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ABSTRACT 

Supply Chain Management (SCM) is a critically significant strategy that 

enterprises depend on to meet challenges that they face because of highly competitive 

and dynamic business environments of today. Supply chain management involves the 

entire network of processes from procurement of raw materials/services/technologies to 

manufacturing or servicing intermediate products/services to converting them into final 

products or services and then distributing and retailing them till they reach final 

customers.  

A supply chain network by nature is a large and complex, engineering and 

management system. Oscillations occurring in a supply chain because of internal and/or 

external influences and measures to be taken to mitigate/minimize those oscillations are a 

core concern in managing the supply chain and driving an organization towards a 

competitive advantage.  

The objective of this thesis is to develop a methodology to minimize the 

oscillations occurring in a supply chain by making use of the techniques of System 

Dynamics (SD) and Genetic Algorithms (GAs). System dynamics is a very efficient tool 

to model large and complex systems in order to understand their complex, non-linear 

dynamic behavior. GAs are stochastic search algorithms, based on the mechanics of 

natural selection and natural genetics, used to search complex and non-linear search 

spaces where traditional techniques may be unsuitable. 
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CHAPTER 1: INTRODUCTION 

This chapter introduces and presents a brief overview of this research work. The 

objective behind this research work and the methodology employed to accomplish it are 

summarized here. This thesis presents a new methodology to mitigate the oscillations 

occurring in a supply chain. Various concepts from different fields have been blended 

together to accomplish this task. These concepts are introduced and discussed in this 

chapter and finally an outline of the thesis is presented.  

1.1 Supply Chain Management 

The management of the supply chain is one of the classical business problems. A 

supply chain is a network of facilities that procure raw materials/services/technologies, 

transform them into intermediate goods and final products/services, and deliver the 

products/services to customers through a distribution system. The purpose of supply 

chain management is to provide the right quantity of the right product at right time to the 

right customers at an optimal cost. A typical supply chain comprises of five elements: 

suppliers, manufacturers, distributors, retailers and customers. The process of integrating 

all these elements involves the coordination and cross-functioning of production 

planning, purchasing, material management, production, distribution, transportation, 

customer service and sales forecasting [1].  

SCM has received much attention in academic and business circles because of its 

innovative approach to business [7]. The classical way of managing a supply chain was to 

observe and analyze the sales, demand and inventory values at the end of certain pre-

defined time and fill the required gap in it. This methodology was based on the 
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assumption that the supply and demand would remain linear and no drastic fluctuations 

would occur. Above that, this methodology was good for previous decades where 

supplier based market dominated the consumer-based market. However, with the 

increased competition, this supply-based market got replaced by consumer-based market 

where there were plenty of suppliers to satiate the consumers’ demand. Above that, the 

push manufacturing concepts got replaced by pull manufacturing concepts and the 

importance of quality and service in time increased manifolds [2]. Added to these 

changes, as time passed by, with the latest advancements in information technology, 

corporations started using computerized systems to manage their supply chains. 

Enterprise Resource Planning (ERP), advanced web-based technologies and information 

systems have changed the way companies do their business and manage their supply 

chains. More and more attention is now focused on gathering real-time data and 

managing the supply chains through real-time networks. 

The increasing competitive pressures in the global marketplace coupled with the 

rapid advances in information technology and the strategic policies that companies plan 

to adopt have made supply chains more and more complex, non-linear and dynamic in 

nature.  The influence of internal and/or external causes on the non-linear dynamic nature 

produces oscillations in the supply chain. These oscillations, if not taken care of properly, 

could result in unwanted behavior and poor performance of the supply chain. 

The objective of this thesis is to develop a methodology to minimize/mitigate the 

oscillations occurring in a supply chain by utilizing the techniques of system dynamics 

and genetic algorithms. These concepts are briefly discussed in the following sections 

and are explained in detail in the following chapters. 
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1.2 System Dynamics 

The concept of System Dynamics (SD) was first developed by Jay W. Forrester in 

1950’s at the M.I.T., Cambridge, MA. Since then, it has been used as an efficient 

management tool for modeling complex real-world systems, understanding their behavior 

and implementing strategic policies [1]. Lertpattarapong [1] states that system dynamics 

is an efficient approach for exploring the non-linear dynamic behavior of a system and 

studying how the structure and the parameters of the system lead to behavior patterns. 

The conceptual idea behind system dynamics is that all the objects in a system 

interact through causal relationships. These relationships come about through feedback 

loops, which control the interactions between the system objects. System dynamics 

asserts that these relationships form the underlying structure for any system. The creation 

of a complete dynamic model of a system requires the identification of reference modes 

and causal relationships that form the system’s feedback loops. [5] Feedback system 

mentioned here refers to the scenario where variable A affects variable B and B in turn 

affects A through a series of cause and effects. 

System dynamics is different from the other approaches in studying complex 

systems, mainly because of its extensive use of feedback loops. Stocks and Flows, which 

are the basic building blocks of system dynamics models, help describe how a system is 

connected by feedback loops. Once the model is created, computer software is used to 

simulate the model of the situation being studied. Performing "what-if" simulation 

analyses to test various policies on such a model greatly aids in understanding how the 

system changes over time [8].  
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System dynamics has been widely used to model complex supply chains, 

understand their behavior and design effective policies. The supply chain model used in 

this thesis work has been exclusively modeled using system dynamics concepts. The 

complete description of the model and its analysis are presented in Chapter 3. 

1.3 Genetic Algorithms 

Genetic Algorithms (GAs) are search and optimization procedures that are 

motivated by the principles of natural genetics and natural selection [43]. The concept of 

GAs was first developed during 70’s by John Holland and his students at the University 

of Michigan, Ann Arbor [44]. The goals of their research have been twofold: (1) to 

abstract and rigorously explain the adaptive processes of natural systems, and (2) to 

design artificial systems software that retains the important mechanics natural selection 

[44]. Eventually, this approach has led to important discoveries and advancements in both 

natural and artificial systems science. 

Over the last decade, GAs have been extensively used as search and optimization 

tools in various problem domains, including science, commerce and engineering [43]. 

GAs have been found very successful in arriving at an optimal/near-optimal solution to 

complex optimization problems, where traditional search techniques fail or converge to a 

local optimum solution. The primary reasons for their success are their broad 

applicability, ease of use and global perspective [44].  

Koza [46] states that a Genetic Algorithm (GA) transforms a population (set) of 

individual objects, each with an associated fitness value, into a new generation of the 

population using the Darwinian principle of reproduction, survival of the fittest and 

analogs of naturally occurring genetic operations such as crossover and mutation. Each 
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individual in the population represents a possible solution to a given problem. The 

genetic algorithm attempts to find a very good (or best) solution to the problem by 

genetically breeding the population of individuals over a series of generations. 

In this research work, a genetic algorithm has been developed to minimize the 

oscillations occurring in the finished goods inventory of a supply chain model. The 

working principle of GAs, their advantages and the actual algorithm developed are 

explained in the following chapters. 

1.4 Uniqueness and Contribution of this Thesis 

Though many applications involving extensive use of system dynamics to model 

complex supply chains and genetic algorithms to solve various supply chain management 

problems were found in the literature, no application was found in the literature that 

combined both of these techniques, exploiting their combined power, towards improving 

the performance of a supply chain. The methodology proposed in this research work not 

only contributes to fill this gap but also provides a good field to delve in for further 

research.  

In the actual methodology, a real-coded genetic algorithm (RCGA) has been 

developed and is integrated with a system dynamics supply chain model to minimize the 

oscillations occurring in the finished goods inventory. As part of the proposed 

methodology, a set of five important variables that are critical to the oscillations 

occurring in the finished goods inventory has been chosen. The RCGA then is used in 

conjunction with the system dynamics model to find out optimal/near-optimal values (for 

these five variables) that would minimize the oscillations. 
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The system dynamics model mentioned above has been built using a software 

called ‘Vensim 5.4’ and the real-coded genetic algorithm is developed using ‘C++’ 

language.  

1.5 Thesis Outline 

This thesis focuses on developing a methodology to minimize the oscillations 

occurring in a supply chain by utilizing genetic algorithms in conjunction with a system 

dynamics supply chain model. This thesis is organized as follows. 

Chapter 1 serves as an introduction by presenting the problem to be solved and 

introducing the concepts that are used to solve the problem. Chapter 2 presents a 

literature review in the field of supply chain management and system dynamics, genetic 

algorithms and their applications in supply chain management. This chapter also presents 

the working principle of a conventional genetic algorithm. On the other hand, Chapter 3 

presents the system dynamics modeling of the supply chain of a corporation called 

LSMC. The analysis and some important observations about the oscillations occurring in 

this model are also presented. After that, Chapter 4 describes the development of the real-

coded genetic algorithm optimization module to minimize the oscillations in the finished 

goods inventory of LSMC’s supply chain. Finally, Chapter 5 presents the conclusions, 

scope and contribution of the thesis and ideas for potential future work. 
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CHAPTER 2: LITERATURE REVIEW 

The scope of supply chain management (SCM) lies in its capacity of 

encompassing various business functions including but not limited to logistics, inventory 

management, demand forecasting, material and information flow, production planning 

and scheduling, and various other functions directly associated with enhancement of 

overall value for any business [2]. 

This research work contributes to the development of a methodology, which 

attempts to minimize the oscillations occurring in a supply chain by utilizing the tools of 

system dynamics (SD) and genetic algorithms (GA). System dynamics has been used 

here for modeling and understanding the behavioral dynamics of a supply chain and 

genetic algorithms to compute the near-optimal values of certain key parameters in that 

supply chain that would mitigate the oscillations occurring in it. A literature review has 

been done in order to understand the scope, various applications and theories underlying 

the concepts of system dynamics, genetic algorithms and their application towards supply 

chain management (SCM). 

This literature review is divided into four sections, which basically encompass 

this entire research work. The first section discusses supply chain management and the 

application of various theories and analytical models for its continuous improvement. The 

second section discusses literature review in the field of system dynamics and its 

applications in supply chain management. The third and fourth sections present a 

literature review of genetic algorithms, their working principle and their various 

applications in the field of supply chain management.  
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Hence, all the research papers discussed in this chapter fall into one of these 

categories.  

2.1 Supply Chain Management 

Supply chain management, which is also emphasized by other similar terms such 

as value chain management, demand chain management, supply pipe-line management 

and network sourcing, is gaining more and more attention from researchers, academicians 

and business consultants due to its profound influence on the overall corporate 

performance [2].  Extensive research work is being carried out in the areas of demand 

forecasting, inventory management, logistics, transportation, information sharing and 

other areas, which contribute to better optimization of any supply chain. The objective of 

this literature survey is to briefly review the research in different facets of SCM, 

especially supply chain modeling, problems in SCM, inventory management, and supply 

chain optimization. 

Croom et al. [29] examine various subject areas, which are considered core to the 

literature review of supply chain management. They provide a taxonomy of the field of 

supply chain management as an aid to both the classification of research in the field, and 

as a means of providing a framework for the identification of the key content of the 

subject. The authors classify the body of literature associated with SCM into different 

categories such as Purchasing and supply literature, Logistics and transportation 

literature, Marketing literature, Organizational behavior, industrial organization, 

transaction cost economics and contract view literature, Contingency theory, Institutional 

sociology, System engineering literature, Network literature, Best practices literature, 
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Strategic management literature and Economic development literature. The authors also 

discuss how these subject areas have contributed to the overall SCM literature. 

Tan [30] states that the advent of information technology and intense global 

competition has enticed many world-class manufacturers and service providers into 

adopting an integrated strategic approach to supply chain management. Using a survey of 

senior supply and materials management professionals in the US, the author investigates 

the contemporary practices and concerns of SCM. This study also relates the practices 

and concerns to firms’ performance my means of bivariate correlation and multiple linear 

regression analysis and concludes that all of the significant SCM practices positively 

impact performance. 

Croom and Giannakis [31] propose a conceptualization of the supply chain 

problem domain called the ‘3S Model’. The model highlights three dimensions of interest 

to supply chain scholars and practitioners, namely the synthesis of the business and 

resources network; the characteristics of synergy between different actors in the network; 

and the synchronization of all operational decisions related to the control of the 

production and delivery of goods and services.  

Shapiro [32] present a review of the many challenges that supply chain modeling 

practitioners and their clients face when they set out to extend and apply strategic 

planning models that analyze wider and deeper decision problems. The author studies 

these challenges in the context of four categories of modeling and organizational 

imperatives, namely enlarging the scope of supply chain planning studies and models; 

reflecting theories of strategy in data-driven optimization models; formalizing scenario 
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planning, applying stochastic programming and modeling risk; and expanding business 

processes to exploit fact-based analysis of strategic plans. 

Talluri and Baker [34] propose a multi-phase mathematical programming 

approach for effective supply chain design. The proposed methodology develops and 

applies, in three phases, a combination of multi-criteria efficiency models, based on game 

theory concepts, and linear and integer programming methods. In phase I of the decision 

making process, multi-criteria efficiency models are utilized to evaluate the performance 

of suppliers, manufacturers and distributors. In phase II, an integer programming problem 

is utilized to design the SCN subject to efficiency, capacity, and location constraints. 

Phase III solves a transshipment problem in order to identify optimal routing decisions. 

The authors also detail the model application and insights through numerical illustrations. 

Riddalls et al. [22] present a review of various mathematical methods used to 

model and analyze supply chains. The authors categorize these methods as continuous 

time differential equation models, discrete time difference equation models, discrete 

event simulation models and operational research techniques. They conclude that, while 

OR techniques are useful in providing solutions to local tactical problems, the impact of 

these solutions on the global behavior of the whole supply chain can only be assessed 

using dynamic simulation. 

Terzi and Cavalieri [33] provide a comprehensive review made on more than 80 

articles, with the main purpose of ascertaining which general objectives simulation is 

generally called to solve, which paradigms and simulation tools are more suitable, and 

deriving useful prescriptions both for practitioners and researchers on its applicability in 

decision-making processes within the supply chain context. The authors report that 
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network SC design, SC strategic decision support, demand and sales planning, inventory 

planning, distribution and transportation planning, and production planning and 

scheduling are some of the important aspects of SCM where simulation has been applied 

successfully. Also, authors highlight the importance of discrete event simulation, parallel 

distributed simulation (PDS) and the high level architecture (HLA) in the context of 

SCM. 

Agrawal et al. [35] consider the dynamic version of the problem of inventories to 

a set of retailers for rectifying the imbalance of inventories amongst them. The authors 

study the dynamic allocation problem with two decisions, the timing of the balancing 

shipments and determination of the new stocking levels at the retailers, as a dynamic 

program. They obtain structural properties for the optional allocation and timing 

strategies and present conditions under which a greedy heuristic to decide how much to 

ship from one retailer to another in optimal. They present an algorithm to solve the 

dynamic program efficiently and provide a heuristic solution procedure to the dynamic 

allocation policies. 

Chiang and Monahan [36] present a two-echelon dual-channel inventory model 

based on queuing models. Using analytical methods, the authors develop operational 

measures of supply chain flexibility by defining a cost structure which captures two 

different operational cost factors: inventory holding cost and lost sales cost. To evaluate 

the possible benefits of using the dual-channel strategy, authors examine the performance 

of two other channel strategies: retail-only and direct-only strategies. Based on numerical 

examples, they conclude that the dual-channel strategy is dominant in most cases. 
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Giannoccaro et al. [37] address two key issues of inventory management in 

supply chains, namely the uncertainty associated with market demand and inventory 

related costs and the need of a tight integration among the supply chain stages. The 

authors propose a methodology to define a supply chain inventory management policy, 

which is based on the concept of echelon stock and fuzzy set theory. The echelon stock 

concept is adopted to manage the supply chain inventory in an integrated manner, 

whereas fuzzy set theory is used to properly model the uncertainty associated with both 

market demand and inventory costs. The proposed methodology is applied to a three 

stage supply chain. Further, authors quote that the use of fuzzy set theory is more 

appropriate than stochastic techniques to address uncertainty in market demand and 

inventory related costs, especially when the market is complex and turbulent. 

Kapoor et al. [38] present a technical framework that supports sense-and-respond 

(SaR), an approach that enables enterprises to adapt to a rapidly changing business 

environment. To implement SaR approach, an enterprise proactively monitors trends and 

uses effective decision support tools to help it act in a timely manner.  The proposed SaR 

approach combines the domain knowledge expertise in SCM, data warehousing, On-line 

analytical processing (OLAP) and J2EE Technologies. The authors describe two pilot 

projects in IBM where SaR approach has been implemented to solve business problems. 

The model improved the inventory management processes by diagnosing supply 

shortfalls, backlog accumulation, and inadequate inventory levels at the strategic stock 

points. 

Dejonckheere [39] et al. propose a methodology based on control systems 

engineering that introduces a general decision rule for avoiding variance amplification 
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(bullwhip effect), when the demand has to be forecasted. The authors first prove that 

whatever forecasting method is used (simple exponential smoothing, moving averages or 

demand signal processing), order-up-to replenishment systems will always result in the 

bullwhip effect. The authors state that the crucial difference with the class of order-up-to 

policies is that in the proposed rule, net stock and on order inventory discrepancies are 

only fractionally taken into account. 

Jung et al. [40] present a simulation based optimization approach to SCM under 

demand uncertainty. The authors propose the use of deterministic planning and 

scheduling models which incorporate safety stock levels as a means of accommodating 

demand uncertainties in routine operation. The problem of determining the safety stock 

level to use to meet a desired level of customer satisfaction is addressed using a Monte-

Carlo simulation based optimization approach. An industrial-scale case problem is 

presented to demonstrate the utility of the proposed approach. 

Samaddar et al. [41] present a theoretical framework to investigate the 

relationships between the design of a supply network (SN) and inter-organizational 

information sharing (IIS). Theoretical arguments and analysis of secondary data are used 

to develop propositions regarding the association between SN configurations and IIS 

types, and the role of coordination structure in such associations. 

Kelle and Akbulut [42] discuss the role of ERP tools in supply chain information 

sharing, cooperation and cost optimization. The authors concentrate on the inventory 

management aspects of supply chain coordination reviewing the recent quantitative 

modeling and organizational results available in literature. The authors present their 

analysis and discussion about: how to motivate companies for information sharing (by 
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quantifying potential benefits and margins); how to select and aggregate data to share 

with partners; and how to extend the traditional vertically integrated business model. 

2.2 System Dynamics and its applications in Supply Chain Management 

The concept of System Dynamics (SD) was first developed by Jay W. Forrester in 

1950’s at the M.I.T., Cambridge, MA. Since then, it has been used as an efficient 

management tool for modeling complex real-world systems, understanding their behavior 

and implementing strategic policies [1]. Lertpattarapong [1] quotes that system dynamics 

is an efficient approach for exploring the non-linear dynamic behavior of a system and 

studying how the structure and the parameters of the system lead to behavior patterns. 

Another fundamental purpose of system dynamics is to design effective and robust 

policies, which enhance performance in managed systems.  

Supply Chain Management (SCM) is one of the areas where system dynamics has 

been widely used to model complex supply chains, in order to understand their complex 

dynamic behavior. Angerhofer and Angelides [20] state that the application of system 

dynamics modeling to SCM has its roots in ‘Industrial Dynamics’, a field developed from 

the work of Jay Forrester at M.I.T. Towill, D. R. [21] regards Forrester as not only the 

father of System Dynamics but also as the originator of the many of the techniques of 

modern supply chain management.  

This research work utilizes a supply chain model, built exclusively using the 

technique of SD, for the purpose of minimizing the oscillations occurring in that supply 

chain. The very first task involved in this process is to simulate this model over a period 

of three years to understand the behavior of various variables, stocks and flows involved 

in it. Hence, it becomes imperative to understand the technique of system dynamics and 
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its applications in SCM. A literature survey has been done to understand how SD has 

been applied to modeling supply chains and the findings are discussed in this section. 

(The actual modeling procedure using system dynamics is presented in Chapter 3). 

Angerhofer and Angelides [20] state that the current research in system dynamics 

modeling of supply chain management focuses on inventory decision and policy 

development, time compression, demand amplification, supply chain design and 

integration, and international supply chain management. Their paper gives an overview 

on the evolution of the research review in this field and also presents taxonomy of 

research and development in system dynamics modeling of supply chain management. 

Riddalls et al. [22] present a review of various mathematical methods used to 

model and analyze supply chains, and appraise each method from a system dynamics 

perspective. The authors categorize these methods as continuous time differential 

equation models, discrete time difference equation models, discrete event simulation 

models and operational research techniques. They conclude that, while OR techniques are 

useful in providing solutions to local tactical problems, the impact of these solutions on 

the global behavior of the whole supply chain can only be assessed using dynamic 

simulation. 

Rabelo et al. [5] propose a methodology that combines system dynamics and 

neural networks analysis for addressing the aspect of how enterprises can detect supply 

chain behavioral changes due to endogenous and /or exogenous influences and to predict 

such changes and their impacts in the short and long term horizons. The authors use 

system dynamics to model and analyze supply chain behavior and neural networks’ 

pattern recognition abilities are then used to analyze simulation results and predict 
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changes early before they take place. Also explained in this paper is how eigen-value 

analysis can be used to enhance the understanding of the problematic behavior. 

Ovalle and Marquez [23] present a system dynamics based simulation study to 

assess the effectiveness of using e-collaboration tools in supply chain management. Their 

paper presents a classification of ‘managerial spaces’ where multiple trading partners 

share critical information using e-collaboration tools. After validating the output of the 

simulation model they state that it is certain that gradual increments of information 

sharing through collaborative forecasting and collaborative planning produce positive 

increases in the local and global performance of the SC. 

Minegishi and Thiel [24] discuss how system dynamics can contribute towards 

improvement of knowledge for logistic behavior in an integrated food industry. They 

present the structure of a generic model and some simulation results as applied to the 

field of poultry production and processing. As an example of application, the authors 

present the consequences of dioxin infection on the supply chain of chicken industry. 

Ge et al. [25] present a system dynamics approach for the analysis of the demand 

amplification problem (Bullwhip Effect). The authors utilize a system dynamics model of 

a part of a supermarket chain in the UK to investigate the causes of the dynamic behavior 

of the system and the sources of amplification from the downstream to the upstream of 

the chain. The major objective of this research is to investigate the impact of various 

information delays, demand forecasting and information sharing on the performance of 

the supply chain. The analysis reveals that information sharing is more important than the 

methods used in forecasting and the speed of information transmission. 
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Vlachos et al. [26] present the development of a dynamic SD-based model for 

strategic remanufacturing and collection capacity planning of a single product reverse 

supply chain for product recovery. The proposed approach enables development of 

efficient capacity planning policies for remanufacturing facilities in reverse supply 

chains, taking into account both economic and environmental issues.  

Spengler and Schroter [27] modeled, using system dynamics, an integrated 

production and recovery system for supplying spare parts to evaluate possible strategies 

for meeting spare-parts demand for electronic equipment in the end-of-life service period. 

The authors use this model to examine whether and how component recovery contributes 

to supplying spare parts in the end-of-life service phase and reducing the costs of tack 

back and product recycling; to test alternative policies for managing spare parts in closed-

loop supply chains and to examine the behavior of the system, especially when the 

planners underestimate demand for spare parts and decision makers must meet the 

customer requirements. 

Rojas et al. [28] present a system dynamics methodology to understand the 

dynamics of officer supply chain in merchant marine in the UK by considering a part of 

the cadet training sub-system as an example. Their approach to manpower focuses on the 

flow of people and the flow of information through the manpower supply chain with the 

specific interest of different factors affecting this flow. 

2.3 Genetic Algorithms 

Genetic Algorithms (GAs) are search and optimization procedures that are 

motivated by the principles of natural genetics and natural selection [43]. The concept of 

GAs was first developed by John Holland and his students at the University of Michigan, 
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Ann Arbor [44]. The goals of their research have been twofold: (1) to abstract and 

rigorously explain the adaptive processes of natural systems, and (2) to design artificial 

systems software that retains the important mechanics natural selection [44]. Eventually, 

this approach has led to important discoveries and advancements in both natural and 

artificial systems science. 

Over the last decade, GAs have been extensively used as search and optimization 

tools in various problem domains, including science, commerce and engineering [43]. 

The primary reasons for their success are their broad applicability, ease of use and global 

perspective [44].  

Koza [46] states that a Genetic Algorithm (GA) transforms a population (set) of 

individual objects, each with an associated fitness value, into a new generation of the 

population using the Darwinian principle of reproduction, survival of the fittest and 

analogs of naturally occurring genetic operations such as crossover and mutation. Each 

individual in the population represents a possible solution to a given problem. The 

genetic algorithm attempts to find a very good (or best) solution to the problem by 

genetically breeding the population of individuals over a series of generations. 

2.3.1 Working Principle of Genetic Algorithms 

There are different types of genetic algorithms, but fundamentally they can be 

classified into two types, namely Binary Coded GAs and Real Coded GAs (RCGAs). The 

working principle of a conventional/binary coded algorithm is presented in this section.  

Other types of GAs work pretty much on the same principles. A simple GA that yields 

good results in many practical problems is composed of three operators: 1. Reproduction, 

2. Crossover, and 3. Mutation. [44] 
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 The description of conventional GA presented below is taken as it is from Koza’s 

[46] paper on survey of genetic algorithms and genetic programming. 

Before applying a GA to a problem, the user designs an artificial chromosome of 

a certain fixed size and then defines a mapping (encoding) between the points in the 

search space of the problem and instances of the artificial chromosome. For example, in 

applying the GA to a multidimensional optimization problem (where the goal is to find 

the global optimum of an unknown multidimensional function), the artificial 

chromosome may be a linear character string (modeled directly after the linear string of 

information found in DNA). A specific location (a gene) along this artificial chromosome 

is associated with each of the variables of the problem. Character(s) appearing at a 

particular location along the chromosome denote the value of a particular variable (i.e., 

the gene value or allele). Each individual in the population has a fitness value (which, for 

a multidimensional optimization problem, is the value of the unknown function). The 

genetic algorithm then manipulates a population of such artificial chromosomes (usually 

starting from a randomly-created initial population of strings) using the operations of 

reproduction, crossover, and mutation. Individuals are probabilistically selected to 

participate in these genetic operations based on their fitness. The goal of the genetic 

algorithm in a multidimensional optimization problem is to find an artificial chromosome 

which, when decoded and mapped back into the search space of the problem, corresponds 

to a globally optimum (or near-optimum) point in the original search space of the 

problem. 

In preparing to use the conventional genetic algorithm operating on fixed-length 

character strings to solve a problem, the user must (1) determine the representation 
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scheme, (2) determine the fitness measure, (3) determine the parameters and variables for 

controlling the algorithm, and (4) determine a way of designating the result and a 

criterion for terminating a run. 

In the conventional genetic algorithm, the individuals in the population are 

usually fixed-length character strings patterned after chromosome strings. Thus, 

specification of the representation scheme in the conventional genetic algorithm starts 

with a selection of the string length L and the alphabet size K. Often the alphabet is 

binary, so K equals 2. The most important part of the representation scheme is the 

mapping that expresses each possible point in the search space of the problem as a fixed-

length character string (i.e., as a chromosome) and each chromosome as a point in the 

search space of the problem. Selecting a representation scheme that facilitates solution of 

the problem by the genetic algorithm often requires considerable insight into the problem 

and good judgment. 

The evolutionary process is driven by the fitness measure. The fitness measure 

assigns a fitness value to each possible fixed-length character string in the population.  

The primary parameters for controlling the genetic algorithm are the population 

size, M, and the maximum number of generations to be run, G. Populations can consist of 

hundreds, thousands, tens of thousands or more individuals. There can be dozens, 

hundreds, thousands, or more generations in a run of the genetic algorithm.  

Each run of the genetic algorithm requires specification of a termination criterion 

for deciding when to terminate a run and a method of result designation. One frequently 

used method of result designation for a run of the genetic algorithm is to designate the 

best individual obtained in any generation of the population during the run (i.e., the best-
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so-far individual) as the result of the run. Once the four preparatory steps for setting up 

the genetic algorithm have been completed, the genetic algorithm can be run. 

The evolutionary process described above indicates how a globally optimum 

combination of alleles (gene values) within a fixed-size chromosome can be evolved. 

The three steps in executing the genetic algorithm operating on fixed-length 

character strings are as follows: 

1. Randomly create an initial population of individual fixed length character strings. 

2. Iteratively perform the following sub-steps on the population of strings until the 

termination criterion has been satisfied: 

(A.) Assign a fitness value to each individual in the population using the fitness 

measure.  

(B.) Create a new population of strings by applying the following three genetic 

operations. The genetic operations are applied to individual string(s) in the 

population chosen with a probability based on fitness. 

(i.) Reproduce an existing individual string by copying it into the new 

population.  

(ii.) Create two new strings from two existing strings by genetically 

recombining substrings using the crossover operation (described in the 

following section) at a randomly chosen crossover point. 

(iii.) Create a new string from an existing string by randomly mutating the 

character at one randomly chosen position in the string. 
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3. The string that is identified by the method of result designation (e.g., the best-so-

far individual) is designated as the result of the genetic algorithm for the run. This 

result may represent a solution (or an approximate solution) to the problem. 

2.3.2. Genetic Operators 

As stated earlier, genetic algorithms consist of three operators, namely Selection 

or Reproduction Operator, Crossover Operator, and Mutation Operator. 

Selection or Reproduction Operator: The genetic operation of reproduction is based on 

the Darwinian principle of reproduction and survival of the fittest. In the reproduction 

operation, an individual is probabilistically selected from the population based on its 

fitness (with reselection allowed) and then the individual is copied, without change, into 

the next generation of the population. The selection is done in such a way that the better 

an individual's fitness, the more likely it is to be selected. An important aspect of this 

probabilistic selection is that every individual, however poor its fitness, has some 

probability of selection. 

There exist a number of ways to accomplish the above mentioned task. Some 

common methods are tournament selection, proportionate selection and ranking selection. 

Deb [43] states that the tournament selection has better or equivalent convergence and 

computational time complexity properties when compared to any other reproduction 

operator that exists in the literature. 

Crossover Operator: The genetic operation of crossover (sexual recombination) allows 

new individuals (i.e., new points in the search space) to be created and tested. The 

operation of crossover starts with two parents picked randomly from the population and 
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some portion of the strings are exchanged between the strings to create two new strings. 

Each offspring contains some genetic material from each of its parents.  

Suppose that the crossover operation is to be applied to the two parental strings 

10110 and 01101 of length L = 5 over an alphabet of size K = 2. The crossover operation 

begins by randomly selecting a number between 1 and (L-1) using a uniform probability 

distribution. Suppose that the third interstitial location is selected. This location becomes 

the crossover point. Each parent is then split at this crossover point into a crossover 

fragment and a remainder. The crossover operation then recombines remainder of string 1 

(i.e., - - - 1 0) with crossover fragment 2 (i.e., 011 - -) to create offspring 2 (i.e., 01110). 

The crossover operation similarly recombines remainder 2 (i.e., - - - 01) with crossover 

fragment 1 (i.e., 101 - -) to create offspring 1 (i.e., 10101). 

There are different types of crossover operators depending on whether the GA 

under consideration is binary coded or real coded. One point, n-point cross over are 

widely used in binary coded GAs. For real coded GAs there exist Blend Crossover 

(BLX), Simulated Binary Crossover (SBX), Linear Crossover, Simplex Crossover, etc. 

Mutation Operator: The crossover operator is mainly responsible for search aspect of 

GAs, even though the mutation operator is also use for this purpose [43]. The need for 

mutation is to keep diversity in population. The operation mutation allows new 

individuals to be created. It begins by selecting an individual from the population based 

on its fitness (with reselection allowed). A point along the string is selected at random 

and the character at that point is randomly changed. The bitwise mutation operator 

changes a 1 to a 0, vice versa, with a certain mutation probability. The altered individual 

is then copied into the next generation of the population.  
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For of real parameter GAs, there exist mutation operators such as Random 

Mutation, Non-uniform Mutation, Polynomial Mutation, Normally Distributed Mutation, 

etc. 

2.3.3. Differences between GAs and other traditional optimization techniques 

Hongwei Ding et al. [17] presented some important differences between genetic 

algorithms and traditional optimization methods/algorithms. The following is a summary. 

1. GAs use an encoding of the control variables, rather than the variables 

themselves.  

2. GAs search from one population of solutions to another, rather than from 

individual to individual. It is a great advantage for searching noisy spaces 

littered with local optimum, instead of relying on a single configuration to 

search through the space. 

3. GAs use only objective function information to guide itself through the 

solution space, not derivatives. Once GA knows the value of ‘goodness’ about 

a configuration, it can use this to continuing to approach the optimum. 

4. GA is probabilistic in nature, not deterministic. This is a direct result of the 

randomization techniques used by GAs. It is not the case for most existing 

methods. 

5. One of the most attractive advantages of using GA as a design tool is its 

ability to find solutions to problems in a way completely free of 

preconceptions about what is possible and what is not. This is something that 

human designers find very difficult. 
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2.4 Genetic Algorithms and their applications in Supply Chain Management 

A literature review has been done to examine various applications of GAs in the 

field of SCM. Another important focus of this survey is to review the literature in SCM 

for applications that integrated genetic algorithms and system dynamics. 

Sudhir and Rajendran [9] propose a genetic algorithm (GA) to optimize the base-

stock levels of a single-product serial supply chain with the objective of minimizing the 

sum of holding and shortage costs in the entire supply chain. Simulation is used to 

evaluate the base stock levels generated by the GA. They prove the effectiveness of the 

proposed GA by comparing the optimal base-stock levels obtained through complete 

enumeration of the solution space with those yielded by the GA. The effectiveness of the 

proposed GA in terms of generating base-stock levels with minimum total cost is also 

compared with that of a random search procedure. 

Pal et al. [14] propose a real-coded genetic algorithm (RCGA) to solve a 

constrained non-linear mixed integer program in a two-warehouse inventory control 

problem. The proposed RCGA, applicable for mixed variables (integer and non-integer), 

makes use of ranking selection, whole arithmetic crossover and mutation (uniform 

mutation for integer variable and non-uniform for non-integer variable). Elmahi et al. 

[18] propose a similar algorithm, but utilizing different genetic operators such as roulette 

wheel selection and R-point crossover, to optimize the scheduling of transport 

equipments of a supply chain under the just-in-time setting. 

Rezg et al. [19] propose a methodology that combines a simulation model and a 

genetic algorithm (GA) for joint optimization of preventive maintenance and inventory 

control in a production line composed of n machines, in order to improve the productivity 
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of the system. A simulation model built in Promodel is used to simulate the behavior of 

the production line of n machines under various maintenance and inventory control 

strategies where as the proposed binary coded GA optimizes parameters of the simulation 

model in each iteration. The authors, comparing the results of simulation with analytical 

results, state that the joint optimization method significantly reduced the total cost. 

Truong, T.H. and Azadivar F [10] propose a hybrid approach that combines GAs, 

Mixed Integer Programming (MIP) and simulation techniques into one framework for 

designing an optimal configuration for a supply chain. Here, each configuration of supply 

chain is defined by a set of quantitative parameters (e.g. inventory levels, frequency of 

ordering etc.) as well as a set of policy and qualitative parameters (e.g. location of 

distribution centers, mode of transportation etc). In the proposed methodology, within a 

given iteration of the GA’s operators, such as crossover and mutation, a new combination 

of values for the qualitative variables is created. The MIP is then used to solve for the 

corresponding quantitative variables. After all the variables are determined, a supply 

chain simulator is invoked that automatically simulates and evaluates the performance of 

the new configuration simulation model returns the overall long run system-wide cost and 

customer service level of the supply chain.  

Tong Wu and Peter O’Grady [11] developed a methodology to improve the 

design and performance of a supply chain. A network-based approach, called Extended 

Trans-nets, has been presented which represents the design of the supply chain as an 

abstract network with ‘AND’ and ‘OR’ nodes. (Trans-Nets provide a method for 

abstracting the information in a network for supply chain modeling). They propose a 

constraint based genetic algorithm (CBGA) that is used as part of the Extended Trans-Net 
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approach to search for improvements in the design that satisfy the constraints imposed on 

the system. This approach is unique in that the CBGA is designed to operate within the 

constraints inherent in supply chain design problems. 

Cochran and Chen [12] propose a GA approach that dynamically optimizes multi-

objective production planning decisions in a manufacturing environment on a daily basis. 

The actual production planning problem is formulated as a multi-objective optimization 

problem where the objective function is a combination of three single-objective 

functions. The proposed GA searches for best or optimal weight assignments and solves 

for the best daily production planning decisions. The population of chromosomes for the 

GA is generated such that the total weights on the three individual-objective production 

plans must sum to unity. 

Felix T.S. Chan and S.H. Chung [13] propose a multi-criterion genetic algorithm 

in combination with analytic hierarchy process (AHP) to solve an order distribution 

optimization problem in a demand driven supply chain network. The problem attempted 

to solve here is to determine, for a group of collaborated suppliers, an optimal solution 

which indicates the allocation schedule of customers’ orders to suitable suppliers. The 

uniqueness of this approach is that it utilizes AHP to evaluate the fitness values of the 

chromosomes. 

Hongwei Ding et al. [15, 16, 17] have developed, utilizing genetic algorithms, 

simulation-based optimization methods for solving various supply chain management 

problems. In [15], they propose a simulation-based multi-objective optimization method 

for joint decision-making on strategic sourcing and inventory replenishment. This method 

enables decision-makers simultaneously optimize decisions at both strategic and 
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operational levels. In this method, for every individual in the population the GA 

optimizer generates a set of possible values for decision variables using which, a discrete- 

event simulator simulates the corresponding configuration of the supply chain and yields 

an estimate of the costs and demand fill-rate which in turn are used by the GA for fitness 

evaluation and further processing. Based on a similar idea, the authors present, in [16], a 

methodology to design a production-distribution network. Here, a multi-objective GA 

based on non-dominated sorting is used to direct the search for compromised solutions 

under various conflicting criteria. Also, using almost a same methodology they propose 

another algorithm [17] for supplier selection problem. 

2.5 Summary 

This literature review focuses on the classical as well as the latest research ideas 

in the field of supply chain management. The review of applications of system dynamics 

in supply chain management proves that the concept of modeling supply chains using the 

technique of system dynamics has been exploited by many researchers and a wide range 

of problems in SCM have been modeled in system dynamics. The review of applications 

of genetic algorithms in SCM reveals that GAs have been used to solve a wide variety of 

complex problems in this field.  

Inspite of the popularity of system dynamics for effectively modeling supply 

chains and the capability of genetic algorithms to provide solutions to a wide variety of 

complex problems, no application in literature was found that combined both of these 

techniques. This research work lays a foundation towards developing a methodology that 

combines system dynamics and genetic algorithms with the objective of mitigating the 
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oscillations occurring in a supply chain. With further development this methodology has 

a strong potential to become an important tool in this field. 
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CHAPTER 3: SUPPLY CHAIN MODEL DESCRIPTION 

A supply chain is a complex system by definition. In order to understand and 

explore the complexities of any supply chain, the dynamics underlying it has to be 

modeled using appropriate modeling tools [2]. As seen from the literature review, system 

dynamics is considered to be a very efficient tool for modeling a supply chain, as it is 

capable of capturing the non-linearities underlying a supply chain. 

The aim of this thesis is not to develop a supply chain model, but is to develop an 

optimization module that would minimize the oscillations of an existing supply chain 

model. Hence, a comprehensive supply chain model has been utilized to study and 

minimize the oscillations occurring in it. This chapter briefly describes the methodology 

behind the construction of the supply chain model whose oscillations this thesis is 

attempting to minimize. This model has been adapted from Lertpattarapong’s thesis [1] 

which was done in 2002 at M.I.T. It is about a leading semiconductor manufacturing 

corporation called LSMC (the actual name is omitted to respect confidentiality) which 

produces technological gadgets and complimentary products for personal computers. The 

company was facing the problem of having persistent oscillations in its finished goods 

inventory and desired capacity. Lertpattarapong [1] addressed this problem from the 

perspective of system dynamics, and after modeling the entire supply chain, he proved 

that these problems were totally endogenous and not exogenous as thought by the 

professionals of LSMC.  
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3.1 Modeling in System Dynamics 

System Dynamics is a methodology for studying the dynamics of real-world 

systems. System Dynamics methodology has been utilized in modeling the supply chain 

of LSMC. The conceptual idea behind system dynamics is that all the objects in a system 

interact through causal relationships. These relationships come about through feedback 

loops, which control the interactions between the system objects. System dynamics 

asserts that these relationships form the underlying structure for any system. The creation 

of a complete dynamic model of a system requires the identification of reference modes 

and causal relationships that form the system’s feedback loops. [5] 

Reference modes are graphs that represent historical and projected behavior of 

certain variables of interest. It is not necessary that these graphs are to be drawn to a high 

degree of precision, but their trends and varying behaviors over time, such as increasing, 

decreasing, or oscillating, must be evident. 

Feedback loops can be either negative or positive. A negative feedback loop is a 

series of causal relationships that tend to move behavior towards a goal. In contrast, a 

positive feedback loop is self-reinforcing; it amplifies disturbances in the system to create 

high variations in behavior.  

Causal loop diagrams are important tools for representing the feedback structures 

of systems. A causal loop diagram consists of variables connected by arrows denoting the 

causal influence among the variables. Figure 3.1 depicts the types of causal relationships 

and the structure of a causal loop. [5] 
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 Figure 3.1 Causal loop diagrams 

From causal loops, stock and flow structures can be developed. Stocks are 

accumulators of information or materials that characterize the state of the system. They 

generate the information upon which decisions and actions are based. They also create 

delays by accumulating the difference between the inflow and outflow of a process. 

Flows are rates that are added to (inflows) or subtracted from (outflows) a stock. Figure 

3.2 shows the components of the stock and flow diagrams. Stocks are represented by 

blocks while flows by valves. This graphical description of the system based on stocks 

and flows can be mapped into a mathematical (differential, integral etc.) description of 

the system. [5]   
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Figure 3.2 Stocks and flows in system dynamics 

3.2 System Dynamics Model of LSMC’s Supply Chain   

The supply chain of any manufacturing industry consists of suppliers, 

manufacturers, distributors, retailers and customers as its five core elements. [1] The 

classic definition of a supply chain states that it is a network, which performs the 

operations of procuring the raw material from suppliers, transformation of this material 

into intermediate and finished goods by the manufacturer, and finally distributing these 

products to the customers through a chain of retailers. It is very important to integrate all 

this five elements in order to obtain an integrated supply chain. This integrated supply 

chain would increase the overall value of organization, business and the shareholders. [2]  

As mentioned earlier, LSMC produces technological gadgets and complimentary 

products for personal computers (PCs) and hence its sales are directly related to the 

growth of the PC market, which has been very strong during the 1990s. Even though the 
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company has maintained its market share, it experienced competitive pressures and 

demand fluctuations that have impacted its SC performance. The company supplies its 

products to Original Equipment Manufacturers (OEMs) like Dell, Gateway, and Hewlett-

Packard. Since 1998, led by Dell, many OEMs changed their strategies by aggressively 

eliminating slack from their systems through the adoption of Build-To-Order (BTO) and 

Just-In-Time (JIT) processes that drastically reduced their inventory levels and allowed 

operating on only seven days or less of supply inventory. The OEMs’ “slack” was 

basically shifted to LSMC, and the other suppliers in the PC supply chain, who faced 

even greater pressure because of that. Moreover, because the PC market is unpredictable 

LSMC occasionally was not able to keep up with the demand. Competitors, on the other 

hand, introduced greater variety of high performance, lower cost products. So, LSMC had 

to introduce more improved products in order to protect its existing and potential market 

share, and this has exacerbated its supply chain problems. 

To address the company’s supply chain problems a system dynamics model was 

developed. In order to capture all the relevant variables and underlying concepts and 

develop the final model, Lertpattarapong [1] interviewed various participants from 

different departments of LSMC. Participants included a senior manager from information 

technology department who was specialized in the company’s SC, a manager from 

manufacturing department, a manager from a strategic planning department, two 

managers from SC department, and also engineers and scheduling planners from those 

departments. In addition, an analysis of historical data was conducted. Finally, reference 

modes for selected supply chain variables were developed in cooperation with the 
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managers.  The major parameters found during the analysis are explained in the following 

section. 

3.2.1 Reference Modes for LSMC Supply Chain Modeling 

1. Product Life Cycle and Demand: Product lifecycle has been decreasing for the new 

generations of products while demand on these new generations has been increasing. 

To retain its position as a market leader, LSMC is always under pressure to come out 

with new generations of its products. This drastically reduces its product life cycle. 

The hope is that the product life cycle would not decrease further with time. 

2. Actual Capacity Relative to Desired Capacity:  It was found that actual capacity 

relative to the desired capacity oscillates and the amplitude of oscillation is growing, 

indicating high instability in the supply chain. 

3. Change in Customer Orders: Because of the Build to Order (BTO) policies of 

Original Equipment Manufacturers (OEM), the contracted cancellation periods have 

been reduced from 60 days to one week. This created highly unstable signals of 

customer orders in the supply chain.  

4. Raw Material Inventory Write-Off: Due to high pace of customer order changes and 

short product life cycle, LSMC experiences increasing raw material inventory write-

offs. 

5. Average OEM Margin: OEMs have started introducing cheap products for low-end 

users who do not need powerful equipment. So LSMC had to introduce low-end 

products to retain its market share. The average profit margin has been decreasing 

over time. 
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6. Pre-Assembly Component Inventory: The pre-assembly component inventory is 

bought from various suppliers as well as manufactured indigenously at LSMC. LSMC 

managed to keep this inventory at minimum level in order to reduce the holding costs. 

However, because of the BTO policy and the complexity in the product 

configurations and architectures, it is expected that this inventory will start increasing 

in the near future. 

7. Throughput Time of Product Life Cycle Time and Working in Process (WIP) 

Inventory: Due to the increasing complexity of LSMC’s products and BTO policy of 

OEM’s, the throughput time of product life cycle time and its working in process 

inventory of LSMC and its suppliers has been steadily increasing and that of OEM 

has been decreasing. 

8. OEM’s Inventory: Because of the Build to Order policies of OEM’s, their inventories 

have reduced drastically, but it has resulted in higher inventories for LSMC and its 

suppliers. 

9. Product Inventory: If demand is less than expected, LSMC will have to hold more 

finished goods inventory which results in extra holding costs and product 

obsolescence. But if it reduces its inventory and demand increases, then it will loose 

market share and potential revenues. Therefore, LSMC should reduce the mismatch 

between market demand and inventory level.  

Once the reference modes are developed, the next step involved in the modeling 

process is to develop causal loop diagrams. The following section briefly describes the 

methodology behind the development of causal loop diagrams for LSMC supply chain 

modeling. 
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3.2.2 Causal Loop Diagrams 

Causal loop diagrams are the basis on which the whole model is built. They 

depict, graphically, the interactions and cause-and-effect relationships among all model 

variables. For LSMC’s supply chain, the causal loop diagram consists of seven segmental 

loops which are described as follows.  

1. LSMC’s market share depends on its production capacity: As capacity increases 

more shipments are made. This would increase LSMC’s market share, which would 

further induce demand growth. If LSMC has lower capacity it will not be able to fill 

in orders, so customers might shift to competitors. This effect is depicted in Figure 

3.3.
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Figure 3.3 Increase in production will result in increase in demand

2. LSMC’s expansion depends on its market share: As market share increases, more 

revenues are realized, and hence more money is invested in production capacity to 

meet the growing demand. This concept is reflected in Figure 3.4 

3. The competition for LSMC increases with the increase in profit and decreases with 

the decrease in profit: As revenues increases profits increase. This induces 

competitors to enter the market, which reduces LSMC’s market share and 
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consequently its profits. When profit margin decreases, and market becomes 

saturated, fewer competitors tend to enter this market. This logic is depicted in Figure 

3.5 
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Figure 3.4 More market share, more expansion for LSMC  
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4. Growth of LSMC: As production capacity increases, it produces and ships more 

goods. The more the revenues the more the money is invested into R&D and better 

products are developed. Because of that LSMC has been able to sell products at a 

premium price compared to its competitors. This further fuels the growth of LSMC. 

This concept is reflected in Figure 3.6 
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Figure 3.6 Growth of LSMC 

5. Product Life Cycle of LSMC Products: LSMC tries to push its new products into 

market in order to beat competition. This results in the obsolescence of its old 

products. To sell off old products, it has to introduce huge price discounts, which 

reduces its potential revenues. Further, because of product obsolescence, the pre 

ordered material has to be written off which further contributes towards decreasing 

revenues. As product life cycle decreases, the ability to respond to orders decreases. 

This effect is shown in Figure 3.7 
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Figure 3.7 Product life cycle of LSMC products 

6. Impact of Competition on LSMC Market Share: The growth in PC market increases 

competition in the OEM market. Due to this, intensive cost cuttings are going on in 

the OEM industry. OEMs work to reduce their inventories. To do so, they put 

pressure on suppliers like LSMC to decrease the cancellation time of their orders. 

Further, due to the growth in PC market, the computer chip market has been growing 

steadily too. This has resulted into the entry of many competitors of LSMC into the 

market. This effect is presented in Figure 3.8 

7. Segmentation of the Market: Due to the decreasing product life cycle, LSMC has 

divided its market into high-end segment and low-end segment. This has helped 
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reduce the inventory write-off as well as loss due to high discounts that should be 

given. This policy has helped LSMC to increase its product life cycle. The problem is 

that capacity flexibility is reduced.  

Now, all the above segmental loops can be combined together to form a complete causal 

loop diagram of LSMC supply chain. The complete causal loop diagram is shown in the 

Figure 3.9. The diagram is categorized in several areas such that it is easier to identify 

which areas in the SC system can contribute more to improving the SC behavior.  
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Figure 3.8 Impact of competition on LSMC market share 

Market and OEM areas are obviously external and not under the control of LSMC. As 

will be mentioned later, the analysis using the system dynamics model showed that the 

production management policies of LSMC were the direct causes of the oscillatory 
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behavior. In other words, the problems were due to internal factors/policies although they 

were triggered by external factors in the OEM and Market segments of the supply chain 

system. 
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Figure 3.9 Causal loop diagram of LSMC’s SC categorized in managerial action 

areas
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3.2.3 Stocks and Flows Diagram of LSMC Supply Chain 

The next step is to convert the causal loop diagrams into stocks and flows models. 

LSMC’s supply chain model is divided into three sub-models: production, shipment, and 

demand forecast and capacity models. These stocks and flows models are described 

below. Combining all the three sub-models gives the final complete model. 

3.2.3.1 Production Model 

LSMC’s production model was constructed based on Sterman’s Production Starts 

model. [6] Because Sterman’s production starts model is a generic model and it captures 

only one step production, Lertpattarapong [1] had to customize it to fit LSMC’s 

environment.  LSMC runs a push process from the pre-assembly process to the assembly 

process and runs a pull process from the assembly process to the packaging process 

where finished goods come out. LSMC’s production model is shown in Figure 3.10. The 

Expected Channel Demand for LSMC products is a smooth function of Channel Demand 

for LSMC Products. 
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Figure 3.10 Production Model (Reference-Lertpattarapong, 2002)
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3.2.3.2 Shipment Model 

Shipment model, which is the second sub-model of the final model, comprises of 

two other sum-models, namely Inventory, Backlog and Shipping sub-model and Market 

Share sub-model. 

1.) Inventory, Backlog and Shipping sub-model: Products re shipped to OEMs and 

other customers from the finished goods inventory. LSMC’s Orders Filled depends on its 

shipment capability which is a function of the ratio of Maximum Shipment Rate to 

Desired Shipment Rate. When the ratio is less than one, LSMC ships products as fast as 

its Desired Shipment Rate. However, when the ratio is greater than one it can only ship 

what it has in the finished goods inventory. 

 

Figure 3.11 Table for Order Fulfillment 

Figure 3.12 illustrates the Inventory, Backlog and Shipping sub-model. 
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Figure 3.12 Inventory, Backlog and Shipping sub-model (Lertpattarapong, 2000)  
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2.) Market Share sub-model: LSMC’s demand is driven by its market share and the 

market share is driven by LSMC’s Attractiveness which is determined by how LSMC can 

fulfill its customer’s orders. This sub-model is shown in Figure 3.13 
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Figure 3.13 Market Share sub-model (Lertpattarapong, 2000) 
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Finally, combining both of Inventory, Backlog and Shipping sub-model and 

Market Share sub-model gives LSMC’s Shipment model which is illustrated in Figure 

3.14 
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Figure 3.14 Shipment Model (Lertpattarapong, 2000) 
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3.2.3.3. Demand Forecast and Capacity Model 

This model consists of two other sub-models, namely Demand Forecast and 

Capacity sub-models. Figure 3.15 illustrates the actual demand forecast and capacity 

model.
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Figure 3.15 Demand Forecast and Capacity Model (Lertpattarapong, 2000) 

Finally, LSMC’s complete supply chain model is obtained by combining Production, 

Shipment and Demand Forecast and Capacity sub-models.  

3.3 Model Validation 

The model developed by Lertpattarapong [1] for LSMC’s supply chain was 

rebuilt in this research work using the equations he presented in his research work. This 

model has been formulated as a system of nonlinear differential equations. It is a very 

large and complicated model and there is no algebraic solution. Therefore, to check the 

correctness of the reproduced model, it has been simulated and the output (graphs for 
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different variables) has been compared with that of the original model. The results and 

graphs compared matched with each other and hence the model is reproduced correctly. 

Comparison of output of some of the variables related to production and capacity is 

presented in table 3.1 below. 

Table 3.1 Comparison of Output 

Output from Original Model  

Lertpattarapong [1] 

Output from Reproduced Model 

 (Current) 
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Finished Goods Inventory
2 M

1.65 M
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Time (Month)

Finished Goods Inventory : 2 Units
Finished Goods Inventory : 1 Units
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3.4 Important Observations about LSMC Supply Chain 

Lertpattarapong [1] studied the dynamic behavior of the LSMC supply chain 

through simulations (e.g. step response simulation, ramp response simulation), and 

techniques like eigen value analysis and loop knockout technique. Some important 

observations found are as follows. 

One of the observations is that varying time to adjust inventories, including Pre-

assembly Adjustment Time (PAT), Time to Adjust Assembly Inventory (TAAI) and 

Time to Adjust Finished Goods Inventory (TAFGI), has impacts on the oscillatory 

behavior of the product inventories. 

Another important observation is, by varying these parameters, PAT, TAAI and 

TAFGI, Channel Demand for LSMC products oscillates. This oscillation in Channel 

Demand implies that Channel Demand for LSMC products is endogenous and is caused 

by internal factors. Before seeing this insight, most senior managers in LSMC believed 

that the oscillatory demand was exogenous and the exogenous inputs caused the 

oscillatory behavior in product inventories.  
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The fluctuation in finished goods inventory (FGI) oscillates and the amplitude is 

large compared to demand and capacity. Also, capacity relative to desired capacity 

oscillates and the amplitude is growing. 

Another salient observation found through ramp response simulation is that 

ramping production also causes oscillations in both the production inventories and 

Channel Demand for LSMC products. 

3.5 Summary 

System Dynamics modeling of LSMC’s supply chain has been discussed in this 

chapter. Lertpattarapong had developed this model in order to determine if the 

oscillations taking place in product inventories (especially, finished goods inventory) and 

desired capacity were due to internal factors or external factors affecting the company. 

After the analysis, it was concluded that these oscillations were caused due to the 

influence of internal factors (in this case, production management policies) although they 

were triggered by the external factors in the OEM and Market segments of the supply 

chain system. 

This model was rebuilt and its output was compared with the original results 

(graphical validation) in order to validate it for its correctness and for further use in this 

research work. Lertpattarapong [1] found the causes for oscillations but his research did 

not attempt to develop a methodology that helps mitigate/minimize these oscillations. 

The focus of this research work is to find out what production management policies 

would possibly lessen the oscillations. The development of an optimization module that 

would mitigate the oscillations using a genetic algorithm is presented in the following 

chapter. 
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CHAPTER 4: OPTIMIZATION MODULE DEVELOPMENT 

The previous chapter dealt with a detailed discussion about LSMC’s supply chain 

model and some important observations about the oscillations occurring in it. In this 

chapter, development of a single objective real-coded genetic algorithm optimization 

module to mitigate the oscillations in Finished Goods Inventory (FGI) of LSMC supply 

chain is presented. 

4.1 Optimization Criteria for the problems in LSMC Supply Chain  

As explained in the previous chapter, variation in time to update production 

inventories, such as Pre-assembly Adjustment Time (PAT), Time to Adjust Assembly 

Inventory (TAAI), and Time to Adjust Finished Goods Inventory (TAFGI), causes 

oscillations in product inventories and channel demand. In other words, production 

management policies were the direct cause of the oscillations observed. Another 

important observation is that the fluctuation in the finished goods inventory (FGI) 

oscillates and the amplitude is large compared to demand and capacity. This fact is 

utilized as the basis for developing the optimization module. 

There are certain variables/parameters in LSMC’s supply chain model that are 

independent and are in the control of LSMC { e.g. manufacturing cycle time, time to 

update inventories (e.g. PAT, TAAI, etc.), minimum order processing time, time to 

complete assembly, etc.}.  Most of these variables, including those that are responsible 

for oscillations as discussed in the previous chapter, belong to the production and 

shipment models. No attempt has been made in the previous research work to find the 

optimal values for these variables that would considerably lessen the oscillations. 
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It is in this context that this research work proposes a methodology to find the 

optimal/near-optimal values for a set of pre-defined variables that would mitigate the 

oscillations. As a preliminary step, a set of five important variables has been chosen. The 

optimal/near-optimal values for these variables that would minimize the oscillations in 

finished goods inventory (FGI) will be found using a real coded genetic algorithm 

(RCGA). The methodology behind developing the proposed RCGA is explained in the 

following sections. 

The five variables chosen for the purpose of minimizing the oscillations in 

finished goods inventory are as follows. 

1. Pre-assembly Adjustment Time (PAT) 

2. Time to Adjust Assembly Inventory (TAAI) 

3. Time to Adjust Finished Goods Inventory (TAFGI) 

4. Manufacturing Cycle Time (MCTime) 

5. Minimum Order Processing Time (MOPTime) 

4.2 Development of Real-Coded Genetic Algorithm 

The working principle of a conventional genetic algorithm has been explained in 

Section 2.3.1 of Literature Review. A real-coded genetic algorithm (RCGA) also works 

on the same principles but the only difference lies in the genetic operators used.  

The RCGA presented in this thesis has been developed and implemented in C++ 

language. The basic structure and genetic operators of this algorithm have been adopted 

from the real-coded algorithm developed by Dr. Deb Kalyanmoy [47]. 

The basic objective behind developing this algorithm is to find the optimal/near-

optimal values for the set of five variables mentioned in the previous section that would 
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minimize the oscillations in the finished goods inventory (FGI) of LSMC supply chain. 

The graph of FGI for the original LSMC model looks as is shown in Figure 4.1. The 

oscillations in the curve can be very clearly seen. 

 

Figure 4.1 Finished Goods Inventory of LSMC Supply Chain 

The criterion used to minimize these oscillations in FGI is to minimize the area 

under this curve. An imaginary axis (shown in red in Figure 4.1) is imagined at the initial 

condition and the absolute value of the area under the curve about this imaginary axis is 

minimized. When the area under the curve is zero, the curve is just a straight line 

meaning that FGI remains constant over time. The RCGA developed takes as input, the 

lower and upper bounds of the five variables mentioned above, and attempts to find the 

optimal/near-optimal values (for these five variables) that would give rise to a FGI curve 

with the minimum area possible. 

 56



The following sub-sections present an explanation of the working steps of the 

developed algorithm, a brief description of the C++ program and how it is integrated with 

the LSMC’s system dynamics supply chain model in Vensim, and how to run the actual 

program to obtain the result.  

4.2.1. Working Procedure of the RCGA 

The following is a description of the sequential steps involved in the working of 

the proposed algorithm. The flowchart presented in Figure 4.2 clearly depicts all these 

steps as they are implemented by the C++ program. 

1. Reading the Input File: The very first step in the algorithm is to read the input from 

the input file. The input file is a simple notepad document containing the parameters 

for controlling the algorithm (e.g. number of generations, population size, etc.), and 

the lower and upper limits of the five variables (MCTime, MOPTime, TAAI, PAT, 

TAFGI). The input file is controlled by the user. (More details about the input file are 

presented in Section 4.3.1). 

2. Initializing the population: The next step in the algorithm is to randomly create an 

initial population. This population contains as many individuals as the Population 

Size mentioned in the input file. 

Each individual is a set of five values, one for each of the five variables (MCTime, 

MOPTime, TAAI, PAT, and TAFGI), generated within the specified lower and upper 

bounds of that variable. 

3. Fitness evaluation and new population creation: The following sub-steps are 

iteratively performed on each generation of the population until a specified number of 

runs of the algorithm are performed. 
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(A.) The fitness of each individual in the population is evaluated. Fitness of an 

individual in this case is nothing but the absolute value of the area of the FGI 

curve generated by simulating the supply chain model with the values of the 

variables corresponding to that individual. (For calculating the area of the FGI 

curve, a new variable (AreaFGI) has been added to the original model that 

integrates the FGI curve between the specified time limits to compute the area 

under the curve). 

 Actually, the C++ program, after creating each generation of the population, 

sends each individual (set of five values) in the population to the Vensim 

simulation model by means of VensimDLL (Vensim Dynamic Link Library) 

and simulates the model with these values, and retrieves the area of the FGI 

curve. Then, the area of the curve corresponding to that individual is assigned 

as its fitness. 

(B.) At the end of each generation, the fitness of all individuals in that generation 

is compared and the individual that is identified to be having the best fitness 

(i.e. the least area for FGI curve) is designated as the result of the algorithm 

for that generation. 

(C.) Creating new population: A new population of individuals is created by 

applying the following three genetic operators. The genetic operations are 

applied to the individuals in the population chosen with a probability based on 

their fitness. 

(i.) Selection or Reproduction: The primary objective of reproduction 

operator is to make duplicates of good solutions and eliminate bad 
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solutions in a population, while keeping the population size constant. 

The proposed algorithm uses Stochastic Remainder Roulette-Wheel 

(SRRW) selection operator to create a new population. This operator is 

explained in the next sub-section. 

(ii.) Crossover: A crossover operator called Simulated Binary Crossover 

(SBX) with a pre-defined probability (Pc=0.5) is applied next to the 

variables of the mating pool in order to produce new solutions. SBX 

operator is explained in the next sub-section. 

(iii.) Mutation:  The need for mutation is to keep diversity in the population. 

After the use reproduction and crossover, polynomial mutation operator, 

explained in the next sub-section, is applied in order to induce some 

diversity in the population.  

After a new population has been created using the genetic operators, the 

fitness evaluation of the population is performed (as mentioned in sub-step A) 

followed by identifying the best individual for that generation of the algorithm 

(sub-step B). 

4. After every single run of the algorithm, the individual that is identified to be having 

the best fitness (among all the generations in this run) is designated as the result of the 

algorithm for that run. After all the specified number of runs of the algorithm are 

performed, the individual having the best fitness among all the runs is designated as 

final result of the algorithm, which represents a solution (or an approximate solution) 

to the problem.  
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Figure 4.2 Working Steps of the RCGA in the C++ Program
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4.2.2. Genetic Operators Used in the RCGA 

This section describes the genetic operators used in the RCGA for selection, 

crossover and mutation operations. 

1. Stochastic Roulette-Wheel Section (SRWS): In order to explain SRWS, roulette-

wheel selection (RWS) operator is first explained. In RWS, solutions are assigned 

copies, the number of which is proportional to their fitness. If the average fitness of 

all the population members is favg, a solution with a fitness fi gets an expected 

number of copies equal to fi/favg.The implementation of this selection operator 

can be thought of as a roulette-wheel mechanism, where the wheel is divided into N 

(population size) divisions, where the size of each is marked in proportion to the 

fitness of each population member. Thereafter, the wheel is spun N times, each time 

choosing the solution indicated by the pointer of the roulette-wheel. This operation 

can be easily simulated on a computer. Using the fitness value of all the solutions, the 

probability of selecting the ith
 solution is pi = f i /∑ =

N

j 1 jf .Thereafter, the cumulative 

probability (Pi =∑ ) of each solution is calculated by adding the individual 

probabilities from the top of the list of solutions. Thus, the bottom-most in the 

population has a cumulative probability (P

=

i

j 1 jp

N) equal to 1. The roulette-wheel concept 

can be simulated by realizing that the ith solution in the population represents the 

cumulative probability values in the range [Pi-1, Pi]. In order to choose N solutions, N 

random numbers between zero and one are generated. Thus, a solution that represents 

the chosen random number in the cumulative probability range (calculated from the 

fitness values) for the solution is copied to mating pool.  
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The above implementation of the RWS is noisy in the sense of introducing a large 

variance in its realizations. This variance may be reduced by using a somewhat 

deterministic version of the RWS operator, called Stochastic Roulette-Wheel 

Selection (SRWS) operator. In SRWS, the probabilities pi are multiplied by the 

population size and the expected number of copies is calculated for all solutions. 

Thereafter, each solution is first assigned a number of copies equal to the integer part 

of the expected number. Thereafter, the usual roulette-wheel selection operator is 

applied to the fractional part of the expected number of all solutions to assign further 

copies. Since a part of the assignment process is deterministic, this operator is less 

noisy. 

2. Simulated Binary Crossover (SBX): Deb [43] developed SBX operator, which works 

on two parent solutions and creates two offspring. SBX operator simulates the 

working principle of the single-point crossover on binary strings. The procedure of 

computing the offspring Xi
 (1, t+1) and Xi

 (2, t+1) from parent solutions Xi
 (1, t)

 and Xi
 (2, t) 

is described as follows. 

A spread factor (βi) is defined as the ratio of the absolute difference in offspring 

values to the parents: βi =  
xx
xx

  t)(1,
i

  t)(2,
i

1)  t(1,
i

1)  t(2,
i

−

− ++

 

The following is a step-by-step procedure to create the offspring from the parents. 

Step 1: Choose a random number Ui ∈ [0, 1). 

Step 2: From a specified probability distribution function, the ordinate βq i  is found so 

that the area under the probability curve from 0 to βq i  is equal to the chosen random 

number Ui. The probability distribution used to create the offspring is as follows [43]: 
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      P (βi) = 0.5* (η + 1)* (βi)η,  if   βi ≤ 1 

                = 0.5* (η + 1)*(1 /βi
 η+2), otherwise; where η is a non-negative real number. 

After equating the area under the above probability curve to Ui, the value of βq i is 

given as follows. 

    βq i = (2Ui)1/η+1,  if Ui ≤ 0.5 

          = [2(1-Ui)] -1/η+1, otherwise   

Step 3: After computing βqi, the offspring are computed using the following 

equations. 

   Xi
 (1, t+1) = 0.5 {(1 + βq i) Xi

 (1, t) + (1- βq i) Xi
 (2, t)}, 

   Xi
 (2, t+1) = 0.5 {(1 - βq i) Xi

 (1, t) + (1 + βq i) Xi
 (2, t)}. 

A value of η=2 has been used in the actual algorithm implementation. 

3. Polynomial Mutation: A mutated solution Yi
(1, t+1) using polynomial mutation is 

obtained as follows. 

                        Yi 
(1, t+1) =   Xi

 (1, t+1) + {Xi (U) - Xi (L)}δi , where δi is calculated from the 

polynomial probability distribution P(δ) = 0.5 (η+1) (1-|δ|) η as follows: 

                        δi = (2.ri) (1/η+1) – 1, if ri < 0.5, 

                            = 1 – [2(1- ri) (1/η+1), if ri ≥ 0.5. {Random number, ri ∈ [0, 1)} 

A value of η=20 has been used in the actual algorithm implementation. 
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4.3 The C++ Program for RCGA and its Integration with Vensim System Dynamics 

Model 

A computer program in C++ language has been developed to implement the 

algorithm. The working steps of this program are presented in Figure 4.2. The basic 

structure and genetic operators for this program have been adopted from the code 

developed by Dr. Deb [47]. The following is a screen shot of the actual program 

developed in Microsoft Visual Studio. 

 

Figure 4.3 A screen shot of the C++ program 

This program is comprised of a couple of Source files (e.g. tst.cpp) and Header 

files (e.g. genetic.h). The main logic of the algorithm is contained in tst.cpp, genetic.h 

and vensim_logic.h. The rest of the files are just the supporting files. 

tst.cpp: This is the main application source file. In order to run the algorithm, this 

program must be built and executed. This program initiates the algorithm by calling the 
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functions in the header files genetic.h and vensim_logic.h; First the sub-routine 

‘load_model()’ in the header file vensim_logic.h is called. This sub-routine loads the 

specified vensim model (LSMC supply chain model), ready to be simulated with the 

values generated by the genetic algorithm. Upon successful loading of the specified 

model, the sub-routine ‘this_main()’ in the header file genetic.h is called. This sub-

routine starts the genetic algorithm. 

vensim_logic.h: This header file contains the logic to load the vensim simulation model 

and passing the values of the five variables (MCTime, MOPTime, TAAT, PAT, and 

TAFGI) generated by the genetic algorithm, simulate the model with these values and 

finally retrieve the value of the absolute value of the area under the finished goods 

inventory curve. The retrieved value of the area is sent to genetic.h for fitness evaluation.  

The process of sending and retrieving the values to and from the vensim model is 

carried out by means of Vensim Dynamic Link Library (DLL). The Vensim DLL is a 

separate program (that comes with the software itself) that can be called from other 

applications such as Visual Basic, Visual C++, Excel, Delphi etc. in order to be able to 

use the models developed in Vensim. It is very important to include the vendll.h header 

file (that comes with software itself) in the C++ program whenever an application is 

making use of Vensim DLL [48].  

genetic.h: This header file contains the actual logic for the genetic algorithm. The 

parameters for the GA and the limits for the five variables are given through as input file 

called ‘input.txt’ (explained in next section). The logic for reading the values from this 

input file is present in genetic.h. After reading the values, the genetic algorithm is run (all 
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the steps mentioned in Section 4.2.1) over a specified number of runs and the output is 

written to an output file called ‘realga.out’.  

The input data to be presented to the algorithm and the format of the output result 

are discussed in the next section. 

4.3.1. Running the Algorithm 

The section presents the format of the data to be presented to the input file, how to 

run the C++ program and how to see the output. 

Input File (input.txt): Input file is a simple notepad file (.txt) through which the 

program reads certain values. Before running the algorithm the parameters for the genetic 

algorithm (e.g. number of runs, number of generations, etc.) and the limits (lower and 

upper limits) for the five variables are to be specified through this input file. An example 

input file is shown in the Figure 4.3. 

  

Figure 4.4 Example Input File  
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It is very important to input these values only in the order mentioned below. This 

is the exact order in which the program reads the values. 

1. Number of Generations 

2. Population Size 

3. Probability of Crossover  

4. Probability of Mutation 

5. Lower Limit for MCTime (Manufacturing Cycle Time) 

6. Upper Limit for MCTime 

7. Lower Limit for MOPTime (Minimum Order Processing Time) 

8. Upper Limit for MOPTime 

9. Lower Limit for TAAI (Time to Adjust Assembly Inventory) 

10. Upper Limit for TAAI 

11. Lower Limit for PAT (Pre Assembly Adjustment Time) 

12. Upper Limit for PAT 

13. Lower Limit for TAFGI (Time to Adjust Finished Goods Inventory) 

14. Upper Limit for TAFGI 

15. Number of Runs 

16. Selection Strategy (=3 by default, for Stochastic Roulette Wheel Selection) 

17. Crossover Strategy (=2 by default, for Simulated Binary Crossover) 

18. Exponent (η) for Crossover ( A value of  η = 2 is used) 

19. Exponent (η) for Mutation (A value of η = 20 is used) 

20. Random seed (A value between 0 and 1, required to start the initialization process) 
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Running the Program: The next step after inputting the values is to run the program. As 

mentioned earlier, tst.cpp is the main application source file. For running the program the 

executable file tst.exe has to built and run. Once the program is successfully run, the 

output is written into the file ‘realga.out’.    

 

Figure 4.5 Example Output File 

Output File (realga.out): The output file ‘realga.out’ generated after running the 

program looks as is shown in the Figure 4.4. The statistics (maximum, minimum and best 

ever fitness) for every run of the algorithm and the values of the five variables (MCTime, 
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MOPTime, TAAI, PAT and TAFGI in that order) which produced the best fitness 

(minimum area) for that run are reported in the output file. Also, the run which has the 

best fitness (Best-ever fitness) among all the runs is presented at the end of the report. 

The variable values corresponding to the run, which has the best-ever fitness represent a 

solution to the problem. 

After obtaining the variable values of the best-ever fitness run, these values are 

substituted in the original LSMC model and is run in order to compare the output of the 

original LSMC supply chain model with that obtained using the values from the RCGA. 

4.4 Results and Analysis for LSMC Model 

The genetic algorithm for LSMC model was run using the input values mentioned 

below. 

1. Number of Generations = 20 

2. Population Size = 30 

3. Probability of Crossover = 0.5 

4. Probability of Mutation = 0.05 

5. Lower and Upper Limits for MCTime = (1, 3) 

6. Lower and Upper Limits for MOPTime = (0.1, 1) 

7. Lower and Upper Limits for TAAI = (0.1, 8) 

8. Lower and Upper Limits for PAT = (0.5, 10) 

9. Lower and Upper Limits for TAFGI = (0.5, 10) 

10. Number of Runs = 30 

11. Selection Strategy (=3 by default, for Stochastic Roulette Wheel Selection) 

12. Crossover Strategy (=2 by default, for Simulated Binary Crossover) 

 69



13. Exponent (η) for Crossover ( A value of  η = 2 is used) 

14. Exponent (η) for Mutation (A value of η = 20 is used) 

15. Random seed = 0.123 

The values of the five variables obtained for the RCGA using the above values as 

the input are as follows. 

1. Manufacturing Cycle Time = 2.090522 months 

2. Minimum Order Processing Time = 0.229353 months 

3. Time to Adjust Assembly Inventory = 6.240052 weeks 

4. Pre Assembly Adjustment Time = 2.612051 weeks 

5. Time to Adjust Finished Goods Inventory = 8.229517 weeks 

A comparison of the values of the five variables obtained from the genetic algorithm with 

that of the original LSMC model values is presented in Table 4.1.  

Table 4.1 Comparison of new variable values with the original values

 New Values from GA
Original Values from

LSMC Model 

Manufacturing Cycle Time 2.090522 months 2 months 

Minimum Order Processing Time 0.229353 months 0.25 months 

Time to Adjust Assembly Inventory 6.240052 weeks 0.5 weeks 

Pre Assembly Adjustment Time 2.612051 weeks 2 weeks 

Time to Adjust Finished Goods Inventory 8.229517 weeks 2 weeks 

 

The finished goods inventory curve obtained after simulating the LSMC model 

with these new variable values is shown in the Figure 4.5. The curve shown in blue is the 
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original curve. The new curve (shown in red) obtained using the proposed algorithm is 

relatively better than the original one in terms of the oscillations occurring in the finished 

goods inventory. Hence, the proposed methodology, though in its preliminary stage, is 

quite capable of minimizing the oscillations in finished goods inventory.  

 

           Figure 4.6 Finished Goods Inventory curve with reduced oscillations 

An interesting point about the new values is that the Manufacturing Cycle Time 

does not vary much which is a good sign. Also, from the comparison of the values (Table 

4.1), it is evident that LSMC has to reduce its Minimum Order Processing time and needs 

more time to adjust inventories (TAAI, PAT and TAFGI) in order to be able to have less 

oscillation in the finished goods inventory.        
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CHAPTER 5: CONCLUSION 

5.1 Conclusion 

The objective of this thesis is to develop a unique methodology to minimize the 

oscillations occurring in a supply chain by combining the techniques of System 

Dynamics and Genetic Algorithms. The proposed methodology utilizes the modeling 

flexibilities of system dynamics to model complex systems and the capability of genetic 

algorithms to search complex and non-linear search spaces. Utilizing the traditional 

optimization techniques to accomplish the same task would be much more difficult and 

tedious. 

This methodology, though is in its preliminary stage, definitely is promising and 

has a high potential to be developed into an effective SCM solution with the use of 

advanced genetic operators and other latest developments in genetic algorithms.  

5.2 Contribution of the Thesis 

System Dynamics has been well recognized and widely accepted and used by 

many researchers as an efficient technique for modeling complex systems. Many 

applications have been found in the literature that involve extensive use of system 

dynamics to model complex supply chains in order to understand their dynamics and 

devise effective policies for improved performance. On the other hand, Genetic 

Algorithms are well known for their optimization capabilities in complex search spaces. 

GAs have been explored to a great extent for solving a wide variety of complex 

optimization problems not only in SCM but also in many other fields.  
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Inspite of their popularity and capability, no application was found in the 

literature that combined both of these techniques, exploiting their combined power, 

towards improving the performance of a supply chain. The methodology proposed in this 

research work contributes to fill this gap. This idea also provides a good field to delve in 

for further research and work to come. 

5.3 Scope of the Thesis 

This thesis utilizes expertise mainly from the fields of system dynamics and 

genetic algorithms. The concepts of feedback loops and dynamic modeling have been 

adapted from system dynamics. The methodology described to minimize the oscillations 

in a supply chain by stochastically searching for near-optimal solution has been 

developed using the concepts of genetic algorithms. The methodology presented in this 

thesis is a novel approach to solve a supply chain problem. There is immense potential 

for the extension of this work, in order to make a more robust approach. The following 

section presents a few potential ideas for future work. 

5.4 Ideas for Potential Future Work 

A couple of vital improvements, including but not limited to the ones mentioned 

below, can be made to the genetic algorithm employed to minimize the oscillations.  

• Employing new genetic operators and search concepts: Making use of latest 

advances in genetic operators and implementing the latest search concepts like 

non-dominated sorting [43] would make the proposed approach more valuable. 

• Number of variables: The proposed methodology uses only five variables which 

are considered very important and vital in minimizing the oscillations of finished 
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goods inventory. However, considering each and every variable that would affect 

the problem would be crucial in developing a more robust algorithm. 

• Multi-objective Genetic Algorithm: The proposed methodology takes into 

consideration only the objective of minimizing the oscillations in finished goods 

inventory, whereas developing a multi-objective optimization algorithm would be 

very interesting to the context of a real-world business setting. This is very 

important because we would like to optimize not only Finished Goods Inventory 

but also Assembly Inventory and other supply chain parameters. 

• Handling Constraints: Adding the capability of handling the user specified 

constraints to the present algorithm would be a good improvement. 

• Genetic algorithms and eigen-value analysis: The concept of eigen-value analysis 

and eigen-value elasticity are used to analyze the behavior of linear dynamic 

systems. These concepts have also been used to analyze and understand complex 

supply chains. Combining eigen-value analysis and genetic algorithms to analyze 

supply chain oscillations could provide interesting insights. 
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