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ABSTRACT

Video coding is widely used in our daily life. Due to its high computational complexity,

hardware implementation is usually preferred. In this research, we investigate both ASIC

hardware design approach and reconfigurable hardware design approach for video coding

applications.

First, we present a unified architecture that can perform Discrete Cosine Transform

(DCT), Inverse Discrete Cosine Transform (IDCT), DCT domain motion estimation and

compensation (DCT-ME/MC). Our proposed architecture is a Wavefront Array-based Pro-

cessor with a highly modular structure consisting of 8 × 8 Processing Elements (PEs). By

utilizing statistical properties and arithmetic operations, it can be used as a high perfor-

mance hardware accelerator for video transcoding applications. We show how different core

algorithms can be mapped onto the same hardware fabric and can be executed through the

pre-defined PEs. In addition to the simplified design process of the proposed architecture

and savings of the hardware resources, we also demonstrate that high throughput rate can be

achieved for IDCT and DCT-MC by fully utilizing the sparseness property of DCT coefficient

matrix.

Compared to fixed hardware architecture using ASIC design approach, reconfigurable

hardware design approach has higher flexibility, lower cost, and faster time-to-market. We
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propose a self-reconfigurable platform which can reconfigure the architecture of DCT com-

putations during run-time using dynamic partial reconfiguration. The scalable architecture

for DCT computations can compute different number of DCT coefficients in the zig-zag

scan order to adapt to different requirements, such as power consumption, hardware re-

source, and performance. We propose a configuration manager which is implemented in

the embedded processor in order to adaptively control the reconfiguration of scalable DCT

architecture during run-time. In addition, we use LZSS algorithm for compression of the

partial bitstreams and on-chip BlockRAM as a cache to reduce latency overhead for loading

the partial bitstreams from the off-chip memory for run-time reconfiguration. A hardware

module is designed for parallel reconfiguration of the partial bitstreams. The experimental

results show that our approach can reduce the external memory accesses by 69% and can

achieve 400 MBytes/s reconfiguration rate. Detailed trade-offs of power, throughput, and

quality are investigated, and used as a criterion for self-reconfiguration. Prediction algorithm

of zero quantized DCT (ZQDCT) to control the run-time reconfiguration of the proposed

scalable architecture has been used, and 12 different modes of DCT computations including

zonal coding, multi-block processing, and parallel-sequential stage modes are supported to

reduce power consumptions, required hardware resources, and computation time with a small

quality degradation. Detailed trade-offs of power, throughput, and quality are investigated,

and used as a criterion for self-reconfiguration to meet the requirements set by the users.
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CHAPTER 1

INTRODUCTION

1.1 Reconfigurable Computing

Due to the increasing complexity of today’s SoC design, it becomes common to use pre-

defined Intellectual Property (IP) cores to meet the requirements such as manufacturing yield

and time-to-market schedule. These standard IP-cores are used as building blocks to simplify

the design of more complex systems through ASIC or FPGA design flows. Currently, various

IP cores for image/video signal processing applications are commercially available in the

market. These cores are pre-constructed circuits with details of area, power, and performance

provided by the vendors, and difficult to be modified by the users. These offerings are suitable

for the standard ASIC design flow since these cores are designed separately to perform

tailored complex operations to maximize the performance, and hardware architecture of IP

core fixed at design time will not be adjusted in ASIC implementation after fabrication

process. However, its fixed architecture provides inherent limitation of achieving adaptive

computing capabilities in terms of area, power, and performance when it is used on the

FPGAs. Therefore, it becomes difficult to apply dynamic approaches for designing highly

adaptable and evolvable system by using those commercial hard IP cores.
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Reconfigurable hardware, such as Field Programmable Gate Array (FPGA), can now

accommodate digital systems with more than 10 million equivalent gates in its reconfig-

urable fabric. Moreover, its abundant hardware resources, such as configurable logic blocks

and programmable interconnect resources, can be considered as ”ready to be used” vir-

tual multiprocessors. Therefore, its unlimited capabilities of various design configurations

and dedicated hardware components, such as microprocessors, DSP logics, memory blocks,

and other specific modules, make FPGAs one of the ideal platforms to implement and test

homogeneous or heterogeneous multiprocessor SoC (MPSoC) [SRR06] [GHP08].

Currently, more and more applications are choosing FPGAs as an implementation plat-

form due to its flexibility, low cost, and fast time-to-market. In addition, adaptability of

computing systems to support various multimedia formats and equipments with different

computational requirements is highly desirable in the ubiquitous and seamless computing

era. However, it reduces the benefits significantly to use pre-constructed IP-cores on the

reconfigurable hardware platform since these traditional approaches suitable for the stan-

dard ASIC design flow can not change its own architecture efficiently to adapt to changing

environments.

Dynamic partial reconfiguration is a more advanced methodology of FPGA reconfigura-

bility from Xilinx [LBM06]. The main advantage of dynamic partial reconfiguration is that

it can change the configuration of the FPGA during the run-time. In addition, it can reduce

the bitstream sizes and the reconfiguration time. Self-reconfiguration can be achieved using
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Internal Configuration Access Port (ICAP) as a configuration interface and use embedded

processor to control the reconfiguration during the run-time.

Majer et al. developed a new FPGA-based reconfigurable computer called the Erlangen

Slot Machine (ESM) [MTA07]. It uses slot based architecture which allows the slots to be

reconfigured independently of each other during run-time.

Claus et al. proposed a reconfigurable hardware architecture for video-based driver as-

sistance applications in future automotive systems [CZM07]. Different operations such as

shape engine, tunnel engine, and taillight engine, can be dynamically reconfigured during

run-time.

Braun et al. presented a waveform-like reconfiguration for dynamic partial reconfigura-

tion [BPK08]. It decreases the overhead of reconfiguration by dividing the reconfiguration

modules according to the specific data graph. Therefore, some parts of the data graph start

processing while the following parts of the data graph are still being reconfigured.

Bayar and Yudakul designed a parallel configuration access port core with bitstream de-

compression module for self-reconfiguration [Bay08]. The partial bitstreams are stored in

the BlockRAM and decompressed via cPCAP core at the time of reconfiguration. They used

Virtex-II device and can achieve reconfiguration speed at 50 MBytes. However, the disad-

vantage of their approach is to increase reconfiguration overhead due to the decompression

process during the run-time reconfiguration. Since they store all the partial bitstreams in

the BlockRAM, this approach will be inefficient when the number of partial bitstreams is

increasing.
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1.2 Video Coding

Video coding technology has been developed rapidly over the last decades. MPEG-2

and MPEG-4 standards developed by ISO/IEC Moving Picture Expert Group (MPEG) are

widely used in Digital Television (DTV) Broadcasting, DVD, Video-On-Demand (VOD), and

video recording in digital camera. H.263 and H.264 standards by International Telecommu-

nication Union - Telecommunication Standardization Sector (ITU-T) are commonly used in

video conferencing and video telephony [WSB03] [OBL04] [RR03]. Functional blocks with

high computational complexities, such as Discrete Cosine Transform (DCT), Inverse Discrete

Cosine Transform (IDCT), Motion Estimation & Compensation (ME & MC) are the core

algorithms commonly used in these standards. DCT, motion estimation and compensation,

Quantization, and entropy coding are used to remove spatial, temporal, and statistical re-

dundancies present in the video data. These tasks together consume about 90% of the total

computation time in video coding [GGA92]. These functional blocks have high computa-

tional complexities and also significantly influence the visual quality of reconstructed images

at a given bit rate. Due to their high computational complexities, hardware implementations

have been preferred to satisfy real-time requirements of video coding systems [PC05].

A typical video encoder structure is shown in Fig. 1.1 [HB96]. Motion estimation is used

to reduce inter-frame temporal redundancy, i.e., generating motion vectors by comparing

current frame with reference frame. On the other hand, DCT is used to reduce intra-

frame spatial redundancy by transferring data from spatial domain to frequency domain.
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After DCT coefficients are computed, most energy will be concentrated into low frequency

coefficients, and many other high frequency coefficients will be close to zero. Compression is

achieved by discarding these near zero coefficients. Besides DCT, quantization (Q), variable

length coding (VLC), and buffer control (BUF) unit are also included in a typical encoder

system. The inverse quantization (IQ) and inverse DCT (IDCT) are used to reconstruct the

reference frame, which will be used in motion compensated predictor and motion estimation

unit.

DCT Q VLC

IQ

IDCT

BUF

Motion 
Compensated 

Predictor

Motion 
Estimation

Video
Compressed

Bitstream

Figure 1.1: Typical video encoder structure

Typically, DCT coefficients are calculated on an 8 × 8 block by block basis. However,

since most of the high frequency coefficients are likely to be zeros after quantization process,

it becomes inefficient to compute all of the 64 DCT coefficients and discard most of the

high frequency DCT coefficients during the quantization process. Adaptive control of the

number of DCT coefficients to be encoded can reduce the power consumptions, increase the

throughput, and reduce the bandwidth, with a small trade-off in image/video quality.
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Xanthopoulos and Chandrakasan proposed a low-power DA-based DCT core using adap-

tive bitwidth and arithmetic activity considering signal correlations and quantization [XC00].

First, they used a MSB rejection (MSBR) module to reduce the number of arithmetic op-

erations required in the presence of correlated inputs. Second, they used a row-column

classification (RCC) module to reduce the overall signal activity by introducing a small error

in the arithmetic computation. While they added MSB circuits and RCC circuits to control

the inputs to the DCT computations, their architecture is fixed for DCT computations.

Vleuten et al. proposed a low-complexity scalable DCT image compression scheme [VKH00].

It eliminates entropy coding and quantization and achieves quality scalability by encoding

the DCT coefficients bit plane by bit plane. They used an adaptive rectangular zone for

DCT encoding.

Kinane et al. proposed an energy-efficient hardware architecture for variable N-point

1D-DCT which can be used to implement the shape adaptive DCT [KMO04]. They used a

new distributed arithmetic architecture (NEDA) for the 1D-DCT implementation [SPC02].

They used clock gating to shut down the redundant logic based on the value N.

Chang et al. proposed an implementation of 8 × 8 2D-DCT chip design using direct

2-D algorithm. The parallel distributed arithmetic technique is used to realize constant

multiplication [CJC00]. ROM is used in the 1D-DCT basic cell, and transposed memory is

used for 2D-DCT implementation. The chip is implemented using TSMC 0.6 µm technology,

and 138 mW power consumption at 100MHz is achieved.
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Ghosh et al. presented an implementation of a 2D-DCT architecture using coefficient

distributed arithmetic (CoDA) for low-power applications [GVB05]. It uses no ROMs, and

minimum number of additions are used. A transpose memory is used for 2D-DCT imple-

mentation. The design is implemented using FPGA consuming 281 mW power at 50MHz.

Gong et al. proposed a new cost-effective VLSI implementation of a 2-D DCT [GHC04].

Different from [CJC00] and [GVB05], it uses transpose free row column decomposition

method. It replaces the transpose circuits with permutation networks and parallel mem-

ory modules. The design is implemented using 0.25 µm CMOS technology, and the area was

about 1.5 mm2 with the operating clock frequency at 125 MHz.

1.3 Transcoding

With the development of communication technology and consumer electronics, multi-

media contents are transmitted over a heterogeneous wired or wireless networks with dif-

ferent bandwidth requirements, and received by various terminal devices such as laptop,

personal digital assistant (PDA), and cell phone with different capabilities (computing, dis-

play, power, quality). Video transcoding is a key technology to adapt the video contents

dynamically to meet different requirements of network capabilities and terminal device ca-

pabilities [XLS05] [VCS03] [AWS05]. Video transcoding is to transform the encoded video

streams from one format to another. There are different kinds of transcoders. First, it

can be used to change the bit-rate for different bandwidth requirements [YSX99] [AG05].
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Second, it can be used to change spatial or temporal resolution [ZYB98]. Third, it can be

used to convert from one standard to another [QSL06]. Fourth, it can be used to insert

new information such as logo, watermark, and error-resilience features to the encoded video

streams [HG98] [SK96].

Transcoding architectures can be categorized into spatial domain approach and DCT do-

main approach. Spatial domain approach is to change the video streams’ parameters in the

spatial domain [YSX99], while DCT domain approach is to change the video streams’ param-

eters in the DCT domain [AG05] [ZYB98]. Spatial domain transcoder is more computation-

intensive than DCT domain transcoder because spatial domain transcoder needs to perform

IDCT and DCT pair to transform the video streams. An example of the DCT domain

transcoder is shown in Fig. 1.2. CIF to QCIF down conversion in the DCT domain is

achieved without using IDCT and DCT pair. Motion compensation is performed directly

in the DCT domain. 40% reduction in computational complexity is achieved by using this

approach.

DCT-
domain
Down-

conversion

IQVLD

DCT-
MC

FM

Q VLC

IQ

FM
DCT-
MC

CIF QCIF

MVs

Figure 1.2: CIF to QCIF down-conversion in the DCT domain.
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DCT-MC is the major computation-expensive component in the DCT domain transcoder.

Therefore, improving performance of DCT-MC is critical to enhance the overall performance

of DCT domain transcoder. Compared to software implementation, hardware implementa-

tion of DCT-MC can improve the performance of DCT-MC by exploring the data parallelism

of DCT-MC computations. Our implementation can take advantage of the sparseness of DCT

coefficients matrix to further reduce the computational complexity of DCT-MC.

In addition to performing DCT-MC, our proposed unified architecture can also perform

DCT, IDCT, and Motion Estimation in the DCT domain. This can save the design time and

hardware resources for implementing these functions separately. These additional functions

which can be performed using our unified architecture make the video transcoding system

highly flexible. For example, IDCT can be used to display the reconstructed video without

using extra hardware resources. IDCT computation performed by our architecture can also

take advantage of the sparseness of DCT coefficients matrix. DCT can be used for logo

insertion [HG98]. ME in the DCT domain can be used for motion vector re-estimation

for temporal transcoder to overcome the quality degradation due to the mismatch between

prediction and residual components [YSL99].

The proposed unified architecture consists of highly regular, parallel, and pipelined Pro-

cessing Elements (PEs), and greatly simplifies complicated design processes of the computation-

intensive algorithms, such as DCT, IDCT, ME & MC in the DCT domain by mapping those

different algorithms onto the same hardware fabric.
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1.4 ZQDCT Prediction

Due to the Quantization, most of the high frequency DCT coefficients become zeros,

especially for very low bit-rate video coding. Therefore, it is very inefficient to compute all

the DCT coefficients and discard them during the quantization processes.

There are extensive works for predicting zero quantized DCT (ZQDCT) coefficients to

reduce computational complexity of DCT and Q computations. In [PS99], Laplacian distri-

butions based prediction algorithm is proposed to detect ZQDCT for different zones including

all-zeros, dc only, 2×2 DCT, and 4×4 DCT. Sum of Absolute Difference (SAD) values and

Quantization Parameter (QP) are used to compare with different thresholds for predictions.

In [WKK07], a hybrid model derived from Gaussian distribution and statistical analysis of

the dynamic range of DCT coefficients is used for ZQDCT predictions of different zones.

The above mentioned methods are all targeted for software implementations. However,

due to the high computational complexity, most high-quality video encoders are implemented

using hardware. Our motivation is that traditional H/W design approach in video coding

system is difficult to effectively utilize time-varying computational complexity which highly

depends on the input signal characteristics. In other words, capability of achieving adaptive

computing during run-time is significantly limited. In this work, we propose highly versatile

reconfigurable architecture which mainly consists of prediction module and computing mod-

ules. Prediction module is designed to accurately estimate time varying computing loads of

DCT block during run-time, and used to selectively choose and update the required number
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of computing modules. Then, we demonstrate that by fully taking advantage of precise es-

timation of time-varying computational complexity and distribution of hardware resources

accordingly to the reconfigurable hardware fabric, a number of advantages in terms of power,

computational capability, hardware resources, and compression efficiency, can be achieved.

The main contributions of our work are listed as following. First, we develop a quality

priority ZQDCT prediction algorithm to decide which DCT mode should be performed. The

DCT modes include skipped mode, 2 × 2 DCT, 4 × 4 DCT, 6 × 6 DCT, and 8 × 8 DCT.

Second, we design a reconfigurable architecture to perform DCT computations adaptively

based on our proposed quality priority prediction algorithm. Third, we take advantage of

dynamic partial reconfiguration to reduce computation time of 2×2 DCT and 4×4 DCT by

the proposed multi-block processing mode which is beneficial in throughput increase for high

frame-rate and resolution of video sequences [LBM06]. Fourth, we adopt bitstream relocation

to reduce the overall bitstream storage size by 79.4%. Experimental results show that using

our reconfigurable architecture and quality priority prediction for DCT computations can

effectively reduce power consumptions, hardware resources, and computation time with a

small quality degradation.
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CHAPTER 2

RECONFIGURABLE ARCHITECTURE FOR DCT

COMPUTATIONS

2-D array based architecture and 1-D decomposition based architecture for scalable DCT

computations using dynamic partial reconfiguration are described in this chapter.

2.1 DCT Architecture based on 2-D Array

2.1.1 Algorithm and Architecture

DCT can be defined by using its transform matrix as shown in (2.1).

X = TxT t (2.1)

Equation 2.1 can be modified as Equation (2.2).

X = TxT t =
7

∑

m=0

7
∑

n=0

x(m, n)T t
row(m)t ⊗ T t

row(n) (2.2)

T (m, n) =



















√

1
N

if m = 0,

√

2
N

cos (2n+1)mπ

2N
if 1 ≤ m ≤ N − 1

(2.3)
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where Trow(m) is the mth row of transform matrix T , as shown in Equation (2.3). T t
row(m) is

the mth row of the transposed matrix of T . N = 8 is used in this work. Operation ⊗ is the

outer product. Therefore, DCT is performed by using summation of scaled outer product

operations.

The top level architecture of our scalable DCT design is shown in Fig. 2.1. The PowerPC

is used to implement the proposed configuration manager that provides architectural support

through self-reconfiguration to exploit trade-offs among performance, power, and hardware

resource utilization. It also prefetches the compressed partial bitstream, decompresses it,

and stores it in the BlockRAM within the FPGA.

PLB BUS

PowerPC
UART

Terminal Program

System 
ACE

ICAP

Frame 
Memory

DMC BUS
Macro

BUS
Macro

Buffer Out

ROM

Chipscope
ICON/ILA/

VIO

DCT module

MU

PE

MU MU MU MU

PE PE PE PE

PE PE PE PE

PE PE PE

PE PE

PE

module1 module2 module3 module4 module5

ConfigBlockRAM

Compact Flash

start length

reset clock

dataB

addrB

dataA weA

ce_ICAP
we_ICAP

busy_ICAP

din_ICAP

Out_ICAP

addrA

Figure 2.1: Top level architecture of scalable DCT module.
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The BlockRAM in this design is a dual port RAM. “dataA” and “dataB” are two data

ports of the RAM with 32-bit width. “addrA” and “addrB” are two address ports of the

RAM with 14-bit width. The depth of the BlockRAM is made large enough to fit the largest

partial bitstream. “weA” is the write enable signal indicating write or read operations of the

RAM.

ICAP is Internal Configuration Access Port for Xilinx FPGAs, which can be controlled

by internal FPGA logic. It can be used to reconfigure and read back configuration memory.

The Config module is the customized hardware module that controls the run-time reconfigu-

ration, i.e., sending the partial bitstream from BlockRAM to ICAP. Its operation is initiated

by the embedded processor. Therefore, the Config module to control run-time partial re-

configuration can reduce the loads of the embedded processor and eliminate the overhead

of bus communications. The control flow of Config module is shown in Fig. 2.2 [Bay08].

It is generated based on the timing diagram of ICAP reconfiguration. “ce ICAP” is the

chip enable pin of ICAP interface and “we ICAP” is the write enable pin of ICAP interface.

“ce ICAP” signal must be deasserted when making changes of “we ICAP” signal. Other-

wise, ICAP will enter ABORT process. “din ICAP” is the data input of ICAP with 32-bit

width. “busy ICAP” is the handshaking signal from ICAP indicating ICAP is busy and

can not accept new configuration data. “Out ICAP” is the output data from ICAP. “start”

signal is the control signal to start the reconfiguration process. “length” signal is used to

pass the bitstream length information to Config module. “addrA”, “dataA”, “weA”, “start”,
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and “length” signals are all generated by PowerPC via PLB Bus using general purpose IO

(GPIO).

System ACE is the interface between compact flash card and the FPGA. The initial

configuration file and partial bitstream files are stored in the compact flash. System ACE

connects the compact flash to the PLB bus. UART is used as a user interface through

HyperTerminal.

Final Address?

Assert “we”

Assert “ce” after at least 1 clock cycle

Send 32 bits configuration data

Increment Address Counter

Wait at least 8 clock cycles (send Null Ops)

Deassert “ce”

Deassert “we” after at least 1 clock cycle

Yes

No

Figure 2.2: Control flow of Config module.

The DCT module is divided into two parts, i.e., static region and reconfigurable re-

gion. The static region of DCT module consists of frame memory, data mapper controller

(DMC), buffer-out module, and Chipscope ICON/ILA/VIO modules. These modules re-

main unchanged after initial configuration. DMC is used to fetch the data from frame

memory and send them to the array processor. It also generates the address for ROM. ROM
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Figure 2.3: Dataflow and architecture of array processor.

stores the transform matrix T , as defined in Equation (2.3). Based on the addresses gener-

ated from DMC, specific entries of the transform matrix are loaded to the array processor.

Buffer-out module buffers the computed DCT coefficients, and outputs them. Chipscope

ICON/ILA/VIO are used for verification purposes.

In this work, five modules, i.e., from module1 to module5, are included and tested to

implement scalable DCT computation. These five modules can be used to perform 5 × 5

DCT to 1 × 1 DCT by using five modules together to one module only. For example, if

five modules are used, then 5 × 5 DCT is performed. If only module1 is used, then 1 × 1

DCT is performed. Here, 5 × 5 DCT means an 8 × 8 DCT with a 5 × 5 triangle window

of coefficients. 8 point 1D DCT kernel is used for 2D DCT and top left 15 coefficients in

zig-zag scan order are calculated. Each module is defined as a partial reconfigurable region

(PRR). Bus macros (BM) are used to connect signals between static region and PRR. They
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are composed of MUltipliers (MU) and Processing Elements (PE). Each module consists

of one MU and the PEs on the diagonal. Fig. 2.3 shows the dataflow of the 4 × 4 DCT

computations. Here, x(m, n) is the pixel data, and 0 ≤ m, n ≤ 7. T (m, n) is the entry of

the DCT transform matrix stored in the ROM. The DCT coefficients are first sent to the

output buffer after computations. Then, the DCT coefficients are output one by one in the

zig-zag scan order from the output buffer. The architectures of MU and PE are illustrated

in Fig. 2.4 and Fig. 2.5. The MU consists of two registers and one multiplier. It performs

9 bit × 12 bit multiplications. “A in” is for pixel values and “B in” is for transform matrix

entries. The PE is composed of a multiply-accumulator and two registers. It performs 12 bit

× 21 bit multiply accumulations. “C out” is for output of the computed DCT coefficient.

Table 2.1 shows the operations of the PEs.

A_in

Register BMultiplier

Register A

B_in

A_out

B_out

Figure 2.4: Schematic diagram of MU.
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A_in
Register A
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Accumulator

Register B

B_in

C_out

A_out

B_out

Figure 2.5: Schematic diagram of PE.

Table 2.1: Operations of PEs

PE00 PE01 PE02 ⇒
1 X1(0, 0) = x(0, 0)T (0, 0)T (0, 0)

2
X2(0, 0) =

X1(0, 1) = x(0, 0)T (0, 0)T (1, 0)
X1(0, 0) + x(0, 1)T (0, 0)T (0, 1)

3
X3(0, 0) = X2(0, 1) =

X1(0, 2) = x(0, 0)T (0, 0)T (2, 0) ⇓
X2(0, 0) + x(0, 2)T (0, 0)T (0, 2) X1(0, 1) + x(0, 1)T (0, 0)T (1, 1)

4
X4(0, 0) = X3(0, 1) = X2(0, 2) =
X3(0, 0) + x(0, 3)T (0, 0)T (0, 3) X2(0, 1) + x(0, 2)T (0, 0)T (1, 2) X1(0, 2) + x(0, 1)T (0, 0)T (2, 1)

5
X5(0, 0) = X4(0, 1) = X3(0, 2) =
X4(0, 0) + x(0, 4)T (0, 0)T (0, 4) X3(0, 1) + x(0, 3)T (0, 0)T (1, 3) X2(0, 2) + x(0, 2)T (0, 0)T (2, 2)

2.1.2 Experimental Results and Analysis

Our self-reconfigurable design is implemented in Xilinx Virtex-4 ML410 development

system with Virtex-4 FX60 FPGA. Xilinx EDK is used to create the embedded processor

system. ISE is used for synthesis process, and Planahead is used for floorplanning, placement,

and routing. The compressed partial reconfigurable bitstreams and system.ace files are stored

in the compact flash card for configuration. HyperTerminal is used for interacting between
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user and the FPGA board. Integrated logic analyzer and virtual IO from Chipscope are used

for verification purpose.

Fig. 2.6 and Fig. 2.7 show the PSNR analysis of our scalable DCT computations using

H.263 S/W codec. For the experiments, 30 frames of Bridge-far QCIF video sequence are

used. The first frame is quantized using intra mode, and the rest of the frames are quantized

using inter mode. As shown in Fig. 2.6 and Fig. 2.7, different DCT mode can be selected

through the configuration manager when the required PSNR at the given compression ratio

is provided at the system level. For example, if QP is set to 15, and PSNR above 30 dB

is required, it is indicated that DCT mode using 3 × 3 or higher configuration is necessary

to achieve the minimum quality of reconstructed video sequences determined at the system

level.

Figure 2.6: Intra mode PSNR analysis.

The power consumption of our scalable DCT is shown in Fig. 2.8. We divide the power

consumptions into two parts, i.e., the partial reconfiguration region and the static region.
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Figure 2.7: Inter mode PSNR analysis.

The power consumption can be controlled by selecting different number of modules for

PRR regions. For example, the power consumption for PRR is reduced by 84.5% while

reconfiguring 5 × 5 DCT to 1 × 1 DCT. Fig. 2.8 shows the processing time for one 8 × 8

block pixel data changing from 71 clock cycles to 67 clock cycles for different DCT modes.

Therefore, run-time self-reconfiguration enables our proposed architecture more adaptable in

terms of the power consumption and processing time compared to those fixed architectures

for DCT computations.

Table 2.2 shows the comparisons of our proposed scalable DCT architecture with other

DCT implementations. Compared with other implementations, our proposed implementa-

tion for DCT is more flexible in terms of area, power, and throughput.

Virtex-4 devices provide a 32-bit wide 100 MHz ICAP interface for fast reconfiguration.

It has a reduced configuration granularity, i.e., 16 CLBs in height, compared to Virtex-II

and Virtex-II Pro devices. Xilinx used a bitstream compression algorithm based on LZ77

20



Figure 2.8: Power estimation and throughput analysis.

Table 2.2: Comparisons with other DCT implementations

[CJC00] [GVB05] [GHC04] Proposed
Area (Gate Counts) 38004 18590 52143 1506-6570

Operating cycles (Cycles/8 × 8 Block) 64 N/A 64 64
Latency 198 N/A 1 3-7

Transpose Memory yes yes no no
Clock Frequency (MHz) 100 50 125 100

Technology 0.6 µm FPGA (90 nm) 0.25 µm FPGA (90 nm)
Functions 8 × 8 DCT 8 × 8 DCT 8 × 8 DCT 1 × 1 DCT-5 × 5 DCT

Power (mW) 138 281 N/A 119.1-198.72

scheme [Khu01]. LZ77 is a dictionary based data compression algorithm developed by Abra-

ham Lempel and Jocob Ziv in 1977 [ZL77]. It attempts to replace a string of symbols with

a reference to a dictionary location of the same string, even strings with no match. In no

match case, it takes more space to encode the data. Storer and Szymanski proposed an

improved LZSS algorithm based on LZ77. It uses one flag bit to indicate whether the next

chunk of data is an offset/length pair or uncoded data. Its decoding steps are shown as

follows [Dip]:

• Step 1. Initialize the dictionary to a known value
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• Step 2. Read the encoded/not encoded flag.

• Step 3. If the flag indicates an encoded string:

– Step 3a. Read the encoded length and offset, then copy the specified number of

symbols from the dictionary to the decoded output.

– Step 3b. Otherwise, read the next character and write it to the decoded output.

• Step 4. Shift a copy of the symbols written to the decoded output into the dictionary.

• Step 5. Repeat from Step 2, until all the entire input has been decoded.

The overall compressed bitstream size for five modules implemented in this work is 86.8

KB including 5 blank partial bitstreams and 5 functional partial bitstreams, as shown in

Table 2.3. Blank partial bitstream can configure the PRR with no switching activities

to reduce dynamic power consumption. The original partial bitstreams’ size is 258 KB.

Using compressed partial bitstreams can reduce the bitstream size by 66.4%. Table 2.3 also

shows comparisons of external memory accesses and time to load original partial bitstreams

and compressed partial bitstreams. Everytime the PowerPC accesses the CF card, 512

bytes of configuration data are fetched. Using compressed partial bitstreams can save the

number of external memory accesses by 69% in average. In addition, using compressed

partial bitstreams can reduce the loading time by 34.6% in average. Time Load O. is the

time to load the original bitstreams from the CF card to the BlockRAM directly using

PowerPC. Time Load C. is the time to load the compressed bitstreams from the CF card
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and decompress/store them into the BlockRAM through PowerPC. The hardware resources

required to implement the Config module and the BlockRAM module are shown in Table 2.4.

The decompression latency can be ignored because the decompression process is per-

formed while DCT computations are being performed. The initial system.ace file size is 2.72

MB. Once the FPGA is powered on, it is configured with the initial configuration bitstream.

If we use non-partial reconfiguration approach, we will need five ace files which will consume

13.6 MB to implement each of five DCT modules. Using dynamic partial reconfiguration

can save the configuration file sizes by 79.4%.

Table 2.3: Comparisons of original bitstreams and compressed bitstreams

Module1/Blank1 Module2/Blank2 Module3/Blank3 Module4/Blank4 Module5/Blank5
Original (bytes) 14816/5760 21956/10432 34956/22828 40784/21492 53076/38380

Compressed (bytes) 5096/1095 8043/2030 13960/5471 15714/3817 23001/10685
# of accesses O. 29/12 43/21 69/45 80/42 104/75
# of accesses C. 10/3 16/4 28/11 31/8 45/21
Accesses Saving. 66.5%/75% 62.8%/81% 59.4%/75.6% 61.3%/81% 56.7%/72%

Reconfig. Time (us) 37.02/14.40 54.89/26.08 87.39/57.07 101.96/53.73 132.69/95.95
Time Load O. (ms) 82.8/43.3 115.5/62.7 172.6/119.4 196.8/110.6 252.9/186.3
Time Load C. (ms) 43.7/16.2 84.1/45.1 130/78 144.6/69.7 193.4/122.9

Load Time Reduced (ms) 47.2%/62.6% 22.3%/28% 24.7%/34.7% 26.5%/37% 23.5%/34%

Table 2.4: Hardware resources

Slice Flip Flops LUTs RAM16
Config & BlockRAM modules 18 out of 50560 31 out of 50560 25 out of 232

The reconfiguration process is shown in Fig. 2.9. First, the initial configuration bitstream

with empty BlockRAM is generated. Then, partial bitstreams for different designs are gen-

erated. Next, the initial configuration bitstream and the partial bitstreams are stored on

the compact flash. Compact flash is used to store the bitstreams externally. When the
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FPGA is powered on, it will be configured with the initial bitstream. Then, the compressed

partial bitstream is prefetched from the CF card and decompressed by the PowerPC. Then,

decompressed partial bitstream is stored in the BlockRAM within the FPGA. Config mod-

ule can perform the dynamic partial reconfiguration by sending the configuration data from

BlockRAM to the ICAP interface.

In [BPK08], Braun et al. presented a waveform-like reconfiguration for dynamic partial

reconfiguration. It tries to decrease the overhead of reconfiguration by carefully dividing

the reconfiguration modules according to the specific data graph. Therefore, some parts

of the data graph start processing while the following parts of the data graph are still be-

ing reconfigured. This approach is used to prevent data from being stalled and waiting for

the reconfiguration to finish. However, their access to external SRAM memory and un-

compressed bitstream size become the limitation to speed up the reconfiguration process.

In [CMZ07], Claus et al. proposed a new framework for lowering reconfiguration time using

the combitgen tool to reduce the overhead found within the bitstreams. They preload the

required bitstreams from CF card into DDR SDRAM during initialization. However, their

ICAP controller reading bitstreams from the external SDRAM results in large access time.

In [Bay08], Bayar and Yudakul designed a parallel configuration access port core with bit-

stream decompression module for self reconfiguration. The disadvantage of their approach is

to increase reconfiguration overhead due to the concurrent decompression process required

during the run-time reconfiguration. In addition, since they need to store all the partial

bitstreams in the BlockRAM all the time, this approach will be inefficient when the number

24



of partial bitstreams is increasing. Using our approach with Virtex-4 FPGA, the reconfig-

uration time can be improved greatly, as shown in Table 2.5. In our design, while DCT

computation is performed, next compressed partial bitstream to be used for increasing or

decreasing DCT computation size is loaded and decompressed through PowerPC, and de-

compressed partial bitstream is pre-stored into the BlockRAM. Therefore, our approach can

achieve the maximum reconfiguration speed of Virtex-4 FPGA with the following benefits.

First, using on-chip BlockRAM as a configuration cache to pre-store the partial bitstream

can remove all the latency overhead caused by the PLB bus operations and the time for

accessing external memory since these operations are performed during the DCT computa-

tion. Second, BlockRAM size can be reduced since only one partial bitstream to adjust DCT

computation size is pre-stored into the BlockRAM.

Generate initial configuration 
bitstream with empty BlockRAM 

Generate compressed partial 
bitstreams for different designs 

Configure FPGA with initial full 
bistream when power is on

Load required partial bitstream 
from CF card, decompress it, 

and send it to BlockRAM

Reconfigure FPGA using partial 
bitstream in BlockRAM

Store the initial full bitstream and 
compressed partial bitstreams on 

CF card

Figure 2.9: Reconfiguration process.
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Table 2.5: Reconfiguration time comparisons

[BPK08] [CMZ07] [Bay08] Proposed
Reconf. Rate (MB/s) 5.1 94.88 50 400

Device Virtex 2-2000 Virtex-II Pro Spartan-3S200 Virtex-4 FX60
ICAP Frequency 66 MHz 100 MHz 50 MHz 100 MHz

In this work, we combine functional scalability at the algorithm level with hardware ar-

chitectural scalability through the proposed configuration manager. The user can specify

the requirements of the DCT computations, i.e., power consumption, processing time, and

quality. Then, the embedded processor chooses optimal DCT configuration mode and recon-

figures the FPGA continuously. For example, if the user wants the PSNR to be higher than

33 dB when QP is 5, the configuration manager will choose 5 × 5 diagonal DCT configura-

tion based on Fig. 2.6 and Fig. 2.7. If the user wants the overall power consumption to be

less than 136 mW, the configuration manager will choose 1× 1 diagonal DCT configuration

based on Fig. 2.8. Fig. 2.10, Fig. 2.11, and Fig. 2.12 show trade-off examples through the

PSNR, compression ratio, and power analysis results among 8x8 DCT, 5x5 DCT, and 4x4

DCT. Using 5 × 5 DCT and 4 × 4 DCT can save power consumption by 70.4% and 72.3%

respectively with about 2-3 dB degradation of PSNR at the similar bitrate when compared

to 8 × 8 DCT mode.
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Figure 2.11: Performance analysis of 5*5 DCT
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Figure 2.12: Performance analysis of 4*4 DCT

2.2 DCT Architecture based on 1-D Decomposition

2.2.1 Algorithm and Architecture

2-D DCT is used in many image/video coding standards. The computational complexity

can be reduced by decomposing the 2-D DCT into two 1-D DCT computations together

with a transpose memory. 1-D DCT is first performed row by row on the input data and the

results are saved in a transpose memory. Then, 1-D DCT is performed column by column

on the results stored in the transpose memory. The outputs obtained from the second 1-

D DCT are the coefficients of the 2-D DCT. We use Chen’s algorithm for the 1-D DCT

implementation [CSF77], as shown in (2.4).
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where A = cos π
4 , B = cos π

8 , C = sin π
8 ,D = cos π

16 , E = cos 3π
16 , F = sin 3π

16 and G = sin π
16 .

Distributed arithmetic (DA) is a bit-serial operation that performs inner-product compu-

tations. The main disadvantage of DA is the latency due to the bit-serial fashion. However,

it can be improved by implementing it in a parallel fashion. We implement the DA archi-

tecture in a parallel fashion to improve the performance [Whi89]. An example of an inner

product computation is shown in (2.5).

y =
K

∑

k=1

Akxk (2.5)

Here, Ak is a fixed coefficient , and xk is the input data. Using 2’s complement binary

representation, xk can be expressed as (2.6).

xk = −bk,M−12
M−1 +

M−2
∑

n=0

bk,n2n (2.6)

Each xk is of M-bits, and bk,M−1 is the sign bit of xk. bk,n is the nth bit of xk, and bk,0 is the

least significant bit of xk. Combing (2.5) and (2.6) together, the inner product computation

can be modified as (2.7).
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y =

K
∑

k=1

Ak

[

−bk,M−12
M−1 +

M−2
∑

n=0

bk,n2n

]

=
M−2
∑

n=0

[

K
∑

k=1

Akbk,n

]

2n +
K

∑

k=1

Ak (−bk,M−1) 2M−1 (2.7)

The computation
∑K

k=1 Akbk,n only has 2K possible results since bk,n ∈ {0, 1}. These

results can be pre-computed and stored in the ROM. The input data bk,n can be used as the

address for the ROM. Then, the whole inner product computation can be completed using

the ROM and a shift accumulator.

We use motion estimation as an example to demonstrate the usage of unused reconfig-

urable PEs in this work. So we briefly describe the algorithm for motion estimation here.

Motion estimation is used to reduce temporal redundancy in the video coding. We use sum

of absolute difference (SAD) as the matching criterion for block matching motion estimation.

The SAD computation is defined in (2.8).

SAD(∆x, ∆y) =
P−1
∑

u=0

P−1
∑

v=0

|fcurr(u, v) − fpred,∆x,∆y(u, v)| (2.8)

where fcurr is the current block, and fpred is the predicted block in the search area. (∆x, ∆y)

is the displacement of the predicted block with minimum SAD. P is the size of fcurr and

fpred.

The top level architecture for scalable DCT is shown in Fig. 2.14. These reconfigurable

areas can be dynamically reconfigured using partial reconfiguration. There are two ways

of reconfiguration of the PEs to achieve quality scalability of DCT computations. First,
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the PEs can be removed or added using dynamic partial reconfiguration to achieve zonal

coding for the DCT coefficients, as illustrated in Fig. 2.13. Second, the internal logic of

PEs can also be changed through dynamic partial reconfiguration to reduce the precision of

resultant DCT coefficients. This is reasonable because quantization truncates some of the

LSB bits of DCT coefficients. There are two main advantages of our scalable architecture

using dynamic partial reconfiguration. First, the DCT computations are not interrupted

when switching from different zones or different precisions. Second, the unused PEs can be

utilized by reconfiguration for other functions, such as motion estimation computation.

Figure 2.13: Different zones for DCT computation

The controller is used to generate the address and control signals for data fetching and

data assigning. The shared memory, data mapping, and butterfly addition/subtraction are

combined together. Mapping block is to read the data from the memory or write the data to

the memory according to the address and control signals generated by the controller module.
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Figure 2.14: Top level architecture of scalable DCT

Addition/subtraction performs butterfly addition or subtraction to generate the input data

for the PEs.

The schematic diagram of the reconfigurable PE for DCT computation is shown in

Fig. 2.15. We use 13 ROM Shifters (RS) in each PE to parallelize the inner product compu-

tations. RS0 accepts the MSB bit plane, and RS12 accepts LSB bit plane. Therefore, 1-D

DCT can be performed in one clock cycle. The RS consists of 4 Exclusive-ORs, one 8-word

ROM, one adder, and one shifter. The ROM contents and initial register value are shown

in Fig. 2.15 . A1, A2, A3, and A4 are four values which can be obtained from each row of

the 4 × 4 transform matrix in Equation (2.4). Ts is the sign bit timing signal. It is 1 when

the input data is sign bit, and 0 for the other bits. The exclusive-or of Ts and x1 controls
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the add/subtract computation of the ROM data, i.e., 0 for add, 1 for subtract. The initial

register value is added only for LSB bit plane. We also truncate the ROMs to explore the

trade-off between the power consumption and the precision.

Figure 2.15: Schematic diagram of PE for DCT

We can reconfigure the reconfigurable PE to perform SAD computations for motion

estimation. The schematic diagram of the reconfigurable PE for ME is shown in Fig. 2.16.

It consists of four Absolute difference units and one adder. Each Absolute difference unit

computes absolute difference for one current pixel value and one reference pixel value. The

adder accumulates the partial SAD values from Absolute difference units and generates the

partial SAD of four pixel values. So each PE can compute the SAD of four current pixel

values and four reference pixel values in one clock cycle.
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Figure 2.16: Schematic diagram of PE for ME

2.2.2 Experimental Results and Analysis

Using the Xilinx Early Access Partial Reconfiguration (EAPR) design flow [Xil06], the

scalable architecture is implemented on the Xilinx Virtex-4 SX35 Video Starter Kit. The

scalable architecture previously described naturally allows each PE to reside within a separate

reconfiguration area for modification of its configuration without disturbing the remaining

portion of the FPGA. Fig. 2.17 shows the implementation of the scalable architecture with

the locations of the eight reconfiguration areas.

Partial reconfiguration allows flexibility in selecting the quality of precision of a specific

PE along with the total number of PEs allocated to the DCT application. Each reconfig-

urable region is able to implement one PE. In 8 × 8 2D-DCT computations, for example,

each reconfigurable area is configured to contain one PE each, totaling 8 PEs. In 1× 1 com-

putations, one reconfigurable area contains one PE while the other 7 reconfigurable areas are

made available to other video functions such as motion estimation. In our experiment, four

types of PEs are designed: a full precision DCT PE, a partial precision DCT PE, an ME
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Figure 2.17: Location of 8 PEs on V4SX35

PE, and an Empty PE. The Empty PE allows those unused reconfiguration areas to contain

no switching logic to reduce dynamic power consumption.

To prevent the reconfiguration of one area from inadvertently affecting the configuration

of another reconfigurable area, no two reconfigurable areas may reside within the same

configuration frame of the FPGA device. For example, since configuration frames of Virtex-

II devices extend the entire height of the device, no two reconfigurable areas may be stacked

vertically. To implement eight partial reconfiguration areas on a Virtex-II device, eight

tall and narrow areas must be arranged on the device. However, Virtex-4 FPGAs differ

from the Virtex-II and Virtex-II Pro in that the height of its configuration frame is only 16

CLBs [LBM06]. Because of this reduced configuration granularity, reconfigurable areas are

allowed to overlap vertically, each residing within its own configuration frame. In the case
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of the Virtex-4 SX35 FPGA, which is 96 CLBs in height, up to six reconfigurable areas may

be stacked vertically.

For our DCT implementation with eight separate reconfigurable areas, the static logic is

arranged in the middle of the FPGA with the PEs on the periphery. As shown in Fig. 2.17,

each PE is granted easy access to the static logic. Since the Full Precision PE is the largest

of the four configurations, its resource requirements determine the size of the reconfiguration

areas. The reconfiguration areas span 16 CLBs in height, whereas the width of each reconfig-

uration area is minimized to encompass its specific PE design. Table 2.6 lists the hardware

resources of the static and the reconfigurable areas, including slices, LUTs (Lookup Table),

FFs (Flip Flops), and equivalent gate counts for the Full PE implementation.

Table 2.6: Hardware resource utilization

Slices within Area LUTs within Area FFs within Area
Gate Counts

(Slice Utilization) (LUTs Utilization) (FFs Utilization)
Static

12,416 (16.51%) 24,832 (15.95%) 24,832 (3.71%) 32,067

(Controller,
Shared

Memory,
Mapping,
Add/Sub)

Reconfigurable
2,944 (91.24%) 5,888 (88.36%) 5,888 (1.64%) 41,510

(8 PEs)

As shown in Table 2.7, traditional IP-based implementations on FPGA device have inher-

ent limitations due to their fixed architectures. However, the proposed architecture is highly

adaptive in terms of required hardware resources, power consumption, and throughput rate

since different number of PEs can be mapped adaptively for DCT and motion estimation

algorithms to meet users’ requirements. Therefore, our approach can provide more architec-
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tural solutions to the users. For comparison purpose, we have implemented the IPs for DCT

and motion estimation algorithms separately. DCT is implemented based on the architecture

using row-column decomposition and distributed arithmetic, and array-based architecture is

used for motion estimation algorithm [CP93].

Table 2.7: Traditional IP comparisons

Hardware Resources
Power (mW) Clock Cycles

(gate count)

DCT IP 59,929 26.27
102 (required for 8 × 8

DCT computation)

ME IP 220,321 1002.5
721 (required for each MB,

search range (−7 ∼ 7))

Our approach 73,577

Depends on PEs’ Depends on PEs’
configuration configuration

DCT: 24.03-26.27 DCT: 25-102
ME: 29.23-131.93 ME : 1800-14400

A partial bitstream is generated for each reconfiguration area and for each type of PE.

For example, 24 partial bitstreams are generated in our implementation of 8 reconfiguration

areas and 4 types of PEs. The partial bitstreams generated for each of the Full Precision

PEs range from 22,306 bytes to 28,306 bytes. Because the Full Precision PE represents the

largest slice utilization, its bitstream sizes are the upper bounds for all types of PEs. For

comparison, a bitstream file size of an Empty PE is 10,586 bytes. Before partial bitstreams

are used, the FPGA is initialized first with a full bitstream. In designing the initial full

bitstream, the user determines the most useful combination of type and number of PEs as

the initial configuration of the FPGA- full or partial precision, and 1×1, 2×2, etc. The size

of the intial bitstream is always 1,712,614 bytes, regardless of whether all 8 Full Precision

PEs are implemented or only 1 Full Precision PE with 7 Empty PEs is implemented. In
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comparison to a full bitstream, partial bitstreams are significantly smaller, reducing the

storage space required to store the various bitstreams. The results show that the file size of

a Full Precision PE bitstream is about 1.6% of a full bitstream.

Table 2.8 lists a comparison between one non-partial reconfiguration scenario and two

partial reconfiguration scenarios. In the case of non-partial reconfiguration, a full bitstream

needs to be generated and stored for each 2D-DCT configuration. For example, a full bit-

stream of 1,712,614 bytes is required for a 1 × 1 Full Precision DCT configuration. To

implement an 8 × 8 Full Precision DCT function, another full bitstream is required. To

implement a 4 × 4 Full Precision DCT function with 4 Motion Estimation PEs, a third full

bitstream is required. For three distinct hardware arrangements, 4.9 MB of storage space is

required. To switch between each of these hardware arrangements, the entire FPGA is re-

configured, stopping all video processing elements. The shortest configuration time needed

to switch between hardware arrangements is also the worst at 17 ms. The configuration

time is estimated based on the timing of SelectMAP using continuous data loading [Xil05],

as shown in (2.9).

Tconfig ≈ bytes

fcclk

(2.9)

Here, bytes is the number of bytes of the bitstream stored in the external PROM and the

clock frequency for the SelectMap configuration is set to 100 MHz in our estimations.

In an implementation of the scalable architecture using partial reconfiguration, a user

stores at least one initial configuration bitstream and all partial bitstreams into an external
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Table 2.8: Sizes and configuration times of bitstreams

Bitstream (bytes) Config. Time (ms)

Non-PR

1 × 1 Full 2D-DCT 1,712,614 17
4 × 4 DCT & 4 ME PEs 1,712,614 17

8 × 8 Full 2D-DCT 1,712,614 17
3 H/W Arrangements

4.9 MB 17/17
(Best/Worst Config. Time)

PR

Initial (8 × 8) 1,712,614 17
8 Full Precision PEs 226,448 0.28 each

8 Partial Precision PEs 226,448 0.28 each
8 Empty PEs 84,688 0.11 each

16 H/W Arrangements
2.1 MB 0.11/2.24

(Best/Worst Config. Time)

PR

Initial (8 × 8) 1,712,614 17
8 Full Precision PEs 226,448 0.28 each

8 Partial Precision PEs 226,448 0.28 each
8 Empty PEs 84,688 0.11 each

8 Motion Estimation PEs 226,448 0.28 ms each
88 H/W Arrangements

2.3 MB 0.11/2.24
(Best/Worst Config. Time)

PROM. In calculating the storage requirements, the worst-case Full Precision PE partial

bitstream file size- 28,306 bytes- is used for partial bitstream totals. The total space required

for implementing the initial bitstream and all three types of 2D-DCT PEs-Full, Partial, and

Empty- is approximately 2.1 MB. For this small amount of required storage, 16 distinct

hardware arrangements are possible. Switching between these hardware arrangements does

not disturb logic residing outside of the reconfiguration areas. The shortest configuration

time to switch between arrangements is 0.11 ms by implementing one Empty PE, for example,

to switch from 8 × 8 DCT to 7 × 7 DCT. The longest configuration time is estimated to be

2.24 ms to switch, for example, from 8 × 8 Partial Precision to 8 × 8 Full Precision.

The addition of eight motion estimation PE bitstreams would only increase the storage

requirement by 0.2 MB while increasing the number of possible hardware arrangements from

16 to 88.
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We simulate full precision and partial precision PE designs using video sequences with

QCIF (Quarter Common Intermediate Format) resolution (176 × 144). We compare the

precisions between double precision floating point calculations and hardware calculations

using mean square error (MSE). The precision comparisons are shown in Fig. 2.18 . QP is

the quantization parameter [Bar96]. While the QP increases, the MSE decreases.

The power estimation comparisons and the throughput comparisons are shown in Fig. 2.19

and Fig. 2.20. The power estimations are performed at 41.79 MHz frequency. Based on our

experiments, it takes 2N + 22 clock cycles to perform the DCT computations for an N ×N

zone, and N ×N cycles to output the DCT coefficients. We can see from Fig. 2.18, Fig. 2.19,

and Fig. 2.20 that our architecture provides the scalability among precision, power, and

throughput.

Figure 2.18: Precision comparisons

There are seven modes of motion estimation in H.264/AVC standard, i.e, 16× 16, 8× 8,

4×4, 16×8, 8×16, 8×4, and 4×8 [SMW07]. Our reconfigurable PE for motion estimation
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Figure 2.19: Power comparisons

Figure 2.20: Clock cycles for N×N DCT
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can be used for any of these modes. Each reconfigurable PE can compute SAD for four pixel

values in one clock cycle. If more PEs are used for SAD computations, the throughput of

the motion estimation will be increased. Fig. 2.21 shows the clock cycles needed to perform

ME per search location for different ME modes.

Figure 2.21: Clock cycles for ME per search location

To evaluate the performance of the system, we use QCIF video sequence as an input

format with YCbCr 4:2:0. For each frame, there are 594 8 × 8 blocks for DCT and IDCT

computations, and 99 16×16 macroblocks for ME computations. The number of clock cycles

for ME and DCT using different configurations is shown in Table 2.9. Using dynamic partial

reconfiguration, ME and DCT can be performed concurrently.

We use 16×16 motion estimation mode as an example here. There are eight scenarios for

performing DCT and ME for each frame using dynamic partial reconfiguration, as shown in

Fig. 2.22. First, all of 8 PEs are used for ME. Then, based on the pre-calculated number of

clock cycles required to complete N×N DCT and ME for each frame, partial reconfiguration
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Table 2.9: Clock cycles for ME and DCT for different configurations

N = # of PEs # of PEs Clock cycles Clock cycles Clock cycles
for DCT for ME for N × N DCT for 16 × 16 ME for DCT/frame

0 8 \ 8 \
1 7 25 10 14850
2 6 30 11 17820
3 5 37 13 21978
4 4 46 16 27324
5 3 57 22 33858
6 2 70 32 41580
7 1 85 64 50490
8 0 102 \ 60588

starts to change the internal logics of N PEs that will be used to perform N ×N DCT. Here,

we can choose N adaptively according to the current compression ratio. N can be set to a

small number especially at a high QP since most of high frequency components are likely

to be quantized to zeros anyway. The rest of the PEs (8 − N) remain to be used for the

completion of the ME operations. Then, N PEs are reconfigured back again to perform ME

operations for the next frame.

Figure 2.22: Timing diagram for DCT and ME

The clock cycles to perform DCT and ME per each frame for these eight scenarios are

shown in Fig. 2.23. The combination of 1x1 DCT and 7 PEs for ME has the lowest clock

cycles required to complete these two functions, and the combination of 8× 8 DCT without

performing ME concurrently has the highest clock cycles. The reconfiguration overhead
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comparisons are shown in Fig. 2.24. Similarly, 1 × 1 DCT has the lowest reconfiguration

overhead per each frame. The power savings are shown in Figure 2.25. 1 × 1 DCT has the

best power saving, and 8 × 8 DCT consumes most of the power.

Figure 2.23: Performance comparisons for different combinations of DCT and ME

Reduction of the DCT dimension from 8 × 8 to 1 × 1 can reduce overall power con-

sumption, total number of clock cycles required for DCT and ME, and the reconfiguration

overhead. However, this would increase the possibility of degrading the visual quality of

the reconstructed images especially at the low compression ratio. The quality degradations

caused by different modes of DCT computations using inter frame coding mode are shown in

Fig. 2.26. The PSNR is estimated using Foreman sequence. 8× 8 DCT has the best quality,

while 1× 1 DCT has the lowest quality. The quality degradations become smaller when the

QP becomes larger.

We use 4× 4 DCT with 4 PEs for ME as an example for analysis. Compared with 8× 8

DCT, the quality degradation of 4× 4 DCT is only by 1.02 dB when QP is set to 16. In the

44



Figure 2.24: Reconfiguration overhead comparisons

Figure 2.25: Power savings for different combinations of DCT and ME
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Figure 2.26: PSNR comparisons for different modes of DCT computations

meantime, it saves power consumption by 3.03%, reduce the clock cycles for processing by

39.5%, and reduce the reconfiguration overhead by 50%.
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CHAPTER 3

EFFICIENT VLSI ARCHITECTURE FOR VIDEO

TRANSCODING

3.1 Background and Related Works

3.1.1 Scaled Outer Products for DCT and IDCT Computations

DCT can be performed using scaled outer products as described in Equation (2.2). IDCT

can be performed using scaled outer products in a similar way. IDCT can be defined by using

its transform matrix as shown in Equation (3.1).

x = T tXT (3.1)

Equation 3.1 can be modified as Equation (3.2).

X = T txT =

7
∑

m=0

7
∑

n=0

X(m, n)Trow(m)t ⊗ Trow(n) (3.2)

where Trow(m) is the mth row of transform matrix T , as shown in Equation (2.3). T t
row(m)

is the mth row of the transposed matrix of T . N = 8 is used in this work. Operation ⊗ is

the outer product. Therefore, computation of both DCT and IDCT can be performed by

iterative accumulation of scaled outer products. Computational complexity of IDCT can be
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reduced significantly since only nonzero DCT coefficients contribute to the computation of

the scaled outer products in Equation (3.2).

3.1.2 Motion Estimation and Compensation in the DCT Domain

Motion estimation and compensation can be performed in either spatial domain or DCT

domain. Spatial domain approach comparing pixel values directly to find the best matching

block has been widely used for most of video compression applications due to its simplicity

and effectiveness. Also, there have been many studies on DCT domain approaches since only

a small number of low frequency coefficients after the transformation of highly correlated

video signals can be used for motion estimation process [LVI06] [CC99] [KL98]. Our proposed

architecture can perform motion estimation and compensation in the DCT domain which

can be very useful for the video transcoding applications.

Vertical shifting matrix Vi and horizontal shifting matrix Hi to support both integer-pixel

and half-pixel motion estimation and compensation in the DCT domain can be derived by

using a displacement matrix Dn as follows. Here, In is an n × n identity matrix.

Dn =

















0
... In

· · · ... · · ·

0
... 0

















(3.3)

V0 = V1 =
1

2
(D8−b∆xc + D8−d∆xe) (3.4)
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V2 = V3 =
1

2
(Db∆xc + Dd∆xe) (3.5)

H0 = H1 =
1

2
(D8−b∆yc + D8−d∆ye) (3.6)

H2 = H3 =
1

2
(Db∆yc + Dd∆ye) (3.7)

(∆x, ∆y) indicates a current search location for motion estimation operation and a motion

vector information for motion compensation operation. A predicted/compensated block

f̂ in the DCT domain can be computed using (∆x, ∆y) and the DCT coefficients of the

surrounding blocks, i.e., f̂0, f̂1, f̂2, and f̂3, as shown in (3.8).

f̂ =
3

∑

i=0

V̂if̂iĤi

=
3

∑

i=0

7
∑

m=0

7
∑

n=0

f̂i(m, n)V̂ic(m) ⊗ Ĥ t
ic(n)t

=

7
∑

m=0

7
∑

n=0

3
∑

i=0

f̂i(m, n)V̂ic(m) ⊗ Ĥ t
ic(n)t (3.8)

Here, f̂i(m, n) is defined as mth row and nth column entry of fi. V̂ic(m) is defined as mth

column of V̂i, and Ĥic(n) is defined as nth column of Ĥi. Therefore, Ĥ t
ic(n)t is a transpose

of nth column of Ĥ t
i . As shown in (3.8), the computational complexity of obtaining a pre-

dicted/compensated block f̂ in the DCT domain can be reduced significantly since outer

product term, V̂ic(m) ⊗ Ĥ t
ic(n)t, needs to be computed only for the nonzero scaling factor,
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f̂i(m, n). Due to the energy compaction property of DCT transformation and quantization

process, f̂ is typically a very sparse matrix.

During the motion estimation process in the DCT domain, we use Sum of Absolute

Differences (SAD) as our matching criterion as shown in (3.9). f̂curr is a current input block

in the DCT domain and f̂pred is a predicted block from the previous frame. i and j are

constrained by the search range parameters.

SADtr(i, j) =
N−1
∑

u=0

N−1
∑

j=0

|f̂curr(u, v) − f̂pred(u + i, v + j)| (3.9)

3.2 Design of Unified Architecture

In this section, we propose Wavefront Array-based Processor that can perform DCT,

IDCT, motion estimation and compensation in the DCT domain. Based on the derived

equations in (2.2), (3.2), and (3.8), we design our unified architecture to perform their

key computations. We can see that the key computation for DCT, IDCT, and motion

compensation in the DCT domain can be performed by iterative accumulation of scaled

outer products, as shown in 3.10.

Y k = Y k−1 + sC(m) ⊗ R(n) (3.10)
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Here, k increases from 1 to the total number of iterations required for each algorithm.

Y 0 is an 8×8 zero matrix and s is a scalar value. C(m) is a column vector and R(n) is a row

vector. Motion estimation in the DCT domain can be performed using SAD computation

as shown in (3.9). Our proposed architecture can perform accumulation of scaled outer

products and SAD computations.

The schematic diagram of our proposed unified architecture is shown in Fig. 3.1 . It

consists of array processor, controller, and ROM. The array processor consists of multiplier

(MUL), processing element (PE), output buffer, adder (ADD), and comparator (CMP). The

ROM is used to store DCT transformed shifting matrices and DCT transformation matrix.

The controller fetches data from the ROM and decides which function the array processor

will perform. Based on the specific function, its corresponding dataflow of either DCT

coefficients or pixel values entering the array processor is selected by the controller. The

output buffer is a parallel-in serial-out buffer. It selects the data from different rows of PE

array, and then the Data out outputs the results one by one. So it takes 8 cycles to store 64

DCT/IDCT results to the output buffer. After storing the results to the output buffer, the

PEs can perform computations for new data. The results in the output buffer are sent out

in serial. Latency to output the results from the output buffer can be ignored due to the

pipelining operations.

The schematic diagram of PE in the array processor is shown in Fig. 3.2. PE can perform

different functions such as DCT/IDCT, ME/MC by the control signals. The outer product

computation part in the PE consists of a multiplier, an adder, and an accumulation register
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Figure 3.1: Schematic diagram of the proposed unified architecture

(reg accu) used to store the result of multiply accumulation. The SAD computation part in

the PE consists of an adder, a subtractor, an absolute module, and a register (reg sum) used

to store partial SAD value. The reg ain and reg bin are used to pass A in and B in data to

the next PE directly. A in and A out have 12-bit widths, and B in and B out have 24-bit

widths. The final results after scaled outer product computation are stored in the reg accu

registers of all the PEs. Ctrl Shift signal is used to pass the value in the reg accu to the PE

above through C in and C out, which both have 36 bit widths. Start Accu is used to reset

the reg accu register at the beginning of the outer product computation. Ctrl Store signal is

used to transfer the data from the reg accu into the reg curr. The reg curr is used to store
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the current block data in the DCT domain. Ctrl ME signal is used for passing either B in or

reg sum to the next PE. The reg sum is passed to the next PE when the PE is performing

SAD computation, and B in is passed to the next PE when the PE is performing outer

product computation. The control signals are pipelined in our design. Each row of the PEs

shares the same control signals. So by properly assigning the values for the control signals,

ME and one of DCT/IDCT/MC computations can be performed concurrently.

MUX

D Q

D

reset

Q

D Q
MUX

Abs

D Q D Q

M
U

X

B_in

MAC

C_out

To Output Buffer
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Figure 3.2: Schematic diagram of PE

The schematic diagram of MUL is shown in Fig. 3.3. It multiplies two 12-bit operands

(A in, B in) and outputs a 24-bit result (B out). A out passes A in directly to the next
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MUL. A in is used to input the scalar number for the scaled outer product computation

in (3.10).

D Q

D Q
A_in

B_in

A_out

B_out

MUL

Figure 3.3: Schematic diagram of MUL

The schematic diagram of ADD is shown in Fig. 3.4. It sums the partial SAD passed from

the last row of the array processor. The schematic diagram of CMP is shown in Fig. 3.5.

It compares the SAD passed from ADD with the previous SAD value stored in the register,

and stores the minimum SAD (minsad) together with the motion vector information (reg x,

reg y). It outputs the motion vector and the minimum SAD value. Our unified architecture

can be also extended to perform 1616 motion estimation by adding the minimum SAD values

of four 8 × 8 blocks to generate the SAD value of 16 × 16 block.
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Figure 3.4: Schematic diagram of ADD
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3.3 Dataflow Characteristics and Performance Evaluations

In this section, we describe how different core algorithms, such as DCT, IDCT, motion

estimation and compensation in the DCT domain, are mapped onto the proposed unified

architecture effectively by utilizing their dataflow characteristics and arithmetic operations.

Let X have the following nonzero DCT coefficients after quantization process:

X =















X(0, 0) 0 0 · · · 0
X(1, 0) 0 0 · · · 0

0 X(2, 1) 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0















(3.11)

Here, only X(0, 0), X(1, 0), and X(2, 1) are nonzero coefficients. The dataflow for com-

puting IDCT using this example is shown in Fig. 3.6. IDCT kernels fetched from the ROM

enter the top and the left sides of the proposed unified architecture with three nonzero DCT

coefficients. Each DCT coefficient is used as a scaling factor in MUL blocks. The data move-

ment to perform the outer product of the column vector Trow(m)t and the row vectorTrow

scaled by the non-zero DCT coefficient X(m, n), propagates from the top-left corner to the

bottom-right corner of the 8 × 8 PE array. These computational wavefronts corresponding

to the mathematical recursions in (3.10) can provide a high throughput rate due to their

pipelined operations and sparseness of the 2-D DCT coefficient matrix. For the given DCT

coefficient matrix X, detailed operations performed on the two representative PEs are shown

in Fig. 3.6. Since non-zero DCT coefficients in zig-zag scan order are input to the proposed

unified architecture, pipelined computational wavefronts for 2-D IDCT operations can recon-
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struct images progressively from low visual quality to high visual quality. Therefore, visual

quality can be controlled easily by deciding the number of the mathematical recursions. As

shown in Fig. 3.7 and Fig. 3.8, this property can be used to provide a graceful trade-off

between visual quality and computational complexity. Additionally, the proposed 2-D IDCT

at the decoder can save processing time further by eliminating the process of inserting zeros

between non-zero DCT coefficients at the Run-Length Decoder (RLD) block and the process

of converting zig-zag scan order into raster scan order. The accuracy of 2-D IDCT compu-

tation is also verified according to IEEE Standard 1180-1990 by using data sets of 10,000

blocks with range -256 to 255, -5 to 5, and -300 to 300, as shown in Table 3.1 [ITU96].
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Figure 3.6: Dataflow of IDCT
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Figure 3.8: Average number of clock cycles for 8x8 block IDCT (Paris.CIF & QP=10).

Let x be the pixel data matrix which is defined as follows:

x =

























x(0, 0) x(0, 1) · · · x(0, 7)

x(1, 0) x(1, 1) · · · x(1, 7)

...
...

. . .
...

x(7, 0) x(7, 1) · · · x(7, 7)

























(3.12)
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Table 3.1: Accuracy test of the proposed 2-D IDCT

Pixel Range PMSE PME OMSE OME
-5 to 5 0.0015 0.0005 0.000448 -0.000017

-256 to 256 0.0218 0.0054 0.01928 0.000011
-300 to 300 0.0228 0.0038 0.018872 0.000403

PMSE: Peak Mean Square Error (≤ 0.06)
PME: Peak Mean Error (≤ 0.015)
OMSE: Overall Mean Square Error (≤ 0.02)
OME: Overall Mean Error (≤ 0.0015)

Then, computation of DCT can be performed by using the data flow of DCT kernels

shown in Fig. 3.9. Each pixel is used as a scaling factor in MUL blocks and pipelined

computation of outer products and accumulation are performed through 8 × 8 PE array.

The final results stored in these 8 × 8 PEs form 2-D DCT coefficient matrix.
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Figure 3.9: Dataflow of DCT
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The timing diagram of DCT and IDCT of our unified architecture is shown in Fig. 3.10.

We first load the pixel values for DCT computation or non-zero DCT coefficients for IDCT

computation into the array processor. After 10 clock cycle latency for the computation, the

results can be transferred to the output buffer. Since the computations are pipelined, new in-

put data for DCT or IDCT computations can be loaded into the array processor concurrently

while the previous results are transferred to the output buffer. Conventional DCT/IDCT

architectures employing a row-column decomposition method often have performance bottle-

neck due to their transpose memory requiring parallel-to-serial and serial-to-parallel circuits.

However, the proposed architecture using direct 2-D algorithm does not require the trans-

pose memory. Therefore, only 10 clock cycle latency is required and high throughput rate

can be achieved by pipelining the computational wavefronts.

Data Loading and Computation Output Buffer

Block1

m+10 cycles 8 cycles

Block2

m = number of non-zero DCT 
coefficients for IDCT or 
number of pixel values for DCT

Data Loading and Computation Output Buffer

m+10 cycles 8 cycles

Figure 3.10: Timing diagram of IDCT and DCT

Similar to IDCT computation, ME & MC in the DCT domain can also take advantage

of the sparseness property of the DCT coefficient matrix of the surrounding block fi. For

example, let f̂0, f̂1, f̂2, and f̂3 have the following nonzero coefficients after quantization:
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f̂0 =



















f̂0(0, 0) f̂0(0, 1) 0 · · · 0

0 0 0 · · · ...

0 0 0 · · · ...
...

...
...

. . .
...

0 · · · · · · · · · 0



















(3.13)

f̂1 =



















f̂1(0, 0) f̂1(0, 1) 0 · · · 0

0 0 0 · · · ...

0 0 0 · · · ...
...

...
...

. . .
...

0 · · · · · · · · · 0



















(3.14)

f̂2 =



















f̂2(0, 0) f̂2(0, 1) 0 · · · 0

0 0 0 · · · ...

0 0 0 · · · ...
...

...
...

. . .
...

0 · · · · · · · · · 0
















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(3.15)

f̂3 =



















f̂3(0, 0) f̂3(0, 1) 0 · · · 0

0 0 0 · · · ...

0 0 0 · · · ...
...

...
...

. . .
...

0 · · · · · · · · · 0



















(3.16)

The dataflow of the motion estimation in the transform domain using this example is

shown in Fig. 3.11. When compared to spatial domain ME and MC, transform domain

approach can reduce the total number of clock cycles required to perform ME and MC by

utilizing the sparseness property of 2-D DCT coefficient matrix. During the motion estima-

tion process, SAD computation is performed in a row by row fashion, and its computation
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flow is shown in Fig. 3.12. Pipelined operations for SAD and scaled outer product computa-

tion enable the proposed unified architecture to perform ME and one of the DCT, IDCT, and

MC, concurrently. For example, after the partial SAD results are passed from the first row

to the second row of PEs during the ME process, the first row of PEs can start immediately

to perform a different algorithm using the scaled outer product computation. The timing

diagrams of ME and MC are shown in Fig. 3.13 and Fig. 3.14, respectively. For motion

estimation in the transform domain, we first reconstruct the predicted block at the search

location using the equation in (3.8). Then, SAD computation using the predicted block and

the current block is performed, and the motion vector is generated after searching all the

locations. Total processing time including initial delay requires 4 × m + 18 + 1 clock cycles

for each search location in the transform domain motion estimation.
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Figure 3.11: Dataflow of motion estimation in the transform domain
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Figure 3.13: Timing diagram of ME in the transform domain
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Figure 3.14: Timing diagram of MC in the transform domain
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3.4 Experimental Results

Our unified architecture consumes 337k gate counts for the hardware implementation.

The maximum operating frequency of the system is 66.9 MHz based on the timing analysis.

The most important part for our unified architecture is that it can perform MC and ME in

the DCT domain while [DKF05] [GSJ02] [KK99] [GHC04] [HL04] [YH95] can not perform

these two functions. These two functions are extremely important for video transcoding

in the DCT domain due to its low computational complexity. It was shown that DCT-

domain motion compensation and down-conversion with a scheme for coding mode selection

and motion vector scaling can provide about 40% reduction of computational complexity

when compared to the spatial-domain approach [ZYB98]. Table 2 shows the comparisons of

DCT domain transcoder and spatial domain transcoder. CPDT is a cascaded pixel domain

transcoder [YSX99]. It shares motion vectors in both decoder and encoder parts to omit

motion estimation. SDDT is a simplified DCT domain transcoder [AG05]. It only uses one

DCT-MC in the decoder part. Therefore, it can only be used for bit-rate transcoding. CDDT

is a cascaded DCT domain transcoder [ZYB98]. It uses two DCT-MC in both decoder and

encoder part. It can be used for spatial resolution down-scaling. We can see from Table 3.2

that DCT domain transcoders do not need DCT/IDCT pair, and have lower computational

complexity and fast computation time.

In [XLS05], 300-frame CIF ”Foreman” sequence was encoded at QP = 7, and then

transcoded at QP = 15 on a 1.8 GHz computer system. Since no hardware accelerator was
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Table 3.2: Comparisons of DCT domain transcoder and spatial domain transcoder

Architecture
Spatial domain trans. Transform domain trans. Transform domain trans.

(CPDT) [YSX99] (SDDT) [AG05] (CDDT) [ZYB98]

Functional Blocks Need IDCT/DCT/Spatial MC
No IDCT/DCT No DCT/IDCT
Need DCT-MC Need DCT-MC

Computation Complexity High Low Medium
Computation time 7 FPS 23.2 FPS 14.1 FPS

used for these transcoders, only 7 23.2 FPS can be transcoded in real time. However, our

hardware implementation can finish the DCT-MC for each block in 4m + 10 clock cycles.

Therefore, 1920 × 1080 HDTV resolution at 30 FPS can be transcoded in real-time if the

proposed architecture is used for SDDT or CDDT with 30 MHz operating clock frequency.

In addition to the performance advantage of DCT-MC and the benefits of using DCT-

MC in the DCT domain transcoder, our architecture can provide additional benefits to the

transcoding applications by realizing DCT/IDCT/DCT-ME on the same hardware fabric.

Using the same architecture can reduce the design time and simplify the design process, and

make the transcoding system highly flexible. When combined with an embedded processor,

different transcoding applications can be implemented using the same chip.

The comparisons between the proposed unified architecture and some representative hard-

ware architectures are shown in Table 3.3. The area and frequency information of [HL04]

and [YH95] are given by Chen et al. [CCH06]. The throughput rates for transform domain

ME & MC and IDCT algorithms in our proposed architecture depend on the number of

non-zero DCT coefficients. Non-zero information is given by run-length coding (RLC) or

run-length decoding (RLD) modules in the video encoding or decoding system. No extra

68



hardware module for detecting and skipping zero values is necessary. Therefore, our proposed

unified architecture can be more attractive for low bit rate image/video coding applications.

Comparing with the multi-core architecture which can perform spatial ME/MC, DCT,

IDCT [DKF05], our proposed architecture saves the area by 67.9% including the DCT do-

main ME/MC. From Fig. 3.8, we can see that the average number of cycles for 8 × 8

IDCT is below 15. Our architecture can perform IDCT operation 5.8 times faster than that

in [DKF05]. Comparing with the FPGA implementation of video coding system [GSJ02], our

architecture is also smaller in area and has higher operating clock frequency. Although the

area in [GSJ02] includes quantization and inverse quantization, it does not provide functional

blocks for DCT domain ME/MC.

Comparing with the DCT/IDCT implementations in [KK99], [GHC04], our architec-

ture can perform more functions, i.e., MC in the DCT domain and ME in the DCT do-

main. If the video transcoding system uses the architectures in [KK99], [GHC04] for the

DCT/IDCT implementations, it will need additional modules for ME/MC implementations.

The throughput of DCT/IDCT using our unified architecture is also outperforming those

in [KK99], [GHC04]. For example, it takes 96 clocks for 8×8 DCT/IDCT in [KK99]. It only

takes 74 clocks for 8 × 8 DCT and 15 clocks for 8 × 8 IDCT using our unified architecture

(m=5). Comparing to the architecture for spatial ME in [YH95], our unified architecture

saves the hardware resource, and it can perform more functions.
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Table 3.3: Comparison of different hardware architectures

Architecture [DKF05] [GSJ02] [KK99] [GHC04] [HL04] [YH95] Proposed

No of PEs – – – – N2 4p2 N2

Transpose Memory – yes yes no – – no

Operating 138 For DCT

– 96 N2 (2p + N − 1)2 N2

N2 + 10 for DCT
Cycles 190 For IDCT M + 10 for IDCT

(Cycles/8 × 8 99 For ME 4 × M + 19 for DCT-ME
Block) 110 For MC 4 × M + 10 for DCT-MC

No. of
– – N2 N2 N2 + (2P + N − 1)2 3N2

N2 for DCT
DATA M for IDCT

ACCESS 4 × M for ME/MC
Area 1050 KGates 400 KGates 25.3 KGates 52 KGates 231 KGates 2907 KGates 337 Kgates

Frequency (MHz) 145 12 80 125 152.5 6.9 66.9

Functions
Spatial ME/MC DCT/IDCT/Q/IQ

DCT/IDCT DCT/IDCT Spatial ME Spatial ME
DCT/IDCT/DCT-

DCT/IDCT /ME/MC MC/DCT-ME
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CHAPTER 4

RECONFIGURABLE ARCHITECTURE FOR

ZQDCT USING COMPUTATIONAL COMPLEXITY

PREDICTION AND BITSTREAM RELOCATION

Due to the high computational complexity of Discrete Cosine Transform (DCT) compu-

tations, prediction of zero quantized DCT (ZQDCT) coefficients has been extensively studied

to reduce the computational complexity of DCT computations. In this dissertation, we pro-

pose a reconfigurable architecture to support ZQDCT computations. 12 different modes of

DCT computations including zonal coding, multi-block processing, and parallel sequential

stage mode can be performed using proposed architecture. We develop a hybrid model-based

quality priority algorithm to reduce power consumptions, required hardware resources, and

computation time with a small quality degradation.

4.1 Quality Priority Prediction

We use Peak Signal to Noise Ratio (PSNR) for the quality measurement. We use SAD

and QP to predict the DCT modes to achieve low quality degradation while reducing the

computational complexity. Let f(x, y), 0 ≤ x, y ≤ 7 be the prediction error for DCT com-

putations of inter-frame. SAD =
∑7

x=0

∑7
y=0 |f(x, y)| is the sum of absolute differences
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Figure 4.1: ZQDCT Distribution
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of the prediction error. It can be easily obtained from the motion estimation module of

video encoder. The DCT coefficients of f(x, y) after 8 × 8 DCT computations are de-

fined as F (u, v), 0 ≤ u, v ≤ 7. Both f(x, y) and F (u, v) can be modeled using Gaussian

distribution [WKK07]. Suppose that the probability density function (pdf) of f(x, y) is de-

fined with zero mean and variance σ2 as p(x) = 1√
2Πσ

e−
x2

2σ2 . Expected value of |x| will be

E[|x|] =
√

2
Π
σ ≈ SAD

N
. Therefore,

σ ≈
√

Π

2

SAD

N
(4.1)

The variance of F (u, v) can be written as

σ2
F (u, v) = σ2[ARAT ]u,u[ARAT ]v,v (4.2)

where

R =








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




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1 ρ ρ2 · · · ρ7
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

(4.3)

Here, the correlation coefficient ρ = 0.6 is used. The uth row of A is the basis vector

1
2
C(u)cos( (2x+1)uπ

16
). The probability of F (u, v) being quantized to zero is controlled by (4.4).

γσF < αQP (4.4)

The DCT coefficient will be quantized to zero with 99.73% probability when γ = 3. Here,

α = 2.5 is used for H.263 inter-frame video coding.
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From (4.1), (4.2), and (4.4), we can get the criterion for estimating zero quantized DCT

coefficients, as shown in (4.5).

SAD < βG(u, v) × αQP (4.5)

The threshold matrix βG is defined in (4.6).

βG(u, v) =

√
2N

γ
√

π[ARAT ]u,u[ARAT ]v,v

(4.6)

Here, N = 64. Based on the Gaussian distribution model in (4.5) and the comprehensive

analysis of the dynamic range of DCT coefficients, we first analyze the distributions of

Zero Quantized DCT (ZQDCT) coefficients for different video sequences using Algorithm

1 [WKK07].

Algorithm 1 Counting blocks for ZQDCT

Count the number of blocks for one frame using the following thresholds.
if SAD < 8αQP then

increase a counter by one for skipped mode.
else if 8αQP ≤ SAD < 9.26αQP then

increase a counter by one for 2 × 2 DCT mode.
else if 9.26αQP ≤ SAD < 14.34αQP then

increase a counter by one for 4 × 4 DCT mode.
else if 14.34αQP ≤ SAD < 18.07αQP then

increase a counter by one for 6 × 6 DCT mode.
else

increase a counter by one for 8 × 8 DCT mode.
end if

We categorize the video sequences into four different types based on the motion activities,

.i.e., from Type A to Type D. Type A includes Bridge-far. Type B includes Claire, Highway,

Hall, Grandma. Type C includes Container, News, Carphone, Salesman, Silent, Foreman.
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Type D includes Football. The average number of block counts for different video sequences

and different QPs are shown in Figure 4.1. 100 frames are used for analysis for each video

sequence and they are in Quarter Common Intermediate Format (QCIF).

Then, we analyze the quality degradations for each video sequence type, as shown in

Table 4.1. We perform zonal codings for each sequence. We use the results from Table 4.1

for choosing certain DCT mode for an arbitrary video sequence. Assuming acceptable quality

degradation is less than 1, the DCT mode prediction is shown in Table 4.2. Given an arbitrary

video sequence, the algorithm for quality priority prediction is shown in Algorithm 2.

Table 4.1: PSNR degradation for typical video sequences

QP Type A Type B Type C Type D

6 × 6

5 0.922 1.486 1.579 1.590
10 0.0055 0.3361 0.273 0.2904
15 0 0.1523 0.10325 0.1013
20 0 0.078 0.041 0.036
25 0 0.0023 0.024 0.0285

4 × 4

5 1.702 3.565 4.29 5.682
10 0.026 1.047 1.367 2.171
15 0 0.577 0.678 1.126
20 0 0.301 0.331 0.552
25 0 0.157 0.184 0.364

2 × 2

5 2.393 6.086 7.121 9.996
10 0.061 2.604 3.313 5.52
15 0.0004 1.683 2.089 3.703
20 0 1.146 1.354 2.551
25 0 0.829 0.941 1.845

skipped

5 2.785 8.105 9.541 13.459
10 0.08 4.348 5.538 8.739
15 0.0004 3.232 4.136 6.742
20 0 2.519 3.176 5.471
25 0 2.026 2.561 4.41

Algorithm 2 Quality Priority Algorithm

1. Count number of blocks based on Algorithm 1 for each frame.
2. Calculate the SAD values among the arbitrary video sequence and the typical video
sequences in Figure 4.1.
3. Map the video sequence type by selecting the smallest SAD.
4. Predict the DCT mode based on Table 4.2.
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Table 4.2: DCT mode prediction

QP=5 QP=10 QP=15 QP=20 QP=25
Type A 6 × 6 skipped skipped skipped skipped
Type B 8 × 8 6 × 6 4 × 4 4 × 4 2 × 2
Type C 8 × 8 6 × 6 4 × 4 4 × 4 2 × 2
Type D 8 × 8 6 × 6 6 × 6 4 × 4 4 × 4

Table 4.3 shows PSNR and bit rate using quality priority prediction algorithm in H.263

when QP=15 and frames per second (fps) = 30 for 100 frames. By using calculated percent-

age of each DCT mode selected for each frame by the quality priority prediction algorithm,

overall computational complexity is reduced greatly with a small quality degradation, as

shown in Table 4.3. The actual frequency of reconfiguration depends on the input video

sequence characteristics and Quantization Parameter to maximize the benefits by run-time

reconfiguration in the given condition.

Table 4.3: PSNR and BPS comparisons for QP=15

Bridge-far Foreman Football Mother
PSNR Original(dB) 35.482 30.176 29.417 31.257

PSNR Predicted (dB) 35.4817 29.497 29.096 30.931
BPS Original (Kbits/sec) 4.8105 64.044 312.146 28.952
BPS Predicted (Kbits/sec) 4.81 53.369 304.62 26.381

Overall Computation Reduction 99% 74.3% 51.9% 74.3%

4.2 Reconfigurable Architecture

2D-DCT is computed using two 1D-DCT stages with a transpose memory. Chen’s algo-

rithm is used for 1D-DCT computation [CSF77], as shown in Fig. 4.2. The key computations
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of 1D-DCT are inner products. Distributed Arithmetic (DA) is used to perform the inner

product computations.
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Figure 4.2: Hardware platform for reconfigurable DCT architecture

The top level architecture of reconfigurable DCT for scalable computation is shown in

Fig. 4.2. For the advantage of dynamic partial reconfiguration, the design is divided into

one static region and multiple partial reconfigurable regions (PRRs). Static region remains

unchanged all the time. PRRs can be changed during run-time. The static region in our

design includes Controller, Transpose Memory (T.P. Mem), and Interconnections. We use

embedded processor, PPC to implement Reconfigurable Manager (RM) and XHwIcap config

module. There are 32 input ports in our design for multi-block processing. If 8 × 8 DCT

is performed, only input ports from f1(0) to f1(7) are used. The other input ports are used

for increasing the input bandwidth. For example, in 2 × 2 DCT mode, four blocks can be

processed at the same time by using 32 input ports. T.P. Mem is used to transpose the
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intermediate results from the first stage 1D-DCT. Controller is used to generate the read

address, write address, and control signals for T.P. Mem.

ICAP is the Internal Configuration Access Port for FPGA reconfiguration. Partial bit-

stream is stored in the CF card. XHwIcap config module is implemented using PPC for

performing dynamic partial reconfiguration. It fetches the partial bitstream from the CF

card and sends it to the ICAP interface. It also performs bitstream relocation. RM module

is used for priority prediction and determines which mode of DCT computation should be

reconfigured. It takes quality, computation time, power, and area parameters for different

priority prediction. The routing module includes the interconnections to input and output

data from PEs.

The reconfigurable region in our design includes 16 PRRs which require bus marco (BM)

between PRRs and Static Region. Different numbers and types of PEs can be reconfigured

for different DCT computation modes to meet different computation time, PSNR, power,

and area goals. In 4 × 4 and 2 × 2 zonal coding modes, we can take advantage of dynamic

partial reconfiguration to configure the unused PEs to perform DCT computations for the

extra pixel blocks to realize multi-block processing. In addition to different mode for DCT

zonal coding, different stage modes can also be achieved, i.e., two stage parallel mode or one

stage sequential mode. Two stage parallel mode means that 8 PEs are used for the first stage

of 2-D DCT computation and the other 8 PEs are used for the second stage of 2-D DCT

computation. Therefore, 2 1-D DCT operations are pipelined to increase throughput rate.

One stage sequential mode means that 8 PEs are used for both the first stage and the second
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stage of 2-D DCT computation. The other 8 PEs can be configured with blank configurations

to save power consumption or available for the implementation of other functions. PE is the

basic computation unit which performs inner products using distributed arithmetic.

4.3 Bitstream Relocation

PR design is partitioned into static region and partial reconfigurable regions (PRRs).

Multiple partial reconfigurable modules (PRM) can be mapped into each PRR. Each PRM

can perform one function/task for the PRR. Each PRM will generate one partial bitstream.

For example, if we have 2 PRRs and 3 PRMs for each PRR, it requires 6 partial bitstreams

and 2 blank bitstreams for the PRRs. Blank bitstream is used for no switching activities

for the PRR. By using bitstream relocation, partial bitstream with identical PRM can be

relocated to different PRRs. We change the location of configuration data of the identical

PRM. Using bitstream relocation can reduce both the storage size of the partial bitstreams

and reconfiguration time due to external memory accesses.

In [FGG09], the authors proposed a bitstream relocation scheme for local clock domains.

PRRs can drive local clock domains internally to change the clock frequency. They used

Virtex-4 FPGA for PR implementations. Becker et al. introduced a method that enhances

the relocatability of partial bitstreams for FPGA run-time reconfiguration [WC07]. Their

approach circumvents the problem of having to find fully identical regions based on compati-

ble subsets of resources. This enables flexible placement of relocatable modules. They used a
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software defined radio for prototyping using Virtex-4 FPGA. The experimental results show

that the number of partial bitstreams is reduced by 50% and the compile time is shortened

by 43%. In [KP06], the authors developed the REPLICA2Pro (Relocation per online Con-

figuration Alteration in Virtex-2/-Pro) filter to perform task relocation by manipulating the

task’s bitstream during regular allocation process. The task relocation is performed by ma-

nipulating the frame addresses (FAR) in the corresponding partial bitstream. Virtex-2/-Pro

has different FAR format with Virtex-4 device. In Virtex-2/-Pro, Major Address (MJA) is

used to determine the configuration column position. The filter architecture and the design

flow are presented in the dissertation.

Virtex-4 configuration memory is arranged in frames [CT08]. Each frame has fixed length,

i.e., 41 words. To perform configuration, 32-bit data packets are used for different configura-

tion registers. The configuration data packets consist of 32-bit type 1 packet and followed by

either 32-bit type 2 packet or 32-bit data body. The type 1 packet is used for register reads

and writes, and type 2 packet is used to write long blocks. There are many different kinds of

configuration registers. For bitstream relocation, Frame Address Register (FAR) and CRC

registers are needed. Bitstream relocation is performed by manipulating FAR packet. FAR

packet is composed of minor address, column address, row address, block type, and Top B

Bit. When performing bitstream relocation, we first search for the write FAR command, i.e.,

0x30002001. Then, we change the FAR packet, i.e., adding distance for row address, column

address or Top B Bit depending on the locations. After changing the FAR packet, the CRC
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register needs to be recalculated. In our experiment, we disable the CRC check since the

bitstream corruption is not a main concern here.

4.4 Experimental Results

Xilinx ISE is used for synthesis in our design. Xilinx XPower is used for power estimation.

Xilinx PlanAhead is used for floorplanning, and implementing the design. For bitstream

relocation, some small modifications of the PlanAhead design flow need to be performed.

First,“-g CRC: disable” needs to be added in Assembly Option to disable CRC check. Second,

“Area GROUP PRR X Routing = CLOSED” needs to be added in the constraints file. This

constraint is used not to allow resources from the static region to occupy unused resources

in PRRs.

We used Xilinx ML410 Development Platform with Virtex-4 FX60 FPGA. In our design,

we have 16 PRRs. The floorplan of our proposed reconfigurable architecture is shown in

Fig. 4.3. Table 4.4 shows a part of the configurations of our reconfigurable architecture.

Each PRR can be configured with certain type of PE configuration or blank configuration.

Using blank configuration can reduce the power consumption since no switching activities

are present. The DCT modes can be 8 × 8, 6 × 6, 4 × 4, 2 × 2 with parallel or sequential

mode. In addition, 4 × 4 mode can have double throughput mode (4 × 4 × 2), and 2 × 2

mode can have quadruple throughput mode (2 × 2 × 4). Double throughput mode means

that 2 blocks are processed concurrently. Quadruple throughput mode means that 4 blocks
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are processed concurrently. The double or quadruple throughput modes can be changed

to single throughput mode by replacing certain PE bitstreams with blank bitstreams. 12

different modes can be achieved by different combinations of PEs.

The bitstreams are generated using PR Assemble process of PlanAhead [Jac08]. 48 partial

bitstreams are generated for 16 PRRs including 16 blank bitstreams. However, since only

8 different PRMs exist in our design, only 9 partial bitstreams including 1 blank bitstream

become necessary if bitstream relocation scheme is applied. The partial bitstream size and

blank bitstream size for each PRM are 25 kb and 15.5 kb, respectively. Therefore, the partial

bitstream sizes can be saved by 79.4% in total. Partial reconfigurable regions should be large

enough to fit the biggest PE. Based on 400 MB/s reconfiguration rate, the reconfiguration

time for each partial bitstream and blank bitstream are 64 us and 40 us, respectively. A

full bitstream with fixed size (2.5 MB) is generated to initialize the FPGA when power is

on. If static design without partial reconfigurable capability is used, 30 MB of bitstreams’

size will be needed for all the 12 DCT modes. 6.6 ms is needed to change the configuration

from one mode to another. By using dynamic partial reconfiguration, only 80 us is needed

for the best case which reconfigures two blank bitstreams (e.g., from 8 × 8 × 1 to 6 × 6 × 1

in sequential mode) and 768 us is needed for the worst case which reconfigures six partial

bitstreams (e.g., from 2 × 2 × 1 to 8 × 8 × 1 in sequential mode).

Comparison results of computation time, hardware resources, and power consumption

for different DCT modes are also shown in Table 4.4. The comparisons of our proposed work
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Figure 4.3: Floorplan of proposed reconfigurable architecture
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with previously implemented works are shown in Table 4.5. Compared to previous works,

our proposed work is highly flexible in terms of the power and throughput.

Table 4.4: PRR configurations

8 × 8 × 1 6 × 6 × 1 4 × 4 × 1 4 × 4 × 2 2 × 2 × 1 2 × 2 × 4
Parallel Sequen. Parallel Sequen. Parallel Sequen. Parallel Sequen. Parallel Sequen. Parallel Sequen.

PRR0 PE0 PE0 PE0 PE0 PE0 PE0 PE0 PE0 PE0 PE0 PE0 PE0
PRR1 PE1 PE1 PE1 PE1 PE1 PE1 PE1 PE1 PE1 PE1 PE1 PE1
PRR2 PE2 PE2 PE2 PE2 PE2 PE2 PE2 PE2 blank blank PE0 PE0
PRR3 PE3 PE3 PE3 PE3 PE3 PE3 PE3 PE3 blank blank PE1 PE1
PRR4 PE4 PE4 PE4 PE4 blank blank PE0 PE0 blank blank PE0 PE0
PRR5 PE5 PE5 PE5 PE5 blank blank PE1 PE1 blank blank PE1 PE1
PRR6 PE6 PE6 blank blank blank blank PE2 PE2 blank blank PE0 PE0
PRR7 PE7 PE7 blank blank blank blank PE3 PE3 blank blank PE1 PE1
PRR8 PE0 blank PE0 blank PE0 blank PE0 blank PE0 blank PE0 blank
PRR9 PE1 blank PE1 blank PE1 blank PE1 blank PE1 blank PE1 blank
PRR10 PE2 blank PE2 blank PE2 blank PE2 blank blank blank PE0 blank
PRR11 PE3 blank PE3 blank PE3 blank PE3 blank blank blank PE1 blank
PRR12 PE4 blank PE4 blank blank blank PE0 blank blank blank PE0 blank
PRR13 PE5 blank PE5 blank blank blank PE1 blank blank blank PE1 blank
PRR14 PE6 blank blank blank blank blank PE2 blank blank blank PE0 blank
PRR15 PE7 blank blank blank blank blank PE3 blank blank blank PE1 blank

Comp. Time (Cycles/Block) 64 128 64 128 64 96 32 48 64 80 16 20
Hard. Resources (Gate Count) 88463 57270 64972 41854 46710 30424 89873 58005 20765 12539 92761 59395

Dynamic Power (mW) 108 80 90 68 81 61 129 104 52 40 163 136
Each PRR (768 LUTs, 768 FFs, 384 Slices) Utilization: LUT 51.43% ∼ 72.14%, FF 8.85% ∼ 8.98%, Slice 63.02% ∼ 88.02%

Table 4.5: Comparisons with other DCT implementations

[KK99] [DB03] [GHC04] [GVB05] [GK07] Proposed
Hardware Resources (Gate Counts) 23376 11550 52143 18590 69468 12539-88463

Operating cycles (Cycles/8 × 8 Block) 96 N/A 64 N/A 526 16-128
Transpose Memory yes yes no yes no yes

Technology 0.5 µm 0.35 µm 0.25 µm FPGA (90 nm) FPGA (90 nm) FPGA (90 nm)
Functions 8 × 8 DCT 5 × 5 DCT 8 × 8 DCT 8 × 8 DCT 8 × 8 DCT 12 DCT Modes

Power (mW) N/A 129.2 N/A 281 N/A 40-163

We use H.263 reference software to simulate our mode decision scheme. Some repre-

sentative video sequences (Bridge-far, Grandma, Foreman, Football) are used to test our

quality priority prediction algorithm. In addition, we use some video sequences (Bridge-

close, Mother and Daughter) which are not used for our ZQDCT distribution analysis and

PSNR analysis to verify the quality priority prediction algorithm. We set frame rate to 30

frames/second. At the beginning, 8× 8 DCT is computed as default mode. Then, we apply
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Algorithm 2 to the incoming video sequences. The PSNR and bits per second (BPS) com-

parisons using quality priority prediction algorithm are shown in Table 4.6. With a small

quality degradation, we can reduce the bitrate, save the power/area/computation time. We

show the detailed PSNR and Power/Area/Throughput Comparisons for Football sequence

in Figure 4.4 and 4.5.

Table 4.6: PSNR and BPS comparisons

Bridge-far Grandma Foreman Football Bridge-close Mother daughter

QP=5
PSNR degradation (dB) 0.2456 0 0 0.0031 0 0

BPS reduction (Kbits/sec) 96.7988 0 0 0.0625 0 0

QP=10
PSNR degradation (dB) 0.0801 0.0787 0.1645 0.345 0.6234 0.1611

BPS reduction (Kbits/sec) 1.038 0.6297 5.6535 13.8574 12.934 3.318

QP=15
PSNR degradation (dB) 0.0004 0.1331 0.6785 0.3214 0.5957 0.3265

BPS reduction (Kbits/sec) 0.0005 0.5621 9.6748 7.5254 7.7863 2.571

QP=20
PSNR degradation (dB) 0 0.057 0.311 0.6041 0.3319 0.151

BPS reduction (Kbits/sec) 0 0.0983 3.2932 20.1914 2.6305 0.7436

QP=25
PSNR degradation (dB) 0 0.1543 0.9618 0.6042 0.3457 0.6337

BPS reduction (Kbits/sec) 0 0.2129 5.4056 10.9775 1.4754 1.489
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Area/Power/Throughput Comparisons (Football, QP=15)
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Figure 4.5: Power/Area/Throughput comparisons of Football sequence
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CHAPTER 5

CONCLUSION

We propose a novel unified architecture that can perform DCT, IDCT, motion estima-

tion & compensation in the DCT domain for video transcoding applications. To our best

understanding, this is the first hardware architecture that can perform all these functions on

the same hardware fabric. The architecture is based on a Wavefront Array Processor. DCT-

MC is extremely important for DCT domain transcoder. Our implementation can reduce

the computation complexity of DCT-MC by taking advantage of the sparseness property of

DCT coefficients. DCT/IDCT/DCT-ME can be used for different types of video transcoding

systems, such as displaying, logo insertion, and temporal transcoding.

Traditional IP-based implementations on FPGA device are often used to simplify the

overall design process of complex digital systems. However, these pre-constructed circuits

with details of required hardware resources, power consumption, and throughput provided

by the vendors, have inherent limitation of achieving highly adaptive computing capabilities.

While it is a challenging and complex task to explore both algorithmic and architectural de-

sign issues, adaptive hardware resource sharing and algorithmic mapping through spatial and

time-multiplexing onto reconfigurable hardware show new possibility to provide significant

benefits when compared to traditional system design methodologies.
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We present an FPGA design for scalable DCT computations using dynamic partial recon-

figuration in this work. Compressed bitstreams are used to reduce external memory accesses

and storage sizes. BlockRAM is used as a cache to reduce the reconfiguration overhead.

The whole design is implemented in Virtex-4 ML410 evaluation board. The PowerPC is

included to control the reconfiguration of scalable DCT architecture to exploit trade-offs

among different requirements set by the system. It also controls the prefetching and de-

compression of the partial bitstreams. The proposed work can be used effectively for video

surveillance system requiring the storage of compressed bitstreams. Due to the different

amounts of motion activities during the day and night time, which results in more or less

number of DCT coefficients to be encoded after motion estimation process, the proposed

self-reconfiguration scheme can maximize the benefits through its high adaptability. Exper-

imental results show that our approach can reduce the external memory accesses by 69%,

and achieve 400 MBytes/s reconfiguration rate.

Our exploration of scalable architecture of DCT and ME computations using FPGA

dynamic partial reconfiguration. We used distributed arithmetic based architecture for DCT

computations. Using dynamic partial reconfiguration, the processing elements of the DCT

architecture can be changed on the fly including the number of the PEs and the internal logic

of the PEs. Zonal coding can be achieved by changing the number of the PEs, and full or

reduced precision DCT computations can be achieved by changing the internal logics of the

PEs. Some of the bits from LSB of the DCT coefficients are often truncated to be zeros due

to the following quantization process, especially for high compression ratio video encoding.
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Therefore, low precision implementation with reduced ROM size can be beneficial in terms

of hardware resources and power consumption since there will not be much differences in

quantized DCT coefficients. The FPGA does not need to be stopped while changing the

configuration, which is important for many image/video applications. We provided detailed

implementation results and comparisons for different configurations of PEs using both partial

reconfiguration process and non-partial reconfiguration process. The unused PEs can be used

for motion estimation.

We combine a quality priority prediction algorithm to predict zero quantized DCT co-

efficients based on hybrid model and show highly adaptive architecture which can be con-

tinuously reconfigured to support different DCT computation modes during run-time. 12

different modes can be performed by the proposed reconfigurable architecture to achieve

different goals of computation time, power, and hardware resources. Using the bitstream

relocation can reduce the overall bitstream storage size by 79.4% in our design.
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