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ABSTRACT 

As more data sources containing 3-D information are becoming available, an increased 

interest in 3-D imaging has emerged. Among these is the 3-D reconstruction of buildings and 

other man-made structures. A necessary preprocessing step is the detection and isolation of 

individual buildings that subsequently can be reconstructed in 3-D using various methodologies. 

Applications for both building detection and reconstruction have commercial use for urban 

planning, network planning for mobile communication (cell phone tower placement), spatial 

analysis of air pollution and noise nuisances, microclimate investigations, geographical 

information systems, security services and change detection from areas affected by natural 

disasters.  Building detection and reconstruction are also used in the military for automatic target 

recognition and in entertainment for virtual tourism. 

Previously proposed building detection and reconstruction algorithms solely utilized 

aerial imagery.  With the advent of Light Detection and Ranging (LiDAR) systems providing 

elevation data, current algorithms explore using captured LiDAR data as an additional feasible 

source of information.  Additional sources of information can lead to automating techniques 

(alleviating their need for manual user intervention) as well as increasing their capabilities and 

accuracy.  Several building detection approaches surveyed in the open literature have 

fundamental weaknesses that hinder their use; such as requiring multiple data sets from different 

sensors, mandating certain operations to be carried out manually, and limited functionality to 

only being able to detect certain types of buildings.   

In this work, a building detection system is proposed and implemented which strives to 

overcome the limitations seen in existing techniques. The developed framework is flexible in that 
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it can perform building detection from just LiDAR data (first or last return), or just nadir, color 

aerial imagery.  If data from both LiDAR and aerial imagery are available, then the algorithm 

will use them both for improved accuracy. Additionally, the proposed approach does not employ 

severely limiting assumptions thus enabling the end user to apply the approach to a wider variety 

of different building types.  The proposed approach is extensively tested using real data sets and 

it is also compared with other existing techniques. Experimental results are presented.  
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CHAPTER ONE: INTRODUCTION  
TO LIDAR AND BUILDING DETECTION 

The art of automatically detecting man made buildings from various sources of data has 

existed for several decades now.  Methodologies for solving this problem and even extending its 

applications have evolved with the advent of new technologies which deliver new and/or 

improved sources of data.  The research presented focuses on automatic building detection via 

Light Detection and Ranging (LIDAR) data and/or a single nadir aerial image, both of which 

depict the same scene.   

In this introductory chapter, first a brief overview of what LiDAR is and how it is 

procured is presented, followed by a discussion of some of the various applications of building 

detection.  Then, several of the different types of noise which corrupt LiDAR and some of the 

limitations of the data are cited.  Following the limitations of LiDAR data, the limitations of the 

use of aerial imagery for building detection are also mentioned.  Then the complimenting 

characteristics of the LiDAR data and the aerial imagery are discussed. Finally, the specific 

problem in which this area of research addresses is presented.   

1.1 LIDAR Overview 

LiDAR data procured from a nadir (facing directly down from the sky) perspective is 

typically done with an aircraft, helicopter or plane, which has a Global Positioning System 

(GPS), an Inertial Navigation System (INS) and a LiDAR sensor system mounted on it.  The 

GPS returns the longitude and latitude coordinates of the aircraft’s current position.  The INS 

tracks the altitude of the aircraft.  The LiDAR sensor system is an active remote sensing 
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instrument which consists of an emitter and receiver.  The emitter sends out a pulse of light 

(electromagnetic radiation) into the atmosphere.  The telescope (receiver) measures the intensity 

of the signal scattered back to the sensor system after that signal has interacted with various 

constituents in the atmosphere [36], [44].  The time from departure to return is also recorded thus 

enabling the calculation of the distance of the sensor to the target (or in this case the sampled 

terrain).   

 

Figure 1:  Capturing LIDAR Data 

In the case of a building surface, the laser will reflect off of the building’s surface and 

return to the sensor.  In the case of tree foliage or vegetation, two possible scenarios arise:  the 

laser beam could pass through the foliage or vegetation and hit the ground, or the laser could 

interact with the foliage or vegetation.  The first pulses to return to the sensor are labeled first 

return pulses.  These pulses consist of laser beams which interacted with the top of foliage and 

vegetation and building structures.  The last pulses to return to the sensors are labeled last return 

pulses.  These pulses consist of laser beams which passed through foliage and/or vegetation and 

interacted with the ground.  These pulses also consist of laser beams which interacted with 
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building surfaces as well.  Based on the time it takes from the emission of the laser from the 

sensor to the return of the laser beam after it has interacted with a given target, the range from 

the sensor to the target can be calculated.  It is possible to identify vegetation and building edges 

by examining the differences between first and last return pulses.  Trees and building walls are 

typically greater than 3 meters or approximately 9.84 feet in height.  Therefore, if a first and last 

return pulse for a given location has an elevation difference of 3 meters, there is a good chance 

that location corresponds to a building edge or tree and not the middle of a given surface.  The 

middle of building roof panels or the bottom of the ground will have differences much less than 

3 meters.  When the laser beam, emitted, from the LIDAR sensor hits a building surface, the 

majority of the beam is immediately reflected leaving minimal difference between first and last 

returns.   

While some older LIDAR systems only return the longitude, the latitude, and the 

elevation of a given returned point, newer systems can also capture the sampling time, the 

intensity of the returned signal, and the first and last return pulses.   

1.2 Applications of Building Detection 

Applications of building detection have valued use for both militaristic and commercial 

purposes.  For the military, the analysis of LiDAR data can be used for target recognition 

applications.  Work in training volume correlation filters (VCFs) to recognize tanks and other 

military vehicles within LiDAR data has recently been developed [15].  There is investigation 

underway for mounting LiDAR sensors on unmanned aerial vehicles (UAVs) [12].  This would 

enable aerial surveying of terrains in which military forces were denied access too.  Scenes 
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surveyed by an UAV or high flying plane with a LiDAR sensor could then be analyzed for 

detected buildings.   

For commercial uses, the demand for automatic building detection has applications such 

as urban planning, network planning for mobile communication, spatial analysis of air pollution 

and noise nuisances, microclimate investigations, geographical information systems, and security 

services.  For entertainment purposes, building detection can be used for tourism information 

systems.  Also, automatic building detection has change detection applications [42], where 

buildings demolished by natural disasters, are automatically identified via histogram difference 

thresholding comparing a pre and post event LiDAR analysis.   

1.3 LiDAR Advantages, Limitations and Noise Sources 

There are several advantages to using LiDAR data for automatic building detection.  The 

LiDAR sensor itself is an active sensor and therefore is not affected by the time of day the data is 

captured and the lighting conditions of the sampled terrain.  Furthermore, because the LiDAR 

data captures the height information of the terrain, it is possible to extract break lines regardless 

if they exist on the sun-side or dark-side of the sampled building.   

Unfortunately, there is no color information in the captured LiDAR data making 

vegetation sometimes appearing similar to buildings.  Furthermore, the raw, unprocessed data is 

irregularly distributed.  Therefore one must employ some kind of interpolation procedure to 

identify building edges as straight, continuous lines or to process the LiDAR data with 

conventional image processing algorithms (which typically assume the data exists at a rasterized 

grid).  The LiDAR data typically has lower resolution (by as much as several orders of 
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magnitude) when compared to aerial imagery; however with newer sensors this resolution 

difference is diminishing.   

Several phenomena contribute as sources of noise during the various processes involved 

in procuring the LiDAR data.  Furthermore, not only do various sources of noise corrupt the 

captured data, but also limitations within the sensors themselves further distort the data.  It is 

imperative to understand these sensor limitations and noise sources so that they can intelligently 

be accounted for.   

Simone et. al., for data in which they received covering terrain in Fairfield, Australia, 

reported in [4] that first and last returns differing in less than 4.6 meters in elevation are not 

valid.  The reason for this was found to be a limitation in the LIDAR sensor itself.  The sensor 

had to reset itself before a second return could be recorded.  If a second return comes back to the 

sensor before the reset time has passed, a dual return was being recorded.  Hence if the first and 

last return were less than 4.6 meters apart, the two returns arrived back at the laser before it could 

reset itself in time to record the second return, resulting in the LIDAR system simply recording 

the same return for both first and last return pulses.   

There is a plethora of noise sources influencing the processes involved with procuring 

LiDAR data.  Filin [5] reports that because the geo-location of a single point results from the 

integration of three subsystems (GPS, INS, and LiDAR), it is possible that errors can come from 

any combination of all three sensors. Specifically, errors resulting from the three subsystems 

include but are not limited to the following:  a constant offset in the range determination, 

inaccurate scan angle determination, mounting bias from the misalignment between the INS and 

LiDAR sensor, GPS offset and drift, and INS system drift.  These reported errors only exist as 

systematic discrepancies between the integration and limitations of the sensors themselves.  As 
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the electromagnetic radiation that is the laser is propagated through the atmosphere both its 

intensity and path are distorted by the interaction between the beam and the atmosphere itself 

[36], [44].  An additional aspect in which influences the LiDAR procurement process is artifacts 

resulting from scan angles not uniformly interacting with the sampled terrain due to obstructions 

from the terrain itself.  Consider as an aircraft flies adjacent to a tall skyscraper, the laser pulses 

will interact with the side of that tall skyscraper but not with the terrain behind it resulting in a 

shadowing effect [42].   

1.4 Aerial Image Limitations 

The aerial imagery of a given scene captures the electromagnetic radiance (luminescence) 

of the scene.  This makes it possible to detect shadows, view the colors of the given scene and 

determine the illumination angle.  The resolution of the aerial imagery is typically an order of 

magnitude greater than LiDAR data (15 to 30cm/pixel resolution and increasing).  The data is 

regularly distributed or rasterized which attracts the use of conventional image processing 

algorithms for building detection.   

The limitations of aerial imagery include the fact cameras are a passive sensor, no height 

information is directly available and that sometimes the vertical accuracy of a given image is 

compromised during the ortho-rectification of that image (i.e. tall buildings in the image become 

warped).  Because a camera is a passive sensor, the captured aerial imagery is affected by cloud 

coverage and lighting conditions.  Varying lighting conditions themselves pose challenges to 

automatic building detection algorithms.  Not having the height information available makes it 
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difficult to distinguish between building and sidewalks, especially when those sidewalks exist 

adjacent to the building's sun-side.   

1.5 Complementary Characteristics of LiDAR and Aerial Imagery 

For purposes of improved image classification, it is often advantageous to combine 

LiDAR data and aerial imagery (provided they have overlapping coverage of the same depicted 

scene) because of the complementary characteristics the two sources of data possess.  However, 

in order to make use of features which exist in the LiDAR data and then the same features for 

that corresponding location in the aerial imagery, the two sources of data have to be registered 

together.  The registration of the sources and then the use of their combined features can 

overcome the two sources' individual weaknesses.  For example, with only the height 

information available and no color information, it is sometimes difficult to disambiguate 

vegetation from small buildings in the LiDAR data.  However, the color available in the aerial 

imagery can distinguish that vegetation.  In a single, nadir, aerial image alone, it is challenging to 

differentiate buildings from concrete surroundings, especially when the concrete surroundings 

(such as side walks, parking lots, roads, etc.) exist adjacent to that building's sun-side.  However, 

the height information in the LiDAR data can identify building break-lines regardless of lighting 

conditions.   

1.6 Problem Statement 

The building detection problem is being tackled by a plethora of disciplines including 

image processing, electrical engineering, civil engineering and computer vision.  One can think 
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of the building detection problem as a black box.  The problem consists of taking one or 

tactically fusing multiple correlated forms of data as an input and then the output being 

pixels/points accurately classified as buildings or other phenomena (such as vegetation and/or 

ground) from the depicted sources’ data.  Typically those sources of input range from LiDAR 

data (from a nadir or ground perspective), aerial photography (nadir, stereo pairs, video 

sequences), multi-spectral imagery, and GIS plans/databases. 

The ideal building detection algorithm would have the following attributes.  First and 

foremost, it is desirable for the building detection algorithm to accurately identify as many 

buildings as possible.  At the same time the algorithm should not label areas as buildings which 

are in fact not building.   

Second, it is desired to have a generalized algorithm that can detect as many different 

types of buildings as possible.  Conversely, it is undesirable to employ the use of overly 

restricting assumptions which limit the algorithm's applicability to a small subset of buildings.  

Examples being assuming buildings are rectilinear (have right angle corners with parallel sides 

[13], [34]), assuming all buildings are parallel to one another ([13]), assuming buildings have flat 

roof tops ([11]), assuming buildings have only a certain color or subset of colors of roof tops 

([20], [25], [34]), assuming all data sets have the same illumination angle, assuming all buildings 

have only a single color or single texture roof top ([34]), assuming buildings have a maximum 

size, and so on and so forth.  Instead the assumptions employed should be as general as possible.  

For example it is better to assume a building exterior's shape is a polygon instead of a rectangle.  

Many buildings have multiple colors on their roof tops and multiple textures.  These buildings 

come in a variety of different shapes, sizes and orientations.  Data sets contain different lighting 

conditions and illumination directions.  Unfortunately, generalizing the algorithm to be 
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applicable to many different types of buildings sometimes comes at the expense of the 

algorithm's building detection accuracy.  Implementing limiting assumptions makes it easier to 

accurately detect certain subsets of buildings at the expense of excluding the algorithm's 

applications to other buildings.  At the same time, realizing a more general algorithm can 

sometimes come with the reward of being applicable to all buildings but at the expense of the 

algorithm's building detection accuracy.   

Third, the algorithm should be automated as much as possible to minimize user 

intervention.  Scientists, engineers, and various other researchers develop building detection 

algorithms for their application to the industry.  It would therefore be undesirable for the industry 

to have to pay a technician for any length of time to help the algorithm at various stages of its 

execution.  Therefore, if the algorithm has parameters, it is obviously better if those parameters 

do not have to be manually adjusted during the algorithm's execution across different data sets.  

It is even more desirable if those parameters do not have to be manually adjusted across single 

data sets to account for building variability within those data sets.  If the algorithm makes use of 

multiple sources of data, it is therefore desirable to have those sources registered automatically.  

If the algorithm has training phases, the smaller the amount of data the algorithm is required to 

be trained with, the better.  Furthermore, it would be optimal if the features in which the 

algorithm is trained on did not overly restrict the algorithm's applicability to buildings possessing 

specific characteristics and do not require the algorithm to be retrained for different data sets.   

Fourth, the algorithm should ideally be able to incorporate additional data sources as they 

become available.  For example, the algorithm should start with a fundamental requirement, say 

raw LiDAR data or aerial imagery with a pre-defined minimum resolution and then be capable of 

including additional sources of information as they are available to improve the detection 
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accuracy and/or classification abilities [17].  Note, additional sources of information could be 

entire data sets from different sensors or simply just a-priori information such as illumination 

direction, building attributes, etc.   

Finally, a fifth ideal attribute is it would be ideal if the algorithm can classify the image 

beyond simply building and non-building.  If instead the algorithm distinguishes the content of 

the image as building, vegetation, ground, pavement, non-building, etc.  This can in turn extend 

the algorithm's use to a wider range of applications.  Of course, it would be ideal to develop a 

multi-class classifier without sacrificing the algorithm's detection rate.   

The system implementation presented in this dissertation strives to make progress 

towards realizing those aforementioned ideal attributes with the following features.  A minimum 

of either LiDAR data having at least 1.5m2 point density or color (red, green blue) aerial imagery 

having 15 cm pixel resolution is required, both taken from a nadir perspective.  If both sources 

are available and have overlapping coverage, then both are made use of for improved image 

classification.  The only assumptions made about buildings existent in the LiDAR data is that 

they abruptly protrude as a convex hull from their surrounding terrain with a predefined 

minimum size.  Buildings existent in the aerial imagery are assumed to have a minimum size and 

exist as one or several convex roof top texture segments.  Buildings detected from either source 

are done so automatically.  Automatically meaning there are no training phases, the algorithm 

does not rely on user input nor parameter adjustment.  If both sources (aerial imagery and 

LiDAR data) are available, then they are automatically registered together and features from both 

are used to improve the algorithm's classification ability.  The algorithm classifies content in the 

LiDAR data as building, non-building, ground and in the aerial image as building, non-building, 

and vegetation and from both sources as building, non-building (mostly shrubbery/trees), ground, 
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and vegetation (grass, weeds).  A block diagram depicting the implemented system is shown in 

Figure 2. 

 

Figure 2:  System Implementation Block Diagram 
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CHAPTER TWO: EXISTING BUILDING DETECTION 
METHODOLOGIES 

The implemented system automatically detects buildings from either aerial imagery or 

LiDAR data, or both if they are available and if both have overlapping coverage of the same 

terrain.  First, building detection from LiDAR data approaches, where the LiDAR data is taken 

from a nadir perspective, are reviewed.  Second, building detection methods dealing exclusively 

with a single, nadir aerial image are reviewed.  Finally, some methods dealing with building 

detection from both LiDAR data and aerial imagery are reviewed.   

2.1 Approaches for Building Detection from LiDAR Data  

Several methodologies published in the literature use morphological filters to 

differentiate terrain from non-terrain points [19], [28], and [45].  Zhang et. al. in [45] report 

problems in using a static window size in the morphological operations.  An optimum window 

size (if it does exist) is not always the same throughout the processing of a single data set.  

Therefore in [19] and [28] the window size is tuned depending on characteristics in the data set.  

The proposed algorithm eliminates these problems because it does not rely on windowing 

techniques.   

Verma et. al. in [39] propose a model based automatic building detection and 

reconstruction method.  For the building detection, all points which are not locally flat are 

removed and then the remaining points are grouped to form connected components.  The 

connections between these components (points) are made provided that each point is connected 

to another point within a certain distance.  The authors then assume that the largest connected 
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component would correspond to all the points belonging to the ground.  However, based on 

varying terrain characteristics, this assumption may not always hold.  For instance, what happens 

if a river, a trench, or an elevated highway partitions the data set into multiple ground planes?  

Furthermore, what happens if portions of the terrain are surrounded by fences, power lines, 

neighborhood building walls, or other enclosures?  In these scenarios multiple ground planes will 

be created and thus the assumption of the largest ground plane containing all ground points no 

longer holds.  While it is true that non-locally flat points are removed, the locality again is terrain 

dependant.   

Ortner et. al in [23] propose an approach using stochastic geometry.  Their approach 

requires only a digital elevation model (DEM) that can be derived from either LiDAR data 

and/or multiple or single view aerial imagery.  Point processes models, which are part of the 

wider stochastic geometry field, allow the modeling of images as random configurations of 

geometric shapes and provide a natural setup for the inclusion of a priori knowledge on the 

spatial pattern of features.  The authors use both line segments and rectangles as the geometric 

shapes and parameterize the rectangles as a random configuration having center coordinates, an 

orientation, a length and a width.  One problem with this method is that it is based on the a priori 

assumption that buildings can be described by rectangles.  Buildings with exteriors not having 

right angles have to be described by multiple rectangles.  With the line segment process, 

sometimes the building exterior contours are not bounded.  Furthermore, on a data set with 150 

buildings, the proposed approach took 6 hours on a 3 GHz Pentium 4 machine to execute.   

Matikainen et. al. in [16] propose the use of a region-based segmentation method which 

segments a DSM into homogenous regions.  Utilizing height differences between the DSM and 

DTM, textural characteristics of the DSM and of the returned LiDAR intensity, and shapes of the 
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regions as features, they classified the regions into building, tree or ground surface.  The authors 

analyze the following three attributes for classification:  grey level co-occurance matrix (GLCM) 

homogeneity of height (texture measure), the GLCM homogeneity of intensity and the average 

length of edges in a 'shape polygon' created from the segmented region.  They manually 

extracted these aforementioned features for a subset of the data (dubbed the training set) and then 

tested their algorithm on the rest of the data.  They developed fuzzy membership functions for 

recognizing buildings based on the distributions of the features as they pertained to the manually 

extracted classes (building, tree, and ground).  The authors report a 90% completeness and 85% 

correctness for their approach tested on 259 buildings.   

Zhou and Neumann in [46] detect vegetation and ground in LiDAR data and then assume 

buildings exist as everything else in the data set.  The authors strategically pick features to 

identify vegetation in which are not data dependent but rather global features.  Then they propose 

the use of an SVM classifier, which is a supervised classifier, meaning it requires a training 

phase where classes have already been identified, to identify vegetation.  The authors boast that 

because of the global features they have selected, the SVM only has to be trained once and not 

re-trained for additional data sets.  This is particularly note worthy as often times approaches 

employing supervised classifiers have to be retrained for different data sets because of the 

selected features used to train the classifiers differ in nature across multiple data sets.  The 

authors proposed algorithm works off of the irregular LiDAR data.  The authors detect buildings 

by removing vegetation and identifying ground.  This ideology inherently assumes that the only 

three classes existent in the data set are buildings, ground and vegetation.  One immediately asks 

what would cars, trucks, industrial freight crates, steep hills, power lines, and other 

miscellaneous objects be categorized as.  The features the authors use to train their SVM 
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classifier to recognize vegetation may also wind up classifying residential buildings as vegetation 

as well.  Two features, 'flatness' and 'Normal distribution' in particular raise concerns.  What 

happens for under sampled residential buildings with multiple roof planes?  Those residential 

buildings probably would have 'flatness' and 'normal distribution' close to that of vegetation.  The 

authors do report in their experiments section that their algorithm, when applied to residential 

areas of some cities, result in trees becoming the majority objects.  The authors report that the 

gamma and eta parameters have to be set for each data set.  It seems contradictory to say that the 

approach is fully automatic and then have parameters that have to be tuned for each data set. 

The algorithms presented in [16], [19], [23], [28], [29], [30], and [45] all natively rely on 

the raw, irregularly spaced LiDAR data being rasterized/interpolated to fixed point spacing.  The 

methods proposed in [19] and [28] require manual inspection of the terrain to determine the 

optimal morphological filtering window size; note however that Rottensteiner et. al. in [29], [30] 

implement additional procedures to find the optimal window size.   

2.2 Approaches  for Building Detection From Aerial Imagery  

Although overlapping geospatial information from multiple sources is becoming more 

and more available (LiDAR, multispectral, and stereo pair aerial imagery), many areas and data 

sets still exist with coverage from only a single nadir aerial image.  Even with the increasing 

resolution of newer sensors to capture overhead aerial imagery, several factors still present 

challenges which hinder perfect building detection.  These factors include the scene complexity, 

building variability, and sensor resolution [17].  One could argue detecting a single farm house 

existent on a barren hill would be easier than detecting hundreds buildings located in a busy 
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downtown market place.  The more extraneous objects cluttering the image, the more difficult it 

becomes to rule out what is and what is not building.  To further complicate matters, buildings 

have little to no universal characteristics in which to identify them with.  Buildings can have 

homogeneous (single section or single texture) roof tops and heterogeneous (multiple texture or 

multiple section) roof tops; their exterior contours can exist as rectilinear or polyhedral or even 

spline shaped; they can cast long shadows at sunset or minimal shadows during high noon and at 

different directions dependant at the time of day; and can have a variety of different colored roof 

tops.  Furthermore, not only do the buildings themselves vary in both luminescence and 

geometry, but the datasets also vary in nature - both in illumination direction and in the type of 

buildings contained within the dataset.  Therefore implementing rule based assumptions or 

training an algorithm on a data set with buildings existing at a particular color range, or having 

exterior contours with right angle corners or shadows in only a single particular direction will all 

result in a loss of generality when being tested against other data sets with buildings containing 

contrasting characteristics.  Therefore it would be ideal to utilize features for training or to 

implement rules based on assumptions in which do not overly restrict the algorithm to specific 

circumstances particular only to the data set (i.e. claiming all buildings have red roofs and can 

only have square exterior contours).   

One could also argue, in respect to the challenges of building detection in general, that 

multiple overlapping sensor coverage on a single given scene would reduce the difficulty of 

detecting buildings for that scene.  Rottensteiner et. al. in [29] and [30] and Vosselman et. al. in 

[41] make use of both Light Detection and Ranging (LiDAR) data and a single nadir, aerial 

image for automatic building detection and vegetation identification.   
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Most building detection from aerial imagery approaches can be classified by whether 

they are automatic or supervised (require a training phase) and whether they extract geometric 

features such as lines, corners, etc. or are area based.  There are of course exceptions and some 

methods existing as hybrids employing both geometric features and areas or having some phases 

automatic and some semi-automatic or supervised phases.  Lefevre et. al. in [13] propose an area 

based automatic building detection from aerial image approach which employs morphological 

filtering.  First, binary images are created by clustering the aerial image’s grey scale histogram.  

Then, multiple clusters are fused together and added to the original set of binary images.  Finally, 

morphological opening, followed by the hit or miss transform and then geo-disc reconstruction 

are performed for building detection.  Their approach was tested on an image having 17,673 

pixels and realized a pixel level completeness of 63.6% and a pixel level correctness of 79.4%.  

No building level completeness or correctness were reported.  While the authors approach is 

automatic, it unfortunately implements the assumption that buildings are square or rectangular.  

The authors compute a bi-dimensional granulometry of the binary images varying the width and 

length of the rectangular window.  Because they do not vary the orientation of the window, they 

assume the rectilinear buildings are all parallel with one another and that the image has been 

rotated so that the sides of the buildings are parallel with the edges of the image.   

Muller and Zaum in [20] implement an area and feature based algorithm for building 

detection from aerial imagery.  The image is converted to grayscale and then segmented with a 

region growing algorithm.  Then both photometric and geometric features are detected in each 

segmented region.  Finally, a linear regression classifier then identifies building regions based on 

the extracted features.  Their method is automatic and only takes 45 to 75 minutes on a 

6400x6400 pixel image.  Unfortunately, they implement the assumption that building rooftop 
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hues primarily exist in the red channel of the RGB image.  Furthermore, of the results pictorially 

presented in their paper for the 240 tested buildings (most of which have red roof tops), their 

algorithm had trouble correctly identifying several of the non-red roof top buildings.  The 

authors report a mean completeness and correctness for 79.5% and 78.5% (respectively) for the 

data sets their algorithm was tested on.   

Persson et. al [25] implement a supervised approach for building detection using an 

ensemble of self organizing maps (ESOM).  Then, using the Hue Saturation Value (HSV) 

representation of the color aerial image, the ESOM is trained to recognize red roofs, light roofs, 

dark roofs and copper roofs.  Rectangles are detected and then classified by ESOM as building or 

non-building.  Their approach realizes a completeness and correctness of 53% and 93% 

respectively for a campus area.  Because their approach is supervised, it requires a training 

phase.  Furthermore, because only rectangles are classified as building/non-building, the 

approach assumes buildings are rectilinear.  Results based on testing across 17 buildings are 

presented.   

Sirmacek and Unsalan in [34] have developed a feature and area based approach 

employing color invariant features [7] and shadow information for building detection from aerial 

imagery.  Shadows are detected by Otsu Thresholding [24] a blue color invariant image.  The 

authors identify red building roof tops by Otsu Thresholding the red color invariant image.  They 

estimate the illumination direction by calculating the average direction between all the red roof 

top centroids and their adjacent shadow centroids.  The authors then use the illumination angle to 

find other non-red roof top regions by searching from the shadow region opposite of the 

illumination angle to nearby adjacent regions.  A canny edge detector is run on the image and 

then a novel box fitting algorithm is grown within candidate building regions by minimizing an 
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energy function.  The inside of the rectilinear box is then assumed to be a building.  The authors 

present results for only a 177 buildings with a completeness of 86.6% (no correctness reported).  

Their approach assumes buildings are rectilinear and at least some portion of the data set 

contains red roofs.  The illumination angle estimation is based on red roofs only and then is used 

to verify which adjacent region shadows have been cast from.  Furthermore, their approach also 

assumes buildings are composed of either a single texture or a single roof plane.  The canny edge 

detector will pick up edges where two textures or roof panels join and the novel box fitting 

algorithm will stop prematurely at the single roof panel adjacent to the shadow, not growing to 

accompany other adjoining panels of different color or texture.   

Liu and Prinet in [14] use a feature and area based approach coupled with a probability 

function to identify building regions.  Their algorithm starts out segmenting the image.  Then a 

set of features (such as contour edges, shadow ratios, shape features, region entropy, etc.) are 

identified in each region.  Then the probability function calculates the confidence value that the 

given region is in fact a region corresponding to building.  Some of the parameters of the 

probability function are determined from a training set where buildings were manually identified.  

The authors report a completeness and correctness of 94.5% and 83.4% on a data set having 277 

buildings.  The authors notice a problem with shadows as they vary under different illumination 

directions.  The authors plan to extend their work by testing their approach on different imagery 

at various resolutions.   

Surveying the related literature, several common issues arrive in automatic and semi-

automatic/supervised building detection approaches from aerial imagery.  Some will make 

limiting assumptions which may reduce the ability of the algorithm when executed for data sets 

other than what were presented in the associated paper.  Examples of such limiting assumptions 
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would be buildings only having specific root top colors ([20], [25], [34]), buildings only existing 

at right angle corners and/or buildings having parallel sides ([13], [34]).  Rather than saying all 

buildings have parallel sides or right angle corners, a more general assumption would be that 

buildings tend to have convex hull rooftop sections.  Furthermore, many houses have a variety of 

different color roof tops (other than red) and commercial and industrial building roof tops 

include grey, black and white.  Finally, the results should be tested on several hundred or even 

thousands of buildings of varying sizes, shapes, orientations, roof top colors, and roof top 

textures and from more than one data set if possible to thoroughly benchmark the generality of 

the algorithm.  Several of the current related papers in the literature ([14], [20], [25] and [34]) 

only present results from a couple of hundred buildings and some from only a single data set.  

While the semi-automatic/supervised approaches ([14] and [25]) tend to have good accuracy, 

they rely on manually extracting features from 1/4th to as much as ½ the data set.  Furthermore, 

unless an emphasis was placed on training the algorithm with data set invariant features, the 

algorithm will have to be retrained for each data set to achieve relatively close accuracy as what 

is presented in their associated paper.  Furthermore, both completeness and correctness should be 

reported both on a global pixel rate as well as a function of the building size.   

2.3 Building Detection From LiDAR Data and Aerial Imagery  

There are several approaches in the literature which make use of both LiDAR data and 

aerial imagery taken from a nadir perspective which both contain overlapping coverage of the 

same terrain.  Rottensteiner et. al in [30] propose the use of the Dempster-Shafer fusion method 

to implement building detection based on the use of five feature sets:  height differences between 
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digital terrain model (DTM) and digital surface model (DSM); strength of surface roughness; 

directedness of surface roughness; height differences between the first and last pulse DSMs; and 

an NDVI image (page 452 of [37]).  The DTM only encompasses bare earth (no building, 

vegetation, etc.) whereas the DSM contains everything sampled by the LiDAR data.  The NDVI 

image is constructed by using the red band from the aerial image and the returned LiDAR 

intensity values for the infrared band.  This method therefore also relies on the registration of the 

LiDAR data to aerial imagery if the red aerial image color components are to be paired with the 

corresponding returned LiDAR intensity existing at the same location.  Furthermore their 

proposed method requires visual inspection of the data to estimate the 'PT' algorithm input 

parameter which corresponds to the percentage of terrain covered by trees.  The authors report 

that their algorithm performs optimally provided that the 'PT' parameter is known within 5% of 

its true value.   

Vosselman et. al in [41] develop a data driven building detection approach which uses 

LiDAR and aerial imagery data.  The LiDAR point cloud is divided into sets of parallel thin 

slices in the XY plane.  A spanning tree is then computed for each profile and by removing tree 

edges that exceed a certain slope or length threshold, the tree is split into line segments which are 

then merged with surface segments. Then, segments with a low portion of line segments that are 

above neighbouring line segments are classified as bare earth.  The authors claim their approach 

is automatic, however they require that the LiDAR data be registered to the aerial imagery.  

Automatic registration of LiDAR to aerial imagery is not by any means trivial and the authors do 

not provide a solution to this in their paper.  Their algorithm also has issues with sometimes 

classifying walls of buildings as vegetation and vegetation close to buildings as part of the 
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building.  The authors report the algorithm having completeness and correctness values of 85% 

and 90% respectively for their tested data sets.   

Chen et. al. in [1] propose a two step building detection scheme.  They first implement a 

region based segmentation scheme on both LiDAR data and aerial imagery and then perform 

object based classification.  They merge regions having similar geometric and spectral 

properties.  Object-based classification is performed by considering characteristics of elevation, 

spectral information, texture, roughness and shape to detect building regions.  The elevation of a 

given pixel is obtained by subtracting a DTM from a DSM.  Then an elevation threshold is set to 

detect objects above ground.  A greenness index is then used to distinguish vegetation from non-

vegetation areas (it is not mentioned how the greenness index is determined).  A texture analysis 

from the aerial image based on entropy and homoegeneity is used to separate building from 

vegetation when objects have similar spectral responses.  The roughness of the LiDAR data aims 

to differentiate vegetation from non-vegetation.  Finally a shape attribute which includes size and 

length to width ratio is used.  A minimum area threshold is implemented to remove smaller 

objects which are most likely not building.  The authors report their data set having an average 

point density of 1.6 pts/m2 and an ortho-rectified aerial image having a pixel resolution of 10 cm.  

Their approach was able to detect 79 out of 89 buildings realizing a detection rate of 81%.  No 

correctness is reported.  Furthermore, of the results presented, most are relatively large buildings.  

Finally, the authors report the 10 buildings that were not detected were smaller than 35m2.  No 

mention of how the DTM and DSM were generated (probably with morphological filters with a 

constant window size).  Because a DTM and DSM were used, the LiDAR data was most likely 

interpolated.   
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Hu et. al. in [10] threshold the LiDAR data at a given height for building detection.  

Objects below a certain height are classified as terrain and objects above a certain height as 

building or vegetation.  The authors then use the color information from the aerial imagery to 

further discriminate the buildings from vegetation.  If a point exists above the previously applied 

height threshold and is green it is labeled as vegetation.  The authors however do not report 

building level or pixel level completeness or correctness for their algorithm.  It is not mentioned 

how the green colors are extracted for vegetation detection.   

Several common limitations/drawbacks are existent in LiDAR and aerial image building 

detection methods found in the recent literature.  All of the aforementioned building detection 

methods in this section ([1], [10], [30], and [41]) treat the registration of the two data sources 

(LiDAR and aerial imagery) as a pre-processing technique and proceed to manually register the 

souces together.  The algorithms presented in [30] and [41] also require that the irregularly 

spaced LiDAR data be rasterized/interpolated to fixed point spacings.  The method in [30] 

requires first and last pulse returns as well as the LiDAR intensity and requires that the end user 

estimate the amount of vegetation existent in the terrain within 5% of the ground truth.   
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CHAPTER THREE: BUILDING DETECTION FROM LIDAR DATA 

A novel paradigm is presented which employs homotopy trees, a branch of topography, 

for building detection in Light Detection and Ranging data.  The method is developed for 

irregularly spaced LiDAR data and therefore it can also be applied to rasterized/grid spaced data 

without any modifications.  Using features extracted from either the first and/or last returns (if 

available) of the LiDAR pulses and the triangulation of the LiDAR data, the proposed method 

can discriminate ground from non-ground points and subsequently differentiate non-ground as 

building or non-building points.  The only assumption the algorithm makes about the building 

structures is that they exist as convex hulls that protrude from the ground with a minimal 

predefined area and height.  The following subsections detail the specifics of the proposed 

algorithm.  First, homotopy trees are discussed and then second pseudo homotopy trees are 

presented.  Third, some notation associated with pseudo homotopy trees is introduced.  Fourth, 

the process of how to use homotopy trees to identify the ground level is presented.  Finally, some 

heuristics are formulated for how to differentiate building from non-building.   

3.1 Homotopy Trees 

For a concise definition on homotopy trees see page 44 of [35].  A brief discussion as 

they pertain to the proposed algorithm will be outlined next, but first the concept of connectivity 

must be defined.  A set is considered connected if each pair of the set's elements can be joined by 

a path where all the elements of the path also belong to that set.  A triangulated irregular network 

(TIN) is an approximation of a 3-dimensional depiction of a given collection of points which in 

this case is a LiDAR point cloud describing terrain sampled by a LiDAR sensor.  The TIN itself 
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is then a bounded set of interconnected triangles with non-overlapping edges (all triangles are 

completely visible from a top down or nadir perspective).  The concept of connectivity is 

demonstrated in the arbitrarily created TIN shown in Figure 3 where all the light grey triangles 

belong to one set and the dark grey triangles belong to another set but the light grey set and the 

dark grey set do not compose a single set as the two sets are not connected to one another.   

 

Figure 3 - Example TIN Connected Sets 

Define X as a bounded set containing a collection of connected components as shown in 

Figure 4.  Then, the complement of X, denoted as Xc would then contain all the space in which X 

does not occupy.  A homotopy tree of a bounded set X is defined as having a root X0 

corresponding to the unbounded connected component of Xc (white background shown in Figure 

4).  The first level or first generation of nodes corresponds to the connected components X1,i 

which belong to X and are adjacent to X0 (the branches of the tree indicate which nodes or 

connected components are adjacent to other connected components).  The second generation of 

nodes correspond to the bounded components X2,i which belong to Xc and are adjacent to each 

X1,i.  Future generations are added as additional sets are found to be adjacent to already 

considered sets.  Notice that every even (and 0) level corresponds to Xc and all odd levels 

correspond to X.  From this definition, tree structures or homotopy trees can then be constructed 

to describe the sets.  Two sets and their trees are depicted in Figure 4 and Figure 5.  In Figure 4, 
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observe how X1,1 is adjacent to X2,1, and X1,1 exists in one generation older than X2,1.  The set X1,1 

is then referred to as the parent of X2,1 and X2,1 is referred to as the child of X1,1.   

 

Figure 4 - 1st Homotopy Tree Example 

 

Figure 5 - 2nd Homotopy Tree Example 

 

3.2 Psuedo Homotopy Trees 

3.2.1 Wall Triangles, Non-Wall Triangles and Connected Sets 

For the purpose of building detection, the formal definition of homotopy trees is slightly 

modified, where the modified definition is referred to as the pseudo homotopy tree (PHT).  

Before discussing PHTs, first some definitions about triangles existent in the LiDAR TIN and 

definitions pertaining to the LiDAR data itself are necessary.  Let P be the set of N irregularly 

distributed points pi in the raw LiDAR point cloud: 

[ ]{ }1,iP p i N= ∈  (1)
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Those N irregularly distributed points are triangulated via a modified greedy insertion 

triangulation algorithm [31] into a TIN.  If the LiDAR set is too large, it is evenly partitioned 

into smaller groups so that it is more manageable to work with.   

Two types of mutually exclusive triangles are defined:  wall triangles (WT) and non-wall 

triangles (NWT).  Consider the blue triangle in Figure 6.  A triangle's orientation θ is defined as 

the angle between the vector n normal to the triangle's plane (formed by its three vertices) and 

the z or elevation axis (pointing straight up).  A WT is defined as a triangle having an orientation 

θ greater than 45 degrees (θ>45) and a difference Zdiff, between its maximum Zmax and minimum 

Zmin points in elevation, of at least 1 meter (Zdiff > 1).  A NWT is then defined as a triangle 

violating either of the two conditions needed to be a wall triangle.   

 

Figure 6 - Wall Triangle Orientation and Elevation Difference 

In a LiDAR TIN, a wall connected (WC) set is defined as the set of wall triangles in 

which are all connected to one another.  A non-wall connected (NWC) set is a set of non-wall 

triangles in which are connected to one another.  A ground connected (GC) set is a NWC set that 
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corresponds to the ground in the depicted terrain.  A first generation connected (FGC) set is a 

WC set whose immediate parent is a GC set.   

3.2.2 Constructing the Pseudo Homotopy Tree 

In the process of defining a PHT, at first the PHT is assumed to be equivalent to a HT and 

then at the end their differences are shown.  Let S be the set of all Y triangles ti in a given LiDAR 

TIN:  S={ti|i∈[1,Y]}.  Let Zc be the set of all non-wall triangles in the LiDAR TIN and Z be the 

set of all wall triangles.  Note that because a NWT cannot be a WT and vice versa then Z∪Zc=Y 

and Z∩Zc=Ø.  

Let t0 be the NWT with the lowest elevation average, calculated by taking the average of 

the elevation component of the triangle's vertexes.  Region growing is then applied by 

connecting all NWTs which are connected to this lowest elevation average triangle t0.  These 

NWTs then form the NWC set Z0 which is assumed to be either a trench or a ground plane.  Wall 

triangles encountered during this region growing process are stored in Z0's WT queue.  Then, a 

single WT is taken from Z0's WT queue and region growing is applied forming a WC set - Z1,1.  

Note that Z1,1 forms the 1st generation and is a child to the Z0 parent node.  If not all of the WTs 

are used up during this region growing process, then region growing is applied on unused WTs 

forming more WC sets - Z1,2, Z1,3, etc.  It is possible for several different WC sets to be 

immediately adjacent to a single NWC set.  Therefore, any node in the PHT can have multiple 

children but all nodes (except the root node) can only have one parent node (conversely no node 

can have multiple parents).  While these WC sets Z1,1, Z1,2 and Z1,3 are being grown, any unused 
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NWTs that are encountered are stored in their respective queues.  Once all the WTs from Z0's 

queue are used up in growing WC sets Z1,j then all the NWTs in Z1,j 's queues are used as seeds 

for growing NWC sets Z2,1, Z2,2, etc.  This process, depicted in Figure 7, continues iteratively as 

the PHT is grown.  The root node or the NWC set containing the lowest elevation NWT is 

always referred to as Z0.  All future nodes are labeled Zi,j where i corresponds to the level or 

generation of the connected set and j corresponds to the node index of a given node in generation 

i.   

The WC sets are equivalent to set X in section 3.1 and the NWC sets equivalent to Xc.  

However, because a single ground plane does not necessarily always surround all WC sets (the 

terrain could be partitioned by an elevated highway or a trench), the concept of a PHT had to be 

developed.  There are only three differences between the PHT and an HT which are as follows.  

First, the root node or NWC set containing t0 (recall this is denoted as Z0) will always be 

bounded (because there are a finite amount of LiDAR points) unlike the HT which must have an 

unbounded root node.  Second, the root node may not always surround (from a nadir perspective) 

all of the WC sets.  Finally, in an HT X refers to an actual set describing a surface and Xc refers 

to a set describing an empty space (the set and empty space both being mutually exclusive) 

whereas in the PHT X and Xc are equivalent to two different types of sets - WC sets and NWC 

sets, neither of which are empty space but both being mutually exclusive from one another.  

Despite the subtle differences between the PHT and the HT, the paradigm of representing a 

surface as a homotopy tree (or for this application as a pseudo homotopy tree) and describing 

properties of that surface with set theory are very practical for building detection in a LiDAR 

TIN, as is soon shown in the results.   
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Figure 7 - Pseudo Homotopy Tree Growing Block Diagram 

3.2.3 Pseudo Homotopy Tree Notation 

Let G denote the total number of generations in a given PHT and J(i) denote the total 

number of nodes in each generation i.  For example, in Figure 5, J(1) = 2, J(2) = 4, and J(3) = 1.  

Note for all PHT's and all HT's, J(0) = 1 as there can be only one root node.  Observe during the 

PHT construction process, as described in 3.2.2, how all the NWC sets exist at all even 

generations: 

( )

,
2

0,1,2,..., /2 1,2,..., ( )
J iG

C
i j

ji k
Z Z k G j J i

= ⋅
= = =UU  (2)

The WC sets exist at all odd generations : 
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( )

,
2 1

0,1,2,..., /2 1,2,..., ( )
J iG

i j
ji k

Z Z k G j J i
= ⋅ +

= = =UU  (3)

For connected set - ,
,
n m
i jZ , let superscripts n denote the number of children node j at 

generation i possesses and m denote the node index of ,
,
n m
i jZ 's parent connected set as it exists in 

the previous generation.  Therefore, if a given connected set belongs to generation 3, has a node 

index of 2, has 4 children, and has a parent whose node index was 1 in the previous generation, 

then that connected set would be denoted as 4,1
3,2Z .  Let the connected set  denote the union 

of connected set 

,
,
n m
i jC

,
,
n m
i jZ  and all of connected set ,

,
n m
i jZ 's children and children's children in all 

future generations.  Recalling Figure 5, let's add the superscripts to make the connected sets Y 

conform to the notation mentioned in this section, now represented in Figure 8: 

 

Figure 8 - Homotopy Tree Example with 
Child and Parent Notation 

 

Figure 9 - Homotopy Tree Example with C 
variable 

 

Note that because the root node has no parent, the parent superscript index is dropped.  In 

Figure 9, the  denotes the union of  and 's child  and 's children in all future 1,1
1,2C 1,1

1,2Y 1,1
1,2Y 1,1

2,4Y 1,1
1,2Y
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generations which in this case also includes , or in other words - .  

Finally, the last bit of notation introduced is the S(Z) function which returns the size of 

connected set Z or in this case the area in m

0,4
3,1Y 1,1 1,1 1,1 0,4

1,2 1,2 2,4 3,1C Y Y Y= U U

2 in which connected Z spans over the given terrain.  

Given that the units of measurement (feet/meters/etc.) are provided with the data set, the area 

each triangle covers from a nadir perspective can be calculated and then all the areas for all the 

triangles in connected set Z can be summed.  For example, if connected sets  covers 3 m1,1
1,2Y 2, 

 covers 4 m1,1
2,4Y 2, and  covers 1 m0,4

3,1Y 2, then ( )1,1 2
1,2 3S Y m= , ( )1,1 2

2,4 4S Y m= ,  and 

. 

( )0,4 2
3,1 1S Y m=

( ) ( ) ( ) ( )1,1 1,1 1,1 0,4 2 2 2
1,2 1,2 2,4 3,1 3 4 1 8S C S Y S Y S Y m m m m= + + = + + = 2

3.3 PHTs for Identifying Ground Level 

It is first shown how PHTs can be utilized to differentiate the ground level from 

everything else.  Then in the next section, a collection of heuristics are implemented to 

differentiate buildings from non-buildings.  Consider the following terrain profile shown in 

Figure 10 (nadir view) and Figure 11(side view).   

 

Figure 10 - Top/Nadir view of example terrain 
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Figure 11 - Side view of example terrain 

In the example depicted by the terrain profile, let connected sets 0 and 6 correspond to 

ground levels and connected sets 2, 3, 7, 8, and 9 correspond to the bases of buildings.  A step by 

step description of the algorithm’s execution, on the example depicted in Figure 11, is provided 

as follows.  The PHT algorithm starts out at the lowest NWT which would exist in connected set 

0.  The algorithm then finds all NWTs existent in that connected set, which are adjacent to one 

another, thus forming a NWC set.  All the while the algorithm would add the WTs in connected 

sets 1, 2 and 3, which are adjacent to the NWTs in NWC set 0, to the queue for the NWC Set 0.  

After all the connected, adjacent NWT’s are found for the NWC Set 0, then a WC set is formed 

from one of the WTs in NWC Set 0’s WT queue.   Let’s assume that connected set 2 in Figure 11 

was the next WC set formed.  Then all the connected, adjacent WTs in that connected set would 

belong to WC set 2.  Note WC set 2 would be the child of NWC set 0.  Remember, while the 

algorithm grows the WC set corresponding to connected set 2, the NWT’s existent in connected 

set 4 of Figure 11 would be added to WC set 2’s queue.   

Then the algorithm would go back to NWC set 0’s queue and continue growing WC sets 

until NWC set 0’s queue was emptied.  Let’s say then WC sets 1 and 3 are then grown from the 

WTs from the queue of the NWC set representing connected set 0.  After NWC set 0’s queue is 

exhausted, the algorithm proceeds to NWC set 0’s children (which are WC sets 1, 2, and 3) and 
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grows the NWC sets from the NWTs in their (1,2 and 3) queues.  Then NWC sets 4, 5 and 6 are 

grown.  Following this, WC sets 7, 8 and 9 are grown while NWT triangles in connected set 10 

are added to WC set 7’s queue.  Also, NWT triangles in connected sets 11 and 12 are added to 

WC sets 8 and 9’s queues respectively.  Then NWC set 10, 11 and 12 are grown.  Following this, 

WC sets 13 and 14 are grown.  Then from their (13 and 14) queues NWC sets 15 and 16 

(respectively) are grown.   

After all connected sets are formed; the hierarchical relationship or PHT between those 

connected sets is then analyzed.  For the simplified example in Figure 11, the PHT generated is 

displayed in Figure 12.  Using the notation established in section 3.2.3, the sets are relabeled and 

the tree redone in Figure 13.   

 

Figure 12 - Pseudo Homotopy Tree for 
Sample Terrain 

 

Figure 13 - PHT Labelling for Sample 
Terrain 

Notice how the GC sets (sections 0 and 6) have a larger number of immediate child sets 

than the other sets.  In terms of the data, this means there are more buildings protruding from the 

ground then there are smaller structures (air conditioning vents, chimneys, etc) protruding from 

the roofs of buildings.  In actual data, it was found that GC sets had a significantly larger number 
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of immediate child sets than all other sets existent in the PHT.  Therefore, the NWC sets with the 

largest number of child nodes are the GC sets.  A simple thresholding technique automatically 

identified these GC sets.  In the simplified example, this establishes sections 0 and 6 as GC sets.  

Using eq (2) and eq (3), one can see that all the NWC sets are sets 0, 4, 5, 6, 10, 11, 12, 15 and 

16 (all even generation nodes) and all the WC sets are 1, 2, 3, 7, 8, 9, 13, and 14 (all odd 

generation nodes).   

3.4 Heuristics for Differentiating Building from Non-Building 

Several heuristics are implemented to accurately differentiate building from non-building 

structures.   

• Heuristic I:  GC sets will have a significantly larger number of child WC sets than any 

other NWC sets.  Let E be the total number of connected sets in the data set.  A NWC set 

is a GC set if a NWC set has at least 0.05*E children.  That means if a single NWC set 

has at least 5% of the total number of connected sets E as its immediate children, then 

that NWC set is labeled a GC set.  The 5% threshold was determined empirically. 

[ ] [ ],
, 0.05 0,2,4,6...n m

i jGC Z n E i⎧ ⎫
⎨ ⎬
⎩ ⎭

= > ⋅ ∧ =  (4)

In (4), the generation i must be even or 0 as all even (and root node or generation 0) sets 

are NWC sets and GC sets are by definition only NWC sets.  Therefore (4) states that all ground 

connected sets GC are equal to all NWC sets given those NWC sets ,
,
n m
i jZ  have children n greater 

than 0.05*E.   

• Heuristic II:  There are two heuristics which are employed to identify connected sets in 

which do not belong to buildings or ground.  The first is by examining a FGC set's 
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children:  if a FGC set has no NWC set children, or in other words, if an isolated 

connected set of only WTs protrudes from a GC set, then that connected set is labeled as 

non-building.  Let NBC be the set of all connected sets defined as connected sets not 

belonging to buildings or ground.  Then let NBC1 correspond to the first way in which 

connected sets are identified as not belong to buildings or ground and let NBC2 be the 

second way where NBC = NBC1∪NBC2.  Then NBC1 is formulated as follows: 

[ ] [ ] [ ]{ },
,1 0 1,3,5,7...n p

i jNBC Z n i p GC= = ∧ = ∧ →  (5)

Equation (5) states that connected sets not belonging to buildings or ground, denoted as 

NBC1, contain wall connected sets (hence the generation index i being only odd) who have GC 

set immediate parents (p→GC) and no children (n = 0).  Note that in (5), p is the set of all node 

indices pointing only to GC set nodes.  Recall that FGC sets are WC sets (therefore their 

generation index i is odd) and their immediate parent connected set is a GC set.  Looking back to 

the example in Figure 11, NWC sets 1 in Figure 12 (or Z1,1 in Figure 13) ,2 (Z1,2) ,3 (Z1,3), 7 

(Z3,1), 8 (Z3,2) and 9 (Z3,3) are FGC sets and their p indices for that example are the node indices 

of the GC sets (Z0,1) and (Z2,3) in Figure 13 which are 1 and 3:  p∈[1,3].  This heuristic simply 

states that in order for a FGC set (and all of its immediate and future generation children) to be 

labeled as building, it must have NWC set children.  Another way of stating this is that buildings 

(whose walls are represented as FGC sets) will have roofs on top of them (where those roofs are 

represented by the FGC sets' NWC set children).   

• Heuristic III:  The second heuristic utilized to identify non-building connected sets 

examines the connected set's total area:  if the sum of the area of all of the triangles 
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belonging to a FGC set and all its children sets accumulates to less than 40 m2, then label 

those sets as non-building (dense vegetation, cars, trucks, shacks, etc.).  This heuristic 

simply places a minimum area a collection of connected sets must occupy in order to be 

classified as building and it is formulated as follows: 

( ) [ ] [{ ]}, , 2
, ,2 40 1,3,5,7...n p n p

i j i jNBC C S C m i p GC⎡ ⎤= < ∧ = ∧⎣ ⎦ →

⎞
⎟
⎠

 (6)

Equation (6) states that non-building connected sets NBC2 contain FGC sets and their 

child connected sets  which have a total of area less than 40 m,
,
n p
i jC⎛⎜

⎝
2 .  

Because there are more smaller patches of vegetation than there are buildings with area less than 

40 m

( ), 2
, 40n p

i jS C m⎛ ⎞
⎜ ⎟
⎝ ⎠

<

2 and because it is so difficult to reliably detect buildings with area less than 40 m2, this 

threshold was set as the minimum area buildings must cover; otherwise buildings, as well as a 

vast majority of dense vegetation, with an area of smaller than 40 m2 are classified as non-

building.   

• Heuristic IV:  If a FGC set has at least one NWC set child, at least 40 m2 coverage 

contained in the FGC set and all child sets combined, and that FGC set's parent is by 

definition a GC set, then the FGC set and all child sets contain building points.  Let BC 

denote the set of all connected sets depicting buildings.   

( ) [ ] [ ] [ ]{ }, , 2
, , 40 0 1,3,5,7...n p n p

i j i jBC C S C m n i p GC⎡ ⎤= ≥ ∧ > ∧ = ∧⎣ ⎦ →  (7)

• Heuristic V:  If in a future generation NWC set, a child to a FGC set (where both sets 

have been labeled as building) has an average elevation of less than 3 meters plus the 

FGC set’s floor average, then that future generation NWC set is considered a GC set.  

Three meters is chosen as it is assumed that buildings are at least 3 meters tall.  The 
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average elevation of a connected set is the average of all of the elevations of the vertices 

of all the triangles in a given connected set.  Let all WTs in a FGC set that are 

immediately adjacent to the NWTs in the parent adjacent GC set be considered floor 

WTs.  Then, the floor elevation of a FGC set is the average of the elevations of the lowest 

two vertices of all floor WTs in the FGC set.  Consider Figure 14 and assume the yellow 

connected set is a FGC and the orange connected set is the FGC set's parent, a GC set.  

All of the points which would go into calculating the yellow FGC set's floor average are 

circled in light blue.  All triangles having two of its points circled in blue are the floor 

WTs of that FGC set.   

 

Figure 14 - Example Depicting FGC Set Floor Average 

If in a collection of connected sets marked as a building a future NWC set has an average 

elevation lower than 3 meters plus the FGC set's floor average, then that NWC set is most likely 

an enclosure, a court yard or small portion of the terrain (not having many child WC sets), which 

is surrounded by neighboring buildings.  This heuristic prevents that NWC set from erroneously 

being labeled as building by re-labeling that connected set back to ground.  An example of such a 

38 



scenario is depicted in Figure 15 (LiDAR TIN) and Figure 16 (corresponding aerial image 

coverage).   

 

Figure 15 - LiDAR Enclosure Example 

 

Figure 16 - Aerial Image Enclosure Example 

 In some rare cases, some buildings actually have ramps leading from the ground 

to their roofs.  Therefore, during region growing when forming the NWC set that is the GC set, 

that region growing will add all the NWT's on the ground as well as the NWT's on the ramp of 

the building and finally NWT's on the roof of the building.  Most building roof top NWT's are 

typically isolated from nearby GC set NWT's because those building roof tops are surrounded 

and bounded by WT's from the building's surrounding WC sets which depict the building's walls.  

However, if any part of the building exterior has a ramp connecting the ground to the roof, then 

the roof is erroneously labeled part of the GC set during the region growing / PHT building 

phase of the algorithm.  Figure 17 (LiDAR TIN) and Figure 18 (corresponding aerial image 

coverage) depict a scenario of a ramp connecting the ground to a building’s roof (parking 

garage).  Note that in both pictures, a pink arrow is shown pointing up the ramp.  In the LiDAR 

TIN, the dark blue corresponds to GC set, the light blue to FGC sets, and the light green and 

orange are future generation connected sets which are children to the light blue FGC sets.   
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Figure 17 - LiDAR TIN Ramp Example 

 

Figure 18 - Aerial Image Ramp Example 

• Heuristic VI:  If NWTs adjacent to the top of a FGC set’s WTs belong to a GC set, apply 

region growing and label all adjacent NWTs as building provided those NWTs average 

elevation exists 3 meters above the FGC set's floor average.  What this heuristic 

effectively does is find NWTs which are adjacent to the tops of WC sets and then 

iteratively labels those NWTs as building provided the NWTs exist above the WC sets' 

floor average.  If a building has a ramp leading to its roof, the ground connected set will 

bleed onto the roof.  This heuristic then correctly re-labels those triangles back to 

building.  If the region grows to become adjacent to more than 30 different WC sets, then 

the region is kept marked as ground.  If more than 30 WC sets are adjacent to this 

growing region, then the region is most likely not building but rather a GC set existing on 

top of a trench.   

• Heuristic VII:  Exterior building WTs (which will belong to a FGC) must be adjacent to a 

building NWC set by at most through one adjacent triangle; otherwise the WT will be 

labeled as ground.  If long strands of trees exist adjacent to buildings, the building WC 

set can bleed outwards to erroneously include these tree strands.  This heuristic prevents 

this from happening.   
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• Heuristic VIII:  This heuristic is executed provided a given data set has both the first and 

last return LiDAR pulse sets.  If triangles (belonging to a FGC) have vertices (or raw 

points) with first and last return pulse differences of greater than 4.6 meters (Clode 2004), 

then those triangles are labeled as non-building.  Points with a high first and last return 

pulse difference correspond to edges of walls and vegetation.   

• Heuristic IX:  It is assumed that t0, the lowest NWT contained in the given terrain, 

belongs to either the ground and/or a trench and not a building.   

• All of these heuristics, plus the PHT growing algorithm shown in Figure 7, compose the 

PHT building detection algorithm as depicted in Figure 19: 

 

Figure 19 - PHT Building Detection Algorithm Block Diagram 
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CHAPTER FOUR: BUILDING DETECTION FROM AERIAL IMAGERY 

A novel, automatic tertiary classifier is proposed for identifying vegetation, building and 

non-building objects from a single nadir aerial image.  The only assumption the algorithm makes 

about the building structures is that they have convex rooftop sections.  The major processes 

employed by the algorithm are summarized as follows.  First, the input image is segmented by a 

proposed color segmentation algorithm.  Second, vegetation regions are identified and removed.  

Third, shadows are identified and removed.  Fourth, the original color image is segmented again 

using a texture segmenting algorithm.  From these regions, non-building concrete surfaces such 

as parking lots, roads etc. are identified and removed leaving only building candidate regions 

remaining.  Each of the aforementioned processes are now described in detail in the subsequent 

subsections.   

4.1 Pixel Band Color Segmentation 

The vegetation detection algorithm relies on the following proposed color segmentation 

technique.  Let the input aerial image be defined as a matrix I, containing R rows and C columns 

and let the indices i,j and k address a pixel intensity I(i,j,k) at row i, column j and channel k 

where i∈{1,2,...R}, j∈{1,2...C} and k∈{r,g,b} (for the red, green and blue channels 

respectively).  First, each color channel (red, green and blue) of the input aerial image I is 

divided up into 17 subsections each existing as 15 intensity band increments from 0 to 255 (0 to 

15, 15 to 30, 30 to 45..., 240 to 255).  Pixels which exist in the same color channel, within a 

single 15 intensity band increment in that color channel, and are connected to one another (in an 
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8 connected neighborhood) are then assigned a region label.  Different connected sets of pixels 

are given different region labels.  Let a single region label existing in the red, blue and green 

band be defined as lr, lg, lb respectively.  Let the set of all region labels in the red, blue and green 

channels be defined as Lr, Lg, and Lb respectively where lr∈Lr, lg∈Lg, and lb∈Lb.  Note - all of the 

region labels in each color channel are unique, therefore: Lr∩Lg=0, Lg∩ Lb=0, and Lr∩Lb=0.  Let 

the S( ) function return the size (in pixels) of a given region.  A region image P is created, which 

has three channels where the intensities in each channel corresponds to a region label in that 

channel.  Therefore, the region label for a pixel located in i,j in channel k is P(i,j,k).   

Typically, even a single roof panel on a small house can be represented by a single region 

of at least 2.25 m2 or 100 connected pixels at 15cm pixel resolution.  Therefore, regions having 

less than 100 connected pixels are removed (their region label set to '0' to denote clutter).  It 

should be noted at this point that this color segmentation technique is custom tailored for object 

detection in aerial imagery.  The removed regions are not of value and often contain clutter such 

as small cars, industrial crates, or other objects which are typically not buildings, roads, 

pavement or vegetation.  Let all clutter regions for a given color band be denoted by Zk where 

k∈{r,g,b}; then, Zk is formulated as follows: 

( ){ } { }100 , ,k kkZ l S l k r g b= < ∈  (8) 

Then, each channel in region image P undergoes a morphological closing operation 

(image dilation followed by erosion).  A consolidated, single channel image O is then created by 

searching each pixel P(i,j,k) in each channel and setting the output for that pixel location O(i,j) 
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equal to the largest sized region label S(P(i,j,k)) at location i,j for all channels (∀k).  The output 

is formulated as follows: 

( ) ( )( ) ( )( ) ( )( )( ), max , , , , , , , ,O i j S p i j r S p i j g S p i j b=  
(9) 

Sometimes a single region in a single channel P is broken up into multiple smaller, 

disconnected regions in O when all the channels of P are combined and only the largest regions 

represented in O.  Therefore all connected pixels having the same label are relabeled to have 

unique labels (thus re-labeling two disconnected regions of the previous same label to now 

having two different labels).  In doing this, some smaller regions are then created and therefore 

all labels are searched and ones having less than 100 pixels in size are again removed.  Finally, 

the consolidated image is processed by a morphological closing operation.  Let lo represent a 

region in the final processed, consolidated single channel image O where lo∈Lo and Lo is the set 

of all regions in the image O.  Note, if pixel location i,j belongs to region lo then O(i,j) = lo.   

 

Figure 20 (a) Figure 20 (b) Figure 20 (c) 

Figure 20:  Input image and consolidated Output image. 
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(a) Shows the subsection of the original aerial image.  (b) Shows the largest region labels of the 
three channels.  (c) Shows the final output after region labels with less than 100 pixels are 
removed and the image is processed by a morphological closing operator.   

Typically regions of interest, whether they be shadows, vegetation or building are 

connected with more than a 100 pixels (at 15 cm pixel resolution) and can be best represented by 

a single region label from one of the color channels.  This segmentation approach shows the 

largest regions of the three bands to be represented in the final output as it is desired to have the 

fewest, yet most accurate segmented regions in the output.  This color segmentation technique 

has two appealing advantages:  (1) there are no subjective parameters to vary during execution 

(the pixel band width is fixed for different data sets and the small region removal can be 

recalculated for different resolutions); and (2) the algorithm executes relatively quickly.  All of 

the above processes culminate in the proposed color segmentation technique which is depicted in 

the block diagram in Figure 21.   

 

Figure 21:  Pixel Band Color Segmentation Block Diagram 

4.2 Vegetation Identification 

The next phase of the algorithm is to identify and remove vegetation.  Vegetation is 

identified by Otsu thresholding [24] a first-order color invariant [7] and making sure a region, 

identified via the aforementioned color segmentation algorithm, contains at least 60% identified 
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vegetation pixels.  Color invariants, originally proposed by Gevers and Smeulders in [7] are a set 

of color models independent of the viewpoint, surface orientation, illumination direction, 

illumination intensity, and highlights.  Similar to Sirmacek et al. in [34], the color information in 

the aerial image is extracted using the color index proposed by Unsalan and Boyer in [38].  The 

following color invariant is defined with the green and blue channels of the color aerial image: 

( ) { } {( , , ) ( , , )4, arctan , 1,..., , 1,...,
( , , ) ( , , )g

I i j g I i j bi j i j i R j C
I i j g I i j b

}ψ
π

−⎛ ⎞= ⋅ ∀ ∀ ∈ ∈⎜ ⎟+⎝ ⎠
 (10) 

The above defined color invariant image is then Otsu thresholded and all pixels having 

values in the image falling above that threshold Tg are marked as vegetation candidates V(i,j).  

This produces a binary image with white/true pixels corresponding to vegetation candidates and 

black/off pixels corresponding to non-vegetation candidates: 

( ) ( ) ( ) ( ) { } {, 1 , , 0 , , 1,..., , 1,...,g g g gV i j i j T V i j i j T i j i R j Cψ ψ⎡ ⎤ ⎡ ⎤= > ∧ = <= ∀ ∀ ∈ ∈⎣ ⎦ ⎣ ⎦ }  (11) 

This method will produce single, isolated pixels in places that do not actually correspond 

to vegetation.  Therefore, the color invariant image is processed by a morphological closing 

operation (image dilation followed by erosion) followed by an opening operation (image erosion 

followed by dilation).  However, even after this processing, still small groups of pixels will 

sometimes exist where vegetation does not.  However, these small groups of false positives do 

not compose the majority of the color segmented region in which they exist in.  Let the variable 

lvc be the set of all vegetation candidates V(i,j) = 1 (after morphological opening and closing 

operators) which exist in the color segmented region lo. 

( ) ( ) ( ){ }, , ,ovcl V i j O i j l V i j= = ∧ 1=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (12) 
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Then the total number of vegetation candidate pixels belonging to region lo would be 

S(lvc) and the percentage of vegetation candidate pixels occupying a given region would be 

S(lvc)/S(lo).  Therefore, a given region lo and correspondingly all its member pixels are classified 

as a vegetation region lv provided that at least 60% of the pixels in the region lo are classified as 

vegetation candidates.  Let the set of all vegetation regions be denoted as Lv where lv∈Lv. 

( )
( )

0.6vc
o vv

o

S l
L l l

S l
⎧ ⎫⎪ ⎪= → >⎨ ⎬
⎪ ⎪⎩ ⎭

 
(13) 

The steps of the vegetation detection algorithm are depicted in Figure 22. 

 

Figure 22:  Vegetation Detection Block Diagram 

Plots at several stages of the vegetation detection algorithm are shown in Figure 23.   

 
Figure 23 (a) Figure 23 (b) 

 
Figure 23 (c) Figure 23 (d) 

Figure 23:  Output images at various stages of the vegetation detection algorithm.   
Subfigure (a) shows the original aerial input image, (b) shows the final color segmented 

version of that image, (c) shows the output after Otsu thresholding the green color invariant 
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where white pixels are marked as vegetation candidates; (d) shows the final vegetation regions 

after morphological opening and closing and thresholding the regions for sufficient amount of 

vegetation candidates. 

4.3 Shadow Region Identification 

Shadows are identified through the use of a modified color invariant.  Sirmacek et. al. 

used an equation similar to (10) except they took the difference between the blue and green color 

channels over the sum of those channels to identify shadows.  Better success was found with 

instead using the image constructed by the following equation: 

( ) { } {
2 2 2

2 2 2

( , , ) ( , , ) ( , , ) ( , , )4, arctan , 1,..., , 1,...,
( , , ) ( , , ) ( , , ) ( , , )s

I i j r I i j r I i j g I i j bi j i j i R j C
I i j r I i j r I i j g I i j b

}ψ
π

⎛ ⎞− + +⎜ ⎟= ⋅ ∀ ∀ ∈ ∈
⎜ ⎟+ + +⎝ ⎠

(14) 

This image is then Otsu thresholded and all pixels below the threshold are considered 

shadow.  In Figure 24, Sirmacek et. al's equation is implemented on the middle image (using the 

difference between the blue and green channels over their sum) and the method from equation 

(14) is shown on the right where pixels appearing completely white are shadow pixels.  In the 

authors experience, it is rare that a building casts a shadow on another building.  Notice that 

Sirmacek et. al's method winds up labeling pixels on the dark side of the roof as shadows and the 

method from (14) does not.   
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Figure 24 (a) Figure 24 (b) Figure 24 (c) 

Figure 24:  Shadow detection result comparison.   

Original aerial image in 23(a), Sirmacek and Unsalan's method in 23(b) and the proposed method 
from (14) in 23(c) 

4.4 Building/Non-Building Identification and Texture Segmentation 

The color segmenting technique in section 4.1 sometimes segments the image with too 

many segments but the borders of those segments are fairly accurate in outlining the objects they 

approximate in the image.  A texture segmenting technique is used for building identification 

that has a parameter to control the coarseness of the generated segments.  Buildings and non-

buildings (other than shadow and vegetation) are detected by measuring the solidity of their 

regions.  The regions are obtained by entropy filtering the input image and then using a 

watershed segmentation technique on that entropy filtered image.   

Matlab's 'entropyfilt' function was used to produce an entropy image.  The entropy filter 

(see Chapter 11 of [8]) produces an entropy image where each pixel is the entropy calculated 

from a 9x9 neighborhood in the input image I.  The formula for the entropy is calculated as 

follows: 
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Where p(zi) is the number of occurrences the intensity zi has in the 9x9 neighborhood.  

Then, the entropy image I is thresholded (all pixels less than 0.75 times the maximum entropy 

value in the entropy image are removed).  Finally, a watershed segmentation [18] was applied to 

the distance transformed entropy image.  For the purpose of building detection, the 0.75 worked 

for the desired coarse segmentations and this parameter was not changed when the algorithm was 

executed across both data sets.  This results in the texture segmentation algorithm block diagram 

depicted in Figure 25.   

 

Figure 25:  Entropy Filtering / Watershed Texture Segmentation Algorithm Block Diagram 

 

Figure 26 (a) 

 

Figure 26 (b) 

 

Figure 26 (c) Figure 26 (d) 

Figure 26:  Outputs of the entropy/watershed texture segmentation technique   
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Subfigure 25(a) is the entropy image, subfigure 25(b) is the thresholded entropy image, subfigure 
25(c) is the distance transform of the thresholded entropy image and subfigure 25(d) is the 
watershed segmentation applied to output 25(c).   

A convex hull is defined here as the minimum polygon which completely encompasses a 

given region.  Consider the black region in Figure 27 (a), its area is simply the sum of all the 

black pixels.  The convex hull for that region is then shown in Figure 27 (b) in yellow and the 

area for that convex hull is in Figure 27 (c) (the sum of all the yellow pixels).   

 

Figure 27 (a) 

 

Figure 27 (b) 

 

Figure 27 (c) 

Figure 27:  Convex hull example   

Subfigure 26(a) shows an arbitrary region, subfigure 26(b) shows a yellow convex hull which 
bounds the exterior of that region, and figure 26(c) shows the area of that convex hull.   

Let a region created by the watershed segmentation technique be denoted as lw where Lw 

is the set of all regions created and lw∈Lw.  Let the set of all pixels which composes the convex 

hull (filled in area as shown in Figure 27 (c)) which bounds lw be denoted as cw and the size of 

that convex hull be denoted as S(cw) (note this size is defined as the area within the convex hull 

or sum of all yellow pixels in Figure 27 (c)).  Let the size of the watershed segmentation region 

be denoted as S(lw).  Let the solidity for the watershed segmentation region lw be denoted as Dw.  

Solidity is then defined as follows. 
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The upper limit of the solidity can be exactly one (the region itself is a convex hull) and 

the lower limit can get infinitely close to 0.  Therefore, the more convex the region exterior is, 

the higher its solidity.  For example, a region that is a triangle, square, pentagon, etc. will have a 

high solidity as its exterior contour is a convex hull.  However a region shaped like the letter 'E' 

or 'W' will have a low solidity as there will be lots of empty space between the bounding convex 

hull and the region's exterior contour.   

Notice that for even in the largest building in the center of Figure 26, most of the building 

is broken  into regions having a high solidity.  However, the largest segment surrounding the 

center building in Figure 26 (appearing in orange) is not approximated very well by a convex 

hull and has a low solidity.  It was noticed roads and surrounding landscapes are typically 

approximated by a single region with this texture segmentation approach and often have low 

solidity values.  Therefore all regions having a solidity above 0.7 are labeled as building and 

everything equal to or below as non-building.  Because the entropy is a pseudo measure of 

texture, this approach implements the assumption that the roof sections of a building can be 

approximated with convex hull regions.  Note that this does not necessarily assume the entire 

building roof has to have a high solidity, just the various textures or sections composing its roof.  

However, if a single building exists as an 'L' shape and has a single texture across its entire roof, 

then this approach would most likely erroneously classify such a building as non-building.   

A block diagram showing all of the aforementioned components of the proposed 

vegetation identification and building detection system are shown in Figure 28.   
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Figure 28:  Building Detection and Image Classification Block Diagram 
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CHAPTER FIVE: REGISTRATION OF LIDAR TO AERIAL IMAGERY 
FOR IMPROVED CLASSIFICATION 

5.1 Registration Introduction and Building Masks 

The proposed use of phase correlation for the automatic registration of LiDAR data to a 

single nadir aerial imagery is implemented.  First, buildings existent in the LiDAR data and 

aerial imagery are detected.  Then the LiDAR data is interpolated to fixed point spacings, 

producing both a pixel to irregular point mapping and a binary building mask.  In the pixel to 

point mapping the irregular points belonging to the interpolated pixels are cached creating a way 

to reference the irregular points when addressing the interpolated pixel.  In the building mask the 

bright pixels correspond to buildings and dark pixels to everything else.  A binary building mask 

is also produced from buildings detected in a corresponding aerial image.  The Fourier 

transforms and the log polar Fourier transforms of both building binary masks are computed. 

Phase components are correlated and their peaks reveal the translation, rotation and scaling 

geometric transformation parameters.   

In order for a building detection and/or reconstruction algorithm to make use of features 

from multiple data sources, those sources must be registered (projected onto one another or 

describable by a single coordinate system).  If both aerial image and LiDAR data exist for a 

given scene, then it behooves one to take advantage of the information existent in both sources of 

data for more accurate building detection and/or reconstruction.  Several building 

detection/reconstruction approaches existent in the literature [10], [1], [43], [30], and [41] treat 

the registration of the two data sources as a pre-processing technique and proceed to manually 
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register the images together.  With the plethora of image registration methods published [47], 

several of which are automated, it is possible to instead automatically carry out this task. 

The proposed registration scheme is implemented in the following steps:  (1) detect 

buildings in the LiDAR data; (2) interpolate the LiDAR data to fixed point spacings; (3) detect 

buildings in the aerial imagery; (4) register the detected buildings in the LiDAR data to the aerial 

image.  All of the above steps are illustrated in the block diagram representation in Figure 29: 

 

Figure 29:  Registration Algorithm Block Diagram 

5.2 LiDAR Interpolation 

The phase correlation algorithm extracts the geometric transformation parameters from 

the Fourier transform space.  Therefore, in order to use the algorithm, a two-dimensional 

Discrete Fourier transform of both the aerial image and the LiDAR data must be taken.  The 

irregular LiDAR data must therefore be interpolated to fixed point spacing.  There are several 

documented disadvantages to interpolating the data to fixed point spacing:  ambiguities are 
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introduced when multiple irregular points are reduced to a single, rasterized point which 

inaccurately attempts to describe both discrete ground and non-ground points [40].  The 

registration algorithm will be used to relate information extracted from the aerial image to the 

irregular LiDAR data to enhance the image classification and building detection accuracy. 

Cho et. al. in [3] proposed a Pseudo Grid approach where a grid was overlaid on top of 

irregular LiDAR data.  The points within a given grid space were interpolated and thus each grid 

made up a pixel in what became a range image.  With this approach, the authors were able to 

keep track of the irregular points used for interpolation of a given rasterized point.  Conceptually, 

a grid is overlaid on top of the LiDAR points, as shown in Figure 30.   

 

Figure 30:  A top down 2D view of the conceptual grid laid upon the LiDAR 

The light dot is a grid cell center, the dark dot is an irregular LiDAR point, the solid line is a grid 
cell border.   

Each raw point, bounded by a given grid cell, is stored in that cell’s data structure.  

Furthermore, the center of the square grid cell is also stored in that cell’s data structure.  From 

this interpolation scheme, the irregular data is therefore closely tied to the interpolated data 

which will be related to the aerial imagery.  The information extracted from the aerial imagery 

can therefore be applied to the irregular LiDAR. 
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5.3 Phase Correlation Registration 

It is impossible to develop a registration technique which will be optimal for all types of 

geometric transformations for all sources of images.  Instead, the method must be optimized for 

the specific, required task.  The two sources of data, an aerial image and LiDAR, are data 

captured from two different sensors.  Furthermore, the overhead aerial image and LiDAR data 

are assumed to only differ via rotation, translation and scaling geometric transformations.  By 

correlating the phases of the 2D Fourier transforms and phases of the log polar 2D Fourier 

transforms of the target and reference images, parameters for translation, rotation and scaling 

geometric transformations can be extracted [27].   

The phase correlation method is an automatic, area based image registration algorithm; 

meaning that the algorithm operates on image intensity instead of control points or features such 

as corners, lines, etc.  The aerial image intensity is obviously significantly different from the 

interpolated LiDAR range image intensity.  Because the two data are captured from two different 

sources, the technique cannot be applied without some preprocessing.  The PHT building 

detection from LiDAR method identifies which points belong to buildings and which do not.  

The interpolation method, described in section 5.2, produces two outputs - a pixel to irregular 

point mapping and a binary building image.  In the binary building image, the bright pixels 

correspond to building and dark pixels correspond to everything else.  Then a binary building 

image from the output of the automatic building detection from single, nadir aerial image 

approach is produced, again where bright pixels correspond to buildings and dark pixels to 

everything else.  The phases of the Fourier transforms of the two binary images and the phases of 

the log polar Fourier transforms of the binary images are then correlated and the geometric 
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transformation parameters describing how the two binary images (as well as range and aerial 

images) differ from one another are then extracted.  The peak of the inverse of the phase 

correlation of the log polar Fourier transforms of the binary images reveals the scaling and 

rotation parameters while the phase correlation of the Fourier transform of the binary images 

reveals the translation parameters.   

Consider the reference image r and the transformed image s differing by translation 

(x0,y0): 

0 0( , ) ( , )r x y s x x y y= − −  (17) 

The phases of the Fourier transforms of both images (r and s) are as follows: 
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Multiplication of the phases then yields: 
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(19) 

The above is simplified and its inverse Fourier transform taken: 

( ) ( ) ( ) ( ){ } ( )0 0 0 0, , 1
0 0,s rj u v u v j u x v y j u x v ye e F eφ φ δ⋅ −⎡ ⎤ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅−⎣ ⎦ = ⇒ = x y

 
(20) 

The above Fourier Shift Property (both the forward and reverse versions) have been 

proved in appendix C.   

Now consider a reference image r and a transformed image s differing by rotation θ0 and 

translation (x0,y0): 
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0 0 0 0 0( , ) ( cos sin , sin cos )r x y s x y x x y y0θ θ θ θ= ⋅ + ⋅ − − ⋅ + ⋅ −  (21) 

Taking the Fourier Transform of (21) yieds: 

( )0 0
0 0 0( , ) ( cos sin , sin cos )j u x v yR u v e S u v u v 0θ θ θ⋅ ⋅ + ⋅= ⋅ ⋅ + ⋅ − ⋅ + ⋅ θ  (22) 

The magnitude in (48) is represented with polar coordinates: 

0( , ) ( , )R Sρ θ ρ θ θ= −  (23) 

Where: 

( )2 2 1tanx y yρ θ −= + = x  (24) 

Observe that in (49) the rotation is now represented as a linear shift and can be extracted 

with the Fourier shift property.   

Now consider images r and s differing by rotation θ0, translation (x0,y0) and scaling a: 

( ) ( )0 0 0 0 0
1 1( , ) cos sin , sin cosr x y s x y x x y y
a a

θ θ θ θ⎡ ⎤= ⋅ ⋅ + ⋅ − ⋅ − ⋅ + ⋅ −⎢ ⎥⎣ ⎦
0  (25) 

Taking the Fourier transform of (50): 

( ) ( ) (0 0
0 0 0

1 1( , ) cos sin , sin cosj u x v yR u v e S u v u v
a a

)0θ θ θ⋅ ⋅ + ⋅ ⎡ ⎤= ⋅ ⋅ ⋅ + ⋅ ⋅ − ⋅ + ⋅⎢ ⎥⎣ ⎦
θ  (26) 

Representing the Fourier Transform with polar coordinates: 

( )0( , ) ,R S aρ θ ρ θ= −θ  (27) 

Where: 

( ) ( ) ( )
2 2

2 2 1 11 tan tanx y x y y a x a
a a a

ρ θ − −⎛ ⎞ ⎛ ⎞= + = ⋅ + = =⎡ ⎤⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎝ ⎠ ⎝ ⎠
y x  (28) 

Taking the log of the ρ-axis in (27): 
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( ) ( ) ( ) 0(log , ) log log ,R S p aρ θ θ= − −θ⎡ ⎤⎣ ⎦  (29) 

Observe in (29) that both the rotation and scaling have been reduced to linear 

translations.  Again, using the Fourier shift property, the scaling and rotation parameters can be 

extracted.   

The automatic phase correlation registration algorithm, described by equations (17) - 

(29), are implemented as shown in the block diagram in Figure 31.   

 

Figure 31:  Automatic Phase Correlation Image Registration Algorithm 

Phase correlation is limited for scaling translations from about 50% to 200% [2].  If the 

target and reference image (or for this application case the two building masks) differ by scaling 

outside of the aforementioned range, then the phase correlation registration technique will fail.  

Pixel spacing in the aerial image is typically known a-priori and provided in the data set's meta 

data.  The LiDAR point density, denoted now as pd, can be calculated, if it is not also known a-

priori.  By knowing both the pixel spacing and LiDAR point density, then the aerial image can 

be brought within +/- 10% the same scaling as the interpolated LiDAR data.  The LiDAR 

building mask is interpolated to an Rl by Cl image where Rl and Cl are calculated as follows. 
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y y x xR C

η η
− −

= =  (30) 

Where eta is the grid cell spacing which will have approximately one LiDAR point per 

grid cell if calculated as proposed by [19]. 

1

dp
η =  (31) 

The LiDAR building mask is brought within +/- 10% of the same scaling as the aerial 

image building mask because the exact scaling is difficult to compute due to the fact that the 

LiDAR data point spacing is sometimes not completely uniform.  When the plane flies a given 

path, the LiDAR data procured on that path is referred to as a strip.  Sometimes the strips will 

overlap creating denser point densities in some areas than others.    

5.4 Combining LiDAR and Aerial Image Classifiers 

After the aerial imagery has been registered to the LiDAR data, it is then possible to use 

features from both sources of data for improved classification.  The building detection from 

LiDAR algorithm sometimes has trouble mislabeling grass patches surrounded by vegetation or 

steep hills as building.  The proposed vegetation detection from aerial imagery approach 

however wound up being highly correct when labeling pixels as vegetation.  Therefore, the 

vegetation classification from the aerial image is used to remove false positives from the building 

detection from LiDAR data.   

In order for the vegetation classification from the aerial image to be used with the LiDAR 

data, it has to be registered to the LiDAR data (i.e. the image has to be translated, rotated and 

scaled).  The output of the building detection from aerial imagery algorithm contains a 
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classification image where the pixel intensities correspond to different classes of objects as 

classified by the algorithm.  When undergoing the geometric transformations of scaling and 

rotation, sometimes those intensities can be slightly altered from their original values when the 

image is re-sampled after being scaled and/or rotated.  Therefore, before using the vegetation 

classification image, it is filtered via a morphological opening and then closing operation to 

remove noise introduced by the aforementioned interpolation.   

The vegetation classification from aerial image approach is not perfect and some 

buildings are labeled as vegetation as a result.  When combining the vegetation detection 

approach with the classifications made by the building detection from LiDAR data algorithm, it 

is therefore desired to avoid if possible having the vegetation approach mislabel buildings as 

vegetation.  Therefore the combination of the sources should increase building detection from 

LiDAR algorithm's correctness by correctly labeling vegetation that the LiDAR algorithm 

mistakenly labeled as building.  Furthermore, most trees are already identified in the non-

building class.  However the ground class from the building detection from LiDAR algorithm 

ambiguously contains both pavement as well as grass vegetation.  In order to better classify the 

image, it is desired to have the ground be exclusively pavement and dirt and the vegetation 

consist of grass.  In order to intelligently combine these approaches, the following feature from 

the LiDAR data has been used.  Consider a non-wall connected set (NWC) in the LiDAR data.  

At the outer edge of that NWC set will exist pairs of NWT's which are adjacent to WT's 

belonging to an adjacent wall connected set (WC).  Then define the three points which make up 

that WT as ptL, ptM, and ptH where ptH is the highest point in elevation, ptL is the lowest and ptM's 

elevation is less than ptH's elevation and greater than ptL's elevation.   Two scenarios then arise:  

the NWT in the NWC set can either exist at the bottom of the adjacent WT or at the top.  A 'low 
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side' adjacency is defined as when a NWT is adjacent to the triangle side of the WT which 

contains ptL and ptM  of the WT as depicted in Figure 32.  A high side adjacency is then defined 

as when a NWT is adjacent to the triangle side of the WT which contains ptH and ptM as depicted 

in Figure 33.   

 

Figure 32:  Low Side Adjacency 

 

Figure 33:  High Side Adjacency 

Then, points belonging to a NWC set were relabeled if identified as vegetation by the 

vegetation detection from aerial imagery algorithm and if their low side adjacencies in the 

triangulated LiDAR data made up at least 20% of the total adjacencies.  This empirically 

determined parameter was held constant across the algorithm's execution on both data sets.  Tops 

of buildings will actually have a high number of high side adjacencies as the NWC set describing 

a building's roof literally exists above most of the wall triangles which describe that building's 

side.  On the other hand, grass and ground will exist at the bottom of neighboring connected sets 

and have a higher percentage of low side adjacencies.  Combining the features in this proposed 

manner yielded a slight increase in the algorithm's per point correctness while resulting in only a 
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minute decrease in the completeness.  Furthermore, in the per point accuracy plots it was noticed 

large portions of false positive vegetation grass patches were removed and correctly labeled as 

non-building.  Finally, a new class was incorporated exclusively identifying vegetation grass.   
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CHAPTER SIX: DATA SETS AND EVALUATION 

6.1 Fairfield Data Set Description 

The proposed algorithm has been tested on two different data sets.  The first data set, 

depicting terrain from Fairfield, Australia, will be referred to as "the Fairfield data set".  This 

data set includes both LiDAR data, depicted in Figure 35, as well as aerial imagery, depicted in 

Figure 34.  The LiDAR data was procured using an Optech ALTM 3025 laser scanner.  The 

ALTM3025 system has a pulse rate of 25,000 points per second, is capable of recording first and 

last return pulse information as well as returned pulse intensity and has a vertical accuracy of 15 

cm.  The point density is one point per 1.2 m2.  The Fairfield data set depicts 2x2km2 area, 

covering a suburban area in the southwest whereas the northeast mostly contains industrial 

buildings.  The RGB aerial color image, accompanying the LiDAR data, has 15 cm resolution.  

The RGB aerial color image covers a slightly smaller portion of the terrain than the LiDAR data.  

All of the buildings in the Fairfield data set have been manually identified and marked as black 

polygons in Figure 36. 

65 



 
Figure 34 - Fairfield Data Set Aerial Image 

 
Figure 35 - Fairfield Data Set LiDAR 
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Figure 36 - Buildings Manually Identified in 
the Fairfield Data Set 

 
Figure 37 - Buildings Manually Identified in 
the Anchorage Data Set 

6.2 Anchorage Data Set Description 

The second data set, depicting terrain from Anchorage, Alaska, will be referred to as "the 

Anchorage data set".  The data set includes both LiDAR data, depicted in Figure 39, as well as 

aerial imagery, depicted in Figure 38.  Unlike the Fairfield data set, this data set's LiDAR only 

consists of first return pulses and no last return pulses or returned intensity.  Also, again unlike 

the Fairfield, this data set's aerial imagery completely coincides with the LiDAR coverage; 

whereas the Fairfield's LiDAR coverage contained more area than the aerial imagery.  The aerial 

image and LiDAR coverage depict a 1.67x1.67km2 area, covering a mostly suburban area in the 

south half of the data set and commercial buildings existing in the north half.  The LiDAR data 

set, as provided by Aerometric, has been interpolated on a grid at one point per 1.5 m2.  The 

LiDAR data has a vertical accuracy of 20 cm.  The accompanying RGB aerial color image has a 

15 cm pixel resolution and a planned horizontal accuracy of 60 cm.  The buildings in the 
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Anchorage data set have been manually identified and marked off as black polygons in Figure 

37. 

 

Figure 38 - Anchorage Data Set Aerial Image 

 

Figure 39 - Anchorage Data Set LiDAR 

 

6.3 Similarities and Differences in Data Sets 

In both data sets, the LiDAR data and the aerial image depict the terrain from a nadir/top 

down perspective and the accompanying aerial images have been ortho rectified.  It is worth 

noting that in both data sets, the LiDAR data were captured at a later time than the aerial images 

and that certain buildings which were under construction may exist in the LiDAR data but not in 

the aerial images.   

The Fairfield data set has different building and terrain characteristics when compared to 

the Anchorage data set .  The industrial portion of the Fairfield data set is not by any means 

equivalent to the commercial portion of the Anchorage data set.  The buildings in the industrial 
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portion of the Fairfield data set, for the most part, lie relatively low and have a large base, 

whereas some of the commercial buildings in the Anchorage data set rise fairly high.  In the 

Anchorage data set there are two bridges (one to the north and one to the south) and a steep hill 

(in the northwest).  In the Fairfield data set, there are no bridges but there is a trench in the 

middle of the data set filled with dense forestry.  There are also a great deal of sheds of varying 

sizes and some pools near the residential homes in the southern part of the Fairfield data set.  

There were no pools in the Anchorage data set and fewer homes have sheds.  Because the sun is 

lower to the ground when the Anchorage data set was captured, the shadows in the Anchorage 

are longer than the Fairfield data set.  Furthermore, the Anchorage data set to the North East 

contains a densely populated urban area filled with a great deal of concrete and little vegetation.   

In order to evaluate the accuracy of the proposed algorithm, buildings in the LiDAR data 

were manually identified and used as the ground truth.  With the help of the Quick Terrain 

Modeler software, where the full version available for trial period can be downloaded at [26], 

building points in both data sets were manually extracted.  The Quick Terrain Modeler software 

is capable of working with the raw, irregular LiDAR data, no interpolation was necessary.  

Because it was necessary to look at a point's approximate location and context in the aerial 

imagery as well as the LiDAR data in order to accurately determine if the point did indeed 

belong to a given building, only points with aerial image coverage were extracted.  In the 

Fairfield data set 2,189 buildings were identified and for the Anchorage data set 1302 buildings 

were identified.  Points belonging to different buildings were given different, unique labels.  This 

set of manually labeled points will be referred to as the reference set.  The algorithm also marks 

all points belonging to different buildings with individual building labels.  From here on out this 

will be referred to as the automatic set.  Due to several forms of noise in the LiDAR data, the 
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reference set may  not be 100% accurate.  Note two different reference sets were developed for 

both the aerial imagery and the LiDAR data for each data set.   

6.4 Per Point Completeness and Correctness 

For evaluating the automatically extracted buildings, using a reference data set, two 

performance metrics are pertinent - the completeness and the correctness of the results [9].  

Completeness and correctness are defined to exist on a point level and on a building level.  On a 

point level, the completeness represents the percentage of points belonging to buildings that were 

correctly detected by the building detection from LiDAR data algorithm and the correctness 

represents the percentage of points labeled by the algorithm as building that actually correspond 

to building points.  Completeness and correctness, on the point level, are also used in [16], [29], 

[30], and [41].   

Consider the following three conditions for points in the LiDAR data: 

(i) Point pi has aerial image coverage 

(ii) The same point pi is identified as belonging to a building in the reference set 

(iii) The same point pi is identified as belonging to a building in the automatic set 

Let TPp be the binary set which identifies all true positive points where TPp 

={tppi→[0,1]|i∈[1,N]}.  If a point pi satisfies conditions (i), (ii) and (iii), then tppi takes on a 

value of 1, indicating point pi has been successfully detected by the algorithm; otherwise tppi is 

0.  Let FPp be the binary set which identifies of all false positive points where FPp 

={fppi→[0,1]|i∈[1,N]}.  If a point pi satisfies conditions (i) and (iii) and fails (ii), then fppi takes 
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on a value of 1, indicating that the algorithm has labeled the point pi as belonging to a building 

when in fact that point does not belong to a building; otherwise fppi is 0.  Finally, let FNp be the 

binary set that identifies all false negative points where FNp ={fnpi→[0,1]|i∈[1,N]}.  If a point 

satisfies conditions (i) and (ii) and fails (iii), then fnpi takes on a value of 1, indicating that the 

algorithm has not labeled point pi as belonging to a building when in fact that point does belong 

to a building; otherwise fnpi is 0.   

The point-wise level completeness Comppt is defined as the sum of all true positive 

points divided by the sum of all true positive points and false negative points: 
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Similarly, the point level correctness Corrpt is defined as the sum of all true positive 

points divided by the sum of all true positive points and false positive points:   
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(33)

The completeness and correctness for LiDAR points shown in (32) and (33) can easily be 

extended to the completeness and correctness for pixels to verify the accuracy of buildings 

detected from the aerial image.  Notice that the true positive, false positive and false negative 

points must all satisfy condition (i) and then what determines if a point is a true positive, false 

positive or false negative depends on whether that point satisfies conditions (ii) or (iii).  In the 

aerial image all pixels have aerial image coverage, therefore the analysis remains the same 

except points are pixels and there are only two conditions instead of three.  On a pixel level, the 
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completeness represents the percentage of pixels belonging to buildings that were correctly 

detected by the building detection from aerial imagery algorithm and the correctness represents 

the percentage of pixels labeled by the algorithm as building that actually correspond to building 

pixels.  Let pi now correspond to the pixel location in a given image: where i∈[1,N] and N = R⋅C 

where R is the rows in the image and C is the columns.   

The two conditions determining whether a pixel is a true positive, false positive or false 

negative are then defined as follows.   

(i) Pixel pi is identified as belonging to a building in the reference set 

(ii) Pixel pi is identified as belonging to a building in the automatic set 

The completeness and correctness therefore for the pixels in the aerial image is the same 

as (32) and (33) except what determines a true positive, false positive and false negative is only 

based on the above two conditions (unlike three conditions for the LiDAR data).   

6.5 Building Level Completeness and Correctness 

In addition to point/pixel level correctness and point/pixel completion, it is also relevant 

to look at building level correctness and building level completion.  On a building level, the 

completeness represents the percentage of buildings that were correctly detected by the algorithm 

and the correctness represents the percentage of buildings that the algorithm identified that 

actually were in fact buildings that existed in the reference set.  The building level completeness 

and correctness metrics are defined the same way in which they were developed by Rottensteiner 

et. al. in [29] (and was also used in [30]).  Note - the derivation for building level completeness 
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and correctness is the same for both buildings identified in the LiDAR data automatic and 

reference sets and buildings identified in the aerial image automatic and reference sets.   

Using the same notation in [29], the following quantities relating the reference set labels 

to the automatic set labels are formulated.  For the following discussion, let a region denote a set 

of LiDAR points or aerial image pixels in either the reference or automatic set that all have the 

same building label in that set.  The set of all regions in the reference set are denoted as La and in 

the automatic set are denoted as Lr.  For each pair of regions la∈La in the automatic set and lr∈Lr 

in the reference set, the overlap ratios are calculated:  pa∩r=na∩r/na and pr∩a = na∩r/nr.  Note that 

na∩r is the number of common points/pixels assigned to la in the automatic set and to lr in the 

reference set; na is the total number of points/pixels assigned to region la in the automatic set; and 

nr is the total number of points/pixels assigned to lr in the reference set.  If the building detection 

algorithms and the reference sets identify the same points/pixels as belonging to buildings, all 

overlap percentages for corresponding regions pointing to the same building would be 100% and 

there would be exactly only one region in the automatic set la∈La corresponding to each region in 

the reference set lr∈Lr and vice versa for each building depicted by both sets.  However, because 

multiple regions in the automatic set partly correspond to a single region in the reference set and 

vice versa, overlap percentages are calculated to match corresponding regions in the two sets.  

The function 'overlap' which classifies whether or not regions legitimately overlap is defined as 

follows: 

73 



( )
, 50%

,
, 50%

ij
i j

ij

true i j p
overlap l l

false i j p

⎧ ∀ >⎪=⎨
∀ <⎪⎩  

(34) 

 

Let i∈{r,a} and j∈{r,a} and i≠j.  Note that overlap(lr, la) does not always equal overlap(la, 

lr), the function is not necessarily symmetric.  Overlap ratios for all pairs of regions are 

calculated and if pairs have regions having both overlap(la, lr) = false and overlap(lr, la) = false, 

the overlap for that pair is interpreted as spurious and is no longer considered.  For a single 

region la∈La, a subset is obtained Lar⊂Lr where this subset contains all regions in the reference 

set Lr that correspond to a single region la in the automatic set: 

( ) ( ){ }, ,r r r a a rarL l L overlap l l true overlap l l true⎡ ⎤ ⎡ ⎤= ∈ = ∨ =⎣ ⎦ ⎣ ⎦  
(35)

Similarly, for each region in the reference set lr∈Lr, the subset Lra⊂La contains all regions 

from the automatic set La, corresponding to a single region in the reference set lr: 

( ) ( ){ }, ,a a r a a rraL l L overlap l l true overlap l l true⎡ ⎤ ⎡= ∈ = ∨ =⎣ ⎦ ⎣ ⎤⎦  
(36)

Another way to interpret Lra is it is the set of regions in the automatic data set into which 

the single region in the reference data lr is split.  The amount of coverage a given region la has in 

the automatic set is denoted by da: 
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For all of the regions lr in the reference set which correspond to a single region la, 

denoted by lr∈Lar, the number of common pixels those regions lr have with la is found and is 
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divided by the total number of points/pixels the region la, has which is denoted by na.  If this 

ratio, denoted as da is greater than 50% for region la then the building la in the automatic set is 

considered correct.  The amount of coverage a given region lr has in the reference set is denoted 

by dr: 
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For all of the regions la in the automatic set which correspond to a single region lr in the 

reference set, denoted by la∈Lra, the number of common points/pixels those regions la have with 

lr is found and is divided by the total number of points/pixels in the region lr which is denoted by 

nr.  If this ratio dr is greater than 50% for region lr then the building lr in the reference set is 

considered detected.   

Let F denote the total number of buildings identified in the automatic set.  Let D denote 

the total number of buildings identified in the reference set.  Therefore la and lr respectively exist 

in the following ranges:  la ∈{1,...,F} and .  lr ∈{1,...,D}.  Then let TPb1 be the set identifying 

buildings as detected where, for building r, tpb1r takes on a value of 1 if dr > 50% and 0 if dr < 

50%.   

[ ] [ ]{ }1 1 0,1 1,rTPb tpb r D= → ∈
 

(39)

Note then the set identifying buildings as not detected is the complement of TPb1.   

[ ] [ ]{ }1 1 1 0,1 1,c
rFNb TPb TPb fnb r D= − = = → ∈

 
(40)

Let TPb2 be the set identifying buildings as correct where, for building a, tpbla takes on a 

value of 1 if da > 50% and 0 if da < 50%.   
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Note then the set identifying buildings as incorrect is the complement of TPb2 

[ ] [ ]{ }1 2 2 0,1 1,c
aFPb TPb TPb fpb a F= − = = → ∈

 
(42)

The completeness, calculated at a building level, is then formulated as follows: 

1

1 1

1

1

D
r

r
D D

r r
r r

tpb
Compb

tpb fnb
=

= =

∑
=

+∑ ∑
 

(43)

The correctness, calculated at a building level, is then formulated as follows: 
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CHAPTER SEVEN: RESULTS 

7.1 Per Point Completeness and Correctness and Building Level Completeness and 
Correctness for Building Detection from LiDAR Data Algorithm 

The point level completeness and point level correctness for the Fairfield data set is 0.928 

and 0.802 respectively.  This means that 92.8% of the points belonging to buildings, according to 

the reference set, were correctly detected by the algorithm in the automatic set and that 80.2% of 

the points labeled as building by the algorithm in the automatic set were actually also labeled 

building in the reference set.  The point level completeness and point level correctness for the 

Anchorage data set is 0.893 and 0.746 respectively.  Again, 89.3% of the points belong to 

buildings were correctly detected by the algorithm and 74.6% of the points labeled as building by 

the algorithm actually corresponded to building points.   

Figure 40 and Figure 41 present point level results for the Fairfield and Anchorage data 

sets respectively.  In these figures, the red color corresponds to correctly detected points, the 

orange color corresponds to false positives (points the algorithm classified as belonging to 

buildings but were in fact identified as not belonging to buildings in the reference set) and the 

light green color corresponds to false negatives (points that were identified as belonging to 

buildings in the reference set but classified as not belonging buildings by the algorithm).  The 

blue in these figures corresponds to points not identified as building by both the algorithm and 

the reference set.   
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Figure 40 - LiDAR Building Point Accuracy 
in the Fairfield data set 

 

Figure 41 - LiDAR Building Point Accuracy 
in the Anchorage data set 

Observe that in Figure 40 and Figure 41, the PHT algorithm detects nearly all of the 

industrial buildings and the majority of the residential buildings for both of the data sets.   

Figure 42 and Figure 43 present classification results of LiDAR points as building, non-

building and ground for the Fairfield and Anchorage data sets respectively.  The red points 

correspond to what the PHT algorithm classified as building, the green points as ground and the 

orange points as non-building.   
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Figure 42 - Point Classification for the 
Fairfield LiDAR data 

 

Figure 43 - Point Classification for the 
Anchorage LiDAR data 

Observe in Figure 42 and Figure 43 that the algorithm does a superb job identifying the 

ground and is able to mostly, correctly classify vegetation for both data sets.  There are some 

cases however where ground between densely built up residential buildings is erroneously 

labeled as building.  A good portion of the vegetation in the trench in the Fairfield data set is 

correctly classified as vegetation.  Almost all of the vegetation in the park that is in the east of 

the Anchorage data set is correctly classified.  There are however cases where densely built up 

vegetation is sometimes erroneously classified as building.  While the algorithm only requires 

LiDAR data for its classifications, a trade off to this is densely built up vegetation will 

sometimes appear very similar to building.   

The building level completeness and correctness results, as a function of various building 

areas, for the Fairfield data set are shown in Figure 44.  Figure 45 presents cumulative 

completeness and correctness which is simply the algorithm's completeness and correctness for 

all buildings having an area greater than the value shown on the x-axis.   
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Figure 44 - Completeness and Correctness for 
the Fairfield Data Set 

 

Figure 45 - Cumulative Completeness and 
Correctness for the Fairfield Data Set 

For example, note that for a building area of 150 m2 for the Fairfield data set, the 

algorithm has a cumulative completeness and cumulative correctness of approximately 90% and 

86% respectively.  This simply means that the algorithm's completeness and correctness for all 

buildings having an area of 150 m2 and greater is 90% and 86% (respectively).  Note that both 

the completeness and correctness for the Fairfield data set for 230m2 is 83% and the cumulative 

completeness and correctness for 230m2 is 93.0% and 90.7% respectively.  The National 

Association of Home Builders estimated that in 2006 the average area of a new home in the 

United States was approximately 226m2 [21].  Therefore, not only can the algorithm reliably 

detect buildings in the Fairfield data set that have an area equivalent to the average size home in 

the U.S. but it can also reliably detect buildings larger than that size as well.   

The histogram for building sizes for the Fairfield data set is shown in Figure 46 and for 

the Anchorage data set in Figure 47.  The heights of the individual bars represent the total 
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number of buildings manually extracted for the building area listed on the x-axis.  The red part of 

the bar is proportional to the amount of those buildings which were correctly detected by the 

algorithm for the building area listed on the x-axis.  The yellow part of the bar is proportional to 

the amount of buildings which the algorithm failed to correctly detect.  For example, for >250 

m2, there was 312 buildings identified via manual extraction.  Of those 312 buildings, 298 were 

correctly detected with only 14 false negatives; hence the yellow portion of the bar is small.  

However, for buildings having an area greater than 10 and less than 30 m2, 359 buildings were 

identified in the reference set with only 151 being correctly detected and 208 buildings were not 

detected; hence the yellow portion of the bar is bigger than the red portion.   

 

Figure 46 - Fairfield Data Set Building 
Histogram 

 

Figure 47 - Anchorage Data Set Building 
Histogram 

The completeness and correctness for the Anchorage data set is shown in Figure 48.  The 

cumulative completeness and cumulative correctness for the Anchorage data set is shown in 

Figure 49.   
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Figure 48 - Anchorage Data Set 
Completeness and Correctness 

 

Figure 49 - Anchorage Data Set Cumulative 
Completeness and Correctness 

Observe in Figure 48 that at 210 m2 and greater for the Anchorage data set, the 

completeness realized is always greater than 95% and the correctness greater than 74%.  Then 

for Figure 49 the cumulative completeness and correctness for 210 m2 and greater is always 

better than 95% and 80% respectively.  Considering 210 m2 is close to the size of a house, these 

percentages are pretty good as the algorithm is reliably detecting the majority of the houses with 

reasonable accuracy and then larger buildings with even better accuracy.   

For both data sets completeness was better than correctness on both a point level and 

building level.  Furthermore, as seen in the cumulative graphs, as the building area increases, so 

does the completeness and the correctness.  The reason for this is as the building area increases, 

more points exist to depict and represent that building in the LiDAR data.  For both the Fairfield 

data set and the Anchorage data set, the algorithm had trouble reliably detecting buildings having 

a building area of less than 190 m2.  This can be seen in Figure 50 and Figure 51 which depict 
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zoomed in areas of the accuracy plots in Figure 40 and Figure 41.  These zoomed in areas 

contain smaller buildings for the Fairfield and Anchorage data sets respectively.  Recall, red 

points are correctly detected points, orange points are false positives and light green points are 

false negatives.  However, buildings having an area between 190 and 210 m2, the completeness 

and correctness for the Fairfield data set are was 92% and 73% respectively and for the 

Anchorage data set completeness and correctness for the same building are range were 95% and 

63%.  These results are acceptable as most other methods in the literature are also having trouble 

with detecting smaller buildings.   

 

Figure 50 - Cropped Fairfield Accuracy Plot 

 

Figure 51 - Cropped Anchorage Accuracy 
Plot 
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7.2 Per Pixel Completeness and Correctness and Building Level Completeness and 
Correctness for Building Detection from Aerial Image Algorithm 

The pixel level completeness and pixel level correctness for the Fairfield data set is 

0.8258 and 0.6163 respectively.  This means that 82.6% of the pixels belonging to buildings, 

according to the reference set, were correctly detected by the algorithm in the automatic set and 

that 61.6% of the pixels labeled as building by the algorithm in the automatic set were actually 

also labeled building in the reference set.  The pixel level completeness and pixel level 

correctness for the Anchorage data set is 0.7486 and 0.4154 respectively.  Again, 74.9% of the 

pixels belong to buildings were correctly detected by the algorithm and 41.5% of the pixels 

labeled as building by the algorithm actually corresponded to building pixels.   

Figure 52 and Figure 53 present pixel level results for the Fairfield and Anchorage data 

sets respectively.  In these figures, the blue color corresponds to correctly detected points, the 

light green color corresponds to false positives (points the algorithm classified as belonging to 

buildings in the automatic set but were in fact identified as not belonging to buildings in the 

reference set) and the red color corresponds to false negatives (points that were identified as 

belonging to buildings in the reference set but classified as not belonging buildings in the 

automatic set by the algorithm).  The white in these figures corresponds to points not identified 

as building by both the algorithm in the automatic set and the manual extraction in the reference 

set.   

Observe that in Figure 52 and Figure 53 almost all of the false positive pixels correspond 

to either roads, concrete or dirt.  Some of the roads have been correctly classified as non-building 

because their solidity is too low when represented by a single texture segment.  The majority of 
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false negatives are in the smaller buildings or are due to buildings casting shadows on other 

buildings.  The algorithm does an excellent job not mistaking vegetation for building.   

Figure 52:  Building Pixel Accuracy for the 

Anchorage Data Set 

Figure 53:  Building Pixel Accuracy for the 

Fairfield Data Set 

Figure 54 and Figure 55 present classification results of the pixels as building, non-

building, shadow and vegetation for the Fairfield and Anchorage data sets respectively.  The red 

pixels correspond to what the proposed algorithm classified as building, the green pixels as 

vegetation, the blue pixels as shadow and the white pixels as non-building.  Unfortunately, the 

dark side of the trees are often classified as shadow, which is correct however the trees typically 

overcast vegetation.  Most of the non-building correctly corresponds to concrete surfaces that do 

not belong to building but to roads or parking lots.  Again, observe the algorithm does an 

excellent job identifying the sun side part of the dense forestry and the rest of the vegetation 

existent in both data sets.   
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Figure 54:  Pixel Classification for Anchorage 

Data Set 

Figure 55:  Pixel Classification for Fairfield Data 

Set 

The building level completeness and correctness results, as a function of various building 

areas, for the Anchorage data set are shown in Figure 56.  Figure 57 presents cumulative 

completeness and correctness which is simply the algorithm's completeness and correctness for 

all buildings having an area greater than the value shown on the x-axis.   
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for Different Building Areas
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Figure 56:  Completeness and Correctness for the 

Anchorage Data Set 

Anchorage Data Set  Cumulative Completeness and 
Correctness for Different Building Areas
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Figure 57: Cumulative Completeness and 

Correctness for the Anchorage Data Set 

For example, note that for a building area of 150 m2 for the Fairfield data set, the 

algorithm has a cumulative completeness and cumulative correctness of approximately 90% and 

33% respectively.  This simply means that the algorithm's completeness and correctness for all 

buildings having an area of 150 m2 and greater is 90% and 33% (respectively).  The range was 

plotted from between 10 m2 to 210 m2 as after 210 m2 the plot looks pretty much the same.  The 

algorithm detects 75% of the buildings larger than 90 m2 but at the same time its correctness 

suffers at the expense of false positives.  The reason for the mediocre correctness is the algorithm 

is completely automated: no parameters change during the execution across both data sets and 

furthermore there are no training phases.  Also, no assumptions are implemented to tailor to a 

specific building size or shape.  As it will soon be shown there are a variety of different building 
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sizes in the data sets.  Finally, the mediocre correctness is also because the automatic algorithm 

is detecting these buildings from only a single nadir aerial image.   

The completeness and correctness for the Fairfield data set is shown in Figure 58.  The 

cumulative completeness and cumulative correctness for the Fairfield data set is shown in Figure 

59.  The completeness for the Fairfield data set in comparison to the Anchorage are about the 

same yet the correctness for the Fairfield is better than that of the Anchorage.  The reason for this 

is the Anchorage has significantly more areas of non-building concrete (streets, parking lots, 

tennis courts, etc.) than the Fairfield data set.   
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Figure 58:  Completeness and Correctness for the 

Fairfield Data Set 

Fairfield Data Set  Cumulative Completeness and 
Correctness for Different Building Areas
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Figure 59:  Cumulative Completeness and 

Correctness for the Fairfield Data Set 

The histogram for building sizes for the Anchorage data set is shown in Figure 60 and for 

the Fairfield data set in Figure 61.  The heights of the individual bars represent the total number 
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of buildings manually extracted for the building area listed on the x-axis.  The red part of the bar 

is proportional to the amount of those buildings which were correctly detected by the algorithm 

for the building area listed on the x-axis.  The yellow part of the bar is proportional to the amount 

of buildings which the algorithm failed to correctly detect.  For example in Figure 61, for >210 

m2, there was 61 buildings identified via manual extraction.  Of those 61 buildings, 56 were 

correctly detected with only 5 false negatives, hence the yellow portion of the bar is small.  

However, for buildings having an area greater than 10 and less than 30 m2, 708 buildings were 

identified in the reference set with only 311 being correctly detected and 397 buildings were not 

detected; hence the yellow portion of the bar is bigger than the red portion.  The building 

histograms in Figure 60 and Figure 61 demonstrate the variety of building sizes existent in both 

data sets.   
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Figure 60:  Anchorage Data Set Histogram 

Fairfield Data Set  Buildings Histogram
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Figure 61:  Fairfield Data Set Histogram 
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7.3 Results for Registration  

Recall from section 5.3 the phase correlation registration algorithm requires the binary 

building mask of the LiDAR data and the binary building mask of the aerial image where a 

binary building mask is an image having white pixels where the algorithm detected building and 

black pixels for everything else.  The binary building mask for the buildings automatically 

detected from the LiDAR data for the Fairfield data set is presented in Figure 62.  The binary 

building mask for the buildings automatically detected from the aerial image for the Fairfield 

data set is presented in Figure 63.   

 

Figure 62:  Fairfield Data Set LiDAR Building 

Mask 

Figure 63:  Fairfield Data Set Aerial Image 

Building Mask 

The binary building mask for the buildings automatically detected from the LiDAR data 

for the Anchorage data set is presented in Figure 64.  The binary building mask for the buildings 
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automatically detected from the aerial image for the Anchorage data set is presented in Figure 

65.   

Figure 64:  Anchorage Data Set LiDAR 

Building Mask 

Figure 65:  Anchorage Data Set Aerial Image 

Building Mask 

To show the data sets registered onto of one another, the following is done.  First, the 

binary LiDAR building mask is multiplied by the interpolated LiDAR data.  This results in black 

pixels for everything but detected buildings which still retain their elevation values.  Then the 

aerial imagery is registered to the LiDAR data and everywhere in the LiDAR data there exists a 

detected building the aerial imagery pixel intensity is replaced with that detected building pixel's 

interpolated LiDAR elevation data.  This then produces an aerial image with only LiDAR data 

shown where the buildings exist in the LiDAR data.  If the two mediums are properly registered, 

only building pixels in the aerial imagery will be replaced by interpolated LiDAR values.  The 

LiDAR data registered to the aerial image for the Fairfield data set is shown in Figure 66.  The 

LiDAR data registered to the aerial image for the Anchorage data set is shown in Figure 67.   
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Figure 66:  Fairfield Data Set LiDAR data 

registered to Aerial Imagery 

 

Figure 67:  Anchorage Data Set LiDAR data 

registered to Aerial Imagery 

One can see from above, the data sets mostly if not completely overlap.  The Anchorage 

data set was already interpolated, so when the aerial image was resized with the meta data to 

match the point density of the LiDAR data, there was no significant scale change that had to be 

handled by the registration algorithm.  Due to the Fairfield data set having irregular point 

spacing, even after downscaling the aerial image with the meta data, there was still a 3% scaling 

difference which the registration algorithm had to adjust the data so that they would properly 

align together.   

Due to the data sets already mostly overlapping and with the meta-data resizing the aerial 

image so that there were little scaling differences, further testing was implemented to benchmark 

the robustness of the proposed method.  To further test the registration algorithm, artificial 

rotations and scalings were introduced.  Furthermore, parts of the data set were cropped in the 

following fashion so that there was not complete overlap.  The overlap parameter β is defined as 
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the percentage of overlap of both dimensions as depicted in Figure 68.  The two data sets were 

approximately square and therefore R and C were about equal to one another.  Let the overlap 

area then be denoted as A and is calculated as follows:  A = 1 - 2⋅β.  Let the dotted square be one 

image and the solid square be another image where both images are to be registered by the 

proposed registration algorithm.  As β increases, the overlap between the sources decreases 

where when β is 1 there is no overlap and when β is 0 the images completely overlap:  β∈[0,1].  

( )0,0

( ) ( )( )1 , 1R Cβ β− ⋅ − ⋅

( ),R Cβ β⋅ ⋅

( ),R C

 

Figure 68:  North West Overlap Image Cropping Parameter for Registration Algorithm 

For the Fairfield and Anchorage data set, the registration algorithm was tested to 

determine the minimum percentage of area overlap such that the algorithm would still correctly 

register the sources of data together.  In finding this minimum overlap, no artificial rotation and 

scaling transformations were introduced, yet.  The minimum overlap required for successful 

registration for the Fairfield data set was 82% (β = 0.09) and for 66% (β = 0.17) for the 

Anchorage data set when the LiDAR data overlapped with the North West portion of the aerial 

imagery.  The registration of the data sets with this overlap is depicted in Figure 69 and Figure 
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70.  The black borders are existent because there is not complete overlap, i.e. there is LiDAR 

data that doesn't have aerial image coverage and vice versa.   

 

Figure 69:  Fairfield Data Set Registration with 

82% NW Overlap  

 

Figure 70:  Anchorage Data Set Registration 

with 66% NW Overlap 

When the LiDAR data was overlapping with the South West portion of the aerial 

imagery, the minimum overlap for the Fairfield and Anchorage data sets were 78% and 62% 

respectively as depicted in Figure 71 and Figure 72.   
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Figure 71:  Fairfield Data Set Registration with 

78% SW Overlap 

 

Figure 72:  Anchorage Data Set Registration 

with 62% SW Overlap 

When the LiDAR data was overlapping with the North East portion of the aerial imagery, 

the minimum overlap for the Fairfield and Anchorage data sets were 76% and 68% respectively 

as depicted in Figure 73and Figure 74.   
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Figure 73:  Fairfield Data Set Registration with 

76% NE Overlap 

 

Figure 74:  Anchorage Data Set Registration 

with 68% NE Overlap 

When the LiDAR data was overlapping with the South East portion of the aerial imagery, 

the minimum overlap for the Fairfield and Anchorage data sets were 74% and 64% respectively 

as depicted in Figure 75 and Figure 76.   

96 



 

Figure 75:  Fairfield Data Set Registration with 

74% SE Overlap 

 

Figure 76:  Anchorage Data Set Registration 

with 64% NE Overlap 

Next, the LiDAR data overlapping the North West portion of the aerial imagery at 90% 

was taken and the scaling and rotation were artificially varied.  The North West overlap was 

chosen arbitrarily.  The following table shows all of the tested rotations and scalings, the 

algorithm's estimation of the rotations and scalings applied, and the percent error between the 

actual and estimated.  For all of the tests listed in the table, the algorithm successfully registered 

the two sources of data.   
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Table 1:  Tested Rotation, Translation and Scaling and Corresponding Errors for Registration 

7.4 Vegetation Classifier Results:  Proposed Color Segmentation and Color Invariants vs. 
NDVI Thresholding  

The reason it is mentioned that the Fairfield data set contains the returned LiDAR 

intensity is that it is possible to use the returned LiDAR intensity and one of the channels of the 

aerial image to compute a pseudo normalized difference vegetation index (NDVI) and threshold 

that NDVI image to identify vegetation.  Rottensteiner et. al. in [30] propose using the pseudo 

NDVI image calculate it as shown in (45) where L(i,j) is the returned LiDAR intensity at pixel 

(i,j).  Note that in order to use the NDVI image, the LiDAR data must be interpolated and 

registered to the aerial imagery so that L(i,j) and I(i,j,k) correspond to the same location in the 

depicted scene.   

( , ) ( , , )( , )
( , ) ( , , )

L i j I i j rN i j
L i j I i j r

−=
+

 (45)
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When light makes contact with objects, certain wavelengths of the spectrum of the light 

are absorbed and others reflected.  The pigment in plant leaves, chlorophyll, strongly absorbs 

visible light (ranging from 0.4 to 0.7 micrometers) for use in photosynthesis.  The cell structure 

of the leaves however strongly reflects near-infrared light (from 0.7 to 1.1 micrometers).  

Therefore, if significantly more reflected radiation exists in near infrared wavelengths than 

invisible wavelengths for a given location, then the vegetation in that pixel is probably dense and 

may contain some type of forest.  If the difference is relatively small in the intensity of visible 

and near infrared wavelengths reflected, then the vegetation is sparse and may consist of 

grassland, tundra or desert.  The calculations for NDVI for a given pixel range from -1 

(corresponding to water) to +1 (corresponding highest possible density of green leaves) and zero 

means no vegetation [22].   

With the manually developed reference set, it is then known which pixels belong to 

buildings and which do not.  The pseudo NDVI image was then thresholded with 40 different 

thresholds to determine where vegetation exists.  The thresholds ranged from -0.5 to 0.5 in 

increments of 0.025.  The pseudo correctness for the red, blue and green channel based NDVI 

images was calculated for all of those thresholds and then the accuracy was plotted.  The pseudo 

correctness is calculated as follows:   

pTPpCorr
pTP FP

=
+

 (46)

Where pTP is Pseudo True positive and FP is a false positive.  If the thresholded NDVI 

calls a pixel vegetation and that corresponding pixel is not labeled as belonging to a building in 

the reference set, then the pixel is classified as a pseudo true positive.  The reason this is referred 

to as a 'pseudo true positive' is because what is not building could be sidewalk, cement, etc in 
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addition to vegetation.  A reference set was only developed for identifying buildings, not 

vegetation. 

If the thresholded NDVI classifies a pixel as vegetation and that corresponding pixel is 

labeled as belonging to a building in the reference set, then the pixel is classified as a false 

positive.  A given pixel cannot belong to vegetation and building at the same time because the 

two classes are mutually exclusive by definition (vegetation does not contain building and vice 

versa).   

Because a reference set was not developed which identified the vegetation ground truth, 

false negatives cannot be calculated.  A false negative being pixels the thresholded NDVI labels 

as not belonging to vegetation when in fact they do belong to vegetation.  Instead only false 

positives can accurately be determined.  Now although in [30] Rottensteiner et. al. use the red 

channel, in earlier works [28], they report using the green channel of the aerial imagery.  Figure 

77 shows the pseudo correctness plotted for the red, green and blue thresholded NDVI images 

for all thresholds tested.  Note in Figure 77, the red line corresponds to the NDVI constructed 

from the returned LiDAR intensity and the red channel of the corresponding color aerial imagery 

(similarly for the green and blue channels for the green and blue lines).  Figure 78 shows the 

percentage of pixels classified as vegetation by the pseudo NDVI approach.   
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Figure 77:  Pseudo Correctness for Red, Blue and 
Green Channel Based NDVI  Vegetation 
Identification 

Figure 78:  Percentage of Pixels labeled 
Vegetation by Pseudo Correctness for Red, 
Blue and Green Channel Based  

Figure 79 shows the blue band based NDVI and Figure 80 shows which pixels were 

classified as vegetation (white pixels) for the blue band based NDVI classifier when the 

threshold was set to 0.175 for the 84.387%.   
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Figure 79:  Blue Band NDVI Image for Fairfield 
Data Set 

Figure 80:  Vegetation Identification using NDVI 
thresholding Method 

Notice there is a parameter associated with the pseudo NDVI approach and that not only 

does it require LiDAR data and Aerial Imagery but also it requires the registration of the two 

different sources as well.   

The proposed color invariant vegetation detection approach was tested on the Fairfield 

Data Set and the Anchorage Data Set and it realized a pseudo correctness of 97.25% and 96.91% 

respectively!  Note that the proposed approach only requires the aerial imagery and is automatic 

- no parameter adjustment.  A comparison of the best NDVI results and the proposed color 

invariant method are presented in Table 2 where the proposed method is listed as 'Clr Inv Veg' 

and the best results from thresholding the different channel NDVI images are listed as 'NDVI 

Red', 'NDVI Blue' and 'NDVI Green'.   

102 



 

Table 2:  Correctness and Coverage Comparison 

The detected vegetation pixels using the proposed color invariant vegetation detection 

method are shown for the Fairfield data set in Figure 81 and for the Anchorage data set in Figure 

82 where the detected vegetation pixels are marked in solid white.   

Figure 81:  Color Invariant Vegetation 

Detection for Fairfield Data Set 

Figure 82:  Color Invariant Vegetation 

Detection for Anchorage Data Set 
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7.5 Results for Improved Building Detection when considering both LiDAR Data and 
Aerial Imagery  

Combining the vegetation detection algorithm with the LiDAR algorithm helped removed 

patches of vegetation that were erroneously being labeled as building.  In combining the 

algorithms, the per pixel completeness and correctness for the Fairfield data set is 92.5% and 

81.9% and 88.9% and 75.4% for the Anchorage data set.  This is a -0.37% difference in 

completeness and a +1.72% in correctness for the Fairfield data set and a -0.43% difference in 

completeness and a +0.78% difference in correctness.  In both cases, the increase in correctness 

outweighs the decrease in completeness.  Per pixel accuracy plots were created for both data sets 

after combining the classifiers.  For the Anchorage data set, 129,417 points were classified as 

grass vegetation (10.9% of the total number of points) and of those points 4,470 were originally 

building (0.4% of the total) and then relabeled to grass vegetation.  For the Fairfield data set, 

440,523 points were classified as grass vegetation (15.5% of the total number of points) and of 

those points 15,934 were originally buildings (0.56% of the total) which were then relabeled to 

grass vegetation.  In the Fairfield LiDAR data automatic set, the number of incorrect regions (i.e. 

false positive regions labeled as building that did in fact not correspond to building) greater than 

250m2 was 327.  In the automatic set where the vegetation detection from the aerial imagery was 

applied, that number dropped to 316.  In the Anchorage LiDAR data automatic set, the number 

of incorrect regions greater than 250m2 was 365.  In the automatic set where the vegetation 

detection from the aerial imagery was applied, that number dropped to 363.   
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Figure 83:  Per Pixel Accuracy for the 
Anchorage Data Set  

 

Figure 84:  Per Pixel Accuracy for the Fairfield 
Data Set 

Several vegetation patches, erroneously labeled as building by the building detection 

from LiDAR approach, have been removed by combining that algorithm with the vegetation 

detection approach.  Cropped, zoomed in areas before the vegetation detection approach and 

after are shown for the Anchorage data set in Figure 85 and Figure 86 respectively.   

   

Figure 85:  Anchorage LiDAR Before 

Vegetation Detection 

   

Figure 86:  Anchorage LiDAR After 

Vegetation Detection 

Cropped, zoomed in areas before and after the vegetation detection approach for the 

Fairfield data set are shown in Figure 87 and Figure 88 respectively.   
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Figure 87:  Fairfield LiDAR Before Vegetation 

Detection 

   

Figure 88:  Fairfield LiDAR After Vegetation 

Detection 

The vegetation detection approach, when applied to the LiDAR classification, further 

improves the correctness by removing these patches erroneously labeled as building.   

Using the vegetation detection algorithm in combination with the LiDAR algorithm, the 

LiDAR data is now classified into 4 classes:  buildings, non-building (mostly trees), vegetation 

(grass) and ground (dirt and pavement).  The classification results for using features from both 

the LiDAR data and aerial imagery for the Fairfield data set are presented in Figure 90 and for 

the Anchorage data set in Figure 89.  The orange points correspond to buildings, the yellow to 

non-ground, the green to ground and the red to vegetation.  Note, for the Fairfield data set, only 

LiDAR points with aerial image coverage could be labeled as vegetation.  This is the reason why 

the vegetation classifications only exist at the center of Figure 90 and why the vegetation 

classification stops abruptly along straight lines near the edges of Figure 90.   
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Figure 89:  Per Pixel Classification for the 
Anchorage Data Set 

 

Figure 90:  Per Pixel Classification for the 
Fairfield Data Set 

The building completeness and correctness for the Fairfield data set is presented in Figure 

91 and for the Anchorage data set in Figure 93.  Overall, a slight decrease in completeness and a 

larger increase in correctness were observed as a result of combining the vegetation detection.  

The same performance was also noticed for the cumulative completeness and correctness 

presented in Figure 92 for the Fairfield data set and Figure 94 for the Anchorage data set.   
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Fairfield Data Set Completeness and Correctness for 
Different Building Areas
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Figure 91:  Building Completeness and 
Correctness for the Fairfield Data Set 

Fairfield Data Set  Cumulative Completeness and 
Correctness for Different Building Areas

65%

70%

75%

80%

85%

90%

95%

100%

<10 30 50 70 90 110 130 150 190 210 230 250 >250

Building Area (meters^2)

Cumulative Correctness
Cumulative Completeness

Figure 92:  Cumulative Completeness and 
Correctness for the Fairfield Data Set 
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Anchorage Data Set Completeness and Correctness 
for Different Building Areas
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Figure 93:  Anchorage Data Set Building 
Completeness and Correctness 

Anchorage Data Set  Cumulative Completeness and 
Correctness for Different Building Areas
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Figure 94:  Anchorage Data Set Cumulative 
Completeness and Correctness 

7.6 Comparison to Other Methods for Building Detection from Aerial Imagery 

Several approaches in the literature only benchmark their algorithm on less than 250 

buildings.  The only approach found tested on more than 250 buildings had a 63.60% building 

correctness.  All of the approaches surveyed either didn't report their pixel or their building level 

correctness; only in this research were both reported.  In Table 3 a comparison is provided of all 

the approaches surveyed.  The characteristics listed for each approach are 'Pix Comp', 'Pix Corr', 

'Bld Comp', 'Bld Corr' and '# Bldings' which corresponds to pixel level completeness, pixel level 

correctness, building completeness, building correctness and the number of buildings the results 

were based upon, respectively.  The approaches compared are Lefevre and Webber [13], Muller 

and Zaum [20], Persson and Sandvall [25], Sirmacek and Unsalan [34], Liu and Prinet [14].  
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Also included in that comparison is the proposed approach for all buildings, then for buildings 

having an area of 50m2 and greater, and finally for buildings having an area of 210m2 and 

greater, denoted by 'Shorter all', 'Shorter 50' and 'Shorter 210' respectively.  In the cells where 

there are 'X's, the data was not available or not reported.  The results for the proposed approach 

for all buildings in both data sets at the pixel level completeness are better than Muller, Persson's 

and Lefevre's.  In both the Fairfield and Anchorage data sets, detection rates for buildings 

smaller than 50m2 is pretty low.  Both data sets have a great deal of homes which have small 

sheds.  The National Association of Home Builders estimated that in 2006 the average area of a 

new home in the United States was approximately 232m2 [21].  That is the motivation for 

including in the table for comparison the mean building completeness and correctness for 

buildings larger than 50m2 and then for buildings larger than 210m2.  Notice that for larger than 

210 m2 (which mostly included some large houses and then industrial and commercial buildings) 

had a building level completeness that was better than two out of the three other approaches 

surveyed which reported building completeness.  .   

 

Table 3:  Completeness/Correctness at Pixel and Building Level for various Approaches 
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7.7 Comparison to Other Methods for Building Detection from LiDAR and for Building 
Detection from LiDAR and Aerial Imagery 

Franz Rottensteiner et. al. also used the completeness and correctness performance 

metrics to evaluate their 'Demster-Shafer' building detection algorithm on the Fairfield data set in 

[29] and more recently in [30].  They report that the completeness and correctness of their 

algorithm at the point level is 87% and 91% respectively (in comparison to the proposed 

algorithm having 92.46% and 81.9% respectively).  They report that their algorithm can reliably 

detect buildings with area greater than 110m2 having both completeness and correctness at the 

building level greater than 95%.  Their algorithm could mostly detect buildings having an area 

greater than 50 m2 with a completeness of approximately 68%.  Buildings smaller than 30m2 

were not detectable.  For the Fairfield data set, the proposed algorithm can reliably detect 

buildings with an area greater than to 250m2, having both a completeness and correctness at the 

building level greater than or equal to 90%.  The proposed algorithm can mostly detect buildings 

having an area greater than 90m2 with a completeness of approximately 81%.  Buildings having 

an area less than or equal to 70 m2 were not detectable.  These results are shown in Table 4 

where the proposed algorithm is listed as 'PHT' and Rottensteiner et. al's as 'Dempster'.   

 

Table 4:  Comparing PHT vs. Dempster algorithm ability to reliably detect buildings as a 
function of the building area 

Although Rottensteiner et. al's method [30] realizes slightly better building level 

completeness and correctness for smaller building areas (less than 250m2), the proposed 

algorithm performs quite well considering it requires no user intervention, no parameter tuning 
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for different data sets, and is automatic.  Recall from the literature review in section 2.1 that the 

algorithm in [30] requires a training phase for the user to estimate how much vegetation covers 

the terrain and that their algorithm will only perform optimally provided that the vegetation 

coverage estimate the user makes is within 5% of the ground truth.  Furthermore, their algorithm 

makes use of a normalized difference vegetation index (NDVI) image which can only be created 

provided that the aerial imagery is registered to the LiDAR data.  Rottensteiner et. al. [30] report 

that the inclusion of the NDVI increases the correctness by up to 20% for small to medium-sized 

buildings.  Currently, the automatic registration of aerial imagery to LiDAR data is by far from a 

trivial process and has most likely been done manually not only in [30] but also in [41].  Also, 

recall (again as mentioned earlier in section 2.1) that [30] and [16] interpolate the irregularly 

spaced LiDAR to rasterized/gridded spacings.  

Vosselman et. al. in [41]propose a method that also requires registration of the LiDAR to 

aerial imagery.  Using a different data set, they report 85% completeness and 90% correctness at 

the point level.  They conclude that the inclusion of the NDVI image increased their algorithm's 

accuracy by as much as 3%.  Vosselman et. al. in [41] did not however report building level 

completeness and correctness   

Matikainen et. al. in [16] use only LiDAR data for building change detection (when 

compared to a map) and reports detecting 90% of the building pixels in the map.  They evaluate 

a building level true positive for completeness to have a minimum 70% overlap between a 

building region in the reference data set and building regions in the automatic set.  Also, for a 

building level true positive for correctness, building regions must have a minimum of 70% 

overlap between a building region in the automatic data set and building regions in the reference 

data set.  Their method achieves a building level completeness and correctness of 91% and 84% 
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(respectively) for buildings larger than 200m2 and for buildings less than 200m2 42.1% and 

23.3% (respectively).  The proposed algorithm was re-evaluated per the aforementioned rules for 

completeness and correctness as defined in [16] which are different than those defined in [29].  

The proposed approach realizes a completeness and correctness of 91% and 66% for buildings 

larger than 190m2 in the Fairfield data set and 95% and 69% for buildings larger than 190m2 in 

the Anchorage data set.  For buildings smaller than 190m2, the proposed approach realizes a 

completeness and correctness of 63% and 24% for the Fairfield data set and 65% and 55% for 

the Anchorage data set.  Table 5 presents a comparison of the building level completeness 

(abbreviated as Compl) and correctness (abbreviated as Corr) Matikainen et. al. achieved for 

their algorithm (displayed as Matikainen) tested on their data set versus the proposed algorithm 

(displayed as PHT) which was tested on both the Anchorage Data Set (abbreviated as ANC) and 

the Fairfield Data Set (abbreviated as FF).   

 

Table 5:  Comparing Completeness and Correctness for Buildings having areas greater than and 
less than 200m2 for Matikainen's method vs. the proposed method  

In [16] the data set the authors tested their algorithm on had only 57 buildings that had an 

area of less than 200m2 and 202 buildings had an area greater than 200m2.  Whereas in the 

Fairfield and Anchorage data sets, there were 1696 and 571 buildings that had areas less than 

200m2 (respectively) and 460 and 374 buildings (respectively) that had areas greater than 200m2.  

The proposed approach was tested on two data sets both having significantly more buildings in 
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the aforementioned ranges than the data set tested in [16].  It should be noted that the data set the 

authors tested their algorithm on in [16] had a 2-3 points per m2 whereas the Anchorage data set 

had only 1 point per 1.5 m2 (approximately .667 pts per m2) and the Fairfield data set had only 1 

point per 1.2m2 (approximately .8 points per m2).  The increased point density is a significant 

factor.  Rottensteiner et al in [30] report their completeness and correctness decrease when they 

decrease the effective point density of their DSM.  For buildings having a area of 190m2 in [30], 

the completeness for a 1 point per  2m2 resolution is 93% and for a 1 point per 3m2 resolution is 

73%.   
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CHAPTER EIGHT:  SUMMARY AND CONCLUSIONS 

A method for automatically detecting buildings from either aerial imagery or LiDAR data, 

or both if available, has been proposed, implemented and tested across two real data sets.  The 

proposed approach is flexible because it can utilize either LiDAR or aerial imagery and then 

improve its accuracy in the event both sources are available.   If the LiDAR data is available, the 

algorithm will triangulate the data and then use the proposed detection methodology, based on 

the concept of pseudo homotopy trees (developed from topology and set theory), to classify 

which LiDAR points belong to building, ground or vegetation.  If the aerial image data is 

available, the proposed algorithm uses color invariants to identify shadow and vegetation pixels 

and then watershed segmentation coupled with a solidity metric to identify building/non-building 

pixels.  If both sources of data are available, the implementation will then automatically detect 

buildings in both data, register them together and then further improve its classification of the 

scene depicted by the data.  The registration is accomplished by phase correlation of binary 

building feature masks constructed from the two sources of data.  The proposed algorithm is 

automatic in the sense that it does not require any user intervention, training phases, or parameter 

adjustment during its execution.  The assumptions made are not overly restricting or limiting, 

thus enabling the approach's applicability to a large variety different building structures.  The 

following sections summarize the contributions realized from this research effort.   

8.1 Contributions  

In order to overcome limitations in the aerial imagery and LiDAR data, features have to 

be extracted from the individual sources.  To make use of features from both LiDAR and aerial 
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imagery, the sources have to be registered together.  Several approaches in the literature do this 

manually yet still claim their approach is automatic.  It is assumed both sources of data 

significantly overlap and both contain buildings.  Buildings detected from both sources are then 

used as a common feature in which to align the data sets on top of one another or to describe 

both data sets with a single coordinate system.  Approaches for automatically detecting buildings 

in the LiDAR data and buildings in a single nadir aerial image are proposed and implemented.  

An automatic registration approach is proposed and implemented for registering the two sources 

of data together.  Finally, with the sources of data aligned and features extracted from both, an 

improved classification of the data is provided by the proposed system.   

8.1.1 Building Detection from LiDAR 

A new method for building detection from irregularly spaced LiDAR is proposed.  The 

proposed method is based on a variation of Homotopy trees which was termed as Pseudo 

Homotopy Trees.  The method has a number of advantages which make it attractive for 

unsupervised building detection from LiDAR data.  One important feature of the algorithm is 

that it is unsupervised/automatic.  By this it is meant there are no training phases, the algorithm 

does not rely on user input/manual or parameter adjustment.  Additionally, the algorithm requires 

only the raw LiDAR point cloud and can utilize either the first return or the last return pulses or 

both if available for improved accuracy.  Because the method is developed for the irregularly 

spaced, raw point cloud, it can also work with rasterized/interpolated data without any 

modifications or preprocessing.  The only assumptions employed in the algorithm for detecting 

building structures is that they occupy a minimum area of 40 m2 in a nadir view and at least one 
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of the building's walls abruptly protrudes from the ground with a minimum height of 3m.  The 

algorithm not only classifies collections of connected sets as buildings or non-buildings but it 

also classifies connected sets which belong to the terrain's ground level.  Experiments with real 

data and comparisons with other proposed methods have shown that the proposed algorithm has 

competitive performance, despite being completely unsupervised.   

The proposed algorithm has some weaknesses too.  Buildings are expected to exist as 

abrupt, concave protrusions from ground planes.  In unlikely cases where the orientation of all of 

the exterior walls of a building slope less than 45 degrees from the vertical, then the proposed 

method will fail to detect those buildings.  Another weakness is that the algorithm simply 

extracts the buildings just as point clouds, no intelligent measures are made in approximating the 

building exterior or building contour.   

8.1.2 Building Detection from Aerial Imagery 

A new method for object classification from a single nadir aerial image is presented.  The 

proposed method uses a novel color quantization technique coupled with a color invariant 

scheme to identify vegetation.  A novel shadow detection procedure is proposed.  The distance 

transform coupled with a thresholded entropy filtered image and watershed segmentation was 

used to realize texture segmentation.  Then the use of solidity was proposed as a metric to 

identify building regions from the texture segmentation technique.  The proposed method was 

implemented using Matlab and executed the algorithm on a Intel Core 2 Duo (3.0 GHz) machine.  

The Anchorage data set is a 10896x10896 image and the Fairfield data set is a 13340x 13340 
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pixel image.  It took the algorithm 55 minutes to complete execution on the Anchorage data set 

and 90 minutes on the Fairfield data set.   

The method has several advantages which make it attractive for unsupervised building 

detection from aerial imagery.  One important feature is the algorithm is automatic.  In saying it 

is automatic it is meant that there are no training phases, the algorithm does not rely on user 

input nor parameter adjustment.  Another advantage is the only assumptions employed by the 

algorithm in regards to building structures are that no shadows are cast upon the tops of buildings 

and that the building textured rooftop segments exist as convex hulls.  The limited assumptions 

made about buildings enable the proposed algorithm to detect a variety of buildings exhibiting 

different spectral and structural characteristics.  The algorithm is a tertiary classifier capable of 

classifying objects as non-building and shadow (which shadow assumed to be non-building), 

building, and vegetation.  The method only requires a single nadir aerial image for its input.  

Experiments with real data and comparisons with other proposed methods have shown that the 

proposed algorithm has competitive performance, despite being completely unsupervised while 

not implementing overly restricting assumptions about building structures (such as buildings 

having only red roof tops or having rectangular exteriors).   

The proposed method has some weaknesses as well.  Due to the fact that the method is 

automatic, works off of only a single nadir aerial image, and does not make overly restricting 

assumptions about building structures, its correctness measure is mediocre.  However, it should 

be noted its difficult to comparatively rate the correctness measure, both on the pixel and 

building level as all methods surveyed in this paper only reported one or the other but not both.   
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8.1.3 Automatic Registration of LiDAR Data to Aerial Imagery 

A new method for the automatic registration of LiDAR data to a single nadir aerial image 

is proposed.  The method employs the area based phase correlation for registration of the two 

different sources of information.  Because the two images are captured by two different sources, 

the proposed pre-processing is implemented.  Buildings are automatically detected in both 

images and then binary building masks are created and their phases correlated to automatically 

extract the parameters of the geometric transformations to align the sources so that they can be 

described by a single coordinate system.  The only assumptions made by this registration 

approach are that the two sources of data both significantly overlap in their coverage of the same 

scene and only differ via translation, rotation and scaling.  The advantages of the registration 

method include it being automatic and being able to handle a certain percentage of buildings not 

being detected in either source.  The phase correlation approach automatically extracts the 

parameters corresponding to the maximum correlation for the two binary building masks.  So 

even if the masks are not exactly the same (as in some false positives or false negatives exist in 

one mask that are not in the other), the approach can still work.  The trade off to this is there are 

several conditions that can factor into the algorithm not converging on the correct geometric 

transformation parameters resulting in an inaccurate registration.  A sharper correlation peak or 

simply put a better chance that the registration algorithm will converge on the correct parameters 

happens when there is more overlapping coverage between the two images; the rotation, 

translation and scalings between the two images is smaller; and the binary images being 

correlated are closely alike.  A broader correlation peak is produced or the chance is lowered that 

the registration algorithm will correctly converge when there is less overlap between the binary 
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images, when the rotation, translation and scalings between the two images are large and the 

binary images look very dissimilar.   

8.1.4 Vegetation Identification from Aerial Imagery 

The proposed vegetation detection realizes a 97% correctness on accurately identifying 

non-building pixels (as building and vegetation are mutually exclusive classes).  It only requires 

the use of a single, nadir aerial image and is completely automatic.  It is shown the proposed 

vegetation identification technique out-performs manually thresholding the pseudo NDVI image 

in terms of correctness.   

8.1.5 Improved Classification 

Combining features from the aerial image and LiDAR data enabled the proposed 

implementation to correctly label vegetation which was being mislabeled as building by the 

building detection from LiDAR algorithm.  These large false positives (vegetation grass patches) 

being removed caused the algorithm's per point correctness to slightly increase.  Furthermore, 

combining the features enabled the algorithm to now identify an additional class of objects in the 

image, grass vegetation.  In the building detection from LiDAR approach, the ground class 

encompassed grass, pavement, and dirt.  Now, with the approach using both LiDAR data and 

aerial imagery, an image is classified into building, non-building (mostly trees), grass vegetation 

and ground (which only includes pavement and dirt).   
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8.1.6 System Implementation 

The proposed unsupervised building detection from LiDAR and aerial image 

implementation has been developed with an emphasis on automation and flexibility to the end 

user.  The implementation goes to great lengths with providing convenience to the user by 

incorporating the following.  First, if LiDAR data is provided, then buildings are automatically 

detected from that LiDAR data.  If that LiDAR data has both first and last returns, then the 

algorithm will make use of both returns to improve its accuracy.  If only first or last returns are 

provided, the algorithm will still be able to detect buildings.  No preprocessing is necessary if the 

LiDAR data is interpolated or irregular.  If the user has aerial imagery, buildings are 

automatically detected from the aerial imagery.  If the user has multiple data sets, buildings can 

be detected from those multiple data sets without any parameter adjustment as the algorithm 

works on different data sets.  If the user has both LiDAR data and aerial imagery, the proposed 

approach will automatically detect buildings in both and automatically register those images 

together.  It is shown that the two sources of data do not necessarily have to completely overlap 

and can differ via translation, rotation and scaling geometric transformations.  Finally, when 

features from both sources of data are used, classification is further improved by identifying 

grass vegetation in the LiDAR data.   

8.2 Future Work 

There are several directions in which one could take to further this research.  As 

mentioned in section 1.3, there are a variety of different noise sources which corrupt the 

procurement process of the LiDAR data.  It would be interesting to investigate a method for 
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removing that noise, both in the sensors and accounting for the fact that the atmosphere distorts 

the path of the laser beam emitted from the LiDAR sensor.  Furthermore, it would be desirable to 

know how much can be gained in terms of accuracy for building identification as well as 

reconstruction as a result of removing that noise.   

Lines in the LiDAR data are not as easily extracted or identified as they are in the aerial 

imagery due to sensor resolution.  It would therefore be advantageous to use the aerial imagery 

to construct polygonal representations of the identified building's exterior so that the buildings 

are instead represented as shapes instead of a collection of points.  Furthermore, it may be 

possible that reconstruction with using features from both sources of data may be more accurate 

than attempting to reconstruct buildings from just the LiDAR data.   

With the buildings having been identified manually in both the LiDAR data and the aerial 

imagery, it is now possible to use some of those manually identified buildings as training 

features for an area based, supervised building detection approach.  With two data sets, one could 

test the algorithm with a small percentage of buildings from one data set and then observe its 

performance on the other.  It would be desirable to have a supervised, semi-automatic algorithm 

which would only have to be trained once and then capable of identifying buildings across 

several data sets without having to be retrained.  However, innovation would be necessary in 

coming up with data set invariant features in which to train the supervised classifier as well as 

picking the appropriate classifier for this application.   

One possible avenue to explore to increase the registration algorithm's accuracy is 

correlating the magnitude spectrum as well as the phase spectrum.  Furthermore, it may be 

possible to gain performance increase by instead of correlating the entire building mask to 

instead evenly partition the masks and correlate those partitions.  Finally, it is possible up-
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sampling the LiDAR data to a certain degree as well as down-sampling the aerial imagery less, 

resulting in higher resolution building masks may also help the registration algorithm's ability to 

converge on the correct registration parameters.  Furthermore, instead of correlating building 

masks, it may be easier to correlate the detected ground from the LiDAR data with the vegetation 

and non-building from the aerial imagery.  Or it may also be easier correlating other features 

such as the distance transform of detected lines in both sources.   

Finally, there are a plethora of other sources existent in remote sensing other than just 

aerial imagery and LiDAR data taken from a nadir perspective.  It would be interesting to 

explore the possibility of also combining stereo pairs of aerial images, LiDAR captured from the 

ground, and multi-spectral images.   
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APPENDIX A:   
PHT GENERATION PLOTS AND HEURISTIC EFFECTIVENESS 
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 One of the advantages of the PHT algorithm is the ability to produce generation plots 
showing how the connected sets are related to one another as a function of their generation.  
Figure 95 depicts an aerial image portion of the Anchorage data set containing a several 
commercial buildings and a park.  

 

Figure 95 - Aerial Image Portion of Anchorage Data Set 

 Figure 96 is the building/non-building/ground classification output of the PHT algorithm 
where red triangles correspond to what the algorithm has classified as building, light green 
triangles correspond to what the PHT algorithm has classified as non-building and dark blue 
triangles correspond to what the PHT algorithm has classified as ground.  Figure 98 is simply an 
angled version of Figure 96.  Figure 97 is the generation plot where the colder color of the 
triangle, the older in generation the connected set that triangle belongs to and the hotter the color 
of the triangle corresponds to the younger in generation the connected set the triangle belongs to.  
Note that the oldest generation in this particular case does in fact correspond to a ground 
connected set and that ground connected set encompasses the other connected sets.  In this case, 
the pseudo homotopy tree generated does in fact generalize to being an actual homotopy tree 
because the root node or oldest generation encompasses all younger generations.  Furthermore, 
observe how the building encircled in pink (in the North East corner) in Figure 95 has its roof in 
the generation plot in Figure 97 mistakenly belonging to the same connected set as the nearby 
ground (ie the roof is dark blue instead of light green like the tops of other buildings).  This is 
because of the clutter existent on the side of the building has made a ramp allowing the ground 
connected set surrounding the building to bleed or region grow onto the roof.  Yet observe how 
in Figure 96 the building is still correctly identified.  Heuristic 6, in Chapter 3, section 3.4 is 
what enables the algorithm to still correctly detect the building.  Notice how the buildings in 
encircled in yellow in Figure 95 both have court yards.  Now notice that those buildings' court 
yards in Figure 96 are correctly labeled as ground yet notice in Figure 97 those buildings' court 
yards belong to a younger connected set with few to no children.  Heuristic 5 in Chapter 3, 
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section 3.4 enables the PHT algorithm to correctly identify courtyards as ground connected sets.  
Finally, notice that all the vegetation to the south west in Figure 95 and notice that only a single 
false positive is present in Figure 96 erroneously labelling a piece of vegetation as building.  
Notice how in Figure 97 and Figure 98 that many of those trees either don't have any NWC set 
children or if they do have NWC set children, the number of triangles composing those NWC 
sets is in fact too few to enable that vegetation as being classified as building by the PHT 
algorithm.   

Figure 96 - Building/Nonbuilding/Ground 
PHT Classification Triangulation Plot Figure 97 - PHT Generation Triangulation Plot 

 

Figure 98 - Angled Building/Non-
building/Ground PHT Classification 
Triangulation Plot 

Figure 99 - Angled Generation Triangulation Plot 

 Figure 100 depicts an aerial image portion of the Fairfield data set.  The areas encircled 
in yellow are courtyards which are surrounded by building and the building encompassed in pink 
you'll notice has a loading ramp leading from the ground to its roof.  Furthermore, you'll notice 
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that this portion of the data set is actually split in half by the forest filled ravine that partitions 
sections of the data set.   

 

Figure 100 - Aerial Image Portion of Fairfield Data Set 

 The PHT algorithm building/non-building/ground classification output for the terrain 
depicted in Figure 100 is shown in Figure 101 from a nadir perspective and then again in Figure 
103 from an angled perspective.  The generation plot for the terrain depicted in Figure 100 is 
shown in Figure 102 from a nadir perspective and then again in Figure 104 from an angled 
perspective.  Notice that in Figure 100, the old generation belongs to a ditch in the center of the 
data set.  This ditch does not encompass all of the other connected sets, therefore the pseudo 
homotopy tree generated from the terrain depicted in Figure 100 would not generalize to a 
normal homotopy tree.  Furthermore, notice that even though this portion of the data set is 
partitioned into multiple ground planes, the algorithm is still capable of identifying all of the 
ground planes.  Notice how a ground connected set exists to the south of the forest that partitions 
the data set in the center, to the north of that forest, and finally another ground connected set to 
the north west in Figure 102.  One can see in Figure 102 that in the upper North West corner, the 
ground is colored with a green non-wall connected set, which is of a different generation from 
the older, light blue ground connected sets elsewhere in the data set.  Finally, the oldest 
generation, the dark blue connected set, exists as a ditch in the center of the generation 
triangulation plot in Figure 102 to the east (right above the pink encircled building).  As with the 
Anchorage data set, notice how heuristic 6 enables the algorithm to detect the building 
encompassed in pink in Figure 100 and that heurstic 5 enables the algorithm to correctly label the 
court yards encompassed in yellow in Figure 100 as ground connected sets in the Fairfield data 
set.  Finally, notice with of all the vegetation existent in the center of the portion of the data set, 
only a small portion of it comes up as erroneously labeled as building by the PHT algorithm in 
Figure 101.   
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Figure 101 - Building/Non-building/Ground 
PHT Classification Triangulation Plot 

Figure 102 - PHT Generation Triangulation 
Plot 

 

 

Figure 103 - Angled Building/Non-
building/Ground PHT Classification 
Triangulation Plot 

Figure 104 - Angled Generation Triangulation 
Plot 
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APPENDIX B:   
FORWARD AND REVERSE PROOFS OF FOURIER SHIFT PROPERTY 
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The following is a proof for the Fourier Shift Property showing that a shift in an image's phase 
corresponds to a linear translation in the Cartesian image space : 
Assume f is an image where f(x,y) returns the intensity of the image at row x and column y 
where x∈{1,...,M} and y∈{1,...,N}. 

The objective is to prove the following: 
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Consider the 2D-Discrete Inverse Fourier Transform: 
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Then, taking the inverse 2D-Discrete Fourier Transform of the exponential: 
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Then combining terms in the exponential: 
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And finally simplifying yields: 
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As shown above then, the inverse Fourier transform of a linear phase shift corresponds to a linear 
translation in the Cartesian image space.   
 
The following is a proof for the Fourier Shift Property showing that a linear translation in the 
Cartesian image space corresponds to a linear shift in the image's phase in the discrete Fourier 
space: 
The objective is to prove the following: 
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Consider the 2D-Discrete Forward Fourier Transform: 
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Substitution:  and  0m x x→ − 0n y y→ −
Calculating x and y in terms of m and n: 0x m x= +  and 0y n y= +  
Calculating limits in terms of m and n: 
Lower Limits:  00x m x= → = −  and 00y n y= → = −  
Upper Limits:  01 1x M m M= − → = − − x  and 01 1y N n N y= − → = − −  
Then equation (53) becomes: 

( ){ } ( )
0 00 0

0 0

1 1 2

0 0
1, ,

m x n yM x N y j u v
M N

m x y y

F f x x y y f m n e
M N

π
+ +⎛ ⎞− − − − − ⋅ ⋅ ⋅ ⋅ + ⋅⎜ ⎟

⎝ ⎠

=− =−

− − = ⋅ ⋅
⋅ ∑ ∑  (54) 

The summation in (63) is rewritten as follows: 
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It is then assumed image f(x,y) is periodic with periods M and N: 
( ) ( ), ,f x M y N f x y+ + =  

(56) 

With periodicity M and N for indices x and y, the following is observed: 
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Rewriting the summation: 
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Combining the summations: 
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Rewriting the Exponential: 
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Moving Terms outside the summation which are independent of m and n: 
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Substituting the summation as it is the definition of the Fourier Transform yields: 
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APPENDIX C:   
SEQUENTIAL GREEDY INSERTION STEPS 
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 Many of the application specific needs will ultimately determine the nature of the 
triangulation algorithm chosen.  The definition of these needs will therefore reduce the number 
of algorithms that will be choice for the problem at hand.  In order to retain the most amount of 
information and accuracy as possible, it is imperative that the TIN is derived from the raw 
LIDAR point cloud data.  The selected triangulation algorithm therefore must have high 
accuracy in approximating the raw LIDAR point cloud data with the implemented TIN.  The 
triangles in the TIN are to be clustered by a clustering algorithm.  The dimensions of the 
triangles that are of importance to the clustering algorithm are as follows:  the triangles’ vertices, 
their centers, and the normal angle to their defined surface.  These dimensions therefore must be 
incorporated in the data structure encoding the resulting TIN.   

In order to design or select an algorithm, the necessary rules for the desired triangulation 

must be specified: 

1. No intersecting triangle edges are to exist within the TIN.   

2. Furthermore, no overlapping triangles are to exist within the TIN.   

3. No gaps are permissible within the TIN.   

4. When considering a point for the formation of a triangle, the neighboring points 

closest to the point in consideration must have the highest favored potential for triangle 

formation.   

5. As a result from rules 1 and 2, from a top down view, all triangles must be visible.  

Therefore, the formation of triangles in 3-dimensional space, surfacing over triangles underneath, 

is prohibited.   

The algorithm selected to realize the triangulation of the irregular point spacings in the 

provided LIDAR data is Garland and Heckbert’s sequential greedy insertion algorithm.  In [6], 

Garland and Heckbert present both the sequential and parallel greedy insertion algorithms.  The 

version of the greedy insertion algorithm, which only inserts a single point in each pass is called 

sequential greedy insertion, while the version of the algorithm in which inserts multiple points in 

each pass is called parallel greedy insertion.  While the parallel version does cut down execution 
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time, the savings realized come at the cost of the algorithm’s performance in terms of accuracy; 

which is why the sequential version is selected. 

The sequential greedy insertion algorithm simultaneously optimizes two adaptive 
optimization cost functions:  (1) local Delaunay triangulation; (2) global point insertion.  The 
algorithm starts by considering the quadrilateral formed by the outermost four points in terms of 
x and y or longitude and latitude spacing.   Then an arbitrary triangulation is formed (two 
triangles are randomly formed from the 4 points).   

 
Figure 105:  Initial Triangulation 

That formation is then checked to see if flipping the diagonal will optimize the arbitrarily formed 
configuration to conform to Delaunay triangulation.   

For all triangles, the distances between the triangles (planes) Figure 106 and the points 
that they encompass (in x and y or longitude and latitude spacing) are calculated.   

 
Figure 106:  Distance between a given point and a plane 

After all of the distances between the unused points and the existing triangulated surface are 
calculated, for each triangle, the unused point furthest from that triangle is cached into that 
triangles data structure.   
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All of the LIDAR points that are considered, the point having the greatest distance from 
the TIN (labeled the candidate point) is the point inserted next (hence the name greedy insertion).  
Three cases can occur when inserting a given point:  (1) the candidate point is inserted inside a 
triangle; (2) the candidate point is inserted at the edge of the outermost initial quadrilateral; and 
(3) the candidate point is inserted on a triangle edge. 

The first point insertion case results in the formation of three triangles.  The point is 
inserted and three lines are drawn from the point to the vertices of the encompassing triangle.  
This scenario is depicted in Figure 107.   

 

Figure 107:  Point Insertion (Case 1) 

For the second point insertion case, the candidate point is inserted at the edge of the TIN 
resulting in the formation of 2 new triangles, as depicted in Figure 108.   

 

Figure 108:  Point Insertion (Case 2) 

In the third point insertion case, the candidate point is inserted along the edge of a triangle.  The 
algorithm is designed to delete the edge and then connect lines from the candidate point to the 
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vertices of the two triangles which share the common edge in which the candidate point was 
inserted along.  The third point insertion scenario is depicted in Figure 109.   

 
Figure 109:  Point Insertion (Case 3) 

 After the insertion of the points, the edges of the triangles are checked for flipping.  The 
edges are flipped to form a new diagonal if the flipping maximizes the lesser of the interior 
angles of the triangles (Delaunay triangulation).  If for two given triangles, their edges are 
flipped, then all of the adjacent triangles to those triangles are then checked to see if edge 
flipping should be done with triangles adjacent to them.  This process continues until it is 
determined that no adjacent triangle will further optimize the TIN via diagonal flipping in 
accordance to Delaunay triangulation.  This local optimization procedure is implemented to 
combat the formation of slivers.  A sliver is qualitatively defined as a triangle whose largest 
angle is ‘relatively close’ to 180 degrees.  Therefore, triangle ‘B’ depicted in Figure 110 is 
desired over triangle ‘A’.   

 
Figure 110:  Sliver Example 

All of the above procedures are depicted in the block diagram contained in Figure 111.   
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Figure 111:  Greedy Insertion Block Diagram 

A step by step description of the Greedy Insertion Triangulation Algorithm is as follows: 
Step 1 - Initial Triangulation 
Step 1a – Select the 4 outermost corner points of the LIDAR data (some points may be 
artificially created) 
Step 1b – Perform Delaunay triangulation of selected 4 points (2 triangles formed) swapping the 
edges to obtain the optimal mesh 
Step 1c – Mark the 4 points as used 
Step 1d – For each of the two triangles formed, calculate the distance between the unused points 
and the plane formed by the triangle encompassing those unused points in x and y dimensions 
Step 1d (i) – Cache the candidate point (point farthest away from triangle in z-direction) for each 
triangle formed 
Step 2 -  Largest Deviation Point Insertion  
Step 2a - Select the candidate point (the point with largest deviation from triangulated mesh).  
Note:  if this is the first iteration of the algorithm, all errors must be calculated as none are 
cached 
Step 2b – Insert the Point into the Triangulated Mesh (mark it as used) 
Step 3 – Locate and Flip if Necessary 
Step 3a – Locate the triangle within the triangulated mesh containing the recent inserted point  
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Step 3b – Split the located triangle into the necessary triangles containing the inserted point 
(based on the condition of insertion – [Figure 107],[Figure 108], or [Figure 109]) 
Step 3c - Remove the original triangle (triangles are not allowed to overlap one another) 
Step 3d – Recursively check each of the outer edges of the triangle containing the inserted point 
to see if flipping the edges will further optimize the existing triangulated mesh. 
If a triangle edge is flipped, check the edges of both of those triangles and see if their adjacent 
triangle diagonals should be flipped (repeat until flipping will no longer further optimize the TIN 
according to local cost function). 
Step 4– In the regions affected by insertion and flipping, recalculate the following parameters 
Step 4a - The plane equations associated with the modified triangulations 
Step 4b – Locate the triangles containing the unused points  
Step 4c – Calculate the error between the unused point and the triangulated surface 
Step 4d – For each triangle record the candidate value for the unused points (point with largest 
error deviation) 
Step 5 - Return to step 2 and repeat if point budget or error approximation has not been met 
If convergence in Step 5 was realized, finish inserting points and remove all triangles associated 
with artificial points (effectively removing those points from the triangulation) 

 
The elevation coordinates of the LIDAR data are actually only accurate to a certain order 

of magnitude (in the order of centimeters).  Making matters worse, the LIDAR data suffers from 
systematic errors and noise.  Therefore, noise is existent in the data and presents difficulties for 
coplanar clustering based on the normal vectors of the triangles existent in the TIN generated 
from the raw LIDAR.  An ideal set of coplanar triangles Figure 112, actually exist as points 
jittering about that plane, as shown in Figure 113.  The noise causes the LIDAR points to deviate 
from the ideal plane, thereby causing the normal vectors of the triangles to deviate from their 
ideal directions.   

 
Figure 112:  Ideal LIDAR Points 

 
Figure 113:  Actual LIDAR Points 

One way to filter these errors would be to exploit the very nature of the triangulation 
algorithm selected.  Sequential greedy insertion inserts the points farthest away from the initial 
plane established.  Therefore points along roof ridges, roof corners, and building edges are the 
points inserted first.  The points inserted last are the points closest to an established plane, the 
points with the smallest errors.  It is possible to simply program the sequential greedy insertion 
triangulation algorithm to only triangulate points above a certain error threshold.  However, the 
insertion of fewer points leads to a less accurate TIN and furthermore, leads to fewer triangles 
sharing the same plane.  Rather than not inserting the triangles, leading to fewer members of a 
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given coplanar cluster, it would be advantageous to correct the inaccuracies of the points along 
the z or height dimension.  Since the points, which jitter about the already established roof plane, 
are contained in a well defined plane, it is possible to remove the jitter or systematic error or 
noise by placing points below a certain threshold distance on the plane in which they are 
contained.  While the longitude and latitude dimensions were preserved, the elevation dimension 
of a candidate point was modified if the candidate point met the following conditions: the 
perpendicular distance, defined in equation (63), of the candidate point was less than .2 meters 
( .2cD m≤ ) from the containing triangulated plane; and the pitch of the roof , defined in equation 
(64) was less than 60 degrees ( ).   60oθ ≤
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2 2 2
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(64) 

 

Figure 114 - Pitch of Roof Plane (Theta) 

 

Figure 115 - Triangle Elevation Difference 

Without the constraint imposed on the roof plane pitch ( ), building edge points, 
which were not yet inserted/triangulated and less than .2 meters perpendicular distance from the 
building were being merged into the building’s edge, thus distorting the building outline.  The 
second constraint therefore confines points which only exist on a plane with a pitch ( ) to 
become merged with that existent roof plane.  Most of the building structures existent in the data 
set considered had roof planes with pitches less than 60 degrees.   

60oθ ≤

60oθ ≤

 This filtering technique was found to remove the noise depicted in Figure 113.   
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APPENDIX D:   
RESEARCH WEBSITE  

141 



This dissertation in its entirety in addition to other materials related to Nicholas Shorter's 
research are hosted online at the following location:  http://www.nshorter.com  
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The following speech, in which Eisenhower delivered to troops heading out to the D-Day 
invasion, has inspired me to great lengths during the most difficult times of my academic career: 
 
You are about to embark upon the Great Crusade, toward which we have striven these many 
months. The eyes of the world are upon you. The hope and prayers of liberty-loving people 
everywhere march with you. In company with our brave Allies and brothers-in-arms on other 
fronts, you will bring about the destruction of the German war machine, the elimination of Nazi 
tyranny over the oppressed peoples of Europe, and security for ourselves in a free world. Your 
task will not be an easy one. Your enemy is well trained, well equipped and battle-hardened. He 
will fight savagely…I have full confidence in your courage, devotion to duty and skill in battle. 
We will accept nothing less than full Victory! Good luck! And let us beseech the blessing of 
Almighty God upon this great and noble undertaking. 

 
        Dwight D. Eisenhower, June 6, 1994 
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