, the 

bright state reflectance is greatly sacrificed. Thus, this approach is not worth taking. 
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Figure 37: Voltage-dependent reflectance of dye-doped DFLC gel with different cell gaps. 
Dye and polymer concentrations are kept at 5 wt %. 

3.3.4 Reflectance Spectra 

571HFigure 38 shows the reflectance spectra of dye-doped DFLC gel at 0 (black line) 

and 20Vrms at f =50 kHz (gray line). The light source we used is standard white light 

source (Mikropack, DH-2000, UV-VIS-NIR). We used an iris and a lens to collimate the 

white light and expand the beam diameter to ~ 4mm. A dielectric mirror was placed 

behind the LC cell for reflective mode measurement. The output beam was collected by a 

lens to a fiber-optics based universal serial bus (USB) spectrometer (resolution=0.04 nm; 

USB HR2000, Ocean Optics). The baseline we used for calibration was a pure LC cell 
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with the same cell gap. In 572HFigure 38, at V=0 the reflectance of the dye-doped DFLC gel is 

~50% between 450 and 550 nm. Beyond 550 nm, the reflectance increases because our 

dye-doped DFLC gel looks reddish, rather than black. 
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Figure 38: Reflectance spectrum of dye-doped DFLC gel at 0 Vrms (black line) and at 
20Vrms (50 kHz) (gray line).  

3.3.5 Response Time 

Response time is another important issue for guest-host displays. The dye 

molecules are usually bulky and have a large viscosity. Moreover, guest-host displays do 

not use any polarizer so that their governing response time equations are different from 

those with polarizers. As a result, a typical response time of a guest-host display is 

around 50 ms. Detailed values depend on the dye concentration and cell gap.  

The response time of our dye-doped DFLC gel is fast. 573HFigure 39 shows the 

measured response times of the 5-μm gel. If we switch the applied voltage from 0 to 30 

Vrms at 50 kHz frequencies, the rise time is 1 ms and decay time is 10 ms. If we fix the 
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voltage at 30 Vrms while switching the frequency between 1 kHz and 50 kHz, the rise 

time is reduced to ~0.55 ms and decay time to ~5.78 ms, as shown in 574HFigure 39(a) and 

575HFigure 39(b). Fast response time is a key feature of the DFLC materials.  
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(b) 

Figure 39: Measured response time of a 5-μm dye-doped DFLC gel at V= 30Vrms. The 
upper traces show the dual-frequency (50 kHz and 1 kHz) addressing and lower traces 
show the corresponding optical signals. (a) Rise time=0.55 ms and (b) decay time= 5.78 
ms. λ=532 nm. 
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3.3.6 Reflective Direct-View Displays Using a Dye-doped LC Gel 

576HFigure 40(a) shows a single pixel of the 5-μm dye-doped DFLC reflective display 

at 0 Vrms and 30 Vrms (50 kHz). It shows good bright and dark states. To prove principle, 

we fabricated a segmented reflective display using the dye-doped DFLC gel. 577HFigure 40(b) 

shows a sample using a 7-μm dye-doped DFLC gel. To avoid specular reflection, we 

laminated a diffusive reflector on the backside of the bottom glass substrate in order to 

widen the viewing angle. The bright segments represent the areas without ITO electrodes. 

Since no voltage was applied, these segments appear white. The dark areas represent the 

ITO electrodes with V=30 Vrms at f=50 kHz.  

 

   

(a) 

 

(b) 

Figure 40: (a) Single pixel of the 5-μm dye-doped DFLC reflective display at V=0 and 30 
Vrms (50 kHz). (b) A device of the dye-doped DFLC reflective display. A diffusive 
reflector is laminated to the back of the bottom glass substrate. In the white segments, the 
ITO electrodes were etched away so that V=0. Cell gap=7 μm. 
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3.3.7 Discussion and Conclusion 

The dye-doped DFLC gel exhibits a good contrast ratio due to strong scattering 

and dye absorption. The reflectance (R) can be expressed as  

where α  is the average absorption coefficient, β  is the scattering coefficient, c is the 

dye concentration (~0.05), d is the cell gap (~5 μm), and 1N  and 2N  are the scale 

numbers because of the multiple scattering and absorption. In Eq. 578H(22), α  is equal to 

//α  or ⊥α  which stand for the absorption coefficients when the incident light 

polarization is parallel or perpendicular to the principal molecular axis of the dye 

molecules. At V=0, the dye absorption ( ⊥α ) dominates and the gel’s scattering is 

negligible. In a high voltage state at a high frequency, α can be expressed as: 

because all the dye molecules are randomly oriented along the x-y plane. In dye-doped 

PDLC, droplets are randomly dispersed in 3-dimensional space. So α  is: 

By comparing Eq. 579H(23) with Eq. 580H(24), our dye-doped DFLC gel has a larger 

average absorption coefficient than the dye-doped PDLC. Due to the multi-domain 

structure and the random LC arrangement along the x-y plane, the gel’s scattering 

efficiency is maximized and independent of polarization. In addition, the dark state 

 21 NdcNd eeR ⋅⋅⋅−⋅⋅−= αβ , (22) 

 
2

// ⊥+
=

ααα , (23) 

 
3
2// ⊥+

=
ααα , (24) 
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reflectance is minimized owing to the multiple light scattering in conjunction with dye 

absorption. 

We have demonstrated a polarizer-free, high contrast, and fast response new 

reflective GH LCD using a dye-doped DFLC gel. The fabrication process is relatively 

simple as compared to the double cell GH LCD. The reflectance reaches ~50% and the 

contrast >100:1. The response times are fast (0.55 ms rise and 5.8 ms decay) when using 

the dual-frequency addressing method. Since it does not require any polarizer, the 

viewing angle is wide. This new reflective GH LCD is attractive for handheld displays. 

To make color displays, pixilated color filters should be implemented. 
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3.4 Reflective Dye-doped Negative LC (NLC) gels  

We have demonstrated a polarizer-free reflective dye-doped DFLC gel. The 

contrast ratio is high, but the driving voltage (~30 Vrms) is also higher than what TFT can 

afford. In order to effectively reduce the driving voltage, we need DFLC materials with a 

higher dielectric anisotropy at high frequency. However, it is difficult to obtain such 

materials, especially in TFT grade. In this part, we further reduce the driving voltage of 

GH LCD using a negative Δε liquid crystal (NLC) gel581H

15. The normally white dye-doped 

NLC gel exhibit ~52% reflectance, ~200:1 contrast ratios, ~5 ms response time, and ~20 

Vrms driving voltage. The black and white segmented reflective displays using such LC 

gels are also demonstrated.  

3.4.1 Structure and Mechanism 

The operating mechanism of the dye-doped NLC gel is similar to that of dye-

doped DFLC gel. The structure and light modulation mechanisms of the dye-doped NLC 

gel are schematically depicted in 582HFigure 41(a) and 583HFigure 41(b). At V=0, the cell does not 

scatter light and the absorption is rather weak. Therefore, the display has the highest 

reflectance. When we apply a high voltage at f= 1 kHz in the dye-doped NLC gel, the 

liquid crystals and dye molecules are reoriented in the x-y plane, as 584HFigure 41(b) depicts. 

The polymer network scatters light strongly. Since the alignment layer has no rubbing 

treatment, the absorption has no preferred direction; therefore, the light scattering and dye 

absorption efficiency reaches their maxima. As a result, the display appears black. 
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Figure 41: Operating principle of the dye-doped DFLC gel and dye-doped negative LC 
gel. (a) Voltage-off state, and (b) voltage-on state. The PI has no rubbing treatment.  

 

3.4.2 Sample Preparation 

For comparison purpose, two types of LC gels were fabricated: 1) DFLC and 2) 

negative Δε LC (NLC). Our DFLC mixture has following physical properties: 

birefringence Δn=0.267 (at λ=633 nm, T=21oC), crossover frequency fc=10 kHz, and 

dielectric anisotropy Δε= 7.72 at f= 1 kHz and Δε= -3.51 at f= 50 kHz. The NLC we 

employed is ZLI-4788 (Merck, Δn=0.1647 at λ=589 nm; Δε= -5.7 at f= 1 kHz). We 

prepared two LC cells: one is dye-doped DFLC cell, and the other is dye-doped negative 

LC cell. We mixed the DFLC (or ZLI-4788) and a diacrylate monomer (bisphenol-A-

dimethacrylate) with a dichroic dye S428 (Mitsui, Japan) at 90:5:5 wt % ratios. The dye-
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doped DFLC mixture (or the dye-doped NLC mixture) was then injected into an empty 

cell whose inner surfaces were coated with a thin indium-tin-oxide (ITO) electrode and 

polyimide (PI) layer without rubbing treatment. The PI layer provides vertical alignment 

for the LC molecules. The cell gap was 5 µm. The filled cell was irradiated by a UV light 

(λ~365 nm, I~15 mW/cm2). Both cells were cured at 13oC for 2 hr. After photo-

polymerization, the formed chain-like polymer networks are along the z direction because 

the LC directors are aligned perpendicular to the glass substrates during the UV curing 

process, as 585HFigure 41(a) shows.  

3.4.3 Electro-optical Properties 

Because the guest-host system we employed appears dark red rather than black, 

we used a linearly polarized green diode laser (λ=532 nm) instead of a white light source 

for characterizing the device performances. A dielectric mirror was placed behind the cell 

so that the laser beam passed through the cell twice. A large area photodiode detector was 

placed at ~25 cm (the normal distance for viewing a mobile display) behind the sample 

which corresponds to ~2o collection angle. A computer controlled LabVIEW data 

acquisition system was used for driving the sample and recording the light reflectance.  

586HFigure 42 plots the voltage-dependant reflectance of the dye-doped DFLC gel at 

f=50 kHz (gray line) and dye-doped NLC gel f=1 kHz (solid black line). These curves are 

independent of laser polarization. The reflectance is normalized to that of a pure DFLC 

cell or pure negative LC cell with the same cell gaps. The maximum reflectance is ~52% 

in the low voltage regime and decreases gradually as V>Vth because the employed LC 
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has a negative Δε and LC directors are in homeotropic structure at V=0. At V=30 Vrms, 

the measured contrast ratio of the dye-doped DFLC cell is as high as 190:1 at f=50 kHz. 

As to dye-doped NLC gel, it reaches the same contrast at 20 Vrms at f=1 kHz.  
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Figure 42: The voltage-dependent reflectance of the dye-doped DFLC gel at f=50 kHz 
(gray line), and the dye-doped NLC gel at f=1 kHz (black line). λ=532 nm.  

 

3.4.4 Response Time 

Response time is another important issue for guest-host displays. A typical 

response time of a guest-host display is around 50 ms. The response time of our dye-

doped DFLC gel and dye-doped NLC gel is fast as shown in 587HFigure 43 and 588HFigure 44. If 

we fix the voltage at 30 Vrms while switching the frequency between 1 kHz and 50 kHz in 

the dye-doped DFLC gel, the rise time is ~0.93 ms and decay time is ~0.47 ms. For the 

dye-doped NLC gel, the rise time is 1.03 ms and decay time is 4.54 ms when the applied 

voltage is from 0 to 20 Vrms at f=1 kHz. 
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Figure 43: Response time of the dye-doped DFLC gel.  
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Figure 44: Response time of the dye-doped negative Δε LC gel.  
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3.4.5 Reflective Dye-doped NLC gels 

To prove principle, we also fabricated a segmented reflective display using the dye-

doped NLC gel. To avoid specular reflection, we laminated a diffusive reflector on the 

backside of the bottom glass substrate in order to widen the viewing angle. The ambient 

white light was used to illuminate the samples. 589HFigure 45 show the displays using a 4-μm 

dye-doped NLC gel. The bright segments represent the state of V=0. The dark areas 

represent the ITO electrodes with V=20 Vrms at f=1 kHz in dye-doped NLC gel. 

 

Figure 45: Displayed images using a reflective dye-doped NLC gel. 

 

This dye-doped LC gel can also be used for polarizer-free transflective display as 

well. To match the electro-optic properties, the double cell gap approach should be 

implemented. The concept is shown in 590HFigure 46. Since no polarizer is needed, the 

display should exhibit high optical efficiency and wide viewing angle. To lower the 

driving voltage, a high birefringence and high Δε negative LC and slightly lower polymer 

concentration could be considered. 
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Figure 46: The concept of a polarizer-free transflective GH LCD using dye-doped LC 
gels. 

3.4.6 Conclusion 

We have demonstrated two high-contrast and polarization- independent reflective 

guest-host LCDs using dye-doped DFLC gel and dye-doped negative Δε LC gel. The 

fabrication process is simple compared to the doubled layer GH LCDs. The response time 

is fast in dye-doped DFLC gel, but the driving voltage is high. Besides, DFLC has 

dielectric heating effect and usually the Δε is small. The dye-doped negative LC gel is a 

more practical way for applications. The driving voltage is low in dye-doped negative LC 

gel; however, the tradeoff is the slightly slower response time. Since no polarizer is 

needed, the viewing angle is wide and the brightness is high in both cells. The new 

designs of polarizer-free guest-host LCDs are useful in electronic paper application and 

also have potential to be used in polarizer-free transflective LCD using double cell gaps. 
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CHAPTER 4: POLARIZATION INDEPENDENT LIQUID CRYSTAL 
PHASE MODULATORS 

4.1 Introduction 

Phase-only modulation can be used for tunable grating, prism, lens, and other 

photonic devices. Homogeneous alignment of liquid crystals (LCs) is commonly used for 

phase-only modulation,591H

50 although twisted nematic LC cells also exhibit such capability 

in the low voltage regime. 592H

51 For phase modulation using a homogeneous cell, the 

polarization axis (z-axis) of the input linearly polarized light (x-axis) is parallel to the LC 

directors. As the voltage exceeds a threshold, the LC directors are reoriented in the z-x 

plane. The phase change of the outgoing light varies with voltage as: 

λπ /])([2 oe nVnd −=Δ ; where d is the cell gap,  oen , is the refractive index of the 

extraordinary (or ordinary) ray, and λ is the wavelength. The major advantage of such a 

homogeneous cell is that a large phase change can be obtained with a relatively low 

voltage. However, the homogeneous cell is polarization dependent and its response time, 

which depends on d2, is typically ~10 ms for a 5 μm cell gap using a high birefringence 

LC operated at 70 oC.593H

54 

 To achieve polarization-independent phase-only modulation and fast response 

time, nanosized polymer-dispersed liquid crystal (nano-PDLC) droplets have been 

explored.594H

30,
595H

31,
596H

33,
597H

55-
598H

57 In a nano-PDLC system, the LC droplets dispersed in the polymer 
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matrix are randomly oriented. Since the LC droplet size is smaller than a visible 

wavelength, the light scattering is almost completely suppressed and the nano-PDLC acts 

as a phase retarder in the voltage-off state. As the voltage increases, the LC directors 

within the droplets are reoriented along the electric field direction and, therefore, induce a 

phase shift. Because of the small LC concentration (~35%) and random droplets 

distribution, the available phase change is fairly small. Despite this small phase change, 

nano-PDLC has potential applications for phase gratings, micro-prisms, microlens arrays, 

color filters, and color displays. A critical issue of the nano-PDLC is high operating 

voltage (~10 V/μm). For a 20 μm cell gap, the required voltage is ~200 Vrms.  

Unlike nano-PDLC, the conventional PDLC599H

26 has a larger droplet size (~1 μm) 

and higher LC concentration (~70%). As a result, PDLC exhibits a lower saturation 

voltage (~2-3 V/μm) than nano-PDLC. However, in the voltage-off state, PDLC strongly 

scatters visible light because its droplet size is comparable to the wavelength and its 

average refractive index mismatches with that of polymer matrix. The phase modulation 

property of PDLC has been investigated previously.600H

29 It was found that phase shift 

coexists with light scattering, but depends on the incident light polarization and incident 

angle. For the normally incident light, PDLC does not possess any phase change when 

the applied voltage is below the saturation voltage (Vsat).  

4.2 Polarization Independent LC Phase Modulators Using PDLC 

In this part, we find that the phase-only modulation using PDLC for the normally 

incident light exists in the high voltage region (V>Vsat). Moreover, such a phase shift is 

polarization independent and has fast response time. Although the remaining phase 
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change is not too large, it is still sufficient for making micro-devices, such as 

microprisms and microlens. For feasibility demonstration, we fabricate a two-

dimensional tunable-focus microlens arrays using PDLC. In comparison to nano-PDLC, 

PDLC has a lower operating voltage.  

4.2.1 Mechanism 

601HFigure 47 illustrates the phase modulation mechanism of a PDLC. In 602HFigure 47(a), 

the LC droplets (or domains) are randomly dispersed in polymer matrix. Because of the 

refractive index mismatch, light scattering is strong. As the applied voltage increases, the 

LC directors are reoriented along the electric field direction. As a result, PDLC becomes 

transparent, as shown in 603HFigure 47(b). If the voltage is increased further, more LCs in the 

droplet cavities are reoriented by the electric field, as shown in 604HFigure 47(c). From 605HFigure 

47(b) to 606HFigure 47(c), phase-only modulation is still available and is independent of 

polarization for the normally incident light.  
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(b) 

V2V2

 

(c) 

Figure 47: LC droplet orientations in a PDLC film at (a) V=0, (b) V1, and (c) V2>V1. 

4.2.2 Sample Preparation 

To prepare a PDLC cell, we mixed nematic LC E48 (no=1.523, Δn=0.231) with a 

UV-curable monomer NOA65 (refractive index np=1.524) at 84:16 wt % ratios. Here, we 

intentionally used a higher LC concentration in order to obtain a larger phase change at a 

lower voltage. The conventional PDLC with ~65:35 LC/monomer ratios would work 

equally well but the required voltage is higher. The LC/monomer mixture was injected 

into an empty cell whose inner surfaces were coated with a thin indium-tin-oxide (ITO) 

electrode. The cell gap was measured to be d=22 µm. The filled cell was then exposed to 

UV light (λ~365 nm, I~15 mW/cm2) at room temperature for 30 min to induce phase 

separation.  

We observed the phase separation morphology of the PDLC sample using a 

polarized optical microscope. The formed morphology indicates that the LC dispersed in 

polymer matrix exists as domains separated by polymer networks rather than isolated LC 
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droplets. This kind of morphology is common for the PDLC system having a high LC 

concentration.607H

4 

4.2.3 Experimental Setup 

Next, we measured the transmittance of the PDLC cell using a He-Ne laser 

(λ=633 nm) beam. A large area photodiode detector was placed at ~30 cm behind the 

sample which corresponds to ~2o collection angle. A computer controlled LabVIEW data 

acquisition system was used for driving the sample and recording the light transmittance.  

4.2.4 Electro-optical Properties 

608HFigure 48 plots the measured voltage-dependent transmittance of the PDLC 

sample. At V=0, the PDLC sample is translucent so that the transmittance is low. As the 

voltage increases, the transmittance increases. From 609HFigure 48, the measured contrast 

ratio is ~9:1, which is lower than a typical PDLC because of the larger domain size which 

originates from the higher LC concentration. When the applied voltage exceeds 26 Vrms, 

the transmittance remains basically unchanged. We define this voltage as saturation 

voltage (Vsat). At V>Vsat, the PDLC cell remains highly transparent. For each cell, the 

saturation voltage could vary because it depends on the cell gap, LC material, and 

monomer concentration. 
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Figure 48: Voltage-dependent transmittance of a PDLC film. λ=633 nm and cell gap 
d=22 μm. 

4.2.5 Phase Shift  

To measure the phase shift of residual phase type polarization independent LC 

phase modulator, we can put the LC cell between two polarizers. By measuring the 

transmittance under parallel and crossed polarizers, the phase change can be calculated 

from Eq. 610H(25) as:  

where T⊥ and T// represent the transmittance at the crossed- and parallel-polarizer 

configurations, respectively. 

To examine whether the PDLC film exhibit a phase-only modulation capability in 

the high voltage regime, we measured its transmittance at λ=633 nm between parallel and 

crossed polarizers. Results are shown in 611HFigure 49. The transmittance increases for the 

parallel polarizer configuration, while decreases gradually for the crossed polarizers in 

 //
1 /tan2 TT⊥

−=δ , (25) 
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the V>Vsat region. These results imply that PDLC can produce phase-only modulation 

when the applied voltage is higher than the saturation voltage. Moreover, rotating the 

sample does not affect the measurement results shown in 612HFigure 49. This indicates that 

the phase-only modulation is independent of the incident light polarization. In the high 

voltage state, the LC directors are basically perpendicular to the substrates, similar to a 

homeotropic cell. The input linearly polarized light always sees the ordinary refractive 

index, regardless of its polarization axis. Thus, the phase modulation is independent of 

the incident light polarization.  
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Figure 49: Voltage-dependent transmittance of a PDLC cell between parallel (right 
ordinate) and crossed (left ordinate) polarizers. f=1 kHz, λ=633 nm, and cell gap d=22 
μm. 

From 613HFigure 49, the saturation voltage of the PDLC sample is ~1.2 V/µm, which 

is ~10X lower than that of a nano-PDLC. The phase change (δ) of the PDLC sample can 

be calculated using the Eq.614H(25).  

615HFigure 50 plots the measured voltage-dependent phase change of the PDLC cell. 

From 26 to 60 Vrms, δ decreases gradually because the LC directors inside the droplets 

continue to be reoriented by the electric field, as schematically shown in 616HFigure 47(c). 
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Although the phase change is small, it is still sufficient for making microlens arrays. To 

increase the phase difference, several approaches can be implemented, for instance, to 

use a high birefringence LC material, increase LC cell gap, or enhance LC concentration.  
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Figure 50: Measured phase shift of the PDLC cell at different voltages. Cell gap d=22µm. 

4.2.6 Response Time 

Response time is a very important parameter for almost every LC device. We 

measured the PDLC response time using a square voltage burst at f=1 kHz between 26 

and 55 Vrms. The measured rise time is ~0.8 ms and decay time ~1.9 ms at room 

temperature. Such a fast response time results from the high bias voltage effect.  

4.2.7 Application: Microlens Arrays using PDLC 

To demonstrate the usefulness of the observed phase change, we fabricated a 2D 

microlens arrays using the PDLC as electro-optic medium. We first used a lamination 
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method to prepare polymer microlens arrays.617H

59 The polymer material used is NOA65 

(np=1.524). The thickness and diameter of the formed microlens is ∼50 μm and 450 μm, 

respectively. Afterwards, we filled the polymer microlens array cavities with the 

NOA65/E48 mixture. The cell was then sealed with a top ITO-glass substrate. Finally, we 

cured the sealed cell using a UV light. The UV curing condition is the same as mentioned 

above. 

618HFigure 51(a) and 619HFigure 51(b) show the patterned polymer microlens arrays 

before and after filling the PDLC material. These two photos were taken under a 

polarized optical microscope. From 620HFigure 51(a), each circular ring corresponds to a 

concave lens of ∼450 µm diameter and lens pitch ~20 µm. In 621HFigure 51(b), the filled 

circular region is translucent due to light scattering. 

To characterize the focusing properties of the microlens, we illuminated the lens 

arrays with a collimated unpolarized He-Ne laser beam. The transmitted light was 

detected by a CCD camera. 622HFigure 52 shows the images of the focused spots produced by 

the microlens arrays at different voltages. At V=0, the focusing effect is obscured 

because of strong light scattering. At V=70 Vrms, the focal spots appear but not very 

sharp. At V=140 Vrms, the focus is at image plane. Thus, the light intensity increases 

noticeably. This result means that the patterned microlens arrays have a tunable focal 

length in the high voltage regime. If we increase the voltage from 70 to 180 Vrms, the 

focal length is tuned continuously from ~8 cm to ~12 cm. In principle, if the LC and 

polymer have a similar ordinary refractive index, the focal length of the polymer/PDLC 

microlens should reach infinity in the high voltage regime. The focal length of a 

microlens is dependent on the lens radius, LC birefringence, and lens thickness. If we 
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want to reduce the focal length, we could reduce the lens diameter, use a higher 

birefringence LC, or increase the lens thickness. 

 

Figure 51: Microscope photos of (a) concave polymer microlens arrays, and (b) 
polymer/PDLC microlens arrays. 

 

 

Figure 52: Measured CCD images of the 2D microlens arrays at different voltages: (a) 
V=0, (b) V=70 Vrms, and (c) V=140 Vrms. 

4.2.8 Discussion and Conclusion 

In comparison with other tunable LC phase modulators, PDLC exhibits a 

relatively small phase change. This is because the phase phenomenon only exists in the 

high voltage regime where the LC orientation is close to the saturation level. However, 

the phase modulation using PDLC is polarization independent, scattering-free, and has 
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fast response time. The operating voltage is lower than that of nano-PDLC system. 

Although the tunable phase shift is small, it is still sufficient for some micro-devices. 

In conclusion, we have demonstrated the phase modulation capability using a 

PDLC film which only exists in the high voltage regime. Such a phase modulation is 

scattering-free, polarization independent, and has fast response time. Although the phase 

change is small, it is still sufficient for making tunable-focus microlens arrays. 
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4.3 Polarization Independent LC Phase Modulators Using Polymer Stabilized 
Cholesteric Textures (PSCT) 

In this part, we find another polarization-independent phase modulation 

mechanism using a polymer-stabilized cholesteric texture (PSCT) 623H

19. PSCT has been 

studied for display and privacy window applications for more than a decade.624H

60,
625H

5 Both 

normal-mode 626H

61 and reversed-mode627H

36,
628H

62-
629H

65 PSCT devices have been developed. Usually a 

normal-mode PSCT is operated at a voltage below the saturation voltage where the 

maximum transmittance is first reached. In this paper, we find a small phase modulation 

is available in the V> sV region. Moreover, this phase change is polarization-independent, 

hysterisis-free, and has sub-millisecond response time. To demonstrate the usefulness of 

this polarization-independent phase modulation, we fabricated a microlens arrays based 

on the abovementioned PSCT. The focal length is tunable from 3.5 cm to 5 cm when the 

voltage is switched from 180 to 80 Vrms.  

4.3.1 Mechanism 

630HFigure 53 illustrates the operation mechanism of a normal-mode PSCT. To 

achieve a normal-mode operation, the LC cell was illuminated by an UV light in the 

homeotropic state with the presence of a bias voltage (40 Vrms). When the polymerization 

process is completed, the applied voltage is removed and then the focal conic texture is 

formed owning to the competition between the intrinsic spiral structure and the polymer 

constraint, as shown in 631HFigure 53(a). In this state, the cell is translucent because of strong 
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light scattering originated from the poly-domain focal conic structures. As the voltage 

reaches the saturation voltage, the electric field unwinds and transforms the spiral LC 

structures into a nearly homeotropic state. Under such a circumstance, the PSCT cell is 

transparent, as shown in 632HFigure 53(b). As the voltage exceeds Vs, more LC directors are 

aligned vertically, as shown in 633HFigure 53(c). Although the phase change between 634HFigure 

53(b) and 635HFigure 53(c) is small, it is scattering-free, polarization independent, hysterisis-

free and has a fast response time.  

                                               

ITO
Liquid crystal

Polymer network
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(a) 
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V2V2V2V2

 

(c) 

Figure 53:The operation mechanism of PSCT at (a) V=0, (b) V1~ Vs, and (c) V2>V1. The 
residual phase between (b) and (c) can be used for phase modulator. 
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4.3.2 Sample Preparation 

To prepare a normal-mode PSCT cell, we mixed nematic LC E44 (Δn=0.26, 

Merck), CB15 (a chiral agent), and a diacrylate monomer (bisphenol-A-dimethacrylate) 

at 90.25: 5.75: 4 wt % ratios. The mixture was injected into an empty cell whose inner 

surfaces were coated with a thin indium-tin-oxide (ITO) electrode only. The cell gap was 

controlled at d=25 µm. During UV exposure, the filled cell was biased at V=40 Vrms (1 

kHz sinusoidal waves) so that the LC directors and monomer were reoriented nearly 

perpendicular to the substrates. The UV (λ~365 nm) intensity was controlled at I~15 

mW/cm2 and exposure time was 1 hr. The UV curing process took place at room 

temperature (T~23oC).  

4.3.3 Electro-optical Properties 

In experiment, we measured the transmittance of the PSCT cell using an 

unpolarized He-Ne laser (λ=633 nm) beam. No polarizer was used. A large-area 

photodiode detector was placed at ~30 cm behind the sample, which corresponds to ~2o 

collection angle. A computer-controlled LabVIEW data acquisition system was used for 

driving the sample and recording the light transmittance. 636HFigure 54 plots the voltage-

dependant transmittance of the normal-mode PSCT. The PSCT shows a severe hysterisis 

effect when the voltage is ramped up (black line) and down (dotted line). In the low 

voltage regime, the PSCT scatters light strongly so that the transmittance is low and the 

sample appears translucent. As the voltage reaches the saturation voltage Vs~40 Vrms, the 

PSCT cell becomes highly transparent. In general, the saturation voltage is determined by 
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the chiral dopant and monomer concentration, LC material, and cell gap. As shown in 

637HFigure 54, the hysterisis is negligible when V≥Vs. 
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Figure 54:The voltage-dependant transmittance of a PSCT cell with increasing voltage 
(black line) and decreasing voltage (dotted line). 

4.3.4 Response Time 

Next, we measured the response time of our PSCT phase modulator by using a 

square-wave voltage burst at f=10 kHz between 40 and 160 Vrms. The measured rise time 

is ~75 μs and decay time ~793 μs. The very fast rise time originates from the high 

operating voltage (160 Vrms) and the sub-millisecond decay time from the relatively high 

bias voltage (40 Vrms) and the twist power of the chiral dopant and the polymer network. 

4.3.5 Phase Change 

To characterize the phase change of PSCT, we measured the transmittance of the 

PSCT cell under crossed- and parallel-polarizer conditions. Results are plotted in 638HFigure 

55. Below 40 Vrms, the cell scatters light. Beyond 40 Vrms, the transmittance ( ⊥T ) for the 
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crossed polarizers gradually decreases and ||T  increases for the parallel polarizers. This is 

clear evidence that the phase modulation exists when the applied voltage exceeds the 

saturation voltage. Besides, when we rotate the PSCT cell between the polarizers, the 

transmittance curves remain unchanged. That means the PSCT phase modulator is indeed 

polarization independent.  
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Figure 55: The voltage-dependant transmittance of a PSCT cell between crossed 
polarizers (black line, left ordinate) and parallel polarizers (dotted line, right ordinate). 
f=1 kHz, λ=633 nm, and cell gap d= 25 μm.  

 

The phase change (δ) of the PSCT cell can be calculated from Eq 639H(25). 640HFigure 56 

depicts the measured voltage-dependent phase change of the PSCT cell. The available 

phase decreases gradually with increased voltage because the LC directors are 

continuously reoriented by the electric field, as schematically shown in 641HFigure 53(c). The 

total phase change between 40 and 160 Vrms is ~0.025π. A higher voltage is required for 

getting more phase change. Although the residual phase change is small, it is still useful 

for making micro devices, such as microlens arrays, micro-grating, and micro-prism. 
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Figure 56:Measured voltage-dependent phase shift of the E44 PSCT cell we prepared. 
Cell gap d= 25 μm. 

 

The residual phase can be increased by using a higher birefringence LC, larger 

cell gap, higher LC concentration, or higher curing temperature. The first two factors are 

obvious, but the last two needs some explanations. Based on our experimental results, the 

phase can be boosted by ~2X as we increase the LC concentration from 90.25 to 93.61 

wt% while reducing the chiral dopant from 5.75 to 3.39 wt% and polymer from 4 to 3 

wt%. The reduction of chiral dopant and polymer lowers the saturation voltage. As a 

result, the remaining phase increases. The tradeoff is the increased hysterisis. The curing 

temperature also has an important effect on the residual phase. At a given curing voltage, 

the domain size increases as the curing temperature increases642H

34 which, in turn, lowers the 

saturation voltage. Therefore, the remaining phase increases. Our experimental results 

show that the phase is increased by ~2-3X when the curing temperature is increased by 

~20 oC.  
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4.3.6 Application: Microlens Arrays 

To demonstrate the usefulness of this small residual phase change, we made a 

two-dimensional (2D) microlens array using the normal-mode PSCT as electro-optics 

medium. The fabrication method is similar to that reported earlier.643H

59 First, we used the 

lamination method to prepare a polymer microlens arrays with NOA65 (Norland, 

np=1.524). The radius of curvature and the radius of aperture of each microlens are ~950 

μm and 222 μm, respectively. Second, we filled our LC/polymer/chiral mixture into the 

polymer microlens array cavities. Third, the cell was sealed with a top ITO-glass 

substrate. Finally, the cell was biased at ~140 Vrms during the UV curing process.  

  

Figure 57: Measured CCD images of 2D microlens arrays at V=0 and V=180 Vrms. 

 

To characterize the focusing properties, a collimated unpolarized He-Ne laser 

beam was used to illuminate the PSCT microlens arrays and then a CCD camera was 

used for detecting the transmitted light. The focusing properties of the PSCT microlens 

arrays at 0 and 180 Vrms are shown in 644HFigure 57. At V=0, the imaging property is 

obscured because of the strong light scattering. At V=180 Vrms, clear focal spots appear. 

Moreover, the focal length of the patterned microlens arrays is tunable by the applied 

voltage. The focal length is 3.5 cm at V= 180 Vrms and increases to 5 cm at V~80 Vrms.  
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Based on this result, we can calculate the effective refractive index of the PSCT using the 

following equation:  

where f is focal length of the lens, R is the radius of the microlens aperture, d is the LC 

thickness (the maximum thickness is~26 μm), and effn  is the effective refractive index of 

the PSCT. Plugging in the known values of Rf , , d, and pn to Eq. 645H(26), we find 

effn ~1.551 at 180 Vrms. This value is reasonable because it should satisfy the following 

relationship: 0n < )( rmseff Vn  < 3/)2( 0 enn + , where 0n =1.53 and en =1.79. From the 

above equation, the focal length of a microlens depends on the lens radius and thickness, 

and the LC effective birefringence. To obtain a shorter focal length, we could reduce the 

lens diameter, use a higher birefringence LC, or increase the LC lens thickness. The 

shortcoming of using a thick LC layer is the increased operating voltage. A simpler 

solution is to employ a high birefringence and low threshold voltage PSCT. 
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Figure 58: Voltage-dependent focal length of the PSCT-based 2D microlens arrays. 
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646HFigure 58 plots the voltage-dependent focal length of the PSCT microlens arrays. 

The focal length of our lens array is polarization-independent and is tunable from 3.5 cm 

to 5 cm when the voltage is switched from 180 to 80 Vrms. 

The PSCT-based phase modulator exhibits a ~4X lower threshold voltage (~1.6 

V/μm) than the nano-PDLC phase modulator647H

57 (~6 V/μm) because of its larger domain 

size. The response time is somewhat slower but still comparable to that of nano-PDLC 

phase modulators. In comparison to a conventional PDLC phase modulator,648H

18 the PSCT 

exhibits a faster response time because the chiral dopant provides an extra force to assist 

the LC relaxations. However, it is also due to the chiral dopant the PSCT threshold 

voltage is higher than that of a PDLC phase modulator. 

4.3.7 Conclusion 

We have demonstrated a polarization-independent, scattering-free, hysterisis-free, 

and fast-response PSCT-based phase modulator. Although the operating voltage is high 

and the residual phase is small, the PSCT is still useful for making micro-devices. A 

PSCT-based tunable-focus microlens arrays is demonstrated. 
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4.4 Polarization Independent LC Phase Modulators Using Homeotropic LC gels 

We have demonstrated two polarization-independent phase modulators using a 

conventional PDLC layer and PSCT. To bypass the light scattering regime, a bias voltage 

is applied to both PDLC and PSCT cells. However, the bias voltage is too high in PSCT 

because of the chiral dopant. In PDLC, because the average LC droplet size is larger than 

the visible wavelength, the operating voltage (3 V/μm) is lower than PSCT. Meanwhile, 

the response time is fast (~1 ms) benefiting from the bias voltage effect. However, due to 

the bias voltage effect the remaining tunable phase change is relatively small (~0.04π) in 

PDLC. Although the observed small phase change is still usable for microphotonic 

devices, it is highly desirable to increase the phase shift and decrease the operating 

voltage while keeping a fast response time.  

In this part, we demonstrate a homeotropic LC gel 649H

20 whose phase shift is larger 

but operating voltage is lower than a nano-PDLC. The larger phase change and lower 

operating voltage originate from the higher LC concentration in our gel. Different from a 

conventional LC gel,650H

66 our LC domain size is in submicron region so that the light 

scattering is completely suppressed in the voltage-off state. 

4.4.1 Mechanism 

651HFigure 59(a), (b), and (c) show the schematic configurations of the LC directors 

and polymer networks in the voltage-off (V=0), threshold ( thV ) for directors reorientation, 
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and light scattering states ( ths VV > ) of the homeotropic LC gel. In 652HFigure 59(a) where 

V=0, the LC directors are aligned nearly perpendicular to the substrates and stabilized by 

polymer gels. The polymer networks are formed along the same orientation as the LC 

directors. Because of the small domain sizes and good index match, the LC gel is highly 

transparent. As the applied voltage exceeds a threshold, the LC directors begin to tilt 

away from the electric field direction, as shown in 653HFigure 59(b), because the LC has a 

negative dielectric anisotropy (Δε<0). Further increasing voltage to sV , light scattering 

occurs because the refractive index mismatch between the LC and the polymer gel, as 

shown in 654HFigure 59(c). From 655HFigure 59(b) to 64(c), phase-only modulation is expected. 

Due to the random reorientation of the LC directors in the polymer networks, the phase 

shift is polarization independent for the normally incident light.  
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Figure 59: Schematic diagrams of polymer and LC directors orientations of a 
homeotropic LC gel: (a) V=0, (b) V=Vth where the LC directors reorientation starts, and 
(c) V=Vs where the light scattering takes place. 

4.4.2 Sample Preparation 

To prepare a homeotropic LC gel with small LC domain sizes, we mixed 20 wt% 

of a Merck photocurable LC diacrylate monomer RM257 in a negative nematic LC 

MLC-6608 (Δn=0.083, Δε= −4.2). The LC/monomer mixture was injected into an empty 

cell in the isotropic state. The inner surfaces of the indium-tin-oxide (ITO) glass 
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substrates were coated with thin homeotropic polyimide alignment layers and rubbed in 

orthogonal directions in order to reduce the polarization dependency originating from the 

boundary layers. The pretilt angle is ~88° on each surface. The filled cell was then slowly 

cooled down to room temperature and exposed to UV light (λ~365 nm, I~10 mW/cm2). 

The UV curing time for the cell was ~30 min. The cell gap was controlled at ~23 µm 

using two stripes of mylar film.  

 

4.4.3 Electro-optical Properties 

The electro-optic properties of the LC gel was characterized using an unpolarized 

He-Ne laser beam (λ=633 nm). The transmitted light was measured by a photodiode 

detector which was placed at ~30 cm behind the sample. A computer controlled 

LabVIEW data acquisition system was used for driving the sample and recording the 

light transmittance. The response time of the LC gel was recorded by a digital 

oscilloscope.  

The LC gel sample appears slightly bluish as visually observed in the reflection 

state, which implies that the formed LC domain size is comparable to a blue wavelength 

(λ~400 nm). The LC gel is highly transparent at the He-Ne laser wavelength (λ~633 nm). 

656HFigure 60 plots the voltage-dependent transmittance of the LC gel. The LC gel is 

highly transparent at V=0. Below 180Vrms, the transmittance remains at ~88%. The ~12% 

light loss mainly originates from the interface reflections between the ITO-glass 

substrates and the air. The refractive index of ITO is ~1.90. As the voltage exceeds 
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180Vrms, the transmittance begins to decline due to light scattering. Therefore, we define 

180Vrms as the sV  of the LC gel. The relatively high sV  is due to the small Δε and small 

Δn of the LC mixture employed, and the submicron domain sizes due to high (20%) 

polymer concentration. The hysteresis of the voltage-dependent transmittance of the LC 

gel was also measured. Results indicate that the forward and backward curves overlap 

very well, which means the hysteresis is completely suppressed. 
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Figure 60: Voltage-dependent transmittance of the LC gel. d=23µm. An unpolarized He-
Ne laser was used for this measurement. 

 

To examine the phase modulation capability of the LC gel, we measured the 

transmittance ( ||T  and ⊥T ) at λ=633 nm between parallel and crossed polarizers with the 

beam normally incident on the sample surface. We set the polarization axis of the 

analyzer parallel to one rubbing direction of the cell. Results are shown in 657HFigure 61. Due 

to the homeotropic alignment of the LC gel, ⊥T ~0 at V=0. As the applied voltage 

exceeds the threshold voltage Vth=130Vrms, ||T  decreases but ⊥T  increases with voltage 

gradually. This means phase-only modulation exists. At V>180Vrms, light scattering takes 
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place which is not desirable for the phase-only modulation. To validate whether the gel is 

polarization dependent, we rotated the sample in the azimuthal direction. Results remain 

unchanged. This indicates that the phase–only modulation is independent of incident light 

polarization.  
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Figure 61: Voltage-dependent transmittance of the LC gel between parallel ( ||T ) and 
crossed ( ⊥T ) polarizers. Cell gap d=23µm, f=1 kHz, λ =633 nm, and T~21 oC. 

4.4.4 Response Time 

Response time is another important parameter for LC based phase modulator. We 

measured the response time of the LC gel using square voltage bursts at f=1 kHz between 

0 and 180Vrms. The measured rise time is riseτ  ~590 μs and decay time decayτ ~150 μs at 

room temperature. Such a fast response time results from the small LC domain size as 

well as the strong polymer stabilization effects. Based on the measured decay time, we 

estimate the domain size is around 300 nm. This is consistent to the very weak bluish 

appearance of the LC gel. 
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4.4.5 Phase Change 

The phase change in the range from 0~180Vrms can be calculated from Eq 658H(25). 

659HFigure 62 plots the voltage dependent phase change of the LC gel at λ=633 nm and T~21 

oC. As the voltage increases, the phase increases gradually because the LC directors 

inside the domains are reoriented randomly away from the electric field, leading to an 

increased effective birefringence. From 130 to 180Vrms, the phase shift is Δδ ~0.08 π (for 

the 23 μm LC gel) which is 2X larger than our previous results using a conventional 

PDLC. 660H

18 
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Figure 62: Measured phase shift of the LC gel at different voltages. d=23 µm and λ =633 
nm 

 

 

In our LC gel, the effective refractive index at V=0 can be expressed as 
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where on  is the ordinary refractive index of the LC, vLC and vp are the LC and polymer 

volume fractions, and pn  is the refractive index of the polymer. By applying a voltage 

across the LC gel, the LC directors tend to reorient themselves perpendicular to the 

electric field because of the negative Δε. Therefore, light impinging on the sample at 

normal incidence will see an average refractive index increased from on  to )(Vn . In this 

case, the effective refractive index of the LC gel can be rewritten as 

As a result, the field-induced phase shift can be expressed as  

where d is the cell gap and λ is the incident wavelength. By combining Eqs. 661H(27) and 662H(29), 

we rewrite the phase shift as follows: 

From Eq. 663H(30), the LC volume fraction (νLC) is an important parameter contributing to the 

phase change because pLC vv +  does not change. In our gel system, the LC 

concentration is ~80% which is much higher than that in a nano-PDLC (~30%). As a 

result, our LC gel should exhibit a larger phase shift than the nano-PDLC, if the same Δn 

is employed.  

From 664HFigure 62, the 0.08π phase change was obtained at V= 180Vrms which 

corresponds to 7.8 V/μm. Two factors affecting the on-state voltage are Δε of the LC 

mixture and LC concentration. Negative LC mixtures tend to have a smaller Δε than their 
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positive counterparts. A nano-PDLC device usually uses a positive, large Δε LC mixture 

in order to suppress its operating voltage. Although our LC gel uses a negative, small Δε 

LC mixture, its required electric field strength is still lower than that of a nano-PDLC 

because of the higher LC concentration involved. A higher LC concentration not only 

leads to a slightly larger LC domain size but also decreases the contact interface between 

the polymer binder and the LC molecules. As a result, the operating voltage is reduced. 

The strong anchoring force that the polymer binders exert to the LC directors is 

responsible for the observed fast response time.  

If we operate the gel in reflective mode, the phase will be doubled. Although the 

achievable phase change is small (δ~0.08π), it is still quite useful for the polarization- 

independent microlens and microprism applications. From Eq. 665H(30), to increase phase 

shift we could either enlarge the LC cell gap or use a higher birefringence LC material.666H

67 

The latter is preferred because increasing cell gap would lead to a higher operating 

voltage. However for a given domain size, increasing LC birefringence would also 

enhance light scattering capability. Therefore, an optimal LC birefringence should exist 

before light scattering takes place. On the other hand, to lower the on-state voltage we 

could use a higher Δε LC mixture.  

4.4.6 Conclusion 

In conclusion, we have demonstrated a homeotropic LC gel whose phase 

modulation is polarization insensitive. Such a phase modulation is free from light 

scattering and hysteresis. Its response time is submillisecond at room temperature and its 
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operation stability is excellent. The obtainable phase change is 2X larger than that of a 

nano-PDLC system, but at a lower operating voltage. 
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4.5 Polarization Independent LC Phase Modulators Using a Thin Polymer-
Separated Doubled-layered Structure 

So far, we have demonstrated three polarization independent LC phase 

modulators by using voltage-biased PDLC667H

18, voltage-biased PSCT668H

19, and voltage-biased 

homeotropic LC gels 669H

20 in previous sections. A common problem of these approaches is 

that their phase change is relatively small and the operating voltage quite high. Thus, 

more polarization-independent light modulation mechanisms need to be developed.  

In this part, we demonstrate a polarization-independent LC phase modulator using 

a double-layered structure with two ultra-thin anisotropic polymer films as cell 

separators670H

21. The double-layered structure has been proposed for guest-host liquid crystal 

displays (LCDs) more than two decades ago. 671H

5-
672H

8,
673H

68The conventional approach uses a thin 

glass (~0.3 mm) or Mylar film (~0.1 mm) to separate the two orthogonal LC layers. In 

the former case, an indium-tin-oxide (ITO) glass substrate is used as a middle substrate. 

To overcome the electric field shielding effect, both sides of the ITO layers should be 

pixilated and connected (e.g., via feed-through holes), and then overcoated with a thin 

polyimide layer which is rubbed in the orthogonal directions to match the LC alignment. 

This approach is difficult for high resolution devices because of the complicated pixel 

structures and extra alignment between the passive ITO pixels in the middle substrate and 

active elements. To reduce the parallax incurred by the middle glass substrate and to 

enable high resolution, a thin Mylar film can be considered. However, the Mylar film 

cannot align the LC molecules674H

8 because the baking temperature of polyimide is higher 

than the glassy transition temperature of the Mylar film. The anisotropic polymer films 
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we developed in this paper are thin and they possess alignment capability. As a result, 

excellent LC alignment, large phase shift, and low operating voltage are achieved. Using 

two 12-μm orthogonal E7 LC layers, we obtain 2π phase shift (λ=633 nm) at merely 9 

Vrms and 8.1π phase shift at 40 Vrms.  This is by far the polarization-independent LC phase 

modulator ever demonstrated exhibiting the largest phase change at the lowest operating 

voltage. 

4.5.1 Structure 

675HFigure 63 shows the schematic design of our polarization-independent phase 

modulator. The cell consists of two glass substrates which are overcoated with thin (~80 

nm), mechanically buffed polyimide layers, two anisotropic polymer films, and two LC 

layers. The top and bottom LC directors are oriented orthogonal to each other. The 

anisotropic polymer films were peeled off from a UV-induced phase separation of a 

LC/polymer cell. Such a polymer film is an optically uniaxial film. It has excellent 

alignment capability676H

69. To achieve orthogonal homogeneous LC layers, the principal axes 

of these two anisotropic polymer films were also arranged to be orthogonal to each other.  
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Figure 63: The structure of a polarization-independent phase modulator using a thin 
polymer-separated double-layered structure 

 

4.5.2 Sample Preparation 

To fabricate the anisotropic film, we mixed a Merck E7 nematic LC mixture, 

photo-initiator IRG184, and an LC monomer RM-257 (4-(3-Acryloyloxypropyloxy)-

benzoic acid 2-methyl-1,4-phenylene ester) at 19:1:80 wt % ratios. The LC/monomer 

mixture was injected into a homogeneous cell with 23 μm cell gap which was controlled 

by the Mylar stripes and then the cell was exposed to a UV light with intensity I = 10 

mW/cm2 for ~30 min at 90 °C. After UV exposure, the two substrates of the 

homogeneous cell were peeled off and a solidified anisotropic film with 23 μm thickness 

was obtained. We prepared two polymer films with the same thickness (D=23 μm) and 

stacked them together in orthogonal directions, as 677HFigure 63 depicts. The LC mixture 

employed is also E7. The LC was filled to the empty cell by the one-drop-fill method. 

The cell gap of each LC layer was controlled by a Mylar film to be d~12 μm. The total 

dimension of our cell is around 25 mm by 25 mm. 

4.5.3 Surface Morphologies of an Anisotropic Polymer Film 

678HFigure 64 shows the surface morphologies of an anisotropic polymer film taken 

from an atomic force microscope (AFM) (Dimension 3100, Digital Instruments). Silicon 

nitride cantilever with a normal spring constant of 30 N/m and an apical radius of 20 nm 
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was used. The AFM measurements were performed in tapping mode at a scan rate of 1 

Hz in air under ambient conditions. In 679HFigure 64, the polymer film appears to consist of 

elongated polymer grains. The elongated polymer grains are oriented at the same 

direction (marked with an arrow), giving an anisotropic polymer surface. The root-mean-

square (RMS) roughness of the surface can be defined as RMS average of height 

deviations taken from the mean data plane. Then, the RMS roughness of the surface of 

the anisotropic polymer film is 1.01 nm. The LC molecules were found to be aligned 

along the elongate direction of the polymer grains in order to minimize free energy. 

During fabrication process, when we peel off the polymer film from the ITO glass 

substrates the LC molecules near the surface stay on the glass substrates which leave the 

anisotropic polymer film with valleys and polymer network structures. The size and the 

structure of the polymer grains depend on the fabrication conditions. In chapter 5, we will 

discuss the anisotropic polymer film in more details. 

 15 nm

0
0 1 μm

15 nm

0
0 1 μm

15 nm

0
0 1 μm  

Figure 64: AFM images of the anisotropic polymer film surface. LC directors are aligned 
along the arrow. The color bars indicate the height.  
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4.5.4 Experimental Setup 

To characterize the phase shift of the double-layered LC cell, we used Mach-

Zehnder interferometer as depicted in 680HFigure 65. An unpolarized He-Ne laser (λ=633 nm) 

was used as a light source. The laser beam was split equally into two arms by a beam 

splitter. We placed the LC cell in one arm. The cell was driven by a square-wave voltage 

at frequency f=1 kHz. The interference pattern was recorded by a digital video camera 

(SONY, DCR-HC40). The whole system was built on a floating optical table to avoid any 

environment-induced fluctuation.  
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Figure 65: Mach-Zehnder interferometer for measuring the phase shift. M: dielectric 
mirror, and BS: beam splitter. 

4.5.5 Phase Change 

681HFigure 66(a) is a recorded movie showing the voltage-dependent interference 

fringes of the double-layered LC cell. The phase shift at V=0 was used as reference. 

682HFigure 66(b) plots the interference fringes at three specific voltages: V= 0, 7, and 9 Vrms. 
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The phase shift is around 1.06 π between 0 and 7 Vrms and around 2 π between 0 and 9 

Vrms. 
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                (a)                                                                        (b)             

Figure 66: (a) Interference patterns at various voltages and (b) intensity profiles at 0 
(blue), 7 (green) and 9 Vrms (red). The two orthogonal LC cells are 12-μm E7 layers. 
λ=633 nm from an unpolarized He-Ne laser.  
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Figure 67: Voltage-dependent phase shift of the polarization-independent LC phase 
modulator at λ=633 nm. Filled circles represent the measured data using our anisotropic 
polymeric films while open circles are the simulated results of the double-layered 
structure using a 0.3-mm-thick glass separator.  
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683HFigure 67 plots the measured voltage-dependent phase shift at λ=633 nm of the 

double-layered E7 LC cell (filled circles). The threshold voltage is ~5 Vrms. For reference, 

the threshold voltage of the single E7 cell without any middle substrate is ~0.95 Vrms. The 

increased threshold voltage is due to the dielectric shielding effect of the middle 

polymeric layers. In the interferometer, the measured phase shift is referenced to that at 

V=0. The total phase shift reaches ~8.1π at V=40 Vrms. This total phase shift remains the 

same no matter we placed a polarizer in front of the LC device or rotated the polarizer.  

We also performed numerical analysis for the double-layered structure using a 

0.3-mm-thick glass separator. Both sides of the glass separator are assumed to be coated 

with thin polyimide layers and rubbed in orthogonal directions to match with the top and 

bottom substrates. The simulation results (open circles) are included in 684HFigure 67 for 

comparison. The same LC material (E7) and same cell gaps are assumed. The calculated 

threshold voltage is as high as ~24 Vrms because of the electric field shielding effect from 

the relatively thick glass separator. To obtain 8π phase shift, the required voltage is 

~600Vrms. Our thin polymeric separators reduce the required operating voltage by nearly 

15X.  

4.5.6 Discussion 

Theoretically, the phase difference between two arms of the Mach-Zehnder 

interferometer is: 
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where λπκ /2= , λ is the laser wavelength, d is the cell gap, and δ  is the phase 

difference contributed by the two anisotropic polymer films, glass substrates, and optical 

path difference in the air. At V=0, the phase difference between the two arms is  

At a very high voltage, all the LC directors are reoriented along the electric field direction 

except the boundary layers. Under such a circumstance, the effective refractive index 

becomes 

And the phase difference between two interferometer arms is as follows: 

Therefore, the total phase shift is reduced to the well-known expression: 

The birefringence of E7 is 21.0≈−=Δ oe nnn at λ=633 nm. The calculated total phase 

shift is ~8π, which is rather close to our measured value (8.1π) at V=40 Vrms.  

The obtainable phase shift of our double-layered structure is much larger and the 

operating voltage is much lower than those of nano-PDLC, PDLC, and PSCT. To further 

lower the operating voltage of our double-layered structure, we can reduce the thickness 

of the anisotropic polymer films, but the tradeoff is that a thinner polymer film may 

degrade the uniformity of the cell.  
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The response time of our double-layered LC cell was measured to be ~300 ms at 

T~23oC. The slow response time originates from the thick LC layers (d~12 μm) and high 

viscosity of the E7 LC employed. To reduce response time, a high Δn and low viscosity 

LC could be used685H

54. A high Δn LC enables a thinner cell gap to be used which is helpful 

for reducing response time. 

4.5.7 Conclusion 

In conclusion, we have demonstrated a polarization-independent LC phase 

modulator using a double-layered structure. The LC directors are orthogonal to each 

other. Two anisotropic polymer films are used as the cell separators and alignment layers. 

The total phase shift is ~2π at V=9 Vrms and ~8.1π at V=40 Vrms at λ=633 nm. Using a 

thinner cell gaps would simultaneously reduce the response time and operating voltage. 

The key technical challenge is to control the cell gap and uniformity of each LC layer, 

especially for a large aperture phase modulator. The uniformity of polymer film is 

relatively easy to obtain and the cell gap can be controlled by using post spacers. Finally, 

this approach opens a new door for achieving polarization-independent phase modulation.  
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4.6 Polarization Independent LC Phase Modulators Using Double-layered LC gels 

In section 4.5, we have demonstrated polarization independent LC phase 

modulators using a thin polymer-separated double-layered structure. The phase is large, 

but the response time is slow. In order to shorten the response time based on the similar 

structure, we demonstrate a phase modulator using two thin stratified LC gels686H

22 in this 

section. The two homogeneously aligned gel films are identical, but stacked in orthogonal 

directions. Because of high LC concentration and uniform molecular alignment, our LC 

gel possesses a large phase change (>1π). Meanwhile, because of the relatively high 

monomer concentration (28 wt%) the formed LC domains are in the submicron range. 

Therefore, the response time of the LC gel is around 0.5 ms. 

4.6.1 Structure and Fabrication Process 

In a LC gel, the homogeneously-aligned LC is stabilized by dense polymer 

networks, as shown in 687HFigure 68(a).To obtain a double-layered structure, we cut the LC 

gel into half and stacked the films together at orthogonal direction and then covered with 

another top ITO substrate, as shown in 688HFigure 68(b). 
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Figure 68: A homogeneous LC gel: (a) single layer and (b) double layers. 

 

To prepare a LC gel, we mixed 28 wt% of photocurable rod-like LC diacrylate 

monomer (RM257) in a nematic LC (E48: no=1.523, Δn=0.231 at λ=589 nm). The 

mixture was injected into an empty cell in the nematic state. The inner surfaces of the 

indium-tin-oxide (ITO) glass substrates were coated with a thin polyimide layer and then 

rubbed in antiparallel directions. The filled cell was exposed to an ultraviolet light (UV) 

(λ=365 nm, I~10 mW/cm2) for 30 min. The cell gap was controlled at 8 µm by spacer 

balls.  

After UV exposure, the cell is highly transparent. To get a gel layer, we cleaved 

off the top glass substrate. The stratified gel remained on the bottom substrate surface 

without LC leakage. We first examined the LC alignment of the gel layer using a 

polarized optical microscope. The gel (on the bottom substrate) was placed between 

crossed polarizers. If the cell rubbing direction was along one of the polarizer’s axis, a 

dark state was obtained. Rotating the gel film by 45°, the brightest state was obtained. 

These results imply that the LC gel is indeed aligned homogeneous without being 

damage during cell cleaving. 



115

4.6.2 Phase Change 

We used the Mach-Zehnder interferometer to measure the phase shift of the 

orthogonal gel cell. An unpolarized He-Ne laser (λ=633 nm) beam was split equally into 

two arms by a beam splitter. The two beams were then recombined again. In the beam 

overlapping region, several parallel interference fringes occur. The stacked gel was 

placed in one arm. When an ac voltage (f=1 kHz) was applied to the LC gel, the 

interference fringes moved as recorded by a digital CCD camera (SBIG Model ST-

2000XM). 

689HFigure 69(a) shows the recorded interference fringes at V=0. As the voltage 

increases, the fringes shift. 690HFigure 69(b) shows the intensity profiles of the fringes at V=0 

(black), 80 Vrms (green), and 180 Vrms (blue), respectively. More than 1π phase shift is 

observed between 0 and 180 Vrms.  

 

  

(a) 
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Figure 69: (a) Interference fringes of the LC gel and (b) intensity profile at different 
voltages. 

 

The voltage-dependent phase shift of the 16-µm double-layered LC gel at λ=633 

nm was plotted in 691HFigure 70. The threshold voltage is ~30 Vrms. This high threshold 

originates from the dense polymer networks. Beyond this threshold, the phase change 

increases almost linearly with the applied voltage. The estimated total phase change from 

an 8-μm LC gel which contains ~80 wt% E48 should be ~2π for a linearly polarized He-

Ne laser (λ=633 nm). Therefore, our applied voltage has not reached the saturation 

regime. In comparison to a nano-PDLC, our LC gel possesses a much larger phase shift 

at a lower operating voltage because of the higher LC concentration and directional 

stratification. 
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Figure 70: Measured phase shift of a 16-µm double-layered LC gel at different voltages. 

 

4.6.3 Response Time 

Response time is another important parameter for a LC-based phase modulator. 

To measure the response time of the LC gel, we used a photodiode detector instead of 

CCD camera to receive the transmitted beam. A diaphragm was put right before the 

detector. At V=0, no light passes through the diaphragm. A square voltage V=100 Vrms at 

1 kHz was applied to the LC gel cell. Results are shown in 692HFigure 71. The measured rise 

time is ~0.2 ms and decay time is ~0.5 ms at room temperature (~22oC). Such a fast 

response time results from the small LC domain sizes and polymer stabilization. Due to 

the relatively high monomer concentration (28 wt%), the formed polymer networks are 

quite dense so that the formed LC domains are in submicron size. Similar to a nano-

PDLC, the contact interfaces between the polymer networks and the LC molecules are 
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large. As a result, the anchoring force of polymer networks exerting on the LC is very 

strong. This is the primary reason for the observed fast response time and high threshold 

voltage.  

 

(a) 

 

(b) 

Figure 71: The measured response time of the 16-µm LC gel between 0 and 100 Vrms 
bursts (f=1 kHz). (a) Rise time ~0.2 ms and (b) decay time ~ 0.5 ms at T~22 °C. The gray 
lines in each figure represent the applied voltage and the black lines represent the optical 
signals. 

4.6.4 Discussion 

In 693HFigure 68(a). The phase shift along x-axis can be expressed as  
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where d is the cell gap, c is the LC concentration, λ is the incident wavelength, ne and neff 

(V) are the extraordinary and effective refractive index of the LC, respectively. At V→∞, 

neff → no, where no is the ordinary refractive index of LC. From 694HFigure 68(a), the 

homogeneous LC gel is polarization dependent. To make it polarization independent, we 

stack two identical homogeneous LC gels in the orthogonal directions, as shown in 

695HFigure 68(b). 

It has been shown that two orthogonally oriented homogeneous LC layers are 

polarization independent for phase modulation if the two films are identical.696H

21 As the 

voltage increases, the phase change occurs because of the electric field-induced LC 

director reorientation. At a very high voltage, the voltage-induced phase shift is reduced 

to: 

where Δn=ne-no is the LC birefringence. In comparison, the LC droplets in a nano- or 

voltage-biased PDLC cell are almost randomly orientated. Thus, the phase shift is 

where n = (2no+ne)/3 is the average refractive index of the LC at V=0, d′ and c′ are the 

cell gap and LC concentration, respectively. At V→∞, neff →no and the phase shift is 

reduced to  
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To fairly compare the phase change of the orthogonal LC gel films with the nano-PDLC, 

let us use the same LC material. To achieve polarization independence, the LC gel needs 

two orthogonal layers, but nano-PDLC only needs one. Thus, d′=2d. However, the LC 

concentration in the gel is 2X higher than that in nano-PDLC, i.e., c=2c′. From Eq. 697H(37) 

and Eq. 698H(39), we find 

From Eq. 699H(40), the phase shift of the LC gel is 3X higher than that of a nano-PDLC.  

To get a 2π phase change for laser beam steering and other photonic applications, 

we could operate the LC gel in reflective mode without increasing the operating voltage. 

For practical applications, the operating voltage of our LC gel is still very high (11 

Vrms/µm). To increase phase change, we could use a high Δn LC material while to reduce 

the operating voltage, we could use a high dielectric anisotropy (Δε) LC or optimize the 

LC and monomer concentration. A high Δn LC also enables a thinner gel to be used 

which, in turn, helps reduce the operating voltage. A high Δε LC lowers the threshold and 

the operating voltages simultaneously. Increasing the LC concentration would boost the 

phase change and reduce the operating voltage; however, the gel may become too soft to 

stand alone. Moreover, its response time will increase. 
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4.6.5 Conclusion 

In conclusion, we have developed a double-layered LC gel for polarization 

independent phase-only modulators. Its phase change at λ=633 nm reaches more than 1π 

at V~11 Vrms/μm and its response time is in the submillisecond range. Potential 

applications of this polarization independent LC gel for laser beam steering, microlens 

array, agile filter, and switchable 2D/3D liquid crystal displays are emphasized. 
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CHAPTER 5: ANISOTROPIC POLYMER FILM 

In this chapter, we demonstrate a versatile anisotropic polymer film which can be 

used as an alignment layer, an alternative substrate and a compensation film. In section 

5.2, the fabrication process and surface morphologies of the anisotropic polymer film are 

introduced. In section 5.3, we show a wide-view in-plane-switching LCD using an 

anisotropic film to replace a glass substrate.  

5.1 Anisotropic Polymer Film 

5.1.1 Film Fabrication 

The materials we used for fabricating the aligned-polymer film are a Merck E7 

nematic LC mixture, photo-initiator IRG184, and an LC monomer RM-257 (4-(3-

Acryloyloxy- propyloxy)- benzoic acid 2-methyl-1,4-phenylene ester) mixture. The 

concentration of IRG184 is 1 wt%. The chemical structures of E7 and RM 257 is shown 

in 700HFigure 72. 701HFigure 73 plots the phase diagram of the LC/monomer mixture at various 

concentrations before UV curing. The LC/ monomer mixture was injected into a 

homogeneous cell with 23 μm gap and then the cell was exposed to a UV light with 

intensity I = 10 mW/cm2 for ~30 min at a constant temperature. After UV exposure, the 

two substrates of the homogeneous cell were peeled off and a stratified anisotropic film 
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with 12 μm thickness was obtained. The fabrication process is also illustrated in 702HFigure 

74. Based on our experiment, at a fixed curing temperature the anisotropic polymer film 

is more flexible if the monomer concentration is lower. When the monomer concentration 

is between 70 and 100 wt%, the anisotropic polymer film can align LC molecules as long 

as the UV curing temperature is within the nematic phase. In the isotropic phase, the 

film’s alignment capability is rather weak. Curing temperature also influences film’s 

flexibility.  
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Figure 72: (a) The compositions of liquid crystal E7. (b) The chemical structure of 
monomer RM257. 
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Figure 73: Phase diagram of the E7/RM257 mixtures. All the mixtures have 1wt% 
IRG184 photo-initiator 
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Figure 74: Fabrication process of the anisotropic polymer film. 
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5.1.2 Surface Morphologies 

To further observe the surface morphologies of the anisotropic polymer film, an 

atomic force microscope (AFM) (Dimension 3100, Digital Instruments) was used to 

image the rubbed polyimide surface and anisotropic polymer film surface as shown in 

703HFigure 75. Silicon nitride cantilever with a normal spring constant of 30 N/m and an 

apical radius of 20 nm was used. The AFM measurements were performed in tapping 

mode at a scan rate of 1 Hz in air under ambient conditions. In 704HFigure 75(a) and 705HFigure 

75(b), the anisotropic polymer film is rougher than the rubbed PI film whose thickness is 

~100 nm. In 706HFigure 75(b), the surface of the anisotropic polymer film shows elongated 

aggregation of polymer grains along the arrow direction. The root-mean-square (RMS) 

roughness of the surface can be defined as RMS average of height deviations taken from 

the mean data plane. Then, the RMS roughness of the surface of the anisotropic polymer 

film is 1.52 nm. The LC molecules tend to align along the direction of the elongated 

polymer grains in order to minimize free energy. 

The physical mechanism of how the anisotropic film aligns the LC molecules is 

not yet completely understood. A speculated mechanism is due to the nano-structure of 

the elongated polymer grain. Before photo-polymerization, the LC molecules and LC 

monomers are aligned by the rubbed PI layers. After phase separation, the polymer grain 

of the polymeric film aggregates and elongates along the rubbing direction. During 

fabrication process, when we peel off the polymer film from the ITO glass substrates the 

LC molecules near the surface stay on the glass substrates which leave the anisotropic 

polymer film with valleys and polymer network structures. When the polymeric film is 

used as a top substrate, the injected LC tends to fill the valleys and follow the elongated 
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polymer grain direction. The film seems to have memory effect before it is peeled off 

from the PI cell. The size and the structure of the polymer grains depend on the 

fabrication conditions. These factors will undoubtedly affect the anchoring strength and 

the molecular alignment.  
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Figure 75: The AFM images of (a) the rubbed PI film surface and (b) the anisotropic 
polymer film surface. The LC directors are aligned along the arrow. The color bars 
indicate the height. 

 

 The AFM images at various monomer concentrations are shown in 707HFigure 76. 

The curing temperature was 90oC. As the monomer concentration decreases, the 

elongated aggregation of polymer grains turns out less obvious. Based on our 

experiments, the alignment capability is weaker as monomer concentration decreases. In 

708HFigure 77, the RMS roughness is similar when the monomer concentration is larger than 

70 wt%. The RMS roughness increases when the monomer concentration is below 70 

wt%. 
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Figure 76: The AFM images of the anisotropic polymer film surface at different 
monomer concentrations. The curing temperature is 90oC. The LC directors are aligned 
along the arrow. The color bars indicate the height. 
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Figure 77: The RMS roughness of the surfaces of anisotropic polymer films as a function 
of monomer concentration.  The curing temperature is 90oC. 
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The AFM images of the anisotropic polymer films at different curing temperature 

are shown in 709HFigure 78. The monomer concentration was fixed at 80 wt%. All the 

polymer grains are elongated along one direction except the one at 100 oC, which is also 

the phase transition temperature for the 80 wt% monomer. Based on our experimental 

results, the alignment capability is stronger when the curing temperatures is in the 

nematic phase region, and is weaker when the curing temperature is larger than the phase 

transition temperature. Moreover, the film’s birefringence disappears when the curing 

temperature is larger than the clearing temperature of the mixtures. When cured in the 

nematic phase, our polymer films are birefringent. The anisotropic polymer film we 

fabricated has birefringence Δn~0.1 at λ=633 nm. 
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Figure 78: The AFM images of the anisotropic polymer film surface at different curing 
temperatures. The monomer concentration is 80 wt%. The LC directors are aligned along 
the arrows. The color bars indicate the height. 
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Figure 79: The RMS roughness of the surfaces of anisotropic polymer films as a function 
of curing temperature. The monomer concentration is 80 wt%.  

 

5.2 Applications: IPS-LCD Using a Glass Substrate and an Anisotropic Polymer 
Film 

Most liquid crystal display (LCD) devices use two glass substrates in order to 

confine the fluidic liquid crystal (LC). To align the LC molecules, the inner surfaces of 
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the substrates are usually coated with a thin polyimide (PI) layer. These PI layers are 

mechanically buffed to produce uniform pretilt angle. To reduce weight, the single glass 

or plastic substrate approach has been explored recently in which the LC device consists 

of a glass substrate and a thin polymer film. Although the polymer film does not have 

electrode, it can still be used in the in-plane-switching (IPS) mode where the striped 

electrodes are located on the bottom glass substrate.  

IPS LCD is an important technology for achieving wide-viewing angle. 710HFigure 80 

depicts the device structure and operation mechanism of an IPS LCD. The typical IPS 

LCD consists of two glass substrate with rubbed polyimide. One of the substrates has 

electrode stripes in order to provide in-plane electric fields. In the voltage-off state, the 

LC directors are parallel to the striped electrodes. As the voltage exceeds a threshold, the 

LC directors are rotated by the in-plane electric field. In order to reduce the weight of an 

IPS LCD which has two glass substrates, several display manufacturers are using thinner 

glass substrates. However, to prevent the breaking of the thin glass substrates the cost and 

assembly processes are relatively complicated. By replacing a glass substrate with a 

polymer film, a single glass substrate IPS LCD is a promising approach for reducing the 

weight of LCDs. 
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Figure 80: The device structure and operation mechanism of an IPS LCD. (a) Voltage-
off, and (b) Voltage-on. 
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Several of such single-substrate IPS-LCDs have been demonstrated. Penterman et 

al 711H

70-
712H

72 proposed the photo- enforced stratification (PES) method where the polymer walls 

and a cover substrate are formed after photo-induced phase separation processes. Kim et 

al 713H

73 proposed single substrate devices by using phase separated composite film (PSCOF) 

as a cover substrate. But in both methods the top polymer film does not have capability to 

align the LC molecules and the polymer walls can cause light scattering. The polymeric 

film without alignment capability would reduce the device contrast ratio and lengthen the 

response time because of its weak anchoring strength. To overcome these drawbacks, 

some research groups proposed thin aligned-polymer film method. Sato et al 714H

74 developed 

a fluorinated polymer film for aligning LC on plastic substrates, however, it still requires 

rubbing process. Murashige et al 715H

75 demonstrated a molecule-aligned LC polymer film. 

The film was coated on the surface of a rubbed polyimide substrate. A partial 

photopolymerization process was required in order to achieve uniform alignment within 

the film. The anchoring strength of the film is about one order of magnitude weaker than 

that of the buffed polyimide. How to align the LC molecules near the top polymer film of 

the single-substrate LCD remains an urgent technical challenge. 

To prove that our anisotropic polymer film can indeed align LC molecules, in this 

section, we demonstrate an IPS-LCD using a glass substrate and an anisotropic polymer 

film. The performances, such as contrast ratio, driving voltage, and response time, are 

comparable to the two-glass- substrate IPS LCDs. The function of this polymer film is 

versatile. It not only serves as a top substrate but also aligns the LC molecules without 

any rubbing treatment. Furthermore, by controlling the fabrication process the polymeric 

film can also function as a phase compensation film. This technology can be extended for 
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making high-contrast double-layered guest-host displays and flexible displays using IPS 

LCDs. 

5.2.1 Structure and sample preparation 

The fabrication process of the anisotropic polymer film has been mentioned in the 

previous section. The aligned-polymer film we used here consists of E7, IRG184, and 

RM257 at 9:1:90 wt % ratios and the UV curing temperature is 90 °C. The LC/monomer 

mixture has a nematic phase between 65.3 oC and 115.5 oC before UV curing. The 

detailed cell structure is depicted in 716HFigure 81. Our LC cell consists of a top anisotropic 

polymer film and a bottom IPS glass substrate. An IPS glass substrate which was 

overcoated with a thin polyimide layer and then mechanically buffed was used as the 

bottom substrate. The electrode width is W=4 μm and the electrode gap is G~10 μm. The 

rubbing direction of the glass substrate is 10o with respect to the electrode stripes. The 

cell gap between the anisotropic polymeric film and the IPS substrate is d=12 μm. The 

orientation of the LC directors within the anisotropic film was anti-parallel to the rubbing 

direction of the IPS substrate. The LC mixture employed for the IPS cell is also E7. The 

uniformity of the cell gap is not an issue because the film is laminated on a sheet 

polarizer. We used one-drop filling method to fill the LC cell. The sample size of the IPS 

cell is around 25 mm by 25 mm.  
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Figure 81: The device structure of an IPS LC cell consisting of a top anisotropic 
polymeric film and a bottom ITO-glass substrate. The thickness of the top anisotropic 
film is 12 μm, and the cell gap is also 12 μm. 

 

5.2.2 Images under Optical Microscope 

717HFigure 82(a) show the microscope photos of the single-substrate IPS cell covered 

by the top anisotropic polymer film under crossed-polarizers at V=0, 6, and 10 Vrms. A 

white light was used for taking the microscope photos. The optical axis of the bottom 

polarizer was oriented parallel to the LC rubbing direction. At V=0, a very good dark 

state is achieved indicating that the LC molecules are well aligned. The threshold voltage 

of the cell is Vth~2 Vrms which corresponds to E=0.2 V/μm (note that G=10 μm). As the 

voltage exceeds Vth, the transmittance increases gradually because the LC molecules 

begin to follow the external electric field. For comparison, a conventional IPS cell was 

also prepared, i.e., the bottom glass substrate has interdigitated ITO electrodes and the 

top substrate is a plane glass with rubbed polyimide. The rubbing direction of the top 

substrate is anti-parallel to the bottom IPS substrate. 718HFigure 82(b) shows the microscopic 

textures of the conventional IPS cell. Compared with 719HFigure 82(a) and 720HFigure 82(b), our 

single-substrate IPS cell has very similar dark and bright states to the conventional IPS 
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cell. This indicates that our anisotropic polymer film exhibits an excellent alignment 

capability 

   

(a) 

   

(b) 

Figure 82: Microscopic photos taken from a polarizing microscope at different voltages 
with crossed polarizers. (a) Our anisotropic film-glass IPS cell, and (b) the conventional 
IPS cell. The two black zigzags in the photos are TFT source lines.  

5.2.2 Experimental Setup 

721HFigure 82 depicts the experimental set up for measuring the voltage-dependent 

transmittance. To measure the voltage-dependent transmittance of our cell, we placed the 

cells between two crossed polarizers. Our light source is a standard white light. The white 

light is collimated by an iris and a lens. A photodiode detector was placed behind the 

sample.  A computer controlled LabVIEW data acquisition system was used for driving 

the sample and recording the light transmittance. 
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Figure 83: Experimental setup for EO properties measurement of an IPS-LCD using a 
glass substrate and an anisotropic polymer film. 

5.2.3 Electro-optical properties 

722HFigure 84 compares the voltage-dependent transmittance (VT) of the single-

substrate IPS cell (black line) with the conventional IPS cell (gray line). To measure the 

VT curves, the cells were sitting between two crossed polarizers. A standard white light 

was used in this experiment. The transmittance of these two curves overlaps quite well. 

The saturation voltage is ~20 Vrms for both cells. The contrast ratio (CR) is defined as the 

ratio of the maximum transmittance to the minimum transmittance. The contrast ratio of 

our single-glass-substrate IPS cell was measured to be 514:1 which is comparable to the 

conventional IPS cell. Our single-substrate IPS cell exhibits a much higher contrast ratio 

than all previously reported structures in the same category723H

70-
724H

73 because the anisotropic 

film we developed, indeed, has a very good alignment capability. 
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Figure 84: The voltage-dependent transmittance of our anisotropic-film-glass IPS cell 
(black line) and the conventional IPS cell (gray line). 

5.2.4 Response Time 

In addition In addition to n to enhancing contrast ratio, the anisotropic film also 

contributes to the fast response time because of its strong anchoring energy (similar to 

that of the buffed PI film). We measured the rise and decay times of our single-glass-

substrate IPS cell and compared results with the conventional IPS cell. Results are shown 

in 725HFigure 85. At V= 20 Vrms, the measured rise time and decay time are 8 and 63 ms for 

our glass-film IPS cell and 7 and 69 ms for the conventional IPS cell. The comparable 

response times of both cells indicates that our anisotropic film has a similar anchoring 

strength as the buffed PI alignment layer The observed slow decay time in both cells is 

due to 1) the thick LC layer (d~12 μm) employed, and 2) the relatively high viscosity of 

the E7 LC mixture. For a practical IPS LCD, the cell gap is ~5 μm and the LC viscosity 

is low. Under such a circumstance, the decay time should be reduced to ~12 ms and 
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voltage dropped to ~5 Vrms. It is known that E7 is not a TFT-grade LC. The reason we 

used E7 is simply because it is available in our laboratory. 
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Figure 85: The measured response time of our film-glass IPS cell. The rise time is ~8 ms 
and decay time~ 63 ms. Cell gap d~12 μm. 

5.2.5 Discussion and Conclusion 

The anisotropic polymer film we fabricated has birefringence Δn~0.1 at λ=633 

nm. Since the device is operated in IPS mode and the polarizer is parallel to the 

anisotropic direction of the film, the Δn of the film does not affect the EO properties. For 

a practical display, the birefringence of the anisotropic film can be an advantage for 

compensating the light leakage of the crossed-polarizers in the IPS mode726H

76. By 

controlling the fabrication process, such as the UV curing temperature, the polymer film 

can be made either anisotropic or isotropic depending on the applications. Thus, this type 

of film can be used as a phase compensation film besides the IPS LCD. In general, the 

birefringence of a LC or LC polymer decreases as the temperature increases727H

48,
728H

77. As 
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shown in 729HFigure 73, the E7/RM257 mixture exhibits a nematic phase between 65.3 and 

115.5 oC. Thus, within this range if the UV curing temperature increases, then the film’s 

birefringence would decrease. If the UV curing temperature is higher than 115.5oC (the 

clearing temperature of LC/RM257), the polymer film would become isotropic. 

Moreover, the flexibility of the film can be controlled by changing the concentration of 

RM257. The film is more flexible as the concentration of RM257 decreases. Substrate 

flexibility is one of the critical issues for flexible displays.  

The ambient temperature can affect the LC alignment because of the thermal 

expansion of the elongated polymer film. However, our LC device is operated at room 

temperature, so the film still has good alignment capability. 

With molecular alignment capability, the anisotropic film enables other LC 

operation modes to be considered for display applications. For example, the twist type 

IPS cell can be considered by using an IPS glass substrate and our anisotropic film whose 

alignment direction is orthogonal to the bottom substrate. Such as an anisotropic polymer 

film can also be used for a double-layered guest-host (GH) display730H

5 or a double-layered 

LC phase modulator731H

21. Although some research groups732H

6-
733H

8 proposed crossed-stacked GH 

LCD using either PI-coated glass substrate or a mylar film as a cell separator. The 

parallax problem is unavoidable because of the extra glass substrate. The mylar film 

cannot align LC molecules because its glassy temperature is lower than the baking 

temperature of polyimide. Without alignment, the contrast ratio is greatly sacrificed. The 

middle cell separator of the double-cell GH LCD can be replaced by our anisotropic 

polymer film which not only reduces the parallax but also increases the contrast ratio.  A 
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tradeoff is the increased driving voltage because the polymer film shields the applied 

voltage.  

We have demonstrated a lightweight single-glass-substrate IPS LCD using an 

anisotropic polymer film. The anisotropic polymer film has the comparable alignment 

capability to the rubbed PI film. As a result, similar contrast ratio, response time, and 

voltage-dependent transmittance to a conventional IPS cell employing two glass 

substrates are obtained. The LC molecules are aligned by the elongated polymer grains. 

Besides, the polymeric film is birefringent which can be also used as a phase 

compensation film for improving the viewing angle of the IPS LCD. Although there are 

some technical difficulties for making large-sized and uniform anisotropic polymer film, 

potential applications of such an anisotropic film for a double-layered guest-host display 

and flexible display are still foreseeable. 
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5.3 Hydrophobic Properties of Anisotropic Polymer Film 

To further understand hydrophobic properties of the anisotropic polymer film, we 

carried out water contact angle measurements. The measurement schematic is shown in 

734HFigure 86. The fabrication process of the film is similar to previous one. After we peel off 

the top glass substrate, we leave one anisotropic polymer film with LC concentration 60 

wt% on the top of an IPS glass substrate. The thickness of the film is around 10 μm. The 

IPS glass substrate was coated with a thin polyimide layer and then mechanically buffed. 

The electrode width is 4 μm and the electrode gap is 10 μm. A small drop of water is 

placed on the top of the anisotropic polymer film. When we apply large enough in-plane 

electric field, the surface tension of liquid-solid can be changed. A CCD camera is used 

to record the water contact angles which are tuned by the electric field. 
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Figure 86: The structure of contact angle measurement. 

 

The images of the contact angle change are shown in 735HFigure 87. We apply the 

square voltage bursts at f= 1 kHz between 0 and 200 Vrms. The time duration is 500 ms. 

In 736HFigure 87, the contact angle is 76.1o at 0 Vrms and 50.3o at 200 Vrms. The surface is 

more wetting at a higher voltage. 
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(a)                                                           (b) 

Figure 87: Contact angle measurement (a) 0 and (b) 200 Vrms.f= 1 kHz. The duration 
between 0 and 200 Vrms is 500 ms. 
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(b) 

Figure 88: (a) The cosine of contact angle as a function of applied voltage. (b) The 
voltage dependent surface energy. 

 

The cosine of contact angle as a function of applied voltage is shown in 737HFigure 

88(a). The contact angle decreases as the voltage increases. That means the wetting 

properties is electronically controllable. The surface energy can be estimated by using 

Eq. 738H(41). 

where θ  is the contact angle. The surface energy of DI water is 72.8 mJ/m2. The surface 

energy of the anisotropic polymer film with 60 wt% LC as a function of voltage is plotted 

in 739HFigure 88(b). The surface energy increases with the voltage. 

The mechanism of the contact angle change is not yet well understood. The 

speculated mechanism is the LC directors near interface between water droplet and the 

anisotropic polymer film are aligned perpendicularly when the electric field is not present. 

The in-plane electric field reorients the LC directors near the surface of the anisotropic 

polymer film to align parallel to the electric field. Because it occurs at interface area, the 

orientation variation of LC directors near interface can not well support the water droplet. 

Changing the LC orientation periodically results in the variation of the hydrophobic 

properties and then causes a pulsed force to change the contact angle of water droplet 

periodically. That is why we observed the contact angle change only when we apply the 

square voltage bursts at certain length of duration.  

 )(8.72 θCosWsurface ⋅= , 
(41) 
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5.4 Twisted Nematic Polymericr Film  

We have demonstrated two applications using an anisotropic polymer film in 

section 4.5 and section 5.2. In this section, we use a twisted nematic (TN) polymeric film 

as a cell separator in order to increase the phase..  

The preparation process of a TN polymeric film is similar to that of an anisotropic 

polymer film. The major difference is that the film is prepared using a TN cell. Hence, 

the TN polymeric film is similar to a TN LC cell with polarization rotation effect. The 

concentration of LC is ~20% and the concentration of RM257 is ~80%. We construct a 

double-layered LC cell with TN polymeric film as a cell separator. The directions of LC 

directors between the top LC layer and the bottom LC layer are orthogonal as 740HFigure 89(a) 

shows. The thickness of each LC layer (d) is ~11 μm and the film thickness (D) is ~23 

μm.  

The voltage-dependent transmission is measured as shown in 741HFigure 89(b). The 

polarizers are crossed and the optic axis of the top polarizer is parallel to the front LC 

rubbing direction. The experimental results show the total phase change is as large as 15π. 

That is because TN polymeric film not only aligns the LC directors but also rotates the 

polarization state of the top layer so that the total phase is accumulated. The non-zero 

transmission obtained in 742HFigure 89(b) could result from misalignment between the 

polymer film and the pure LC layers so that the polarization rotation effect is imperfect. 

Another factor contributing to the baseline shift is cell and film uniformity.  

Theoretically, in an ideal condition the total phase change should be  
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where λ=633nm, LC birefringence Δn~0.21, and d~11 μm. After calculation, δΔ is 

~14.6π which is very close to the experimental result of 15 π. The error may come from 

the imperfect alignment. 
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(b) 

Figure 89: (a) The double layered structure using a TN anisotropic polymer film. (b) The 
voltage-dependent transmission. Wavelength=633nm.  

 

In conclusion, in this chapter we have introduced the anisotropic polymer films 

and demonstrate their applications. Generally speaking, the anisotropic polymer film has 

 dn 22
⋅Δ⋅=Δ

λ
πδ , (42) 
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several advantages. It can be used as alternative substrates, an alignment layer with good 

alignment capability, and a compensation film. By changing the film design, the polymer 

film can be used as polarization rotator, such as a TN polymeric film. Potential 

application in photonics using the anisotropic polymer films is foreseeable. 
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CHAPTER 6: CONCLUSIONS 

We have introduced the general principles to achieve polarization independent LC 

amplitude modulators and phase modulators. In chapter 3 and 4, we have demonstrated 

eight polarization independent LC devices.  

In a T-PDLC, the scattering efficiency is better than the conventional PDLC 

because of the surface pinning effect. By controlling the thermal-induced phase 

separation process of T-PDLC, the size of LC droplets is adjustable. Therefore, T-PDLC 

can be used as a narrow band light shutter due to the uniform LC droplets. Moreover, the 

central wavelength of the scattered light is also controllable. In the dye-doped T-PDLC, 

several problems occur as discussed in chapter 3 resulting in a poor contrast ratio. The 

dye-doped DFLC gels exhibit a good contrast ratio, but the driving voltage is high and 

the dielectric heating effect is unavoidable. Even though the dye-doped NLC gels have a 

lower driving voltage and fast response, the long term stability of dye molecules could be 

a concern. In addition, the dye molecules seem to interact with the employed monomer. 

As a result, the dye’s absorption band is altered.  

In polarization independent LC phase modulation, the residual phase type phase 

modulators, such as PDLC, PSCT, have fast response, but their phase change is small and 

driving voltage too high. The homeotropic LC gel has a lower driving voltage and fast 

response; however, the phase shift is still too small for IR application. Nevertheless, the 

residual phase type LC phase modulators are still attractive for micro-photonics 

applications. The double-layered structure using a thin anisotropic polymer film as a cell 
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separator exhibits a large phase change, but the response time is too slow. The doubled-

layered LC gels have fast response; however, the phase shift is still too small for mid-

wave IR applications.  

Polarizer-free LC device is an inevitable trend for all the amplitude modulators 

and phase modulators. We just start our first step in doing polarization independent LC 

devices. Besides polarization independence, color dispersion and phase difference at off-

angles will be the next issues to overcome in order to achieve a broadband phase 

modulator with a large off-angle tolerance. Better dye materials should be developed for 

display applications. More new polarization independent mechanisms should be explored. 

This dissertation is just a beginning in the polarization independent LC devices. Finally, 

we expect this work can inspire more researchers to delve into this area and develop more 

promising approaches.  
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