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ABSTRACT

Interactively simulating visual appearance of natural objects under natural illumination is

a fundamental problem in computer graphics. 3D computer games, geometry modeling,

training and simulation, electronic commerce, visualization, lighting design, digital libraries,

geographical information systems, economic and medical image processing are typical candi-

date applications. Recent advances in graphics hardware have enabled real-time rasterization

of complex scenes under artificial lighting environment. Meanwhile, pre-computation based

soft shadow algorithms are proven effective under low-frequency lighting environment. Under

the most practical yet popular all-frequency natural lighting environment, however, real-time

rendering of dynamic scenes still remains a challenging problem.

In this dissertation, we propose a systematic approach to render dynamic glossy objects

under the general all-frequency lighting environment. In our framework, lighting integration

is reduced to two rather basic mathematical operations, efficiently computing multi-function

product and product integral. The main contribution of our work is a novel mathematical

representation and analysis of multi-function product and product integral in the wavelet

domain. We show that, multi-function product integral in the primal is equivalent to sum-

mation of the product of basis coefficients and integral coefficients. In the dissertation, we
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give a novel Generalized Haar Integral Coefficient Theorem. We also present a set of efficient

algorithms to compute multi-function product and product integral.

In the dissertation, we demonstrate practical applications of these algorithms in the in-

teractive rendering of dynamic glossy objects under distant time-variant all-frequency en-

vironment lighting with arbitrary view conditions. At each vertex, the shading integral

is formulated as the product integral of multiple operand functions. By approximating

operand functions in the wavelet domain, we demonstrate rendering dynamic glossy scenes

interactively, which is orders of magnitude faster than previous work. As an important

enhancement to the popular Pre-computation Based Radiance Transfer (PRT) approach,

we present a novel Just-in-time Radiance Transfer (JRT) technique, and demonstrate its

application in real-time realistic rendering of dynamic all-frequency shadows under general

lighting environment.

Our work is a significant step towards real-time rendering of arbitrary scenes under general

lighting environment. It is also of great importance to general numerical analysis and signal

processing.
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CHAPTER 1

INTRODUCTION

My understanding to computer graphics research is to interactively simulate natural objects

under natural illumination, with natural surface appearance and by natural dynamics. Over

the years, numerical algorithms and systems have been developed to simulate natural effects

based on physics laws. Using some off-line simulation systems, we are able to produce some

photo-realistic computer-generated imageries (CGI), such as those special effects used in the

film industry. Thanks to the recent advances in programmable graphics processing units

(GPU) and new image synthesis techniques, even in the field of interactive rendering, such

as in training and simulation, 3D geometry modelling, lighting design, and most popularly,

3D computer games, we witnessed a significant progress in enhancing the realism of lighting

and shading effects.

Despite these improvements, there are still issues in physical-based simulation systems.

These issues are largely due to the practical limitations of the computer systems used in

the simulation. Ideally, we would like to have a ‘perfect’ Turing machine with ‘unlimited’

long tape and, most importantly, with ‘unlimited’ processing power. Practically, however,
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we are only able to load a very limited number of data into the memory subsystem of the

simulation systems, which is relatively small compared to the extraordinarily huge size of

the real data. Meanwhile, the complexity of the inter-interactions in the simulation system

is so extraordinarily high that it is far beyond the processing power of the current computer

hardware. Due to the limitation of the memory subsystem, the granularity of the sampling

scheme used in the simulation has to be decreased to keep the problem tractable. This, in-

evitably, leads to the ‘infamous’ aliasing effects. An alternative approach is to employ some

data compression techniques to exploit the redundancy in the input data, and as a result

to fit more data in the available memory. This approach, nevertheless, puts more burden

on the already-limited processing units. Considering that normally simulation is performed

on the uncompressed data, de-compression must be conducted on-the-fly to transform the

compressed data into the uncompressed format.

In this dissertation, we present a unified framework, compressed domain real-time rendering,

to address the limitation of the memory subsystem and the processing units simultaneously

in the field of real-time rendering. In our framework, input data are approximated and

efficiently compressed in the wavelet domain, and the complexity of the simulation system is

effectively reduced by performing simulation directly in the compressed wavelet domain. We

demonstrate our approach in real-time rendering of dynamic glossy objects with realistic all-

frequency shadows under distant all-frequency environment lighting. Note that our approach

may have broad applications in general numerical analysis and signal processing.
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1.1 Physical-Based Image Synthesis

Here we assume that there is no participating media in the scene, and that light travels

along straight lines. In this case, the equilibrium distribution of light energy in the scene

can be described using the rendering equation [Kaj86], which represents the exitant radiance

Lo(x → Θ) at surface point x in the outgoing direction Θ as the function of the self-emission

Le(x → Θ) and the reflected radiance from the neighboring objects:

Lo(x → Θ) = Le(x → Θ) +

∫

Ωx

fr(x, Ψ ↔ Θ)L(x ← Ψ) cos(Nx, Ψ)dωΨ (1.1)

where fr is the BRDF , Nx is the normal at x and Θ is the incoming direction.

There are five issues inherent in the rendering equation: integration complexity, transport

complexity, geometric complexity, material complexity and lighting complexity. These issues

are crucial for the efficient simulation of photo-realistic imageries.

Integration Complexity As shown in the rendering equation, exitant radiance at a sur-

face point involves the integration of all incoming radiance, which inherently is a recursive

operation. Generally speaking, the rendering equation is a Fredhom integral equation of the

second kind. Traditional global illumination approaches focus on solving the recursive nature

of the light transport, which are only good for off-line rendering due to the extraordinarily

long computation. As a very important leeway, the recursive nature of the light integration

can be effectively discarded by assuming that the scene is illuminated by the environment

light. This assumption, amazingly, does not degrade the perceptual quality of the rendered
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images. Although indirect illuminations were eliminated in the computation, the generated

imageries still demonstrates a strong sense of global illumination effects and, most impor-

tantly, at interactive framerate. In this dissertation, we follow this approach and focus on the

efficient computation of the light integration in the dynamic scenes, illuminated by distant

environment lighting.

Transport Complexity Physical-based simulation must take care of the complex photon

interactions between different surface patches in the scene. These light interactions account

for many global illumination lighting effects, such as shadows, self-reflections, inter-reflection,

caustics, et al. To simulate these lighting effects, visibilities between different surface patches

must be explicitly computed. Unfortunately, visibility computation is notoriously slow and

not good for real-time rendering. As a result, many real-time rendering approaches, such as

pre-computed radiance transfer, compute the visibilities completely off-line. There are also

some other approaches opt to local illumination models, such as Phong model, where light

transport is aggressively simplified.

Geometric Complexity One natural approach to describe the surface geometry is to

densely discretize the object surface, and encode the topology (which only represents the

connectivity) with supplementary surface position information. An appropriate sampling

resolution must be determined for the goal of efficient measurement and representation.

Generally speaking, we many describe the surface geometry progressively, from the coarsest

macro-scale level to the intermediate meso-scale level, and finally at the finest micro-scale

level. For each level, there are many options available to encode the topology and position
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information, such as point clouds, triangle/quad meshes, parametric surfaces and volumetric

representations.

Note that for some natural objects, such as vegetables, fruits, grasses, trees, flowers, rusts,

barks, sands, snows and smokes, etc, this level-of-detail representation will have problems.

One possible approach is to describe these surfaces quantitatively using some distribution

functions. Another challenging issue is to simulate the natural dynamics of these objects,

such as fluid dynamics and mesh manipulation.

Material Complexity The surface appearance of natural objects closely relates to trans-

port complexity and geometry complexity (surface geometry). For objects exhibiting strong

subsurface scattering or translucency effects, material complexity is coupled with the trans-

port complexity. For objects with complexity surface topology, such as rusts, the material

complexity is closely coupled with the geometry complexity. Quantize the surface property

using intrusive or non-intrusive measurement equipments remains one of the most chal-

lenging problems in computer graphics. Historically this line of research focuses on BRDF

measurement and recently enhanced with spatial/temporal extension.

Note that there are four kinds of complexities in the material complexity: spatial complexity,

depth complexity, angular complexity and temporal complexity. Historically, bidirectional

reflectance distribution function (BRDF) is used to represent the view-dependent angular

variations of surface material, while texture is used to describe the spatial variation. Due to

its simple form, texture is great in representing high-frequency details. On the other hand,

surface geometry is used to represent low-frequency surface variations. A very promising
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approach to describe depth complexity, such as subsurface scattering effects, is the bidi-

rectional surface scattering distribution function (BSSRDF). How to efficiently represent

all-frequency surface variation, by combining the geometry, BRDF and texture remains one

of the hottest research area in computer graphics. Currently there are also some nice ex-

periments [GTR, WTL] in capturing and representing temporal complexity, although their

practical applicability is highly obscure, considering the prohibitively high storage complex-

ity.

There have been a vast amount of research efforts in studying spatial complexity of the

surface materials, a.k.a., texture synthesis, which was originally proposed as an efficient

quick-fix for real-time rendering. Very recently, research focuses are shifted to the angular

complexity, especially due to the great success in simulating low-frequency soft shadows.

Most of these research efforts decompose the captured data into sets of forms with different

physical meanings, powered by some factorization techniques. This line of research normally

uses computer vision techniques, and can be categorized as the inverse problem in computer

graphics.

Lighting Complexity Real-world light sources exhibit a wide range of properties, such as

volumetric, time-dependent, angular-dependent (directional), spatial-dependent, et al. Due

to its simple implementation, point light sources are traditionally popular, especially in some

real-time or interactive applications. Currently environment light sources become popular

in some interactive image synthesis systems. However, efficiently capturing real-world light

sources, and the related problem of compactly representing the captured dataset remains
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one of the most challenged problems in computer graphics, and may create a completely

new industry in the future.

All the aforementioned complexity issues arise in simulating physically valid light transport.

In fact, since the main purpose of computer-generated imaginaries is for display which is to

be observed by human beings, there are some opportunities for optimization, for example,

by exploiting the spacial/temporal lighting-sensitiveness of human eyes. Perceptually-based

optimization techniques is one of the research area in computer graphics but whined a bit

recently due to the slow progress in the low-level vision research. Another optimization

possibility is based on the observation that, since computer-generated imaginaries are used

by human beings as an effective communication tool, we can enhance the communication

channel by manipulating synthesized imaginaries at high-level, for example, at the semantic

level. In its simplest form, this line of research extends to image/video enhancement and

non-traditional rendering.

1.2 Data Compaction and Function Approximation

As shown in the previous section, given a certain signal/function, we are interested in repre-

senting this function approximately and efficiently (with less space). Function approximation

is closely related to data compression, or data compaction, which is a well researched area.
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In this section, we briefly overview some important data compaction techniques, such as

entropy encoding, quantization/clustering, hashing and basis function approximation.

Entropy Encoding

Given a set of independent N events with probabilities pi (1 ≤ i ≤ N), such that
∑N

i=1 pi = 1,

the first-order entropy H is the sum of the self-information over all events,

H = −
∑

pi log pi (1.2)

which also measures how much uncertain we are aware of the outcome. Generally, entropy is

the lower bound on compression, and it is very difficult to compute entropy. Data compres-

sion, however, seeks a message representation that uses as few bits as possible to retain the

information content. There are many models have been proposed to improve entropy com-

putation, and many compression algorithms have been proposed to compress messages close

to the entropy. Two of the most popular entropy encoding algorithms are Huffman encod-

ing and Arithmatic encoding. Given a message, Huffman coding creates binary (Huffman)

tree such that path lengths correspond to symbol probabilities. Then path labels are used

to encode the message. Whereas, Arithmetic coding combines probabilities of subsequent

symbols into a single fixed-point number of high precision. Then the binary representation

of that number is used to encode the message.

Huffman codes are minimum redundancy codes for a given probability distribution of the

message. Huffman coding guarantees a coding rate lH within one bit of the entropy H,

H ≤ lH ≤ H + 1. Theoretically, average code length lH < H + pmax + 0.086, where pmax is
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the probability of the most frequently occurring symbol. As a result, if pmax is quite big, in

other words, if the alphabet is small and the probability of occurrence of different symbols

is skewed, Huffman coding will be quite inefficient. However, if the alphabet is large and

probabilities are not skewed, Huffman coding rate is pretty close to entropy.

Arithmetic coding is especially suitable for small alphabet (such as binary sources) with

highly skewed probabilities. It is very popular in image and video compression applications.

Quantization and Clustering

Quantization is the process of representing a large (possibly infinite) set of values with a

much smaller set. It is one of the simplest and most general idea in lossy compression.

Vector quantization maps k-dimensional vectors in the vector space <k into a finite set of

vectors Y = {yi, 1 ≤ i ≤ N}, where each vector yi is called a codeword, and the set of all

codewords is called a codebook. A Voronoi region is associated with each codeword yi,

Vi = {x ∈ <k :‖ x− yi ‖≤‖ x− yj ‖, for all i 6= j} (1.3)

which defines a nearest neighbor region. The set of all Voronoi regions partition the entire

space <k.

One of the most popular vector quantization algorithm, Linde-Buzo-Gray (LBG), or the

generalized Lioyd algorithm (GLA), is very similar to the k-means clustering algorithm. It

is no surprise that other clustering algorithms, such as mean-shift algorithm, can also be

used in vector quantization.
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In vector quantization, each input vector is mapped to the closest codeword. A common

practice to accelerate the mapping operation is to organize the codebook with some tree-

structures. Tree-structured vector quantization (TSVQ) is very effective in decreasing the

mapping complexity. By substituting the regular clustering algorithm with TSVQ, the pop-

ular clustered principle component analysis algorithm (CPCA) can be implemented more

efficiently to decrease the pre-processing time in recently proposed pre-computation based

real-time rendering approaches.

Hashing

Recently, a very interesting research area in computer graphics is how to organize the memory

system on the GPU efficiently. This year, Lefebvre and Hoppe [LH06] proposed a perfect

hashing technique to pack sparse data into a compact table. The main advantage of this

technique is that it permits efficient random access, which is very prominent to graphics

hardware. Based on pre-computed information, they designed a perfect multi-dimensional

hash function without a single hash collision. This suggests a new lossless approach to

approximating certain functions compactly.

Basis Functions

Another popular approach to function approximation is transform coding. By transform

correlated data into a representation where they are uncorrelated, the transformed values are

usually smaller on average than the original values. For lossy compression, the transformed

coefficients can now be quantized/compressed using their statistical properties (or using the
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entropy encoders), reducing the redundancy, and therefore producing a much compressed

representation of the original data. In general, the key of the transform coding is to find an

set of good basis functions1.

FOURIER (1807)

In 1807, Joseph Fourier asserted that any 2π-periodic square-integral function2 f(x) has a

Fourier series representation:

f(x) =
∞∑

n=−∞
cneinx (1.5)

where the Fourier coefficients cn are calculated by

cn =
1

2π

∫ 2π

0

f(x)e−inxdx (1.6)

Fourier series representation (eq. 1.5) utilities a set of basis functions, einx. It is on this set

of basis functions that function f(x) is decomposed into a sum of infinite components. The

set of basis functions in Fourier series representation have two important features:

Orthogonal For any two basis function b1 and b2, we have:

〈b1, b2〉 =





1, for all b1 = b2

0, otherwise

(1.7)

1A basis is a collection of functions. Given a function space, any function in the space can be uniquely
represented as a linear combination of the basis functions. Here we also define the inner product 〈g, h〉 of
two functions g and h as

∫
g(t) · h(t)dt.

2A square integrable function f : R→ R satisfies following condition:

‖f‖ = 〈f, f〉1/2 = [
∫ ∞

−∞
f2(t)dt]1/2 < ∞ (1.4)
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Dilation All basis functions in the Fourier series representation are generated by dilation

of a single function

b0 = eix = cos x + i sin x (1.8)

which is a sinusoidal wave, the only function required to generate all 2π-periodic

square-summable functions.

As a result, every 2π-periodic square-integrable function can be decomposed as a superpo-

sition of integral dilations of the sinusoidal basis function. Fourier series representation has

been a very popular tool as frequency analysis. Note that there are an infinite number of

basis sets conforming to orthogonal and dilation properties.

Lifted by Legendre polynomials, Fourier bases have been extended over the sphere, which

defines a novel orthonormal basis set, spherical harmonics. Spherical harmonics have been

successfully applied to represent 4D BRDF functions, as well as in recently very active low-

frequency shadow analysis and generation. Note that one of the most prominent problem

of Fourier representation, and therefore, spherical harmonics, is that the basis sets are not

compactly supported. The directly implication of this limitation is that they are not good

at efficiently representing high-frequency signals.

HAAR (1909)

In 1909, Alfréd Haar discovered the simplest set of basis functions to decompose a continuous

square-integrable function. He found following orthonormal basis (also called a Hilbert basis)
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Figure 1.1: 1D Haar mother scaling basis function (left) and mother wavelet (right).

for L2[0, 1]:

b0(x) = 1, 0 ≤ x < 1 (1.9)

bn(x) = 2j/2b1(2
jx− k), n = 2j + k, j ≥ 0, 0 ≤ k < 2j (1.10)

where

b1(x) =





1 : 0 ≤ x < 1
2

−1 : 1
2
≤ x < 1

0 : else

(1.11)

As a result, a continuous function f(x) can be approximated by step functions (Haar basis

functions) with coefficients as the mean values of f(x) on the appropriate dyadic intervals.

However, because Haar basis functions are not continuous in themselves, there are some

problems with this Haar approximations. For example, if f(x) is a C1 continuous function
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(a C1 function has a continuous derivative), we may have to resort to higher-order polynomial

basis functions.

The main theme of the dissertation focuses on a very interesting property of Haar basis

functions, the integral coefficients, and their application in efficiently approximating (the

integration of) the product of multiple functions.

DAUBECHIES (1988)

Perhaps the most exciting achievement in basis approaches, or in wavelets theory, is due

to Ingrid Daubechies’ work in finding a set of Haar-like wavelets with compact support,

continuous derivatives, and most importantly, superior compression. These properties results

their immediate applications in engineering signal processing, such as data compression. A

detailed explanation on Daubechies wavelets is found in [Dau92].

1.3 Multi-Resolution Analysis (MRA)

The wavelet transfrom is a tool that cuts up data, functions or operators into dif-

ferent frequency components, and then studies each component with a resolution

matched to its scale.

— Dr. Ingrid Daubechies

‘Wavelets’ is a very popular yet nice tool for approximating functions in the field of signal

processing. It has been successfully applied in many areas such as time-frequency analysis,
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functional representation, et al. Mathematically, wavelets is just a set of basis functions with

some appealing properties. This chapter gives an overview of wavelets and multiresolution

analysis.

Analogous to Fourier transform, a wavelet transform decomposes a function into a series of

summation of basis coefficients of the appropriate basis functions.

Multi-resolution analysis (MRA) is a very nice to approximate a function progressively, from

the coarsest scale to more finer scales. A MRA is a nested sequence

· · · ⊆ V−1 ⊆ V0 ⊆ V1 ⊆ V2 ⊆ · · · (1.12)

of subspaces of L2[R] with a scaling function φ(t) defined on V0 such that

• V = ∪n∈ZVn is dense3 in L2[R].

• The intersection of these subspaces is a singleton set containing the all-zero function

or zero vector.

• f(t) ∈ Vn iff f(2−n · t) ∈ V0.

• {φ(t− k)}k∈Z is an orthonormal basis for V0.

For any j ∈ Z, we define Wj as the orthogonal complement of Vj in Vj+1. Consequently, we

have

Vj+1 = Vj ⊕Wj (1.13)

3A subset B of A is dense in A if any given element in A can be approximated as closely as we like by an
element in B. For example: the set of rational numbers Q is dense in real number set R.
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In other words, we have

Vj = Vj−1 ⊕Wj−1 (1.14)

and

Vj+1 = Vj−1 ⊕Wj−1 ⊕Wj (1.15)

It is trivial to show that for any k ≤ j

Vj+1 = Vk ⊕Wk ⊕Wk+1 ⊕ · · · ⊕Wj (1.16)

As a result, for any given function in Vj+1, it can be exactly represented by the scaling

basis functions in Vj+1. It can also be decomposed as a linear combination of the scaling

basis functions at a coarser resolution in Vk, followed by a sequence of functions defined in

the detail spaces at resolution level k, k + 1, · · · , j to represent the leftover details. Here,

approximating the function at a lower resolution involves the scaling basis functions, while

progressively representing the detail involves the wavelet basis functions.

1.3.1 Scaling Basis Function

The mother scaling function φ(t) defined on V0 is the core of wavelet analysis. It has following

properties:

• ∫∞
−∞ φ(t)dt = 1.

• It has unit energy. |φ(t)|2 =
∫∞
−∞ |φ(t)|2dt = 1.
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• φ(t) is orthogonal to its integer translation φ(t− n).

From definition, set {φ(t− k)} constitutes an orthonormal basis for V0, and set {φ(2t− k)}

constitutes an orthonormal basis for V1. Since φ(t) ∈ V0 ⊆ V1, φ(t) can be represented as a

linear combination of these basis functions in V1, we have the following dilation equation:

φ(t) =
∑

k

ckφ(2t− k) (1.17)

where
∑

k |ck|2 < ∞.

Taking integration of the dilation equation, we have:

∫
φ(t)dt =

∫ ∑

k

ckφ(2t− k)dt (1.18)

=
∑

k

ck

∫
φ(2t− k)dt (1.19)

=
∑

k

ck

∫
φ(x)d(

x + k

2
) (1.20)

=
1

2

∑

k

ck

∫
φ(x)dx (1.21)

As a result, we have:

∑

k

ck = 2 (1.22)

We can also take the square integration of the dilation equation:

∫
|φ(t)|2dt =

∫ ∑

k

ckφ(2t− k)
∑
m

cmφ(2t−m)dt (1.23)

=
∑

k

∑
m

ckcm

∫
φ(2t− k)φ(2t−m)dt (1.24)

=
1

2

∑

k

∑
m

ckcm

∫
φ(x− k)φ(x−m)dx (1.25)
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Only if k = m, the integral on the right hand side is 1; otherwise, it is zero. So, we have:

∑

k

c2
k = 2 (1.26)

1.3.2 Wavelet Basis Function

For the detail space W0 in MRA, we define a mother wavelet function ψ(t) with following

properties:

• ∫∞
−∞ ψ(t)dt = 0.

• It has unit energy. |ψ(t)|2 =
∫∞
−∞ |ψ(t)|2dt = 1.

• ψ(t) is orthogonal to its integer translation ψ(t− n).

• ψ(t) is orthogonal to the scaling functions defined on V0. 〈ψ(t), φ(t− k)〉 = 0.

From definition, ψ(t) ∈ W0 = V1 − V0 =⊆ V1. Therefore, ψ(t) can be represented as a linear

combination of these basis functions in W1, we have:

ψ(t) =
∑

k

dkφ(2t− k) (1.27)

which is very similar to the dilation equation.
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1.3.3 Constructing Orthonormal Basis Functions

Practically, we are interested in the representations with normalized coefficients:

ck =
√

2hk (1.28)

dk =
√

2gk (1.29)

As a result, we have:

φ(t) =
∑

k

√
2hkφ(2t− k) (1.30)

ψ(t) =
∑

k

√
2gkφ(2t− k) (1.31)

Here we consider the inner product of φ(t) and its translation φ(t−m):

〈φ(t), φ(t−m)〉 = 2

∫ ∑

k

hkφ(2t− k))
∑

l

hlφ(2t− 2m− l)dt (1.32)

= 2
∑

k

∑

l

hkhl

∫
φ(2t− k))φ(2t− 2m− l)dt (1.33)

=
∑

k

∑

l

hkhl

∫
φ(x− k))φ(x− 2m− l)dx (1.34)

=
∑

k

∑

l

hkhlδk,2m+l (1.35)

=
∑

k

hkhk−2m (1.36)

Therefore, we have:

∑

k

hkhk−2m = δm (1.37)

∑

k

hk =
√

2 (1.38)

∑

k

h2
k = 1 (1.39)
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From these equations we are able to derive some scaling basis functions. For example,

suppose K = 2, we have :
1∑

k=0

hk =
√

2 (1.40)

1∑

k=0

h2
k = 1 (1.41)

The unique solution of these equations h0 = h1 =
√

2 gives the Haar scaling basis.

However, when K > 3, there are multiple solutions to these equations. In this case, we

need to enforce further conditions for unique solution. In chapter 1, we show that Haar

basis functions are step functions, and they are not good to approximate smooth functions.

Theoretically, the quality of approximation using a basis set for a polynomial signal is related

to the number of the vanishing moments of the basis functions. The mth moment of a function

f is defined as
∫

tkf(t)dt.

By enforcing the first N moments of ψ(t) vanish, we have

∫
tmψ(t)dt = 0, where m = 0, · · · , N − 1 (1.42)

Then, we have

∑
kmgk =

∑
(−1)kkmhk = 0, where m = 0, · · · , N (1.43)

Vanishing moments form a necessary condition for ψ(t) to be CN (N times continuously

differentiable. In terms of the functional approximation, the magnitude of wavelet coefficients

rapidly decreases as N grows.

In the case of K = 4, the solutions to these equations include the Daubechies 4-tap solution.
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1.4 Real-Time Rendering

Conventional global illumination techniques [DBB03], such as ray tracing, photon mapping

and radiosity, can take hours to generate photorealistic imageries, and that limits their

application in interactive industrial design. Recent advances in computer hardware, such as

SSE, SIMD, especially the programmable graphics processing units (GPUs), provide a solid

foundation for real-time rendering. In fact, real-time rendering is not a new concept. Some

long-existing examples are image-based rendering, plenoptic function and light field. In this

section, we focus on pre-computation based real-time image synthesis techniques.

A common practice to accelerate global illumination is to retain only the direct lighting,

for instance, environment mapping [BN76]. Recently, Sloan et al. [SKS02] proposed Pre-

computed Radiance Transfer (PRT) to extend environment mapping technique for real-time

rendering of soft shadows in a static scene. PRT supports diffuse and low-glossy materials,

and has been extended to support all-frequency lighting [NRH03], high-glossy materials

[LSS04, NRH04, WTL04], and dynamic objects with diffuse and low-glossy materials [JF03,

KLA04, KL05, SLS05, ZHL05] . Here, we categorize some recent work on PRT as follows:

Static Scene, Low-Frequency Materials PRT methods [KSS02, SKS02, LK03, NRH03,

SHH03, SLS03] approximate global illumination effects with coarsely filtered radiance trans-

fer, and exploit orthonormality in basis functions to reduce the shading integral to a low-

dimensional dot product between the lighting and transport coefficients. These approaches

are effective in real-time relighting static scenes, but are limited to diffuse and low-glossy
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materials. High-glossy materials would incur a prohibitively massive radiance transfer ma-

trix to account for view-dependent lighting effects, and there is no effective compression

technique to directly reduce the size of this massive dataset.

Static Scene, High-Frequency Materials Liu et al. [LSS04] and Wang et al. [WTL04]

extend PRT to render glossy materials by separating BRDF and consequently keeping the

size of the radiance transfer tractable. Ng et al. [NRH04] densely sample the lighting, BRDF

and visibility for a static scene. They introduce triple product wavelet integral to render

static objects under time-variant all-frequency lighting and view conditions in a few seconds.

They also show that the product of two functions can be approximated using the tripling

integral coefficients. This year Tsai and Shih [TS] used spherical radial basis functions to

attack the problem.

Dynamic Scene, Low-Frequency Materials Sloan et al. [SKS02] demonstrate a neighborhood-

transfer technique to render soft shadows from a dynamic neighboring object. James and

Fatahalian [JF03] render deformable objects by pre-computing light transport for a repre-

sentative set of poses. Sloan et al. [SLS05] propose a quick-rotatable radiance transfer using

zonal harmonics. All these approaches are effective in rendering local soft shadows. To

account for global cast shadows from dynamic neighboring objects, global visibilities with

respect to these occluders are indispensable. Kautz et al. [KLA04] use an approximated

hemispherical rasterization technique to render soft shadows with explicit occlusion infor-

mation. Kontkanen and Laine [KL05] pre-compute ambient occlusion field to render soft

cast shadows in real-time. Zhou et al. [ZHL05] pre-compute shadow field to render dynamic
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objects illuminated by multiple local light sources. Their work on evaluating shading from

a single light source falls into our framework on multi-function product integral. They ad-

dress the problem by recursively computing two-function products using the tripling integral

coefficients [NRH04]. The approach is improved in [RWS].

Dynamic Scene, High-Frequency Materials Note that all previous approaches are

limited to diffuse and low-glossy materials and cannot account for high-frequency view-

dependent lighting effects, such as intricate all-frequency cast shadows by multiple occluders

and specularities in real-time, which is the main topic of the dissertation.

1.5 Contributions

This dissertation presents a significant theoretical and practical results of multiple function

product and product integral, as well as real-time rendering of glossy objects in dynamic

scenes. The dissertation is likely to have significant impacts both theoretically (computation

of multi-way products) and practically (real-time rendering).
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1.5.1 Theoretical Contributions

This dissertation makes a significant contribution to applied mathematics in generalizing

previous methods for integrating the product of multiple functions represented in a wavelet

basis.

In the dissertation, we present a new mathematical representation and analysis of multi-

function product and product integral in the wavelet domain. We show that multi-function

product integral in the primal corresponds to summation of the product of basis coefficients

and integral coefficients. We propose a novel Generalized Haar Integral Coefficient Theorem

to evaluate arbitrary Haar integral coefficients. This theorem has potential applications

beyond the current dissertation, since it provides a set of efficient algorithms for the rather

basic operation of multiplying M functions.

This dissertation also presents an interesting question on the existence of a family of wavelet

filters with Haar-like integral efficiency. Proving the uniqueness of the Haar filter in terms

of the efficient integral coefficient conditions, or finding its siblings, is a very important

theoretical research topic which definitely deserves further consideration.
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1.5.2 Algorithmic and Practical Contributions

In the dissertation, we consider real-time rendering of dynamic glossy objects under distant

time-variant all-frequency environment lighting and arbitrary view conditions, with realistic

all-frequency shadows. By formulating the shading integral at each vertex as the prod-

uct integral of multiple functions, we reduce the problem to two rather basic mathematical

operations — efficiently computing multi-function product and product integral. By approx-

imating operand functions using wavelet encoding, both problems can be efficiently solved

in the compressed domain. Based on the theoretical results, we present a set of efficient

algorithms to approximate multiple function product and product integral.

In the dissertation, we also present a novel Just-in-time Radiance Transfer (JRT) technique

for dynamic scenes. To our knowledge, this is the first actual demonstration of rendering

dynamic glossy objects in real-time. We believe this JRT approach has the potential to

significantly increase the realism for real-time rendering.

Our work is a significant step towards efficiently integrating the product of multiple signals,

which is of great importance to general numerical analysis and signal processing.
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1.6 Overview of the Dissertation

In chapter 1 we present a general introduction on compressed-domain real-time rendering

and associated problems. In chapter 2, we present the systematic representation and analysis

of quadruple function product integral in the wavelet domain. The results in this section is

generalized in the next chapter, with an extensive analysis of multiple function product and

product integral in the wavelet domain, as well as the practical application of Just-in-time

Radiance Transfer (JRT) technique in real-time rendering. We conclude the dissertation

with some discussion of the advantage of our work and some future research directions in

chapter 4.
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CHAPTER 2

QUADRUPLE WAVELET PRODUCT INTEGRAL

View-dependent all-frequency shadows and specular highlights are important lighting effects

for interactive rendering systems. As shown in Figure 2.1, cast shadows (such as those on

the floor) are mainly due to the occlusion by neighboring objects. Specular highlights, on

the other hand, is the reflection of the light source due to high-frequency reflections of the

surface material. In this chapter, we present a novel quadruple wavelet product integral

technique to efficiently render such complex lighting effects in the dynamic scenes.

The approach is a significant advance to recently proposed pre-computed radiance transfer

(PRT) technique. Sloan et al. [SKS02] approximate global illumination effects with coarsely

filtered radiance transfer, and use double function product integral to reduce the shading

integral to a low-dimensional dot product between the lighting and transport coefficients.

This technique, however, is limited to low-frequency materials. Ng et al. [NRH04] proposed

triple product integral to support high-frequency materials. Both approaches are quite ef-

fective in generating attached shadows, which is mainly due to the variation of the surface

curvature. Furthermore, by fusing neighboring objects as a part of the shadow receiver,
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they can even support cast shadows. Nevertheless, as an important visual cue, cast shadows

suggest that shadow receiver and occluder are distinct objects, which further indicates that

shadow occluder can move with changing cast shadows. Both double product integral and

triple product integral techniques, however, are inherently limited to static scenes and cannot

support for cast shadows from dynamic neighboring objects. Although several extensions

[JF03] [KLA04] [KL05] [ZHL05] [SLS05] were proposed to leverage the approaches to dy-

namic scenes, fundamentally these extensions are double/triple product integral techniques.

They cannot support dynamic glossy objects with all-frequency cast shadows.

In this chapter, we present a novel quadruple product integral technique to directly support

all-frequency cast shadows by dynamic neighboring objects. The outstanding advantage of

the new mathematical representation is the computational efficiency and flexibility. In this

chapter, we explicitly incorporate global occlusions from neighboring objects into the shading

integral. At each vertex, the outgoing radiance is formulated as the product integral of four

functions, involving the lighting, BRDF, self-occlusion and global occlusion. We show that

quadruple product integral in the primal corresponds to the summation of the product of

quad-coefficient and basis coefficients. We propose a novel Haar quad-coefficient theorem,

and present an efficient tree-structured sub-linear algorithm to integrate the product of four

functions in the wavelet domain. The degeneration of the algorithm is a natural yet efficient

triple product integral algorithm.

Our technique is based on the pre-computed information of individual scene entities, which

is a generalization of previous work [NSD94, DAG95, SKS02, NRH03, NRH04, ZHL05]. We
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use cubemaps to represent the lighting integral operand functions on each vertex, which are

subject to tabulation, wavelet transformation and augmented quad-tree encoding in the pre-

computation stage. In the rendering stage, we directly integrate the product of these four

functions in the wavelet domain using quadruple product integral technique. Our approach

is not limited to pre-animated models, and is applicable of interactively rendering dynamic

scenes with complex realistic view-dependent lighting effect, such as those in the lighting

design.

In the reminder of this chapter, we present our work as follows. In section 2.1 we present the

Haar quad-coefficient theorem. The tree-structured quadruple product integral algorithm

is presented in section 2.2. Details of the implementation and some rendering results are

described in section 2.3. We conclude this chapter in section 2.4.
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Figure 2.1: A 180,000 vertex dynamic scene rendered using quadruple wavelet product inte-

gral algorithms. Note that the approach inherently support dynamically moving table, with

time-variant all-frequency lighting and view condition. Images are rendered in less than ten

seconds per frame. More examples are shown in Figure 2.8.
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2.1 Mathematical Formalization

In this chapter, we do not consider inter-reflections between any two surfaces in the scene.

Exitant radiance B at a surface point x along view direction θ due to distant environment

lighting L is the product integral over all incident directions sampled at a surrounding

cubemap S:

B(x, θ) =

∫

S

L(ϕ)Os(x, ϕ)Og(x, ϕ)ρ(x, ϕ ↔ θ)(N · ϕ)dϕ (2.1)

where ϕ is the incident direction, N is the normal at x, ρ is the BRDF, Os is the self-occlusion

at x, Og is the global-occlusion at x from neighboring objects in the scene. In the equation,

all operand functions are defined in a universal global coordinate system. Incorporating the

cosine term (Nx · ϕ) into the BRDF ρ, shading on a fixed vertex x and view direction θ can

be simplified as the product integral of four functions:

B =

∫
F1(ϕ)F2(ϕ)F3(ϕ)F4(ϕ)dϕ (2.2)

Projecting each operand function Fi(ϕ) (1 ≤ i ≤ 4) in equation (3.3) onto an orthonormal

basis set B yields :

Fi(ϕ) =
M∑

j=1

fijbj(ϕ) (2.3)

where fij is the jth basis coefficient, bj(ϕ) is the jth basis function, and M is the size of B.

We define quad-coefficient Cstuv as :

Cstuv =

∫
bs(ϕ)bt(ϕ)bu(ϕ)bv(ϕ)dϕ (2.4)
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Figure 2.2: Mother Haar basis functions. Functions are positive where white, negative

where black and zero where gray. For simplicity, amplitude is ignored in the diagrams. More

examples are shown in Figure 2.3.

It is worth noting that the quad-coefficient is a generalization of the coupling/tripling coef-

ficient in [NRH04]. Substituting equation 3.4 into equation 3.3, we have:

B =

∫ ∑
s

f1sbs

∑
t

f2tbt

∑
u

f3ubu

∑
v

f4vbvdϕ

=
∑

s

∑
t

∑
u

∑
v

f1sf2tf3uf4v ·
∫

bsbtbubvdϕ

=
∑

s

∑
t

∑
u

∑
v

Cstuv · f1sf2tf3uf4v (2.5)

Note that quadruple function product integral (equation 2.5) reduces to the quad-coefficient

Cstuv, which is the focus of the next section. It is worth noting that the result in this

subsection applies to any basis set B.

2.1.1 2D Haar Bases

Nonstandard Haar wavelet transform [SDS96] transforms a 2n × 2n image into a 2D signal

with 2n × 2n coefficients. Each coefficient corresponds to a basis function defined in region

〈j, k, l〉, where j is the scale (0 ≤ j < n), k and l are spatial translations (0 ≤ k, l < 2j).
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Figure 2.3: Examples of the restricted 2D Haar basis functions (resolution: 8 × 8). There

are three scales of basis functions in the diagrams.

The support of a basis function is the non-zero region 〈j, k, l〉 in which the basis function is

defined. All basis functions are categorized into two sets: scaling bases and wavelet bases.

In each region 〈j, k, l〉, four normalized 2D Haar basis functions are defined:

φj
kl normalized Haar scaling basis function:

φj
kl(x, y) = 2jφ0(2jx− k, 2jy − l)

φ0 is the mother scaling function.
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ψj
kl normalized Haar wavelet basis function. There are three types of wavelets defined in one

region:

ψ1
j
kl = 2jψ1

0(2jx− k, 2jy − l)

ψ2
j
kl = 2jψ2

0(2jx− k, 2jy − l)

ψ3
j
kl = 2jψ3

0(2jx− k, 2jy − l)

ψ1
0, ψ2

0 and ψ3
0 are three mother wavelets, denoting the horizontal, vertical and diagonal

differences.

Mother scaling basis function and mother wavelets are illustrated in Figure 2.2. More ex-

amples of Haar basis functions are illustrated in Figure 2.3.

A basis function bs is said to be the parent of another basis function bt if the support of

bs completely covers the support of bt, and the scale of bs is less than the scale of bt. For

simplicity, we define the mother scaling function as the parent of any wavelets. We also

define basis functions with scale j > 0 as child basis functions. It is worth noting that only

the mother scaling basis and wavelets are used in the non-standard wavelet transform. Child

scaling basis functions are not used in the transform. In the appendix, child scaling basis

functions are employed to prove the Haar quad-coefficient theorem.
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2.1.2 Haar Quad-Coefficient Theorem

It is observed that many of the Haar quad-coefficients are zero, as illustrated in the first row

in Figure 2.4. This observation can be formalized as the Haar Quad-coefficient Theorem.

HAAR QUAD-COEFFICIENT THEOREM Haar quad-coefficient Cstuv has a non-zero value,

if and only if for four operand basis functions, one of the following cases hold:

1. All four are the mother scaling basis. Cstuv = 1.

2. There are two pairs of identical wavelets, but the first pair may be different from the

second pair. All four have identical support at scale j. Cstuv = 22j.

3. Three are wavelets of different types, but with identical support at scale j, and the

fourth is a parent basis at scale j̃. Cstuv = ±2j+j̃.

4. Two are identical wavelets at scale j, the third is a parent at scale j̃1, and the fourth

is another parent at scale j̃2, where j̃1 may be different from j̃2. Cstuv = ±2j̃1+j̃2. ♦

In case 2 of the theorem, the sign of the quad-coefficient is that of the sub-region of the

parent basis function that the child bases fall into. In case 3, it is the product of the signs

of two sub-regions of the parent basis functions that the child bases fall into, respectively.

Some examples of the Haar quad-coefficients are illustrated in Figure 2.4.

PROOF Without explicit notations, all basis functions refer to the normalized 2D Haar

basis functions. We make following observations on the product of two Haar basis functions:

1. The square of a basis at scale j is the scaling basis of identical support, scaled by 2j.
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Figure 2.4: Examples of the quad-coefficients of Haar basis functions. The quad-coefficients

in the first row are zero. The second/third/fourth row corresponds to case 2/3/4 of the

theorem, respectively.

2. The product of a scaling basis at scale j with another basis of identical support is the

second basis, scaled by 2j.

3. The product of two different wavelets of identical support at scale j is the third wavelet

of identical support, scaled by 2j.

4. The product of a child basis with a parent basis at scale j̃ is the child basis, scaled by

±2j̃. The sign of the product is the sign of the sub-region of the parent basis function

that the child basis function falls into.

5. The integral of a wavelet basis vanishes.

6. The integral of a scaling basis at scale j is 2−j.

Since we are only interested in non-zero quad-coefficients, it is clear that in this case the

support of four operand basis functions must overlap, and these basis functions can only be
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Figure 2.5: Examples of the product of two Haar basis functions. Basis function in the upper

row have identical support. In the middle row, the second basis function is the parent of the

first one. In the lower row, the product is zero. The magnitude and type of the product is

also shown in the figure. White squares in a), c), f) and g) are scaling basis functions.

wavelets or mother scaling function (due to the nonstandard wavelet transform). Neverthe-

less, the intermediate product of two basis functions may be a child scaling basis function.

In the proof, symbol j refers to the scale of the basis at the finest scale, while j̃, j̃1 and j̃2

are the scale of parent bases.

I. All four basis functions are wavelets

Case 1: All wavelets at the same scale Since we are only interested in the non-zero

quad-coefficient, tt is trivial to show that in this case four wavelets must have identical

support. According to the Pigeonhole Principle, among them there must be two identical

wavelets.
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If the other two wavelets are also identical, then three application of observation 1 show

that the product of four basis functions is a scaling basis of identical support, scaled by 23j.

Furthermore, observation 6 shows that the quad-coefficient is 22j.

Otherwise, the other two wavelets must be of different types. Observation 4 shows that their

product is a scaled wavelet. Consequently, observation 2 shows that the product of four basis

functions is a scaled wavelet, and observation 5 shows that the quad-coefficient is zero.

Therefore, if all wavelets are at the same scale, then there must be two pairs of identical

wavelets. This establishes case 2 of the theorem.

Case 2: Three wavelets at the same scale If the fourth wavelet is at a finer scale,

then it is the child of the first three wavelets. Three applications of observation 5 show

that the product of four wavelets is the scaled wavelet. Observation 5 concludes that the

quad-coefficient is zero.

If the fourth wavelet is at a coarser scale, it is trivial to show that first three wavelets must

have identical support. There are two possibilities: a) If at least two of the first three

wavelets are identical, then observations 1 & 2 show that the product of the first three basis

functions is a scaled wavelet. Observation 5 further shows that the product of four bases is

a scaled wavelet, and consequently observation 5 concludes that the quad-coefficient is zero.

b) Otherwise, first three wavelets are of different types. Observations 4 & 1 show that their

product is a scaling basis function of identical support, scaled by 22j. Observations 5 and 6

conclude that the quad-coefficient is ±2j+j̃. This establishes part of case 3 of the theorem.
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Case 3: Two pairs of wavelets at the same scale To differentiate from case 1, without

loss of generality we assume the scale of the first two bases is smaller than that of the latter

two. It is trivial to show that first two wavelets must have identical support, otherwise the

quad-coefficient is zero. Observation 1 shows that their product is a scaling basis (scaled

by 2j). Two applications of observation 5 show that the product of four wavelets is also

a scaling basis, scaled by ±2j+j̃1+j̃2 . Observation 6 concludes that the quad-coefficient is

±2j̃1+j̃2 . This establishes part of case 4 of the theorem.

Case 4: Only two wavelets at the same scale As in case 2, we can show that the other

two bases must be at coarser scales, and the two bases at the same scale must be identical.

Similar analysis as in case 3 concludes that the quad-coefficient is ±2j̃1+j̃2 . This establishes

part of case 4 of the theorem.

Case 5: All four wavelets at different scales Three applications of observation 5 show

that four basis product is a scaled wavelet. Observation 5 gives a zero quad-coefficient.

II. Some bases are the mother scaling basis

Case 1: All four bases are the mother scaling basis The integral coefficient is 1. This

establishes case 1 of the theorem.

Case 2: Three bases are the mother scaling basis Because the mother scaling function

is defined as the parent of any wavelet, three applications of observation 5 show that the

product of four bases is a scaled wavelet at the finest scale. Consequently, observation 5

shows that the quad-coefficient is zero.
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Case 3: Two bases are the mother scaling basis If the two wavelets are identical, then

observations 5 & 1 show that the quad-coefficient is 1; otherwise it is zero. This establishes

part of case 4 of the theorem.

Case 4: Only one basis is the mother scaling basis In this case we have three wavelets.

Similar analysis as in I shows that if the quad-coefficient is nonzero, then among the three

wavelets either two are identical and the third is a parent basis, with quad-coefficient ±2j̃

(part of case 4 of the theorem), or three wavelets have identical support but of different

types, with quad-coefficient 2j (part of case 3 of the theorem).

This concludes the proof of the theorem. ¤

A special case of the aforementioned theorem is that, one of the four operand basis functions

reduces to the mothering scaling basis function. In other words, quad-coefficient is reduced

to the third-order integral coefficient. In this case, we have following result:

THIRD-ORDER HAAR INTEGRAL THEOREM The third-order Haar integral coefficient

Cstu has a non-zero value, if and only if for three operand basis functions, one of the following

cases hold:

1. All three are the mother scaling basis. Cstuv = 1.

2. All three are wavelets of different types, but with identical support at scale j. Cstuv = 2j.

3. Two are identical wavelets at scale j, the third is a parent at scale j̃. Cstuv = ±2j̃. ♦

This derived result is exactly the Haar tripling coefficient theorem presented in [NRH04].
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2.2 Algorithms

In this section, we first present an augmented quad-tree data structure. The tree-structured

sub-linear quadruple product wavelet integral algorithm is presented in subsection 2.2.3. In

this section we also present a tree-structured triple product wavelet integral algorithm which

can be used to render static scenes.

2.2.1 Augmented Quadtree

It has been observed [Sha93] that if a wavelet coefficient at a lower frequency subband is

insignificant with respect to a given threshold, then all the coefficients in the same spatial

position at higher frequency subbands are very likely to be insignificant with respect to

that threshold. This observation leads to a widely used data structure to encode wavelet

coefficients, such as the quadtree structure [BBS94, GSC93] in computer graphics and the

more complex zero-tree structure [Sha93] in image compression. In our implementation, we

adopt this popular data structure with some modifications. Each node of the augmented

quad-tree structure is defined as:

struct augnode

α, β, γ : wavelet coefficients;

psum : signed parent summation;

ch[4] : child pointers;
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end

Here, α, β, γ are three wavelet coefficients of different types with identical support. ch[4]

point to four immediate child nodes. Field psum is the key component in our augmented

quadtree structure and is detailed in the next subsection. The wavelet tree is defined as:

struct augtree

dc : mother scaling coefficient;

node : pointer to struct augnode;

end

2.2.2 Computation of Psum

The use of field psum is inspired by Ng et al’s work [NRH04] on triple product integral. For

any node t in the wavelet tree, field psum stores the summation of coefficients in t’s parents,

scaled by a constant, which is the magnitude of the product of two basis functions, one

in t and another in the parent node. As shown in the following subsections, it is used to

quickly accumulate the contribution of parent nodes as we traverse the wavelet trees. In the

implementation, field psum is calculated in the order of tree traversal. The key strategy is to

update psum field from its immediate parent. Particularly, psum field of the mother wavelets

is just the mother scaling coefficient dc. For any node t with support 〈j, k, l〉 where j > 0,

assume it lies in the quadrant (qk, ql) of its immediate parent node pt, where
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qk = k mod 2 ql = l mod 2

Field t.psum can be updated as:

t.psum = pt.psum + 2j−1 × [pt.α × sign(0, qk, ql)

+ pt.β × sign(1, qk, ql) + pt.γ × sign(2, qk, ql)];

where array sign is the sign of four quadrants of the three mother wavelets. It is defined in

Figure 2.2 as:

sign[3][2][2] = {1,−1, 1,−1; 1, 1,−1,−1; 1,−1,−1, 1};

2.2.3 Tree-Structured Algorithm for Quadruple Product Integral

The basic intuition for accelerating the quadruple function product integral is to eliminate

futile computations involving zero wavelet coefficients and zero quad-coefficients. For this

purpose, only significant coefficients are stored in the augmented quad-tree. The entry

point of the algorithm is QuadrupleIntegral, which takes as input four wavelet trees, each

representing the lighting, BRDF, self-occlusion and global-occlusion. From case 1 of the

theorem, product integral B is initialized as the direct product of dc components.

algorithm QuadrupleIntegral(augtree T1, T2, T3, T4)

B = T1.dc × T2.dc × T3.dc × T4.dc

Traverse4Trees(T1.node, T2.node, T3.node, T4.node)

end
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Figure 2.6: Example of four wavelet subtrees. Totally, there are 13 peer sets : {ABCD},

{EGJ}, {FH}, {I}, {K}, {L}, {M}, {N}, {O}, {P}, {Q}, {R} and {S}. The tree-structured

quadruple product integral algorithm synchronously traverses four wavelet trees. It deliber-

ately eliminates futile computations involving zero quad-coefficients, such as ten gray nodes

which have no peers.

In routine Traverse4Trees, four wavelet trees are traversed synchronously, while futile com-

putations involving zero quad-coefficients are automatically eliminated. As shown in Figure

2.6, we define the set of nodes in different wavelet trees with identical support as a peer set.

Nodes in the same peer set are referred to as peers. From the quad-coefficient theorem, we

observed that nodes without any peers must have zero quad-coefficients. Therefore, they

can be safely eliminated (together with their children nodes) to accelerate computation. In

Figure 2.6, ten gray nodes without any peers are deliberately eliminated by the traversal

algorithm.
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We identified that peer sets with four nodes relate to cases 2, 3 and 4 of the theorem. While

those with only three nodes relate to cases 3 and 4, and those with only two nodes relate to

case 4. Based on these observations, we designed following algorithm:

algorithm Traverse4Trees(augnode t1, t2, t3, t4)

if none of t1, t2, t3, t4 is null

B += case2(t1, t2, t3, t4) + case3(t1, t2, t3, t4)

+case3(t2, t1, t3, t4) + case3(t3, t1, t2, t4) + case3(t4, t1, t2, t3)

+case4(t1, t2, t3, t4) + case4(t1, t3, t2, t4) + case4(t1, t4, t2, t3)

+case4(t2, t3, t1, t4) + case4(t2, t4, t1, t3) + case4(t3, t4, t1, t2)

elseif only one of t1, t2, t3, t4 is null, say, t1 is null

B += case3(t1, t2, t3, t4) + case4(t1, t2, t3, t4)

+case4(t1, t3, t2, t4) + case4(t1, t4, t2, t3);

elseif only two of t1, t2, t3, t4 is null, say, t1 and t2 are null

B += case4(t1, t2, t3, t4);

else

return;

for i = 0 to 3

Traverse4Trees(t1.ch[i], t2.ch[i], t3.ch[i], t4.ch[i]);

end

As shown in the case 2 of the theorem, support routine case2 sums up 21 permutations of

the wavelet coefficients.
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routine Case2(augnode t1, t2, t3, t4)

return 4t1→scale×

(t1.α × t2.α × t3.α × t4.α + t1.α × t2.α × t3.β × t4.β + t1.α × t2.α × t3.γ × t4.γ

+t1.β × t2.β × t3.α × t4.α + t1.β × t2.β × t3.β × t4.β + t1.β × t2.β × t3.γ × t4.γ

+t1.γ × t2.γ × t3.α × t4.α + t1.γ × t2.γ × t3.β × t4.β + t1.γ × t2.γ × t3.γ × t4.γ

+t1.α × t3.α × t2.β × t4.β + t1.α × t3.α × t2.γ × t4.γ + t1.β × t3.β × t2.α × t4.α

+t1.β × t3.β × t2.γ × t4.γ + t1.γ × t3.γ × t2.α × t4.α + t1.γ × t3.γ × t2.β × t4.β

+t1.α × t4.α × t2.β × t3.β + t1.α × t4.α × t2.γ × t3.γ + t1.β × t4.β × t2.α × t3.α

+t1.β × t4.β × t2.γ × t3.γ + t1.γ × t4.γ × t2.α × t3.α + t1.γ × t4.γ × t2.β × t3.β) ;

Routine case3 corresponds to the case 3 of the theorem. It sums up six permutations.

routine case3(augnode t1, t2, t3, t4)

return 2t1→scale × (t1 → psum)×

(t2.α × t3.β × t4.γ + t2.α × t3.γ × t4.β + t2.β × t3.α × t4.γ

+ t2.β × t3.γ × t4.α + t2.γ × t3.α × t4.β + t2.γ × t3.β × t4.α);

Here, t1 may be null. In this case, t1 → psum can be instantiated from the psum field of

t1’s closest physical parent node, which can be passed as a parameter during the traversal.

Routine case4 is trivially converted from the last case of the theorem.

routine case4(augnode t1, t2, t3, t4)

return (t1 → psum)× (t2 → psum)× (t3.α × t4.α + t3.β × t4.β + t3.γ × t4.γ);

46



Considering the tree-traversal nature of the quadruple product integral algorithm, the time

complexity of the algorithm is O(m), where m is the number of quad-nodes encoded in the

wavelet trees.

2.2.4 Tree-Structured Algorithm for Triple Product Integral

The degeneration of the previous algorithm is an algorithm for triple product wavelet integral.

The modification to the aforementioned tree-structured quadruple product integral algorithm

is quite trivial, just simply eliminating one wavelet tree, say, T4.

algorithm TripleIntegral(augtree T1, T2, T3)

B = T1.dc × T2.dc × T3.dc

Traverse3Trees(T1.node, T2.node, T3.node)

end

algorithm Traverse3Trees(augnode t1, t2, t3)

if none of t1, t2, t3 is null

B += case3t(t1, t2, t3) + case4t(t1, t2, t3)

+case4t(t2, t1, t3) + case4t(t3, t1, t2);

elseif only one of t1, t2, t3 is null, say, t1 is null

B += case4t(t1, t2, t3);

else
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return;

for i = 0 to 3

Traverse3Trees(t1.ch[i], t2.ch[i], t3.ch[i]);

end

Here, routines case3t and case4t are derived from the last two cases of the third-order Haar

integral coefficient theorem.

routine case3t(augnode t1, t2, t3)

return 2t1→scale×

(t1.α × t2.β × t3.γ + t1.α × t2.γ × t3.β + t1.β × t2.α × t3.γ

+ t2.β × t2.γ × t3.α + t1.γ × t2.α × t3.β + t1.γ × t2.β × t3.α);

routine case4t(augnode t1, t2, t3)

return (t1 → psum)× (t2.α × t3.α + t2.β × t3.β + t2.γ × t3.γ);

The time complexity of the algorithm is O(m), where m is the number of quad-nodes encoded

in the wavelet trees.

2.2.5 Tree-Structured Algorithm for Three-Function Product

Following algorithm evaluates the product of three functions. The input to the algorithm

ThreeFunctionProduct are the root node of three quad-trees. The product function is encoded

the quad-tree.
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Global augtree T0, T1, T2, T3;

algorithm ThreeFunctionProduct

T0.dc = T1.dc × T2.dc × T3.dc

Traverse3plus1Trees(T0.node, T1.node, T2.node, T3.node);

end

algorithm Traverse3plus1Trees ( augnode t0, t1, t2, t3)

if none of t1, t2, t3 is null

kase2(t0, t1, t2, t3); kase3(t0, t1, t2, t3); kase3(t0, t2, t1, t3);

kase3(t0, t3, t1, t2); kase3P (t0, t1, t2, t3); kase4(t0, t2, t3, t1);

kase4(t0, t1, t3, t2); kase4(t0, t1, t2, t3); kase4P (t0, t1, t2, t3);

kase4P (t0, t2, t1, t3); kase4P (t0, t3, t1, t2);

elseif only one of t1, t2, t3, say, t1 is null

kase3(t0, t1, t2, t3); kase4(t0, t1, t2, t3); kase4(t0, t1, t3, t2);

kase4P (t0, t1, t2, t3);

elseif only two of t1, t2, t3, say, t1and t2 are null

kase4(t0, t1, t2, t3);

else

return;

for i = 0 to 3

Traverse3plus1Trees(t0.ch[i], t1.ch[i], t2.ch[i], t3.ch[i]);

end
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Support routines kase2, kase3, kase3P , kase4P are derived from the theorem. kase2 corre-

sponds to seven permutations.

routine kase2 ( augnode t0, t1, t2, t3)

t0.α += 4t1.scale × (t1.α × t2.α × t3.α + t1.α × t2.β × t3.β + t1.α × t2.γ × t3.γ

+t1.β × t2.α × t3.β + t1.γ × t2.α × t3.γ + t1.β × t2.β × t3.α + t1.γ × t2.γ × t3.α);

t0.β += 4t1.scale × (t1.β × t2.α × t3.α + t1.β × t2.β × t3.β + t1.β × t2.γ × t3.γ

+t1.α × t2.β × t3.α + t1.γ × t2.β × t3.γ + t1.α × t2.α × t3.β + t1.γ × t2.γ × t3.β);

t0.γ += 4t1.scale × (t1.γ × t2.α × t3.α + t1.γ × t2.β × t3.β + t1.γ × t2.γ × t3.γ

+t1.α × t2.γ × t3.α + t1.β × t2.γ × t3.β + t1.α × t2.α × t3.γ + t1.β × t2.β × t3.γ);

routine kase3 ( augnode t0, t1, t2, t3)

t0.α += 2t1.scale × t1.psum × (t2.β × t3.γ + t2.γ × t3.β);

t0.β += 2t1.scale × t1.psum × (t2.α × t3.γ + t2.γ × t3.α);

t0.γ += 2t1.scale × t1.psum × (t2.α × t3.β + t2.β × t3.α);

routine kase3P ( augnode t0, t1, t2, t3)

val = 2t1.scale × (t1.α × t2.β × t3.γ + t1.α × t2.γ × t3.β + t1.β × t2.α × t3.γ

+t1.β × t2.γ × t3.α + t1.γ × t2.α × t3.β + t1.γ × t2.β × t3.α);

UpdateParents(t0, val);

routine kase4 ( augnode t0, t1, t2, t3)

t0.α += t1.psum × t2.psum × t3.α;

t0.β += t1.psum × t2.psum × t3.β;

t0.γ += t1.psum × t2.psum × t3.γ;
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routine kase4P ( augnode t0, t1, t2, t3)

val = t1.psum × (t2.α × t3.α + t2.β × t3.β + t2.γ × t3.γ);

UpdateParents(t0, val);

routine UpdateParents ( augnode t0, val)

t0 → dc += val;

for scale j = 0, · · · , t0.scale− 1

// t0 lies in the quadrant (k, l) of its parent tp at scale j

tp.α += sign(0, k, l)× 2j × val;

tp.β += sign(1, k, l)× 2j × val;

tp.γ += sign(2, k, l)× 2j × val;

The time complexity of this algorithm is inherently O(M log N), where M is the number of

nonzero coefficients used in the nonlinear approximation, and N is the resolution of the 2D

signal.

2.2.6 Tree-Structured Algorithm for Two-Function Product

Following algorithm evaluates the product of three functions. The input to the algorithm

ThreeFunctionProduct are the root node of three quad-trees. The product function is encoded

the quad-tree.
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Global augtree T0, T1, T2;

algorithm TwoFunctionProduct

T0.dc = T1.dc × T2.dc

Traverse2plus1Trees(T0.node, T1.node, T2.node);

end

algorithm Traverse2plus1Trees ( augnode t0, t1, t2)

if none of t1, t2 is null

kkase2(t0, t1, t2); kkase2(t0, t2, t1); kkase3(t0, t1, t2); kkase3P (t0, t1, t2);

elseif only one of t1, t2, say, t1 is null

kkase3(t0, t1, t2);

else

return;

for i = 0 to 3

Traverse2plus1Trees(t0.ch[i], t1.ch[i], t2.ch[i]);

end

Support routines kkase2, kkase3, kkase3P are derived from the third-order Haar integral

theorem. Support routine UpdateParents is given in the previous subsection.

routine kkase2 ( augnode t0, t1, t2)

t0.α += 2t0.scale × (t1.β × t2.γ + t2.γ × t1.β);

t0.β += 2t0.scale × (t1.α × t2.γ + t2.γ × t1.α);

t0.γ += 2t0.scale × (t1.α × t2.β + t2.β × t1.α);
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routine kkase3 ( augnode t0, t1, t2)

t0.α += t1.psum × t2.α;

t0.β += t1.psum × t2.β;

t0.γ += t1.psum × t2.γ;

routine kkase3P ( augnode t0, t1, t2)

val = t1.α × t2.α + t1.β × t2.β + t1.γ × t2.γ;

UpdateParents(t0, val);

The time complexity of this algorithm is inherently O(M log N), where M is the number of

nonzero coefficients used in the nonlinear approximation, and N is the resolution of the 2D

signal.

2.2.7 Numerical Comparisons

In this subsection, we compare several approaches to computing quadruple function prod-

uct integral (equation 3.3). We implemented four algorithms. The first algorithm is the

tree-structured quadruple wavelet product integral algorithm shown in subsection 2.2.3; the

second algorithm performs pixel domain product integral; the third algorithm performs pixel

domain product integral with wavelet decomposition; the fourth algorithm implements a re-
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cursive two-function Haar tripling integral algorithm. Note that quadruple function product

integral (equation 3.3) can also be evaluated recursively as:

B =
∫

[[F1(ϕ) · F2(ϕ)] · F3(ϕ)]F4(ϕ)dϕ

Therefore, quadruple function product integral reduces to two applications of two-function

product, followed by a double function product integral. Ng et al. [NRH04] show that

two-function product, i.e., G = F1 × F2, can be approximated using the tripling integral

coefficients. In other words, the kth (1 ≤ k ≤ M) basis coefficient gk of G can be computed

as:

gk = 〈G, bk〉 = 〈F1 × F2, bk〉 =
∑

i

∑
j f1i f2j Cijk

where Cijk is the tripling integral coefficient. In the experiment, the fourth algorithm uses

an optimized two-function product algorithm which is derived from the tripling coefficient

theorem [NRH04].

Figure 2.7 illustrates the comparison of the running time of four approaches for one repre-

sentative set of cubemaps . Each cubemap is pre-computed at resolution 6× 256× 256. As

shown in the figure, for reasonable error, quadruple Haar product integral algorithm is orders

of magnitude faster than the pixel domain product integral and the recursive two-function

Haar product tripling integral. Note that due to the quad-tree encoding, the quadruple Haar

product integral algorithm practically demonstrates a sub-linear time complexity.
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Figure 2.7: Numerical comparison of the running time of four approaches to the quadruple

function product integral for one representative set of cubemaps (resolution: 6× 256× 256).

Note that with reasonable error, the quadruple Haar product integral is orders of magnitude

faster than the recursive two-function Haar tripling integral approach and the pixel domain

product integral.

2.3 Implementation

In this section, we present the pre-computation and rendering details. All experiments are

conducted on a desktop computer with a single Intel Pentium4 3.2GHz CPU. The maximum

memory used by the system is nearly 1.6GB.
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2.3.1 Pre-Computation

Visibility: For each scene entity, we sample visibility field at its surface point (termed

local visibility) and in the important surrounding regions (termed global visibility). We use

two sampling schemes: planar sampling and spherical sampling. In the planar sampling

scheme, we densely sample visibilities in forms of concentric circles on each entity’s virtual

ground plane, which is the lower plane of its bounding box. The center of concentric circles

is the projection of the object center on the ground plane. In the spherical sampling scheme,

we sample the surrounding region around each scene entity in forms of concentric spheres,

which is similar to the object occlusion field [ZHL05], but the center of concentric spheres

coincides with the center of concentric circles. In the implementation, for planar sampling

scheme, we use up to 100 concentric circles, each being sampled at up to 200 points. The

radius of these concentric circles ranges from 0.05r to 10r, where r is the radius of projection

of the instance’s center on the virtual ground plane. For spherical sampling scheme, we

use 20 concentric spheres, ranging from 0.2R to 6R, where R is the radius of the bounding

sphere. Each concentric sphere is sampled at 6× 9× 9. Since we densely sample visibilities

on the ground plane, we are able to account for intricate cast shadows on that plane. The

difference of the radius of the neighboring concentric circles/spheres in planar and spherical

sampling schemes increases linearly with increasing distance to the sampling center.

As shown in Figure 2.1, the table scene is pre-computed as two distinct objects, the table and

the chairs. Note that the ground is fused with the chairs. As a result, although we can freely
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Table 2.1: Pre-computation statistics for quadruple wavelet product integral

Vertices Sampling Points Raw Num. of

Entity
Raw Fine Planar Spherical Data Quadnodes

Table 4K 25K 20K 10K 1.3G 9M

Chairs 15K 152K 1K 10K 3.9G 20M

manipulate the table, we cannot move any chair in the scene. Support dynamically moving

any single object in the scene is beyond the scope of this chapter. The pre-computation

statistic for the scene is shown in the following table. The scene in Figure 3.5 is pre-computed

as two objects, the chair and the ground. As shown in Figure 3.5, the chair can be rigidly

translated in the scene.

At each sampling point, visibility is pre-computed as a cubemap by rasterizing the coarse

model using graphics hardware, with standard super-sampling (up to 8 samples per pixel)

enabled. Each cubemap is rasterized at resolution 6 × 64× 64. The pre-computation takes

less than 40 minutes.

BRDF: Pre-computing BRDF is quite similar to previous work [NRH04]. In the imple-

mentation, Phong BRDFs (shininess: up to 200) are sampled with resolution in θr×ϕ of up

to (6× 64× 64)× (6× 64× 64), where θr is the reflection vector of view direction θ about

normal N .

Compression and Representation: We project pre-computed visibility and BRDF

onto Haar bases using nonstandard wavelet transform, then perform nonlinear approximation
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to discard insignificant coefficients less than a certain threshold. Practically, for each face of

the cubemap, keeping 60− 120 significant coefficients is sufficient to render images close to

the reference images. The resulting data are encoded in the augmented quad-tree structure.

2.3.2 Rendering

In the experiments, we sample the high dynamic range illumination [DM97] at resolution

6× 64× 64. Note that it is not necessary to sample the illumination at a higher resolution

than that of the BRDF and visibility. In the system, lighting is dynamically sampled at

runtime, subject to wavelet transform, non-linear approximation and quadtree encoding.

Compared to visibility and BRDF, more wavelet coefficients are required to approximate

all-frequency lighting (up to 300 coefficients per face of the cubemap).

58



Figure 2.8: Examples of the composed scenes (resolution: 1200×900). Images are rendered

in less than ten seconds per frame. In the upper left column, view conditions are slightly

changed. The scene is illuminated as inside St. Peter’s Basilica. Note that cast shadows and

specular highlight change dramatically with changing viewpoint. In the upper right column

images are illuminated as inside Grace Cathedral, with lighting being slightly rotated. For

these images texture is omitted to enhance shadow details. The lower row shows textured

images.
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We implement the tree-structured rendering algorithm (section 2.2.3). For each vertex, the

algorithm iterates six times to account for each face of the cubemap. Environment lighting

can be rotated and sampled at runtime. Note that self-occlusion is readily available. BRDF

is interpolated from the tabulated data. Global occlusions are interpolated from tabulated

visibility field. If the vertex is on the virtual ground plane of the occluder, it is bi-linearly

interpolated from four neighboring points in the occluder’s planar sampling field; otherwise it

is tri-linearly interpolated from eight neighboring points in the occluder’s spherical sampling

field. Each color channel is processed independently. To accelerate computation, we only

render visible vertices in the scene. As shown in Figure 2.1 and Figure 2.8, the rendering

system supports dynamically moving object ‘table‘ at runtime. These images are rendered

in less than ten seconds per frame.

One nice feature of the tree-structured rendering algorithm is that rendering speed can be

controlled interactively by changing the traversal depth. Figure 3.5 compares the effect of

varying traversal depth on rendered images. Smaller depth results in faster rendering, but

band-limits high-frequency shadows and view-dependent specularities. As traversal depth

increases, more wavelet coefficients are involved, and consequently we get more shadow

details at the expense of longer computation time. As shown in the figure, the overall

rendering time (including encoding lighting, interpolating BRDF and occlusion, shading

integral and rasterization) demonstrates a linear complexity in terms of the traversal depth

of the rendering algorithm.
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2.4 Conclusions

We have extended double/triple product integral to quadruple product integral with a novel

Haar quad-coefficient theorem. We also formulated a sublinear tree-structured quadruple

product integral algorithm. The degeneration of the algorithm is a natural yet efficient triple

product integral algorithm. We demonstrated interactive rendering of complex dynamic

glossy objects, under time-variant lighting and dynamic viewpoint simultaneously.

This chapter is a step forward in evaluating the product integral of multiple signals in

an efficient fashion, which is of great importance to general numerical analysis and signal

processing. Currently the rendering algorithm works on a general CPU. It has potential

to be optimized to take advantage of the powerful GPU features to achieve better timing

performance. Currently our system can only handle rigidly moving single object (such as

translation) in the scene. Future work includes supporting objects with non-rigid movement.
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depth=6 depth=5 depth=4 depth=3 depth=2 depth=1
5.24s 2.36s 1.12s 0.56s 0.31s 0.18s

Figure 2.9: Comparison of the rendered images with varying traversal depth of the rendering

algorithm. As shown in the figure, quadruple product integral inherently supports dynam-

ically moving chair in the scene. The overall rendering time (including sampling/encoding

the lighting, interpolating BRDF and occlusion, shading integral and rasterization) is also

shown (in seconds), which demonstrates a linear complexity in terms of the traversal depth

of the rendering algorithm. Images in a) is indistinguishable from the reference. The maxi-

mum number of wavelets encoded in the augmented quadtrees for each face of the cubemap

are: lighting (St. Peter’s Basilica) 200, BRDF 70, visibility 70.
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CHAPTER 3

GENERALIZED WAVELET PRODUCT INTEGRAL

This chapter appears in ACM SIGGRAPH 2006 conference proceedings, titled as ”General-

ized Wavelet Product Integral for Rendering Dynamic Glossy Objects” [SM06a]. Under the

request of the papers committee, a short technical sketch [SM06b] was also presented in the

conference.

3.1 Introduction

Real-time rendering dynamic objects with realistic materials and view-dependent all-frequency

intricate shadows is of significant importance for a variety of applications in the field of com-

puter graphics. Computer games, 3D geometry modelling and lighting design are typical

examples of such applications. Conventional global illumination techniques [DBB03], such

as ray tracing, photon mapping and radiosity, can take hours to generate photorealistic im-

ageries, that limits their application in interactive industrial design. A common practice to

accelerate global illumination is to retain only the direct lighting, for instance, environment
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Figure 3.1: Examples of the composed scenes using our interactive lighting design system.

All images are rendered in real-time using JRT technique (resolution: 1200× 900).

mapping [BN76]. Recently, Sloan et al. [SKS02] proposed Pre-computed Radiance Transfer

(PRT) to extend environment mapping technique for real-time rendering of soft shadows in

a static scene. PRT supports diffuse and low-glossy materials, and has been extended to

support all-frequency lighting [NRH03], high-glossy materials [LSS04, NRH04, WTL04], and

dynamic objects with diffuse and low-glossy materials [JF03, KLA04, KL05, SLS05, ZHL05]
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. However, interactively rendering dynamic high-glossy objects with realistic all-frequency

shadows still remains a challenging problem.

Our goal is to design an interactive lighting design system, providing real-time feedback with

realistic all-frequency shadows for dynamic glossy objects. Previous work [NSD94, DAG95,

KAJ05, PVL05] relight static scenes with time-variant lighting. Our system supports inter-

active manipulation of objects (such as cloning, translating and scaling) with all-frequency

shadows. The system also allows the designer to adjust environment lighting and change

view conditions. The system captures all-frequency view-dependent lighting effects, such as

intricate cast shadows from neighboring objects and specular highlights, as shown in Figure

3.1. Our approach is based on the pre-computed information of individual scene entities,

and is not limited to the pre-animated models. The approach is fast and flexible. We believe

that it has broad applications in industrial lighting design where both high quality rendering

and interactivity are of great importance. It is also applicable to computer games where

real-time response is a must.

3.1.1 Contributions

The main contributions of the chapter are:

Representation/Algorithm for Multi-function Product Integral: We explicitly in-

corporate dynamic occlusions into the shading integral to account for cast shadows from
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neighboring objects. At each vertex, shading is formulated as the product integral of multi-

ple functions, involving the lighting, BRDF, local visibility and global occlusions. We show

that multi-function product integral in the primal corresponds to the summation of the prod-

uct of integral coefficients and basis coefficients. To our knowledge, there is no significant

previous work on efficiently integrating the product of n functions (n > 3). In the paper,

we propose a novel generalized Haar integral coefficient theorem to evaluate arbitrary Haar

integral coefficients. With a novel sub-linear algorithm for integrating the product of mul-

tiple functions, we show that dynamic glossy objects can be rendered under time-variant

all-frequency lighting and changing view conditions in a few seconds on a commodity CPU,

which is orders of magnitude faster than previous techniques.

Just-in-time Radiance Transfer (JRT): To further accelerate shadow computation, we

present a novel Just-in-time Radiance Transfer technique. We demonstrate JRT technique in

the interactive lighting design system to provide realistic all-frequency shadows in real-time.

As a new generalization to PRT, JRT reduces the shading integral at each vertex in the

dynamic glossy scenes to a fast double function product integral.

In JRT, the light transport for each dynamic scene configuration is pre-computed at run-

time interactively. For this purpose, we present an efficient algorithm to compute the light

transport vectors on-the-fly, which are represented as the product of multiple functions. For

instance, if only lighting varies, for each vertex we compute the radiance transfer vector

as the product of BRDF, local visibility and global occlusions. Hence the shading integral

reduces to a fast dot product of the resulting transfer vector and the time-variant lighting,
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which can be performed in real-time. Similar techniques can be used to support dynamic

view conditions. Using JRT, we demonstrate interactively manipulating (such as cloning,

translating and scaling) glossy objects with real-time all-frequency shadows.

The rest of the chapter is organized as follows. In section 3.2 we present mathematical

formalizations of the generalized multi-function product integral and Just-in-time Radiance

Transfer technique. In section 3.3, we propose a novel generalized Haar integral coefficient

theorem. In section 3.4 we present two efficient algorithms to evaluate the multi-function

product integral and the product of multiple functions. Details of the implementation and

some rendering results are presented in section 3.5. We conclude the chapter with some

discussion of the advantage of our work and future research directions in section 3.6.

3.2 Problem Formalization

3.2.1 Multi-Function Product Integral

Given n distinct objects in a dynamic scene, the exitant radiance B at a surface point x

along view direction θ due to distant environment lighting L is the product integral over all

incident directions sampled at a surrounding cubemap S:

B(x, θ) =

∫

S

L(ϕ)O1(x, ϕ)
n∏

i=2

Oi(x, ϕ)ρ(x, ϕ ↔ θ)(N · ϕ)dϕ

=

∫

S

L(ϕ)Õ1(x, ϕ)
n∏

i=2

Oi(x, ϕ)ρ(x, ϕ ↔ θ)dϕ (3.1)
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where ϕ is the incident direction, N is the normal at x, ρ is the BRDF, O1 is the local

visibility at x due to self-occlusion. Oi(2 ≤ i ≤ n) is the dynamic occlusion at x occluded

by the ith neighboring object in the scene. Conventionally, cosine term (N · ϕ) is combined

with the BRDF term. In our implementation, it is combined with the self visibility O1 as

Õ1 to eliminate the dependance of the BRDF on the normal. Nevertheless, the framework

can also handle representing (N · ϕ) as a single term in the multi-function product integral.

In the equation, all participating functions are defined in a global coordinate system. Here,

we assume that shading at a surface point is directly from the environment lighting, and we

do not consider the inter-reflections between any two surfaces in the scene.

For a fixed vertex x and view direction θ, equation 3.1 can be simplified as:

B =

∫
L(ϕ)Õ1(ϕ)

n∏
i=2

Oi(ϕ)ρ(ϕ)dϕ (3.2)

It is exactly the product integral of (n + 2) functions:

B =

∫ n+2∏
i=1

Fi(ϕ)dϕ (3.3)

Projecting each operand function Fi(ϕ) onto an orthonormal basis set B yields:

Fi(ϕ) =
M∑

j=1

[fi,j bj(ϕ)] (3.4)

where fi,j is the jth basis coefficient, bj(ϕ) is the jth basis function, and M is the size of B.

We define the nth-order basis product P n
b1,b2,···,bn

as the product of n arbitrary basis functions

b1, b2, · · · , bn:

P n
b1,b2,···,bn

=
n∏

k=1

bk(ϕ) (3.5)
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Its integral is the nth-order integral coefficient Cn
b1,b2,···,bn

:

Cn
b1,b2,···,bn

=

∫
P n

b1,b2,···,bn
dϕ =

∫ n∏

k=1

bk(ϕ)dϕ (3.6)

Thus, equation 3.3 can be represented as:

B =

∫ n+2∏
i=1

M∑
ji=1

[fi,ji
bji

(ϕ)]dϕ

=
M∑

j1=1

M∑
j2=1

· · ·
M∑

jn+2=1

[
n+2∏
i=1

fi,ji
·
∫ n+2∏

i=1

bji
(ϕ)dϕ]

=
M∑

j1=1

M∑
j2=1

· · ·
M∑

jn+2=1

[
n+2∏
i=1

fi,ji
· Cn+2

bj1
,bj2

,···,bjn+2
] (3.7)

Therefore, multi-function product integral in the primal (equation 3.3) corresponds to the

summation of the product of basis coefficients and integral coefficients (equation 3.7). To

our knowledge, there is no significant previous work on efficiently integrating the product of

n-functions (n > 3). The most closely related work is on the 3rd-order Haar product integral,

namely, Haar triple product integral by Ng et al. [NRH04].

The integral coefficient in this chapter is a generalization of the tripling coefficient in [NRH04],

namely, the 3rd-order integral coefficient. In quantum physics literature, it is referred to as

the Wigner coefficient [BL81]. The most popular 3− j coefficients (or Clebsch-Gorden coef-

ficients, the 3rd-order integral coefficients) and 6 − j coefficients (or Racah coefficients, the

4th-order integral coefficients) are well-studied with analytic formulae. The results have also

been extended to 3n − j coefficients, which have been analytically examined and practi-

cally tabulated. However, the difficulty is in the efficient computation of the summations in

equation 3.7.
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An alternative approach to evaluating equation 3.3 goes as follows:

B =

∫
[[[[F1(ϕ) · F2(ϕ)] · F3(ϕ)] · · ·Fn+1(ϕ)] · Fn+2(ϕ)]dϕ (3.8)

Consequently, integrating the product of multiple functions reduces to computing a series

of two-function products (as shown inside the square brackets), followed by a final double

function product integral. In Physics, this approach relates 6 − j coefficients with 3 − j

coefficients, and 9−j coefficients with 6−j coefficients [BL81]. It is also exploited by Zhou et

al. [ZHL05] in computing the radiance from a single light source. Analyses in subsection 3.2.3

show that this recursive approach is computationally expensive and practically inefficient.

3.2.2 Just-In-Time Radiance Transfer

An effective approach to accelerating the evaluation of equation 3.3 is stated as follows:

B =

∫
[
n+1∏
i=1

Fi(ϕ)] · Fn+2(ϕ)dϕ = 〈T, Fn+2(ϕ)〉 (3.9)

where the radiance transfer vector T is the product of n + 1 functions:

T =
n+1∏
i=1

Fi(ϕ) (3.10)

If F1, F2, · · ·, Fn+1 are fixed, in other words, only Fn+2 varies, radiance transfer vector T

needs to be computed only once. Therefore, shading integral reduces to a simple double

function product integral of T and Fn+2(ϕ), which can be approximated by an efficient low-

dimensional dot product between the basis coefficients of both functions. Here we assume
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that only one function in the shading integral varies. This assumption is very reasonable for

lighting design systems, where normally the designer adjusts only one variable at a time, and

real-time feedback is highly appreciated. For example, the designer may experiment with

different lighting effects by fixing view conditions and objects. The designer may also render

the scene from different view conditions by fixing the lighting and the objects. Another

popular operation is to fix the lighting and view conditions, and relocate a single object in

the scene. As long as there is only one (note that it can be any one) varying parameter, this

approach can be used to generate all-frequency shadows in real-time.

In equation 3.9, the product of n + 2 functions is factored into the product of two sets, one

with n+1 functions, and the other with only one function. More generally, this factorization

has the following form:

B =

∫
[

p∏
i=1

Fi(ϕ)] · [
n+2∏

i=p+1

Fi(ϕ)] dϕ = 〈T1, T2〉 (3.11)

where T1 =
∏p

i=1 Fi(ϕ) and T2 =
∏n+2

i=p+1 Fi(ϕ) (1 ≤ p ≤ n + 2). As a result, the product

of n + 2 functions reduces to the double function product integral of two radiance transfer

vectors.

Another factorization is to reduce high-order product integral (equation 3.7) to low-order

product integral, for instance, the 3rd-order product integral:

B =

∫
[
n+2∏
i=1

Fi(ϕ)]dϕ =

∫
T · Fn+1(ϕ) · Fn+2(ϕ)dϕ (3.12)

where T is the product of n functions, T =
∏n

i=1 Fi(ϕ). This approach may benefit certain

operations such as adjusting the lighting and view conditions simultaneously while fixing
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the scene (this resembles the triple product integral for relighting a static scene [NRH04]) .

However, in our work on rendering dynamic glossy objects it is of little practical use because

of the inefficiency of the triple product integral and the requirement of real-time feedback.

In the chapter, we restrict the final shading in JRT as a double function product integral

(equation 3.9).

By projecting T onto the orthonormal basis set B, we have the kth basis coefficient tk of T ,

which is the inner product of T and the kth basis function bk:

tk = 〈T, bk〉

=

∫ n+1∏
i=1

[
M∑

ji=1

(fi,ji
bji

)] · bkdϕ

=

∫
[

M∑
j1=1

(f1,j1 bj1) · · ·
M∑

jn+1=1

(fn+1,jn+1 bjn+1)] · bkdϕ

=
M∑

j1=1

M∑
j2=1

· · ·
M∑

jn+1=1

[

n+1 coeffs︷ ︸︸ ︷
f1,j1 · · · fn+1,jn+1

∫ n+2 bases︷ ︸︸ ︷
bk · bj1 · · · bjn+1 dϕ ]

=
M∑

j1=1

M∑
j2=1

· · ·
M∑

jn+1=1

[
n+1∏
i=1

fi,ji
· Cn+2

bk,bj1
,bj2

,···,bjn+1
] (3.13)

Note that both the product integral of multiple functions (equation 3.7) and the kth coefficient

of the multi-function product (equation 3.13) reduce to the (n+2)th-order integral coefficient

Cn+2, which is the focus of the next section. It is worth noting that the results in this

subsection apply to any basis set B.
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3.2.3 Comparison of Computational Complexity

In this subsection, we compare the time complexity of different approaches to computing

the product integral of multiple functions in the dynamic scenes. Without loss of generality,

we assume that the total number of operand functions is n (n ≥ 3), involving the lighting,

one BRDF, one local visibility, and n − 3 global occlusions. As shown in section 3.5.1,

the lighting is dynamically sampled at runtime, BRDF is dynamically interpolated from

the tabulated data, and the global occlusions are also interpolated from the pre-computed

visibility field on-the-fly. We assume that the total number of basis functions is M (each

face of the cubemap is sampled with resolution at up to 256 × 256, hence M = 65, 536).

Each function is approximated with m significant coefficients in the basis domain (normally

m ¿ M).

General Basis: For an arbitrary basis set B, there is no special formula of the integral

coefficient Cn
bj1

,bj2
,···,bjn

. A straightforward brute-force approach will result in an algorithm

with time complexity O(Mn). Here we assume the nth-order integral coefficients can be

pre-computed and tabulated.

Recursive Two-function Products Using General Basis: Using equation 3.8, inte-

grating the product of multiple functions reduces to the recursive two-function products,

followed by a final double function product integral. From equation 3.8, we assume that

the intermediate two-function product Gi = Gi−1 × Fi (1 < i ≤ n + 1, G1 = F1). The

kth (1 ≤ k ≤ M) basis coefficient gi,k of Gi can be evaluated using the 3rd-order integral
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coefficient:

gi,k = 〈Gi, bk〉 = 〈Gi−1 × Fi, bk〉 =
∑
ji−1

∑
ji

gi−1,ji−1
fi,ji

C3
ji−1,ji,k

(3.14)

For an arbitrary basis, each two-function product takes O(M3). Here we assume the 3rd-

order integral coefficients can be pre-computed and tabulated. The total time complexity of

the whole algorithm is O(M3n).

Pixel Domain: In this case, we tabulate each operand function using the cubemap.

Here, the integral coefficient Cn
bj1

,bj2
,···,bjn

is simply the generalized Kronecker delta function:

δbj1
,bj2

,···,bjn
, which is 1 only when bj1 = bj2 = · · · = bjn , otherwise 0. The time complexity of

the resulting linear algorithm is O(Mn). Despite its numerical efficiency, however, the pixel

domain representation is of little practical use because the required dataset is prohibitively

large (see section 3.5.1) and it is impossible to apply non-linear approximation in the pixel

domain considering the dynamic nature of operand functions.

Recursive Two-function Products Using Spherical Harmonics: Here we consider

evaluating the two-function products in equation 3.8 using spherical harmonics. Each two

function product takes O(M5/2) [NRH04], and the time complexity of the whole algorithm

for evaluating equation 3.8 is O(M5/2n). It is worth noting that by keeping only a very

small number m of low-frequency harmonic coefficients, the time complexity of the resulting

algorithm reduces to O(m5/2n), where m ¿ M . This linear approximation, however, band-

limits high-frequency operand functions, as a result the approach filters out high-frequency

components of the generated shadows and cannot account for high-glossy materials.
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Table 3.1: Comparison of the time complexities of various approaches

Approaches Time Complexity

General Basis O(Mn)

Recursive General Basis O(M3n)

Pixel Domain O(Mn)

Recursive Spherical Harmonics O(m5/2n)

Recursive Haar O(Mn)

Tree-structured Haar Integral O(mn) m ¿ M

Recursive Two-function Products Using Haar Bases: Here we consider evaluating

two-function products in equation 3.8 using Haar bases. Each two function product using

Haar basis takes O(M) [ZHL05]. Consequently, the time complexity of the whole algorithm

for evaluating equation 3.8 is O(Mn). Note that for this approach it is prohibitively expensive

to apply non-linear approximation to the intermediate two-function products since they are

dynamically generated.

Tree-structured Haar Integral: The time complexity of the proposed tree-structured

algorithm in section 3.4.3 is O(mn).

This table summarizes the time complexity results of the aforementioned approaches. We

conclude that the recursive two-function products approach using spherical harmonics cannot

account for high-frequency shadows and high-glossy materials. Pixel domain approach and

the recursive two-function products approach using Haar bases are expensive because of
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the inherent difficulty in non-linear approximation, while the tree-structured Haar integral

approach is computationally favorable and practically attractive due to its capability to

efficiently support high-frequency materials. Extensive experiments show that the tree-

structured Haar integral approach is nearly 40-100 times faster than the pixel domain product

integral and the recursive approach using Haar tripling coefficients.

3.3 Generalized Haar Integral Coefficient Theorem

We focus on the efficient computation of the multi-function product integral (equation 3.7)

and the product of multiple functions (equation 3.13). For this purpose, we choose Haar

bases as the basis set B. Compared with the pixel domain representation, wavelets allow us

to approximate signals at low distortion with a small number of significant coefficients. Haar

bases, amazingly, have an interesting property that simplifies the computation as many of

the integral coefficients are zero. Therefore, by using only non-zero wavelet coefficients and

non-zero integral coefficients, evaluation of both the multi-function product integral and the

product of multiple functions can be significantly accelerated.
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3.3.1 2D Haar Bases

Nonstandard Haar wavelet transform [SDS96] decomposes a 2n × 2n image into a 2D signal

with 2n×2n coefficients. Each coefficient corresponds to a basis function defined in the region

〈j, k, l〉, where j is the scale (0 ≤ j < n), k and l are spatial translations (0 ≤ k, l < 2j). In

each region 〈j, k, l〉, four normalized 2D Haar basis functions are defined:

φj
kl normalized Haar scaling basis function:

φj
kl(x, y) = 2jφ0(2jx− k, 2jy − l)

where φ0 is the mother scaling function.

ψj
kl normalized Haar wavelet basis function. There are three types of wavelets defined in the

region 〈j, k, l〉:

ψ1
j
kl = 2jψ1

0(2jx− k, 2jy − l)

ψ2
j
kl = 2jψ2

0(2jx− k, 2jy − l)

ψ3
j
kl = 2jψ3

0(2jx− k, 2jy − l)

where ψ1
0, ψ2

0 and ψ3
0 are three different mother wavelets, denoting the horizontal,

vertical and diagonal differences.

Mother scaling basis function and mother wavelets are illustrated in Figure 2.2. Additional

examples of Haar basis functions are illustrated in Figures 2.5 and 3.3. In these figures,

functions are positive where white, negative where black and zero where gray. For simplicity,

amplitude is ignored in the diagrams.
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Figure 3.2: Example of a complete Haar basis tree. The mother scaling basis function is

defined as the parent of all other basis functions. As shown in the upper-right corner, in

each node in the tree up to four basis functions (denoted by bj
kl) are defined: one scaling

basis and three wavelet bases. Meanwhile, each node contains up to four child nodes. The

basis tree contains not only the restricted bases, but also child scaling bases. The red dotted

lines denote the directed path going through all basis functions in Figure 3.3-e.

From the definition, basis functions are the dilated and translated versions of the mother

basis functions. A basis function bs is said to be the parent of another basis function bt if

the support of bs completely covers the support of bt, and the scale of bs is less than the

scale of bt. As a result, basis functions in the region 〈j, k, l〉 are immediate parent of the

basis functions defined at scale (j + 1) and spatial locations (2k, 2l), (2k + 1, 2l), (2k, 2l + 1)

and (2k + 1, 2l + 1). Naturally all basis functions form a directed basis tree. Example of
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a complete basis tree is shown in Figure 3.2. For simplicity, we define the mother scaling

function as the parent of any other basis function, and it lies in the root node of the tree.

We also define the set of basis functions containing only the mother scaling basis function

and wavelet basis functions as the restricted bases. As can be seen from Figure 3.2, given a

certain set of basis functions, for any two basis functions, if one is the parent of the other

then there must exist a directed path in the basis tree going through all basis functions in

the set.

Without explicit notations, all basis functions in this section refer to the normalized 2D Haar

basis functions.

3.3.2 Product Of 2D Haar Bases

In this subsection, we show that the product P n of arbitrary Haar bases is also a Haar basis,

scaled by some signed constant, which we refer to as the magnitude of P n, |P n|. Especially,

the magnitude of a normalized basis function is 1. Some examples of the basis products are

illustrated in Figure 2.5 and Figure 3.3. As shown in the figures, the magnitude of a basis

product is not necessarily a positive value.

We make following observations on the product of two Haar basis functions:

1. The multiplication of basis functions is commutative.

79



2. The product of a scaling basis function with another basis function of identical support

at scale j is the second basis function, with magnitude 2j.

3. The square of a wavelet basis function at scale j is the scaling basis function of identical

support, with magnitude 2j.

4. The product of two different wavelets of the same support at scale j is the third wavelet

of identical support, with magnitude 2j.

5. The product of a child basis function with a parent basis function at scale j̃ is the

child basis function, with magnitude ±2j̃. The sign of the product is the sign of the

sub-region of the parent basis function that the child basis function falls into.

Some examples of the product of two Haar basis functions are shown in Figure 2.5. As

illustrated in the figure, the product of two basis functions is also a basis function, scaled by

its magnitude, although the magnitude may be zero. From the above observations, we have

following conclusion on arbitrary basis product:

Lemma 2 Basis product P n is always a basis function, scaled by its magnitude.

Haar basis is a diadic basis set, and the support of each child basis function is always one

quarter of the support of its immediate parent. As shown in Figure 2.5, if the supports of

two basis functions overlap, then there exists a directed path in the basis tree originating

from one basis function to the other, consequently their product is non-zero. Furthermore, if

the product is non-zero, then their support must overlap, consequently in the basis tree there
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must exist a directed path originating from one basis function to the other. This observation

can be generalized to the product of multiple basis functions:

Lemma 3 Product P n is non-zero if and only if there is a directed path in the basis tree

going through all operand basis functions.

Figure 3.3: Some examples of the product of multiple Haar basis functions. In the first row,

basis product is zero. In the second row, the type of the product is a wavelet basis function.

In e), the type of the product is a scaling basis function. f) is the ranked version of e). The

magnitude of each basis product is also shown in the figure.

Ranking: Sorting basis set 〈b1, b2, . . . , bn〉 from the finest scale to the coarsest scale. For

basis functions defined at the same scale, wavelets appear first.

For example, sorting operand basis functions in Figure 3.3-e results in the ranked basis set

in Figure 3.3-f. From the commutativity rule (observation 1), ranking does not change the

magnitude or the type of the product. However, it facilitates the evaluation of the basis
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product. For instance, the type of the product of the ten basis functions in Figure 3.3-e is

same as the type of the product of the first five bases in Figure 3.3-f.

Given P n = P n−1 × bn, ranking ensures that the scale of bn is no more than the scale of

P n−1. If bn is a parent of P n−1, observation 5 shows that P n and P n−1 are of the same type.

Recursive applications of this observation result in the following result:

Lemma 4 The type of the basis product P n is same as the type of the product of basis

functions at the finest scale.

Given an arbitrary number of basis functions of identical support, we have following result

on their product:

Lemma 5 Product of n (n ≥ 1) basis functions of the same support at scale j is a ba-

sis function of identical support with magnitude 2(n−1)j. The type of the basis product is

determined by the parities of the numbers of three kinds of wavelets as:

number of ψ1 0 0 0 0 1 1 1 1

Parity number of ψ2 0 0 1 1 0 0 1 1

number of ψ3 0 1 0 1 0 1 0 1

type of the product φ ψ3 ψ2 ψ1 ψ1 ψ2 ψ3 φ

Lemma 5 can be trivially verified using observations 2, 3 and 4. Especially, the type of the

basis product P n is a scaling basis function, if and only if the numbers of the three kinds of

wavelets ψ1, ψ2 and ψ3 have the same parity.

On the magnitude of arbitrary basis product, we have following conclusion:
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Lemma 6 The magnitude of the non-zero product P n is ±2
∑

j − j0, where
∑

j is the sum of

the scales of all operand basis functions, j0 is the scale of the finest basis function. The sign

of the product is the multiplication of the signs of the sub-regions of all parent basis functions

that the child basis function falls into.

Proof Given P n
b1,b2,···,bn

6= 0(n ≥ 1). After ranking, we have bases bj0
s1

, bj0
s2

, · · ·, bj0
sm

, bjm+1
sm+1

,

· · ·, bjn
sn

, where j0 > jm+1 ≥ · · · ≥ jn. Lemma 5 shows that the product of bj0
s1

, bj0
s2

, · · ·, bj0
sm

is

a basis function of identical support, say, bj0 , with magnitude 2(m−1)j0 . So, we have:

P n
b1,···,bn

= bj0
s1
· · · bj0

sm
bjm+1
sm+1

· · · bjn
sn

= 2(m−1)j0 · bj0bjm+1
sm+1

· · · bjn
sn

(3.15)

Because P n
b1,b2,···,bn

6= 0, bjm+1
sm+1

must be a parent of bj0 . Observation 5 shows that bj0 · bjm+1
sm+1

=

±2jm+1 · bj0 . Therefore, we have:

P n
b1,b2,···,bn

= ±2(m−1)j0+jm+1 · bj0bjm+2
sm+2

· · · bjn
sn

(3.16)

Repeat the previous step for all the remaining bases, we have:

P n
b1,b2,···,bn

= ±2(m−1)j0+jm+1+jm+2+···+jnbj0 = ±2
∑

j −j0bj0 (3.17)

This completes the proof.

These lemmas are sufficient to determine the product of arbitrary basis functions. For

instance, Lemma 3 shows that the basis product in Figure 3.3-e is non-zero since there is a

directed path in the basis tree going through all basis functions (refer to Figure 3.2). Ranking

shows that the finest basis functions are defined in the region 〈2, 1, 1〉, and the numbers of

the three kinds of wavelets in the region are 3, 1 and 1, respectively. Therefore, Lemma 5
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shows that the type of the basis product is the scaling basis φ2
21. Finally, Lemma 6 shows

that the magnitude of the basis product is +211.

3.3.3 Haar Integral Coefficients

From the definition of 2D Haar basis functions, following observations hold:

6. The integral of a wavelet basis vanishes.
∫∫

ψj
kldxdy = 0.

7. The integral of a scaling basis is non-zero.
∫∫

φj
kldxdy = 2−j.

We have showed that the product of arbitrary 2D Haar basis functions is always a basis

function, scaled by its magnitude. Since there are only two kinds of basis functions: scaling

bases and wavelet bases, from observations 6 & 7 we have:

Lemma 7 Integral coefficient Cn 6= 0, if and only if the type of the corresponding non-zero

basis product P n is a scaling basis, and Cn = 2−j × |P n|, where j is the scale of P n.

3.3.4 Haar Integral Coefficients

Based on the previous results, we have following conclusion on the integral coefficients of

arbitrary 2D Haar basis functions:
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Generalized Haar Integral Coefficient Theorem The nth-order Haar integral coeffi-

cient Cn has a non-zero value, if and only if the numbers of the three kinds of wavelets ψ1,

ψ2 and ψ3 at the finest scale have the same parity. In this case, the integral coefficient is

±2
∑

j −2j0, where
∑

j is the sum of the scales of all operand basis functions, and j0 is the

scale of the finest basis function. The sign of the integral coefficient is the multiplication of

the signs of the sub-regions of all parent basis functions that the child basis function falls

into. ♦

Some examples of the product of multiple Haar basis functions are illustrated in Figure 3.3.

Using the theorem, it is trivial to get the corresponding integral coefficients.

The theorem applies to arbitrary Haar integral coefficients, whereas the Haar tripling coeffi-

cient theorem [NRH04] is limited to the 3rd-order integral coefficients defined on the restricted

bases. In this case, we can set all three operand basis functions to the restricted Haar basis

functions, and do a simple case analysis using Lemma 5 to get the Haar tripling coefficient

theorem as expected. Similar approaches can be used to derive the Haar Quad-coefficient

theorem as mentioned in Chapter 4.

3.3.5 A Recursive Perspective

In this subsection, we present an alternative approach to computing the integral coefficients.

Results in this subsection supplement the previous theorem, and are used in section 3.4 to
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construct two efficient algorithms for evaluating the multi-function product integral and the

product of multiple functions.

Corollary 1 Haar integral coefficient Cn(n ≥ 2) has a non-zero value, if and only if one

of the following cases holds for the ranked basis product P n = P n−1 × bn:

1. P n−1 and bn are wavelets of the same type, and both have identical support. In this

case, Cn = |P n−1|.

2. Both P n−1 and bn are the mother scaling function. Cn = 1.

3. P n−1 is a scaling basis function, and bn is its parent at scale j. Cn = ±2j ×Cn−1. The

sign of the integral coefficient is the sign of the sub-region of bn that P n−1 falls into. ♦

Proof Ranking does not change the integral coefficient Cn. Because of ranking, the scale of

bn is no more than the scale of P n−1. Since Cn 6= 0, Lemma 7 shows that the type of P n is

a scaling basis.

If bn is the parent of P n−1, then observation 5 shows that P n−1 is a scaling basis. Observations

5, 7 and Lemma 7 conclude that Cn = ±2j × Cn−1. This establishes case 3.

If bn is not the parent of P n−1, then they have identical support. If both bn and P n−1 are

the mother scaling function, then Cn = 1. This establishes case 2. Otherwise, bn and P n−1

must be wavelets of the same type. Observation 3 and Lemma 7 show that Cn = |P n−1|.

This establishes case 1, completing the proof.

In case 1, the integral coefficient reduces to the magnitude of a ranked basis product of

wavelet type, which is given as:
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Corollary 2 Ranked Haar basis product P n = P n−1× bn(n > 1) is a wavelet, if and only

if one of the following cases holds:

1. P n−1, P n and bn have identical support at scale j. P n−1 is a scaling basis, and both

bn and P n are wavelets of identical type. In this case, |P n| = 4j × Cn−1.

2. P n−1, P n and bn have identical support at scale j. bn is a child scaling basis, and both

P n−1 and P n are wavelets of identical type. |P n| = 2j × |P n−1|.

3. P n−1, P n and bn are wavelets of identical support at scale j, and three are of different

wavelet types. |P n| = 2j × |P n−1|.

4. P n−1 and P n are wavelets of the same type, both have identical support, and bn is

their parent at scale j. |P n| = ±2j × |P n−1|. The sign of the product is the sign of the

sub-region of bn that P n−1 falls into. ♦

Proof Ranking ensures that the scale of bn is no more than the scale of P n−1. Because the

type of P n is a wavelet, then one of P n−1 and bn must be a wavelet at the finest scale.

If bn is a parent of P n−1, then observation 5 shows that P n−1 and P n have identical support,

and both are wavelets of the same type. |P n| = ±2j × |P n−1|. This establishes case 4.

If bn is not the parent of P n−1, then bn and P n−1 have identical support as P n. There are

three possibilities. If P n−1 is a scaling basis, then bn is a wavelet of identical type as P n.

Observation 2 and Lemma 7 show that |P n| = 4j ×Cn−1. This establishes case 1. If P n−1 is

a wavelet, then the type of the wavelet is same as that of P n, and bn is a child scaling basis.

Observation 2 and Lemma 7 show that |P n| = 2j × |P n−1|. This establishes case 2. If both
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bn and P n−1 are wavelets, then they are different wavelets, and both are of different types

from P n. Observation 4 shows that |P n| = 2j × |P n−1|. This establishes case 3. The proof

is complete.

A simple recursive application of case 2 in corollary 1 results in the following conclusion:

Lemma 1 If all operand basis functions are the mother scaling function, then the integral

coefficient Cn = 1.

3.4 Algorithms

In this section, we first present an efficient algorithm to evaluate the multi-function product

integral, followed by another to compute the product of multiple functions.

Without loss of generality, we assume that the number of operand functions is n, the total

number of basis functions is M , and the number of wavelet coefficients used in the non-linear

approximation is m. For convenience, we re-write equations 3.7 and 3.13 in terms of n basis

functions:

B =
M∑

j1=1

M∑
j2=1

· · ·
M∑

jn=1

[
n∏

i=1

fi,ji
· Cn

bj1
,bj2

,···,bjn
] (3.18)

tk =
M∑

j1=1

M∑
j2=1

· · ·
M∑

jn=1

[
n∏

i=1

fi,ji
· Cn+1

bk,bj1
,bj2

,···,bjn
] (3.19)
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Evaluating equation 3.18 using the generalized Haar integral coefficient theorem by brute-

force results in a simple algorithm with prohibitively expensive time complexity O(Mnn).

Here the evaluation of the integral coefficients takes O(n). A natural approach to accelerating

computation is to apply non-linear approximation to all operand functions. For this purpose,

we use the augmented quadtree as the underlying data structure.

3.4.1 Data Structure

For convenience, we re-write the definition of the augmented quad-tree structure (refer to

section 2.2.1) as:

struct augnode

ψ[3] : wavelet coefficients;

psum : signed parent summation;

ch[4] : child pointers;

end

Here, ψ[3] are the three wavelet coefficients of different types with identical support. ch[4]

point to four immediate child nodes. The definition of field psum is given in section 2.2.2. we

re-write the definition of the wavelet tree as:

struct augtree

dc : mother scaling coefficient;
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node : pointer to struct augnode;

end

One may notice that a complete wavelet tree resembles a complete basis tree (see Figure

3.2). However, these two trees are different. Wavelet tree stores basis coefficients, while the

basis tree is composed of basis functions.

3.4.2 Tree-Structured Algorithm for Multiple Function Product

Integral

From Lemmas 3 and 7, we conclude that for non-zero integral coefficients, there must exist

a directed path in the basis tree traversing through all operand basis functions. Therefore,

by confining operand coefficients to those on a directed path in the wavelet tree, integrating

the product of multiple functions can be greatly accelerated since operations involving zero

integral coefficients are eliminated. Based on this intuition, we designed a tree-structured

rendering algorithm to synchronously traverse n wavelet trees, T1, T2, · · · , Tn. The entry

point of the algorithm is FunctionProductIntegral. From Lemma 1, product integral B is

initialized as the direct product of the mother scaling coefficients.

As we recursively traverse wavelet trees, the first step is to rank participating basis functions

from the finest scale to the coarsest scale. As shown in line 6, all operand bases have the

same scale, as a result ranking reduces to choosing non-null nodes. The recursion stops
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in line 7 if there is at most one non-null node. In this case, because each node can only

contain wavelet coefficients, and the integral of wavelet vanishes, the corresponding integral

coefficients must be zero. For the null nodes in line 6, the contribution of their parents are

not ignored but accumulated in the variable cum as shown in line 9, which gives the product

of the signed parent summations. One may notice that here ti (k < i ≤ n) is a null node.

The signed parent summation ti → psum is evaluated from ti’s closest physical parent node,

which can be passed as a parameter during the traversal. In line 8, psum field is computed

in constant time using the algorithm in subsection 2.2.2.

1 algorithm FunctionProductIntegral(augtree T1, T2, · · · , Tn)

2 B =
∏n

i=1 Ti.dc;

3 traverseAugTrees(1, T1.node, T2.node, · · · , Tn.node);

4 end.

5 routine traverseAugTrees(cum, augnode t1, t2, · · · , tn)

6 Ranking, such that t1, · · ·, tk 6= null and tk+1, · · ·, tn = null;

7 if k < 2 then return;

8 update psum;

9 cum ×=
∏n

i=k+1 ti → psum;

10 B += cum× getProductIntegral(t1, · · · , tk);

11 for i = 0 to 3

12 traverseAugTrees(cum, t1.ch[i], · · · , tk.ch[i]);
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In line 10, product integral of these non-zero coefficients at the lowest traversal depth are

computed in subroutine getProductIntegral, and multiplied with the accumulated parent

summations of these null-nodes at the current traversal depth. Support routine getPro-

ductIntegral is directly converted from corollary 1, which recursively calculates the value of

non-zero integral coefficients:

routine getProductIntegral(augnode t1, · · · , tn)

if n = 1 return 0;

return tn.psum × getProductIntegral(t1, · · · , tn−1)

+ tn.ψ[0]× getWaveletProduct(0, 1, 2, t1, · · · , tn−1)

+ tn.ψ[1]× getWaveletProduct(1, 0, 2, t1, · · · , tn−1)

+ tn.ψ[2]× getWaveletProduct(2, 0, 1, t1, · · · , tn−1);

This routine refers to getWaveletProduct, which is derived from corollary 2. Note that case

2 of corollary 2 is not applicable here because all participating basis functions are limited to

the restricted bases (due to the nonstandard wavelet transform). Routine getWaveletProduct

evaluates the magnitude of the product, where the type of the basis product is a wavelet

identical to the first input parameter a. In the routine, input parameters a, b and c are used

to differentiate three kinds of wavelets.

routine getWaveletProduct(a, b, c, augnode t1, · · · , tn)

if n = 1 return t1.ψ[a];

return tn.ψ[a]×∏n−1
i=1 ti.psum
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+ tn.psum × getWaveletProduct(a, b, c, t1, · · · , tn−1)

+ 4tn→scale × tn.ψ[a]× getProductIntegral(t1, · · · , tn−1)

+ 2tn→scale × (tn.ψ[b]× getWaveletProduct(c, a, b, t1, · · · , tn−1)

+ tn.ψ[c]× getWaveletProduct(b, a, c, t1, · · · , tn−1));

The time complexity of routine getProductIntegral is O(4n). In the next subsection, we show

that it can be optimized to O(n).

3.4.3 Algorithm Optimization

Support routines getProductIntegral and getWaveletProduct are designed in a top-down fash-

ion. To compute the product integral of n nodes, they are recursively expanded to calculate

the product (integral) of n−1 nodes, and so on. The total number of expansions is 4n−4
3

, and

there are many repetitive operations involved. The redundant expansions can be eliminated

using dynamic programming technique. The critical idea is to introduce an intermediate data

structure: table T , on which the computation is conducted bottom-up. Table T contains n

entries:

struct table T [n]

φ, ψ[3] : magnitude;

cum : cumulative psum;

end
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Field T [i].φ stores the magnitude of the product from subset 〈t1, t2, · · · , ti〉 (1 ≤ i ≤ n)

where the type of the product is a scaling basis function. It is worth noting that although

the input coefficients relate to the restricted basis functions, the type of their product may

be child scaling bases (see Lemma 5). Field T [i].ψ[0] (or, T [i].ψ[1], T [i].ψ[2]) stores the

magnitude of the product from the subset where the product is a wavelet of type ψ[0] (or

ψ[1], ψ[2], respectively). Field T [i].cum stores the cumulative signed parent summation in

the subset. Using table T , routine getProductIntegral is optimized as getProductIntegralDP :

routine getProductIntegralDP(augnode t1, · · · , tn)

if n = 1 return 0;

T [1].{φ, ψ[0], ψ[1], ψ[2], cum} = {0, t1.{ψ[0], ψ[1], ψ[2], psum}};

for i = 2 to n-1

T [i].cum = ti.psum × T [i− 1].cum;

T [i].φ = getP(i); T [i].ψ[0] = getW(0, 1, 2, i);

T [i].ψ[1] = getW(1, 0, 2, i); T [i].ψ[2] = getW(2, 0, 1, i);

return getP(n);

Helper functions getP and getW are simply derived from getProductIntegral and getWavelet-

Product :

routine getP(i)

if i = 1 return 0;

return ti.psum × T [i− 1].φ + ti.ψ[0]× T [i− 1].ψ[0]
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+ ti.ψ[1]× T [i− 1].ψ[1] + ti.ψ[2]× T [i− 1].ψ[2] ;

routine getW(a, b, c, i)

if i = 1 return T [1].ψ[a];

return ti.ψ[a]× T [i− 1].cum

+ ti.psum × T [i− 1].ψ[a] + 4ti→scale × ti.ψ[a]× T [i− 1].φ

+ 2ti→scale × (ti.ψ[b]× T [i− 1].ψ[c] + ti.ψ[c]× T [i− 1].ψ[b]);

The time complexity of routine getProductIntegralDP is O(n). The time complexity of the

whole algorithm for the multi-function product integral is O(mn).

3.4.4 Tree-Structured Algorithm for Multiple Function Product

In this subsection, we present the algorithm for the product of multiple functions. Note the

similarity between equation 3.18 and equation 3.19. The algorithm here is very similar to

FunctionProductIntegral. The input to the algorithm are n functions encoded in the wavelet

trees T1, T2, · · ·, Tn. The output of the algorithm is the product of these functions encoded

in the wavelet tree T0. It is worth noting that with a single call to the algorithm, all non-zero

coefficients of the product are evaluated and encoded in the augmented quadtree. The entry

point of the algorithm is FunctionProduct.

From Lemma 1, the coefficient of the mother scaling basis function T0.dc is initialized as the

product of all dc coefficients (line 2). In line 10, product integral of these non-zero coefficients
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at the lowest traversal depth are computed using the optimized routine getProductIntegralDP.

Next the magnitudes of the three kinds of wavelet type products are retrieved from table T

and used to evaluate wavelet coefficients at the current traversal depth (lines 11, 12 and 13).

Wavelet coefficients in the parent nodes are evaluated in routine updateParents, where the

definition of array sign is given in subsection 2.2.2.

1 algorithm FunctionProduct(augtree T0, T1, T2, · · · , Tn)

2 T0.dc =
∏n

i=1 Ti.dc;

3 getCoefficients(1, T0.node, T1.node, T2.node, · · · , Tn.node);

4 end.

5 routine getCoefficients(cum, augnode t0, t1, t2, · · · , tn)

6 Ranking, such that t1, · · ·, tk 6= null and tk+1, · · ·, tn = null;

7 if k = 0 then return;

8 update psum;

9 cum ×=
∏n

i=k+1 ti → psum;

10 updateParents(t0, cum× getProductIntegralDP(t1, · · · , tk));

11 t0.ψ[0] = cum× getW(0, 1, 2, k);

12 t0.ψ[1] = cum× getW(1, 0, 2, k);

13 t0.ψ[2] = cum× getW(2, 0, 1, k);

14 for i = 0 to 3

15 getCoefficients(cum, t0.ch[i], t1.ch[i], · · · , tk.ch[i]);
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routine updateParents(augnode t0, val)

t0 → dc += val;

for scale j = 0, 1, · · · , t0.scale− 1

// t0 lies in the quadrant (k, l) of its parent tp at scale j

tp.ψ[0] += sign(0, k, l)× 2j × val;

tp.ψ[1] += sign(1, k, l)× 2j × val;

tp.ψ[2] += sign(2, k, l)× 2j × val;

Practically the total number of scales in routine updateParents is up to 8 (assuming up to

6 × 256 × 256 cubemaps). Therefore, the logarithmic complexity factor in the routine is

limited to a constant. Consequently, the time complexity of the algorithm FunctionProduct

is O(mn).

3.5 Implementation

In this section, we present the pre-computation and rendering details. All experiments are

conducted on a desktop computer with a single Intel Pentium4 3.2GHz CPU.
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3.5.1 Pre-Computation

Visibility: For each scene entity, we sample visibility field at its surface points (termed

as local visibility) and in the important surrounding regions (termed as global visibility). For

the global visibilities we use two sampling schemes: planar sampling and spherical sampling.

In the planar sampling scheme, we densely sample visibilities in the form of concentric circles

on each entity’s virtual ground plane, which is the lower plane of its bounding box. The

center of the concentric circles is the projection of the object center on the plane. In the

spherical sampling scheme, we sample the surrounding region around each scene entity in

the form of concentric spheres, which is similar to the object occlusion field [ZHL05]. In

our implementation, the center of the concentric spheres coincides with the center of the

concentric circles. For planar sampling scheme, we use 100 concentric circles, each being

sampled at 200 points. The radiuses of these concentric circles range from 0.05r to 10r,

where r is the radius of the projection of the instance on the virtual ground plane. For

spherical sampling scheme, we use 20 concentric spheres. The radiuses of these concentric

spheres range ranging from 0.2R to 6R, where R is the radius of the bounding sphere. Each

concentric sphere is sampled at 6× 9× 9. Since we densely sample visibilities on the ground

plane, we can account for intricate cast shadows on that plane. The absolute difference of

the radius of the neighboring concentric circles/spheres in the planar and spherical sampling

schemes increases linearly with increasing distance from the sampling center.
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Table 3.2: Pre-computation statistics for generalized wavelet product integral

Vertices Sampling Points Raw Num. of Precomp.

Entity
Raw Fine Planar Spherical Data Quadnodes Time

Table 4K 25K 20K 10K 1.3G 15M 20m

Chair 5K 30K 20K 10K 1.5G 16M 23m

Floor 4 62K 0 0 1.5G 49 1s

At each sampling point, visibilities are pre-computed as a cubemap by rasterizing the coarse

model using graphics hardware, with the standard super-sampling enabled (up to 8 samples

per pixel). Each cubemap is rasterized at resolution 6×64×64. Note that multiple instances

of a scene entity share the same geometry and visibility field. It is worth noting that all

vertices of the planar object “Floor” have identical visibilities, therefore this huge dataset

can be represented with a very small number of quadnodes.

BRDF: Pre-computing BRDF is quite similar to the previous work [NRH04]. In the

implementation, Phong BRDFs (shininess: up to 200) are sampled with a resolution in

θr × ϕ of up to (6 × 64 × 64) × (6 × 64 × 64), where θr is the reflection vector of the view

direction θ about normal N .

Compression and Representation: We project the pre-computed visibilities and BRDFs

onto Haar bases using the nonstandard wavelet transform [SDS96], then perform nonlinear

approximation to discard insignificant coefficients less than a certain threshold. Practically,

for each face of the cubemap, retaining 60− 120 significant coefficients is sufficient to render
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images close to the references. The resulting data are encoded in the augmented quad-tree

structure.

3.5.2 General Rendering Algorithm

Figure 3.4: The right scene is composed in our system through cloning, translating and

scaling from the left scene. Both scenes are illuminated as inside the Grace Cathedral, with

identical view condition.

Lighting: In the experiments, we sample the high dynamic range illumination [DM97] at

resolution 6× 64× 64. Note that it is not necessary to sample the illumination at a higher

resolution than that of the visibilities and BRDFs. Otherwise, the integral coefficients at

the finest scale will be zero (refer to the generalized Haar integral coefficient theorem), and

consequently wavelet coefficients at the finest scale will not contribute to the shading integral.

Generally, the number of operand functions with the maximum resolution in the shading

integral should be no less than two. In our system, lighting is dynamically sampled on-the-fly,
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subject to wavelet transform, non-linear approximation and quadtree encoding. Compared

to the visibilities and BRDFs, more wavelet coefficients are required to approximate the

all-frequency lighting (up to 300 coefficients per face of the cubemap).

Rendering: The sub-linear tree-structured rendering algorithm (see subsection 3.4.3) is

capable of computing the color of each vertex in any scene interactively, under arbitrary

all-frequency lighting and view conditions. The algorithm iterates six times for each visible

vertex to account for each face of the cubemap. Each color channel is processed indepen-

dently. For each vertex, local visibility is readily available. BRDF is interpolated from the

tabulated data. Dynamic occlusions are interpolated from the tabulated global visibilities

of the neighboring objects in the scene. If a vertex lies on the virtual ground plane of an

occluding object, they are bi-linearly interpolated from the four neighboring points in the

occluder’s planar sampling field; otherwise they are tri-linearly interpolated from the eight

neighboring points in the spherical sampling field. Finally, we rasterize each object in the

scene using graphics hardware. Because we have visibility field for all the objects in the

scene, our system supports interactive manipulation of any object in the scene (such as

cloning, translating and scaling), as shown in Figure 3.4. The maximum memory used by

the system is nearly 1.5GB, which is comparable to the previous work [NRH03, NRH04].

One of the nice features of the tree-structured rendering algorithm is that the rendering

speed can be controlled interactively by varying the traversal depth, which further controls

the number of the wavelet coefficients used in the lighting integral. Figure 3.5 compares the

effect of various traversal depths on the rendered images. A smaller depth results in faster
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rendering, but filters out the high-frequency components of the generated shadows and view-

dependent specularities. As traversal depth increases, more wavelet coefficients are involved,

consequently we get more shadow details at the expense of longer computation time. In

the figure, the overall rendering time includes rotating/encoding the lighting, interpolating

BRDFs and occlusions, shading integration and the rasterization. It demonstrates a linear

complexity in terms of the traversal depth of the rendering algorithm. For these images,

more wavelet coefficients are used to approximate the high-frequency components of the

environment lighting (St. Peter’s Basilica) than that of the visibilities and BRDFs.

3.5.3 Just-In-Time Radiance Transfer

By pre-computing radiance transfer at runtime, JRT is capable of generating dynamic real-

istic all-frequency shadows in real-time. As mentioned in subsection 3.2.2, as long as only

one operand function in the multi-function product integral varies (equation 3.9), we can

apply JRT to accelerate computation. Practically this assumption is quite reasonable in the

lighting design system.

We implement the efficient algorithm for the product of multiple functions (see subsection

3.4.4) to compute the dynamic radiance transfer vectors on-the-fly. Using the algorithm,

these radiance transfer vectors are directly encoded in the augmented quad-trees. One may

notice that the output of the algorithm may contain many small coefficients in the quad-trees.
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For computational efficiency, we explicitly prune these trees by eliminating nodes with small

wavelet coefficients. Note that pruning does not introduce any perceived difference between

JRT rendered images and the references. By pre-computing radiance transfer at runtime, the

approach effectively reduces to the geometry relighting and the image relighting [NRH03].

Note that our approach supports high-frequency materials, while the geometry relighting in

[NRH03] is limited to diffuse materials. As demonstrated in the accompanying video, runtime

pre-computation of the radiance transfer vectors for moving table takes 1.22s, scaling table

takes 1.42s, scaling chair takes 1.56s, cloning table takes 1.86s, cloning chair takes 2.84s,

and rotating the lighting takes 1.19 - 2.13s, respectively. Images are rendered at 15-35 fps.

Additional examples of the composed scenes are shown in Figures 3.1, 3.6, 3.7 and 3.5.3. For

these images, we use more wavelet coefficients to support intricate shadows, consequently

the runtime pre-computation is longer (up to fourteen seconds). These images are rendered

at 4-11 fps.

Figure 3.5.3 illustrates the realistic cast shadows by the dynamic table onto the floor and

the chair. After the designer selects the table, we compute the just-in-time radiance transfer

vectors for all vertices affected by the table. At each vertex, it is the product of the lighting,

BRDF, local visibility and global occlusions from any neighboring object except for the table.

As the designer moves the table, shading on the chair and the floor are evaluated as the dot

product between the computed just-in-time transfer vectors and the dynamic occlusion with

respect to the table. One may notice that shading on the table in the third and the fourth

image (the reference) are slightly different. This is owing to the fact that they are updated
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only after the designer completes the movement of the table. However, as shown in the

figure, there is no difference between JRT generated cast shadows and the reference image.

Extension to support real-time shading on the dynamic object itself remains as future work.

3.6 Conclusions and Future Work

In this chapter, we focused on the efficient computation of two basic problems: product

integral of multiple functions and its dual, multi-function product. These two mathematical

problems are interrelated and both reduce to the efficient computation of the integral coef-

ficients. Analyses show that the previous recursive approach is computationally expensive

and practically infeasible. We address these issues by projecting all operand functions onto

the wavelet bases. We proposed a novel generalized Haar integral coefficient theorem, and

developed two efficient tree-structured sub-linear algorithms for the two problems.

We demonstrated the practical application of the first algorithm in interactive rendering of

dynamic glossy objects under distant time-variant all-frequency environment lighting and

arbitrary view conditions. We represent the shading integral at each vertex as the product

integral of multiple functions, involving the lighting, BRDF, local visibility and dynamic

occlusions. Using the sub-linear algorithm for multi-function product integral, we rendered

each frame in a few seconds on a commodity CPU. The approach is orders of magnitude

faster than previous techniques.
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We proposed a novel Just-in-time Radiance Transfer (JRT) technique to further accelerate

shadow computation in the dynamic scenes. JRT renders realistic all-frequency shadows in

real-time. As a new generalization to PRT, JRT has three main advantages. First, light

transport in JRT is captured by a small radiance transfer vector that readily supports high-

glossy materials. In comparison, PRT needs a prohibitively massive light transport matrix

to support high-glossy materials. Although techniques have been proposed to aggressively

compress this massive matrix in PRT by decreasing its dimensionality [LSS04, WTL04],

compression band-limits high-glossy materials, and even the compressed dataset is still big

compared to that in JRT. Second, radiance transfer in JRT is evaluated on-the-fly and it

supports all-frequency cast shadows from dynamic neighboring objects. However, the light

transport in PRT is only valid for a single static object. Note that pre-computing light trans-

port for every frame in a dynamic scene using PRT is possible but prohibitively expensive.

Finally, the radiance transfer vector in JRT is evaluated interactively at runtime (using the

second tree-structured algorithm), while the light-transport in PRT is tabulated off-line in

hours. JRT is a fast and flexible approach, and we believe that it has broad applications

in computer games, 3D modelling and lighting design. We predict future extensions to this

technique, for instance, in rendering dynamic objects with real-time subsurface scattering

effects and extending the technique to volume rendering.

Currently the system cannot handle object rotation. This is a prevalent issue for all PRT

approaches using wavelets [NRH03, NRH04]. The problem arises because the pre-computed

data are defined in a global coordinate system and encoded in the wavelet domain, while
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the object is rotated in a local coordinate system. As a result, the problem reduces to the

non-trivial rotation in the wavelet domain. Finding efficient solutions to this problem is an

important area of future work.

This chapter is a significant step towards efficiently integrating the product of multiple

signals, which is of great importance to general numerical analysis and signal processing. We

predict much future work in this direction. We are aware of the recent wavelet importance

sampling by Clarberg et al. [CJA05] in extending two-dimensional triple product to higher-

dimensional triple product. Results in the chapter can also be extended to support efficient

computation of higher-dimensional tensor product. Finally, our work focuses on efficient

light integration with only the direct lighting. Similar mathematical methodology may be

used to incorporate indirect lighting in global illumination.
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a) depth=6, 11s b) depth=5, 5.7s c) depth=4, 2.8s

d) depth=3, 1.3s e) depth=2, 0.6s f) depth=1, 0.26s

Figure 3.5: Comparison of the rendered images (resolution: 1200×900) with varying traversal

depths of the rendering algorithm. The overall rendering time (including sampling/encoding

the lighting, interpolating BRDFs/occlusions, shading integral and the rasterization) is also

shown (in seconds), which demonstrates a linear complexity in terms of the traversal depth of

the rendering algorithm. Image in a) is indistinguishable from the reference. g) is rendered

without global occlusions. The maximum number of wavelets encoded in the augmented

quadtrees for each face of the cubemap are: lighting (St. Peter’s Basilica) 200, BRDFs 70,

visibilities 70.
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Figure 3.6: More examples of the composed scenes (resolution: 1200×900). Only view point

changes (lighting: St. Peters Basilica). Note that shadows on the floor and specularities

on the three chairs change dramatically with changing viewpoint. Note that here lighting is

fixed. Images are rendered at 4− 11 fps.

Figure 3.7: More examples of the composed scenes (resolution: 1200 × 900). Only lighting

varies (upper lighting: Grace Cathedral, lower lighting: Building). Note that view is fixed.

Images are rendered at 4− 11 fps.
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Figure 3.8: More examples of the composed scenes (resolution: 1200 × 900). The designer

moves the table (lighting: Galileo). Note that shadows cast by the table onto the chair and

the floor change. The fourth image is generated using the general rendering algorithm, while

the first three images are generated using JRT. Images are rendered at nearly 15 fps.
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CHAPTER 4

CONCLUSION AND FUTURE WORK

In this dissertation, we presented a new theory of efficiently computing multi-function prod-

uct and product integral. We analyzed the mathematical problem in the basis domain,

especially in the wavelet domain. The theoretical results have been applied in develop-

ing a set of efficient algorithms for multi-function product and product integral. We also

successfully demonstrated their application in real-time rendering.

The theoretical part of this work has broad implications. In this dissertation, we concentrate

on the simplest wavelet filters, Haar wavelets. One prominent question is: are there any other

wavelet filters which are smooth yet more efficient in integrating the product of multiple

natural signals? We are highly optimistic in the existence of such wavelet filters.

In the dissertation, we only consider the computational aspects of the light integral operation

using wavelet technique. We believe similar approaches deserve further investigation in some

closely related topics which are also critical to the realistic simulation of natural objects, such

as compact yet accurate description of surface material appearance and surface geometry

deformation.
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